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Abstract

This thesis explores the application of fully sequential methods for the analysis

of longitudinal clinical trial data. A new nonparametric approach will be

developed, using sequential ranks, for the comparison of several treatment

groups. Sequential ranking is an alternative to ranking by the usual method.

Although sequential ranks are more likely to suffer from information loss than

regular ranks, they are preferred here for their independence.

We will develop three alternative monitoring procedures. The first two

will be large-sample, continuous analogues of the Pocock and O’Brien-Fleming

group sequential monitoring procedures. The third procedure, a small sample

version, will make use of the sign function, and will be grounded in the theory

of simple random walks.

The performance of the three monitoring procedures will be assessed via

a Monte Carlo simulation study. In particular, we will compare power and

average stopping time for various treatment differences, different numbers of

treatment groups, and different response distributions. The procedure will

then be applied to data arising from an orthodontic clinical trial.
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Chapter 1

Introduction

1.1 Longitudinal data analysis

In what follows, we consider the historical progression of sequential methods for

longitudinal data. Thus it is appropriate to consider first the basic approaches

to longitudinal data analysis.

Longitudinal, or panel, data involves the measurement of some quantity

on each unit, repeatedly over time. Such data arise frequently in medical

and dental applications. Prior to any discussion of analytical methods, it is

essential that notation be established.

Definition 1.1.1 Let yiα be the ith measurement on the αth unit, for i =

1, . . . , pα and α = 1, . . . , n. Each measurement on each unit has a correspond-

ing vector of explanatory variables, xiα, where xiα is of length m.

To ease the notation, we set yα = (y1α, y2α, . . . , ypαα)T . Finally, y =

(y1,y2, . . . ,yn)T is a (p1 + . . .+pn)×1 vector, and X = (xT11, . . . ,x
T
p11,x

T
12, . . . ,

xTp22, . . . ,x
T
pnn)T is a (p1 + . . .+ pn)×m matrix.

The methods of longitudinal data explained here follow in general the the-

ory and ideas presented in the book, Analysis of Longitudinal Data by Diggle

et al. [7], unless otherwise indicated.
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1.1.1 Linear and linear-mixed models

Longitudinal linear and linear-mixed models rely upon the theory of the gen-

eral linear model (GLM). The basic form of this model is given by

y = Xβ + ε (1.1)

where the indexing of ε is analogous to that of y. Assume that ε is a realization

of some random vector whose distribution is N(0,V), given X. To obtain the

usual classical GLM, one would set V to equal the identity matrix premulti-

plied by a constant: σ2I. For the special case of longitudinal data, the matrix

V is block diagonal. We will denote these blocks by Vα, for α = 1, . . . , n.

Before elaborating upon the structure of V, we define the general sources

of variation that arise in longitudinal data. Measurement error is the varia-

tion arising from some measurement process. Variation due to random effects

arises when units are randomly sampled from some population. Finally, serial

correlation is variation arising from within-unit correlation, when units are

monitored over time.

Consider the following additive decomposition

εiα = Ziα + dTiαUα +Wα(tiα) (1.2)

where we define diα to be an r-vector of unit-specific explanatory variables

and tiα to be the measurement time for the ith measurement on the αth unit.

We let the Ziα form a set of mutually independent N(0, τ 2) random variables,

and let the Uα form a set of mutually independent length-r N(0,G) random

vectors. Finally, the Wα(tiα) are sampled from n independent copies of a zero-

mean stationary Gaussian process, with variance σ2 and correlation function

ρ(u) (Diggle et al., [7]). In this decomposition, the Ziα, Uα, and Wα(tiα)

terms correspond to measurement error, random effects, and serial correlation,

respectively.

In order to describe the Vα we develop a matrix formulation of the above

decomposition. Define εα = (ε1α, ε2α, . . . , εpαα)T . We let Dα be the pα × r

2



matrix with rows given by dTiα (where α is fixed). Let Hα be the pα × pα

matrix given by (hjk) = ρ(|tjα − tkα|). Then,

Vα = V AR[εα] = τ 2I + DαGDT
α + σ2Hα (1.3)

Diggle et al. [7] give specific examples of the above covariance structure. Here

are two of them:

Example 1.1.2 (Serial correlation alone) Suppose that εiα = Wα(tiα). Then,

Vα simplifies to σ2Hα. Typically ρ(u) is chosen to decrease as u (time sep-

aration, or lag) increases. For instance, the exponential model uses ρ(u) =

exp(−φu).

Example 1.1.3 (Measurement error with random effects) If εiα = Ziα+

dTiαUα, then Vα = τ 2I + DαGDT
α . The special case of r = 1 yields a well-

known growth curve model.

Now that we have identified the basic framework of the linear and linear-

mixed models, we can identify how they are used. In particular we briefly

consider three steps: model building, estimation, and inference.

The model building stage first involves exploratory data analysis, including

time plots, scatterplot matrices, and empirical variograms. Time plots of the

response are useful for ascertaining mean behaviour over time, where time is

included as an explanatory variable. Once the model matrix X is identified,

ordinary least-squares (OLS) residuals are calculated and used to identify a

suitable covariance model. In particular, time plots, scatterplot matrices, and

empirical variograms of the residuals are examined.

The next step is to estimate the parameters from the model identified at

the model building stage. In particular, we have implicitly assumed that y

is a realization of the random vector Y whose distribution is N(Xβ,V). We

may write V as V(γ) to explicitly note its dependence on various parameters

(such as τ 2, G, σ2). Taking

β̂(γ) = (XTV(γ)−1X)−1XTV(γ)−1y (1.4)

3



and letting

RSS(γ) = (y −Xβ̂(γ))TV(γ)−1(y −Xβ̂(γ)) (1.5)

be the residual sum of squares (RSS), the restricted maximum likelihood esti-

mator (REML) for γ maximizes:

L∗(γ) = −1

2
{log |V(γ)|+ log |XTV(γ)−1X|+RSS(γ)} (1.6)

Then, the REML estimate for β is β̂(γ̃), where γ̃ is the REML estimate for

γ.

Inference for this model is based on the fact that β̂(γ) is distributed as

N(β, (XTV(γ)−1X)−1). This holds approximately if V(γ) is estimated using

the REML estimates of γ and β. General linear hypothesis testing proceeds

as usual. Diggle et al. [7] also outline a log-likelihood ratio statistic for use

when model selection is not obvious.

1.1.2 Marginal models

Marginal models are a natural extension of linear models for longitudinal data.

There are two general components to a marginal model: a regression model of

the response on explanatory variables, and a model of within-unit correlation.

The theory of marginal models borrows extensively from that of generalized

linear models.

As for the linear and linear-mixed models, the regression model for the

response is one based on expectation. That is,

E[Yiα] = µiα (1.7)

depends on xiα only through h(µiα) = xTiαβ. The function h(·) is called a link

function. Marginal variance is assumed to be

V AR[Yiα] = ν(µiα)φ (1.8)

4



where ν(·) is a known function, and φ may or may not be known. Similarly,

the correlation between two within-unit observations is

CORR[Yiα, Yjα] = ρ(µiα, µjα,γ) (1.9)

where ρ(·) is also a known function, and γ is a vector of (potentially unknown)

parameters.

If we use the identity link, h(µ) = µ, and further assume that the data is

Gaussian, the class of models specified by the above equations is the same as

the class of linear models developed in Section 1.1.1.

In the normal case, a likelihood approach is sufficient for estimation. It

leads to well-known equations that are easy to solve. However, the general

form of the marginal model does not require a distributional assumption. This

precludes the use of likelihood methods for general estimation purposes. In-

stead, parameters are often estimated by solving the generalized estimating

equations (GEE), given by

S(β,γ) =
n∑

α=1

(
∂µα
∂β

)T
V AR[Yα](β,γ)−1(yα − µα) = 0 (1.10)

where µα = (µ1α, µ2α, . . . , µpαα)T . Note that if γ is not known it must be

estimated separately, prior to solving the GEE. Diggle et al. [7] suggest that

γ should be replaced by an m1/2-consistent estimate, γ̂.

According to Fitzmaurice et al. [8], a robust sandwich estimator for the

variance matrix of β̂ should be used for making inferences regarding β.

1.1.3 Repeated measures ANOVA

The analysis of longitudinal data using repeated measures analysis of variance

(ANOVA) is an alternative to analyses based on linear, linear-mixed, and

marginal models. Its structure parallels that of a split-plot ANOVA; units are

plots, and unit-specific repeated measurements form subplots. A randomiza-

tion argument is not justified however, as measurements are taken in sequential

5



order. The following description of repeated measures ANOVA follows that of

Davis [6].

In the previous sections, we have considered only general longitudinal data.

In particular, a single sample of units, each with corresponding repeated mea-

surements on some variable. ANOVA methods can be used to compare two

or more such samples. To do so however, we will require an extension of our

existing notation:

Definition 1.1.4 Let y
(k)
iα be the ith measurement on the αth unit in the kth

group, for i = 1, . . . , p
(k)
α , k = 1, . . . , c, and α = 1, . . . , nk, with corresponding

measurement time t
(k)
iα . In vector notation, y

(k)
α = (y

(k)
1α , y

(k)
2α , . . . , y

(k)

p
(k)
α α

)T .

This definition allows for flexibility in the number of groups as well as the

number of individuals in each group. In what follows, we will fix p
(k)
α = p for

k = 1, . . . , c and α = 1, . . . , nk. In other words, we assume that we have the

same number of repeated measurements on each unit.

The formulation of an ANOVA table first requires the specification of an

underlying model. There are several possibilities, each of which leads to the

same table. As in Davis [6], we choose the simplest one:

y
(k)
iα = µ+ γk + τi + (γτ)ki + πα(k) + ε

(k)
iα (1.11)

for i = 1, . . . , p, k = 1, . . . , c, and α = 1, . . . , nk. The overall mean, common

to all subjects, is represented by µ. The γk represent group effects, the τi

represent time effects, and the (γτ)ki the interactions between the two. The

effects are subject to the following constraints:

c∑
k=1

γk =

p∑
i=1

τi =
c∑

k=1

(γτ)ki =

p∑
i=1

(γτ)ki = 0. (1.12)

We define the πα(k) to be mutually independent random effects for units, and

the ε
(k)
iα to be mutually independent measurement errors.

Assume that the πα(k) and ε
(k)
iα are distributed as N(0, ν2) and N(0, σ2),

respectively. The ANOVA table is given by

6



Table 1.1: Sums of squares, degrees of freedom, and mean squares for repeated
measures ANOVA.

Source SS df MS
Group SSG c− 1 SSG/(c− 1)
Units(Group) SSU(G) n− c SSU(G)/(n− c)
Time SST p− 1 SST/(p− 1)
Group × Time SSG×T (c− 1)× (p− 1) SSG×T/[(c− 1)× (p− 1)]
Residual SSR (n− c)× (p− 1) SSR/[(n− c)× (p− 1)]

where

n =
c∑

k=1

nk (1.13)

is the total number of units under observation, and

SSG = p
c∑

k=1

nk(ȳ
(k)
·· − ȳ(·)

·· )2 (1.14)

SSU(G) = p
c∑

k=1

nk∑
α=1

(ȳ(k)
·α − ȳ(k)

·· )2 (1.15)

SST = n

p∑
i=1

(ȳ
(·)
i· − ȳ(·)

·· )2 (1.16)

SSG×T =
c∑

k=1

nk∑
α=1

p∑
i=1

(ȳ
(k)
i· − ȳ(k)

·· − ȳ
(·)
i· + ȳ(·)

·· )2 (1.17)

SSR =
c∑

k=1

nk∑
α=1

p∑
i=1

(y
(k)
iα − ȳ

(k)
i· − ȳ(k)

·α + ȳ(k)
·· )2 (1.18)

are the sums of squares. The bar-dot notation is taken to mean the average

over the dotted indices. For example,

ȳ(·)
·· =

1

np

c∑
k=1

nk∑
α=1

p∑
i=1

y
(k)
iα (1.19)

and

ȳ
(k)
i· =

1

nk

nk∑
α=1

y
(k)
iα . (1.20)
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There are several hypotheses of interest that are eligible for testing under the

model specified in equation 1.11. In particular, to test

H01 : no difference between groups (1.21)

versus

HA1 : not H01 (1.22)

we would use

F1 =
MSG
MSU(G)

=
SSG/(c− 1)

SSU(G)/(n− c)
(1.23)

which is distributed as F with c− 1 and n− c degrees of freedom, under the

null hypothesis. Similarly, to test

H02 : no difference over time (1.24)

versus

HA2 : not H02 (1.25)

we would use

F2 =
MST
MSR

=
SST/(p− 1)

SSR/[(n− c)× (p− 1)]
(1.26)

which is distributed as F with p− 1 and (n− c)× (p− 1) degrees of freedom,

under the null hypothesis. Finally, we may also test whether there is an

interaction between the effects of group and time, that is

H03 : no interaction between group and time (1.27)

versus

HA3 : not H03. (1.28)

For this test, we would use

F3 =
MSG×T
MSR

=
SSG×T/[(c− 1)× (p− 1)]

SSR/[(n− c)× (p− 1)]
(1.29)
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which is distributed as F with (c− 1)× (p− 1) and (n− c)× (p− 1) degrees

of freedom, under the null hypothesis.

Each ANOVA test requires that the within-unit variance matrices are the

same, for each group. This is similar to the usual “equal variances” assumption

in one-way ANOVA. In addition however, the tests of H02 and H03 require a

so-called sphericity condition to hold. If we ignore groups, reverting to our

previous notation, the sphericity condition can be expressed as:

V AR[yiα − yjα] is constant for all i and j (1.30)

where i, j = 1, . . . , p. This can be assessed using Mauchly’s test for sphericity

[6].

1.1.4 Other models and methods

Diggle et al. [7] outline two other general approaches that can be used to

analyze longitudinal data. We describe both very briefly.

Random effects models are a natural extension of both generalized linear

models, and the linear-mixed random effects error models. The latter are

extended to incorporate link functions other than the identity link. These

models are useful when it is the case that there is heterogeneity among units

in some or all regression coefficients. In particular, they should be used when

individuals are the target of inference, rather than the mean. As is the case

with generalized linear models, inference here is likelihood-based.

Transition models assume that correlation arises between successive within-

unit measurements because past values of the underlying random process in-

fluence current and future values. The distribution of Yiα is specified as being

conditional upon its past values Y1α, . . . , Y(i−1)α, as well as the past and cur-

rent values of covariates under consideration. Likelihood-based estimation and

inference is generally used. A useful class of transition models is the class of

Markov generalized linear models.
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1.2 Sequential analysis

One of the characteristics of clinical trial data is that it is not usually available

all at once. In other words, data accumulates gradually, over time. For ethical

and sometimes economic reasons, researchers are motivated to examine the

data as it arrives. The process of doing so may inflate the probability of Type

I error. Sequential analysis is an area of statistics that aims to control this

inflation, by formalizing the process of interim looks.

Historically, there have been two approaches: group and fully sequential

analysis. Group sequential analysis restricts analyses to often pre-specified

analysis times, called interim analyses. Fully, or continuous, sequential analysis

involves monitoring the data continuously. That is, an analysis is performed

after each new data point or observation is received.

Before describing how sequential analysis has been applied to longitudinal

data, we must establish some notation, and define some sequential methods.

1.2.1 Group sequential analysis

A group sequential monitoring procedure involves examining the data at spe-

cific interim analysis times:

Definition 1.2.1 Let T be the maximum number of interim analyses. Anal-

yses 1, 2, . . . , T take place at times t1, t2, . . . , tT . We will use the index j to

refer to an arbitrary analysis time, tj.

This should not be confused with t
(k)
iα , which is the measurement time corre-

sponding to the ith measurement on the subject indexed by k and α.

It is often the case that we are repeatedly testing some null hypothesis on

a single parameter, with a symmetric alternative. To do so, we calculate some

test statistic, say S, at each analysis time:

Definition 1.2.2 We say that S1, S2, . . . , ST is a sequence of test statistics,

and often place them in a vector S = (S1, S2, . . . , ST )T .
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To actually test the null hypothesis at time tj, we compare Sj to a critical

value, or boundary:

Definition 1.2.3 We define B1, B2, . . . , BT to be the boundaries used at in-

terim analyses 1, 2, . . . , T respectively.

Most often a simple rejection rule is used, whereby if |Sj| > Bj, the trial stops.

If on the other hand |Sj| ≤ Bj, the trial continues at least until the (j + 1)th

interim analysis time.

Assuming an overall error rate of α, we define two commonly used moni-

toring procedures. The first is due to Slud and Wei [39]. Our definition follows

that of Spiessens et al. [40]:

Definition 1.2.4 (Slud-Wei method) First, exit probabilities α1, α2, . . . , αT

are chosen so that

T∑
j=1

αj = α. (1.31)

Then, the boundaries can be calculated according to

P{|S1| > B1} = α1 (1.32)

and

P{|S1| ≤ B1, . . . , |Sj−1| ≤ Bj−1, |Sj| > Bj} = αj (1.33)

for j = 2, . . . , T , using numerical integration, under the assumption that the

distribution of S is multivariate normal. We also define marginal significance

levels α′1, α
′
2, . . . , α

′
T such that

P{|Sj| > Bj} = α′j. (1.34)

Unlike earlier group sequential methods, the Slud-Wei method does not

require equally spaced intervals. It does however require T to be pre-specified.

The next method is due to Lan and DeMets [26], with the definition following

the one given in Spiessens et al. [40]:
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Definition 1.2.5 (Lan-DeMets method) Let α∗(t) be a continuous, non-

decreasing function satisfying α∗(0) = 0 and α∗(1) = α. We call α∗(t) an

α-spending function, where t is the fraction of total information available.

Boundaries are determined according to

P{|S1| > B1} = α∗(t∗1) (1.35)

and

P{|S1| ≤ B1, . . . , |Sj−1| ≤ Bj−1, |Sj| > Bj} = α∗(t∗j)− α∗(t∗j−1) (1.36)

for j = 2, . . . , T , where t∗1, t
∗
2, . . . , t

∗
T are the information fractions at each

analysis time. In practice, boundary calculation requires numerical integration.

The Lan-DeMets method is in fact quite flexible since it does not require

pre-specification of the spacing or number of analyses. Its main disadvantage

is that the information fractions must be estimated, which may be difficult if

the total information is unknown.

A detailed development of group sequential methods can be found in the

book by Jennison and Turnbull [21].

1.2.2 Fully sequential analysis

A fully sequential monitoring procedure involves examining the data after each

new observation is received:

Definition 1.2.6 Analyses 1, 2, . . . , j, . . . take place at times t1, t2, . . . , tj, . . .,

corresponding in theory to the measurement times of the 1st, 2nd, . . . , jth, . . .

observations, respectively.

A pre-specified maximal number of analyses is not required. Rather, the early

philosophy of fully sequential methods involved sampling until the null hy-

pothesis was accepted or rejected.

A description and historical account of early fully sequential methods can

be found in the book by Ghosh and Sen [12].
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1.2.3 Group versus fully sequential analysis

In this section we briefly examine the group and fully sequential dichotomy

from the perspective of relative advantages and disadvantages. We follow the

comparison given in Bogowicz et al. [2].

Group sequential methods are simple and flexible [38]. Trials employing

these methods are less biased and shortened less often than fully sequential

trials [45]. Moreover, group sequential techniques are preferred to fully se-

quential methods when the estimation of treatment effects is important [45].

On the other hand, fully sequential methods are lauded for having smaller

expected sample sizes [31]. They are often of shorter duration, exposing fewer

patients to inferior treatments [31].

Both have relative disadvantages however. Group sequential analyses may

delay the potential for early stopping [42]. Unplanned interim analyses may

cause interpretation problems. Indeed, treatment differences may be exagger-

ated [38]. In contrast, because of the frequency of data analysis, fully sequen-

tial analysis has been rarely applied in medicine [38]. Moreover, adjustments

at the final analysis are more aggressive for fully than for group sequential

trials [31].
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Chapter 2

Sequential methods for
longitudinal data

2.1 Group sequential methods

The longitudinal group sequential literature can be classified according to

methodological approach. In particular, researchers have based their theo-

ries upon linear and linear-mixed models, marginal models and the GEE, and

nonparametric methods. In addition, there are some articles intended for gen-

eral applicability, encompassing two or more approaches. Finally, there are

articles with no particular restrictions on underlying models or methods.

In what follows, we will use both the simple notation introduced with the

linear and linear-mixed models, as well as the extended notation from the

section on repeated measures ANOVA.

2.1.1 Linear and linear-mixed models

The application of group sequential methods to longitudinal data was first

considered by Armitage et al. [1]. They develop a method for a simple linear-

mixed model, with autoregressive errors. Using the linear-mixed model nota-

tion,

y = ε (2.1)
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where they set

ε
(k)
iα = (1− φ)u(k)

α + φε
(k)
(i−1)α + ω

(k)
iα . (2.2)

The distributions of the u
(k)
α and ω

(k)
iα are N(µ, σ2

0) and N(0, σ2(1 − φ2)), re-

spectively. The u
(k)
α and ω

(k)
iα are assumed to be mutually independent. The

model matrix X is empty, since there are no covariates under consideration.

Armitage et al. [1] make a number of restrictive assumptions on the struc-

ture of the data: fixed and non-staggered entry, fixed follow-up times, analyses

at equally spaced intervals. Their test statistics are taken to be differences in

cumulative sums, between two treatment groups:

Sj =

n1∑
α=1

(
j∑
i=1

y
(1)
iα

)
−

n2∑
α=1

(
j∑
i=1

y
(2)
iα

)
. (2.3)

The authors show that the effect of sequentially testing correlated data at

equally spaced intervals is the same as that of testing uncorrelated data at

unequally spaced intervals. Hence theory for the latter is applied, with the

same nominal significance level used at each analysis.

The approach of Armitage et al. [1] was extended by Geary [11]. The

model given in equation (2.1) is extended by using errors given by

ε
(k)
iα =

{
u

(k)
α + w

(k)
iα , i = 1

u
(k)
α + φε

(k)
(i−1)α + ω

(k)
iα , i > 1

(2.4)

where the distributions of the u
(k)
α , ω

(k)
1α , and ω

(k)
iα (for i > 1) are N(µ, σ2

0),

N(0, σ2/(1 − κφ2)), and N(0, σ2), respectively. The u
(k)
α and ω

(k)
iα are again

assumed to be mutually independent.

Geary [11] placed similar constraints to Armitage et al. [1] on data struc-

ture. Test statistics are also similar, again based upon differences of cumulative

sums. Boundaries are calculated according to a multivariate normal numerical

integration procedure. The procedure requires the a priori specification of the

number of interim analyses, as well as the corresponding exit probabilities.

15



The ideas of both Armitage et al. [1] and Geary [11] were extended by Lee

and DeMets [27], in a slightly more general linear-mixed model framework.

The model is

y(k)
α = X(k)

α β
(k) + ε(k)

α (2.5)

where

ε(k)
α = D(k)

α U(k)
α + ω(k)

α . (2.6)

Here D
(k)
α is a p

(k)
α × r design matrix, U

(k)
α is distributed as N(0,G), and

ω
(k)
α is distributed as N(0,R

(k)
α ). The matrix R

(k)
α depends on k and α only

through its dimensionality, p
(k)
α ×p(k)

α . The matrix X
(k)
α and vector β(k) will be

specified below. This model is similar to, but different from the original linear-

mixed model formulation from section 1.1.1, in that ω
(k)
α is accounting for the

additional variation and possible correlation introduced by measurement error

and serial correlation components, respectively.

The approach of Lee and DeMets [27] allows for staggered entry, unequally

spaced measurement times, and some degree of missing data. Their procedure

requires the matrix X
(k)
α to be [

1 t
(k)
α

]
(2.7)

where t
(k)
α is the vector of measurement times corresponding to the measure-

ments on the unit indexed by k and α. Corresponding to this form of X
(k)
α is

the vector β(k) = (β
(k)
1 , β

(k)
2 )T . The test statistic at analysis j, for comparing

two treatment groups, is a normalized version of

β̂
(1)
2 (tj)− β̂(2)

2 (tj). (2.8)

The authors show that the joint distribution of their sequence of test statistics

is multivariate normal. They indicate that both the Slud-Wei and Lan-DeMets

methods can be used for boundary calculation.

Wu and Lan [47] define a linear model similar to that of Lee and DeMets

[27]. They omit, however, the component corresponding to the fixed effects
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β(k). They develop instead a group sequential method based upon the expected

response curve, essentially just the expected value, E[Y
(k)
α ]. A Lan-DeMets

α-spending function should be used, along with multivariate normal numerical

integration, to calculate boundaries. The procedure allows for staggered entry,

unequally spaced measurement times, missing data, and informative censor-

ing. Although the method is used to compare only two treatment groups, the

authors suggest that three or more groups could be compared using isotonic

regression.

The 1997 article by Jennison and Turnbull [20] provides a unified look at

the distribution of sequences of estimators. In particular, they consider max-

imum likelihood estimators derived from normal linear models, generalized

linear models, and the proportional hazards regression model. In each case,

the distribution of sequences of estimators is multivariate normal, with a spe-

cific covariance structure. The theory is exact for normal linear models and

asymptotic for generalized linear models.

Finally, the 2002 article by Cerutti et al. [4] extends the applicability of

the linear-mixed model approach to situations in which a comparison between

three or more treatment groups is the objective. The model is a special case

of the one used by Lee and DeMets [27], defined here in equations (2.5) and

(2.6). In particular, they take X
(k)
α to be[

1 t
(k)
α

]
(2.9)

with β(k) = (β
(k)
1 , β

(k)
2 )T . The matrix R

(k)
α is set to equal τ 2I. In other words,

the ω
(k)
α represent measurement error.

The hypotheses of interest are

H0k : β
(k)
2 = β

(1)
2 (2.10)

versus

HAk : β
(k)
2 6= β

(1)
2 (2.11)
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for k = 2, . . . , c, so that the overall hypothesis to be tested is

H0 :
c⋂

k=2

H0k (2.12)

versus

HA : not H0. (2.13)

The test statistics corresponding to each H0k at time tj are standardized ver-

sions of

β̂
(k)
2 (tj)− β̂(1)

2 (tj) (2.14)

as in Lee and DeMets [27]. Testing proceeds according to one of the following:

1. Test each hypothesis according to boundaries depending on the set H =

{H0k | k = 2, . . . , c}. Drop inferior treatments and remove the corre-

sponding rejected hypotheses from H. Update the value of the error

spending function. Continue testing until all H0k are rejected or time

runs out.

2. Test according to (1), stopping as soon as the first H0k is rejected. Apply

a treatment comparison method using some pairwise procedure.

The error spending function used in (1) and (2) is completely specified by

Cerutti et al. [4].

2.1.2 Marginal models and the GEE

The usage of GEE-based estimators in longitudinal group sequential trials was

first proposed by Wei et al. [46]. They assume a marginal model for Y
(k)
iα and

further specify that its distribution is from the exponential family. The GEE

are used to estimate the model parameters, β. The procedure solves

2∑
k=1

nk∑
α=1

(
∂µ

(k)
α

∂β

)T

(y(k)
α − µ(k)

α ) = 0 (2.15)
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where the working covariance matrix is taken to be the identity, I. Although

this is equivalent to the strong assumption that within-subject observations

are uncorrelated, estimates of β are still consistent [46]. The procedure allows

for staggered entry, unequally spaced measurement times, and of course, non-

normal response distributions.

The test statistic is the standardized estimate of the β coefficient cor-

responding to the indicator of treatment group. Boundaries are calculated

using multivariate normal numerical integration, while the exit probabilities

are determined using the Slud-Wei method. The authors hesitate to apply the

Lan-DeMets method because of difficulties in estimating total information.

In 1996, Gange and DeMets [10] showed that the Lan-DeMets method can

in fact be applied in a GEE-based longitudinal setting. They specify a marginal

model, relaxing the assumption of uncorrelated within-subject observations of

Wei et al. [46]. Moment estimators are used to estimate nuisance parameters,

while the GEE are solved to find β̂, where β = (β∗, θ)T and θ is the parameter

of interest. Testing at time tj is based on a Wald-type statistic:

θ̂(tj)√
V AR[θ̂(tj)]

. (2.16)

The sequence of T test statistics, each premultiplied by its corresponding in-

formation fraction, is shown to have an asymptotic multivariate normal distri-

bution. Numerical integration is used along with the Lan-DeMets method to

calculate boundaries. Gange and DeMets [10] note that essentially any mono-

tonic process mapping to [0, 1] is a valid surrogate for the information fraction.

However, following the original ideas of the Lan-DeMets method, they suggest

a data-based surrogate be used. It is not clear whether the procedure func-

tions, for example, if entry is staggered, or data is missing.

Lee et al. [29] use the GEE in a similar fashion to Gange and DeMets

[10]. They apply the Lan-DeMets method to sequences of score and Wald test

statistics. Both types of statistics are based upon a single parameter of interest.

Information at time tj is estimated as being the inverse of the variance of the
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test statistic at tj. This is divided by some test statistic-dependent estimate

of maximum information, to obtain the information fraction. The authors

note that the procedure can accommodate staggered entry, variable numbers

of repeated measurements, and unequally spaced measurement times.

2.1.3 Nonparametric methods

Lee and DeMets [28] were first to propose the application of nonparametric

group sequential methods in a longitudinal setting. Their procedure, which is

rank-based, is designed for the comparison of two treatment groups, under a

location-shift model. It allows for staggered entry, unequally spaced measure-

ment times, and missing data. The authors accommodate unequal numbers

of measurements by using a regression-like transformation. At the j th in-

terim analysis, this transformation maps each individual’s arbitrary number

of measurements into a length-j vector of statistics.

The authors define ranks Rjα to be the rank of the αth subject’s jth trans-

formed measurement, among all other measurements sharing the same j index.

Their test statistic is based upon linear rank statistics

Sn(tj) =

n(tj)∑
α=1

cαan,j(Rjα) (2.17)

for j = 1, . . . , T . The constants cα indicate treatment group (0 or 1), and

the an,j(·) are score functions. Dependence on time is emphasized by writing

n(tj), indicating that not all subjects are necessarily recruited by time tj. The

test statistic is

Sj =
Sn(tj)√
n(tj)

(2.18)

for j = 1, . . . , T . The authors show that the sequence of test statistics has an

asymptotic multivariate normal distribution. They note that both the Slud-

Wei and Lan-DeMets methods can be used for boundary calculation. They

conclude by noting that the procedure could be used to compare three or more

groups.
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A different nonparametric longitudinal group sequential approach is due to

Su and Lachin [41]. Their method, like that of Lee and DeMets [28], is based

on a location-shift model

F (1)(y) = F (2)(y −∆) (2.19)

where F (k)(·) is the distribution function for all measurements on a subject

from group k, and where y is assumed to be of length p for all subjects. The

authors develop a multivariate Hodges-Lehmann estimator for the shift pa-

rameter, ∆. The entries of ∆̂ are combined to form some scalar aggregate

estimate, which, in standardized form, serves as the test statistic. The se-

quence of test statistics is shown to be asymptotically multivariate normal.

Boundaries are calculated via the Slud-Wei method.

Lachin [24] proposed another rank-based longitudinal group sequential

method, with some similarities to the method of Su and Lachin [41]. An

estimate of

θi = P{Y (1)
iα ≤ Y

(2)
iα } − P{Y

(2)
iα ≤ Y

(1)
iα } (2.20)

is obtained from a transformation of the rank statistic, for i = 1, . . . , p, and

arbitrary α. The vector θ = (θ1, θ2, . . . , θp)
T is estimated at every interim

analysis time. Various test statistics are proposed: a p-degrees of freedom

chi-square test, a 1-degree of freedom test of association, and a 1-degree of

freedom test of stochastic ordering. The actual group sequential procedure

is developed using the test of association. The asymptotic distribution of the

sequence of test statistics is multivariate normal, as usual. Lachin [24] suggests

that the Lan-DeMets method may be preferred over the Slud-Wei method, for

boundary calculation.

Lachin et al. [25] developed a nonparametric chi-square testing framework

for the comparison of two treatment groups. The authors assume that mea-

surements occur at fixed time points, though entry may be staggered. The

test is based upon a multivariate Wilcoxon test, using a p-degrees of freedom

21



chi-square test statistic. Numerical integration and simulation are used to cal-

culate boundaries, with exit probabilities specified by either of the Slud-Wei

or Lan-DeMets methods.

2.1.4 General approaches and other methods

In this section, we briefly discuss additional longitudinal group sequential ar-

ticles that are intended for general applicability.

Scharfstein et al. [37] developed an “information-based” monitoring pro-

cedure with a very broad range of application. Providing that the parameter

of interest is unique, and can be efficiently estimated, the procedure applies to

any type of model in any type of group sequential study. The “information-

based” moniker results from basing design considerations upon maximum in-

formation. The authors employ normal numerical integration along with the

Lan-DeMets method for boundary calculation. They note that their procedure

could eventually be extended to enable testing of multiple parameters.

Another information-based monitoring procedure was developed by Scharf-

stein and Tsiatis [36]. Similarly to Scharfstein et al. [37], the procedure ap-

plies to any type of model in any type of group sequential study, given that a

unique parameter of interest can be efficiently estimated. The authors describe

a technique, using the bootstrap, to determine whether or not a midterm trial

redesign is warranted. They emphasize that maintaining blinding is possible

in any redesign.

Galbraith and Marschner [9] proposed a longitudinal group sequential pro-

cedure that forgoes the specification of mean and covariance structures. In-

stead, the mean and covariance matrix are estimated, via maximum likeli-

hood, irrespective of covariate values. They are used to form Wald-type test

statistics. The sequence of test statistics has an approximate joint multivari-

ate normal distribution. This is exploited for boundary calculation using, for

instance, the Lan-DeMets method. The authors suggest that the greatest ef-

ficiency gains from incorporating group sequential methods in a longitudinal
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trial can be had by setting T = 2, with the first analysis taking place in the

first half of the trial.

A longitudinal group sequential method based on summary statistics was

established by Kittelson et al. [23]. The method is designed to compare the

means of two treatment groups. Inference at time tj is based on a linear

combination of

µ(1)(tj)− µ(2)(tj) (2.21)

where the length of the resulting vector may be less than p. The µ(k) are esti-

mated via maximum likelihood. It is not clear exactly what the test statistic

is, or if a particular boundaries method should be used. The authors note that

their method should be used for trials with fixed measurement times.

Troendle et al. [43] proposed a new type of group sequential analysis for

longitudinal trials. The method allows for the testing of different null hypothe-

ses at each analysis time. Moreover, different parameters may be tested at

different times. The authors assume that treatment effects are non-transient,

in the sense that if a treatment difference exists at one analysis time, a differ-

ence in favour of the same treatment will exist at subsequent analyses. They

adopt a so-called “ordered multiple hypothesis testing framework.” The Bon-

ferroni correction is presented as an alternative to more formal error spending

methods.

2.2 Fully sequential methods

We have thus far reviewed the theoretical papers concerning the application

of sequential analysis to longitudinal data. It is our understanding that fully

sequential methods have not yet been applied in this particular setting. Al-

though there are some disadvantages to fully sequential procedures, as dis-

cussed in section 1.2.3, we believe that these contra are outweighed by the

possibility of earlier stopping. Indeed, stopping a trial early minimizes overall
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exposure to control or inferior treatments. With this in mind, we set out to

ascertain the feasibility of a longitudinal fully sequential procedure.

We began by studying existing longitudinal group sequential methods, to

find a suitable basis for a fully sequential procedure. Given the complexity

of longitudinal data, we restricted our attention to nonparametric methods.

After excluding methods that were deemed to be too complex, we were left with

the approach of Lee and DeMets [28]. Their rank-based method, which was

described in section 2.1.3, is for the comparison of two treatment groups. We

thus had two problems: the task of extending the procedure for the comparison

of multiple treatment groups; and the conversion of the procedure from group

to fully sequential.

On the recommendations of the article by Lee and DeMets [28], we retrieved

the text by Puri and Sen [34] to examine how the multiple treatment group

comparison might be done. Although they consider the comparison of multiple

groups using ranks, it was not obvious how we might use their theory to form a

single test statistic. Moreover, a sequence of such test statistics would possess

a complex covariance structure, on account of dependency among ranks. The

resulting difficulties in the calculation of critical values effectively render this

approach unfeasible in the fully sequential setting.

Abandoning the idea of extending the procedure of Lee and DeMets [28],

we decided to focus on another type of sequential testing developed by Gom-

bay [14]. In that article, she develops continuous versions of the Pocock and

O’Brien-Fleming group sequential monitoring procedures, applying them to

the problem of detecting change within a single sample, using sequential ranks.

The two procedures have since been applied in a variety of parametric and

nonparametric settings: in Gombay [15–17], and in Gombay and Serban [19].

The following chapters examine the application of the techniques of Gom-

bay [14] to the longitudinal setting. We use sequential ranks along with test

statistics in the form of partial sums. Sequential ranks are similar to ranks

obtained by the usual method, and will be explained in greater detail in Chap-
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ter 3. Their main advantage is that they are independent, while regular ranks

are not. One might legitimately wonder why we use partial sum test statistics

rather than an average. In fact, using averages would require the monitoring of

pairwise differences, yielding the same sort of dependency problems as would

have arisen from using regular ranks.

In addition, we develop an exact version of our procedures by applying

theory on random walks from Csáki [5], as applied in Gombay [13].
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Chapter 3

The fully sequential
nonparametric procedure

In this section we develop a new nonparametric fully sequential procedure

for the analysis of longitudinal clinical trial data. We begin with some basic

notation and definitions, and then develop large- and small-sample versions of

the procedure.

3.1 Preliminaries

Suppose that we have longitudinal data on individuals in c treatment groups.

Each group has a maximum sample size of nk, for k = 1, . . . , c. Each subject

has a maximum of p repeated, or longitudinal, measurements. We denote

these measurements by y
(k)
iα : the ith measurement on the αth subject in the kth

group, where i = 1, . . . , p, k = 1, . . . , c, and α = 1, . . . , nk. We place a single

subject’s observations in a vector y
(k)
α = (y

(k)
1α , y

(k)
2α , . . . , y

(k)
pα )T .

Assume that y
(k)
α is a randomly sampled realization of Y

(k)
α . We define F (k)

to be the distribution function of Y
(k)
α , for k = 1, . . . , c and arbitrary α. We

are interested in testing

H0 : F (1) = F (2) = . . . = F (c) = F (3.1)

versus

HA : there exist k, l ∈ 1, . . . , c such that F (k) 6= F (l) (3.2)
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where F is continuous, but unknown. Under the null hypothesis, for fixed i,

{Y (k)
iα | k = 1, . . . , c, α = 1, . . . , nk} (3.3)

are independent and identically distributed (i.i.d.), with marginal distribution

function F
(k)
i = Fi.

3.1.1 Sequential ranks and their properties

As each new observation arrives, its sequential rank may be computed among

all Y
(k)
iα for k = 1, . . . , c, α = 1, . . . , nk, and fixed i, that have already been

observed. We define, for fixed i,

R
(k)
iα = 1 + #{Y (j)

iβ | Y
(j)
iβ ≤ Y

(k)
iα , Y

(j)
iβ has already

been observed, not including Y
(k)
iα itself,

for j = 1, . . . , c and β = 1, . . . , nj} (3.4)

to be the sequential rank for Y
(k)
iα , where i = 1, . . . , p, k = 1, . . . , c, and

α = 1, . . . , nk. Note that the sequential rank for Y
(k)
iα does not change as

additional observations are received.

We next consider some of the basic properties of sequential ranks, first

established by Parent [32]. Before doing so, we define the following quantity:

m
(k)
iα = 1 + #{Y (j)

iβ | Y
(j)
iβ has been observed

before, but not including, Y
(k)
iα ; for

j = 1, . . . , c and β = 1, . . . , nj}. (3.5)

Now suppose we are determining the ranked order of all m
(k)
iα observations that

have been observed up to and including Y
(k)
iα . Under H0 and for fixed i, the

Y
(k)
iα are i.i.d., so that any ordered permutation of those m

(k)
iα observations is

equally likely. That is,

P{R(k)
iα = j | j ≤ m

(k)
iα } =

1

m
(k)
iα

. (3.6)
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As R
(k)
iα takes values in {1, 2, . . . ,m(k)

iα }, the above relation defines the prob-

ability mass function of a discrete uniform random variable. The mean and

variance of R
(k)
iα are

E[R
(k)
iα ] =

m
(k)
iα + 1

2
(3.7)

and

V AR[R
(k)
iα ] =

(m
(k)
iα )2 − 1

12
(3.8)

respectively. It follows that

Z
(k)
iα =

R
(k)
iα −

m
(k)
iα +1

2√
(m

(k)
iα )2−1

12

(3.9)

has a mean of zero and a variance of one.

Next, we will examine why it is that sequential ranks are independent.

Consider the joint distribution of any two sequential ranks from those m
(k)
iα

observations that have been observed before Y
(k)
iα . Suppose our two sequential

ranks are R
(k)
iα and R

(l)
iβ , and without loss of generality assume that m

(l)
iβ < m

(k)
iα .

Now, because the ranking processes for R
(k)
iα and R

(l)
iβ are done separately, it

follows that they take values in {1, 2, . . . ,m(k)
iα } and {1, 2, . . . ,m(l)

iβ }, respec-

tively. Thus there are a total of m
(k)
iα ×m

(l)
iβ possibilities. Once again, under

H0 all permutations are equally likely, so that

P{R(k)
iα = j, R

(l)
iβ = h | j ≤ m

(k)
iα , h ≤ m

(l)
iβ } =

1

m
(k)
iα m

(l)
iβ

. (3.10)

On the other hand, we have that

P{R(k)
iα = j | j ≤ m

(k)
iα }P{R

(l)
iβ = h | h ≤ m

(l)
iβ } =

1

m
(k)
iα

× 1

m
(l)
iβ

(3.11)

verifying the independence condition for any two sequential ranks. This can

be extended to verify the independence conditions for any three ranks, four
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ranks, and so on. Indeed, mathematical induction can be used to prove that

the sequential ranks are independent.

Examples of sequential and regular ranking, as well as illustrations of their

respective independence and dependence, are given in Appendix A.

3.2 Large-sample versions

3.2.1 The test statistic

Assume that at time t, there are n(t) subjects in the trial on whom all p

repeated measures have been observed. This n(t) can be broken down into

group totals, nk(t), for k = 1, . . . , c, where n(t) = n1(t) + n2(t) + . . . + nc(t).

Each subject has an associated vector of repeated measurements, with length

equal to p.

Definition 3.2.1 A subject enrolled in the trial at time t is called complete

if all p repeated measurements on that subject have been observed by t. Subjects

are otherwise said to be incomplete.

Note that the actual number of subjects enrolled in the trial at time t may be

larger than n(t), as there are potentially subjects on whom we have less than

p repeated measures. Data on these incomplete subjects is still used, how-

ever, for the calculation of sequential ranks and for the estimation of variance

components, used in the standardization of statistics on complete subjects.

The within-subject correlation, inherent to longitudinal data, implies that

S(k)
α =

p∑
i=1

Z
(k)
iα (3.12)

will have dependent components. On the other hand, the quantities S
(k)
α are

independent for k = 1, . . . , c and α = 1, . . . , nk(t), by the independence of

sequential ranks. It seems very natural, then, to form test statistics based on

these quantities. Before doing so, however, we need to standardize them.
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Based on the available data at time t, we need to estimate

V AR[S(k)
α ] = V AR[

p∑
i=1

Z
(k)
iα ]

=

p∑
i=1

p∑
j=1

COV [Z
(k)
iα , Z

(k)
jα ]

(3.13)

to standardize the S
(k)
α . Simple empirical estimates of COV [Z

(k)
iα , Z

(k)
jα ], for

i, j = 1, . . . , p are given by

qi,j =
1

n− 1

c∑
k=1

nk∑
α=1

(Z
(k)
iα − Z̄i)(Z

(k)
jα − Z̄j) (3.14)

for n = n1 + n2 + . . .+ nc, and where

Z̄i =
1

n

c∑
k=1

nk∑
α=1

Z
(k)
iα . (3.15)

Replacing COV [Z
(k)
iα , Z

(k)
jα ] on the right hand side of equation (3.13) with qi,j,

and denoting the estimator of V AR[S
(k)
α ] by σ̂(t)2, we have that

σ̂(t)2 =

p∑
i=1

p∑
j=1

qi,j. (3.16)

Note that n from equations (3.14) and (3.15) depends upon t in the sense

that qi,j may be calculated at a time when patients are still being recruited.

However, writing n(t) would imply that only observations from complete sub-

jects are used, while better estimates could surely be obtained by pooling all

available data. This dependence on t is made explicit only on the left hand

side of equation (3.16).

The estimator defined in equation (3.16) has a number of interesting prop-

erties. First, as

E[qi,j] = COV [Z
(k)
iα , Z

(k)
jα ] (3.17)
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and as expectation is a linear operator, it follows that

E[σ̂(t)2] = E[

p∑
i=1

p∑
j=1

qi,j]

=

p∑
i=1

p∑
j=1

E[qi,j]

=

p∑
i=1

p∑
j=1

COV [Z
(k)
iα , Z

(k)
jα ]

= σ2. (3.18)

In other words, σ̂(t)2 is an unbiased estimator of σ2 = V AR[S
(k)
α ]. It is also

the case that σ̂(t)2 is consistent. To see this, note that the independence

of sequential ranks, for fixed i, ensures that qi,j is a consistent estimator of

COV [Z
(k)
iα , Z

(k)
jα ] [22]. The consistency of σ̂(t)2 follows since the sum of finitely

many consistent estimators is a consistent estimator of the corresponding sum

of parameters [3].

Finally, the quantities

S(k)(t) =

nk(t)∑
α=1

S
(k)
α

σ̂(t)
(3.19)

each have nk(t) standardized and independent components. The number of

S
(k)
α , for k = 1, . . . , c and α = 1, . . . , nk(t), and the value of σ̂(t) are to be

updated each time the data is analyzed.

3.2.2 Monitoring

We consider two different monitoring procedures, continuous versions of the

group sequential monitoring procedures due to Pocock [33] and O’Brien and

Fleming [30], that were developed by Gombay [14]. The procedures, which we

call Test 1 and Test 2, will be explained below. Each test tests the null and

alternative hypotheses given by equations (3.1) and (3.2), respectively.

First we consider the special case of c = 2, where there are two groups to

be compared:
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Test 1 - Pocock. Stop sampling and reject the null hypothesis if∣∣∣∣∣ S(1)(t)√
n1(t)

∣∣∣∣∣ > C(α, n1) (3.20)

where n1(t) is the number of complete subjects enrolled at time t, that re-

ceived treatment 1. If equation (3.20) does not hold, sampling and testing

should continue. The bound C(α, n1) is a critical value depending upon the

overall significance level α, and the number of subjects receiving treatment 1,

n1. This test is two-sided.

Test 2 - O’Brien-Fleming. Stop sampling and reject the null hypothesis if∣∣∣∣S(1)(t)
√
n1

∣∣∣∣ > C(α) (3.21)

holds. The number n1 is the fixed total number of subjects receiving treatment

1. The bound C(α) depends upon the overall significance level α. Sampling

continues if equation (3.21) does not hold. This test is also two-sided.

Notice that we only monitor one of the groups; without loss of generality,

group 1. This may be justified as follows. Suppose that the test statistic for

group 1 is not significant. This implies that the Z
(1)
iα have a mean of zero, and

further, for fixed i, that the Y
(k)
iα are i.i.d. Hence,

P{Y (1)
iα ≥ Y

(2)
iβ } = P{Y (1)

iα ≤ Y
(2)
iβ } =

1

2
. (3.22)

On the other hand, the above relation implies that the Z
(2)
iα have a mean of

zero, and hence that the test statistic for group 2 is a mean zero process. Here

we assume that the distribution of Y
(k)
α is symmetric.

Now consider the comparison of three treatment groups, in other words

setting c = 3:

Test 1 - Pocock. Stop sampling and reject the null hypothesis if either∣∣∣∣∣ S(1)(t)√
n1(t)

∣∣∣∣∣ > C(α∗, n1) (3.23)
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or ∣∣∣∣∣ S(2)(t)√
n2(t)

∣∣∣∣∣ > C(α∗, n2) (3.24)

where n1(t) and n2(t) are the numbers of complete subjects enrolled at time

t, that received treatments 1 and 2, respectively. If neither equation (3.23)

nor equation (3.24) holds, sampling and testing should continue. The bounds

C(α∗, n1) and C(α∗, n2) are critical values depending upon the overall signif-

icance level α through α∗, and the number of subjects receiving treatments 1

and 2, n1 and n2, respectively. This test is two-sided.

Test 2 - O’Brien-Fleming. Stop sampling and reject the null hypothesis if

either ∣∣∣∣S(1)(t)
√
n1

∣∣∣∣ > C(α∗) (3.25)

or ∣∣∣∣S(2)(t)
√
n2

∣∣∣∣ > C(α∗) (3.26)

holds. The numbers n1 and n2 are the fixed total numbers of subjects receiving

treatments 1 and 2, respectively. The bound C(α∗) depends upon the overall

significance level α through α∗. Sampling continues if neither equation (3.25)

nor equation (3.26) holds. This test is also two-sided.

Note that here we only monitor two out of the three groups. Without loss

of generality, we monitor the first and second. We claim that if these two

groups yield insignificant test statistics, a Type II error will not be made by

not rejecting H0. We justify this as follows. Suppose that the test statistic for

group 1 is not significant, and is hence a zero mean process, under H0. Then,

assuming that n1 = n2 = n3,

P{Y (1)
iα ≥ Y

(l)
iβ | m

(l)
iβ < m

(1)
iα } =

1

2
P{Y (1)

iα ≥ Y
(2)
iβ }+

1

2
P{Y (1)

iα ≥ Y
(3)
iβ }

(3.27)
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and

P{Y (1)
iα ≤ Y

(l)
iβ | m

(l)
iβ < m

(1)
iα } =

1

2
P{Y (1)

iα ≤ Y
(2)
iβ }+

1

2
P{Y (1)

iα ≤ Y
(3)
iβ }

(3.28)

since if Y
(1)
iα is larger than some other observation Y

(l)
iβ , it is equally likely that

that observation comes from either group 2 or group 3. Then, noting that

under H0 the relation from equation (3.22) holds for any two of groups 1, 2,

and 3, we have that:

1

2
P{Y (1)

iα ≥ Y
(2)
iβ }+

1

2
P{Y (1)

iα ≥ Y
(3)
iβ } =

1

2
(3.29)

1

2
P{Y (1)

iα ≤ Y
(2)
iβ }+

1

2
P{Y (1)

iα ≤ Y
(3)
iβ } =

1

2
. (3.30)

Similarly, if the test statistic for group 2 is insignificant, then under H0, it is

also a mean zero process implying that:

1

2
P{Y (2)

iα ≥ Y
(1)
iβ }+

1

2
P{Y (2)

iα ≥ Y
(3)
iβ } =

1

2
(3.31)

1

2
P{Y (2)

iα ≤ Y
(1)
iβ }+

1

2
P{Y (2)

iα ≤ Y
(3)
iβ } =

1

2
. (3.32)

Adding and rearranging equations (3.30) and (3.32), and equations (3.29) and

(3.31), yields

1

2
P{Y (1)

iα ≤ Y
(3)
iβ }+

1

2
P{Y (2)

iα ≤ Y
(3)
iβ }

= 1− 1

2
P{Y (1)

iα ≤ Y
(2)
iβ } −

1

2
P{Y (2)

iα ≤ Y
(1)
iβ } (3.33)

and

1

2
P{Y (2)

iα ≥ Y
(3)
iβ }+

1

2
P{Y (1)

iα ≥ Y
(3)
iβ }

= 1− 1

2
P{Y (2)

iα ≥ Y
(1)
iβ } −

1

2
P{Y (1)

iα ≥ Y
(2)
iβ } (3.34)

respectively. Noticing that the right-hand-sides of equations (3.33) and (3.34)

are equivalent, we have that,

1

2
P{Y (1)

iα ≤ Y
(3)
iβ }+

1

2
P{Y (2)

iα ≤ Y
(3)
iβ }

=
1

2
P{Y (2)

iα ≥ Y
(3)
iβ }+

1

2
P{Y (1)

iα ≥ Y
(3)
iβ } (3.35)
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which implies that the test statistic for group 3 is also a mean zero process.

Note that this proof could be modified for unequal group sizes, relaxing the

assumption that n1 = n2 = n3. It can also be shown that if c populations are

to be compared, then it is sufficient to monitor c−1 of them, via mathematical

induction. In light of this, and the fact that the test statistics for each group

are independent partial sum processes, we have that

(1− α) = (1− α∗)c−1 (3.36)

where α is the overall error rate, and α∗ is the nominal significance level. This

α∗ can be calculated for any given α.

The basic idea behind the monitoring procedures of Test 1 and Test 2 is

that if the null hypothesis is not true, in that locations differ among treatment

groups, we should expect to see

E[R
(k)
iα ] >

m
(k)
iα + 1

2
or E[R

(k)
iα ] <

m
(k)
iα + 1

2
(3.37)

for at least one k ∈ {1, 2, . . . , c}. In turn, that would lead to large values of

Z
(k)
iα , and hence the S

(k)
α and S(k)(t).

Although both Test 1 and Test 2 are fully sequential, the data is not

necessarily analyzed after each new observation is received. Rather, for the

observation received at time t, the number of complete subjects n(t) is calcu-

lated. The data are then analyzed if this total number of complete subjects

is larger (by one) than it was at the last analysis time. Otherwise, sampling

continues.

3.2.3 Boundary calculation

The bounds used for both Test 1 and Test 2 are based on large sample ap-

proximations. The theory presented here is from Gombay [14].

To be consistent with notation from previous chapters, in particular Section

1.2.1, we write S
(k)
j to be the value of the test statistic for group k at time tj,
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i.e. S(k)(tj). To ease the notation, we omit the superscript corresponding to

treatment group, so that the quantity of interest is Sj. Then,

lim
N→∞

P{a(N) max
1≤j≤N

j−1/2|Sj| − b(N) ≤ y} = exp(−2e−y) (3.38)

where N is the number of subjects in any given group (i.e. nk), a(N) =

(2 log logN)1/2, and b(N) = 2 log logN + 1
2

log log logN − 1
2

log π. The crit-

ical values for Test 1 can be found according to equation (3.38). However,

Gombay [18] notes that better approximations are available, citing the work

of Vostrikova [44]. Select Vostrikova critical values for Test 1 can be found in

Tables 3.1 and 3.2.

Table 3.1: Critical values C(α, n1) for Test 1 with c = 2.

n1 α = 0.01 α = 0.05 α = 0.10
10 3.41 2.84 2.55
15 3.45 2.90 2.61
20 3.48 2.93 2.65
50 3.56 3.02 2.74
100 3.60 3.07 2.80
150 3.63 3.10 2.83
200 3.64 3.12 2.85
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Table 3.2: Critical values C(α∗, n1) for Test 1 with c = 3 and overall error rate
α.

n1 α = 0.01 α = 0.05 α = 0.10
10 3.62 3.10 2.83
15 3.66 3.15 2.88
20 3.69 3.18 2.92
50 3.76 3.26 3.01
100 3.80 3.31 3.06
150 3.82 3.33 3.09
200 3.84 3.35 3.11

Now, suppose W (t) is a standard Brownian motion. That is, W (0) = 0,

{W (t), t ≥ 0} has stationary and independent increments, and for all t > 0,

W (t) is N(0, t) [35]. Then, for Test 2, the critical values C(α) and C(α∗) are

found according to the distribution of

sup
0≤u≤1

|W (u)|. (3.39)

Select critical values C(α) and C(α∗) are presented in Table 3.3.

Table 3.3: Critical values C(α) for Test 2 with c = 2, and C(α∗) with c = 3
and overall error rate α.

α = 0.01 α = 0.05 α = 0.10
C(α) 2.80 2.24 1.96
C(α∗) 3.00 2.49 2.23

Formulas for calculating the Test 1 and Test 2 boundaries are given in

Gombay [17]. According to Gombay [16], Test 2 has higher power when there

are small differences between the population distributions. On the other hand,

Test 1 has shorter stopping times if the differences are large.
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3.3 Small-sample version

3.3.1 The test statistic

Recall that at time t, we assume that a total of n(t) complete subjects are

enrolled in the trial, where n(t) = n1(t) + n2(t) + . . . + nc(t). Each of these

patients has all p repeated measurements observed.

We have previously considered sums

S(k)
α =

p∑
i=1

Z
(k)
iα (3.40)

for k = 1, . . . , c and α = 1, . . . , nk(t), where Z
(k)
iα was the standardized sequen-

tial rank for the measurement indexed by i, k, and α. Now, we define the

following quantity,

sgn(S(k)
α ) =


1 , if S

(k)
α > 0

0 , if S
(k)
α = 0

−1 , if S
(k)
α < 0

(3.41)

using the so-called sign function. Under the null hypothesis, the sgn(S
(k)
α ) are

i.i.d for α = 1, . . . , nk(t) and for fixed k = 1, . . . , c, with

P{sgn(S(k)
α ) = 1} = P{sgn(S(k)

α ) = −1} =
1

2
. (3.42)

Thus the sequences

S(k)(t) =

nk(t)∑
α=1

sgn(S(k)
α ) (3.43)

for k = 1, . . . , c, over time, are simple symmetric random walks.

3.3.2 Monitoring

We consider a single fully sequential monitoring procedure, which we call Test

3. Again, for this procedure the data is analyzed only after a newly received

observation makes a subject complete.
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First we consider the special case of c = 2. As with the large-sample ver-

sion of Section 3.2.2, we only need to monitor one of the two groups. Without

loss of generality, monitor group 1.

Test 3. Stop sampling and reject the null hypothesis if∣∣S(1)(t)
∣∣ ≥ C(α, n1) (3.44)

holds. The bound C(α, n1) depends upon the overall significance level α and

the fixed total number of subjects receiving treatment 1, n1. Sampling con-

tinues if equation (3.44) does not hold. This test is two-sided.

Next we consider the comparison of three groups, that is where c = 3. We

only need to monitor two of the groups, without loss of generality, groups 1

and 2. We again employ the relation

(1− α) = (1− α∗)c−1. (3.45)

with c = 3.

Test 3. Stop sampling and reject the null hypothesis if either∣∣S(1)(t)
∣∣ ≥ C(α∗, n1) (3.46)

or ∣∣S(2)(t)
∣∣ ≥ C(α∗, n2) (3.47)

holds. The bounds C(α∗, n1) and C(α∗, n2) depend upon the overall signif-

icance level α through α∗, and the fixed total numbers of subjects receiving

treatments 1 and 2, n1 and n2. Sampling continues if neither equation (3.46)

nor equation (3.47) holds. This test is two-sided.
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3.3.3 Boundary calculation

The bounds for Test 3 are calculated using theory on simple random walks

found in Csáki [5], as it was applied in Gombay [13]. In contrast to the

critical values for Test 1 and Test 2, the bounds here are exact, not asymptotic

approximations.

Similarly to the boundary calculation for the large-sample version, we write

Sj to be the value of the test statistic at tj. The superscript corresponding

to treatment group is once again omitted. First we define the following two

quantities

MN = max
0≤j≤N

Sj (3.48)

mN = min
0≤j≤N

Sj (3.49)

where N is the number of patients in any given group (i.e. nk). Then, for

xj = jπ
2a

,

P{−a < mN < MN < a}

=
1

a

2a−1∑
j=0

(cosxj)
N sin axj

1 + cos xj
sinxj

(
1− (−1)j

2

)
(3.50)

where a > 1 is an integer. Select critical values for Test 3 can be found in

Tables 3.4 and 3.5. Note that as a is restricted to the set of integers, the

bounds might not correspond exactly to the desired α. For this reason, we

include the exact α in brackets after each bound, within both tables.
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Table 3.4: Critical values a = C(α, n1) for Test 3 with c = 2. The exact value
for α is given in brackets after each critical value.

n1 α = 0.01 α = 0.05 α = 0.10
10 8 (0.0234) 7 (0.0430) 6 (0.1309)
15 10 (0.0148) 9 (0.0425) 8 (0.0703)
20 12 (0.0144) 10 (0.0532) 9 (0.0828)
30 15 (0.0105) 12 (0.0589) 11 (0.0856)
50 20 (0.0092) 16 (0.0482) 14 (0.0978)
100 28 (0.0102) 22 (0.0562) 20 (0.0921)
150 34 (0.0110) 27 (0.0543) 24 (0.1009)
200 39 (0.0114) 32 (0.0475) 28 (0.0960)

Table 3.5: Critical values a = C(α∗, n1) for Test 3 with c = 3 and overall error
rate α. The exact value for α is given in brackets after each critical value.

n1 α = 0.01 α = 0.05 α = 0.10
10 9 (0.0078) 8 (0.0463) 7 (0.0841)
15 12 (0.0039) 10 (0.0293) 9 (0.0833)
20 13 (0.0103) 11 (0.0467) 10 (0.1036)
30 16 (0.0133) 14 (0.0422) 12 (0.1143)
50 21 (0.0104) 18 (0.0434) 16 (0.0941)
100 30 (0.0106) 25 (0.0476) 22 (0.1092)
150 37 (0.0096) 31 (0.0440) 27 (0.1057)
200 43 (0.0091) 35 (0.0518) 32 (0.0928)
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Chapter 4

Simulation

4.1 Preliminaries

This simulation study examines the performance of Test 1, Test 2, and Test

3 in the context of comparing either two or three treatment groups. Each

subject from each group is assumed to have a maximum of three repeated

measurements. In other words, we set c = 2 or 3 and p = 3. We assume that

there are equal numbers of subjects from each group: n1 = n2, or n1 = n2 = n3.

Data is simulated in Fortran using the IMSL Numerical Libraries. To

induce correlation among repeated observations, we use the following moving

average (MA) time series model, for its simplicity:

Y
(k)
iα = w

(k)
iα + θ1w

(k)
(i−1)α + θ2w

(k)
(i−2)α. (4.1)

The w
(k)
jα are simulated independent random variates, for j = −1, 0, . . . , 3, k =

1, 2 or k = 1, . . . , 3, and α = 1, . . . , nk, that are either normally distributed,

with mean µk and variance 1, or exponentially distributed with mean 1/λk. In

the normal case, we set µ2 = 0 or µ2 = µ3 = 0, while µ1 is varied over the set

{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. For the exponential case, we set

λ2 = 1 or λ2 = λ3 = 1, while 1/λ1 is varied over the set {1.00, 1.25, 1.50, 1.75,

2.00, 2.25, 2.50, 2.75, 3.00}.

Within-subject correlation arises when we restrict θ1 and θ2 to be nonzero.

In our case, we choose θ1 = θ2 = 1
2
. Then, omitting the k and α indices for
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brevity,

COV [yi+u, yi] = COV [wi+u +
1

2
wi+u−1 +

1

2
wi+u−2, wi +

1

2
wi−1 +

1

2
wi−2]

= COV [wi+uwi] +
1

2
COV [wi+uwi−1] +

1

2
COV [wi+uwi−2]

+
1

2
COV [wi+u−1wi] +

1

4
COV [wi+u−1wi−1]

+
1

4
COV [wi+u−1wi−2] +

1

2
COV [wi+u−2wi]

+
1

4
COV [wi+u−2wi−1] +

1

4
COV [wi+u−2wi−2].

(4.2)

Recalling that for i 6= j, COV [wi, wj] = 0, and that COV [wi, wi] = V AR[wi],

we have:

u = 0 ⇒ COV [yi , yi] = V AR[wi] +
1

4
V AR[wi−1] +

1

4
V AR[wi−2]

u = 1 ⇒ COV [yi+1, yi] =
1

2
V AR[wi] +

1

4
V AR[wi−1]

u = 2 ⇒ COV [yi+2, yi] =
1

2
V AR[wi].

As the variance of wi does not change, for various i, we may rewrite the above

as:

COV [yi , yi] =
3

2
V AR[wi]

COV [yi+1, yi] =
3

4
V AR[wi]

COV [yi+2, yi] =
1

2
V AR[wi].

Now, using

CORR[yi+u, yi] =
COV [yi+u, yi]√

V AR[yi+u]V AR[yi]
(4.3)

and writing ρ(u) = CORR[yi+u, yi], we have

ρ(u) =


1 , u = 0
1
2

, |u| = 1
1
3

, |u| = 2
(4.4)
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where u is the lag value. Values of ρ(u) for |u| ≥ 3 are not relevant for this

study, as setting p = 3 implies that repeated measurements can be a maximum

of two time points apart. In any case, ρ(u) = 0 for |u| ≥ 3.

For computational purposes, it is also necessary to simulate the order in

which the data are received. We simulate the orders all at once, in a process

that is independent from the data generation. This is done for two reasons:

first, it guarantees an equal distribution of subjects across groups; and second,

the corresponding code was thought to be less computationally expensive than

alternative algorithms.

Given that we have three measurements on n subjects, we must gener-

ate a random permutation of the numbers {1, 2, . . . , 3n}, where the numbers

1, 2, . . . , n represent the first measurements on the n subjects, n + 1, n +

2, . . . , 2n represent the second measurements, and so on. We must ensure

however that, for example, 1 is not observed after n + 1 or 2n + 1, as this

would be nonsensical. Denote o to be the 3n × 1 ordering vector. Initially,

this vector is empty. The simulation algorithm proceeds as follows, where, to

begin with H = {1, 2, . . . , n}.

1. Randomly choose an integer h from H.

2. Place h, n + h, and 2n + h in that order, in the next three available

entries of o (the first three entries if o is empty).

3. Remove h from H.

4. Repeat steps 1-3 until H is empty.

Then, the first entry of o is taken to be the observation number corresponding

to the first observation received, the second entry is taken to be the number

corresponding to the second observation, and so on. The group index k is

accounted for in the structure of our data storage. In particular, the first n1

subjects out of 1, . . . , n belong to group 1, the next n2 subjects belong to group

2, and so on.

44



We define empirical power (P) to be the relative frequency of null hypoth-

esis rejection, for a single set of replicates, and given a treatment difference.

When there is no treatment difference, empirical power is equivalent to the

estimate of empirical Type I error, α̂. The average stopping time (AVST) is

taken to be the average of either the number of complete observations that are

observed at the time of rejection (for replicates that reject the null hypothesis),

or the maximal total sample size, within a single set of replicates.

Finally, the results of each simulation are based upon 104 replications.

4.2 Comparing c=2 groups

4.2.1 Algorithms

Test 1

1. Generate data according to equation (4.1) for specified n1 = n2, and µ1

or λ1, depending on the response distribution.

2. Generate the hypothetical orders of observation.

3. Calculate n test statistics using the complete subjects from group 1;

treat the data as if it arrives according to the ordering generated in step

(2).

4. Compare the test statistics from step (3) to a critical value, according

to equation (3.20) and the values of n1 and α.

5. Record the first observation for which equation (3.20) is satisfied, nothing

otherwise.

6. Repeat steps (1)− (5) 9999 additional times.

7. Calculate and record α̂ (for µ1 = 0, λ1 = 1) or empirical power (for

µ1 6= 0, λ1 6= 1), along with the average stopping time.

Test 2
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1. Generate data according to equation (4.1) for specified n1 = n2, and µ1

or λ1, depending on the response distribution.

2. Generate the hypothetical orders of observation.

3. Calculate n test statistics using the complete subjects from group 1;

treat the data as if it arrives according to the ordering generated in step

(2).

4. Compare the test statistics from step (3) to a critical value, according

to equation (3.21) and the value of α.

5. Record the first observation for which equation (3.21) is satisfied, nothing

otherwise.

6. Repeat steps (1)− (5) 9999 additional times.

7. Calculate and record α̂ (for µ1 = 0, λ1 = 1) or empirical power (for

µ1 6= 0, λ1 6= 1), along with the average stopping time.

Test 3

1. Generate data according to equation (4.1) for specified n1 = n2, and µ1

or λ1, depending on the response distribution.

2. Generate the hypothetical orders of observation.

3. Calculate n test statistics using the complete subjects from group 1;

treat the data as if it arrives according to the ordering generated in step

(2).

4. Compare the test statistics from step (3) to a critical value, according

to equation (3.44) and the values of n1 and α.

5. Record the first observation for which equation (3.44) is satisfied, nothing

otherwise.
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6. Repeat steps (1)− (5) 9999 additional times.

7. Calculate and record α̂ (for µ1 = 0, λ1 = 1) or empirical power (for

µ1 6= 0, λ1 6= 1), along with the average stopping time.

4.2.2 Results

Here we present the results of our simulation study for c = 2. The results

corresponding to Test 1, Test 2, and Test 3 are shown in Tables 4.1 to 4.8.
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Table 4.1: Simulated power (P) and average stopping time (AVST) for Test 1
(Pocock) with c = 2 and normally distributed responses. We set µ2 = 0 and
σ2 = 1, while µ1 is allowed to vary. Critical values are obtained from Table
3.1. For this simulation, n1 = n2 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n µ1 P AVST P AVST P AVST
40

0.0 0.0173 39.5133 0.0554 38.4350 0.1096 36.8780
0.1 0.0194 39.4797 0.0603 38.3560 0.1104 37.0020
0.2 0.0260 39.3964 0.0805 38.0311 0.1498 36.3116
0.3 0.0337 39.2752 0.1115 37.5975 0.1994 35.6633
0.4 0.0591 38.9247 0.1695 36.7517 0.2708 34.5776
0.5 0.0891 38.6271 0.2433 35.7444 0.3612 33.2796
0.6 0.1378 38.0450 0.3257 34.6365 0.4602 31.7124
0.7 0.1978 37.4216 0.4244 33.3640 0.5636 29.8730
0.8 0.2547 36.8803 0.5157 31.9556 0.6553 28.2752
0.9 0.3246 36.0526 0.6004 30.4940 0.7275 26.7073
1.0 0.3934 35.2575 0.6642 29.3492 0.7819 25.4803

100
0.0 0.0151 98.7768 0.0607 95.3353 0.1044 91.6534
0.1 0.0213 98.4530 0.0758 94.5691 0.1279 90.8122
0.2 0.0453 97.6264 0.1322 92.6771 0.2198 87.0641
0.3 0.1084 95.6903 0.2733 87.0563 0.3874 79.7445
0.4 0.2333 91.8371 0.4694 79.2748 0.5941 70.5520
0.5 0.4228 85.0126 0.6648 70.6474 0.7839 59.7643
0.6 0.6283 77.2578 0.8332 60.2236 0.8985 50.9883
0.7 0.7948 68.0099 0.9130 52.7937 0.9603 43.4149
0.8 0.8872 61.1412 0.9674 45.3806 0.9843 37.4322
0.9 0.9424 55.2382 0.9838 40.6740 0.9949 33.2430
1.0 0.9714 50.2889 0.9943 36.7755 0.9972 30.9528
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Table 4.2: Simulated power (P) and average stopping time (AVST) for Test
2 (O’Brien-Fleming) with c = 2 and normally distributed responses. We set
µ2 = 0 and σ2 = 1, while µ1 is allowed to vary. Critical values are obtained
from Table 3.3. For this simulation, n1 = n2 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n µ1 P AVST P AVST P AVST
40

0.0 0.0113 39.9116 0.0485 39.4809 0.0992 38.8507
0.1 0.0156 39.8808 0.0681 39.3601 0.1172 38.7396
0.2 0.0343 39.7747 0.1100 39.0462 0.1849 38.0607
0.3 0.0689 39.5443 0.1931 38.3686 0.2928 36.9608
0.4 0.1254 39.2127 0.3014 37.3615 0.4250 35.5745
0.5 0.2150 38.6921 0.4255 36.1377 0.5653 33.7774
0.6 0.3020 38.0834 0.5481 34.7093 0.6857 32.0186
0.7 0.4154 37.1331 0.6734 33.2374 0.7801 30.3460
0.8 0.5206 36.2689 0.7610 31.7551 0.8438 28.8237
0.9 0.6134 35.3126 0.8272 30.4689 0.8960 27.4258
1.0 0.6904 34.4186 0.8749 29.3694 0.9271 26.3040

100
0.0 0.0102 99.8554 0.0481 98.8953 0.0945 97.4671
0.1 0.0268 99.5778 0.0902 98.0556 0.1560 96.1170
0.2 0.0926 98.4398 0.2445 94.4426 0.3399 91.0472
0.3 0.2440 95.6965 0.4689 88.2038 0.5859 82.6154
0.4 0.4752 90.4047 0.7066 79.6203 0.8075 72.4948
0.5 0.6920 83.6821 0.8683 70.9685 0.9230 63.6770
0.6 0.8504 76.6676 0.9512 63.3259 0.9752 56.2283
0.7 0.9388 69.8403 0.9851 57.2303 0.9928 50.6957
0.8 0.9757 64.9024 0.9957 52.5814 0.9981 46.4053
0.9 0.9914 60.7696 0.9987 49.3626 0.9994 43.5393
1.0 0.9957 57.5219 0.9996 46.7485 0.9997 41.2584
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Table 4.3: Simulated power (P) and average stopping time (AVST) for Test
3 with c = 2 and normally distributed responses. We set µ2 = 0 and σ2 = 1,
while µ1 is allowed to vary. Critical values are obtained from Table 3.4. For
this simulation, n1 = n2 = 10 or 15.

α = 0.01 α = 0.05 α = 0.10
n µ1 P AVST P AVST P AVST
20

0.0 0.0135 19.9691 0.0342 19.8944 0.0958 19.6232
0.1 0.0138 19.9693 0.0446 19.8668 0.1034 19.5845
0.2 0.0244 19.9443 0.0589 19.8175 0.1423 19.4238
0.3 0.0362 19.9271 0.0835 19.7386 0.1749 19.3135
0.4 0.0625 19.8740 0.1300 19.5972 0.2353 19.0525
0.5 0.0916 19.7970 0.1810 19.4404 0.3073 18.7081
0.6 0.1354 19.7030 0.2470 19.2351 0.3889 18.3226
0.7 0.1907 19.5669 0.3155 18.9659 0.4675 17.9176
0.8 0.2423 19.4401 0.3837 18.7125 0.5375 17.5350
0.9 0.3022 19.3008 0.4542 18.4306 0.6019 17.1138
1.0 0.3612 19.1005 0.5237 18.1477 0.6599 16.7249

30
0.0 0.0125 29.9475 0.0328 29.8495 0.0617 29.6430
0.1 0.0172 29.9346 0.0379 29.8136 0.0743 29.5589
0.2 0.0291 29.8836 0.0652 29.6889 0.1114 29.3495
0.3 0.0533 29.7879 0.1017 29.5078 0.1601 29.0229
0.4 0.0987 29.5874 0.1570 29.2143 0.2508 28.4765
0.5 0.1416 29.3891 0.2328 28.8069 0.3312 27.9046
0.6 0.2199 29.0468 0.3278 28.2333 0.4348 27.1160
0.7 0.3006 28.6415 0.4208 27.6018 0.5467 26.1137
0.8 0.3890 28.1130 0.5159 26.8844 0.6391 25.2488
0.9 0.4795 27.5732 0.5980 26.2403 0.7094 24.4556
1.0 0.5754 26.9621 0.6778 25.4138 0.7824 23.5164
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Table 4.4: Simulated power (P) and average stopping time (AVST) for Test
3 with c = 2 and normally distributed responses. We set µ2 = 0 and σ2 = 1,
while µ1 is allowed to vary. Critical values are obtained from Table 3.4. For
this simulation, n1 = n2 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n µ1 P AVST P AVST P AVST
40

0.0 0.0098 39.9491 0.0422 39.6785 0.0781 39.3054
0.1 0.0157 39.9190 0.0486 39.6390 0.0944 39.1801
0.2 0.0299 39.8271 0.0946 39.3086 0.1391 38.7755
0.3 0.0610 39.6658 0.1559 38.8287 0.2314 37.9492
0.4 0.1170 39.3273 0.2497 37.9685 0.3416 36.8532
0.5 0.1835 38.9078 0.3611 36.9027 0.4613 35.4598
0.6 0.2956 38.1492 0.4782 35.7502 0.5896 33.8157
0.7 0.3958 37.3613 0.5846 34.4587 0.6912 32.1288
0.8 0.4989 36.4311 0.6958 32.8527 0.7864 30.4702
0.9 0.6033 35.2340 0.7761 31.3424 0.8490 28.8872
1.0 0.6854 34.1926 0.8353 30.0287 0.8919 27.7650

100
0.0 0.0063 99.9020 0.0409 99.2356 0.0876 97.9282
0.1 0.0204 99.6872 0.0728 98.4573 0.1335 96.6854
0.2 0.0631 99.0528 0.1802 96.1684 0.2769 92.9619
0.3 0.1573 97.4256 0.3578 91.6262 0.4757 86.7851
0.4 0.3179 94.1400 0.5591 85.4084 0.6799 78.8087
0.5 0.5133 89.2990 0.7534 77.6799 0.8345 70.2216
0.6 0.7088 83.2849 0.8751 70.0850 0.9234 62.5338
0.7 0.8417 76.5417 0.9484 62.7229 0.9741 55.5933
0.8 0.9278 70.1710 0.9794 57.3000 0.9904 50.7586
0.9 0.9697 65.1492 0.9911 52.9423 0.9973 46.6311
1.0 0.9841 61.1805 0.9970 49.5758 0.9993 43.7730
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Table 4.5: Simulated power (P) and average stopping time (AVST) for Test 1
(Pocock) with c = 2 and exponentially distributed responses. We set λ2 = 1
while λ1 is allowed to vary. Critical values are obtained from Table 3.1. For
this simulation, n1 = n2 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n 1/λ1 P AVST P AVST P AVST
40

1.00 0.0187 39.4615 0.0558 38.4326 0.1053 37.0108
1.25 0.0244 39.4253 0.0853 37.9654 0.1441 36.4624
1.50 0.0529 39.0391 0.1592 36.9231 0.2660 34.5801
1.75 0.1015 38.5135 0.2789 35.3512 0.4068 32.4878
2.00 0.1613 37.8548 0.3956 33.6558 0.5352 30.4308
2.25 0.2430 37.0023 0.4944 32.3860 0.6461 28.5310
2.50 0.3104 36.2751 0.5961 30.6735 0.7155 27.0975
2.75 0.3603 35.7146 0.6482 29.7022 0.7629 26.0088
3.00 0.4179 34.9914 0.7004 28.7951 0.8132 24.9169

100
1.00 0.0164 98.6860 0.0545 95.6698 0.1049 91.5986
1.25 0.0510 97.4387 0.1534 91.5293 0.2471 85.7574
1.50 0.2164 92.3186 0.4451 80.5251 0.5820 71.2014
1.75 0.5036 82.0065 0.7420 65.9060 0.8412 55.9079
2.00 0.7429 71.3736 0.9017 54.2947 0.9421 45.6626
2.25 0.8659 63.5733 0.9617 46.8587 0.9832 38.3031
2.50 0.9371 56.4107 0.9822 41.5005 0.9928 34.1177
2.75 0.9661 51.8288 0.9911 38.2637 0.9982 31.3079
3.00 0.9798 48.4616 0.9964 35.4533 0.9985 29.3085
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Table 4.6: Simulated power (P) and average stopping time (AVST) for Test
2 (O’Brien-Fleming) with c = 2 and exponentially distributed responses. We
set λ2 = 1 while λ1 is allowed to vary. Critical values are obtained from Table
3.3. For this simulation, n1 = n2 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n 1/λ1 P AVST P AVST P AVST
40

1.00 0.0118 39.9012 0.0531 39.4518 0.0951 38.8878
1.25 0.0361 39.7707 0.1215 38.9322 0.1979 37.9518
1.50 0.1151 39.2990 0.2901 37.5493 0.4131 35.6887
1.75 0.2425 38.4504 0.4862 35.6353 0.6111 33.2663
2.00 0.3729 37.5814 0.6415 33.6804 0.7563 30.9513
2.25 0.4905 36.5747 0.7531 32.0924 0.8369 29.1562
2.50 0.5954 35.5478 0.8202 30.8010 0.8977 27.5710
2.75 0.6639 34.8116 0.8578 29.7516 0.9222 26.6656
3.00 0.7240 34.0519 0.8990 28.9439 0.9380 25.8254

100
1.00 0.0089 99.8459 0.0458 98.9693 0.0935 97.5444
1.25 0.1111 98.2016 0.2747 93.7279 0.3782 89.7691
1.50 0.4498 91.1298 0.6975 80.2560 0.7842 73.7791
1.75 0.7622 80.9086 0.9082 67.7756 0.9517 60.3091
2.00 0.9227 72.2142 0.9762 59.2226 0.9884 52.4821
2.25 0.9709 66.0885 0.9945 53.6038 0.9976 47.2075
2.50 0.9887 61.7309 0.9974 49.9684 0.9991 43.9182
2.75 0.9955 58.4604 0.9993 47.4265 0.9995 42.0699
3.00 0.9980 56.2937 0.9996 45.7383 0.9999 40.4613
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Table 4.7: Simulated power (P) and average stopping time (AVST) for Test
3 with c = 2 and exponentially distributed responses. We set λ2 = 1 while
λ1 is allowed to vary. Critical values are obtained from Table 3.4. For this
simulation, n1 = n2 = 10 or 15.

α = 0.01 α = 0.05 α = 0.10
n 1/λ1 P AVST P AVST P AVST
20

1.00 0.0125 19.9721 0.0388 19.8820 0.1025 19.5772
1.25 0.0247 19.9483 0.0607 19.8154 0.1351 19.4750
1.50 0.0585 19.8833 0.1215 19.6287 0.2232 19.1301
1.75 0.1032 19.7793 0.1894 19.4256 0.3128 18.7106
2.00 0.1569 19.6611 0.2775 19.1165 0.4208 18.1860
2.25 0.2164 19.5009 0.3439 18.8905 0.5112 17.7164
2.50 0.2625 19.3987 0.4261 18.5693 0.5769 17.3481
2.75 0.3035 19.2948 0.4871 18.3403 0.6283 16.9803
3.00 0.3589 19.1403 0.5353 18.1301 0.6796 16.6863

30
1.00 0.0117 29.9575 0.0305 29.8549 0.0647 29.6278
1.25 0.0312 29.8775 0.0627 29.6882 0.1188 29.3127
1.50 0.0782 29.6856 0.1461 29.2803 0.2209 28.6703
1.75 0.1526 29.3781 0.2539 28.6867 0.3591 27.7185
2.00 0.2527 28.9031 0.3626 28.0436 0.4984 26.6228
2.25 0.3419 28.4504 0.4673 27.3269 0.5979 25.7248
2.50 0.4386 27.8970 0.5638 26.5706 0.6857 24.8404
2.75 0.5073 27.4298 0.6225 25.9931 0.7481 24.1080
3.00 0.5722 26.9911 0.6857 25.4013 0.8004 23.4199
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Table 4.8: Simulated power (P) and average stopping time (AVST) for Test
3 with c = 2 and exponentially distributed responses. We set λ2 = 1 while
λ1 is allowed to vary. Critical values are obtained from Table 3.4. For this
simulation, n1 = n2 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n 1/λ1 P AVST P AVST P AVST
40

1.00 0.0097 39.9455 0.0423 39.6858 0.0773 39.3524
1.25 0.0294 39.8466 0.0989 39.2916 0.1507 38.7172
1.50 0.0994 39.4503 0.2292 38.2280 0.3128 37.1374
1.75 0.2084 38.7867 0.3861 36.8053 0.4938 35.1434
2.00 0.3286 37.9632 0.5413 35.0343 0.6498 32.9573
2.25 0.4492 36.9257 0.6579 33.4954 0.7565 31.2254
2.50 0.5517 35.9283 0.7396 32.2339 0.8271 29.7844
2.75 0.6425 34.9190 0.8120 30.8671 0.8746 28.4851
3.00 0.7129 34.0637 0.8568 29.8053 0.9055 27.5556

100
1.00 0.0069 99.8942 0.0466 99.0283 0.0867 97.9341
1.25 0.0607 99.0467 0.1948 95.8104 0.2926 92.5216
1.50 0.2856 95.0681 0.5201 86.9291 0.6484 80.4260
1.75 0.5739 87.7758 0.7948 75.6497 0.8727 68.1847
2.00 0.7836 80.0483 0.9224 66.3601 0.9575 58.9282
2.25 0.9043 73.0946 0.9725 59.5967 0.9848 52.6946
2.50 0.9601 67.3859 0.9898 55.0059 0.9949 48.7150
2.75 0.9816 63.4632 0.9945 51.6112 0.9975 45.3563
3.00 0.9901 60.2169 0.9986 48.7659 0.9995 43.2986
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4.3 Comparing c=3 groups

4.3.1 Algorithms

Test 1

1. Generate data according to equation (4.1) for specified n1 = n2 = n3,

and µ1 or λ1, depending on the response distribution.

2. Generate the hypothetical orders of observation.

3. Calculate n test statistics corresponding to group 1, and n correspond-

ing to group 2; treat the data as if it arrives according to the ordering

generated in step (2).

4. Compare the test statistics from step (3) to a critical value, according

to equations (3.23) and (3.24), and the values of n1 = n2, and α∗.

5. Record the first observation for which one of equations (3.23) or (3.24)

is satisfied, nothing otherwise.

6. Repeat steps (1)− (5) 9999 additional times.

7. Calculate and record α̂ (for µ1 = 0, λ1 = 1) or empirical power (for

µ1 6= 0, λ1 6= 1), along with the average stopping time.

Test 2

1. Generate data according to equation (4.1) for specified n1 = n2 = n3,

and µ1 or λ1, depending on the response distribution.

2. Generate the hypothetical orders of observation.

3. Calculate n test statistics corresponding to group 1, and n correspond-

ing to group 2; treat the data as if it arrives according to the ordering

generated in step (2).
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4. Compare the test statistics from step (3) to a critical value, according

to equations (3.25) and (3.26), and the value of α∗.

5. Record the first observation for which one of equations (3.25) or (3.26)

is satisfied, nothing otherwise.

6. Repeat steps (1)− (5) 9999 additional times.

7. Calculate and record α̂ (for µ1 = 0, λ1 = 1) or empirical power (for

µ1 6= 0, λ1 6= 1), along with the average stopping time.

Test 3

1. Generate data according to equation (4.1) for specified n1 = n2 = n3,

and µ1 or λ1, depending on the response distribution.

2. Generate the hypothetical orders of observation.

3. Calculate n test statistics corresponding to group 1, and n correspond-

ing to group 2; treat the data as if it arrives according to the ordering

generated in step (2).

4. Compare the test statistics from step (3) to a critical value, according

to equations (3.46) and (3.47), and the values of n1 = n2 and α∗.

5. Record the first observation for which one of equations (3.46) or (3.47)

is satisfied, nothing otherwise.

6. Repeat steps (1)− (5) 9999 additional times.

7. Calculate and record α̂ (for µ1 = 0, λ1 = 1) or empirical power (for

µ1 6= 0, λ1 6= 1), along with the average stopping time.

4.3.2 Results

Here we present the results of our simulation study for c = 3. The raw results

may be found in Tables 4.9 to 4.16, while plots of P and AVST are given in

Figures 4.1 and 4.2, for all three tests, with α = 0.05 and normal data.
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Table 4.9: Simulated power (P) and average stopping time (AVST) for Test 1
(Pocock) with c = 3 and normally distributed responses. We set µ2 = µ3 = 0
and σ2 = 1, while µ1 is allowed to vary. Critical values are obtained from
Table 3.2. For this simulation, n1 = n2 = n3 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n µ1 P AVST P AVST P AVST
60

0.0 0.0112 59.4918 0.0421 58.1473 0.0781 56.6818
0.1 0.0114 59.5664 0.0522 57.8831 0.0970 56.1211
0.2 0.0191 59.3742 0.0821 57.2639 0.1434 55.1444
0.3 0.0361 59.0950 0.1420 56.1916 0.2422 52.9045
0.4 0.0905 58.2109 0.2505 54.1084 0.3750 50.1662
0.5 0.1648 57.2173 0.4063 51.0016 0.5608 45.7705
0.6 0.2941 55.1023 0.5829 46.9640 0.7288 40.9650
0.7 0.4588 52.2672 0.7503 42.6465 0.8645 36.2469
0.8 0.6252 48.9990 0.8648 38.6983 0.9372 32.2200
0.9 0.7537 45.7909 0.9340 34.7796 0.9718 29.4000
1.0 0.8582 42.6957 0.9734 31.8365 0.9891 26.4426

150
0.0 0.0086 148.9492 0.0433 144.8926 0.0824 140.5927
0.1 0.0159 148.4534 0.0677 143.5271 0.1184 138.4873
0.2 0.0571 146.6917 0.1808 137.5318 0.2812 128.2342
0.3 0.2126 139.4573 0.4372 123.0427 0.5726 109.8453
0.4 0.5087 124.6682 0.7495 100.2828 0.8467 85.6244
0.5 0.8084 103.1930 0.9328 78.6921 0.9679 65.0683
0.6 0.9537 83.2035 0.9910 61.4096 0.9964 50.5286
0.7 0.9940 68.3289 0.9994 50.3649 0.9999 41.7366
0.8 0.9995 58.6947 0.9999 42.7846 1.0000 35.8507
0.9 1.0000 51.8400 1.0000 38.0242 1.0000 31.6645
1.0 1.0000 46.2481 1.0000 34.4057 1.0000 28.8427
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Table 4.10: Simulated power (P) and average stopping time (AVST) for Test
2 (O’Brien-Fleming) with c = 3 and normally distributed responses. We set
µ2 = µ3 = 0 and σ2 = 1, while µ1 is allowed to vary. Critical values are
obtained from Table 3.3. For this simulation, n1 = n2 = n3 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n µ1 P AVST P AVST P AVST
60

0.0 0.0078 59.9238 0.0409 59.5271 0.0826 58.8365
0.1 0.0148 59.8609 0.0652 59.2237 0.1220 58.3655
0.2 0.0450 59.6100 0.1398 58.3835 0.2364 56.9005
0.3 0.1150 58.9987 0.2913 56.6210 0.4159 54.3650
0.4 0.2360 57.8644 0.4906 53.8017 0.6107 50.8125
0.5 0.4144 56.0512 0.6870 50.4219 0.8080 46.3183
0.6 0.6161 53.2047 0.8418 46.5305 0.9199 42.2828
0.7 0.7776 50.3510 0.9335 42.9881 0.9704 38.6886
0.8 0.8925 47.4663 0.9770 40.0687 0.9918 35.8449
0.9 0.9516 44.8595 0.9931 37.5970 0.9982 33.7374
1.0 0.9798 42.7174 0.9977 35.8021 0.9995 32.0828

150
0.0 0.0085 149.8272 0.0469 148.6833 0.0905 146.8945
0.1 0.0340 149.2424 0.1147 146.8049 0.1904 143.6319
0.2 0.1692 146.1499 0.3522 138.8879 0.5048 131.2216
0.3 0.4593 136.9078 0.7096 122.3051 0.8104 112.5175
0.4 0.7865 121.8153 0.9237 103.6689 0.9658 92.9724
0.5 0.9582 104.9302 0.9911 87.9098 0.9974 78.7036
0.6 0.9950 91.9151 0.9993 76.7315 0.9998 68.9431
0.7 0.9995 82.8947 1.0000 69.0984 1.0000 61.8037
0.8 1.0000 76.3594 1.0000 63.5991 1.0000 56.9427
0.9 1.0000 71.2220 1.0000 59.4892 1.0000 53.3318
1.0 1.0000 67.4635 1.0000 56.3992 1.0000 50.6889
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Table 4.11: Simulated power (P) and average stopping time (AVST) for Test
3 with c = 3 and normally distributed responses. We set µ2 = µ3 = 0 and
σ2 = 1, while µ1 is allowed to vary. Critical values are obtained from Table
3.5. For this simulation, n1 = n2 = n3 = 10 or 15.

α = 0.01 α = 0.05 α = 0.10
n µ1 P AVST P AVST P AVST
30

0.0 0.0077 29.9740 0.0344 29.8735 0.0807 29.5674
0.1 0.0088 29.9719 0.0363 29.8657 0.0908 29.5071
0.2 0.0162 29.9472 0.0576 29.7830 0.1322 29.2815
0.3 0.0314 29.8941 0.0947 29.6549 0.1865 28.9907
0.4 0.0523 29.8268 0.1593 29.4314 0.2732 28.4790
0.5 0.0834 29.7287 0.2344 29.0978 0.3755 27.8859
0.6 0.1409 29.5350 0.3281 28.6765 0.4845 27.0953
0.7 0.2106 29.3107 0.4374 28.1689 0.5994 26.2964
0.8 0.2839 29.0399 0.5452 27.5870 0.7061 25.4152
0.9 0.3709 28.7496 0.6392 27.0679 0.7884 24.5649
1.0 0.4639 28.3809 0.7228 26.4768 0.8531 23.8692

45
0.0 0.0038 44.9789 0.0313 44.7739 0.0627 44.5309
0.1 0.0057 44.9672 0.0381 44.7418 0.0847 44.3385
0.2 0.0104 44.9479 0.0643 44.5523 0.1355 43.9335
0.3 0.0266 44.8612 0.1179 44.1838 0.2264 43.1788
0.4 0.0580 44.7254 0.2139 43.4716 0.3580 41.9787
0.5 0.1146 44.4174 0.3327 42.4979 0.4959 40.5046
0.6 0.1981 43.9886 0.4672 41.2406 0.6433 38.6421
0.7 0.3015 43.3596 0.6132 39.6171 0.7710 36.7532
0.8 0.4292 42.5024 0.7301 38.1086 0.8601 34.8593
0.9 0.5501 41.6571 0.8336 36.5983 0.9236 33.2521
1.0 0.6663 40.7826 0.9041 35.1223 0.9599 31.8088
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Table 4.12: Simulated power (P) and average stopping time (AVST) for Test
3 with c = 3 and normally distributed responses. We set µ2 = µ3 = 0 and
σ2 = 1, while µ1 is allowed to vary. Critical values are obtained from Table
3.5. For this simulation, n1 = n2 = n3 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n µ1 P AVST P AVST P AVST
60

0.0 0.0088 59.9320 0.0442 59.5478 0.0861 59.0302
0.1 0.0158 59.8751 0.0640 59.3175 0.1210 58.6446
0.2 0.0366 59.7149 0.1152 58.7282 0.2041 57.6249
0.3 0.0831 59.3402 0.2219 57.6036 0.3331 55.7869
0.4 0.1727 58.4767 0.3662 55.7209 0.5069 53.1087
0.5 0.3023 57.2007 0.5492 52.9723 0.6704 49.8642
0.6 0.4698 55.3353 0.7078 50.0092 0.8212 46.2371
0.7 0.6244 53.1322 0.8331 47.0388 0.9088 42.9753
0.8 0.7674 50.8110 0.9199 44.0723 0.9596 40.0907
0.9 0.8620 48.6000 0.9637 41.5481 0.9841 37.7370
1.0 0.9335 46.3139 0.9865 39.5229 0.9956 35.9282

150
0.0 0.0102 149.7985 0.0410 148.8816 0.0880 147.3017
0.1 0.0277 149.4389 0.0849 147.7077 0.1549 145.1954
0.2 0.1030 147.7213 0.2438 142.8844 0.3604 137.4381
0.3 0.2935 142.4214 0.5087 133.0608 0.6578 123.0977
0.4 0.5896 132.0983 0.7739 118.3120 0.8767 106.8096
0.5 0.8209 118.5655 0.9416 102.8100 0.9711 91.8074
0.6 0.9480 105.7963 0.9872 90.4770 0.9952 80.4723
0.7 0.9920 94.8924 0.9985 81.2443 1.0000 72.0168
0.8 0.9989 86.7986 0.9999 74.2384 1.0000 66.4159
0.9 1.0000 80.8194 0.9999 69.4605 1.0000 61.9039
1.0 1.0000 76.4510 1.0000 65.6134 1.0000 58.3219
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Table 4.13: Simulated power (P) and average stopping time (AVST) for Test
1 (Pocock) with c = 3 and exponentially distributed responses. We set λ2 =
λ3 = 1 while λ1 is allowed to vary. Critical values are obtained from Table
3.2. For this simulation, n1 = n2 = n3 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n 1/λ1 P AVST P AVST P AVST
60

1.00 0.0111 59.5043 0.0445 58.0785 0.0766 56.6822
1.25 0.0231 59.2486 0.0832 57.4152 0.1571 54.7946
1.50 0.0821 58.3215 0.2326 54.5203 0.3711 50.3864
1.75 0.2176 56.4521 0.4813 49.4895 0.6318 43.8494
2.00 0.4123 53.1151 0.7061 44.0520 0.8271 37.7385
2.25 0.5939 49.8125 0.8468 39.0657 0.9212 33.3328
2.50 0.7341 46.6340 0.9216 35.8426 0.9662 29.6429
2.75 0.8266 43.7871 0.9630 32.8091 0.9859 27.2422
3.00 0.8869 41.5038 0.9812 30.6726 0.9945 25.6025

150
1.00 0.0100 148.7463 0.0463 144.6410 0.0852 140.0826
1.25 0.0702 145.9093 0.2115 135.5367 0.3200 126.9630
1.50 0.4811 125.4595 0.7279 102.0638 0.8276 87.2194
1.75 0.8801 95.2217 0.9689 70.7442 0.9852 58.4110
2.00 0.9866 73.1737 0.9979 53.5627 0.9996 44.2208
2.25 0.9989 60.7293 0.9999 44.5231 1.0000 36.9201
2.50 1.0000 52.7399 1.0000 38.8416 1.0000 32.4302
2.75 1.0000 48.1233 1.0000 35.5908 1.0000 29.7305
3.00 1.0000 44.7669 1.0000 32.9585 1.0000 27.8222
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Table 4.14: Simulated power (P) and average stopping time (AVST) for Test
2 (O’Brien-Fleming) with c = 3 and exponentially distributed responses. We
set λ2 = λ3 = 1 while λ1 is allowed to vary. Critical values are obtained from
Table 3.3. For this simulation, n1 = n2 = n3 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n 1/λ1 P AVST P AVST P AVST
60

1.00 0.0073 59.9313 0.0428 59.4659 0.0842 58.8269
1.25 0.0466 59.6065 0.1565 58.1682 0.2561 56.5803
1.50 0.2300 58.0235 0.4756 54.1139 0.5953 51.0572
1.75 0.4969 54.8683 0.7484 49.0646 0.8483 44.7725
2.00 0.7222 51.3871 0.9082 44.1643 0.9542 40.0286
2.25 0.8662 48.1642 0.9691 40.5743 0.9877 36.5112
2.50 0.9397 45.5588 0.9909 38.2797 0.9968 34.3952
2.75 0.9708 43.5415 0.9971 36.3442 0.9986 32.6027
3.00 0.9867 42.0094 0.9993 35.1142 0.9996 31.6309

150
1.00 0.0093 149.7966 0.0409 148.8153 0.0918 146.8402
1.25 0.1910 145.3541 0.4153 136.3195 0.5453 128.8503
1.50 0.7628 122.9867 0.9142 105.0798 0.9570 94.6540
1.75 0.9776 100.4006 0.9950 83.2943 0.9987 74.9540
2.00 0.9989 86.0597 0.9999 71.5144 1.0000 64.2597
2.25 1.0000 77.4560 1.0000 64.7975 1.0000 58.1422
2.50 1.0000 72.4695 1.0000 60.5805 1.0000 54.4879
2.75 1.0000 68.6527 1.0000 57.4353 1.0000 51.5617
3.00 1.0000 66.0040 1.0000 55.2850 1.0000 49.6979
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Table 4.15: Simulated power (P) and average stopping time (AVST) for Test
3 with c = 3 and exponentially distributed responses. We set λ2 = λ3 = 1
while λ1 is allowed to vary. Critical values are obtained from Table 3.5. For
this simulation, n1 = n2 = n3 = 10 or 15.

α = 0.01 α = 0.05 α = 0.10
n 1/λ1 P AVST P AVST P AVST
30

1.00 0.0064 29.9782 0.0352 29.8744 0.0790 29.5650
1.25 0.0191 29.9324 0.0585 29.7901 0.1260 29.3175
1.50 0.0495 29.8402 0.1366 29.4777 0.2575 28.5697
1.75 0.0885 29.7097 0.2545 29.0206 0.3942 27.7066
2.00 0.1560 29.4615 0.3794 28.4946 0.5357 26.7563
2.25 0.2315 29.2277 0.4860 27.9472 0.6535 25.8331
2.50 0.3078 28.9495 0.5763 27.4712 0.7370 25.1051
2.75 0.3847 28.6756 0.6640 26.9171 0.8058 24.3598
3.00 0.4452 28.4433 0.7178 26.5123 0.8479 23.8833

45
1.00 0.0028 44.9868 0.0271 44.8124 0.0649 44.5025
1.25 0.0130 44.9324 0.0683 44.5180 0.1500 43.8320
1.50 0.0504 44.7520 0.1885 43.6366 0.3227 42.3010
1.75 0.1295 44.3222 0.3577 42.2533 0.5276 40.1540
2.00 0.2393 43.7269 0.5380 40.5536 0.7007 37.9380
2.25 0.3480 43.0296 0.6729 38.9604 0.8142 35.9111
2.50 0.4719 42.2252 0.7815 37.4621 0.8888 34.2313
2.75 0.5686 41.5116 0.8486 36.2909 0.9363 32.9321
3.00 0.6587 40.7824 0.9038 35.2312 0.9592 31.8807
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Table 4.16: Simulated power (P) and average stopping time (AVST) for Test
3 with c = 3 and exponentially distributed responses. We set λ2 = λ3 = 1
while λ1 is allowed to vary. Critical values are obtained from Table 3.5. For
this simulation, n1 = n2 = n3 = 20 or 50.

α = 0.01 α = 0.05 α = 0.10
n 1/λ1 P AVST P AVST P AVST
60

1.00 0.0088 59.9384 0.0455 59.5051 0.0915 58.9156
1.25 0.0377 59.7028 0.1306 58.6151 0.2062 57.5873
1.50 0.1470 58.8247 0.3327 56.1877 0.4772 53.7623
1.75 0.3312 56.8978 0.5867 52.3068 0.7084 49.2820
2.00 0.5288 54.6244 0.7572 48.8314 0.8573 45.0540
2.25 0.7022 52.0999 0.8803 45.4285 0.9387 41.6053
2.50 0.8067 50.0038 0.9439 43.1553 0.9733 39.1647
2.75 0.8796 48.1477 0.9724 41.0395 0.9891 37.2456
3.00 0.9343 46.5193 0.9882 39.4830 0.9946 36.0308

150
1.00 0.0094 149.7916 0.0368 148.9459 0.0886 147.3095
1.25 0.1262 147.1535 0.2666 142.1740 0.3933 136.0882
1.50 0.5257 134.5031 0.7394 121.6317 0.8489 109.9476
1.75 0.8637 116.2698 0.9537 100.4810 0.9829 89.3358
2.00 0.9780 101.2626 0.9952 86.8219 0.9986 76.9177
2.25 0.9973 91.1417 0.9997 77.8712 1.0000 69.4758
2.50 0.9998 80.2413 1.0000 72.7223 1.0000 64.3905
2.75 1.0000 80.2273 1.0000 68.6684 1.0000 61.1518
3.00 1.0000 77.0099 1.0000 65.8899 1.0000 58.5831
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Figure 4.1: Plots of empirical power (P) and average stopping time (AVST)
for Tests 1, 2, and 3, where c = 3, n1 = n2 = n3 = 20, α = 0.05, and where
the response distribution is normal.
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Figure 4.2: Plots of empirical power (P) and average stopping time (AVST)
for Tests 1, 2, and 3, where c = 3, n1 = n2 = n3 = 50, α = 0.05, and where
the response distribution is normal.
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4.4 Discussion

Overall, we observed that all three tests perform similarly for both normal and

exponential responses. Power is higher when c = 3 compared to c = 2, for all

tests and both response types. This may be attributed to the fact that the

total sample size, n, is larger for simulations involving three groups. Rather

than matching the total sample size, we chose to maintain the same group

sizes between all simulations.

We also made some test-specific observations:

Test 1

1. Test 1 is reasonably powered for n1 = 20 and well-powered for n1 = 50.

2. Test 1 has earlier average stopping times than both Test 2 and Test 3,

for large treatment differences.

Test 2

1. Test 2 appears to have higher power than Test 1 and Test 3, for small

treatment differences.

2. We observed average stopping times for Test 2 that were larger than

those of Test 1, similar to those of Test 3 for c = 2, and smaller than

those of Test 3 for c = 3.

Test 3

1. The performance of Test 3 is acceptable for n1 = 10, 15, with decent

power and somewhat lengthy average stopping times.

2. Overall, Test 3 has the longest average stopping times; this is to be

expected however, as the test is nonparametric, and suffers from some

degree of information loss.
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Chapter 5

Application

In this section, we apply Tests 1, 2, and 3 to data from an orthodontic clinical

trial. The objective of the trial was to determine whether the skeletal and

dental effects of maxillary expansion are the same between subjects, and for

different treatment groups. A total of n = 62 patients were recruited from

the Graduate Orthodontic Clinic patient pool. They were randomly assigned

to one of three treatment groups: Hyrax (1), bone-anchored expander (2), or

control (3). Two patients were excluded from this analysis due to missing

data, leaving group sample sizes of n1 = 21, n2 = 20, and n3 = 19.

Three-dimensional volumetric scans were obtained for each patient via

cone-beam computerized tomography (CBCT), a maximum of three times over

the course of the trial. From these scans, three-dimensional landmarks, de-

scriptors of shape, were derived. The response variables are taken to be the

Euclidean distance between pairs of landmarks. We will restrict our analysis

here to the response derived from comparing landmarks 1 and 6. Finally, we

refer to the three measures of our response as T1, T2, and T3.

For all three tests, we use α = 0.05 with corresponding α∗ = 0.0253. For

Test 1 and both groups 1 and 2 we use boundaries corresponding to nk = 20.

These may be found in Table 3.2 of Chapter 3. The boundaries for Test 2 on

the other hand, which are not dependent on sample size, are found in Table

3.3. As Test 3 is exact, we calculate the appropriate boundaries for our specific

values of n1 and n2. We arrive at the same boundary value for both groups.
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The critical values for all three tests may be found in Table 5.1.

Table 5.1: Critical values for Test 1, Test 2, and Test 3, for the skeletal and
dental effects study. For Test 3, the exact significance levels are provided in
brackets.

Group 1 Group 2
Test 1 3.18 3.18
Test 2 2.49 2.49
Test 3 11 (0.0467) 11 (0.0665)

The test statistics for Tests 1, 2, and 3, are presented in Tables 5.2 and 5.3

for analyses 1-30 and 31-60, respectively. Plots of the sample paths of each

test statistic along with the corresponding critical values are given in Figure

5.1. For Test 1, H0 is rejected at analysis 31, for Test 2 we reject at analysis

36, and for Test 3 we reject at analysis 50. Again, all tests use an overall

significance level of α = 0.05.
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Table 5.2: Test statistics at analyses 1-30, to be compared to a critical value,
for landmarks 1 and 6, and Tests 1, 2, and 3.

Test 1 Test 2 Test 3
Analysis Group 1 Group 2 Group 1 Group 2 Group 1 Group 2
1 0.0000 0.0000 0.0000 0.0000 0 0
2 0.0000 0.0000 0.0000 0.0000 0 0
3 0.0000 0.0000 0.0000 0.0000 0 0
4 0.9440 0.0000 0.2060 0.0000 1 0
5 0.9316 0.0000 0.2033 0.0000 1 0
6 0.9556 0.9172 0.2085 0.2051 1 1
7 1.0171 0.9763 0.2219 0.2183 1 1
8 1.0786 0.6448 0.2354 0.2039 1 0
9 0.9939 0.5942 0.2169 0.1879 1 0
10 1.0327 0.6173 0.2253 0.1952 1 0
11 1.0488 0.6270 0.2289 0.1983 1 0
12 1.0121 1.4784 0.2209 0.5726 1 1
13 1.2835 1.5096 0.3961 0.5847 2 1
14 1.3148 1.5436 0.4058 0.6903 2 2
15 1.2948 2.0731 0.3996 1.0365 2 3
16 2.0288 2.0160 0.7668 1.0080 3 3
17 2.4371 2.0422 1.0636 1.0211 4 3
18 2.4878 2.0847 1.0858 1.0423 4 3
19 2.5229 2.3356 1.1011 1.2793 4 4
20 2.4971 2.3710 1.2185 1.2987 5 4
21 2.4760 1.9474 1.2082 1.1521 5 3
22 2.6646 1.9819 1.4243 1.1725 6 3
23 2.6940 2.2357 1.4400 1.4140 6 4
24 2.7244 2.2078 1.4562 1.4811 6 5
25 2.7639 2.2399 1.4774 1.5026 6 5
26 2.7464 2.6540 1.4680 1.8767 6 6
27 2.9639 2.5809 1.7112 1.8250 7 6
28 3.0562 2.6040 1.8863 1.8413 8 6
29 3.0729 2.8646 1.8966 2.1244 8 7
30 2.3583 2.7857 1.5439 2.0659 7 7
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Table 5.3: Test statistics at analyses 31-60, to be compared to a critical value,
for landmarks 1 and 6, and Tests 1, 2, and 3.

Test 1 Test 2 Test 3
Analysis Group 1 Group 2 Group 1 Group 2 Group 1 Group 2
31 2.3434 3.1845 1.5341 2.4667 7 8
32 2.3252 3.1598 1.5222 2.4475 7 8
33 2.3036 3.1304 1.5081 2.4248 7 8
34 2.3503 3.1938 1.5386 2.4739 7 8
35 1.8957 3.1729 1.3082 2.4577 6 8
36 1.8910 3.3935 1.3049 2.7359 6 9
37 1.9176 3.4412 1.3233 2.7744 6 9
38 1.9287 3.5856 1.3309 2.9999 6 10
39 2.1948 3.5934 1.5885 3.0065 7 10
40 2.0415 3.6133 1.5432 3.0231 6 10
41 1.9792 3.6423 1.5572 3.0474 7 10
42 1.9953 3.6719 1.5699 3.0721 7 10
43 2.4412 3.6534 1.9933 3.0566 8 10
44 2.4571 3.5504 2.0063 3.0747 8 9
45 2.8425 3.5399 2.4024 3.0657 9 9
46 2.7669 3.4457 2.3385 2.9841 9 9
47 2.7815 3.5632 2.3508 3.1870 9 10
48 2.7488 3.0925 2.3232 2.8511 9 9
49 3.0831 3.0798 2.6912 2.8394 10 9
50 3.3172 3.0867 2.9846 2.8458 11 9
51 3.3405 3.1084 3.0056 2.8658 11 9
52 3.3401 3.1080 3.0052 2.8654 11 9
53 3.3156 3.0852 2.9832 2.8444 11 9
54 3.3290 3.2085 2.9952 3.0438 11 10
55 3.5382 3.2095 3.2758 3.0448 12 10
56 3.5564 3.2554 3.2925 3.1730 12 11
57 3.5695 3.3836 3.3047 3.3836 12 12
58 3.6868 3.3961 3.5069 3.3961 13 12
59 3.8380 3.4105 3.7455 3.4105 14 12
60 4.0777 3.4083 4.0777 3.4083 15 12
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Figure 5.1: Plots of the sample paths of the test statistics for Tests 1, 2, and
3, along with the corresponding critical values, for landmarks 1 and 6.
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Chapter 6

Summary and conclusions

This thesis has examined the application of sequential methods to longitudinal

data. We developed several new, nonparametric, fully sequential monitoring

procedures to be used for the comparison of two or more groups. Performance

of the new procedures was assessed via a Monte Carlo simulation study. Fi-

nally, the procedures were applied to data from an orthodontic clinical trial,

for illustrative purposes.

The following are our recommendations for application of the new proce-

dures:

• Test 1 should be used if early stopping is of the utmost importance.

• Test 2 should be used if high power is paramount.

• Test 3 should be used when group sample sizes are small, where nk < 20.

Given the results of this thesis, we believe that there is potential for future

research in the following directions:

• Performance of the new procedures could be examined for scenarios in

which there are more than three repeated measures, and more than three

treatment groups, as well as for various other response distributions.

• Theory could be developed for the pairwise comparison of treatment

groups, to be applied when the null hypothesis is rejected.
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• The procedure could be revised to accommodate complicated forms of

missing data.

• The procedure could be compared to some of the longitudinal group

sequential methods.

• Finally, the procedure could be adapted to accommodate multiple out-

come response variables.
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Appendix A

Examples

Example A.0.1 (Sequential ranking) Suppose that we have received five

observations on some random process:

Time 1 2 3 4 5
Observation 0.1 0.5 0.2 0.7 0.8

where hypothetical times are given to indicate the order in which the data were

received. The process of sequentially ranking the data would proceed as follows:

Time
1 0.1

↓
1

2 0.1 0.5
... ↓
1 2

3 0.1 0.5 0.2
...

... ↓
1 2 2

4 0.1 0.5 0.2 0.7
...

...
... ↓

1 2 2 4
5 0.1 0.5 0.2 0.7 0.8

...
...

...
... ↓

1 2 2 4 5
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Example A.0.2 (Sequential ranking) Suppose that we have received five

observations on another random process:

Time 1 2 3 4 5
Observation 0.5 0.3 1.2 0.1 0.9

where once again hypothetical times are given to indicate the order in which the

data were received. The process of sequentially ranking the data would proceed

as follows:

Time
1 0.5

↓
1

2 0.5 0.3
... ↓
1 1

3 0.5 0.3 1.2
...

... ↓
1 1 3

4 0.5 0.3 1.2 0.1
...

...
... ↓

1 1 3 1
5 0.5 0.3 1.2 0.1 0.9

...
...

...
... ↓

1 1 3 1 4

Example A.0.3 (Regular ranking) Suppose that we have received the same

five observations as in Example A.0.2:

Time 1 2 3 4 5
Observation 0.5 0.3 1.2 0.1 0.9

The process of ranking the data by the usual method would proceed as follows:
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Time
1 0.5

↓
1

2 0.5 0.3
↓ ↓
2 1

3 0.5 0.3 1.2
↓ ↓ ↓
2 1 3

4 0.5 0.3 1.2 0.1
↓ ↓ ↓ ↓
3 2 4 1

5 0.5 0.3 1.2 0.1 0.9
↓ ↓ ↓ ↓ ↓
3 2 5 1 4

Notice how the ranks found by the regular method differ from sequential ranks

in that they do not generally stay the same after each new observation is re-

ceived.

Example A.0.4 (Independence of sequential ranks) Consider the rank-

ing of three i.i.d. observations, similar to what would be done in our testing

framework, under the null hypothesis of no distributional difference. Denote

these observations by y1, y2, and y3, and assume that they have arrived in some

particular order, without loss of generality, y1 first, y2 second, and y3 third. In

keeping with the notation of Chapter 3, we denote the sequential ranks of y1,

y2, and y3, by R1, R2, and R3, respectively. The corresponding parameters are

m1 = 1, m2 = 2, and m3 = 3. Under the assumption that the data are i.i.d.,

we have six possibilities for their sequential ranking:

R1 R2 R3

1 1 1
1 2 1
1 1 2
1 2 2
1 1 3
1 2 3
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The i.i.d. assumption implies that each of these rankings is equally likely to

occur, in other words that

P{R1 = 1, R2 = 1, R3 = 1} =
1

6

P{R1 = 1, R2 = 2, R3 = 1} =
1

6

P{R1 = 1, R2 = 1, R3 = 2} =
1

6

P{R1 = 1, R2 = 2, R3 = 2} =
1

6

P{R1 = 1, R2 = 1, R3 = 3} =
1

6

P{R1 = 1, R2 = 2, R3 = 3} =
1

6
.

(A.1)

Similarly, it can easily be verified that

P{R1 = 1, R2 = 1} = P{R1 = 1, R2 = 2} =
1

2

P{R1 = 1, R3 = 1} = P{R1 = 1, R3 = 2} = P{R1 = 1, R3 = 3} =
1

3

P{R2 = 1, R3 = 1} = P{R2 = 1, R3 = 2} = P{R2 = 1, R3 = 3} =
1

6

P{R2 = 2, R3 = 1} = P{R2 = 2, R3 = 2} = P{R2 = 2, R3 = 3} =
1

6

(A.2)

and that

P{R1 = 1} = 1

P{R2 = 1} = P{R2 = 2} =
1

2

P{R3 = 1} = P{R3 = 2} = P{R3 = 3} =
1

3
.

(A.3)

One can then show that for any integers α, β, and γ,

P{R1 = α,R2 = β,R3 = γ} = P{R1 = α} × P{R2 = β} × P{R3 = γ}

(A.4)
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and that for i, j ∈ {1, 2, 3} with i 6= j, and integers α and β,

P{Ri = α,Rj = β} = P{Ri = α} × P{Rj = β} (A.5)

implying that R1, R2, and R3 are independent.

Example A.0.5 (Dependence of regular ranks) Now consider the rank-

ing of three i.i.d. observations by the usual ranking method. Again, observa-

tions y1, y2, and y3 have corresponding ranks R1, R2, and R3. Under the i.i.d.

assumption, the following six rankings are equally likely:

R1 R2 R3

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

In particular, it can be verified that

P{R1 = 1, R2 = 2, R3 = 3} =
1

6
(A.6)

and that

P{R1 = 1} = P{R2 = 2} = P{R3 = 3} =
1

3
. (A.7)

Hence,

P{R1 = 1} × P{R2 = 2} × P{R3 = 3} =
1

9
(A.8)

which is not equal to the probability on the right hand side of equation (A.6).

Thus, R1, R2, and R3 cannot be independent, and hence must be dependent.

85



Appendix B

Code

The following Fortran code was written for the simulation study of Chapter

4. The program requests as inputs the sample size for group 1, the number

of groups, the method of analysis, the response distribution, and the overall

error rate, alpha.

program simseq

use IMSL_LIBRARIES

implicit none

real, dimension(:,:), allocatable :: X, output

real, dimension(10000,2) :: reps

real, dimension(:), allocatable :: means

real, dimension(:), allocatable :: progres

real :: alpha, avst

integer, dimension(:,:), allocatable :: O

integer :: method, d, n1, k, i, j, n

! Read in parameter values:

write(*,*) ’n1 = ’; read(*,*) n1
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write(*,*) ’k (# of groups) = ’; read(*,*) k

write(*,*) ’method (1=P, 2=OBF, 3=SS) = ’; read(*,*) method

write(*,*) ’d (1=N, 2=E) = ’; read(*,*) d

write(*,*) ’alpha = ’; read(*,*) alpha

! Set means, the vector for mu1 or lambda1 depending on d,

! also allocating eventual output dimensions:

if (d==1) then

allocate(means(11))

do i=1, 11

means(i) = (real(i)-1.0)/10.0

end do

allocate(output(11,2))

else if(d==2) then

allocate(means(9))

do i=1, 9

means(i) = (real(i)+3.0)/4.0

end do

allocate(output(9,2))

end if

! Total number of subjects:

n = n1*k

allocate(X(3,n))

allocate(O(3,n))

allocate(progres(2))

do i=1, size(means)

do j=1, 10000
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X = datagen(n1, k, d, n, means(i))

O = ordergen(n)

progres = seqrank(X, O, alpha, method, n, k, n1)

reps(j,1) = progres(1)

reps(j,2) = progres(2)

end do

output(i,1) = sum(reps(1:10000,1))/10000.0

output(i,2) = sum(reps(1:10000,2))/10000.0

end do

! Output values

do i=1, size(means)

write (*,"(f9.4,4x,f9.4)") (output(i,j), j=1, 2)

end do

contains

function datagen(n1, k, d, n, m1)

! This function generates a 3xn matrix of raw data.

real, dimension(:,:), allocatable :: datagen

real, dimension(5) :: rand

real :: m1, temp1, temp2, temp3

integer :: n1, k, d, n, dgi, dgj

allocate(datagen(3,n))

do dgi=1, n

if (d==1) then

call RNNOR(rand)

if ((m1.gt.0.0).and.(dgi.le.n1)) call SADD(5,m1,rand,1)
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else if (d==2) then

call RNEXP(rand)

if ((m1.gt.1.0).and.(dgi.le.n1)) call SSCAL(5,m1,rand,1)

end if

do dgj=1, 3

temp1 = rand(dgj+2)

temp2 = (1.0/2.0)*rand(dgj+1)

temp3 = (1.0/2.0)*rand(dgj)

datagen(dgj,dgi) = temp1 + temp2 + temp3

end do

end do

return

end function datagen

function ordergen(n)

! This function generates a 3xn random matrix of orders.

integer, dimension(:,:), allocatable :: ordergen

integer, dimension(:), allocatable :: temp

integer :: n, ogi, ogj

allocate(ordergen(3,n))

allocate(temp(n))

call RNPER(temp)

do ogi=1, n
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do ogj=1, 3

ordergen(ogj,ogi) = 3*temp(ogi) + ogj - 3

end do

end do

deallocate(temp)

return

end function ordergen

function seqrank(X, O, alpha, method, n, k, n1)

! This function returns the results of one simulation.

real, dimension(:,:,:), allocatable :: C

real, dimension(:,:), allocatable :: X, R, M, Z

real, dimension(:,:), allocatable :: Ztemp

real, dimension(2) :: seqrank

real, dimension(:), allocatable :: tempr1

real, dimension(:), allocatable :: snt, snt2

real, dimension(:), allocatable :: nsubs1, nsubs2

real, dimension(:), allocatable :: tsum1, tsum2

real, dimension(:), allocatable :: tstat1, tstat2

real :: alpha, sd, b

integer, dimension(:,:), allocatable :: O

integer, dimension(:), allocatable :: rowobs, colobs, Orow1

integer, dimension(:), allocatable :: tempi1, tempi2

integer, dimension(3) :: tempi3

integer :: method, n, k, n1

integer :: nt, sri, srj, srk, srl, count, rind
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nt = 3*n

allocate(R(3,n),M(3,n),Z(3,n))

allocate(rowobs(nt),colobs(nt))

allocate(Orow1(n),tempi1(n),tempi2(n))

allocate(snt(n**2), snt2(n**2))

! Pull out the permutation that rearranges the first

! row of the matrix O, and place it in tempi2:

Orow1(1:n) = O(1,1:n)

do sri=1, n

tempi1(sri) = sri

end do

call SVIGP(Orow1,tempi2, tempi1)

do sri=1, 3

tempi3(sri) = sri

end do

do sri=1, n

rowobs( (3*(sri-1)+1) : (3*(sri-1)+3) ) = tempi3(1:3)

colobs( (3*(sri-1)+1) : (3*(sri-1)+3) ) = tempi1(sri)

end do

deallocate(tempi1, tempi2)
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! Calculate the sequential ranks:

do sri=1, nt

! Figure out how many observations occurred before the one

! indexed by sri.

count = 0

do srj=1, n

if (O(rowobs(sri),srj).le.sri) count = count + 1

end do

allocate(tempr1(count))

! Extract the X’s for the observations that occurred

! before the one indexed by sri.

srk=1

do srj=1, n

if (O(rowobs(sri),srj).lt.sri) then

tempr1(srk) = X(rowobs(sri),srj)

srk = srk + 1

else if (O(rowobs(sri),srj)==sri) then

tempr1(srk) = X(rowobs(sri),srj)

rind = srk

srk = srk + 1

end if

end do

! Find and store the sequential rank for sri, as well as its

! distributional parameter.

if (count.ge.2) then

call RANKS(tempr1, tempr1, ITIE=3)
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R(rowobs(sri),colobs(sri)) = tempr1(rind)

M(rowobs(sri),colobs(sri)) = real(count)

else

R(rowobs(sri),colobs(sri)) = 1.0

M(rowobs(sri),colobs(sri)) = 1.0

end if

deallocate(tempr1)

end do

! Standardize the sequential ranks:

do sri=1, n

do srj=1, 3

sd = sqrt((M(srj,sri)**2.0-1.0)/12.0)

if (sd.gt.0.0) then

Z(srj,sri) = (R(srj,sri)-(M(srj,sri)+1.0)/2.0)/sd

else

Z(srj,sri) = 0.0

end if

end do

end do

! Estimate covariances, calculate within-subject sums, and

! determine how many patients are in the trial at any

! given analysis time:

if (method.ne.3) then

allocate(C(n,3,3))

allocate(nsubs1(n),nsubs2(n))
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end if

do sri=1, n

srk = 3*sri

allocate(Ztemp(3,sri))

count = 1

do srj=1, n

if (O(3,srj).le.srk) then

snt(n*(sri-1)+srj) = Z(1,srj)+Z(2,srj)+Z(3,srj)

Ztemp(1:3,count) = Z(1:3,srj)

count = count + 1

else

snt(n*(sri-1)+srj) = 0

end if

end do

if(method.ne.3) then

if (sri.ge.2) then

call CORVC(3,.t.Ztemp,C(sri,1:3,1:3))

else

C(sri,1:3,1:3) = 0.0

end if

count = 0

do srj=1, n1

if (O(3,srj).le.srk) then

count = count + 1

end if
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end do

nsubs1(sri) = real(count)

count = 0

do srj=n1+1, 2*n1

if (O(3,srj).le.srk) then

count = count + 1

end if

end do

nsubs2(sri) = real(count)

end if

deallocate(Ztemp)

end do

! Calculate standardized sums, for Test 1/Test 2, and

! signs of the sums for Test 3:

do sri=1, n

if (method.ne.3) then

sd = sqrt(sum(C(sri,1:3,1:3)))

if((sri.ge.2).and.(sd.gt.0.0)) then

do srj=1, n

snt2(n*(sri-1)+srj) = snt(n*(sri-1)+srj)/sd

end do

else

snt2(n*(sri-1)+1:n*(sri-1)+n) = 0.0

end if

else

do srj=1, n
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if(snt(n*(sri-1)+srj).gt.0.0) then

snt2(n*(sri-1)+srj) = 1.0

else if (snt(n*(sri-1)+srj).lt.0.0) then

snt2(n*(sri-1)+srj) = -1.0

else

snt2(n*(sri-1)+srj) = 0.0

end if

end do

end if

end do

! Calculate test sums:

allocate(tsum1(n), tsum2(n))

allocate(tstat1(n), tstat2(n))

do sri=1, n

tsum1(sri) = sum(snt2(n*(sri-1)+1:n*(sri-1)+n1))

tsum2(sri) = sum(snt2(n*(sri-1)+n1+1:n*(sri-1)+2*n1))

end do

! Set the boundaries and test statistics:

if (method==1) then

if (k==2) then

if (alpha==0.1) then

if (n1==20) then

b = 2.65

else if (n1==50) then

b = 2.74

96



end if

else if (alpha==0.05) then

if(n1==20) then

b = 2.93

else if (n1==50) then

b = 3.02

end if

else if (alpha==0.01) then

if (n1==20) then

b = 3.48

else if (n1==50) then

b = 3.56

end if

end if

do sri=1, n

if (nsubs1(sri).gt.0.0) then

tstat1(sri) = tsum1(sri)/sqrt(nsubs1(sri))

else

tstat1(sri) = 0.0

end if

end do

else if (k==3) then

if (alpha==0.1) then

if (n1==20) then

b = 2.92

else if (n1==50) then

b = 3.01

end if

else if (alpha==0.05) then
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if (n1==20) then

b = 3.18

else if (n1==50) then

b = 3.26

end if

else if (alpha==0.01) then

if (n1==20) then

b = 3.69

else if (n1==50) then

b = 3.76

end if

end if

do sri=1, n

if (nsubs1(sri).gt.0.0) then

tstat1(sri) = tsum1(sri)/sqrt(nsubs1(sri))

else

tstat1(sri) = 0.0

end if

if (nsubs2(sri).gt.0.0) then

tstat2(sri) = tsum2(sri)/sqrt(nsubs2(sri))

else

tstat2(sri) = 0.0

end if

end do

end if

else if (method==2) then

if (k==2) then

if (alpha==0.1) then
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b = 1.96

else if (alpha==0.05) then

b = 2.24

else if (alpha==0.01) then

b = 2.80

end if

tstat1(1:n) = tsum1(1:n)/sqrt(real(n1))

else if (k==3) then

if (alpha==0.1) then

b = 2.23

else if (alpha==0.05) then

b = 2.49

else if (alpha==0.01) then

b = 3.00

end if

tstat1(1:n) = tsum1(1:n)/sqrt(real(n1))

tstat2(1:n) = tsum2(1:n)/sqrt(real(n1))

end if

else

if (k==2) then

if (alpha==0.1) then

if (n1==10) then

b = 6.0

else if (n1==15) then

b = 8.0

else if (n1==20) then

b = 9.0

else if (n1==50) then
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b = 14.0

end if

else if (alpha==0.05) then

if (n1==10) then

b = 7.0

else if (n1==15) then

b = 9.0

else if (n1==20) then

b = 10.0

else if (n1==50) then

b = 16.0

end if

else if (alpha==0.01) then

if (n1==10) then

b = 8.0

else if (n1==15) then

b = 10.0

else if (n1==20) then

b = 12.0

else if (n1==50) then

b = 20.0

end if

end if

tstat1(1:n) = tsum1(1:n)

else if (k==3) then

if (alpha==0.1) then

if (n1==10) then

b = 7.0

else if (n1==15) then
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b = 9.0

else if (n1==20) then

b = 10.0

else if (n1==50) then

b = 16.0

end if

else if (alpha==0.05) then

if (n1==10) then

b = 8.0

else if (n1==15) then

b = 10.0

else if (n1==20) then

b = 11.0

else if (n1==50) then

b = 18.0

end if

else if (alpha==0.01) then

if (n1==10) then

b = 9.0

else if (n1==15) then

b = 12.0

else if (n1==20) then

b = 13.0

else if (n1==50) then

b = 21.0

end if

end if

tstat1(1:n) = tsum1(1:n)

tstat2(1:n) = tsum2(1:n)
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end if

end if

! Monitor:

count = 1

if (k==2) then

if (method.ne.3) then

do sri=1, n

if (abs(tstat1(sri)).gt.b) then

exit

else

count = count + 1

end if

end do

else

do sri=1, n

if (abs(tstat1(sri)).ge.b) then

exit

else

count = count + 1

end if

end do

end if

else if (k==3) then

if(method.ne.3) then

do sri=1, n

if ((abs(tstat1(sri)).gt.b).or.(abs(tstat2(sri)).gt.b)) then

exit

else
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count = count + 1

end if

end do

else

do sri=1, n

if ((abs(tstat1(sri)).ge.b).or.(abs(tstat2(sri)).ge.b)) then

exit

else

count = count + 1

end if

end do

end if

end if

! Set the vector of results:

if (count==(n+1)) then

seqrank(1) = 0.0

seqrank(2) = real(n)

else

seqrank(1) = 1.0

seqrank(2) = real(count)

end if

if (method.ne.3) then

deallocate(C)

deallocate(nsubs1,nsubs2)

end if

deallocate(R, M, Z)
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deallocate(snt, snt2)

deallocate(tsum1, tsum2)

deallocate(tstat1, tstat2)

deallocate(rowobs, colobs, Orow1)

return

end function seqrank

end program simseq
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