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Abstract

The COVID-19 pandemic accelerated the development of mRNA vaccines, yet iden-

tifying the optimal mRNA sequence for human use, particularly for the SARS-CoV-

2 spike protein, remains challenging. This thesis focuses on optimizing the open

reading frame (ORF), a crucial mRNA component composed of codons—triplets of

nucleotides coding for amino acids. We introduce a novel ‘valid-codon’ masking strat-

egy to streamline codon-to-amino acid mapping within the target protein sequence.

This approach was competitive to the ‘codon-box’ method, which groups codons

with identical nucleotide compositions. Our findings show that ‘valid-codon’ per-

forms comparably to ‘codon-box’ in optimizing ORF sequences for gene expression.

By integrating the masking strategy into a supervised fine-tuning (SFT) process us-

ing the pre-trained ProtBert model, we further optimize the ORF for humans for the

SARS-CoV-2 spike protein. Results indicate that our fine-tuned models surpass the

ORF sequences used in Moderna and Pfizer vaccines in terms of gene expression and

stability.
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Chapter 1

Introduction

This thesis’s research focus lies at the intersection between bioinformatics and deep

learning, specifically in optimizing mRNA sequences for vaccine development. In

order to lay down the motivation and objective of the thesis, we first introduce the

necessary biological background in the following section.

1.1 Background

1.1.1 Central Dogma of Biology

Deoxyribonucleic acid (DNA) is the hereditary material in all living organisms, en-

coding the instructions necessary for cellular function and development. A gene

is a segment of DNA that encodes the information required to synthesize a func-

tional protein. DNA is composed of two strands forming a double helix, with each

strand consisting of a sequence of four nucleotides: adenine (A), thymine (T), cytosine

(C), and guanine (G). The sequence of these nucleotides encodes genetic information

that is translated into proteins, which are the functional molecules responsible for

biological processes. The process of translating genetic information from DNA to

protein involves an intermediary step known as transcription, during which a mes-

senger ribonucleic acid (mRNA) sequence is synthesized. Unlike DNA, mRNA is

single-stranded and uses uracil (U) instead of T. A sample mRNA sequence such as

‘AUGUUCGUGUUCCUGGUGCUGCUG...’, is composed of several regions,
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including the 5’ untranslated region (5’ UTR), the open reading frame (ORF), and

the 3’ untranslated region (3’ UTR). The ORF is a critical component of the mRNA

sequence as it encodes the information necessary for protein synthesis [30]. The ORF

is organized into codons, which are sequences of three adjacent nucleotides. For exam-

ple, the aforementioned mRNA sequence can be expressed as a sequence of codons:

‘{AUG}{UUC}{GUG}{UUC}{CUG}{GUG}{CUG}{CUG}..’ There are

64 possible codons, 61 of which code for specific amino acids, while three serve as

stop signals to terminate the translation process. Translation, the process of protein

synthesis, occurs in the ribosome, beginning at the start codon within the ORF and

proceeding codon by codon until a stop codon is encountered. Each codon specifies

an amino acid that is carried by transfer RNA (tRNA) to be added to the growing

polypeptide chain. Once the entire ORF has been translated, the sequence of amino

acids folds into a functional protein.

1.1.2 Codon Optimization

The existence of 64 possible codons but only 20 amino acids leads to codon degener-

acy, where multiple codons can encode the same amino acid. For example, the amino

acid arginine (Arg) can be encoded by six different codons. Table 1.1 lists all syn-

onymous codons and the specific amino acids they encode. Codon degeneracy creates

the need for codon optimization, which is the process of selecting the most efficient

synonymous codons for a given amino acid in the target protein. Codon optimization

is crucial because different organisms exhibit codon usage bias, a preference for cer-

tain codons over others when encoding the same amino acid. This bias is influenced

by the availability of tRNAs, which carry specific amino acids to the ribosome during

translation [17].
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Table 1.1: Codon table describing grouping of synonymous codons for different func-
tional amino acids.

Amino Acid Synonymous Codons

Alanine (Ala) GCT, GCC, GCA, GCG

Arginine (Arg) CGT, CGC, CGA, CGG, AGA, AGG

Asparagine (Asn) AAT, AAC

Aspartic Acid (Asp) GAT, GAC

Cysteine (Cys) TGT, TGC

Glutamic Acid (Glu) GAA, GAG

Glutamine (Gln) CAA, CAG

Glycine (Gly) GGT, GGC, GGA, GGG

Histidine (His) CAT, CAC

Isoleucine (Ile) ATT, ATC, ATA

Leucine (Leu) CTT, CTC, CTA, CTG, TTA, TTG

Lysine (Lys) AAA, AAG

Methionine (Met) ATG

Phenylalanine (Phe) TTT, TTC

Proline (Pro) CCT, CCC, CCA, CCG

Serine (Ser) TCT, TCC, TCA, TCG, AGT, AGC

Threonine (Thr) ACT, ACC, ACA, ACG

Tryptophan (Trp) TGG

Tyrosine (Tyr) TAT, TAC

Valine (Val) GTT, GTC, GTA, GTG

1.1.3 ORF Expression and Stability

Gene expression, in the context of this thesis, refers to ORF expression, which is

the process by which information from a gene is used to synthesize a functional

protein [4]. The yield of a functional protein product is a key measure of ORF

expression efficiency.
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The stability of mRNA, which impacts how long the mRNA remains intact within a

cell, is another critical factor affecting the duration and efficiency of protein synthesis.

Two key indicators of mRNA stability are minimum free energy (MFE) and GC con-

tent. MFE measures the thermodynamic stability of the mRNA secondary structure,

with lower MFE values indicating more stable structures that are less susceptible to

degradation. GC content, the percentage of guanine and cytosine nucleotides in the

mRNA sequence, also contributes to stability, as GC pairs form stronger triple bonds

than AT pairs [31].

1.1.4 SARS-CoV-2 Virus and mRNA Vaccines

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was respon-

sible for the COVID-19 pandemic. It primarily infects human cells by binding to cell

surface receptors via its spike protein [3]. The urgent need for effective vaccines led

to the rapid development of mRNA vaccines, which represent a novel approach to

immunization against SARS-CoV-2. These vaccines contain mRNA sequences that

encode the SARS-CoV-2 spike protein. Once administered, the mRNA is taken up

by human cells and translated into the spike protein, which is then recognized by the

immune system. This recognition prompts the production of antibodies and activa-

tion of T-cells, thereby preparing the body to fight the actual virus upon exposure.

Fig. 1.1 illustrates the mechanism of mRNA vaccines in humans. In mRNA vac-

cine design, optimizing codon usage can enhance translation efficiency, stability, and

overall expression of the target protein in human cells. This optimization is vital for

ensuring that the mRNA produces a high yield of the target protein (antigen) to elicit

a strong immune response.

1.1.5 Wild-Type Sequences

Wild-type sequences refer to the naturally occurring genetic sequences in an organism,

representing the standard or reference form of a gene as it occurs in nature. In mRNA
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Figure 1.1: The design and working mechanism of mRNA-vaccine.
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vaccine design, wild-type sequences of viral proteins, such as the SARS-CoV-2 spike

protein, are often used as starting points for vaccine development. However, these

wild-type sequences may not be optimized for expression in human cells, necessitating

codon optimization.

1.1.6 Codon Adaptation Index (CAI)

The CAI is a quantitative measure used to predict the potential level of protein ex-

pression based on the codon usage bias within a given coding sequence. CAI as an

empirical index has previously been used in various studies as a measure for protein

expression [49]. Empirical measurement of protein expression potential is quanti-

tatively assessed through the CAI, which hinges on the codon usage bias within a

coding sequence. Initially, the calculation of Relative Synonymous Codon Usage

(RSCU) values is required. RSCU evaluates the frequency of a specific codon relative

to the average frequency of all synonymous codons encoding the same amino acid,

thereby normalizing the number of synonymous codons. Mathematically, the RSCU

for a codon j that encodes for amino acid a is defined as:

RSCUa,j =
Xj,a

1
na

∑︁na

j=1 Xa,j

(1.1)

HereXj,a represents the observed frequency of the jth codon, na denotes the number

of synonymous codons for the amino acid a, and the denominator corresponds to the

average frequency of all synonymous codons for that amino acid. Using the RSCU ,

for each codon, its relative adaptiveness (wa,j) is measured to determine the relative

frequency of a certain codon over the optimal codon for a particular amino acid.

wa,j =
RSCUa,j

RSCUa,max

(1.2)

In Eq. 1.2, RSCUa,max determines the frequency usage of the optimal codon for

amino acid a. Finally, the CAI is computed as the geometric mean of the relative

adaptiveness values of each codon in the RNA/DNA sequences of length L. The CAI
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formula is expressed in Eq. 1.3.

CAI =

(︄
L∏︂

k=1

wk

)︄ 1
L

(1.3)

The CAI is instrumental as an index for expression, encapsulating the bias towards

codons presumed to be translated with higher efficiency. Consequently, sequences

with elevated CAI values are perceived to be optimized for enhanced expression within

a specific host organism. This renders the CAI an invaluable quantitative metric

for genetic engineering aimed at maximizing protein production or elucidating the

determinants of natural protein expression levels.

1.1.7 Language Models (LMs)

Language models (LMs) are a fundamental component of natural language processing

(NLP) that predict the probability distribution of a sequence of words. They form

the basis for various applications, including machine translation, text generation,

and speech recognition. The primary goal of a language model is to estimate the

probability of a sequence of words. Given a sequence of words w1, w2, . . . , wn, the

probability P (w1, w2, . . . , wn) is decomposed using the chain rule of probability:

P (w1, w2, . . . , wn) = P (w1)× P (w2 | w1)× · · · × P (wn | w1, w2, . . . , wn−1)

Language models aim to predict each word wt in a sequence based on the preceding

words w1, w2, . . . , wt−1.

1.2 Thesis Motivation

The rapid spread of SARS-CoV-2 in 2019 underscored the urgent need for effective

vaccines, driving a global effort to accelerate vaccine development. Among the various

vaccine platforms, mRNA vaccines emerged as particularly promising due to their

rapid design and production capabilities, as well as their demonstrated efficacy in

eliciting strong immune responses [48, 53]. The successful deployment of mRNA
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vaccines, such as Pfizer-BioNTech’s BNT162b2 and Moderna’s mRNA-1273, has had

a significant impact on public health, providing a critical tool against the COVID-19

pandemic [30].

1.2.1 Challenges in mRNA Vaccine Design

Designing mRNA vaccines presents several significant challenges. One primary obsta-

cle is the combinatorially large ORF candidate space resulting from codon degeneracy,

where multiple synonymous codons can encode the same amino acid. This degener-

acy exponentially increases the number of possible ORF sequences that could encode

the same target protein, making it infeasible to explore all potential sequences man-

ually or through brute-force computational methods [30]. For instance, optimizing

the ORF sequence for the spike protein of SARS-CoV-2 involves navigating a search

space with a cardinality greater than 10632 [30].

In addition to codon selection, ORF stability is a critical factor in vaccine design.

The ORF sequence must be stable enough to avoid degradation before it can be trans-

lated into the target protein within human cells. This requires careful optimization

of the ORF’s structural features, such as GC content and secondary structure, to

balance stability with efficient translation [33].

1.2.2 Necessity of Codon Optimization

Given the challenges of mRNA vaccine design, codon optimization is an essential step.

Codon optimization involves selecting the optimal sequence of codons to maximize

translation efficiency, expression, and stability. This process is complicated by the

need to account for codon usage bias, which varies between organisms and influences

the efficiency with which different codons are translated into proteins [2, 45]. Codon

bias is correlated with the availability of tRNA molecules in the cell, and optimizing

codons to match the human tRNA pool can significantly enhance protein production.

However, a simplistic approach to codon optimization—such as prioritizing only the
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most abundant tRNAs or the most preferred codon for each amino acid—can result

in translation inefficiencies, premature translation termination, and protein misfold-

ing [40].

1.2.3 Deep Learning in Genomics

Deep learning-based methods have consistently performed well in various domains,

such as computer vision, natural language processing, healthcare, and genomics. In

the context of biological sequences like ORFs and proteins, these models have shown

great potential in capturing intricate sequence properties. Deep learning models, such

as recurrent neural networks (RNNs) and transformer-based models, have advanced

the understanding of complex sequential dependencies within biological sequences,

making them well-suited for tasks like codon optimization [14, 57]. These models

have outperformed traditional methods that rely on codon sampling from the codon

distribution in the host, which focuses on maximizing the CAI index [46]. Addi-

tionally, mixed linear integer programming and graphical representations of primary

protein sequences have been used [29, 47], but these methods struggle to capture

long-range dependencies between amino acids in the protein sequence.

Beyond codon optimization, large language models (LLMs) have been developed

by training on vast corpora of DNA, RNA, and protein sequences [7, 13, 15, 28, 34,

42]. These LLMs demonstrate the potential to revolutionize genomics by providing

new insights into sequence functionality and optimization.

1.2.4 Thesis Objective

In this thesis, we experimented with different sequential deep learning models, such

as long short-term memory (LSTM) and transformers, to learn the mapping of the

ORF sequence optimized for humans for a given target protein sequence. The focus is

on increasing the expression and stability of the optimized ORF sequence for humans

against the SARS-Cov-2 spike protein, which is the target protein antigen.
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1.2.5 Thesis Contribution

1. In our first contribution, we introduce a novel strategy of ‘valid-codon’ that uses

a codon mask to enforce the correct mapping of codons to their specific amino

acids, reducing the model’s label space and simplifying the learning process.

We investigate the ‘valid-codon’ method against ‘codon-box’ by performing sta-

tistical significance tests over its optimized ORF sequences across different or-

ganisms for expression.

2. In our second contribution, we explore the application of protein pre-trained

language models (PLMs) for codon optimization, guided by the hypothesis that

these models capture rich contextual information about amino acid interactions

and general properties of protein sequences, which can be leveraged for effective

codon optimization.

3. In our third contribution, we focused on increasing the stability of the optimized

ORF along with the expression by curating a dataset of stable sequences for

training the model. The stable sequences are curated by filtering sequences

based on their MFE values.

1.3 Thesis Outline

The rest of the thesis is divided into the following chapters:

1. Chapter 2 reviews the relevant literature on codon optimization, mRNA vaccine

design, and the application of deep learning in genomics.

2. Chapter 3 entails the material and methods used in the work. Sec. 3.1 and 3.2

explain the data collection and pre-processing steps involved. Further sections

describe the model and metrics. In the last Sec. 3.4, the formulation of the

codon optimization task as a natural language processing task is described.
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3. Chapter 4 describes the first contribution of ‘valid-codon’ method and Sec. 4.1

gives insights of the same by performing a comparative analysis against other

methods.

4. Chapter 5 discusses the utilization of pre-trained protein LLM for optimizing

ORF sequences for humans against the SARS-CoV-2 spike protein. Independent

testing is performed against the industry-approved vaccines optimized ORF on

humans.

5. Chapter 6 explores new ideation and challenges for optimizing ORF for increas-

ing the expression by modifying the objective function. It further looks into

the avenues for generating mRNAs with user-tunable protein expression and

stability.

6. Chapter 7 concludes the thesis with a summary of the results and plausible

future improvements.
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Chapter 2

Literature Review

The degeneracy of codons, wherein multiple codons encode the same amino acid, leads

to the existence of multiple ORF sequences that can produce the same target protein.

This degeneracy presents a challenge in identifying the optimal ORF sequence from

a large pool of synonymous sequences, particularly for applications in gene therapy

and synthetic biology. Optimizing these sequences is crucial as gene expression in a

host organism is influenced by various factors, with codon usage bias being a critical

one. Codon usage bias refers to the preference for certain codons over others in a

given organism, which can significantly impact the efficiency of protein synthesis.

Several tools and algorithms have been developed to optimize ORF sequences based

on synonymous codon usage patterns, but recent advances in artificial intelligence,

particularly deep learning, have brought new capabilities to the design of synthetic

genes. In many cases, deep learning models have outperformed traditional algorithms

in optimizing gene expression. In this chapter, we review the relevant literature on

synthetic sequence design for ORFs, focusing on studies that utilize deep learning

methods for codon optimization.

2.1 Deep Learning for Codon Optimization

In the study by Goulet et al. [16], a Recurrent Neural Network (RNN) was trained

on 30,000 DNA sequences from Chinese Hamster Ovary (CHO) cells for the purpose
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of codon optimization. The model was tested on a dataset of 8,000 amino acid

sequences, achieving an accuracy of 52.78%. This accuracy metric was defined by the

model’s ability to select codons that match those found in native DNA sequences.

However, it is important to note that accuracy in this context does not directly

account for codon usage bias or expression levels, which are crucial for optimizing

protein production. Despite this, the model’s performance significantly surpassed the

”most abundant codon” approach. The RNN-optimized sequences were validated by

comparing their properties with reference datasets, test set predictions, and the PD-

L1 (CD274) DNA sequence. When transiently expressed, the PD-L1 sequence inferred

by the RNN produced protein levels comparable to those achieved with conventionally

optimized sequences. Moreover, the RNN-optimized sequence showed higher protein

titer expression than both the ground truth sequence and the sequence optimized by

the IDT tool. These results suggest that the trained RNN model can be generally

useful for codon optimization in CHO cells, potentially outperforming traditional

non-learning algorithms like GeneArt, GenScript, and Top Codon. The GC content

of sequences generated by the RNN model (54%) was similar to those produced by

GeneArt (56%) and GenScript (55%), highlighting the model’s ability to implicitly

learn important sequence features like GC content without explicit parameterization.

In another study, ICOR [26] introduced a codon optimization tool built on a bi-

directional Long Short-Term Memory (bi-LSTM) network aimed at improving the

heterologous expression of synthetic genes. Unlike traditional methods, ICOR fo-

cuses on learning the codon usage patterns and context-specific to the host genome.

The model was trained on 7,406 E.coli genes extracted from NCBI, with CD-HIT-

EST [23] used to filter out similar nucleotide sequences. Experiments were conducted

using both one-hot encoding and Non-Linear Fisher Transform encoding of the amino

acids in the input protein sequence. ICOR was compared against five different meth-

ods—ERC, GenScript, BFC, URC, and HFC on metrics such as CAI, GC content,

cis-regulatory elements, codon-frequency distribution, and negative repeat elements.
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ICOR demonstrated a 41.26% increase in CAI over native sequences, with a mean

CAI of 0.9, representing a statistically significant improvement over other methods.

The GC content of ICOR-optimized sequences fell within the ideal range of 30-70%,

further validating the model’s effectiveness. When evaluated on 40 benchmark se-

quences, ICOR performed comparably to or better than the other six methods in

terms of codon frequency distribution, negative repeat elements, and cis-regulatory

elements. This study highlights the potential of more sophisticated deep learning

models, like bi-LSTM, for effective codon optimization in E.coli, contributing to cost-

effective and productive recombinant protein production.

Fu et al. [14] introduced a novel approach to codon optimization using ‘codon-

box’ encoding, which groups codons with identical nucleotide composition regardless

of their order. This method was inspired by sequence annotation tasks in natural

language processing (NLP) and involved training a BiLSTM-CRF model with and

without codon box encoding on E.coli genes. The results showed negligible differ-

ences between the training and test accuracies of models with and without codon box

encoding, with both achieving a training accuracy of 0.77 and a test accuracy of 0.52.

However, the 25% difference between training and test accuracy suggests potential

overfitting and a lack of robustness. The study used CAI as the main evaluation metric

instead of accuracy as the primary evaluation metric. The native sequence’s CAI was

compared to those optimized by Genwiz, ThermoFisher, BiLSTM-CRF with codon

box encoding (A), and BiLSTM-CRF without codon box encoding (B). The mean

CAI achieved by model A was 0.98 across six independent test sequences, outperform-

ing Genwiz, ThermoFisher, and the native sequence. However, it is important to note

that an excessively high CAI could lead to an imbalance in tRNA availability, po-

tentially reducing translation efficacy. The ‘codon-box’ encoding method resulted in

optimized sequences that differed by 20-28% from those optimized by ThermoFisher,

Genwiz, and model B. Experimental validation of protein expression was carried out

by optimizing codon sequences for the FALVAC-1 and PTP4A3 proteins, showing
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improved protein expression and activity for both.

Gong et al. [15] introduced iDRO, a two-stage process for generating both ORF

sequences and UTRs in mRNA design. This approach was unprecedented at the time

and used highly expressive human genes from the Hg19 dataset for training, which

forms the basis for the work presented in this thesis. In the first stage, ORF op-

timization was conducted using the same methodology as the ‘codon-box’ encoding

with the BiLSTM-CRF model [14]. Although the study did not report CAI or other

related metrics for ORF optimization, the second stage involved generating 5’ and 3’

UTRs using RNA-BART, an auto-regressive large language model. The UTR gener-

ation was treated as a machine translation task, with the input being the optimized

ORF sequence from stage one. RNA-BART was pre-trained by masking 15% of the

tokens in UTR and ORF sequences, learning dense vector representations to cap-

ture bidirectional context. The model was then fine-tuned for UTR generation. The

5’ and 3’ UTRs generated by iDRO were experimentally validated using the EGFP

gene and compared with Pfizer and Moderna’s approved vaccines, BNT162b2 and

mRNA-1273, respectively. The iDRO-generated UTRs demonstrated higher protein

expression and more micro-RNA binding sites. Additionally, the generated mRNAs

exhibited lower minimum free energy (MFE), indicating structurally stable sequences.

This work presented an integrated approach to ORF and UTR design, resulting in

improved mRNA stability and expression.

Several other studies [1, 5, 6, 27] have employed deep generative models, such

as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and

auto-regressive LLMs, for UTR generation as well. The encapsulation of ORF se-

quences for transfection (administering the sequence inside the human cell) remains

a significant challenge in mRNA vaccine design [18, 37, 55]. Overall, machine learn-

ing and deep learning approaches are critical for mRNA vaccine design due to their

ability to navigate the large combinatorial space of sequences while capturing subtle

biological intricacies. These methods can be productively applied in gene therapy,
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enhancing both computational biological indices and in-vitro transfection outcomes.
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Chapter 3

Material and Methods

3.1 Data Collection

In this work, the dataset comprises ORF sequences consisting of codons and their

translated primary protein sequences consisting of amino acids. Datasets were col-

lected for three organisms: Human Hg19 gene, E.coli, and Chinese-Hamster (CH).

The E.coli data was collected from [14], containing a total of 5447 pairs of ORF and

protein sequences. The CH data, collected from [16], included 38000 pairs of ORF

and protein sequences. The collection of ORF and primary protein sequences for

Hg19 genes was a comprehensive, multi-stage effort. The Hg19 dataset, also known

as the GRCh37 reference genome, is a widely used reference in human genomics. It

represents the human genome assembly that was released by the Genome Reference

Consortium in 2009 and has been extensively used in research for its high-quality

sequence data. Hg19 is particularly valuable for training because it provides a robust

representation of gene sequences that are crucial for understanding genetic variations

and their implications in human biology. The Hg19 genes were collected from UCSC

1 and consisted of a total of 18213 pairs. After collection, the UCSC ID of each gene

was mapped to NCBI IDs using bioDBnet:db2db tool2. Using NCBI IDs for each

Hg19 gene, ORF sequences were extracted from their complete nucleotide reference

1https://genome.ucsc.edu/cgi-bin/hgTables
2https://biodbnet-abcc.ncifcrf.gov/db/db2db.php
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sequence. NCBI ORFfinder API 3 was used to extract ORF sequences for each gene.

While using the ORFfinder API, the corner case of handling negative strands was

addressed by complementing and reversing the reference nucleotide sequence.

Two types of datasets were curated for Hg19 genes: the first one containing ran-

dom length ORFs and their corresponding amino acid translations and the second

containing short ORFs for a given gene. The former dataset is referred to as ‘Hg19 -

random’ while the latter is ‘Hg19 short’. Hg19 random contained a total of 18213

pairs of ORF and primary protein sequences, while the Hg19 short contained 419455

pairs of such sequences.

3.2 Data Pre-Processing

The sequences collected in each dataset underwent a series of filter tests and pre-

processing steps. The filter tests were designed to eliminate biologically incorrect

sequences. Subsequently, preprocessing steps like tokenization, numerical encoding,

and padding were performed to prepare the sequences for deep learning models.

3.2.1 Filter Test

For each pair of sequences, the following seven tests were conducted:

• Test 1: This test verifies if the length of the ORF sequence is multiple of three.

Since each amino acid maps to triplets of nucleotides known as codons, the ORF

sequence length should be a multiple of three.

• Test 2: This test checks the biological correctness of the nucleotide sequence,

ensuring that only valid nucleotide bases—A (Adenine), T (Thymine), G (Gua-

nine), and C (Cytosine)—are present.

• Test 3: This test verifies that the primary protein sequence and ORF sequence

start with the correct amino acid and codon, respectively. The start codon in

3https://www.ncbi.nlm.nih.gov/orffinder/
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a valid ORF sequence is ATG, coding for Methionine (Met).

• Test 4: Similar to Test 3, this test checks that the ORF sequence ends with one

of the valid stop codons (TAA, TAG, TGA).

• Test 5: This test ensures that each codon in the ORF sequence correctly codes

for the corresponding amino acid in the primary protein sequence, maintaining

the correct biological mapping between codons and amino acids as described in

Table 1.1.

• Test 6: This test verifies that the protein sequence contains only valid amino

acid characters, ensuring that all 20 standard amino acids are present.

• Test 7: This test checks that the length of the primary protein sequence is

consistent with the ORF sequence length, ensuring a one-to-one correspondence

between codons and amino acids.

Table 3.1 and Table 3.2 summarize the results of the filter tests for the Hg19 -

random and Hg19 short datasets, respectively. In the Hg19 random dataset, 45 out

of 18,213 pairs of sequences failed one of the seven tests. In the Hg19 short dataset,

13,705 out of 419,455 pairs failed one of the seven tests. Notably, all sequences in the

E. coli and Chinese hamster datasets passed the tests.

Table 3.1: Hg19 random filter test results

Test 1 2 3 4 5 6 7

Sequences Failed 0 0 29 0 0 17 0

Table 3.2: Hg19 short filter test results

Tests 1 2 3 4 5 6 7

No. Sequence Failed 0 0 126 13696 130 0 13581
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3.2.2 Tokenization and Padding

After filtering, the sequences underwent tokenization and padding.

• Tokenization: Tokenization breaks down complex biological sequences into

simpler, more manageable units called tokens. For protein sequence, each amino

acid is treated as a word analogous to a natural language. The corresponding

ORF sequence, composed of codons, codon is equivalent to a word in natural

language. Hence, for an ORF sequence of length Nx3, the total number of words

(codons) will be equal to N. Thus, the dimensionality of the ORF sequence

reduces from Nx3 to N.

• Numerical Encoding:

Deep learning models require numerical inputs. In this work, protein sequences

and ORF sequences were converted into numerical formats using integer encod-

ing. Each of the 20 standard amino acids was mapped to an integer from 1 to

20, while the 61 valid codons were assigned integers from 1 to 61. The integer

0 was reserved as a padding token for the next step.

• Padding: Sequences in the dataset vary in length. To process these se-

quences in deep learning models, they must be of uniform size. Padding involves

adding a specific value (usually 0) to the end of shorter sequences, standard-

izing their lengths to match the longest sequence in each batch. In this work,

sequences were padded on the right. The pad sequence function from the

torch.nn.utils.rnn module in PyTorch was used to dynamically pad sequences

within each batch, optimizing memory usage by avoiding unnecessary padding.
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3.3 Model

3.3.1 Embedding Layer

Embedding layers are a fundamental component in neural networks, especially in

NLP. They serve as a bridge between the raw input data and their numerical rep-

resentations required for processing by neural networks. In the context of language

processing, each word in the vocabulary is represented as a unique integer, and this

integer is then mapped to a dense vector within the embedding space. The dense

vector captures more information about the word, including its relationship to other

words, in a more compact form than the sparse one-hot encoding.

In this work, the embedding dimension was set to 61, representing the 61 unique

codons used, while the vocabulary size was set to 21, representing the 20 standard

amino acids plus a padding token.

3.3.2 Long Short Term Memory (LSTM)

For sequential data like sentences (here protein and ORF sequence) and time series,

LSTMs tend to perform better as they are capable of capturing sequential context.

LSTMs are an improvised version of RNNs as they tend to solve the bottleneck of

capturing long-term dependencies, also known as the vanishing gradient problem in

RNNs, to a significant extent [21]. The concept of gates was introduced in LSTMs

to regulate the information flowing through each step. Inputs to a single unit of an

LSTM network are the previous time step cell state (Ct−1), hidden state (Ht−1), and

current time step input (Xt). The outputs from a single unit are the current time

step cell state (Ct), and hidden state (Ht). At each time step, depending upon the

task like classification or regression, Ht is wrapped up through suitable dense layers

for the prediction task. A single unit of the LSTM network involves the following

four gates:

1. Forget gate: The forget gate decides what information should be discarded
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Figure 3.1: A single unit of LSTM network with the description of different gates.

from the cell state. It takes the previous hidden state Ht−1 and the current time

step input Xt.

Ft = σ(Wf · [Ht−1, Xt] + bf ) (3.1)

Here σ represents the sigmoid function. Wf is the weight matrix and bf is the

bias. The sigmoid function outputs values between 0 and 1, indicating how

much of each component of the cell state should be retained.

2. Input gate: The input gate decides what new information will be stored in the

cell state. It involves two parts: a sigmoid layer and a tanh layer. The sigmoid

layer decides which values to update, and the tanh layer creates a vector of new

candidate value C̃t, that could be added to the state.

It = σ(Wi · [Ht−1, Xt] + bi) (3.2)

C̃t = tanh(WC · [Ht−1, Xt] + bC) (3.3)

Here, It, is the output of the sigmoid gate, and Wi, bi, Wc, bc are the cor-

responding weights and biases for input gate and new cell state operations,

respectively.
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3. Cell state update gate: The new cell state is updated by adding what is to

be forgotten from the previous cell state (Ft) and what new information is to

be added from the It.

Ct = Ft ∗ Ct−1 + It ∗ C̃t (3.4)

Here, ‘*’ and ‘+’ are element-wise multiplication and additive operations.

4. Output gate: Finally, the output gate decides what the next hidden state

should be. The hidden state contains information about the previous inputs

and is used for predictions. The output gate first decides which parts of the

cell state to output, and then a tanh function is applied to the cell state (to

normalize the values between -1 and 1), and it’s multiplied by the output of the

sigmoid gate.

Ot = σ(Wo · [ht−1, xt] + bo) (3.5)

ht = Ot ∗ tanh(Ct) (3.6)

Here, ot is the output of the sigmoid gate applied to the current input and the

previous hidden state, and Wo and bo are the corresponding weights and biases

learned.

3.3.3 Dense Layer

Dense layers, also known as fully connected layers, play a critical role in processing

and learning from data. Each neuron in a dense layer is connected to every neuron

in the previous layer, with weights and biases determining the output. The output

is then passed through an activation function, introducing non-linearity to capture

complex patterns.

Y = f(W.X + b) (3.7)

Here, f is an activation function, and X is the input to the layer.

23



3.3.4 Regularization Methods

Regularization techniques are employed to prevent overfitting in a neural network.

Two popular methods used in this work are Dropout and Batch Normalization.

• Dropout: In this regularization technique, randomly selected neurons are ig-

nored during training, i.e., they do not contribute to downstream neurons tem-

porarily during the forward pass. Dropout helps prevent co-adaptation [50]

between upstream and current layer neurons.

• Batch Normalization: Batch normalization standardizes the output of a layer

for each mini-batch, alleviating internal covariate shift and improving model

training [25].

3.3.5 Dense bi-LSTM

The baseline model used to train sequences for codon optimization was the ‘Dense

bi-LSTM’ network. This model includes an embedding layer (Sec. 3.3.1) to transform

the input into fixed-size dense vectors that allow the model to capture the semantics

of the input sequences in a high-dimensional space. A bi-directional LSTM network

was employed to capture dependencies in both forward and backward directions.

For the bi-directional nature, two LSTM (Sec. 3.3.2) networks are stacked on top

of each other. One of them processes the input sequence from left to right, while

the other one processes the input sequence from right to left. The hidden layers’

outputs are stacked, giving the final output from the bi-LSTM network. The dense

component of the ‘Dense bi-LSTM’ network comprises of fully connected layers (FC

layers) discussed in Sec. 3.3.3. Four FC layers are used after the bi-LSTM networks,

which map the bi-LSTM network representations to a desired output space. Dropout

and batch normalization (Sec. 3.3.4) were applied after each fully connected layer,

except the final one, to prevent overfitting.
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Activation Function:

Leaky Rectified Linear Unit (LeakyReLU) [36] was used as an activation function

for introducing non-linearity after each FC layer, except the last one. LeakyReLU

addresses the ”dying ReLU” problem, where neurons stop learning due to zero gra-

dients for negative inputs [11]. The LeakyReLU function is defined in Eq. 3.8, where

x is the input to the neuron, f(x) is the output, and α is a small constant close to 0,

which does not allow the gradients to become 0. In this work, 0.1 was taken as the

default value of α.

f(x) =

⎧⎨⎩ x if x > 0,

αx otherwise.
(3.8)

The gradient of the LeakyReLU function is defined in Eq. 3.9

f ′(x) =

⎧⎨⎩ 1 if x > 0,

α otherwise.
(3.9)

3.4 Proposed Methodology

The core problem addressed in this work is finding the optimal ORF sequence com-

posed of codons, given a target protein sequence. Due to the degeneracy of codons,

multiple codon sequences can encode the same protein, making it essential to incor-

porate codon bias rules found in the host cellular environment. In this work, the

problem is approached as an NLP task due to the textual nature of ORF and protein

sequences. Specifically, codon optimization of ORF is treated as a sequence tagging

task, where the goal is to classify or tag the optimal codon against each amino acid

in the target protein sequence. Sequence tagging task in the field of NLP is to label

components of a sequence, such as words in a sentence. For example, in a natural

language, each word can be classified into different categories like person, place, etc.

Here, amino acids are treated as words in the protein sequence, and the task is to

label each amino acid with the optimal codon. Fig. 3.2 illustrates the idea. The

25



Figure 3.2: Sequence Labelling methodology

sequence tagging approach is further discussed in Chapters 4 and 5, along with the

experimental results.
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Chapter 4

Comparative Analysis between
Codon-Box, Valid-Codon,
All-Codon Method of Training

In this chapter, we investigate three different methods of training for codon opti-

mization [Sec. 1.1.2]. Before going to the experiment the next section provides a

background of the three methods.

4.1 Background of Methods

4.1.1 All-Codon

The ‘all-codon’- method treats codon optimization as a multi-label classification prob-

lem where the model selects one out of 61 possible codons (excluding stop codons)

for each amino acid in the input protein sequence. This method does not constrain

the label space, as it must distinguish between all possible codons at each step.

4.1.2 Codon-Box

The ‘codon-box’ method, introduced by Fu et al. [14], involves grouping codons based

on their nucleotide composition rather irrespective of their order or the specific amino

acid they encode. This method reduces the label space from 61 to 20 classes by

grouping codons that share the same nucleotide composition into “boxes”. Table 4.1

describes all the 20 codon boxes.
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Table 4.1: Codon Box with their corresponding codons and amino acids

Key Codon Box Codons Amino Acid

j AGT AGT, ATG, GAT, GTA Ser, Met, Asp, Val

g CGT CTG, TCG, TGC, CGT, GTC, GCT Arg, Ser, Cys, Ala

k GGT GGT, TGG, GTG Gly, Trp, Val

b CTT CTT, TCT, TTC Leu, Ser, Phe

d GTT GTT, TTG, TGT Val, Leu, Cys

s GCG GCG, GGC, CGG Ala, Gly, Arg

q AGG GAG, GGA, AGG Glu, Gly, Arg

r ACG GCA, CGA, AGC, GAC, ACG, CAG Ala, Arg, Ser, Asp

n CCG GCC, CGC, CCG Ala, Arg, Pro

o AAC CAA, ACA, AAC Gln, Thr, Asn

m CAC CAC, ACC, CCA His, Thr, Pro

f CCT TCC, CTC, CCT Ser, Leu, Pro

u AAG GAA, AAG, AGA Glu, Lys, Arg

h ACT CAT, ACT, TCA, TAC, ATC, CTA His, Thr, Ser, Tyr, Ile, Leu

p GGG GGG Gly

l CCC CCC Pro

t AAA AAA Lys

c ATT TAT, ATT, TTA Tyr, Ile, Leu

a TTT TTT Phe

i ATA ATA, AAT Ile, Asn
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4.1.3 Valid-Codon

The ‘valid-codon’ method proposed in this thesis is built on the similar premise as

‘codon-box’ for reducing the label space. It reduces the label space by restricting the

model to focus exclusively on synonymous codons at each step of the protein sequence.

This method applies a codon mask in the final classification layer (Eq. 4.1), which

restricts the model to consider only the valid synonymous codons for each amino acid.

The mask is a vector CV ∈ R61×1, where non-synonymous codons for a given amino

acid are assigned a high negative value (−109).

masked logits =
L∑︂

t=0

output logitst + CVtthamino acid (4.1)

For e.g., in the case of Alanine (Ala), out of 61 indices for output codon classes, the

ones that do not correspond to the indices of codons, namely, ‘GCT’, ‘GCC’, ‘GCA’

and ‘GCG,’ will have negative values assigned in CV .

4.2 Objective and Motivation

In this chapter, we investigate two key hypotheses:

1. The ‘valid-codon’ method, which reduces the label space by enforcing the model

to focus only on synonymous codons, simplifies model learning when compared

to the ‘all-codon’ method.

2. Grouping codons in a certain way, such as in the ‘codon-box’ method, does not

provide a significant advantage in improving model performance on expression

efficiency.

4.3 Experimental Setup

4.3.1 Data

The datasets used in this study include human Hg19 genes, E.coli, and Chinese-

Hamster protein:ORF pair sequences. After pre-processing (Sec. 3.2), the datasets
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were split into training, validation, and test sets in a 0.6/0.2/0.2 ratio. The number

of samples in each split is shown in Table 4.2. Datasets were converted to pytorch

Table 4.2: Train test split of sequences in Hg19 random, E.coli and Chinese-Hamster.

Dataset Train Validation Test

Hg19 random 11584 2896 3620

E.coli 3485 872 1090

Chinese-Hamster 24320 6080 7600

dataloaders and saved in pickle format with a batch size = 32.

4.3.2 Model and Training Setup

The experiments were conducted using the ‘Dense bi-LSTM’ network described in

Sec. 3.3.5. The hyper-parameters of the model were tuned on a set of values. The

experiment settings, i.e., hyper-parameters, seed, and model, across all the three

different methods of training (Sec. 4.1) were kept identical. The embedding layer

configurations had num embeddings = 21 and embedding dim = 64. The bi-LSTM

module in network had an input size = 64, hidden size = 128, num layers = 4 and

dropout = 0.5. The ‘Dense bi-LSTM’ network was followed by four fully connected

layers (FC layers). For the subsequent three FC layers, the input dimension was the

output dimension of the previous layer. The second, third, and fourth FC layer’s

output dimensions were 256,128, and 61, respectively, and the input dimension was

equal to the previous layer’s output dimension.

The models were trained using the cross-entropy loss function (Eq. 4.2) for 30

epochs, with early stopping implemented to prevent overfitting.

LCEL = − 1

N

N∑︂
i=1

T∑︂
t=1

log(pi,t,yi,t) (4.2)

pi,t,c =
exp(zi,t,c)∑︁C
k=1 exp(zi,t,k)
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Figure 4.1: Dense bi-LSTM encoder architecture with masking
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In Eq. 4.2, zi,t,c denotes the output logit for class c (one of the 61 codons),pi,t,yi,t is the

predicted probability of the true class yi,t, for the iith sequence at timestep t. Mean

reduction was used over the batch of N = 32 sequences.

4.3.3 Evaluation Criterion

The predicted ORF sequences were evaluated using the Codon Adaptation Index

(CAI), as detailed in Sec. 1.1.6. The CAI measures the potential expression level of

a protein based on the codon usage in the predicted sequences compared to native

sequences.

4.4 Results and Discussion

The performance of the three methods—‘all-codon’, codon-box’, and ‘valid-codon’—was

assessed based on the CAI values obtained from the test sets across all three datasets.

Table 4.3: Each of the three methods results trained on Hg19, E.coli and Chinese-
Hamster datasets.

Organism Method

Train

Codon Match

Accuracy

Validation

Codon Match

Accuracy

Test

Codon Match

Accuracy

CAI

Test

(mean)

CAI Test

(mean)

Basis ORF Sequences

Hg19 random

all-codon 0.538 0.539 0.548 0.87

0.77valid-codon 0.568 0.542 0.548 0.89

codon-box 0.558 0.544 0.539 0.90

E.coli

all-codon 0.581 0.556 0.552 0.85

0.70valid-codon 0.591 0.558 0.553 0.85

codon-box 0.581 0.556 0.552 0.87

Chinese-Hamster

all-codon 0.560 0.552 0.551 0.89

0.79valid-codon 0.569 0.552 0.558 0.90

codon-box 0.550 0.540 0.548 0.90

On the Hg19 random test set, the ‘all-codon’ method improved the mean CAI from

0.77 to 0.87 ± 0.05, representing a 13.29 % improvement. The ‘valid-codon’ method
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further increased the CAI index to 0.89 ± 0.06, a 15.39 % increment. The ‘codon-

box’ method achieved a negligibly higher CAI of 0.90 ± 0.04, a 17.11 % increase over

the wild-type sequences, also known as basis ORF sequences in the dataset. The

quantitative analysis of ‘valid-codon’ versus codon-box is described in Fig. 4.2.

Figure 4.2: CAI values comparison across three different methods on Hg19 random
test sequences.

On the E.coli test set, the ‘all-codon’ method improved the mean CAI by 23.3%

to 0.85 ± 0.06. The ‘valid-codon’ method matched this performance with a CAI of

0.85 ± 0.05, while the ‘codon-box’ method achieved a slightly higher CAI of 0.87 ±

0.04, representing a 25.9% increase (Fig. 4.3).

On the Chinese-Hamster test set, all three methods performed similarly, with each

achieving a mean CAI of 0.89 ± 0.003, representing a 13.9% improvement over the

basis ORF sequences. The slight difference in the mean CAI value across methods

was observed at the third decimal place (Fig. 4.4).
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Figure 4.3: CAI values comparison across three different methods on E.coli test
sequences.

Figure 4.4: CAI values comparison across three different methods on Chinese-Hamster
test sequences.
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4.4.1 Statistical Test

To statistically evaluate the difference between methods, a two-sample Kolmogorov-

Smirnov (KS-test) [32] was conducted to compare the empirical cumulative distribu-

tion function (CDF) of CAI values. The KS statistic measures the maximum absolute

difference between the CDFs of the two methods (Eq. 4.3). The D-statistic value given

by the KS test ranges from 0 to 1, where 0 indicates that the two CDFs are perfectly

equal, whereas 1 represents completely different distributions.

D = sup
x

|CDFvalid−codon(x)− CDFcodon−box(x)| (4.3)

For the Hg19 random dataset, the D-statistic between the ‘all-codon’ and ‘codon-

box’ methods was greater than 0.20, indicating significant differences. The D-statistic

between ‘valid-codon’ and ‘codon-box’ methods was less than 0.10, indicating 90%

similarity in CAI values. On the other hand, for ‘valid-codon’ vs ‘codon-box’, the

D-statistic was found to be < 0.10, showing 90% similarity between their predicted

CAI values on test sequences (Fig. 4.5).

On the E. coli dataset, the D-statistic between the ‘codon-box’ and ‘all-codon’

methods was 0.216, indicating significant differences. The D-statistic between ‘valid-

codon’ and codon-box’ was 0.16, indicating 84% similarity (Fig. 4.6).

In the Chinese-Hamster dataset, the D-statistic values between all three methods

were very close, with D-statistics around 0.08, indicating minimal differences between

the CDFs of the CAI values for the ‘valid-codon’, ‘codon-box’, and ‘all-codon’ meth-

ods.

The p-value was found to be >0.01 for every KS test between the ‘valid-codon’ and

‘codon-box’ methods on each of the datasets except E. coli. It statistically proves no

significant difference between the ‘codon-box’ and ‘valid-codon’ methods.
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Figure 4.5: CDF difference between test set CAIs of vc (‘valid-codon’) and cb (‘codon-
box’) for Hg19

Figure 4.6: CDF difference between test set CAIs of vc (‘valid-codon’) and cb (‘codon-
box’)for E.coli
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Figure 4.7: CDF difference test set CAIs of vc (‘valid-codon’) and cb (‘codon-box’)for
Chinese-Hamster

4.4.2 Conclusion

The comparative analysis in this chapter provides valuable insights into the effective-

ness of label space reduction strategies in codon optimization. The results showed

that the ‘valid-codon’ method performed competitively with the ‘codon-box’ method

across all datasets. This finding supports hypothesis 2, suggesting that the spe-

cific method of grouping codons, such as in codon-boxes, does not offer a signifi-

cant advantage over other reduction strategies like ‘valid-codon’, which focuses solely

on synonymous codons. Moreover, both the ‘valid-codon’ and ‘codon-box’ methods

demonstrated marginally better performance in terms of the CAI compared to the ‘all-

codon’ method. This outcome supports hypothesis 1, indicating that reducing the la-

bel space—whether through ‘codon-box’ grouping or ‘valid-codon’ enforcement—can

indeed simplify model learning. These results suggest that while label space reduction

is beneficial, the choice between methods like ‘valid-codon’ and codon-box may not

be critical, as both offer comparable advantages.
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Chapter 5

Codon Optimization for Enhancing
ORF Expression and Stability in
Humans

In this chapter, we investigate the application of the pre-trained protein language

model, ProtBert, for optimizing ORF sequences to enhance expression and stability

in humans. The potential research gap explored in this chapter’s experiment is that

the pre-trained protein language model, to the best of our knowledge, has not been

utilized for the downstream task of codon optimization.

5.1 Background

In the field of NLP, transformers [54] have shown great potential over traditional

RNNs. Every LM that has reached state-of-the-art results uses transformer architec-

ture at its foundation. The following subsections contain the necessary background

to understand the objective and methodology of utilizing the ProtBert for our exper-

iment.

5.1.1 Transformer Model

The transformer model introduced by Vaswani et al. [54] revolutionized the field of

NLP by eliminating the need for RNNs and introducing a self-attention mechanism.

The transformer architecture consists of an encoder-decoder structure, with both the
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encoder and decoder being composed of multiple identical layers.

Self-Attention Mechanism

The core of the transformer model is the self-attention mechanism, which allows the

model to weigh the importance of different words in a sequence when encoding a

particular word. Given an input sequence, the self-attention mechanism computes

three vectors for each word: Query (Q), Key (K), and Value (V).

The attention score for each word is computed as follows:

Attention(Q,K, V ) = softmax

(︃
QKT

√
dk

)︃
V (5.1)

In Eq. 5.1, Q, K, and V are the query, key, and value matrices. dk is the dimension

of the keys. The softmax function is used to ensure that the attention scores sum to

1, providing a probability distribution over the input words.

The self-attention mechanism allows the transformer to focus on different parts

of the input sequence, capturing long-range dependencies that are difficult to model

with traditional RNNs.

Multi-Head Attention

To allow the model to attend to information from different representation subspaces,

the transformer uses multi-head attention (Eq. 5.2). Each attention head processes

the information in parallel, capturing different aspects of the input sequence.

MultiHead(Q,K, V ) = Concat(head1, ...., head16).Wo (5.2)

In Eq. 5.2, Wo is the output weight matrix used to project the concatenated multi-

head attention outputs.

Feed-Forward Networks (FFN)

Each encoder and decoder layer contains a feed-forward neural network that pro-

cesses the output of the self-attention layer. This layer is applied to each position in
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the sequence independently and identically, allowing the model to apply non-linear

transformations to the input representations.

5.1.2 Bidirectional Encoder Representation from Transform-
ers (BERT)

BERT (Bidirectional Encoder Representations from Transformers) [9] is a transformer-

based model that achieved state-of-the-art results in many NLP tasks. BERT is

an encoder-only model that leverages the bidirectional nature of the transformer to

capture the context of each word in both directions (left-to-right and right-to-left).

BERT is pre-trained using a self-supervised learning method known as masked lan-

guage modeling (MLM). In MLM, 15% of the input tokens are randomly masked,

and the model is trained to predict these masked tokens. This approach enables

BERT to understand the meaning of words based on their surrounding context, mak-

ing it highly effective for downstream NLP tasks. Through MLM, BERT learns rich,

context-sensitive representations of words.

5.1.3 Transfer Learning and Fine-Tuning

Transfer learning is a deep learning technique in which a model trained on one task

is adapted to perform a different but related task. In the context of BERT, transfer

learning involves fine-tuning the pre-trained model on a specific downstream task,

such as text classification or question answering [43].

Different strategies have been developed for optimally carrying out fine-tuning

processes [39]. Parameter Efficient Fine Tuning (PEFT), one such category of fine-

tuning, has gained popularity due to its ability to reduce training cost and time [10].

PEFT can be divided into three categories: selective fine-tuning, adaptive fine-tuning,

and reparameterization.

Selective Fine-Tuning Only a subset of layers is fine-tuned, often the last few lay-

ers, while the rest of the model remains frozen. This approach reduces computational
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costs and mitigates the risk of overfitting.

Adaptive Fine-Tuning Adaptive fine-tuning involves adding adapter neural layers

in PLM, keeping all the pre-trained parameters frozen during fine-tuning [19]. It

helps in significantly decreasing the number of trainable parameters, as the adapter

parameters only need to be learned.

Reparameterization Reparameterization involves training all PLMs using com-

putationally efficient techniques like low-rank adaptation (LoRA) [22].

Different LMs have been utilized in the past for different genomics tasks due to

their ability to learn generalized knowledge during the pre-training phase [34, 38, 41,

42].

5.1.4 ProtBert: A Protein Language Model

The ProtTrans, introduced by Elnaggar et al. [12], leveraged the architecture of trans-

formers to develop models specifically tailored to protein sequences.

These models, which include both auto-encoder and auto-regressive variants, were

extensively trained on massive protein datasets, such as Uniref50 [52], Uniref100 [52],

and BFD [51].

The principle behind ProtTrans is that protein sequences have an inherent struc-

ture and physio-chemical properties that can be learned by these models. ProtTrans

models treat individual amino acids as tokens (analogous to words in a sentence).

The primary objective is to generate rich embeddings that can be used for vari-

ous downstream tasks, ranging from per-residue predictions (like secondary structure

prediction in Q3 and Q8 formats) to sequence-level predictions (such as determining

whether a protein is membrane-bound or water-soluble). These embeddings are de-

rived from the final hidden layers of the model and are typically pooled using invariant

functions (like maximum, sum, or mean) for classification tasks.
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Among the models developed under ProtTrans, the ProtBert model stands out

as a particularly powerful auto-encoder model due to its bidirectional nature, which

allows it to capture context from both directions of a sequence, making it well-suited

for tasks like codon optimization. Unlike uni-directional auto-regressive models, auto-

encoder models like ProtBert can learn richer, context-aware representations, which

are crucial for understanding complex biological sequences.

ProtBert Architecture

The architecture of ProtBert is rooted in the BERT model, which introduced the

concept of bidirectional context gathering in transformer-based models. ProtBert

was pre-trained on protein sequences in the UniRef100 dataset. It diverges slightly

from traditional BERT as it focuses solely on masked language modeling (MLM).

Protein sequences do not exhibit inter-sequence relationships analogous to sentences

in a paragraph, making tasks like Next Sentence Prediction (NSP) irrelevant. Prot-

Bert has a deep architecture and utilizes 30 transformer layers, compared to the 12

layers in the original BERT model. Each layer comprises multi-head self-attention

mechanisms and feed-forward networks. The embeddings generated by ProtBert are

1024-dimensional, capturing the rich context of each amino acid in the protein se-

quence.

Table 5.1 describes the different hyperparameters of the model. Fig. 5.1 illustrates

how the last layer hidden state (Fig. 5.1) representation for each token was utilized

as per residue embeddings for amino acids in the input protein sequence.

5.2 Objective and Motivation

The central hypothesis of this chapter is that the ProtBert model contains rich, gen-

eral knowledge of amino acid properties that can be effectively utilized for optimizing

the ORF sequences in mRNA vaccines. Specifically, this knowledge is expected to

enhance the process of codon optimization, when fine-tuned for human-specific ex-
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Table 5.1: Bert-attention layer hyper-parameters values of the self-attention layer
used in ProTrans for pre-training.

Hyperparameters Value

Encoder Layers 30

Embedding dimension (Ed) 1024

q, k and v dimension (dk = dv) 64

Dimension of Model (dmodel) 1024

Number of Heads (nhead) 16

pression and stability. The objective is to utilize the embeddings learned by ProtBert,

which capture complex interactions and physiochemical characteristics of amino acids.

Building upon the objective, the motivation for this research is to evaluate the effec-

tiveness of the fine-tuned ProtBert model in optimizing ORF sequences specifically

for human use. This evaluation is carried out by benchmarking the optimized ORF

sequences against the industry-approved mRNA vaccines, such as Pfizer (BNT162b2)

and Moderna (mRNA-1273), which target the SARS-CoV-2 spike protein. We use

key metrics such as CAI, MFE and GC-Content to assess optimized ORF sequences

for expression and stability.

5.3 Experimental Setup

5.3.1 Dataset Curation

The dataset used is derived from the Hg19 short, discussed in Sec. 3.1. The stability of

ORF sequences is a crucial factor in mRNA vaccine design, as it directly impacts the

longevity and effectiveness of the vaccine. A stable mRNA sequence is less likely to

degrade prematurely within human cells, thus ensuring that the target protein can be

synthesized effectively and for a longer duration. We filter the sequences on the basis

of their length and stability. Sequences with length greater than 150 amino acids (aa)
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were removed. After this initial filtration, 24530 sequences out of the original 40,000

were retained. The second round of filtering focused on the stability of the remaining

sequences, as measured by their MFE values. The MFE of an RNA sequence was

calculated using the RNAFold tool [35] at the normal human body temperature, i.e.

37◦C. Sequences were selected such that they have a mean MFE value of -40.5 ±

9.8 kcal/mol, ensuring that the dataset included sequences with a diverse range of

stability levels. This diversity in stability is hypothesized to be crucial for the model

to learn the nuanced relationship between sequence composition and stability. This

would ultimately allow the model to generate ORF sequences that are both stable

and optimally expressible in human cells. The distribution statistics of the dataset

are described in Table 5.2. This filtering process not only enhances the quality of

Table 5.2: Distribution of sequence length and MFE of the filtered dataset

Sequence Features count mean std min 25% 50% 75% max

sequence length 4877.00 112.12 21.40 78.00 93.00 111.00 129.00 150.00

mfe original 4877.00 -40.50 9.82 -96.50 -46.59 -39.40 -33.00 -23.50

the dataset but also impacts the model’s learning by enabling it to recognize and

prioritize sequences that are more likely to yield stable and effective mRNA vaccines.

The final dataset, after filtering, contained 4,877 sequences, providing a robust and

stable foundation for the fine-tuning process.

For independent testing (Table 5.3), we increased the protein sequence length’s

upper limit to 500 aa. Additionally, the ORF sequences from the Pfizer (BNT162b2)

and Moderna (mRNA-1273) vaccines, both targeting the SARS-CoV-2 spike protein,

were used as benchmarks. These sequences were obtained from UCSC 1, and their

ORF sequences were extracted using the NCBI ORF Finder API 2.

1https://genome.ucsc.edu/cgi-bin/hgSearch?search=BNT162b2&db=wuhCor1
2https://www.ncbi.nlm.nih.gov/orffinder/
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Table 5.3: All different kinds of sequences from cross organism used for testing the
fine-tuned ProtBert and baseline model. The max length column reflects the dataset’s
maximum length of the protein sequence in terms of amino acids (aa).

Test-Dataset No. of Sequence Max Length

Hg19 short 976 500aa

E.coli 361 500aa

Chinese-Hamster 667 500aa

SARS-Cov-2 (Wuhan S1-Spike Protein) 1 1271aa

5.3.2 Model and Training Setup

The training setup for the ProtBert model involves extracting 1024-dimensional em-

beddings for each amino acid in the protein sequence. These embeddings are passed

through an adapter module that predicts the optimal codon sequence. The adapter

module includes a softmax classifier [44] applied in a time-distributed manner, ensur-

ing that each input token (amino acid) is mapped to one of the 61 possible codons.

It was then passed through a codon-masking layer introduced as ‘valid-codon’ in

Sec. 4.1.

Fine-tuning of ProtBert was conducted using two distinct approaches. In the first

approach, ‘Adaptive-ProtBert’, we kept all ProtBert parameters frozen and added

a new classifier module. This classifier, trained specifically for codon optimization,

received 1024-dimensional vectors representing each amino acid from the pre-trained

ProtBert layers. The classifier then predicted the optimal codon as a sequence tag-

ging task discussed in Sec. 3.4. The second approach,‘ Adasel-ProtBert’, combined

adaptive and selective fine-tuning. In this method, the weights of the BertOutput

layer and the classifier module were unfrozen. This allowed the model to fine-tune not

only the classifier but also the final layers of ProtBert, enabling it to adapt better to

the specific task of codon optimization while retaining its pre-trained knowledge. Fig-

ure 5.1 illustrates the architecture used for these approaches. Both methods utilized
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Figure 5.1: ProtBert Architecture with adapter layer and codon masking. The dense
vector of dimension 1024 for each amino acid was utilized for codon optimization.
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codon masking to ensure biologically valid predictions. Table 5.4 contains the best

value of the hyper-parameters chosen for training. Another model used in this exper-

iment is the ‘Dense bi-LSTM’ (Sec. 3.3.5) network with the same hyper-parameters

mentioned in Sec. 4.3.2. Fig. 4.1 illustrates the architecture of ‘Dense bi-LSTM’.

This setup provides a robust framework for evaluating how well-fine-tuned trans-

former models like ProtBert can optimize ORF sequences compared to traditional

deep-learning approaches. Fig. 5.2 illustrates the training pipeline used in this exper-

iment.

Table 5.4: Hyper-Parameters for fine-tuning ProtBert model and baseline ‘Dense bi-
LSTM’ model. The max length parameter determines the context size for the LM.
The acronym aa stands for amino acid.

Hyperparameter Fine-Tuning ProtBert Dense-bilstm

Dataset Hg19 short Hg19 short

batch size 32 32

masking-codon ✓ ✓

Epochs 15 15

Optimizer Adam Adam

Learning rate (lr) 0.01 0.001

Early Stopping ✓ ✓

Patience 5 5

max length 150 aa 150 aa

Fig. 5.2 illustrates the different components and the flow of training pipeline used

in this experiment.

5.4 Results and Discussion

Following the training phase, the performance of the three models, Adasel-ProtBert,

Adaptive-ProtBert, and Dense bi-LSTM, was evaluated on held-out test data from

the Hg19 short dataset and independent test sets from E.coli, Chinese-Hamster(CH)
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Figure 5.2: Codon-Optimization methodology on sequences filtered on length and
stability.

and SARS-CoV-2 (Wuhan) spike protein sequences. We compare these models with

four other design types. The Wild-Type sequence represents the naturally occurring

genetic sequence of the SARS-CoV-2 (Wuhan) spike protein, serving as a baseline

for assessing improvements made through optimization. The Pfizer (BNT162b2) and

Moderna (mRNA1273) vaccines are industry-standard examples of codon optimiza-

tion, where ORF sequences have been carefully engineered for enhanced expression

and stability in human cells. These vaccines set a benchmark for evaluating new mod-

els’ effectiveness. Lastly, the Linear-Design approach is a non-deep learning-based

state-of-the-art method that prioritizes the thermodynamic stability of the mRNA

sequence, often at the expense of expression levels. The primary metrics we used

for measuring the optimized ORF fidelity from our trained models were CAI, MFE,

and GC-Content. The following subsections provide a detailed analysis of the results

across different test sets.
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5.4.1 SARS-CoV-2 Spike Protein Test

The fine-tuned models, alongside the Dense bi-LSTM were evaluated on the ORF

sequences of the SARS-CoV-2 (Wuhan) spike protein, with the Pfizer (BNT162b2)

and Moderna (mRNA1273) vaccines ORFs serving as benchmarks.

As shown in Table 5.5, Adasel-ProtBert achieved the highest CAI of 0.97, surpass-

ing both industry-standard vaccines and other design types. This high CAI value

suggests a strong alignment of codon usage with human cellular machinery, which is

expected to enhance expression levels. The MFE value of -1520.1 kcal/mol indicated

robust thermodynamic stability, competitive to Dense bi-LSTM, which had an MFE

of -1563.7 kcal/mol. The GC-Content for Adasel-ProtBert was also notably high at

0.602, indicating a strong potential for mRNA stability. Adaptive-ProtBert showed a

Table 5.5: Comparison of ORF sequences from the model against different other
design algorithms.

Design-Type CAI MFE (kcal/mol) GC-Content

Wild-Type 0.67 -1111.5 0.37

Adasel-ProtBert 0.97 -1520.1 0.602

Adaptive-ProtBert 0.94 -1544.0 0.582

Dense bi-LSTM 0.95 -1563.7 0.580

Pfizer (BNT162b2) 0.94 -1314.12 0.570

Moderna (mRNA1273) 0.97 -1481.80 0.62

Linear-Design 0.724 -2477.7 0.536

slightly lower CAI of 0.94 but had an MFE of -1544.0 kcal/mol, suggesting a slightly

more stable RNA structure. Its GC-Content was competitive to Adasel-ProtBert at

0.582, reinforcing its potential for enhanced stability.

The Dense bi-LSTM performed comparably, with a CAI of 0.95, an MFE of -1563.7

kcal/mol, and a GC-Content of 0.580, making it competitive with the fine-tuned

models.
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The Wild-Type sequence (Table 5.5) from the SARS-CoV-2 (Wuhan) virus was sig-

nificantly outperformed by all models across all metrics, demonstrating the effective-

ness of codon optimization. Notably, both Adasel-ProtBert and Adaptive-ProtBert

exceeded the performance of Pfizer’s BNT162b2 and were on par with or slightly

better than Moderna’s mRNA1273 in terms of CAI and GC-Content (Fig. 5.3).

Figure 5.3: CAI, GC and MFE for different design methodologies.

Figure 5.4: Comparison on CAI and stability of different design types
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Summary Overall, the results demonstrate the potential of using deep learning

models to enhance the ORF design for the SARS-CoV-2 spike protein. Each model

presents a unique set of strengths: Adasel-ProtBert offers a well-rounded performance

across all metrics, Adaptive-ProtBert excels in thermodynamic stability, while the

Dense bi-LSTM remains competitive.

5.4.2 Cross Organism Test

In this test, we assessed the performance of models trained on Hg 19 for codon opti-

mization on E.coli and Chinese-Hamster genes. The motivation behind this test is to

validate that the models are optimized for human codon usage patterns. The models

were assessed using the same three metrics: CAI, MFE, and GC-Content, as in the

previous section.

Table 5.6: Results for each of the models trained on Hg19 short across three organ-
isms: Human( Hg19), E.coli and Chinese-Hamster on metrics CAI and MFE

Model Metric
Hg19 E.coli Chinese-Hamster

Predicted ORF Wild-Type Predicted ORF Wild-Type Predicted ORF Wild-Type

Adasel-ProtBert

CAI 0.94 0.74 0.61 0.67 0.97 0.80

MFE (kcal/mol) -47.23 -39.97 -105.51 -84.55 -146.30 -117.43

GC-Content 0.68 0.60 0.61 0.47 0.62 0.52

Adaptive-ProtBert

CAI 0.94 0.74 0.59 0.67 0.96 0.80

MFE (kcal/mol) -46.80 -39.97 -104.64 -84.55 -149.96 -117.43

GC-Content 0.68 0.60 0.61 0.47 0.62 0.52

Dense bi-LSTM

CAI 0.94 0.74 0.60 0.67 0.96 0.80

MFE (kcal/mol) -45.90 -39.97 -103.90 -84.55 -147.8 -117.43

GC-Content 0.67 0.60 0.60 0.47 0.61 0.52

Human Genome Analysis All models demonstrated a 27.03% increase in CAI,

from 0.74 to 0.94, indicating a significant improvement in the predicted sequences

alignment with human codon usage preferences. This optimization suggests the po-

tential for enhanced protein expression in human cells. MFE improvements ranged

from 15.91% to 19.59%, with values improving from -39.97 kcal/mol in the origi-

nal sequences to between -45.90 and -47.23 kcal/mol in the predictions, pointing to
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increased mRNA structural stability. GC-Content increment of 13.33% across all

models was observed, enhancing from 0.60 to between 0.67 and 0.68, which correlates

with the improved stability metrics. Table 5.6 contains the results for each of the

models for human genes.

Escherichia coli (E.coli) Dataset On the E. coli test set, the models showed a

decrease in CAI by 8.96% for ‘Adasel-ProtBert’ (0.67 to 0.61), 11.94% for ‘Adaptive-

ProtBert’ (0.67 to 0.59) and 10.44% for ‘Dense bi-LSTM’ (0.67 to 0.60), poten-

tially indicating less biased codon usage for bacterial expression systems. However,

MFE showed consistent improvement across all models, with increments ranging from

22.74% to 23.93%. This enhancement suggested that despite the decrease in CAI, the

structural stability of mRNA remained intact in bacterial cells. GC-Content improve-

ments were substantial, with a 29.79% increase, which contributed to the increased

mRNA stability observed. Table 5.6 contains consolidated results of each model.

Chinese-Hamster Dataset For the Chinese-Hamster test set, CAI improvements

were large, with an increase of 21.25% for ‘Adasel-ProtBert’ and a 20% increase

for both ‘Adaptive-ProtBert’ and ‘Dense bi-LSTM’. MFE enhancements were also

notable, with increases ranging from 25.83% to 27.72%, indicating the generation of

highly stable mRNA configurations. GC-Content increased by 19.23% across most

models, aligning with the trends seen in human genomic data.

Observation

The results from the cross-organism test provided interesting insights, particularly

regarding the Chinese-Hamster and human Hg19 genes. Models trained on Hg19

genes showed efficient performance on Chinese-Hamster genes but not on E. coli.

This discrepancy led to further investigation into the reason behind these results,

specifically analyzing codon distribution patterns across the three organisms.
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Codon Distribution Analysis

We came across an interesting empirical emerged from the cross-organism test results.

While all models showed significant improvement over the Wild-Type sequences for

Hg19 and Chinese-Hamster genes, they did not exhibit the same level of improvement

for E.coli sequences. The goal of the encoder language model was to learn the prob-

ability distribution over codons (tokens) and find the most probable one. This led

us to investigate the similarity among their codon distribution for each amino acid

using weight vectors from the CAI calculation.

During CAI calculation, the weights of each codon are extracted from the Relative

Synonymous Codon Usage (RSCU). For example, the weight vector for the amino acid

Alanine (A) is defined as WA = [wA,gct, wA,gcc, wA,gca, wA,gcg], where ‘GCT’, ‘GCC’,

‘GCA’ and ‘GCG’ are synonymous codons. Each element in WA is the relative adap-

tiveness (Eq. 1.2) of the codon for Alanine. Similar to previous experiments, reference

sequences from each organism were used to calculate the relative adaptiveness of each

codon, resulting in weight vectors for each amino acid across the three organisms: hu-

mans (Hg19), E.coli, and Chinese-Hamster.

Principal component analysis (PCA) [56] was performed on 18 amino acid weight

vectors, eliminating two singular vectors for Methionine (M) and Tryptophan (T).

The analysis revealed that except for Cysteine (C), the weight vectors for Hg19 and

Chinese-Hamster showed high similarity, unlike those for E. coli (Fig. 5.5). This

finding empirically suggests that human and Chinese-Hamster genes share a similar

codon distribution, which likely contributed to the superior performance of the models

on these genomes compared to E. coli.

5.5 Conclusion

The results of this chapter reinforce the hypothesis that ProtBert, with its rich, gen-

eral knowledge of amino acid properties, can be effectively fine-tuned for codon opti-
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Figure 5.5: Weight vectors projection of different amino acids for each of Hg19,E.coli
and Chinese-Hamster gene sequences. Each of the letters for a subplot denotes a
specific amino acid.
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mization in ORF sequences, specifically for human mRNA vaccines. Adasel-ProtBert

demonstrated superior performance in balancing CAI, MFE, and GC-Content, sug-

gesting its potential to optimize mRNA sequences better than current industry stan-

dards, such as Pfizer’s and Moderna’s vaccines.

The cross-organism tests further validated that models trained on Hg19 were opti-

mized for human codon usage patterns but were less effective on E. coli, highlighting

the importance of codon distribution similarity. These findings confirm that fine-

tuned models can potentially enhance mRNA vaccine design by optimizing for both

expression and stability, aligning with the chapter’s objectives.
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Chapter 6

New Explorations and Challenges

6.1 Motivation: Smooth CAI as a Regularizer

Protein expression is an important factor, as focused previously in all the experiments.

CAI [49] has been used as an evaluation metric in previous experiments to measure the

expression level of the synthetic genes predicted from the model. In prior experiments

(Sec. 4.1, and Chapter 5), models showed inherent learning of codon distribution and

usage bias of a host genome during training. In this experiment, the main ideology

was to modify the loss function by utilizing CAI as an additional penalizing term

alongside cross-entropy loss. Including CAI in objective function was not trivial;

modifications performed to overcome the challenges are discussed in the next section.

6.1.1 CAI Formulation for Smoothness

In order to train any machine learning model, the smoothness of the loss function is

a fundamental requirement to perform gradient descent in back-propagation. Unfor-

tunately, the smoothness of CAI gets rendered because of the ‘max’ operator used in

relative-adaptiveness (Eq. 1.2) calculation of the ith codon encoding ath amino acid.

Two primary adaptations were performed in CAI formulation to overcome the chal-

lenge of non-differentiability. At first, the max operation was replaced with softmax

to calculate relative adaptiveness. The modified formulation for RSCU is described

in Eq. 6.1 below.
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wa,j =
eRSCUa,j∑︁na

k=1 e
RSCUa,k

(6.1)

The second modification was performed in CAI calculation, adapting the geometric

mean over relative adaptiveness (Eq. 1.3). As logarithm is a monotonic function, for

mathematical convenience in gradient calculation, the log operation was induced over

it.

CAI =

(︄
L∏︂

k=1

wk

)︄ 1
L

log(CAI) = log

⎧⎨⎩
(︄

L∏︂
k=1

wk

)︄ 1
L

⎫⎬⎭ =
1

L
·

(︄
L∑︂

k=1

log(wk)

)︄ (6.2)

Eq. 6.3 describes the formulation of log-softmax-cai referred to as SmoothCAI in this

work.

∴ SmoothCAI =
1

L
·

(︄
L∑︂

k=1

log(wk)

)︄
(6.3)

6.1.2 Experimental Setup

Hg19 short was used with a similar train, validation, and test split done for the

experiment in Sec. 5.1. After the filter test, random 10000 sequences with lengths

less than equal to 150 nt were retained in order to have faster training. The hyper-

parameters, along with the model used for training, were set identically to ‘valid-

codon’ in Sec. 4.3.2.

Loss Function: The modified loss function (LCAI) used in this experiment was

done as additive penalization of SmoothCAI term. Since the goal is to maximize CAI,

hence it was transformed into maximization by subtracting the SmoothCAI . Eq. 6.4

describes the LCAI loss.

LCAI = LCEL − SmoothCAI (6.4)
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Here, LCEL is taken from the Eq. 4.2.

6.1.3 Results and Discussion

The model was trained using ‘all-codon’ and ‘valid-codon’ methods. Both the meth-

ods showed better CAI than their wild-type sequences. However, there was no signif-

icant improvement observed in the CAI of test sequences over the previous methods

(Chapters 4 and 5) where LCAI was not utilized as an additional penalty term.

The ‘valid-codon’ method gave the highest expression value of 0.90 when compared

with the ‘all-codon’ method (CAI=0.81). It demonstrated one more instance where

the ‘valid-codon’ method performed better than the ‘all-codon.’ Overall, in this work,

a new loss function was formulated with a hypothesis to increase the gene expression

level by penalizing the model for preferring non-biased codons. Although the results

did not come out to be positive, they can be an ideation step for future work.

6.2 User Defined RNA design

6.2.1 Motivation

In the above experiment, the focus was on codon optimization for increasing protein

expression. Stability is an important aspect of designing RNA sequences because of its

impact on efficient translation. For an ORF sequence the stability is not only affected

by codons but also gets affected by the individual nucleotide bases. The percentage

of GC-Content plays an important role in maintaining the stability of mRNAs within

the cell. A multi-objective optimization approach was conducted in this experiment

to perform codon optimization for user-specified CAI and stability value. There

were two different methodologies for calculating the stability of the codon sequence.

Both of them are discussed in the next section, describing the experimental setup for

training along with the trade-offs between the two methodologies of calculating the

stability.
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6.2.2 Experimental Setup

Data

The data used in this experiment was the same as used in the previous experiment.

The motivation behind taking shorter sequences is to account for the cubic polynomial

complexity of prediction tools.

Stability Prediction Setup

User-defined RNA design involves specifying the required stability for the predicted

ORF sequence. Stability is inversely proportional to degradation, keeping it as a base

ground; the main focus was to quantify the degradation of the ORF sequence.

OpenVaccine Challenge published on kaggle [8] sought to predict the degradation

of mRNAs under different environmental conditions. The participants were required

to build a machine-learning model to predict the degradation values at each base of

the input mRNA sequence under five different conditions. It was a supervised learning

problem where the input features were the nucleotide sequence, its secondary struc-

ture, the loop type at each base, and the base-pairing probability matrix (bpps). In

this multi-regression setting, the loss function to be optimized was the mean column-

wise root mean squared error (MCRMSE).

The top performers in the contest published their results and achieved the best

MCRMSE score of 0.23 [20]. RNAdegformer a transformer based model proposed

in this work was utilized as an auxiallary to quantify the degradation value of the

predicted ORF sequences in the codon optimization task with user defined stability

and CAI. The pre-trained RNAdegformer predicted the degradation rate at each base

of the predicted ORF sequence. In order to condense the degradation vector (R1×5)in

a singular real value, the mean-of-mean of degradation values was taken. The mean-

of-mean is defined initially as taking an average of 5 degradation target values at each

base (locally) and then taking the average for the complete sequence length (globally).

This singular degradation value is referred to as avg deg in this work (Eq. 6.5).
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Secondary Structure Tools Setup The RNAdegformer model requires a sec-

ondary structure, loop type, and bpps matrix of the mRNA sequence (ORF se-

quence) alongside the nucleotide sequence. Features were generated at 37◦, using

RNAFold [35]. There were two ways to set up the RNAFold, one is through arnie1

as wrapper over the source code of Vienna-RNAfold and the other one using Vien-

naRNA python package2. The training time, however, was found to be less for the

latter. The use of an Arnie wrapper costs 72.30 seconds per iteration during the

training, whereas, on the other hand, Vienna-RNAfold took only 54.36 seconds per

iteration, reducing the computation cost by 24.81% per iteration in both training as

well as inference.

Stability with RNAdegformer and Vienna-RNAfold

The five degradation rates predicted by RNAdegformer were reactivity (reactivity

values), deg pH10 (likelihood of degradation at base with pH=10), deg Mg pH10

(likelihood of degradation at the base with pH=10 and gestating with magnesium),

deg 50C (likelihood of degradation at base without incubating with magnesium at

50◦C) and deg Mg 50C (likelihood of degradation after gestation with magnesium at

50◦C), each of them being real values. To condense the degradation rate predicted

by RNAdegformer at each base of the mRNA sequence to a single real value, the

mean-of-mean was taken as described in Eq. 6.5 below.

avg deg =
1

N
×

N∑︂
i=1

(︄
1

5
×

5∑︂
j=1

base degradationi,j

)︄
(6.5)

Here (Eq. 6.5), N refers to the number of nucleotides in the sequence, and base degradationi,j

determines the predicted jth degradation rate at the ith base of the mRNA sequence.

It condensed the avg deg of the sequences between 0 and 1.

In order to reduce the overhead computations at each instance of training, the

1https://github.com/DasLab/arnie
2https://pypi.org/project/ViennaRNA/
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Figure 6.1: Codon Optimization with user-defined CAI and stability, where stability
is predicted by pre-trained RNAdegformer

degradation rate prediction from the RNAdegformer was replaced with MFE from

RNAFold. It cut off the cost of calculating the bpps matrix, secondary structure,

and degradation rates at each base used for RNAdegFormer. It helped to reduce per

iteration training time from 54.36 sec to 3.61 sec, i.e., a decrease of 93.3%. In order

to condense MFE values between 0 and 1, it was length normalized.

Fig. 6.1 shows the training pipeline using RNAdegformer, and Fig. 6.2 illustrates

the training pipeline for user-defined mRNA sequence using minimum free energy.

Similar to previous experiments, ‘Dense bi-LSTM’ (Fig. 4.1) and ‘Adaptive-ProtBert’

(Fig. 5.1) were used for training purpose.

Loss and Evaluation Criterion

As mentioned in the earlier experiments, the Sparse Cross-Entropy Loss was used

as an objective function, directing the model to learn the inherently codon distribu-

tion of ground truth. Apart from it, two other loss components were added in this

experiment: cai loss (Lcai loss) and stability loss (Lstab loss).

The user-defined parameters req cai and req stab determined the required CAI
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Figure 6.2: Codon Optimization with user-defined CAI and stability, where stability
is calculated as minimum free energy by Vienna-RNAfold at 37◦C.

index and stability for the predicted codon sequence from the trained model. In order

to direct the model towards a specific CAI index and stability, mean squared error

losses corresponding to each of the metrics were included. The final multi-objective

loss function to be optimized was Lcai−stab, described in the Eq. 6.6 below.

Lcai−stab = LCEL + α ∗ Lcai loss + (1− α) ∗ Lstab loss (6.6)

Lcai loss = (
1

N

N∑︂
i=1

(CAIpred − req cai)2)) (6.7)

Lstab loss = (
1

N

N∑︂
i=1

(Stabilitypred − req stab)2)) (6.8)

In Eq. 6.6, α was used as a hyper-parameter to have a weighted multi-objective loss

function. Since CAI index and stability of mRNA sequences are conflicting param-

eters [30], therefore it was formulated as α and 1 − α as the coefficients Lcailoss and

Lstabloss respectively. The Lcai loss and Lstabloss of predicted sequences were averaged

over the entire batch of size N.
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6.2.3 Results and Discussion

The experiments were carried out on different values of alpha = 0.5, 0.3, and 0.1.

The stable value of α was taken as 0.5, as it helped the learning to be stable for

both CAI and stability losses in Eq. 6.6. Table 6.1 shows the comparison of different

models with each of the stability tools on CAI and stability values.

Table 6.1: User-defined ORF sequence results.

Model α
CAI Stability

Stability-Tool
Predicted CAI Required CAI Lcai loss Predicted Stability Required Stability) Lstab loss

Dense bi-LSTM 0.5 0.828 0.80 0.005 0.42 0.20 0.063 RNADegformer

Dense bi-LSTM 0.5 0.826 0.80 0.004 -0.20 kcal/mol -0.50 kcal/mol 0.096 Vienna-RnaFold

Adaptive-ProtBert 0.5 0.864 0.80 0.004 0.45 0.25 0.042 RNADegformer

Adaptive-ProtBert 0.5 0.871 0.80 0.004 -0.21 kcal/mol -0.50 kcal/mol 0.094 Vienna-RnaFold

Both the ‘Dense bi-LSTM’ and ‘Adaptive-ProtBert’ showed less accurate CAI to

the req cai = 0.80. The ‘Dense bi-LSTM’ predicted ORF sequences CAI were 0.828

and 0.826. They are comparatively better than the ‘Adapative-ProtBert’, which had

CAI values of 0.864 and 0.871. These results suggested that both models were not

effective enough in choosing codons to direct the ORFs toward the required CAI.

For the second metric (stability), high variability was observed in the results be-

tween two different tools for stability quantification. With RNADegformer, neither

model was able to predict ORFs near the required stability. ‘Dense bi-LSTM’ had a

degradation value of 0.42 compared to req stab = 0.20. On the other hand, ‘Adaptive-

ProtBert’ had a degradation of 0.45 compared to req stab = 0.25. RNAFold with both

the models had stability values of -0.20 kcal/mol (Dene bi-LSTM and -0.21 kcal/mol

(‘Adaptive-ProtBert’)), quite far away from the req stab = -0.50 kcal/mol, resulting

in higher stability losses of 0.096 and 0.094.

This showed that the trained models were not able to come even considerably close

to the required stability. In conclusion, the ‘Dense bi-LSTM’ and ‘Adaptive-ProtBert’

models showed slightly better results in CAI than their performance on stability.
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Chapter 7

Conclusion and Future Work

The COVID-19 pandemic of 2019 highlighted the urgent need for rapid and effec-

tive vaccine development. We leveraged deep learning techniques to optimize codon

sequences within the open reading frames (ORFs) of mRNA, focusing on enhancing

their efficiency for therapeutic applications. This research demonstrated the potential

of using advanced machine-learning models to push the boundaries of mRNA vaccine

design.

We first explored the efficacy of the ‘codon-box’ method compared to the novel

‘valid-codon’ method and the baseline ‘all-codon’ method. Our findings showed

that all three methods effectively avoided mutation errors, confirming the strength

of the Dense bi-LSTM model in mapping amino acids to their correct synonymous

codons. The ‘valid-codon’ method, which involved masking nonsynonymous codons,

performed comparably to the ‘codon-box’ method. This result indicates that special

grouping of codons, as done in the ‘codon-box’ method, is not significant and that

simplifying the learning process allows the model to better capture codon usage bias,

leading to enhanced expression levels.

Next, we applied a pre-trained protein language model, specifically ProtBert, for

the downstream task of codon optimization. This work marked the first instance

of using protein language models for this purpose. Despite using relatively less

training data and fewer computational resources, the Adasel-ProtBert model out-
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performed both the baseline Dense bi-LSTM’ model and clinically approved vaccines

in terms of expression and stability in it’s optimized ORF sequence for SARS-CoV-

2 (Wuhan) spike protein. Additionally, all models produced optimized ORFs with

higher CAI and MFE values compared to Wild-Type sequences across human, E. coli,

and Chinese-Hamster genomes.

While we utilized NLP techniques for the codon optimization task in ORFs, we

also encountered challenges that suggest avenues for future exploration. For example,

our efforts to generate user-defined ORF with tunable CAI and stability using a

multi-objective loss function revealed the complexities of achieving a balance between

expression and stability. Similarly, our exploration of using CAI as a smooth loss

function for regularization, although not yielding the desired results, provides a basis

for future research to refine and enhance this approach.

7.1 Future Work

This research lays the foundation for several future directions. First, we could explore

more advanced models, such as graph convolutional neural networks (GNNs) [24],

which may better capture the structural intricacies of protein sequences. While our

work focused on the computational design of optimal ORFs, it is essential to validate

the biological efficacy of these sequences in real-world therapeutic contexts. Moreover,

future research could expand beyond ORF optimization to address other components

of mRNA vaccines, such as untranslated regions (UTRs), the 5’ cap, and the length

of the poly-A tail. Integrating these elements into a comprehensive optimization

framework could significantly enhance the overall effectiveness of mRNA vaccines. In

conclusion, this thesis demonstrated that language models, particularly those pre-

trained on protein sequences, hold significance for therapeutic applications such as

mRNA vaccine design. By optimizing codon sequences for human genes, this thesis

provides valuable insight for future work in the field of mRNA therapeutics, with the

potential to improve vaccine design and efficacy.
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