
Single-Shot Accurate 3D Reconstruction Using

Structured Light Systems Based on Local

Optimization

by

Neda Aslsabbaghpourhokmabadi

A thesis submitted in partial fulfilment of requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Neda Aslsabbaghpourhokmabadi, 2015



Abstract

Creating 3D models of objects has been studied extensively for several decades.

These models have different applications in different fields. As a result, creating 3D

models is an interesting area in computer vision. There are many proposed methods

for extracting 3D information of 2D images. One of the most common methods for

3D reconstruction is structured light methods. Although structured light methods

can get valuable results of 3D reconstruction, they have limitations. For example, the

structured light methods can get dense results on static scenes or get sparse results

on dynamic scenes. In static scenes, the structured light method projects several

patterns, and it results in dense models. However, in dynamic scenes, the structured

light method projects just one pattern since the object is moving, and it results in

sparse models.

The limitation of the structured light methods in dynamic scenes is the most

important motivation for this thesis. In this thesis, a single-shot structured light

method is developed to overcome the sparse results in dynamic scenes. In particular,

the proposed method can obtain more accurate reconstruction with just one image of

dynamic scenes than that of existing methods. The new method applies global and

local optimizations to establish dense correspondences. The result of simulated ex-

periments comparison with the ground truth demonstrates that the proposed method

in this thesis achieves more accurate results than that of previous methods. Lastly,

the technique developed in this thesis is applied to real data in order to obtain high

quality 3D reconstruction results. The results of the new method are more accurate
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compared to previous methods.
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Chapter 1

Introduction

1.1 Motivation

Creating a three dimensional (3D) model of an object from two or more images is

called 3D reconstruction in computer vision. 3D reconstruction has been an active

research area in computer vision for decades. It provides a valuable ability for visual-

based machines to understand the environment. Additionally, 3D reconstruction

has many practical applications in different fields. For example, sensFly, a drone

company, [29] has designed flying robots with minimal impact on the environment

to operate in remote areas that are hard to reach for humans, e.g. mountains or

disaster areas. These robots capture images with attached cameras of these scenes.

Then, computer vision algorithms create 3D models of the scene for scientists to

study without having to go there. 3D reconstruction can also be used to preserve

the heritage [35] by creating 3D models of historical objects and monuments. Since
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the models are digital, they will not suffer from erosion or weathering effects, and by

using these models, historical artifacts can be preserved and passed from generation

to generation. 3D reconstruction is used in biometric as well. For example, in head-

scan [41, 26], the 3D shape and volume of a person is used to identify or authenticate

a specific person. Surgery is also exploiting 3D reconstruction to recreate fractured

or damaged organs [49]. Another recent application of 3D reconstruction is to let a

person try on clothes virtually [25, 24]. Users can virtually see how the clothes would

fit and look on their virtual 3D bodies.

Different approaches have been proposed for extracting 3D information of an ob-

ject. There is similarity between these methods in extracting depth and human's

perception of depth. Vision enables humans to perceive depth of objects in a scene.

Perceiving depth in humans relies on the binocular stereopsis system in the eyes. Each

eye, individually, provides a different view of the same object. When the two views

are superimposed, the same object appears in different positions. This difference is

called disparity. To imitate the human's binocular stereopsis system, computer vision

algorithms use two or more cameras with different viewpoints or one moving camera

to capture images of a scene from different viewpoints. This is the basis of most

stereo methods.

In a typical stereo method, the algorithm finds corresponding points in different

images of the same scene. Then, the matching points are used to get the 3D infor-

mation using a process called triangulation. These stereo methods are divided into

passive and active methods.
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¶ Passive methods use ambient light [27]. Many of these methods are listed

on the Middlebury Multi-View Stereo site [30], which evaluates methods for their

performance using a dataset. However, the major problem of these methods is with

non-textured objects, because corresponding points are difficult to obtain in areas

with no textures. Hence, passive stereo methods normally cannot reconstruct a dense

3D model.

· Active methods use projected patterns to overcome the aforementioned prob-

lems of the passive methods. The most popular group in this category is the struc-

tured light methods which project one or more patterns on the scene to create texture

on the object. As a result of the projected texture, the number of correspondences

between images increases. Projecting a single pattern is used for reconstructing 3D

shapes of dynamic objects, and multi pattern projection is used for static objects.

Because of their higher accuracy, structured light methods are often used to build

the ground truth of depth maps for evaluating passive stereo methods [30]. Although

active methods are more accurate, developing a practical and robust structured light

method is still an open area of study in computer vision.

This thesis is focused on developing a single-shot structured light method to re-

construct an accurate and dense model of the objects. The developed idea has two

approaches. One approach incorporates two methods in order to find the accurate

and dense corresponding points between an image pair. The first method is to apply

global optimization to get an initial set of dense corresponding points. The second

method is to apply the winner-takes-all idea to refine the set of corresponding points
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in their locations. The second method results in more accurate matched points be-

tween an image pair. The other approach incorporates one global optimization to

get an accurate and dense corresponding points. These approaches are described in

details in chapter 3 and results of each one are presented in chapter 4.

1.2 Background

Existing structured light methods in literature [4, 5, 11, 15, 16] can be categorized

into two groups based on how the pixel location is encoded: temporal and spatial

methods.

Temporal methods project several patterns on the object. A scene point is encoded

using a temporal sequence of patterns. Correspondence of two images is then obtained

by finding pixels with the same temporal code. These methods obtain dense and

accurate results, but they are not applicable to dynamic scenes because the scene will

change frame to frame.

Spatial methods project only one pattern onto the object and use the neighboring

patterns to encode scene points. Correspondence of two images is then obtained by

finding pixels with the same spatial codes. The results of these methods are not as

dense because the code uses more physical space to do encoding. However, they can

be used in dynamic scenes because they project only one pattern. The main purpose

of this research is to develop an accurate single-shot structured light method which

is both applicable to dynamic scenes and is sufficiently accurate compared to results

of existing temporal structured light methods.
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Figure 1.1: Triangulation with an established correspondence [3].

The extracted information of the scene from spatial and temporal methods is

used for triangulation which results in 3D points. To have an accurate triangulation,

camera-camera or camera-projector systems must be calibrated accurately. Camera

calibration computes the internal information of the camera, e.g. focal length. How-

ever, because of using two or more cameras in structured light methods, the relative

position of the cameras is also needed and must be determined.

Figure 1.1 shows the principle of triangulating and obtaining the 3D point when

the correspondence between the camera-projector system is determined. It represents

a camera-projector system where xc and xp are a pair of corresponding points between

the camera and the projector, respectively; Oc is the center of the camera; Op is the

center of the projection; and X is the triangulated 3D point.

Figure 1.2 shows the setup of a typical structured light system. A projector

projects a stripe pattern on the object, and the camera captures the scene. The

projected stripes are captured in deformed shape, which is used to get the 3D infor-

mation.
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Figure 1.2: Configuration of a typical structured light system [31]

1.3 Thesis Organization

Chapter 2 provides an overview of structured light systems. It gives an introduction

and categorization to existing structured light methods as well as their limitations.

Chapter 3 presents a novel structured light method that recovers a dense depth

map using a single color pattern. Compared to existing methods, the advantage of

this method is its ability of establishing dense and accurate corresponding points.

Hence, it can be applied to dynamic scenes because it requires to project only one

pattern to the scene.

Chapter 4 presents results of proposed methods, and comparison with existing

methods for both simulated data and real world data.

Finally, chapter 5 highlights the contribution and provides the conclusions of the

thesis and introduces future works.
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Chapter 2

Related Work

Reconstructing 3D models using passive stereo methods has many challenges. One

of the major challenges is the small number of corresponding points in texture-less

regions of a scene which results in a sparse 3D model [34, 6].

Structured light methods can address and solve the aforementioned problem [46].

These methods are also referred to as the active stereo methods. They project light

pattern(s) onto the scene. The pattern is projected by an active device such as a

projector or a laser scanner. The projected pattern creates texture on the scene

and increases the number of detected interest points and consequently corresponding

points [45].

Structured light methods are categorized based on different aspects, for example

scene applicability or coding strategy. Scene applicability represents whether or not

a given pattern is suitable for measuring moving objects. Coding strategy specifies

the type of codewords, periodic codification or non-periodic codification. Figure 2.1
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shows the classification structured light methods [46].

The common steps among all the structured light methods are the following:

¶ Calibrating the camera-camera or camera-projector systems;

· Rectifying the captured images;

¸ Extracting distinctive features from rectified images;

¹ Obtaining corresponding points (¸+¹ is called decoding); and,

º Triangulating the corresponding points.

In the following section, calibration is discussed first. Then, some of the decoding

methods are reviewed. These methods are used to extract features and distinguish

correspondences between the images.

2.1 Calibration

Camera Calibration has been extensively studied in the past decades [8, 44, 55, 13].

It is needed in structured light methods because these methods assume the input

images are rectified. The advantage of using rectified images is reducing the search

space for establishing the correspondence points in the following steps from O(mn)

to O(m), where the image size is m× n.

To explain more, if we consider a pixel pi in a captured image, the whole projected

pattern is searched for finding the correspondence of pi. Looking for a pixel in an

image of size n×m takes O(nm). However, if the images are rectified, the search size

is reduced to O(m), because corresponding points are on corresponding scanlines as

it is shown in Figure 2.2. In other words, if a point pi is located on the jth row in
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Figure 2.1: Classification on the structured light methods [46].
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the rectified captured image, its correspondence will be on the jth row in the rectified

projected pattern.

Figure 2.2: The search space between (1)original images and (2) rectified ones. [2]

Going back to the discussion of camera calibration, it estimates the intrinsic and

extrinsic parameters of the pinhole cameras. The intrinsic parameters are the focal

length, the principal point (i.e. image center), and the lens distortion parameters

of the camera. The extrinsic parameters include the rotation and translation from

the world coordinate system to the camera coordinate system. There is a publicly

available camera calibration toolbox [8] which is implemented based on the method

proposed by Zhang [55]. This toolbox is used in this thesis for calibrating the cameras.

The algorithm of calibration can be described briefly as follows:

¶ Moving a planar checkerboard pattern and capturing images at different loca-
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tions and orientations;

· Detecting corners of the captured images;

¸ Finding the corresponding points in different images;

¹ Using the closed form solution to get the intrinsic and extrinsic parameters;

and,

º Refining the obtained parameters through maximum likelihood inferences.

In addition, there are some methods which use camera-projector systems. The

camera-projector calibration method is an extension of camera calibration because

the projector is counted as an inverse camera by projecting the images instead of cap-

turing them. The method proposed in [28] utilizes a thoroughly flat surface placed at

different locations with different orientations in front of the camera and the projector.

The flat surface moves while it is in the focus range of the camera and the projec-

tor. A printed rectangular checkerboard is attached to the flat surface. Moreover,

a pattern is projected on this surface. There should not be any overlaps between

the projected pattern and the printed pattern, while both patterns are visible to the

camera.

After capturing more than two images of the flat surface in different locations

with different orientations, corners of the printed pattern are detected automatically

using the camera calibration toolbox [8]. Then, the intrinsic and extrinsic parameters

of the camera are estimated using a closed-form solution.

Once the camera's parameters are established, the calibration plane equation in

the camera coordinate system is estimated. The plane is represented by specifying
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a non-zero normal vector to the plane, n, and a point on the plane, p. The first

three elements of the third column of the rotation matrix represent n, and the three

elements of the translation vector represent the coordinate of p (equation 2.1).

Kext =



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1


(2.1)

Based on equation 2.1, n = [r13, r23, r33]
t and p = [tx, ty, tz]

t. Having the normal

vector n and a point p, a plane is defined as shown in equation 2.2, where r is any

point on the plane and “·” represents the dot product,

n · (r − p) = 0. (2.2)

After defining the plane of the printed pattern, the corners of the projected pattern

are detected using the camera calibration toolbox [8]. Then, a ray-plane intersection

is required in order to obtain the 3D position of the corners of the projected pattern.

Applying ray-plane intersection to different images produces a big number of non-

coplanar 3D points for calibrating the projector. At the end, by applying Zhang's

method [55] to the 2D to 3D corresponding points, the projector can then be cali-

brated. Then, the intrinsic and extrinsic parameters of the projector are estimated.

As a result of calibrating the projector, the relative position between the camera and

12



the projector are established.

2.2 Decoding

Structured light methods utilize different decoding methods. Some of the structured

light methods use black and white patterns and some color patterns. Moreover,

among existing methods, some project different patterns to deal with static objects,

while others project just one pattern to deal with moving objects. The former group

projects several patterns onto the objects (multi-shot), but the latter group projects

just one pattern in each frame (single-shot). In this section, decoding methods are

categorized based on the number of projected patterns and scene applicability. Those

methods using multi-shots are applicable to static scenes, while those using single-

shot are applicable to dynamic ones. Table 2.2 [46] shows these two categories and

the most popular methods in each category. These methods are described in more

detail in this chapter.
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Methods applicable to static scenes

Binary Code [36, 48, 39]

Gray Code [22, 7, 42, 20]

N-ary Code [11]

Phase Shifting [52, 23, 33, 32, 51, 53, 54]

Methods applicable to dynamic scenes
De Bruijn stripe pattern [18, 43, 9, 38, 50]

M-array Patterns [17, 46, 21, 37, 16]

Table 2.1: Categorization of structured light methods [46].

2.2.1 Methods Applicable To Static Scenes

Methods applicable to static scenes usually project several varying patterns onto the

objects. These methods are also called multi-shot methods or temporal methods. A

scene point is encoded using a temporal sequence of patterns. By projecting enough

number of patterns onto the objects, every pixel, which corresponds to a physical

scene point, is encoded by a codeword, which is formed when all the patterns are

projected. Hence, dense reconstruction results. There are several methods in this

category which are explained below.

2.2.1.1 Binary Codes

The patterns in the binary code methods consist of black and white stripes. By

projecting a sequence of black and white stripe patterns onto the object, each pixel is

encoded in a sequence of black or white (0 or 1). The template of the pattern stripes
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follows a coarse-to-fine idea. In particular, if m is the number of binary patterns,

at most 2m stripes can be uniquely coded using the binary pattern methods. Some

widely used binary code methods are proposed by Posdamer et al. [39], Minou et

al. [36], and Valkenburg et al. [48]. These methods project black and white patterns

and encode each point regardless of the object's color. Therefore, these methods are

not dependent on object's color, and for this reason, they can be applied to most

of the static scenes, including texture-less ones. After projecting a pattern, an edge

detection method is applied to determine the transition between two adjacent stripes.

Figure 2.3 shows binary patterns which contain 1024 different binary codes. Figure

2.3 has 1024 column and each column represents a specific binary code.

Figure 2.3: Binary patterns.

2.2.1.2 Gray Code

Gray code patterns (Figure 2.6) are very similar to binary code patterns where every

pixel is uniquely encoded by a sequence of black and white. Since the number of

stripes in the patterns increases by two, the length of the codeword is given by 2m

similar to binary codes, where m is the number of projected patterns. If m is 10,
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the width of image should be 1024 (210) to encode each pixel uniquely. Gray code

methods are introduced by Guhring [22], and Bergmann [7]. These methods require

a great number of projected patterns. To encode each pixel uniquely, some horizontal

and some vertical patterns which follow the coarse-to-fine idea should be projected.

This can be seen in Figure 2.4. These methods need enough time to project all the

patterns. Hence, these methods are not efficient. Later on, various versions of gray

code patterns have been developed where the number of projected patterns is reduced

[42, 20].

Figure 2.4: Some sample of gray code patterns [46], coarse-to-fine from right to left.

After projecting all the patterns, the values of pixel pi in all the captured images

are compared to a threshold successively. If the pixel value is higher than the thresh-

old, it is coded to 1; otherwise, it is coded to 0. If there are m projected patterns,

the length of codeword is m. Coding a pixel using the usual gray code pattern and

a threshold is not easy because of the difference of surface albedo of a scene. Be-
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cause of the difference of surface albedo of a scene, a scene point illuminated by a

white stripe in a pattern may appear darker than another scene point illuminated

by a black stripe. In this case, even using a threshold cannot help and may cause

inaccurate and wrong coding. To overcome this issue and get more accurate results,

inverse patterns are also projected. This doubles the number of required patterns,

Figure 2.5. When the inverse patterns are projected, the brightness of each pixel in

the original patterns and that in the inverse patterns are compared. Therefore, pixels

are encoded based on brightness comparison between the original projected pattern

and the inverse pattern. If a pixel value in the original pattern is brighter than the

pixel value in the inverse pattern, the pixel is coded as 1; otherwise it is coded as 0.

Figure 2.5: left: normal pattern, right: inverse pattern [46].

The difference between the binary code pattern and the gray code pattern is the

order of the projected patterns. Figures 2.3 and 2.6 are visualizing the binary code

and the gray code patterns. The difference in projection results an advantage for
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the gray code methods. The advantage of gray code is its applicability to objects

with steep and bumpy surface. In gray code, if a pixel has only one bit of encoding

error, then the code difference between this pixel and its two adjacent pixel is one

bit. However, if a pixel has a 1-bit error using binary code, the code error between

this pixel and its adjacent neighbors is more than one bit. For example, the code of

the 512th pixel in gray code is (0, 0, 1, 1, 1, 1, 1, 1, 1, 1) and the code of the 513th pixel

is (1, 0, 1, 1, 1, 1, 1, 1, 1, 1), and the difference between these two adjacent pixel is one

bit. However, the code of the 512th pixel in binary code is (0, 1, 1, 1, 1, 1, 1, 1, 1, 1) and

the code of the 513th pixel is (1, 0, 0, 0, 0, 0, 0, 0, 0, 1), and the difference between these

two pixel is 9 bits.

Figure 2.6: Gray code patterns.

2.2.1.3 N-ary codes

The methods in section 2.2.1.1 and 2.2.1.2 encode each pixel into two codes, in par-

ticular, 0 and 1. Coding into two codes causes these methods to be independent from

the object's color. For this reason, these methods cannot preserve color information.

N-ary methods, proposed by Caspi et al. [11], are color based patterns, where nm
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stripes are uniquely encoded in the RGB color space instead of black and white pat-

terns, where n is the number of colors , and m the number of projected patterns.

The parameters to set for designing N-ary patterns are: the number of colors (n),

the number of projected patterns (m), and noise immunity factor (α). N-ary codes

is an extension of gray codes. In the gray codes, there are just two colors, but in

the N-ary codes there are n colors. For example, the N-ary codes with n = 2 and

m = 10 is similar to the gray codes. The N-ary code methods project m patterns

[11], and then encode each pixel using the Equation 2.3. Each color in projected

pattern has a symbol. By solving Equation 2.3 for each pixel, corresponding symbol

in the projected pattern is obtained, where
−→
C is the recovered projected color from

the captured image; A is the projector-camera coupling matrix; K is the reflectance

matrix;
−→
P is the non-linear and monotone transformation; and

−→
C0 is the reading of

the camera under the ambient light. These parameters are known. And −→c is the

correspondence of
−→
C for each pixel which is unknown and will be extracted. Each

pixel is encoded by accumulating these symbols respectively.
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(2.3)

N-ary code can be as accurate as the gray code methods while using fewer pro-

jected patterns. In other words, N-ary code methods reduce the number of required

patterns significantly. Although these methods require fewer projected patterns com-
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pared to binary and gray codes, they do not reach the robustness of binary and gray

codes because of their sensitivity to object's color since their patterns are designed

in the RGB space.

2.2.1.4 Phase Shifting

Phase shifting methods are another kind of temporal methods for getting the 3D

information of an object. In phase shifting, a sinusoidal shifting pattern is projected

on a surface. The pattern is shifted and projected on the scene several times, and

each projected pattern is captured. The surface of the object causes deformation in

the captured patterns which is called phase deviation. The patterns used in these

methods are reduced to 3 patterns and usually designed by equation 2.4, as proposed

by Zhang et al. [52, 51, 53, 54], Han [23], and Haung et al. [33, 32] :

I(x, y) = I ′(x, y) + I ′′(x, y) cos
(
φ(x, y) + δ(t)

)
, (2.4)

where I(x, y) is the intensity in the designed pattern; I ′(x, y) is the average intensity;

I ′′(x, y) is the intensity modulation; δ(t) is time-varying phase shift angle; and φ(x, y)

is the phase to be solved for.

The common values for δ are 90◦and 120◦. When δ = 120, the resulting symmetry

is useful. Using equation 2.4 three patterns are generated as follows:
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I0(x, y) = I ′(x, y) + I ′′(x, y) cos
(
φ(x, y)− 2π/3

)
I1(x, y) = I ′(x, y) + I ′′(x, y) cos

(
φ(x, y)

)
I2(x, y) = I ′(x, y) + I ′′(x, y) cos

(
φ(x, y) + 2π/3

)
.

(2.5)

Solving the equations in equation 2.5 simultaneously, the phase value ( φ(x, y))

can be obtained as equation 2.6:

φ(x, y) = tan−1
(√

3
I0(x, y)− I2(x, y)

2I1(x, y)− I0(x, y)− I2(x, y)

)
. (2.6)

The range of the values for tan−1 is defined from −π
2

to π
2
. Hence, before using

φ(x, y), the discontinuities that occur in the phase calculation must be corrected. A

spatial phase unwrapping algorithm [52] can be applied to obtain continuous and

absolute phase from the wrapped phase. The phase unwrapping is essential to de-

tecting the 2π discontinuities and ambiguities, and to removing them by adding or

subtracting multiples of 2π point by point . Figure 2.7(a) shows a wrapped phase,

and Figure 2.7(b) shows an unwrapped phase.
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(a)

(b)

Figure 2.7: (a) The recovered phase with ambiguity, and (b) The unwrapped phase

without ambiguity. [23]

Phase shifting methods use fewer number of projected patterns; therefore, these
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methods are more efficient compared to binary or gray codes. Because of the few

number of projected patterns, these methods can be applied to dynamic scenes for

scenes with small motion. However, it is not recommended to use phase shifting for

fast dynamic scenes. Also, the results of phase shifting methods are more accurate [33,

54]. Moreover, based on gray scale nature of the patterns, these methods are robust

to object's color and less sensitive to ambient light and object's surface reflectivity

variation [52]. The disadvantage of the phase shifting methods is their sensitivity to

the projector defocus and noise [19].

To sum up, temporal coding strategies project multiple patterns and establish the

corresponding points between a pair of images. The strategies of projecting multiple

patterns are used for static scenes, and can achieve high accuracy in 3D reconstruction.

2.2.2 Methods Applicable To Dynamic Scenes

Unlike temporal coding, spatial coding projects just one pattern and creates identi-

fiable features using spatial information. Spatial coding techniques are applicable to

dynamic scenes, but they are not as accurate as temporal ones. There are different

methods in this category which are explained below.

2.2.2.1 De Bruijn Stripe Pattern

One of the most popular patterns in spatial coding is the De Bruijn pattern which is

discussed in this section, because it is used in the proposed method in this thesis. A

De Bruijn pattern is designed based on the De Bruijn circular sequence [18]. A De
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Bruijn pattern generation code is available on “The combinatorial object server” [43].

The first proposed De Bruijn patterns are found in “Color-encoded structured light

for rapid active ranging” by Boyer et al. [9]. Later, various methods based on the De

Bruijn patterns [38, 50, 12] are proposed. A De Bruijn pattern consists of 125 stripes

in the RGB color space and has a window uniqueness property of 3. The window

uniqueness property of n means that each sub-sequence of n consecutive stripes is

unique within the entire sequence. An n − ary De Bruijn sequence of order n is a

circular sequence d0, d1, ..., dkn−1 containing each sub-sequence of length n, just once.

In practice, only 125 stripes are needed and thus, the method worked with k = 5,

and n = 3. Figure 2.8 shows a sample of the pattern which consists of 125 stripes.

Figure 2.8: A sample of De Bruijn pattern.

There are different methods that use the De Bruijn patterns to get the 3D in-

formation of an object. Despite some differences, these methods follow a similar

methodology as follows:

¶ Use the mentioned pattern in Figure 2.8, and project it on the scene;

· Detect the edges between the stripes in the captured images;

¸ Apply global optimization for matching corresponding points between a pair of

images; and,
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¹ Apply triangulation to get the 3D information of the object.

Differences between De Bruijn based methods usually happen in the first three

steps by projecting different versions of De Bruijn patterns, using different image

processing methods, and using different global optimization techniques. For example,

Pages et al. [38] design a different pattern which combines multi-slit patterns and

color stripe patterns properties. In multi-slit patterns, there are black gaps between

the colored pixels. Therefore, it is possible to have similar colors in two consecutive

slits. Having black gaps between color bands allows intensity peaks to be detected in

the images. However, in color stripe patterns, there is no black gap between stripes.

Therefore, two consecutive stripes cannot have the same color. In such patterns, edges

between the stripes are detected in the image. Also, Chen et al. [12] design a Gaussian

blurred De Bruijn pattern which has a window uniqueness property. Moreover, they

use a pixel based matching method instead of edge based ones in the image processing

step.

After projecting the De Bruijn stripe pattern and capturing the image, the image

processing step is applied. This step requires detecting the edges of stripes (transi-

tion between two different adjacent color). The maxima and minima of the second

order derivative of the captured images indicate edges [38]. After detecting the edges

between stripes, global optimization using dynamic programming is applied to find

the correspondences between images. Dynamic programming can work under the

monotonicity assumption. Monotonicity assumption states that if a pixel, pi, in a

scan line have been seen before pixel pi+1 in the projected pattern, then the corre-
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sponding pixel ci should be seen before ci+1 in the captured image. The dynamic

programming part may have errors if the monotonicity assumption is violated. The

monotonicity assumption can be violated in some cases, such as having occlusion as

shown in Figure 2.9. The figure shows that pixel pi appears before pixel pi+1 in the

projector when we scan from left to right. But, in the camera ci appears after ci+1.

Hence, the monotonicity assumption is violated. To overcome this problem, multi

pass dynamic programming is developed by Zhang [50]. The dynamic programming

fails to find the optimal path when there is occlusion, but in practice it identifies the

monotonic solution. Although this solution is not the optimal path, it corresponds to

a monotonic component of the optimal path. In other words, it identifies a sub path of

the optimal path. For example, Figure 2.10 shows that the (F,G) surface is occluding

the (A,B,C,D,E) surface, and there are 9 projected rays while 8 of them are cap-

tured. Figure 2.11 shows that dynamic programming can recover the (A,B,C,D,E)

path in the first pass. The rest of optimal solutions such as sub path (F,G) also is a

monotonic and can be identified by removing previously identified path from the grid.

The previously identified pass (A,B,C,D,E) consists of columns (1, 2, 4, 5, 6, 9) and

rows (1, 2, 5, 6, 7, 8) in the original grid. The procedure will continue until all columns

and rows are exhausted.
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Figure 2.9: Violation of the monotonicity assumption. pi is in the left of pi+1 when

we scan from left to right in the projected pattern. But, in the captured image ci is

after ci+1.

Figure 2.10: A thin (F,G) surface is occluding the (A,B,C,D,E) surface. There are

9 projected transitions while 8 of them are captured. [50].
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Figure 2.11: The multipass dynamic programming recovers the (A,B,C,D,E) path

in the first pass, and then (F,G) path is recovered. [50].

2.2.2.2 M-array

The M-array (perfect maps) method is another class of spatial coding methods pro-

posed by Etzion [17]. M-arrays are pseudorandom arrays of dimensions r × v, where

each submatrix of dimension n ×m appears only once in the whole pattern (matrix

M). An M-array of dimensions n1 × n2 with a window property of k1 × k2 requires

a pseudorandom sequence of length n = 2k1k2 − 1 ( minus one is because zero sub-

matrix is not permitted); where n = n1 · n2, n1 = 2k1 − 1 and n2 = n
n1

. Choosing an

appropriate window property determines the robustness of the pattern to occlusions

[46]. De Bruijn patterns are represented in one dimension (scan line), but M-array

patterns are represented in two dimensions.

There are different proposed patterns using M-array which differ in the represen-
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tation of their elements. Figures 2.12, 2.13, and 2.14 show different pattern represen-

tations. Figure 2.12 shows a binary M-array pattern proposed by Spoelder et al. [47].

Its pattern is a checkerboard, where the M-array elements are placed in the white

squares and the black squares are used for pattern segmentation. The binary (0 and

1) symbols can be replaced by two different colors.

Figure 2.12: A portion of the M-array binary pattern [46].

Figure 2.13 shows a pattern proposed by Griffin [21]. This pattern is an array of

29



four symbols {1, 2, 3, 4}. There are two different approaches of projecting this array.

The first one is representing each symbol with a different color. The second approach

is to represent each symbol with a shape primitive. Figure 2.13 shows an example of

primitives for three symbols.

Figure 2.13: M-array pattern proposed by Griffin et al. [21]. Three shape primitives

are used to represent the symbols of the alphabet {1, 2, 3}.

Figure 2.14 shows another pattern proposed by Morano et al. [37]. For gener-

ating this pattern, a brute-force approach is used. For creating an M-array with 3

different colors and a window property of 3 × 3, the following steps are performed:

first choosing a subarray 3× 3 randomly and placing it at the top left of the M-array.

Second, consecutive random columns of 1×3 and rows of 3×1 are added to the right

and below the initial subarray, respectively, while preserving the window property.

Third, whenever the process reaches a state where adding a new column or row is
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not possible, the array is cleared, and the algorithm starts again with another initial

random subarray. The property of this pattern is that every 3× 3 array of color dots

is unique and, it appears just once in the whole pattern. The designed pattern is

applied by Desjardins et al. [16].

Figure 2.14: An M-array pattern with coloured dots [46].
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Chapter 3

Proposed Method

In this chapter, a single-shot 3D reconstruction method is introduced. This gradient

based method uses global optimization and local optimization, and the new method

results in accurate and dense 3D models of dynamic scenes.

This method uses one projector and two cameras. The projector is employed in

the system to superimpose texture onto the surface of the objects by projecting the

De Bruijn pattern described in section 2.2.2.1. In addition, two cameras are used for

capturing images from different viewpoints.

After capturing and rectifying images, image processing methods are required.

They include color normalization, feature extraction, and establishing the correspon-

dence points between images. This method uses two approaches to get a dense and

accurate set of corresponding points. The first approach uses spatial information to

detect interest points and uses global optimization to get an initial set of dense cor-

responding points. Then, by applying a local optimization, the method refines the
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corresponding points in their locations. The other approach uses spatial information

to detect interest points, but is uses only one global optimization to get a set of

dense and accurate corresponding points. At the end, 3D information is extracted by

applying triangulation to the final set of corresponding points.

The steps of the proposed technique are presented in the following parts in more

details:

• Calibrating the camera(s);

• Projecting a pattern;

• Normalizing color;

• First approach:

Extracting dense corresponding point; and,

Correspondence refinement.

• Second approach:

Extracting dense and accurate corresponding points..

3.1 Calibrating The Camera(s)

There are two possible setups for structured light methods: camera-projector and

camera-camera systems.

The camera-projector system consists of a camera for capturing the data and a

projector for creating texture on the scene. The camera and the projector should be
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calibrated and their relative position should be known. The camera-projector system

has some drawbacks. Consider the De Bruijn pattern explained in section 2.2.2.1. A

portion of the De Bruijn pattern that the projector illuminates is illustrated in Figure

3.1(a). The pattern captured by the camera is illustrated in Figure 3.1(b). These

two patterns seem very different. In other words, sometimes a broader spectrum

of the projected color stripes appear in the captured image, Figure 3.1(b). This

phenomenon, called color fringes, is a type of color distortion. Color fringes cause

extra edges in the captured images compared to the projected pattern. These extra

edges create extra color gradients in the captured images which cannot be matched

to that of the projected pattern. Moreover, corresponding pixels belonging to the

corresponding stripes between the projected pattern and the captured image have

different color intensities, Figure 3.2. All of these disadvantages result in sparse

matching points between the captured image and the projected pattern.
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(a)

(b)

Figure 3.1: (a) Color stripes of the projected pattern, and (d) The captured image

has color fringes.

Figure 3.2: The intensity of a red pixel in the right image (projected pattern) is

(255, 0, 0), while in the left image (captured image) is (104, 23, 17). These two pixels

are representing two corresponding pixels, one on the projected image by the projector

and the other on the captured image by the camera. These two corresponding pixels

are supposed to have the same intensities but it does not happen in practice.

Because of the above discussed drawbacks, a camera-camera system is used in this

thesis. In this setup, two cameras are used in a stereo rig. These two cameras are

calibrated using a publicly available camera calibration toolbox [8], and there is no
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need to calibrate the projector because the projector is used to projecting the pattern

to create texture on the object surface. The intrinsic parameters of each camera

are obtained after calibration, and the results of the relative position between the

two cameras are shown in Figure 3.3. Also, the error of camera calibration of each

camera is shown in Figure 3.4 which causes error in rectification and the result of

the next steps, since the calibration results are used to rectify the image pair. Using

rectified images in 3D reconstruction methods reduces the search space for finding

corresponding points between a pair of images in the following steps from O(mn) to

O(m); where the image size is m× n.
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Figure 3.3: The extrinsic parameters. It shows the relative position between the left

camera and the right camera.

Figure 3.4: Camera calibration errors. (a) Left camera calibration error, and (b) right

camera calibration error.
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3.2 Projecting a Pattern

Structured light methods project a pattern onto the scene to increase the number of

corresponding points. The projected pattern in this thesis is based on the De Bruijn

pattern in section 2.2.2.1. Different versions of the De Bruijn patterns are generated

in this thesis and visualized in Figure 4.1. Figure 3.5(a) shows a De Bruijn pattern

with stripe width of 8 pixels, and Figures 3.5(b) shows a De Bruijn pattern which is

blurred under a Gaussian filter (filter size is 5× 5 and sigma is 2) with stripe width

of 8 pixels. The Gaussian filter makes the De Bruijn pattern blurred. The blurriness

creates intensity variation for pixels of a stripe. Also, it removes sharp edges between

colors by adding a region with a broader spectrum of colors. Figures 3.5(c) and 3.5(d)

show a De Bruijn pattern which is repeated two times and three times, respectively.

The results of all the patterns are visualized and evaluated in chapter 4. Figure 3.5(e)

shows the complement of the De Bruijn pattern. In Figure 3.5(f) a random binary

matrix is combined with the De Bruijn pattern, and Figure 3.5(g) shows a De Bruijn

pattern when the average of the color intensity value of each consecutive stripes is

added in between.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3.5: (a) The De Bruijn pattern with stripe width of 8 pixels, (b) the blurred

De Bruijn pattern with a Gaussian filter and stripe width of 8 pixels, (c) two times

repeated De Bruijn pattern, (d) three times repeated De Bruijn pattern, (e) com-

plement of the De Bruijn pattern, (f) combination of a random binary matrix with

the De Bruijn pattern, and (g) the De Bruijn pattern with average of color intensity

value of each adjacent stripes in between.39



3.3 Normalizing Color

In general, the distribution of color values in an image depends on the illumination

and the color characteristics of the camera. Even under the same illumination, two

cameras of the same model capture two images of the same scene often result in images

in noticeable differences because of their differences in the color characteristics of their

sensors. Since the proposed method uses two cameras and is based on color gradient,

having similar color in two images is a pre-condition. Color normalization between

two images is required to make the color distribution similar between them.

The color transformation method proposed by Reinhard et al. [40] uses simple

statistical analysis to impose one image's color characteristics to another image in

the Lab color space. The Lab color space is based on perceptual uniformity. Thus, it

can be used to make accurate color balance corrections. In particular, both images

are converted to the Lab space first, and are split to three channels L, a, and b. In

the following, the color distribution of the target image, It, will be transformed to

the color distribution of the source image, Is, to have the similar color distribution.

In addition, Lt, at, bt are the split channels of the It, and Ls, as, and bs are the split

channels of the Is. For purposes of transforming colors of the target image to the

source image, computing the mean and the standard deviation along each of the three

channels of both images is sufficient; L̄t, āt, b̄t, L̄s, ās, and b̄s are the mean of Lt,

at, bt, Ls, as, and bs, respectively. Also σLt , σat , σ
b
t , σ

L
s , σas , and σbs are the standard

deviation of the Lt, at, bt, Ls, as, and bs, respectively. Then, two computational steps

are required. First, the computations in equation 3.1 are performed:
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L∗t = Lt − L̄t

a∗t = at − āt

b∗t = bt − b̄t

(3.1)

Second, scaling and shifting of L∗t , a
∗
t , and b∗t are performed as shown in equation 3.2.

L∗t = (σLt /σ
L
s )× L∗t + L̄s

a∗t = (σat /σ
a
s )× a∗t + ās

b∗t = (σbt/σ
b
s)× b∗t + b̄s

(3.2)

After the above transformation, L∗t , a
∗
t , and b∗t will have the same distribution as

that of the Is. Then, color space conversion is needed to convert the target image

from the Lab space to the RGB space.

3.4 First Approach

3.4.1 Extracting Dense Corresponding Points

After normalizing the images in the previous step, there are two color normalized

images that are both rectified and have the same size. In this thesis, one image is

denoted by IR that is captured by the right camera and the other image is denoted

by IL that is captured by the left camera. The method looks for correspondences

between IR and IL. Since the images are rectified, the corresponding pixels between
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images can be found on the same scanline. To find the corresponding points in the

jth scanline in both images, the method gets a score for each pixel pairs between IL

and IR. The size of the score matrix for each scanline is ILwidth × IRwidth, where ILwidth

is the width of IL, and IRwidth is the width of IR. Scoring the pixels is based on their

gradient, as shown in equation 3.3:

score(pLi , p
R
j ) =

1∑
k=r,g,b

(|pL
i(k)
−pR

j(k)
|)

255
+ 0.02

(3.3)

where pLi is the ith pixel in IL, pRj the jth pixel in IR, pLi(k) the intensity of the kth

channel of pLi , and pRj(k) the intensity of the kth channel of pRj . The more the similar

between pLi and pRj , the higher the score(pLi , p
R
j ).

Then, the proposed dynamic programming method by Cox et al. [14] is applied to

match the pixels between the two images. The dynamic programming (DP) provides

dense correspondences for almost all illuminated pixels in the captured images if

there are no occlusions. Algorithm 1 demonstrates the pseudo code of calculating

and reconstructing the optimum match using the DP approach. The output of the

Algorithm 1 is a set of matched points. Using DP, matches along each scanline in

both images are considered. Since the whole scanline is used to find correspondences,

DP is considered as a global optimization method.
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Algorithm 1 Finding the matched points using dynamic programming

procedure Matching Procedure

ILwidth ← the width of IL

IRwidth ← the width of IR

cost← a zero matrix ILwidth × IRwidth

cases← a zero matrix ILwidth × IRwidth

for i = 1 to ILwidth do

for j = 1 to IRwidth do

temp1← cost(i− 1, j − 1) + score(pLi , p
R
j )

temp2← cost(i− 1, j)

temp3← cost(i, j − 1)

cost(i, j)← the maximum value among temp1, temp2, temp3

if cost(i, j) = temp1 then

cases(i, j)← 1

else if cost(i, j) = temp2 then

cases(i, j)← 2

else if cost(i, j) = temp3 then

cases(i, j)← 3

end if

end for

end for

end procedure
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Algorithm 2 Cont’d Algorithm 1

lw ← ILwidth

rw ← IRwidth

while lw 6= 0 and rw 6= 0 do

if cases(lw, rw) = 1 then

lw is matched to rw

lw ← lw − 1

rw ← rw − 1

else if cases(lw, rw) = 2 then

lw is not matched

lw ← lw − 1

else if cases(lw, rw) = 3 then

rw is not matched

rw ← rw − 1

end if

end while
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3.4.2 Correspondence Refinement

An initial set of dense corresponding points are obtained using the method described

earlier. As regards to dynamic programming, all illuminated pixels in IL are matched

to their corresponding pixels in IR while their matched locations are integer values.

For example, pL100 is matched to pR350 where both 100 and 350 are integer numbers.

However, in the ground truth, the location of correspondence of pLi is a floating

number. For example, in the ground truth, the pL100 is matched to pR350.8. The winner-

takes-all idea is applied to refine the locations of detected corresponding points. The

process is described in detail in the following.

The idea considers a pair of matched points obtained by the previous step, pLi

and pRj , and consecutive neighbors of pRj ( pRj−1 and pRj+1), as shown in Figure 3.6. In

Figure 3.6, the (r, g, b) values of each pixel are shown inside of them.
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Figure 3.6: The pLi is matched to the pRj , because the score(pLi , p
R
j ) is higher than

others. Moreover, pRj−1 and pRj+1 are the preceding and following neighbors of pRj . The

intensity of each pixel is shown as the filled color.

Then, these consecutive pixels (pRj−1, p
R
j , and pRj+1) are linearly interpolated and n

new pixels are generated between them, where n is the number of newly interpolated

pixels between each two consecutive pixels. In particular, by linearly interpolating

pRj−1 and pRj , n new pixels are generated between them. Also, by linearly interpo-

lating pRj and pRj+1, n new pixels are generated between them, too. After interpo-

lation, there is a sequence of 2n + 1 pixels between pRj−1 and pRj+1; in other words,
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pR1l, p
R
2l, ..., p

R
nl, p

R
j , p

R
1r, p

R
2r, ..., p

R
nr. The intensity of recently added pixels is based on

the color intensity differences between pRj and its preceding and following neighbors

in RGB color space. For example, the RGB color intensity of the pRj−1, p
R
j , and pRj+1

are (rl, gl, bl), (r, g, b), and (rr, gr, br), respectively. The color differences between the

pRj−1 and the pRj is (r′, g′, b′), and the color differences between the pRj and the pRj+1 is

(r′′, g′′, b′′). In particular, the RGB color intensity value of pixels between pRj−1 and pRj

is computed using equation 3.4, and the RGB color intensity value of pixels between

pRj−1 and pRj is computed using equation 3.5, where 0 < k ≤ n.

pRk = (rl + r′/(n+ 1) ∗ k, gl + g′/(n+ 1) ∗ k, bl + b′/(n+ 1) ∗ k). (3.4)

pRk = (r + r′′/(n+ 1) ∗ k, g + g′′/(n+ 1) ∗ k, b+ b′′/(n+ 1) ∗ k). (3.5)

After this process, the method finds the best matched pixel of pLi in pR1l, p
R
2l, ..., p

R
nl, p

R
j ,

pR1r, p
R
2r, ..., p

R
nr by comparing each pair gradient. The minimum gradient indicates the

best matched pair. Since the method is finding the matched pixel for one pixel (pLi )

among 2n+1 pixels, the size of the cost matrix is 1×2n+ 1. In this section, inasmuch

as a portion of a scanline is looked for the correspondences, the refinement process is

considered as a local optimization method.

At the end, the location of pRj is refined to pRjnew by equation 3.6, where kth pixel

in pR1l, p
R
2l, ..., p

R
nl, p

R
j , p

R
1r, p

R
2r, ..., p

R
nr is matched to pLi .

jnew = j − ((n+ 1)− k)/(n+ 1). (3.6)
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Figure 3.7 visualizes the refinement process when the number of added pixels in

each interpolation is 5 ( n = 5). After adding virtual pixels, there are 2n + 1 (11)

pixels. The pLi was matched to the pRj , but after the refinement process, the pLi is

matched to the pR4l. The jnew is j − ((5 + 1) − 4)/(5 + 1) and the pLi is matched to

pRjnew .

Figure 3.7: The pLi is matched to the pRj . Then the location of pRj is refined by adding

some (n = 5) virtual pixels between pRj and its preceding and following neighbors.

Then, the new matched point is obtained by comparing the gradient of each pair.
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3.5 Second Approach

3.5.1 Extracting Dense And Accurate Corresponding Points

As it is described in section 3.4.1, one image is denoted by IR that is captured

by the right camera and the other image is denoted by IL that is captured by the

left camera. The method looks for correspondences between the IR and the IL.

The IL is considered as a reference image and the method is looking for each pixel

correspondence in the IR. Since the images are rectified, the corresponding pixels

between images can be found on the same scanline. The disparity values of a matched

pixel pairs using the DP are integer numbers and they are not accurate enough because

the disparity values in the ground truth are float numbers. In order to obtain accurate

disparity values, some virtual pixels are added before and after of each pixel in a

scanline in the IR similar to the described method in section 3.4.2. After adding

virtual pixels to a scanline of the IR, the number of pixels in the scanline is increased.

If a scanline has m pixels and n virtual pixels between each two adjacent pixels are

added, the scanline will have m × n pixels. Then the method gets a score for each

pixel pairs between a scanline in the IL and a modified scanline in the IR, as shown

in equation 3.3. The size of the score matrix for each scanline is ILwidth × IRwidth × n,

where ILwidth is the width of IL and number of pixels in a scanline in IL, IRwidth is the

width of IR and number of pixels in a scanline in IR, and n is number of virtually

added pixels between each two adjacent pixels in a scanline in IR. Then, the DP is

applied to obtain the corresponding points between a scanline in IL and IR. Since the
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scanline of IR has virtual pixels and high resolution, an indexing scheme is needed

after the matching. For indexing, the location of correspondence of each pixel in IL,

which corresponds to a point in IR, should be divided by n. For example, if the pLi is

matched to the pRj , where 1 ≤ j ≤ IRwidth × n, by indexing pLi is matched to pRj/n.
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Chapter 4

Results and Evaluations

Different versions of the De Bruijn patterns which are described in 3.2 are applied to

several datasets to demonstrate the ability of the new structured light method. The

method is implemented using C++ on a PC with 3.4GHz Intel Core i7 CPU and

16GB RAM and the running time is less than 6 seconds. For the simulated datasets,

both quantitative and qualitative evaluations are provided. Also, for the real world

datasets qualitative evaluations are provided.

4.1 Simulated Datasets

In the simulated experiments, a comprehensive 3D animation software Maya [1] is

used to project different patterns onto the intended object and create the ground

truth. The Stanford Bunny model is employed as the object in these experiments.

In addition, two cameras in Maya are used to capture the bunny from different view-
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points. Figure 4.4 shows the captured images of the bunny from two viewpoints under

the De Bruijn pattern. Figure 4.1(b) shows the ground truth of the depth map from

one viewpoint obtained by Maya. Figures 4.1(c), 4.1(d), 4.1(e), 4.1(f), 4.1(g), 4.1(h),

and 4.1(i) show the recovered depth maps by the new method(first approach) using

patterns 3.5(a), 3.5(b), 3.5(c), 3.5(d), 3.5(e), 3.5(f), and 3.5(g), respectively. In the

simulated datasets, it is observed that if the width of the stripes is less than 8 pixels,

the pattern will be uniformly scaled by Maya to fit the display whereas the scaling can

be modeled by a Gaussian filter. Since, the cameras in Maya are simulated, they both

have the same color characteristics. Hence, they do not need color normalization.

In order to qualitatively evaluate the new method (first approach), the ground

truth in the close up view of the part inside the red rectangle in Figure 4.2(a) are

shown in Figure 4.2(b). The close up view of that part in the recovered depth maps

with different patterns are shown in Figure 4.2. To make these figures more infor-

mative, the result of a traditional spatial coding method which is based on matching

the edges is shown in Figure 4.2(j), and the result of a temporal coding method (gray

code) is shown in Figure 4.2(k). Based on these figures, it is clear that the new method

with almost all color patterns can reconstruct very fine details on the object surface

and is very close to the ground truth. Moreover, Figures 4.2(c), 4.2(d), 4.2(e), 4.2(f),

4.2(g), 4.2(h), 4.2(i) show that the new method is not sensitive to the projected pat-

tern. The proposed method can reconstruct the shape of object under different color

patterns because the method is pixel based. Comparing different figures in Figure

4.2 indicates that the new method can reconstruct the shape better than traditional
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i)

Figure 4.1: (a) Captured images of the bunny from two different viewpoints, (b)

the depth map by Maya; (c), (d), (e), (f), (g), (h), and (i) are the recovered depth

maps using the new method with using different patterns 3.5(a), 3.5(b), 3.5(c), 3.5(d),

3.5(e), 3.5(f), and 3.5(g), respectively.

spatial methods (edge based ones) though both have error around edges and discon-

tinuous surfaces. Discontinuous surfaces cause problems because of small shadows

and make retrieving surface information difficult. Figure 4.2(j) demonstrates the re-

sult of a traditional spatial coding method which is based on edge detection. As it is

clear, it has large errors because it is based on edge detection and an error in edge

detection causes further errors.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 4.2: (a) The ground truth depth map, (b) the close up view of the area inside

the red rectangle in (a); (c), (d), (e), (f), (g), (h), (i) are the close up view of the

recovered depth map using the new method and different patterns 3.5(a), 3.5(b),

3.5(c), 3.5(d), 3.5(e), 3.5(f), and 3.5(g), respectively; (j) the recovered depth map

using a traditional spatial coding method which is based on the edges, and (k) the

recovered depth map using a temporal coding method.

Moreover, to quantitatively evaluate the new method (both approaches), two mea-

sures are used: recovery accuracy, and mean of disparity error.

¶ Recovery accuracy: This measure demonstrates the accuracy of the recovered

pixels and it is denoted by m
n
× 100%, where m is the number of pixels whose depth
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are established by the method; and n is the number of pixels who have depth values

in the simulated ground truth.

· Mean of disparity error: This measure computes the error (measured in disparity

units) between the recovered disparity map as denoted by dC(x, y) and the ground

truth map as denoted by dT (x, y) for every pixels. The mean disparity error is defined

as equation 4.1.

disparityError =
1

N

∑
(x,y)

|dC(x, y)− dT (x, y)|. (4.1)

Table 4.1 shows the quantitative evaluation results for two patterns (3.5(a) and

3.5(b)). From the table it can be seen that the new method with both approaches

using both mentioned patterns provides good results, with dense correspondences in

a single-shot. It can retrieve dense correspondences between images because it is

based on pixels, rather than edges as are used in traditional one-shot spatial coding

methods. Also, the ground truth depth map has 352747 pixels, and the gray code

method reconstruct 99% of these pixels while the new method using either the first

approach or the second one can recovered 100%. Comparing the number of recovered

pixels between the gray code and the new method indicates that almost all of the

pixels are recovered by the new method as well as the gray code method while the

new method projects just one pattern instead of 40 patterns by the gray code method.

Moreover, the mean of disparity error of the gray code method is 0.57 which is higher

than that of the new method. It is worthy to mention that the second approach

of finding correspondences is not as fast as the first approach because of the score
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mean of disparity error

Gray code method 0.57

New method(1st approach) using 3.5(a) 0.355

New method(2nd approach) using 3.5(a) 0.353

[12] method using 3.5(a) 0.522

New method(1st approach) using 3.5(b) 0.345

New method(2nd approach) using 3.5(b) 0.339

[12] method using 3.5(b) 0.519

Traditional spatial coding method 0.91

Table 4.1: Evaluation of mean of disparity error.

matrix size. Since both results are similar, in the following only the results of the

first approach are shown.

Figure 4.3 shows the difference between the recovered depth map by the gray

code method, the new method, and the method in [12] using the blurred De Bruijn

pattern and the ground truth depth map, respectively. The white pixels in Figure

4.3 represent pixels which their disparity value vary more than a 0.5 pixel from the

ground truth disparity map. As shown in Figure 4.3, it is clear that the new method

has a smaller error range compared with the other methods.
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(a) (b) (c)

Figure 4.3: (a) Error map of the gray code method, (b) error map of the new method,

and (c) error map of the method in [12].

4.2 Real World Datasets

In the real world experiments, two Point Grey Flea3 cameras are used for capturing

the images and a Dell M115HD WXGA LED projector is used for projecting patterns

described in section 3.2. Also, a Kinect 2.0 is used for getting the depth of the objects

and its results are compared with that of using the new method. The resolution of

the cameras is 1224 × 1024, and the projector is 1024 × 768. It shows that even if

the projector is out of focus, the new method can provide dense correspondences and

accurate results. In these experiments, the blurred pattern is not used anymore. It

is observed that when the projector is out of focus, the projected pattern is blurred.

It is also pointed out in [10] that if the projector is out of focus and projects to a

display surface, the display is uniformly blurred by a point-spread function which

can be modeled as a 2D Gaussian filter. Therefore, instead of projecting the blurred

pattern, the idea of setting the projector out of focus is used. The advantage of being

able to work with defocused projector is that in real applications the projector is not
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able to focus on all the points of a scene. If the projector is out of focus, the temporal

coding and traditional spatial coding methods may have problems in identifying the

codewords and detecting edges, respectively. The experiments demonstrate that even

if the projector is out of focus, the new method can provide dense correspondences

and the results are visually pleasant. Since the new method does not use temporal

information, it can be applied to both static and dynamic scenes. In the following

experiments, the new method is applied to several different scenes with static and

dynamic objects. The results of static objects are qualitatively compared to gray

code method results, and the results of moving objects are compared to depth maps

obtained using Kinect. The following figures show the result of the new method which

are visually and qualitatively pleasant. Figures 4.4, 4.5, and 4.6 show the results of

static objects. Figures 4.4(a), 4.5(a), and 4.6(a) are captured images of a static

object illuminated under a projected pattern in a dark room. Figures 4.4(b), 4.4(c),

and 4.4(b) are recovered depth maps by the new method. Figures 4.4(c), 4.5(c), and

4.6(c) are the recovered depth maps by the gray code method. Comparing Figures

4.4(b), 4.5(b), and 4.6(b) with Figures 4.4(b), 4.5(b), and 4.6(b) respectively indicates

that the recovered depth maps using the new method are visually pleasant and similar

to results of the gray code though the new method projects just one pattern. Figures

4.4 and 4.6 show how the new method can reconstruct amiable model of a curvy

object.
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(a) (b) (c)

Figure 4.4: (a) A captured image of the bunny, (b) the recovered depth map by the

new method, and (c) the recovered depth map by the gray code method.

(a) (b) (c)

Figure 4.5: (a) A captured image of the flat surface, (b) the recovered depth map by

the new method, and (c) the recovered depth map by the gray code method.

(a) (b) (c)

Figure 4.6: (a) A captured image of the coffeemate box, (b) the recovered depth map

by the new method, and (c) the recovered depth map by the gray code method.
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Figure 4.5 shows that the new method can reconstruct a flat surface perfectly.

Figure 4.7 shows the point cloud of the flat surface, and Figure 4.8(a) shows the

normal map of the flat surface point cloud. Normal maps are used to store normal

vectors. These vectors are encoded by colors in a specific way. Each vector has 3

components (x, y, z), and each component is represented by a specific color, (r, g, b).

The x component is represented by the red channel, the y component is represented

by the green channel, and the z component is represented by the blue channel. For

example, if a pixel looks more bluish, its normal vector has higher value in the z

component. By fitting a plane equation to flat surface point cloud, the error between

the point cloud and fitted plane can be computed and compared to demonstrate the

accuracy of the method. Figure 4.9 shows the error histogram between the point

cloud and the fitted plane. On average this error is 0.001 for 461070 points. Also,

Figure 4.10, and Figure 4.11 show the point cloud of the bunny and normal map of

the point cloud, respectively.

Figure 4.7: The point cloud of the flat surface.
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(a)

(b)

Figure 4.8: (a) The normal map of the flat surface point cloud, and (b) the legend of

the normal map.
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Figure 4.9: Histogram of errors between the fitted plane and the reconstructed flat

surface.

Figure 4.10: The point cloud of the bunny.
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(a)

(b)

Figure 4.11: (a) The normal map of the bunny point cloud, and (b) the legend of the

normal map.
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Moreover, Figures 4.12, 4.13, and 4.14 show the results of moving objects. In these

figures, the results of the new method are compared with the results of Kinect. The

comparison between the results of the new method and Kinect demonstrates that the

new method can get the depth map of a moving object without degradation of the

quality of the depth map. Although the new method can reconstruct pleasant shape

of the objects, it can not reconstruct regions illuminated under shadows.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12: (a), (d), and (g) are captured image of the hand gestures; (b), (e), and

(h) are the recovered depth map by the new method; and (c), (f), and (i) are the

recovered depth map by Kinect.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.13: (a), (d), and (g) are captured image of a piece of cloth; (b), (e), and

(h) are the recovered depth map by the new method; and (c), (f), and (i) are the

recovered depth map by Kinect.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.14: (a), (d), and (g) are captured image of a rotating bunny; (b), (e), and

(h) are the recovered depth map by the new method; and (c), (f), and (i) are the

recovered depth map by Kinect.

Moreover, the proposed method is tested under different indoor ambient lighting

condition. In a room with typical and dimmer ambient lighting, the method performs

as well as in the dark. Thus, this demonstrates that the proposed method is robust

67



to changes in ambient lighting.

To sum up, a method is presented which recovers a depth map with one pattern

only with a smaller disparity error and high pixel recovery accuracy. Moreover, the

method can recover the 3D information of a moving object. In addition, the projector

does not need to be focused since the method is applicable to the blurred pattern and

does not need to detect edges. Having a defocused projector is more practical because

it is not usually possible to focus the projector on all the scene points.
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Chapter 5

Conclusion and Future Work

3D reconstruction has been an active research area in computer vision for decades.

A new dense and accurate 3D reconstruction method is proposed in this thesis which

is single-shot and applicable to moving objects. The proposed method has two ap-

proaches.

The first approach uses spatial information to detect interest points and uses

global optimization to get an initial set of dense corresponding points. Then, by

applying a local optimization, the method refines the corresponding points in their

locations. This approach improves the resolution of a part of a scanline locally by

adding virtual pixels. The major time consuming part in this approach is in the

DP(O(ILwidth × IRwidth).

The second approach uses spatial information to detect interest points, but uses

only one global optimization to get a set of dense and accurate corresponding points.

This approach improves the resolution of a scanline globally. Unlike the first approach,
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it adds n virtual pixels before and after existing pixels. Having a high resolution

scanline increases the time complexity to O(ILwidth × IRwidth × n).

It is worthy to mention that the refinement in both approaches is done in one

image only. The reason is that an image is considered as the reference image and the

method recovers the disparity of each pixel of the reference image. Also, it is assumed

that all the pixels are illuminated using the color pattern and the method is not able

to recover pixels which are not illuminated but under shadow.

Moreover, different 3D reconstruction methods are reviewed in this thesis. In

addition, calibration which is an inseparable part of 3D reconstruction methods is

described.

5.1 Contributions

The goal of this research is to develop a new method to recover the 3D shape of an

object. There are different methods to reconstruct the 3D shape, but they are not

dense or accurate enough. In Chapter 3, a new structured light method is devel-

oped which recovers a dense and accurate depth map compared to previous methods.

The new method establishes dense and accurate corresponding points by using a

single-shot projected pattern unlike typical single-shot methods. The new method

is applicable to dynamic scenes because it projects just one color pattern whereas a

typical multi-shot method cannot. Also, the proposed method is not limited to the

De Bruijn pattern because it is pixel based method and can recover the 3D models

using different color stripe patterns as described in 4.1. Moreover, it can also work
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with color objects.

The proposed method is applied to both simulated data and real world data. In

both cases, it performs better than other existing methods.

5.2 Future Work

Although the method can get accurate and dense results, there are two major direc-

tions for future works.

¶ The proposed method is able to work for images captured in the air, but it can-

not work with underwater images because the assumption of having rectified images

is violated in underwater images.

· The proposed method is not able to work perfectly for objects which have shiny

parts because those parts are captured as a white area without any texture. In this

case, the object is getting additional illumination from inter-reflection.

¸ The proposed method is limited to pixels that are illuminated under the pattern

and not covered by shadows. The reason is that the shadow does not allow pixels to

reflect the projected color pattern correctly and the method fails to find corresponding

points for those pixels in shadow.
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Glossary

Image Rectification

In stero, finding a corresponding point between two or more images can be dif-

ficult. Because finding a correspondence of a pixel in the other image requires a

search in two-dimensions(image size). However, if the two cameras are calibrated and

aligned correctly to be coplanar, the images can be rectified and the search space is

reduced to one dimension - a scanline. As a result of rectification, if the location of

a pixel in the left image is known, the correspondence of that pixel will be found in

the right image by searching the same scanline as the left image.

Scanline

Each row in an image is considered as a scanline.

Surface Albedo

Surface albedo , or reflection coefficient of a surface, is the ratio of reflected radi-

ation from the surface to incident radiation upon it. It is measured on a scale from

0 to 1. Zero for black surfaces with no reflection, and one for white surfaces with

perfect reflection.
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