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Abstract—In this paper, estimation of the applied force on a 
planar catheter is considered. An image processing approach 
has been chosen as the most suitable tool. For this purpose, we 
create a comprehensive database of catheters with different 
shapes and operating forces. Using image processing 
algorithms, position data for the catheters' outer, middle, and 
inner layers in this database are obtained. Finally, using curve 
fitting, an exponential mathematical function is accepted for the 
middle layer of each catheter. Feeding this data into different 
machine learning algorithms, force estimation is obtained with 
a mean average error of 0.52 N. Later, the force applied to a 
tendon catheter is estimated using the SOFA framework and 
deep learning techniques, directing the research into a reliable 
applied force estimation.  
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I. INTRODUCTION 

Steerable catheters and endoscopes have been investigated 
for more operative minimally invasive treatment  of cardiac 
problems [1-3]. Steerable catheter tubes in the ablation operation 
are inserted into a heart chamber  through the vasculature and 
then ablate the target area in the heart using radiofrequency 
energy to scar or destroy the tissue responsible for passing on 
abnormal electrical signals [4, 5]. Due to the complex and 
delicate nature of the vasculature, the contact force applied at the 
tip of the catheter is vital information to improve safety and 
maintain a consistent force for an accurate operation [6, 7].  

However, it is challenging to sense the contact force during 
the procedure. Cardiologists have minor haptic feedback during 
manual operations due to the partial transmission of the contact 
force that their fingers can sense through the long and flexible 
structure of the catheter [8]. Although studies are being 
conducted on direct sensors that can directly measure the applied 
force, recent results show that there is still a long way to build 
these measuring devices that operate with low cost and high 
accuracy [9]. Introduced dynamics through these devices could 
also be another issue in navigating the catheters. Fortunately, as 
the technologies of catheter intra-operative tracking advances, 
the 2D shape of catheters could be detected through the magnetic 
field, CT, MRI, and x-ray fluoroscopy [10]. Therefore, an 
alternative solution for this unadaptable problem is contact 

forces estimation from the shape of the deflected flexible body 
of the catheter. This intrinsic force-sensing solution has already 
been implemented into conventional ablation catheters [11]. 

This research proposes a new contact force estimation 
method based on image processing and machine learning, 
following our previous work in this area [7, 11]. Creating a 
unified database to perform the image processing procedures is 
necessary. For this reason, using finite element methods, 
different samples of catheters with different diameters and 
shapes are subjected to a range of forces. In the image processing 
process, we obtain a grayscale outline of the catheter and use this 
outline to get position data for the samples' outer, middle, and 
inner edges. Using this data, we can obtain a mathematical 
model describing the curvature of the catheter.  

Before starting the deep learning phase, using mathematical 
modeling techniques, suitable properties are obtained for the 
relationship between the mathematical model and the estimated 
force. Our goal is to use the images and videos of a catheter 
under force application and estimate the force applied through 
our proposed method. 

In the second section of the paper, the two-dimensional (2D) 
catheter structure is explained. The third section presents the 
data set used in this research. The samples used in this section 
are created using SOLIDWORKS 2021 software, based on the 
Finite Element Method (FEM). The programming is done using 
Python and MATLAB languages. At the end of this section, the 
information obtained from the proposed exponential function is 
processed by a deep neural network, and finally, the applied 
force is estimated according to the accepted mathematical 
model. In the fifth section of the paper, the data of a tendon-
driven catheter are analyzed in the SOFA framework [12] using 
image processing. The sixth part of the paper is dedicated to the 
conclusion and presenting future solutions. 

II. 2D CATHETER STRUCTURE 

In this paper, a two-dimensional structure of a catheter is 
considered. The Global coordinate system is assumed to be 
located at the X-Y axis, and the external force is applied at the 
tip of the catheter. Using image processing techniques combined 
with a mathematical model, we detect the points during catheter 
deformation. In Fig. 1, a catheter's outer, middle, and inner 
layers with a diameter of cross-sectional profile (ϕ) is 



   

considered. In the next section, we will prepare a database using 
five different diameter sizes with a range of forces applied.  

 

 
Figure 1: Schematic of a 2D catheter with applied force 

III. DATASET 

Before using mathematical modeling or deep learning to 
estimate forces, we first need to establish a comprehensive 
database. Different catheter samples with diameters and shapes 
are designed using finite element methods (Fig. 2). We then 
subject these samples to a range of forces, and finally, the 
displacement of all parts of the catheter is captured through their 
images. 

 
Figure 2: Database for catheters with different profiles and various applied 

forces 

IV. IMAGE PROCESSING AND MACHINE LEARNING 

In this section, the following procedures are implemented in 
Python to extract the morphological features of catheters. 
Original images of the catheter dataset, as shown in Fig. 3, are 
considered and then processed by the following algorithms.  

 
Figure 3: Original image of catheter sample, F=10[N], ϕ =1[mm] 

 

A. Edge detection, Thresholding, and Cropping 
Images from the database are loaded in grayscale Numpy 

arrays. The arrays can be thought of as a 2D grid, with each grid 
holding a specific pixel value in a range from 0 to 255. We first 
want to obtain an edge-detected view of these samples. This is 
done using the Canny edge detection algorithm. The library 
OpenCV provides a simple function to apply this algorithm. 
This function returns a grayscale image array with the edges 
highlighted in white (Fig. 4).  

 

 
 

Figure 4: Cropped and edge detected image for a catheter, F=10 N, ϕ=1 mm 

 
After obtaining our edge detected image, we can crop this 

image ideally using Numpy. This is done by accessing every 
white pixel in our image array using a Numpy function name 
argwhere(). After obtaining these values, we crop the image 
according to the leftmost, rightmost, topmost, and bottommost 
white pixel, as shown in Fig. 5. 
 

 
Figure 5: Code for cropping catheter sample  

B. Finding the outer, inner, and middle line 
We use our processed image to extract data for the catheter's 

outer, inner, and middle curves. We loop through every row of 
pixels in the image from left to right for the external curve. As 
soon as we encounter a white pixel in a row, we record the 
position of this pixel in a and skip to the next row. Using this 
simple technique, we can record the parts of all the pixels on the 
outer layer of the catheter.   



   

 
Figure 6: Plotting the data for the inner, outer, and middle lines 

The process for obtaining the inner side is slightly different 
from the outer side. We loop through the rows of the image from 
right to left this time, again recording the first white pixel we 
encounter. The data for the middle line is simply by taking the 
average of the left and suitable arrays for each row. We now have 
three collections storing the outer, middle, and inner curves. 
These three arrays are plotted in Fig. 6. 

C. Converting to real-world coordinates 
We can convert the pixel values to real-world distances using 

the diameter of each catheter, as shown below.  First, we need to 
obtain the bottom left point and the bottom right point of the 
image. We can do this by using the last recorded value from the 
data for the outer side of the catheter. Since we looped from the 
top left to the top right, the final recorded value would be the 
bottommost left point of the catheter. For the bottommost right 
point, we can use the data obtained from the outer side of the 
catheter. The bottommost pixel value would be the first recorded 
data point.  

 
Figure 7: Actual coordinates of the detected catheter, F=10N, ϕ=1mm 

By calculating the difference between these two data points, 
we know now how many pixels make up the diameter of the 
catheter. We can then calculate the distance per pixel by dividing 
the number of pixels by the catheter’s diameter. We must 
multiply all the pixel data we obtained for the outer, middle, and 
inner curves by the distance per pixel value. We can now graph 
the resulting data in terms of real-world coordinates (Fig. 7).  

D. Obtaining mathematical model 
Before starting the deep learning phase, we obtain a 

mathematical model representing the catheter and the applied 

force. This step is done using Matlab’s curve fitting toolbox. We 
used an extended second-order exponential equation (1) to 
model our data.  For all shapes of catheters, this curve fitting is 
done as shown in Fig. 8.  

 (1) 

 
Figure 8: Actual coordinates of the detected catheter, F=10 N, ϕ=1 mm  

(axes in mm) 
 

Our data now consists of 7 values, a, b, c, d, e (from the 
second-order exponential equation), ϕ (diameter), and F (force). 
We obtained 87 different rows. A part of this result is shown in 
table 1. 

TABLE I.  MATHEMATICAL REPRESENTATIONS OF CATHETER SAMPLES 

a b c d e ϕ F (N) 
2.270 0.105 5.181 0.826 0.489 1 0 
2.285 0.106 5.235 0.832 0.507 1 1 
2.303 0.107 5.304 0.839 0.527 1 2 
2.322 0.108 5.389 0.848 0.550 1 3 
2.346 0.110 5.459 0.859 0.575 1 4 

 

E. Training using Random-Forest 
This step predicts the force applied to the catheter using the 

mathematical models using the Random-Forest machine 
learning algorithm. This is a popular machine learning algorithm 
and will provide a good reference for future experiments. 
Implementation is given via the Scikit-learn Python library. 

We split the data into training and validation sets with a split 
of 0.2. Scikit-learn provides dozens of different parameters for 
the Random-Forest algorithm. To find the best combination of 
parameters efficiently, we set up a function to iterate over 400 
different varieties of parameters to find the ones that yield the 
best results. This is done using the RandomizedSearchCV 
function in SciKit-learn. The most optimal set of these 400 
combinations gives us a mean average error of 1.36 N. Sample 
predictions are shown in Table 2. 
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TABLE II.  SAMPLE PREDICTION OF RANDOM-FOREST ALGORITHM 

True value N Prediction N 
3 3.25 
0 0.84 
4 5.03 
1 0.92 
5 5.63 
6 5.65 

 
F.  Training using Deep Neural Network 

Since the results using Random-Forest were promising, we 
decided to train the data on a deep neural net implemented with 
Tensor-Flow. This DNN has four hidden layers between the 
input and the output layers to allow accurate modeling of our 
non-linear relationship.  

Data is loaded in a normalized, again with a 0.2 train/test 
split. The optimizer used is Adam, with a 0.001 learning rate. 
The loss function used is mean squared error (MSE), with 300 
epochs and a batch size of 12. All parameters were chosen 
analytically with the help of the Taguchi statistical design 
method. The architecture summary is shown in Table 3. 

TABLE III.  ARCHITECTURAL SUMMARY FOR NEURAL NETWORK 

Layer  Layer size Param # 
Normalization 6 13 

Dense 6 42 
Dense 256  1792 
Dense 256 65792 
Dense 256 65792 

Dropout (0.2) 256 0 
Dense 64 16448 
Dense 1 65 

 
 We obtained a 0.52 N mean average error and an R2 of 96%. 
As shown in Figure 9, there are noticeable spikes of inaccuracy 
in our validation set. This is due to the relatively small dataset 
(87 rows) we are using. By developing a larger group of catheter 
samples, we can improve our mean average error and make 
more consistent predictions. 

  

 
Figure 9: Training results using our Deep Neural Network 

V. FORCE ESTIMATION VIA DEEP LEARNING IN SOFA 
FRAMEWORK  

In this section, using the SOFA framework [12] and the 
Tendon Finger model, an extensive database of different shapes 
in terms of tendon force is examined. The most distinguishing 
factor of the SOFA framework with the previous FEM software 
is that image processing is very neat and presentable [13]. Part 
of this database is shown in Fig. 10. Edge detection is then 
performed using image processing algorithms via Python. 
Unlike the previous section, where we estimated the force on the 
catheter using a mathematical model and finally the neural 
network, in this section, we estimate force with a pure deep 
learning approach due to the high diversity of the database.  

 

 
Figure 10: Tendon finger modeled with SOFA software 

 
The final result in this study is that we will analyze the 

images and videos of a catheter and estimate the amount of force 
applied by the proposed method. We can combine temporal and 
spatial data with videos and pictures to achieve better results. 

 

 
Figure 11: Edge detection of tendon finger modeled in SOFA framework 

VI. CONCLUSION 
Estimating forces acting on catheters is one of the most 

challenging topics in robot-assisted interventions. In the 
meantime, force estimation using image processing techniques 
can be a suitable solution for efficiently estimating external 
forces. This paper evaluated the various structures using a 
database based on SOLIDWORKS software. Finally, according 
to a mathematical model based on an exponential function and 
using neural networks, the logical relationship between the 



   

parameters of the mathematical model and the applied force was 
set. In the following, we tested this force estimation separately 
in the SOFA software to estimate the force with deep learning 
techniques. In the future, we will extend our work to include a 
complete database in the SOFA environment for three-
dimensional catheters and for different catheter shapes. We will 
also seek clinical examination of the proposed techniques. 
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