University of Alberta

FULLY SEQUENTIAL MONITORING OF LONGITUDINAL TRIALS USING SEQUENTIAL RANKS, WITH APPLICATIONS TO AN ORTHODONTICS STUDY

by

Paul Joseph Bogowicz

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of

Master of Science

in

Statistics

Department of Mathematical and Statistical Sciences

© Paul Joseph Bogowicz Edmonton, Alberta Fall 2009

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.

Examining Committee

Edit Gombay, Mathematical and Statistical Sciences

Giseon Heo, Dentistry

Mike MacGregor, Computing Science

Byron Schmuland, Mathematical and Statistical Sciences

This thesis is dedicated to my parents, for their unconditional love and support.

Abstract

This thesis explores the application of fully sequential methods for the analysis of longitudinal clinical trial data. A new nonparametric approach will be developed, using sequential ranks, for the comparison of several treatment groups. Sequential ranking is an alternative to ranking by the usual method. Although sequential ranks are more likely to suffer from information loss than regular ranks, they are preferred here for their independence.

We will develop three alternative monitoring procedures. The first two will be large-sample, continuous analogues of the Pocock and O'Brien-Fleming group sequential monitoring procedures. The third procedure, a small sample version, will make use of the sign function, and will be grounded in the theory of simple random walks.

The performance of the three monitoring procedures will be assessed via a Monte Carlo simulation study. In particular, we will compare power and average stopping time for various treatment differences, different numbers of treatment groups, and different response distributions. The procedure will then be applied to data arising from an orthodontic clinical trial.

Acknowledgements

My grateful thanks go to my supervisor, Dr. Edit Gombay, without whom this thesis would not have been possible. She has been delightful to work with, given her vast experience with and extensive knowledge of sequential methods, and of statistics in general. Indeed, her previous contributions to the field form the basis of this thesis.

I also owe many thanks to my co-supervisor Dr. Giseon Heo. She has inspired and encouraged me to be ambitious in my research and in my studies. I am so grateful to her for first introducing me to the field of sequential analysis, and to the ideas of evidence-based research. Dr. Heo continues to offer me her support, advice, and insight.

Finally, I would like to thank Dr. Carlos Flores-Mir, for his wisdom and advice; Dr. Manuel Lagravère, a student in the Orthodontic Graduate Program, Department of Dentistry, for kindly providing the data set that was used in this thesis; Ms. Jennifer Gamble, for sharing this journey with me, and for never tiring of my questions.

Paul

Contents

1	Introduction			
	1.1	Longit	tudinal data analysis	1
		1.1.1	Linear and linear-mixed models	2
		1.1.2	Marginal models	4
		1.1.3	Repeated measures ANOVA	5
		1.1.4	Other models and methods	9
	1.2	Seque	ntial analysis	10
		1.2.1	Group sequential analysis	10
		1.2.2	Fully sequential analysis	12
		1.2.3	Group versus fully sequential analysis	13
2	Seq	uentia	l methods for longitudinal data	14
	2.1	Group	sequential methods	14
		2.1.1	Linear and linear-mixed models	14
		2.1.2	Marginal models and the GEE	18
		2.1.3	Nonparametric methods	20
		2.1.4	General approaches and other methods	22
	2.2	Fully	sequential methods	23
3	The	fully	sequential nonparametric procedure	26
	3.1	Prelin	ninaries	26
		3.1.1	Sequential ranks and their properties	27
	3.2	Large-	-sample versions	29

		3.2.1	The test statistic	29
		3.2.2	Monitoring	31
		3.2.3	Boundary calculation	35
	3.3	Small-	sample version	38
		3.3.1	The test statistic	38
		3.3.2	Monitoring	38
		3.3.3	Boundary calculation	40
4	Sim	ulatior	n	42
	4.1	Prelim	ninaries	42
	4.2	Compa	aring $c=2$ groups	45
		4.2.1	Algorithms	45
		4.2.2	Results	47
	4.3	Compa	aring $c=3$ groups	56
		4.3.1	Algorithms	56
		4.3.2	Results	57
	4.4	Discus	ssion	68
5	App	olicatio	on	69
6	Sun	nmary	and conclusions	74
Bi	bliog	graphy		76
\mathbf{A}	Exa	mples		81
В	Cod	le		86

List of Tables

1.1	Sums of squares, degrees of freedom, and mean squares for re-	
	peated measures ANOVA	7
3.1	Critical values $C(\alpha, n_1)$ for Test 1 with $c = 2$	36
3.2	Critical values $C(\alpha^*, n_1)$ for Test 1 with $c = 3$ and overall error	
	rate α	37
3.3	Critical values $C(\alpha)$ for Test 2 with $c=2$, and $C(\alpha^*)$ with $c=3$	
	and overall error rate α	37
3.4	Critical values $a = C(\alpha, n_1)$ for Test 3 with $c = 2$. The exact	
	value for α is given in brackets after each critical value	41
3.5	Critical values $a = C(\alpha^*, n_1)$ for Test 3 with $c = 3$ and overall	
	error rate α . The exact value for α is given in brackets after	
	each critical value	41
4.1	Simulated power (P) and average stopping time (AVST) for	
	Test 1 (Pocock) with $c=2$ and normally distributed responses.	
	We set $\mu_2 = 0$ and $\sigma^2 = 1$, while μ_1 is allowed to vary. Critical	
	values are obtained from Table 3.1. For this simulation, $n_1 =$	
	$n_2 = 20 \text{ or } 50.$	48
4.2	Simulated power (P) and average stopping time (AVST) for	
	Test 2 (O'Brien-Fleming) with $c=2$ and normally distributed	
	responses. We set $\mu_2 = 0$ and $\sigma^2 = 1$, while μ_1 is allowed	
	to vary. Critical values are obtained from Table 3.3. For this	
	simulation, $n_1 = n_2 = 20$ or 50	49

4.3	Simulated power (P) and average stopping time (AVST) for	
	Test 3 with $c=2$ and normally distributed responses. We set	
	$\mu_2 = 0$ and $\sigma^2 = 1$, while μ_1 is allowed to vary. Critical values	
	are obtained from Table 3.4. For this simulation, $n_1 = n_2 = 10$	
	or 15	50
4.4	Simulated power (P) and average stopping time (AVST) for	
	Test 3 with $c=2$ and normally distributed responses. We set	
	$\mu_2 = 0$ and $\sigma^2 = 1$, while μ_1 is allowed to vary. Critical values	
	are obtained from Table 3.4. For this simulation, $n_1 = n_2 = 20$	
	or 50	51
4.5	Simulated power (P) and average stopping time (AVST) for Test	
	1 (Pocock) with $c=2$ and exponentially distributed responses.	
	We set $\lambda_2 = 1$ while λ_1 is allowed to vary. Critical values are	
	obtained from Table 3.1. For this simulation, $n_1 = n_2 = 20$ or	
	50.	52
4.6	Simulated power (P) and average stopping time (AVST) for Test	
	2 (O'Brien-Fleming) with $c=2$ and exponentially distributed	
	responses. We set $\lambda_2=1$ while λ_1 is allowed to vary. Critical	
	values are obtained from Table 3.3. For this simulation, $n_1 =$	
	$n_2 = 20 \text{ or } 50.$	53
4.7	Simulated power (P) and average stopping time (AVST) for Test	
	3 with $c=2$ and exponentially distributed responses. We set	
	$\lambda_2 = 1$ while λ_1 is allowed to vary. Critical values are obtained	
	from Table 3.4. For this simulation, $n_1 = n_2 = 10$ or 15	54
4.8	Simulated power (P) and average stopping time (AVST) for Test	
	3 with $c=2$ and exponentially distributed responses. We set	
	$\lambda_2 = 1$ while λ_1 is allowed to vary. Critical values are obtained	
	from Table 3.4. For this simulation, $n_1 = n_2 = 20$ or 50	55

4.9	Simulated power (P) and average stopping time (AVST) for	
	Test 1 (Pocock) with $c=3$ and normally distributed responses.	
	We set $\mu_2 = \mu_3 = 0$ and $\sigma^2 = 1$, while μ_1 is allowed to vary.	
	Critical values are obtained from Table 3.2. For this simulation,	
	$n_1 = n_2 = n_3 = 20 \text{ or } 50.$	58
4.10	Simulated power (P) and average stopping time (AVST) for	
	Test 2 (O'Brien-Fleming) with $c=3$ and normally distributed	
	responses. We set $\mu_2 = \mu_3 = 0$ and $\sigma^2 = 1$, while μ_1 is allowed	
	to vary. Critical values are obtained from Table 3.3. For this	
	simulation, $n_1 = n_2 = n_3 = 20$ or 50	59
4.11	Simulated power (P) and average stopping time (AVST) for	
	Test 3 with $c=3$ and normally distributed responses. We	
	set $\mu_2 = \mu_3 = 0$ and $\sigma^2 = 1$, while μ_1 is allowed to vary.	
	Critical values are obtained from Table 3.5. For this simulation,	
	$n_1 = n_2 = n_3 = 10 \text{ or } 15.$	60
4.12	Simulated power (P) and average stopping time (AVST) for	
	Test 3 with $c=3$ and normally distributed responses. We	
	set $\mu_2 = \mu_3 = 0$ and $\sigma^2 = 1$, while μ_1 is allowed to vary.	
	Critical values are obtained from Table 3.5. For this simulation,	
	$n_1 = n_2 = n_3 = 20 \text{ or } 50.$	61
4.13	Simulated power (P) and average stopping time (AVST) for Test	
	1 (Pocock) with $c=3$ and exponentially distributed responses.	
	We set $\lambda_2 = \lambda_3 = 1$ while λ_1 is allowed to vary. Critical values	
	are obtained from Table 3.2. For this simulation, $n_1 = n_2 =$	
	$n_3 = 20 \text{ or } 50.$	62
4.14	Simulated power (P) and average stopping time (AVST) for Test	
	2 (O'Brien-Fleming) with $c=3$ and exponentially distributed	
	responses. We set $\lambda_2 = \lambda_3 = 1$ while λ_1 is allowed to vary.	
	Critical values are obtained from Table 3.3. For this simulation,	
	$n_1 = n_2 = n_3 = 20 \text{ or } 50.$	63

4.15	Simulated power (P) and average stopping time (AVST) for	
	Test 3 with $c=3$ and exponentially distributed responses. We	
	set $\lambda_2 = \lambda_3 = 1$ while λ_1 is allowed to vary. Critical values are	
	obtained from Table 3.5. For this simulation, $n_1 = n_2 = n_3 = 10$	
	or 15	64
4.16	Simulated power (P) and average stopping time (AVST) for	
	Test 3 with $c=3$ and exponentially distributed responses. We	
	set $\lambda_2 = \lambda_3 = 1$ while λ_1 is allowed to vary. Critical values are	
	obtained from Table 3.5. For this simulation, $n_1 = n_2 = n_3 = 20$	
	or 50	65
5.1	Critical values for Test 1, Test 2, and Test 3, for the skeletal	
	and dental effects study. For Test 3, the exact significance levels	
	are provided in brackets.	70
5.2	Test statistics at analyses 1-30, to be compared to a critical	
	value, for landmarks 1 and 6, and Tests 1, 2, and 3	71
5.3	Test statistics at analyses 31-60, to be compared to a critical	
	value, for landmarks 1 and 6, and Tests 1, 2, and 3	72

List of Figures

4.1	Plots of empirical power (P) and average stopping time (AVST)	
	for Tests 1, 2, and 3, where $c = 3$, $n_1 = n_2 = n_3 = 20$, $\alpha = 0.05$,	
	and where the response distribution is normal	66
4.2	Plots of empirical power (P) and average stopping time (AVST)	
	for Tests 1, 2, and 3, where $c = 3$, $n_1 = n_2 = n_3 = 50$, $\alpha = 0.05$,	
	and where the response distribution is normal	67
5.1	Plots of the sample paths of the test statistics for Tests 1, 2, and	
	3, along with the corresponding critical values, for landmarks 1	
	and 6	79

Chapter 1

Introduction

1.1 Longitudinal data analysis

In what follows, we consider the historical progression of sequential methods for longitudinal data. Thus it is appropriate to consider first the basic approaches to longitudinal data analysis.

Longitudinal, or panel, data involves the measurement of some quantity on each unit, repeatedly over time. Such data arise frequently in medical and dental applications. Prior to any discussion of analytical methods, it is essential that notation be established.

Definition 1.1.1 Let $y_{i\alpha}$ be the i^{th} measurement on the α^{th} unit, for $i = 1, \ldots, p_{\alpha}$ and $\alpha = 1, \ldots, n$. Each measurement on each unit has a corresponding vector of explanatory variables, $\mathbf{x}_{i\alpha}$, where $\mathbf{x}_{i\alpha}$ is of length m.

To ease the notation, we set $\mathbf{y}_{\alpha} = (y_{1\alpha}, y_{2\alpha}, \dots, y_{p_{\alpha}\alpha})^T$. Finally, $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)^T$ is a $(p_1 + \dots + p_n) \times 1$ vector, and $\mathbf{X} = (\mathbf{x}_{11}^T, \dots, \mathbf{x}_{p_11}^T, \mathbf{x}_{12}^T, \dots, \mathbf{x}_{p_{22}}^T, \dots, \mathbf{x}_{p_{nn}}^T)^T$ is a $(p_1 + \dots + p_n) \times m$ matrix.

The methods of longitudinal data explained here follow in general the theory and ideas presented in the book, *Analysis of Longitudinal Data* by Diggle et al. [7], unless otherwise indicated.

1.1.1 Linear and linear-mixed models

Longitudinal linear and linear-mixed models rely upon the theory of the general linear model (GLM). The basic form of this model is given by

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \tag{1.1}$$

where the indexing of ϵ is analogous to that of \mathbf{y} . Assume that ϵ is a realization of some random vector whose distribution is $N(\mathbf{0}, \mathbf{V})$, given \mathbf{X} . To obtain the usual classical GLM, one would set \mathbf{V} to equal the identity matrix premultiplied by a constant: $\sigma^2 \mathbf{I}$. For the special case of longitudinal data, the matrix \mathbf{V} is block diagonal. We will denote these blocks by \mathbf{V}_{α} , for $\alpha = 1, \ldots, n$.

Before elaborating upon the structure of V, we define the general sources of variation that arise in longitudinal data. Measurement error is the variation arising from some measurement process. Variation due to random effects arises when units are randomly sampled from some population. Finally, serial correlation is variation arising from within-unit correlation, when units are monitored over time.

Consider the following additive decomposition

$$\epsilon_{i\alpha} = Z_{i\alpha} + \mathbf{d}_{i\alpha}^T \mathbf{U}_{\alpha} + W_{\alpha}(t_{i\alpha})$$
 (1.2)

where we define $\mathbf{d}_{i\alpha}$ to be an r-vector of unit-specific explanatory variables and $t_{i\alpha}$ to be the measurement time for the i^{th} measurement on the α^{th} unit. We let the $Z_{i\alpha}$ form a set of mutually independent $N(0, \tau^2)$ random variables, and let the \mathbf{U}_{α} form a set of mutually independent length-r $N(\mathbf{0}, \mathbf{G})$ random vectors. Finally, the $W_{\alpha}(t_{i\alpha})$ are sampled from n independent copies of a zero-mean stationary Gaussian process, with variance σ^2 and correlation function $\rho(u)$ (Diggle **et al.**, [7]). In this decomposition, the $Z_{i\alpha}$, \mathbf{U}_{α} , and $W_{\alpha}(t_{i\alpha})$ terms correspond to measurement error, random effects, and serial correlation, respectively.

In order to describe the \mathbf{V}_{α} we develop a matrix formulation of the above decomposition. Define $\boldsymbol{\epsilon}_{\alpha} = (\epsilon_{1\alpha}, \epsilon_{2\alpha}, \dots, \epsilon_{p_{\alpha}\alpha})^{T}$. We let \mathbf{D}_{α} be the $p_{\alpha} \times r$

matrix with rows given by $\mathbf{d}_{i\alpha}^T$ (where α is fixed). Let \mathbf{H}_{α} be the $p_{\alpha} \times p_{\alpha}$ matrix given by $(h_{jk}) = \rho(|t_{j\alpha} - t_{k\alpha}|)$. Then,

$$\mathbf{V}_{\alpha} = VAR[\boldsymbol{\epsilon}_{\alpha}] = \tau^{2}\mathbf{I} + \mathbf{D}_{\alpha}\mathbf{G}\mathbf{D}_{\alpha}^{T} + \sigma^{2}\mathbf{H}_{\alpha}$$
 (1.3)

Diggle **et al.** [7] give specific examples of the above covariance structure. Here are two of them:

Example 1.1.2 (Serial correlation alone) Suppose that $\epsilon_{i\alpha} = W_{\alpha}(t_{i\alpha})$. Then, \mathbf{V}_{α} simplifies to $\sigma^2 \mathbf{H}_{\alpha}$. Typically $\rho(u)$ is chosen to decrease as u (time separation, or lag) increases. For instance, the exponential model uses $\rho(u) = \exp(-\phi u)$.

Example 1.1.3 (Measurement error with random effects) If $\epsilon_{i\alpha} = Z_{i\alpha} + \mathbf{d}_{i\alpha}^T \mathbf{U}_{\alpha}$, then $\mathbf{V}_{\alpha} = \tau^2 \mathbf{I} + \mathbf{D}_{\alpha} \mathbf{G} \mathbf{D}_{\alpha}^T$. The special case of r = 1 yields a well-known growth curve model.

Now that we have identified the basic framework of the linear and linearmixed models, we can identify how they are used. In particular we briefly consider three steps: model building, estimation, and inference.

The model building stage first involves exploratory data analysis, including time plots, scatterplot matrices, and empirical variograms. Time plots of the response are useful for ascertaining mean behaviour over time, where time is included as an explanatory variable. Once the model matrix \mathbf{X} is identified, ordinary least-squares (OLS) residuals are calculated and used to identify a suitable covariance model. In particular, time plots, scatterplot matrices, and empirical variograms of the residuals are examined.

The next step is to estimate the parameters from the model identified at the model building stage. In particular, we have implicitly assumed that \mathbf{y} is a realization of the random vector \mathbf{Y} whose distribution is $N(\mathbf{X}\boldsymbol{\beta}, \mathbf{V})$. We may write \mathbf{V} as $\mathbf{V}(\boldsymbol{\gamma})$ to explicitly note its dependence on various parameters (such as τ^2 , \mathbf{G} , σ^2). Taking

$$\hat{\boldsymbol{\beta}}(\boldsymbol{\gamma}) = (\mathbf{X}^T \mathbf{V}(\boldsymbol{\gamma})^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}(\boldsymbol{\gamma})^{-1} \mathbf{y}$$
 (1.4)

and letting

$$RSS(\gamma) = (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}(\gamma))^T \mathbf{V}(\gamma)^{-1} (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}(\gamma))$$
(1.5)

be the residual sum of squares (RSS), the restricted maximum likelihood estimator (REML) for γ maximizes:

$$L^*(\gamma) = -\frac{1}{2} \{ \log |\mathbf{V}(\gamma)| + \log |\mathbf{X}^T \mathbf{V}(\gamma)^{-1} \mathbf{X}| + RSS(\gamma) \}$$
 (1.6)

Then, the REML estimate for $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}}(\tilde{\boldsymbol{\gamma}})$, where $\tilde{\boldsymbol{\gamma}}$ is the REML estimate for $\boldsymbol{\gamma}$.

Inference for this model is based on the fact that $\hat{\beta}(\gamma)$ is distributed as $N(\beta, (\mathbf{X}^T \mathbf{V}(\gamma)^{-1} \mathbf{X})^{-1})$. This holds approximately if $\mathbf{V}(\gamma)$ is estimated using the REML estimates of γ and β . General linear hypothesis testing proceeds as usual. Diggle **et al.** [7] also outline a log-likelihood ratio statistic for use when model selection is not obvious.

1.1.2 Marginal models

Marginal models are a natural extension of linear models for longitudinal data. There are two general components to a marginal model: a regression model of the response on explanatory variables, and a model of within-unit correlation. The theory of marginal models borrows extensively from that of generalized linear models.

As for the linear and linear-mixed models, the regression model for the response is one based on expectation. That is,

$$E[Y_{i\alpha}] = \mu_{i\alpha} \tag{1.7}$$

depends on $\mathbf{x}_{i\alpha}$ only through $h(\mu_{i\alpha}) = \mathbf{x}_{i\alpha}^T \boldsymbol{\beta}$. The function $h(\cdot)$ is called a *link* function. Marginal variance is assumed to be

$$VAR[Y_{i\alpha}] = \nu(\mu_{i\alpha})\phi \tag{1.8}$$

where $\nu(\cdot)$ is a known function, and ϕ may or may not be known. Similarly, the correlation between two within-unit observations is

$$CORR[Y_{i\alpha}, Y_{j\alpha}] = \rho(\mu_{i\alpha}, \mu_{j\alpha}, \gamma)$$
 (1.9)

where $\rho(\cdot)$ is also a known function, and γ is a vector of (potentially unknown) parameters.

If we use the identity link, $h(\mu) = \mu$, and further assume that the data is Gaussian, the class of models specified by the above equations is the same as the class of linear models developed in Section 1.1.1.

In the normal case, a likelihood approach is sufficient for estimation. It leads to well-known equations that are easy to solve. However, the general form of the marginal model does not require a distributional assumption. This precludes the use of likelihood methods for general estimation purposes. Instead, parameters are often estimated by solving the generalized estimating equations (GEE), given by

$$S(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \sum_{\alpha=1}^{n} \left(\frac{\partial \boldsymbol{\mu}_{\alpha}}{\partial \boldsymbol{\beta}} \right)^{T} VAR[\mathbf{Y}_{\alpha}](\boldsymbol{\beta}, \boldsymbol{\gamma})^{-1}(\mathbf{y}_{\alpha} - \boldsymbol{\mu}_{\alpha}) = 0$$
 (1.10)

where $\boldsymbol{\mu}_{\alpha} = (\mu_{1\alpha}, \mu_{2\alpha}, \dots, \mu_{p_{\alpha}\alpha})^T$. Note that if $\boldsymbol{\gamma}$ is not known it must be estimated separately, prior to solving the GEE. Diggle **et al.** [7] suggest that $\boldsymbol{\gamma}$ should be replaced by an $m^{1/2}$ -consistent estimate, $\hat{\boldsymbol{\gamma}}$.

According to Fitzmaurice et al. [8], a robust sandwich estimator for the variance matrix of $\hat{\beta}$ should be used for making inferences regarding β .

1.1.3 Repeated measures ANOVA

The analysis of longitudinal data using repeated measures analysis of variance (ANOVA) is an alternative to analyses based on linear, linear-mixed, and marginal models. Its structure parallels that of a split-plot ANOVA; units are plots, and unit-specific repeated measurements form subplots. A randomization argument is not justified however, as measurements are taken in sequential

order. The following description of repeated measures ANOVA follows that of Davis [6].

In the previous sections, we have considered only general longitudinal data. In particular, a single sample of units, each with corresponding repeated measurements on some variable. ANOVA methods can be used to compare two or more such samples. To do so however, we will require an extension of our existing notation:

Definition 1.1.4 Let $y_{i\alpha}^{(k)}$ be the i^{th} measurement on the α^{th} unit in the k^{th} group, for $i=1,\ldots,p_{\alpha}^{(k)},\ k=1,\ldots,c,\ and\ \alpha=1,\ldots,n_k,\ with\ corresponding$ measurement time $t_{i\alpha}^{(k)}$. In vector notation, $\mathbf{y}_{\alpha}^{(k)}=(y_{1\alpha}^{(k)},y_{2\alpha}^{(k)},\ldots,y_{p_{\alpha}^{(k)}\alpha}^{(k)})^T$.

This definition allows for flexibility in the number of groups as well as the number of individuals in each group. In what follows, we will fix $p_{\alpha}^{(k)} = p$ for k = 1, ..., c and $\alpha = 1, ..., n_k$. In other words, we assume that we have the same number of repeated measurements on each unit.

The formulation of an ANOVA table first requires the specification of an underlying model. There are several possibilities, each of which leads to the same table. As in Davis [6], we choose the simplest one:

$$y_{i\alpha}^{(k)} = \mu + \gamma_k + \tau_i + (\gamma \tau)_{ki} + \pi_{\alpha(k)} + \epsilon_{i\alpha}^{(k)}$$
 (1.11)

for i = 1, ..., p, k = 1, ..., c, and $\alpha = 1, ..., n_k$. The overall mean, common to all subjects, is represented by μ . The γ_k represent group effects, the τ_i represent time effects, and the $(\gamma \tau)_{ki}$ the interactions between the two. The effects are subject to the following constraints:

$$\sum_{k=1}^{c} \gamma_k = \sum_{i=1}^{p} \tau_i = \sum_{k=1}^{c} (\gamma \tau)_{ki} = \sum_{i=1}^{p} (\gamma \tau)_{ki} = 0.$$
 (1.12)

We define the $\pi_{\alpha(k)}$ to be mutually independent random effects for units, and the $\epsilon_{i\alpha}^{(k)}$ to be mutually independent measurement errors.

Assume that the $\pi_{\alpha(k)}$ and $\epsilon_{i\alpha}^{(k)}$ are distributed as $N(0, \nu^2)$ and $N(0, \sigma^2)$, respectively. The ANOVA table is given by

Table 1.1: Sums of squares, degrees of freedom, and mean squares for repeated measures ANOVA.

Source	SS	df	MS
Group	SS_G	c-1	$SS_G/(c-1)$
Units(Group)	$SS_{U(G)}$	n-c	$SS_{U(G)}/(n-c)$
Time	SS_T	p-1	$SS_T/(p-1)$
$Group \times Time$	$SS_{G\times T}$	$(c-1)\times(p-1)$	$SS_{G\times T}/[(c-1)\times (p-1)]$
Residual	SS_R	$ (n-c) \times (p-1) $	$SS_R/[(n-c)\times(p-1)]$

where

$$n = \sum_{k=1}^{c} n_k \tag{1.13}$$

is the total number of units under observation, and

$$SS_G = p \sum_{k=1}^{c} n_k (\bar{y}_{\cdot \cdot}^{(k)} - \bar{y}_{\cdot \cdot}^{(\cdot)})^2$$
 (1.14)

$$SS_{U(G)} = p \sum_{k=1}^{c} \sum_{\alpha=1}^{n_k} (\bar{y}_{\cdot \alpha}^{(k)} - \bar{y}_{\cdot \cdot}^{(k)})^2$$
(1.15)

$$SS_T = n \sum_{i=1}^{p} (\bar{y}_{i}^{(\cdot)} - \bar{y}_{\cdot \cdot}^{(\cdot)})^2$$
 (1.16)

$$SS_{G\times T} = \sum_{k=1}^{c} \sum_{\alpha=1}^{n_k} \sum_{i=1}^{p} (\bar{y}_{i\cdot}^{(k)} - \bar{y}_{i\cdot}^{(k)} - \bar{y}_{i\cdot}^{(\cdot)} + \bar{y}_{\cdot\cdot}^{(\cdot)})^2$$
 (1.17)

$$SS_R = \sum_{k=1}^c \sum_{\alpha=1}^{n_k} \sum_{i=1}^p (y_{i\alpha}^{(k)} - \bar{y}_{i\cdot}^{(k)} - \bar{y}_{\cdot\alpha}^{(k)} + \bar{y}_{\cdot\cdot}^{(k)})^2$$
 (1.18)

are the sums of squares. The bar-dot notation is taken to mean the average over the dotted indices. For example,

$$\bar{y}_{\cdot\cdot\cdot}^{(\cdot)} = \frac{1}{np} \sum_{k=1}^{c} \sum_{\alpha=1}^{n_k} \sum_{i=1}^{p} y_{i\alpha}^{(k)}$$
 (1.19)

and

$$\bar{y}_{i}^{(k)} = \frac{1}{n_k} \sum_{\alpha=1}^{n_k} y_{i\alpha}^{(k)}.$$
 (1.20)

There are several hypotheses of interest that are eligible for testing under the model specified in equation 1.11. In particular, to test

$$H_{01}$$
: no difference between groups (1.21)

versus

$$H_{A1}: \text{ not } H_{01}$$
 (1.22)

we would use

$$F_1 = \frac{MS_G}{MS_{U(G)}} = \frac{SS_G/(c-1)}{SS_{U(G)}/(n-c)}$$
(1.23)

which is distributed as F with c-1 and n-c degrees of freedom, under the null hypothesis. Similarly, to test

$$H_{02}$$
: no difference over time (1.24)

versus

$$H_{A2}: \text{ not } H_{02}$$
 (1.25)

we would use

$$F_2 = \frac{MS_T}{MS_R} = \frac{SS_T/(p-1)}{SS_R/[(n-c)\times(p-1)]}$$
(1.26)

which is distributed as F with p-1 and $(n-c)\times(p-1)$ degrees of freedom, under the null hypothesis. Finally, we may also test whether there is an interaction between the effects of group and time, that is

$$H_{03}$$
: no interaction between group and time (1.27)

versus

$$H_{A3}$$
: not H_{03} . (1.28)

For this test, we would use

$$F_3 = \frac{MS_{G \times T}}{MS_R} = \frac{SS_{G \times T}/[(c-1) \times (p-1)]}{SS_R/[(n-c) \times (p-1)]}$$
(1.29)

which is distributed as F with $(c-1) \times (p-1)$ and $(n-c) \times (p-1)$ degrees of freedom, under the null hypothesis.

Each ANOVA test requires that the within-unit variance matrices are the same, for each group. This is similar to the usual "equal variances" assumption in one-way ANOVA. In addition however, the tests of H_{02} and H_{03} require a so-called sphericity condition to hold. If we ignore groups, reverting to our previous notation, the sphericity condition can be expressed as:

$$VAR[y_{i\alpha} - y_{j\alpha}]$$
 is constant for all i and j (1.30)

where i, j = 1, ..., p. This can be assessed using Mauchly's test for sphericity [6].

1.1.4 Other models and methods

Diggle **et al.** [7] outline two other general approaches that can be used to analyze longitudinal data. We describe both very briefly.

Random effects models are a natural extension of both generalized linear models, and the linear-mixed random effects error models. The latter are extended to incorporate link functions other than the identity link. These models are useful when it is the case that there is heterogeneity among units in some or all regression coefficients. In particular, they should be used when individuals are the target of inference, rather than the mean. As is the case with generalized linear models, inference here is likelihood-based.

Transition models assume that correlation arises between successive withinunit measurements because past values of the underlying random process influence current and future values. The distribution of $Y_{i\alpha}$ is specified as being conditional upon its past values $Y_{1\alpha}, \ldots, Y_{(i-1)\alpha}$, as well as the past and current values of covariates under consideration. Likelihood-based estimation and inference is generally used. A useful class of transition models is the class of Markov generalized linear models.

1.2 Sequential analysis

One of the characteristics of clinical trial data is that it is not usually available all at once. In other words, data accumulates gradually, over time. For ethical and sometimes economic reasons, researchers are motivated to examine the data as it arrives. The process of doing so may inflate the probability of Type I error. Sequential analysis is an area of statistics that aims to control this inflation, by formalizing the process of interim looks.

Historically, there have been two approaches: group and fully sequential analysis. Group sequential analysis restricts analyses to often pre-specified analysis times, called interim analyses. Fully, or continuous, sequential analysis involves monitoring the data continuously. That is, an analysis is performed after each new data point or observation is received.

Before describing how sequential analysis has been applied to longitudinal data, we must establish some notation, and define some sequential methods.

1.2.1 Group sequential analysis

A group sequential monitoring procedure involves examining the data at specific interim analysis times:

Definition 1.2.1 Let T be the maximum number of interim analyses. Analyses 1, 2, ..., T take place at times $t_1, t_2, ..., t_T$. We will use the index j to refer to an arbitrary analysis time, t_j .

This should not be confused with $t_{i\alpha}^{(k)}$, which is the measurement time corresponding to the i^{th} measurement on the subject indexed by k and α .

It is often the case that we are repeatedly testing some null hypothesis on a single parameter, with a symmetric alternative. To do so, we calculate some test statistic, say S, at each analysis time:

Definition 1.2.2 We say that $S_1, S_2, ..., S_T$ is a sequence of test statistics, and often place them in a vector $\mathbf{S} = (S_1, S_2, ..., S_T)^T$.

To actually test the null hypothesis at time t_j , we compare S_j to a critical value, or boundary:

Definition 1.2.3 We define B_1, B_2, \ldots, B_T to be the boundaries used at interim analyses $1, 2, \ldots, T$ respectively.

Most often a simple rejection rule is used, whereby if $|S_j| > B_j$, the trial stops. If on the other hand $|S_j| \le B_j$, the trial continues at least until the $(j+1)^{\text{th}}$ interim analysis time.

Assuming an overall error rate of α , we define two commonly used monitoring procedures. The first is due to Slud and Wei [39]. Our definition follows that of Spiessens et al. [40]:

Definition 1.2.4 (Slud-Wei method) First, exit probabilities $\alpha_1, \alpha_2, \dots, \alpha_T$ are chosen so that

$$\sum_{j=1}^{T} \alpha_j = \alpha. \tag{1.31}$$

Then, the boundaries can be calculated according to

$$P\{|S_1| > B_1\} = \alpha_1 \tag{1.32}$$

and

$$P\{|S_1| \le B_1, \dots, |S_{j-1}| \le B_{j-1}, |S_j| > B_j\} = \alpha_j$$
 (1.33)

for j = 2, ..., T, using numerical integration, under the assumption that the distribution of S is multivariate normal. We also define marginal significance levels $\alpha'_1, \alpha'_2, ..., \alpha'_T$ such that

$$P\{|S_i| > B_i\} = \alpha_i'. \tag{1.34}$$

Unlike earlier group sequential methods, the Slud-Wei method does not require equally spaced intervals. It does however require T to be pre-specified. The next method is due to Lan and DeMets [26], with the definition following the one given in Spiessens et al. [40]:

Definition 1.2.5 (Lan-DeMets method) Let $\alpha^*(t)$ be a continuous, non-decreasing function satisfying $\alpha^*(0) = 0$ and $\alpha^*(1) = \alpha$. We call $\alpha^*(t)$ an α -spending function, where t is the fraction of total information available. Boundaries are determined according to

$$P\{|S_1| > B_1\} = \alpha^*(t_1^*) \tag{1.35}$$

and

$$P\{|S_1| \le B_1, \dots, |S_{j-1}| \le B_{j-1}, |S_j| > B_j\} = \alpha^*(t_j^*) - \alpha^*(t_{j-1}^*)$$
 (1.36)

for $j=2,\ldots,T$, where t_1^*,t_2^*,\ldots,t_T^* are the information fractions at each analysis time. In practice, boundary calculation requires numerical integration.

The Lan-DeMets method is in fact quite flexible since it does not require pre-specification of the spacing or number of analyses. Its main disadvantage is that the information fractions must be estimated, which may be difficult if the total information is unknown.

A detailed development of group sequential methods can be found in the book by Jennison and Turnbull [21].

1.2.2 Fully sequential analysis

A fully sequential monitoring procedure involves examining the data after each new observation is received:

Definition 1.2.6 Analyses 1, 2, ..., j, ... take place at times $t_1, t_2, ..., t_j, ...,$ corresponding in theory to the measurement times of the $1^{st}, 2^{nd}, ..., j^{th}, ...$ observations, respectively.

A pre-specified maximal number of analyses is not required. Rather, the early philosophy of fully sequential methods involved sampling until the null hypothesis was accepted or rejected.

A description and historical account of early fully sequential methods can be found in the book by Ghosh and Sen [12].

1.2.3 Group versus fully sequential analysis

In this section we briefly examine the group and fully sequential dichotomy from the perspective of relative advantages and disadvantages. We follow the comparison given in Bogowicz et al. [2].

Group sequential methods are simple and flexible [38]. Trials employing these methods are less biased and shortened less often than fully sequential trials [45]. Moreover, group sequential techniques are preferred to fully sequential methods when the estimation of treatment effects is important [45]. On the other hand, fully sequential methods are lauded for having smaller expected sample sizes [31]. They are often of shorter duration, exposing fewer patients to inferior treatments [31].

Both have relative disadvantages however. Group sequential analyses may delay the potential for early stopping [42]. Unplanned interim analyses may cause interpretation problems. Indeed, treatment differences may be exaggerated [38]. In contrast, because of the frequency of data analysis, fully sequential analysis has been rarely applied in medicine [38]. Moreover, adjustments at the final analysis are more aggressive for fully than for group sequential trials [31].

Chapter 2

Sequential methods for longitudinal data

2.1 Group sequential methods

The longitudinal group sequential literature can be classified according to methodological approach. In particular, researchers have based their theories upon linear and linear-mixed models, marginal models and the GEE, and nonparametric methods. In addition, there are some articles intended for general applicability, encompassing two or more approaches. Finally, there are articles with no particular restrictions on underlying models or methods.

In what follows, we will use both the simple notation introduced with the linear and linear-mixed models, as well as the extended notation from the section on repeated measures ANOVA.

2.1.1 Linear and linear-mixed models

The application of group sequential methods to longitudinal data was first considered by Armitage et al. [1]. They develop a method for a simple linear-mixed model, with autoregressive errors. Using the linear-mixed model notation,

$$\mathbf{y} = \boldsymbol{\epsilon} \tag{2.1}$$

where they set

$$\epsilon_{i\alpha}^{(k)} = (1 - \phi)u_{\alpha}^{(k)} + \phi \epsilon_{(i-1)\alpha}^{(k)} + \omega_{i\alpha}^{(k)}.$$
 (2.2)

The distributions of the $u_{\alpha}^{(k)}$ and $\omega_{i\alpha}^{(k)}$ are $N(\mu, \sigma_0^2)$ and $N(0, \sigma^2(1-\phi^2))$, respectively. The $u_{\alpha}^{(k)}$ and $\omega_{i\alpha}^{(k)}$ are assumed to be mutually independent. The model matrix **X** is empty, since there are no covariates under consideration.

Armitage et al. [1] make a number of restrictive assumptions on the structure of the data: fixed and non-staggered entry, fixed follow-up times, analyses at equally spaced intervals. Their test statistics are taken to be differences in cumulative sums, between two treatment groups:

$$S_j = \sum_{\alpha=1}^{n_1} \left(\sum_{i=1}^j y_{i\alpha}^{(1)} \right) - \sum_{\alpha=1}^{n_2} \left(\sum_{i=1}^j y_{i\alpha}^{(2)} \right). \tag{2.3}$$

The authors show that the effect of sequentially testing correlated data at equally spaced intervals is the same as that of testing uncorrelated data at unequally spaced intervals. Hence theory for the latter is applied, with the same nominal significance level used at each analysis.

The approach of Armitage et al. [1] was extended by Geary [11]. The model given in equation (2.1) is extended by using errors given by

$$\epsilon_{i\alpha}^{(k)} = \begin{cases} u_{\alpha}^{(k)} + w_{i\alpha}^{(k)} &, i = 1\\ u_{\alpha}^{(k)} + \phi \epsilon_{(i-1)\alpha}^{(k)} + \omega_{i\alpha}^{(k)} &, i > 1 \end{cases}$$
(2.4)

where the distributions of the $u_{\alpha}^{(k)}$, $\omega_{1\alpha}^{(k)}$, and $\omega_{i\alpha}^{(k)}$ (for i > 1) are $N(\mu, \sigma_0^2)$, $N(0, \sigma^2/(1 - \kappa \phi^2))$, and $N(0, \sigma^2)$, respectively. The $u_{\alpha}^{(k)}$ and $\omega_{i\alpha}^{(k)}$ are again assumed to be mutually independent.

Geary [11] placed similar constraints to Armitage et al. [1] on data structure. Test statistics are also similar, again based upon differences of cumulative sums. Boundaries are calculated according to a multivariate normal numerical integration procedure. The procedure requires the *a priori* specification of the number of interim analyses, as well as the corresponding exit probabilities.

The ideas of both Armitage et al. [1] and Geary [11] were extended by Lee and DeMets [27], in a slightly more general linear-mixed model framework. The model is

$$\mathbf{y}_{\alpha}^{(k)} = \mathbf{X}_{\alpha}^{(k)} \boldsymbol{\beta}^{(k)} + \boldsymbol{\epsilon}_{\alpha}^{(k)} \tag{2.5}$$

where

$$\boldsymbol{\epsilon}_{\alpha}^{(k)} = \mathbf{D}_{\alpha}^{(k)} \mathbf{U}_{\alpha}^{(k)} + \boldsymbol{\omega}_{\alpha}^{(k)}. \tag{2.6}$$

Here $\mathbf{D}_{\alpha}^{(k)}$ is a $p_{\alpha}^{(k)} \times r$ design matrix, $\mathbf{U}_{\alpha}^{(k)}$ is distributed as $N(\mathbf{0}, \mathbf{G})$, and $\boldsymbol{\omega}_{\alpha}^{(k)}$ is distributed as $N(\mathbf{0}, \mathbf{R}_{\alpha}^{(k)})$. The matrix $\mathbf{R}_{\alpha}^{(k)}$ depends on k and α only through its dimensionality, $p_{\alpha}^{(k)} \times p_{\alpha}^{(k)}$. The matrix $\mathbf{X}_{\alpha}^{(k)}$ and vector $\boldsymbol{\beta}^{(k)}$ will be specified below. This model is similar to, but different from the original linear-mixed model formulation from section 1.1.1, in that $\boldsymbol{\omega}_{\alpha}^{(k)}$ is accounting for the additional variation and possible correlation introduced by measurement error and serial correlation components, respectively.

The approach of Lee and DeMets [27] allows for staggered entry, unequally spaced measurement times, and some degree of missing data. Their procedure requires the matrix $\mathbf{X}_{\alpha}^{(k)}$ to be

$$\left[\begin{array}{cc} \mathbf{1} & \mathbf{t}_{\alpha}^{(k)} \end{array}\right] \tag{2.7}$$

where $\mathbf{t}_{\alpha}^{(k)}$ is the vector of measurement times corresponding to the measurements on the unit indexed by k and α . Corresponding to this form of $\mathbf{X}_{\alpha}^{(k)}$ is the vector $\boldsymbol{\beta}^{(k)} = (\beta_1^{(k)}, \beta_2^{(k)})^T$. The test statistic at analysis j, for comparing two treatment groups, is a normalized version of

$$\hat{\beta}_2^{(1)}(t_j) - \hat{\beta}_2^{(2)}(t_j). \tag{2.8}$$

The authors show that the joint distribution of their sequence of test statistics is multivariate normal. They indicate that both the Slud-Wei and Lan-DeMets methods can be used for boundary calculation.

Wu and Lan [47] define a linear model similar to that of Lee and DeMets [27]. They omit, however, the component corresponding to the fixed effects

 $\boldsymbol{\beta}^{(k)}$. They develop instead a group sequential method based upon the expected response curve, essentially just the expected value, $E[\mathbf{Y}_{\alpha}^{(k)}]$. A Lan-DeMets α -spending function should be used, along with multivariate normal numerical integration, to calculate boundaries. The procedure allows for staggered entry, unequally spaced measurement times, missing data, and informative censoring. Although the method is used to compare only two treatment groups, the authors suggest that three or more groups could be compared using isotonic regression.

The 1997 article by Jennison and Turnbull [20] provides a unified look at the distribution of sequences of estimators. In particular, they consider maximum likelihood estimators derived from normal linear models, generalized linear models, and the proportional hazards regression model. In each case, the distribution of sequences of estimators is multivariate normal, with a specific covariance structure. The theory is exact for normal linear models and asymptotic for generalized linear models.

Finally, the 2002 article by Cerutti et al. [4] extends the applicability of the linear-mixed model approach to situations in which a comparison between three or more treatment groups is the objective. The model is a special case of the one used by Lee and DeMets [27], defined here in equations (2.5) and (2.6). In particular, they take $\mathbf{X}_{\alpha}^{(k)}$ to be

$$\left[\begin{array}{cc} \mathbf{1} & \mathbf{t}_{\alpha}^{(k)} \end{array}\right] \tag{2.9}$$

with $\boldsymbol{\beta}^{(k)} = (\beta_1^{(k)}, \beta_2^{(k)})^T$. The matrix $\mathbf{R}_{\alpha}^{(k)}$ is set to equal $\tau^2 \mathbf{I}$. In other words, the $\boldsymbol{\omega}_{\alpha}^{(k)}$ represent measurement error.

The hypotheses of interest are

$$H_{0k}: \beta_2^{(k)} = \beta_2^{(1)}$$
 (2.10)

versus

$$H_{Ak}: \beta_2^{(k)} \neq \beta_2^{(1)}$$
 (2.11)

for k = 2, ..., c, so that the overall hypothesis to be tested is

$$H_0: \bigcap_{k=2}^c H_{0k}$$
 (2.12)

versus

$$H_A: \text{ not } H_0.$$
 (2.13)

The test statistics corresponding to each H_{0k} at time t_j are standardized versions of

$$\hat{\beta}_2^{(k)}(t_j) - \hat{\beta}_2^{(1)}(t_j) \tag{2.14}$$

as in Lee and DeMets [27]. Testing proceeds according to one of the following:

- 1. Test each hypothesis according to boundaries depending on the set $\mathcal{H} = \{H_{0k} \mid k = 2, \ldots, c\}$. Drop inferior treatments and remove the corresponding rejected hypotheses from \mathcal{H} . Update the value of the error spending function. Continue testing until all H_{0k} are rejected or time runs out.
- 2. Test according to (1), stopping as soon as the first H_{0k} is rejected. Apply a treatment comparison method using some pairwise procedure.

The error spending function used in (1) and (2) is completely specified by Cerutti et al. [4].

2.1.2 Marginal models and the GEE

The usage of GEE-based estimators in longitudinal group sequential trials was first proposed by Wei et al. [46]. They assume a marginal model for $Y_{i\alpha}^{(k)}$ and further specify that its distribution is from the exponential family. The GEE are used to estimate the model parameters, β . The procedure solves

$$\sum_{k=1}^{2} \sum_{\alpha=1}^{n_k} \left(\frac{\partial \boldsymbol{\mu}_{\alpha}^{(k)}}{\partial \boldsymbol{\beta}} \right)^T (\mathbf{y}_{\alpha}^{(k)} - \boldsymbol{\mu}_{\alpha}^{(k)}) = 0$$
 (2.15)

where the working covariance matrix is taken to be the identity, **I**. Although this is equivalent to the strong assumption that within-subject observations are uncorrelated, estimates of β are still consistent [46]. The procedure allows for staggered entry, unequally spaced measurement times, and of course, non-normal response distributions.

The test statistic is the standardized estimate of the β coefficient corresponding to the indicator of treatment group. Boundaries are calculated using multivariate normal numerical integration, while the exit probabilities are determined using the Slud-Wei method. The authors hesitate to apply the Lan-DeMets method because of difficulties in estimating total information.

In 1996, Gange and DeMets [10] showed that the Lan-DeMets method can in fact be applied in a GEE-based longitudinal setting. They specify a marginal model, relaxing the assumption of uncorrelated within-subject observations of Wei et al. [46]. Moment estimators are used to estimate nuisance parameters, while the GEE are solved to find $\hat{\beta}$, where $\beta = (\beta^*, \theta)^T$ and θ is the parameter of interest. Testing at time t_j is based on a Wald-type statistic:

$$\frac{\hat{\theta}(t_j)}{\sqrt{VAR[\hat{\theta}(t_j)]}}.$$
(2.16)

The sequence of T test statistics, each premultiplied by its corresponding information fraction, is shown to have an asymptotic multivariate normal distribution. Numerical integration is used along with the Lan-DeMets method to calculate boundaries. Gange and DeMets [10] note that essentially any monotonic process mapping to [0,1] is a valid surrogate for the information fraction. However, following the original ideas of the Lan-DeMets method, they suggest a data-based surrogate be used. It is not clear whether the procedure functions, for example, if entry is staggered, or data is missing.

Lee et al. [29] use the GEE in a similar fashion to Gange and DeMets [10]. They apply the Lan-DeMets method to sequences of score and Wald test statistics. Both types of statistics are based upon a single parameter of interest. Information at time t_j is estimated as being the inverse of the variance of the

test statistic at t_j . This is divided by some test statistic-dependent estimate of maximum information, to obtain the information fraction. The authors note that the procedure can accommodate staggered entry, variable numbers of repeated measurements, and unequally spaced measurement times.

2.1.3 Nonparametric methods

Lee and DeMets [28] were first to propose the application of nonparametric group sequential methods in a longitudinal setting. Their procedure, which is rank-based, is designed for the comparison of two treatment groups, under a location-shift model. It allows for staggered entry, unequally spaced measurement times, and missing data. The authors accommodate unequal numbers of measurements by using a regression-like transformation. At the j th interim analysis, this transformation maps each individual's arbitrary number of measurements into a length-j vector of statistics.

The authors define ranks $R_{j\alpha}$ to be the rank of the α^{th} subject's j^{th} transformed measurement, among all other measurements sharing the same j index. Their test statistic is based upon linear rank statistics

$$S_{n(t_j)} = \sum_{\alpha=1}^{n(t_j)} c_{\alpha} a_{n,j}(R_{j\alpha})$$
 (2.17)

for j = 1, ..., T. The constants c_{α} indicate treatment group (0 or 1), and the $a_{n,j}(\cdot)$ are score functions. Dependence on time is emphasized by writing $n(t_j)$, indicating that not all subjects are necessarily recruited by time t_j . The test statistic is

$$S_j = \frac{S_{n(t_j)}}{\sqrt{n(t_j)}} \tag{2.18}$$

for j = 1, ..., T. The authors show that the sequence of test statistics has an asymptotic multivariate normal distribution. They note that both the Slud-Wei and Lan-DeMets methods can be used for boundary calculation. They conclude by noting that the procedure could be used to compare three or more groups.

A different nonparametric longitudinal group sequential approach is due to Su and Lachin [41]. Their method, like that of Lee and DeMets [28], is based on a location-shift model

$$F^{(1)}(\mathbf{y}) = F^{(2)}(\mathbf{y} - \mathbf{\Delta}) \tag{2.19}$$

where $F^{(k)}(\cdot)$ is the distribution function for all measurements on a subject from group k, and where \mathbf{y} is assumed to be of length p for all subjects. The authors develop a multivariate Hodges-Lehmann estimator for the shift parameter, Δ . The entries of $\hat{\Delta}$ are combined to form some scalar aggregate estimate, which, in standardized form, serves as the test statistic. The sequence of test statistics is shown to be asymptotically multivariate normal. Boundaries are calculated via the Slud-Wei method.

Lachin [24] proposed another rank-based longitudinal group sequential method, with some similarities to the method of Su and Lachin [41]. An estimate of

$$\theta_i = P\{Y_{i\alpha}^{(1)} \le Y_{i\alpha}^{(2)}\} - P\{Y_{i\alpha}^{(2)} \le Y_{i\alpha}^{(1)}\}$$
 (2.20)

is obtained from a transformation of the rank statistic, for $i=1,\ldots,p$, and arbitrary α . The vector $\boldsymbol{\theta}=(\theta_1,\theta_2,\ldots,\theta_p)^T$ is estimated at every interim analysis time. Various test statistics are proposed: a p-degrees of freedom chi-square test, a 1-degree of freedom test of association, and a 1-degree of freedom test of stochastic ordering. The actual group sequential procedure is developed using the test of association. The asymptotic distribution of the sequence of test statistics is multivariate normal, as usual. Lachin [24] suggests that the Lan-DeMets method may be preferred over the Slud-Wei method, for boundary calculation.

Lachin et al. [25] developed a nonparametric chi-square testing framework for the comparison of two treatment groups. The authors assume that measurements occur at fixed time points, though entry may be staggered. The test is based upon a multivariate Wilcoxon test, using a p-degrees of freedom chi-square test statistic. Numerical integration and simulation are used to calculate boundaries, with exit probabilities specified by either of the Slud-Wei or Lan-DeMets methods.

2.1.4 General approaches and other methods

In this section, we briefly discuss additional longitudinal group sequential articles that are intended for general applicability.

Scharfstein et al. [37] developed an "information-based" monitoring procedure with a very broad range of application. Providing that the parameter of interest is unique, and can be efficiently estimated, the procedure applies to any type of model in any type of group sequential study. The "information-based" moniker results from basing design considerations upon maximum information. The authors employ normal numerical integration along with the Lan-DeMets method for boundary calculation. They note that their procedure could eventually be extended to enable testing of multiple parameters.

Another information-based monitoring procedure was developed by Scharfstein and Tsiatis [36]. Similarly to Scharfstein et al. [37], the procedure applies to any type of model in any type of group sequential study, given that a unique parameter of interest can be efficiently estimated. The authors describe a technique, using the bootstrap, to determine whether or not a midterm trial redesign is warranted. They emphasize that maintaining blinding is possible in any redesign.

Galbraith and Marschner [9] proposed a longitudinal group sequential procedure that forgoes the specification of mean and covariance structures. Instead, the mean and covariance matrix are estimated, via maximum likelihood, irrespective of covariate values. They are used to form Wald-type test statistics. The sequence of test statistics has an approximate joint multivariate normal distribution. This is exploited for boundary calculation using, for instance, the Lan-DeMets method. The authors suggest that the greatest efficiency gains from incorporating group sequential methods in a longitudinal

trial can be had by setting T=2, with the first analysis taking place in the first half of the trial.

A longitudinal group sequential method based on summary statistics was established by Kittelson et al. [23]. The method is designed to compare the means of two treatment groups. Inference at time t_j is based on a linear combination of

$$\boldsymbol{\mu}^{(1)}(t_i) - \boldsymbol{\mu}^{(2)}(t_i) \tag{2.21}$$

where the length of the resulting vector may be less than p. The $\mu^{(k)}$ are estimated via maximum likelihood. It is not clear exactly what the test statistic is, or if a particular boundaries method should be used. The authors note that their method should be used for trials with fixed measurement times.

Troendle et al. [43] proposed a new type of group sequential analysis for longitudinal trials. The method allows for the testing of different null hypotheses at each analysis time. Moreover, different parameters may be tested at different times. The authors assume that treatment effects are non-transient, in the sense that if a treatment difference exists at one analysis time, a difference in favour of the same treatment will exist at subsequent analyses. They adopt a so-called "ordered multiple hypothesis testing framework." The Bonferroni correction is presented as an alternative to more formal error spending methods.

2.2 Fully sequential methods

We have thus far reviewed the theoretical papers concerning the application of sequential analysis to longitudinal data. It is our understanding that fully sequential methods have not yet been applied in this particular setting. Although there are some disadvantages to fully sequential procedures, as discussed in section 1.2.3, we believe that these contra are outweighed by the possibility of earlier stopping. Indeed, stopping a trial early minimizes overall

exposure to control or inferior treatments. With this in mind, we set out to ascertain the feasibility of a longitudinal fully sequential procedure.

We began by studying existing longitudinal group sequential methods, to find a suitable basis for a fully sequential procedure. Given the complexity of longitudinal data, we restricted our attention to nonparametric methods. After excluding methods that were deemed to be too complex, we were left with the approach of Lee and DeMets [28]. Their rank-based method, which was described in section 2.1.3, is for the comparison of two treatment groups. We thus had two problems: the task of extending the procedure for the comparison of multiple treatment groups; and the conversion of the procedure from group to fully sequential.

On the recommendations of the article by Lee and DeMets [28], we retrieved the text by Puri and Sen [34] to examine how the multiple treatment group comparison might be done. Although they consider the comparison of multiple groups using ranks, it was not obvious how we might use their theory to form a single test statistic. Moreover, a sequence of such test statistics would possess a complex covariance structure, on account of dependency among ranks. The resulting difficulties in the calculation of critical values effectively render this approach unfeasible in the fully sequential setting.

Abandoning the idea of extending the procedure of Lee and DeMets [28], we decided to focus on another type of sequential testing developed by Gombay [14]. In that article, she develops continuous versions of the Pocock and O'Brien-Fleming group sequential monitoring procedures, applying them to the problem of detecting change within a single sample, using sequential ranks. The two procedures have since been applied in a variety of parametric and nonparametric settings: in Gombay [15–17], and in Gombay and Serban [19].

The following chapters examine the application of the techniques of Gombay [14] to the longitudinal setting. We use sequential ranks along with test statistics in the form of partial sums. Sequential ranks are similar to ranks obtained by the usual method, and will be explained in greater detail in Chap-

ter 3. Their main advantage is that they are independent, while regular ranks are not. One might legitimately wonder why we use partial sum test statistics rather than an average. In fact, using averages would require the monitoring of pairwise differences, yielding the same sort of dependency problems as would have arisen from using regular ranks.

In addition, we develop an exact version of our procedures by applying theory on random walks from Csáki [5], as applied in Gombay [13].

Chapter 3

The fully sequential nonparametric procedure

In this section we develop a new nonparametric fully sequential procedure for the analysis of longitudinal clinical trial data. We begin with some basic notation and definitions, and then develop large- and small-sample versions of the procedure.

3.1 Preliminaries

Suppose that we have longitudinal data on individuals in c treatment groups. Each group has a maximum sample size of n_k , for k = 1, ..., c. Each subject has a maximum of p repeated, or longitudinal, measurements. We denote these measurements by $y_{i\alpha}^{(k)}$: the i^{th} measurement on the α^{th} subject in the k^{th} group, where i = 1, ..., p, k = 1, ..., c, and $\alpha = 1, ..., n_k$. We place a single subject's observations in a vector $\mathbf{y}_{\alpha}^{(k)} = (y_{1\alpha}^{(k)}, y_{2\alpha}^{(k)}, ..., y_{p\alpha}^{(k)})^T$.

Assume that $\mathbf{y}_{\alpha}^{(k)}$ is a randomly sampled realization of $\mathbf{Y}_{\alpha}^{(k)}$. We define $F^{(k)}$ to be the distribution function of $\mathbf{Y}_{\alpha}^{(k)}$, for $k = 1, \ldots, c$ and arbitrary α . We are interested in testing

$$H_0: F^{(1)} = F^{(2)} = \dots = F^{(c)} = F$$
 (3.1)

versus

$$H_A$$
: there exist $k, l \in {1, \dots, c}$ such that $F^{(k)} \neq F^{(l)}$ (3.2)

where F is continuous, but unknown. Under the null hypothesis, for fixed i,

$$\{Y_{i\alpha}^{(k)} \mid k = 1, \dots, c, \alpha = 1, \dots, n_k\}$$
 (3.3)

are independent and identically distributed (i.i.d.), with marginal distribution function $F_i^{(k)} = F_i$.

3.1.1 Sequential ranks and their properties

As each new observation arrives, its sequential rank may be computed among all $Y_{i\alpha}^{(k)}$ for k = 1, ..., c, $\alpha = 1, ..., n_k$, and fixed i, that have already been observed. We define, for fixed i,

$$R_{i\alpha}^{(k)} = 1 + \#\{Y_{i\beta}^{(j)} \mid Y_{i\beta}^{(j)} \leq Y_{i\alpha}^{(k)}, Y_{i\beta}^{(j)} \text{ has already}$$

been observed, not including $Y_{i\alpha}^{(k)}$ itself,
for $j = 1, \dots, c$ and $\beta = 1, \dots, n_j\}$ (3.4)

to be the sequential rank for $Y_{i\alpha}^{(k)}$, where $i=1,\ldots,p,\ k=1,\ldots,c$, and $\alpha=1,\ldots,n_k$. Note that the sequential rank for $Y_{i\alpha}^{(k)}$ does not change as additional observations are received.

We next consider some of the basic properties of sequential ranks, first established by Parent [32]. Before doing so, we define the following quantity:

$$m_{i\alpha}^{(k)} = 1 + \#\{Y_{i\beta}^{(j)} \mid Y_{i\beta}^{(j)} \text{ has been observed}$$

before, but not including, $Y_{i\alpha}^{(k)}$; for $j = 1, \dots, c \text{ and } \beta = 1, \dots, n_j\}.$ (3.5)

Now suppose we are determining the ranked order of all $m_{i\alpha}^{(k)}$ observations that have been observed up to and including $Y_{i\alpha}^{(k)}$. Under H_0 and for fixed i, the $Y_{i\alpha}^{(k)}$ are i.i.d., so that any ordered permutation of those $m_{i\alpha}^{(k)}$ observations is equally likely. That is,

$$P\{R_{i\alpha}^{(k)} = j \mid j \le m_{i\alpha}^{(k)}\} = \frac{1}{m_{i\alpha}^{(k)}}.$$
 (3.6)

As $R_{i\alpha}^{(k)}$ takes values in $\{1, 2, \dots, m_{i\alpha}^{(k)}\}$, the above relation defines the probability mass function of a discrete uniform random variable. The mean and variance of $R_{i\alpha}^{(k)}$ are

$$E[R_{i\alpha}^{(k)}] = \frac{m_{i\alpha}^{(k)} + 1}{2} \tag{3.7}$$

and

$$VAR[R_{i\alpha}^{(k)}] = \frac{(m_{i\alpha}^{(k)})^2 - 1}{12}$$
 (3.8)

respectively. It follows that

$$Z_{i\alpha}^{(k)} = \frac{R_{i\alpha}^{(k)} - \frac{m_{i\alpha}^{(k)} + 1}{2}}{\sqrt{\frac{(m_{i\alpha}^{(k)})^2 - 1}{12}}}$$
(3.9)

has a mean of zero and a variance of one.

Next, we will examine why it is that sequential ranks are independent. Consider the joint distribution of any two sequential ranks from those $m_{i\alpha}^{(k)}$ observations that have been observed before $Y_{i\alpha}^{(k)}$. Suppose our two sequential ranks are $R_{i\alpha}^{(k)}$ and $R_{i\beta}^{(l)}$, and without loss of generality assume that $m_{i\beta}^{(l)} < m_{i\alpha}^{(k)}$. Now, because the ranking processes for $R_{i\alpha}^{(k)}$ and $R_{i\beta}^{(l)}$ are done separately, it follows that they take values in $\{1,2,\ldots,m_{i\alpha}^{(k)}\}$ and $\{1,2,\ldots,m_{i\beta}^{(l)}\}$, respectively. Thus there are a total of $m_{i\alpha}^{(k)} \times m_{i\beta}^{(l)}$ possibilities. Once again, under H_0 all permutations are equally likely, so that

$$P\{R_{i\alpha}^{(k)} = j, R_{i\beta}^{(l)} = h \mid j \le m_{i\alpha}^{(k)}, h \le m_{i\beta}^{(l)}\} = \frac{1}{m_{i\alpha}^{(k)} m_{i\beta}^{(l)}}.$$
 (3.10)

On the other hand, we have that

$$P\{R_{i\alpha}^{(k)} = j \mid j \le m_{i\alpha}^{(k)}\}P\{R_{i\beta}^{(l)} = h \mid h \le m_{i\beta}^{(l)}\} = \frac{1}{m_{i\alpha}^{(k)}} \times \frac{1}{m_{i\beta}^{(l)}}$$
(3.11)

verifying the independence condition for any two sequential ranks. This can be extended to verify the independence conditions for any three ranks, four ranks, and so on. Indeed, mathematical induction can be used to prove that the sequential ranks are independent.

Examples of sequential and regular ranking, as well as illustrations of their respective independence and dependence, are given in Appendix A.

3.2 Large-sample versions

3.2.1 The test statistic

Assume that at time t, there are n(t) subjects in the trial on whom all p repeated measures have been observed. This n(t) can be broken down into group totals, $n_k(t)$, for $k = 1, \ldots, c$, where $n(t) = n_1(t) + n_2(t) + \ldots + n_c(t)$. Each subject has an associated vector of repeated measurements, with length equal to p.

Definition 3.2.1 A subject enrolled in the trial at time t is called **complete** if all p repeated measurements on that subject have been observed by t. Subjects are otherwise said to be **incomplete**.

Note that the actual number of subjects enrolled in the trial at time t may be larger than n(t), as there are potentially subjects on whom we have less than p repeated measures. Data on these incomplete subjects is still used, however, for the calculation of sequential ranks and for the estimation of variance components, used in the standardization of statistics on complete subjects.

The within-subject correlation, inherent to longitudinal data, implies that

$$S_{\alpha}^{(k)} = \sum_{i=1}^{p} Z_{i\alpha}^{(k)}$$
 (3.12)

will have dependent components. On the other hand, the quantities $S_{\alpha}^{(k)}$ are independent for k = 1, ..., c and $\alpha = 1, ..., n_k(t)$, by the independence of sequential ranks. It seems very natural, then, to form test statistics based on these quantities. Before doing so, however, we need to standardize them.

Based on the available data at time t, we need to estimate

$$VAR[S_{\alpha}^{(k)}] = VAR[\sum_{i=1}^{p} Z_{i\alpha}^{(k)}]$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} COV[Z_{i\alpha}^{(k)}, Z_{j\alpha}^{(k)}]$$
(3.13)

to standardize the $S_{\alpha}^{(k)}$. Simple empirical estimates of $COV[Z_{i\alpha}^{(k)}, Z_{j\alpha}^{(k)}]$, for i, j = 1, ..., p are given by

$$q_{i,j} = \frac{1}{n-1} \sum_{k=1}^{c} \sum_{\alpha=1}^{n_k} (Z_{i\alpha}^{(k)} - \bar{Z}_i) (Z_{j\alpha}^{(k)} - \bar{Z}_j)$$
 (3.14)

for $n = n_1 + n_2 + \ldots + n_c$, and where

$$\bar{Z}_i = \frac{1}{n} \sum_{k=1}^c \sum_{\alpha=1}^{n_k} Z_{i\alpha}^{(k)}.$$
 (3.15)

Replacing $COV[Z_{i\alpha}^{(k)}, Z_{j\alpha}^{(k)}]$ on the right hand side of equation (3.13) with $q_{i,j}$, and denoting the estimator of $VAR[S_{\alpha}^{(k)}]$ by $\hat{\sigma}(t)^2$, we have that

$$\hat{\sigma}(t)^2 = \sum_{i=1}^p \sum_{j=1}^p q_{i,j}.$$
 (3.16)

Note that n from equations (3.14) and (3.15) depends upon t in the sense that $q_{i,j}$ may be calculated at a time when patients are still being recruited. However, writing n(t) would imply that only observations from complete subjects are used, while better estimates could surely be obtained by pooling all available data. This dependence on t is made explicit only on the left hand side of equation (3.16).

The estimator defined in equation (3.16) has a number of interesting properties. First, as

$$E[q_{i,j}] = COV[Z_{i\alpha}^{(k)}, Z_{j\alpha}^{(k)}]$$
 (3.17)

and as expectation is a linear operator, it follows that

$$E[\hat{\sigma}(t)^{2}] = E[\sum_{i=1}^{p} \sum_{j=1}^{p} q_{i,j}]$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} E[q_{i,j}]$$

$$= \sum_{i=1}^{p} \sum_{j=1}^{p} COV[Z_{i\alpha}^{(k)}, Z_{j\alpha}^{(k)}]$$

$$= \sigma^{2}. \tag{3.18}$$

In other words, $\hat{\sigma}(t)^2$ is an unbiased estimator of $\sigma^2 = VAR[S_{\alpha}^{(k)}]$. It is also the case that $\hat{\sigma}(t)^2$ is consistent. To see this, note that the independence of sequential ranks, for fixed i, ensures that $q_{i,j}$ is a consistent estimator of $COV[Z_{i\alpha}^{(k)}, Z_{j\alpha}^{(k)}]$ [22]. The consistency of $\hat{\sigma}(t)^2$ follows since the sum of finitely many consistent estimators is a consistent estimator of the corresponding sum of parameters [3].

Finally, the quantities

$$S^{(k)}(t) = \sum_{\alpha=1}^{n_k(t)} \frac{S_{\alpha}^{(k)}}{\hat{\sigma}(t)}$$
 (3.19)

each have $n_k(t)$ standardized and independent components. The number of $S_{\alpha}^{(k)}$, for $k = 1, \ldots, c$ and $\alpha = 1, \ldots, n_k(t)$, and the value of $\hat{\sigma}(t)$ are to be updated each time the data is analyzed.

3.2.2 Monitoring

We consider two different monitoring procedures, continuous versions of the group sequential monitoring procedures due to Pocock [33] and O'Brien and Fleming [30], that were developed by Gombay [14]. The procedures, which we call Test 1 and Test 2, will be explained below. Each test tests the null and alternative hypotheses given by equations (3.1) and (3.2), respectively.

First we consider the special case of c=2, where there are two groups to be compared:

Test 1 - Pocock. Stop sampling and reject the null hypothesis if

$$\left| \frac{S^{(1)}(t)}{\sqrt{n_1(t)}} \right| > C(\alpha, n_1)$$
 (3.20)

where $n_1(t)$ is the number of complete subjects enrolled at time t, that received treatment 1. If equation (3.20) does not hold, sampling and testing should continue. The bound $C(\alpha, n_1)$ is a critical value depending upon the overall significance level α , and the number of subjects receiving treatment 1, n_1 . This test is two-sided.

Test 2 - O'Brien-Fleming. Stop sampling and reject the null hypothesis if

$$\left| \frac{S^{(1)}(t)}{\sqrt{n_1}} \right| > C(\alpha) \tag{3.21}$$

holds. The number n_1 is the fixed total number of subjects receiving treatment 1. The bound $C(\alpha)$ depends upon the overall significance level α . Sampling continues if equation (3.21) does not hold. This test is also two-sided.

Notice that we only monitor one of the groups; without loss of generality, group 1. This may be justified as follows. Suppose that the test statistic for group 1 is not significant. This implies that the $Z_{i\alpha}^{(1)}$ have a mean of zero, and further, for fixed i, that the $Y_{i\alpha}^{(k)}$ are i.i.d. Hence,

$$P\{Y_{i\alpha}^{(1)} \ge Y_{i\beta}^{(2)}\} = P\{Y_{i\alpha}^{(1)} \le Y_{i\beta}^{(2)}\} = \frac{1}{2}.$$
 (3.22)

On the other hand, the above relation implies that the $Z_{i\alpha}^{(2)}$ have a mean of zero, and hence that the test statistic for group 2 is a mean zero process. Here we assume that the distribution of $\mathbf{Y}_{\alpha}^{(k)}$ is symmetric.

Now consider the comparison of three treatment groups, in other words setting c=3:

Test 1 - Pocock. Stop sampling and reject the null hypothesis if either

$$\left| \frac{S^{(1)}(t)}{\sqrt{n_1(t)}} \right| > C(\alpha^*, n_1)$$
 (3.23)

or

$$\left| \frac{S^{(2)}(t)}{\sqrt{n_2(t)}} \right| > C(\alpha^*, n_2)$$
 (3.24)

where $n_1(t)$ and $n_2(t)$ are the numbers of complete subjects enrolled at time t, that received treatments 1 and 2, respectively. If neither equation (3.23) nor equation (3.24) holds, sampling and testing should continue. The bounds $C(\alpha^*, n_1)$ and $C(\alpha^*, n_2)$ are critical values depending upon the overall significance level α through α^* , and the number of subjects receiving treatments 1 and 2, n_1 and n_2 , respectively. This test is two-sided.

Test 2 - O'Brien-Fleming. Stop sampling and reject the null hypothesis if either

$$\left| \frac{S^{(1)}(t)}{\sqrt{n_1}} \right| > C(\alpha^*) \tag{3.25}$$

or

$$\left| \frac{S^{(2)}(t)}{\sqrt{n_2}} \right| > C(\alpha^*) \tag{3.26}$$

holds. The numbers n_1 and n_2 are the fixed total numbers of subjects receiving treatments 1 and 2, respectively. The bound $C(\alpha^*)$ depends upon the overall significance level α through α^* . Sampling continues if neither equation (3.25) nor equation (3.26) holds. This test is also two-sided.

Note that here we only monitor two out of the three groups. Without loss of generality, we monitor the first and second. We claim that if these two groups yield insignificant test statistics, a Type II error will not be made by not rejecting H_0 . We justify this as follows. Suppose that the test statistic for group 1 is not significant, and is hence a zero mean process, under H_0 . Then, assuming that $n_1 = n_2 = n_3$,

$$P\{Y_{i\alpha}^{(1)} \ge Y_{i\beta}^{(l)} \mid m_{i\beta}^{(l)} < m_{i\alpha}^{(1)}\} = \frac{1}{2}P\{Y_{i\alpha}^{(1)} \ge Y_{i\beta}^{(2)}\} + \frac{1}{2}P\{Y_{i\alpha}^{(1)} \ge Y_{i\beta}^{(3)}\}$$
(3.27)

and

$$P\{Y_{i\alpha}^{(1)} \le Y_{i\beta}^{(l)} \mid m_{i\beta}^{(l)} < m_{i\alpha}^{(1)}\} = \frac{1}{2}P\{Y_{i\alpha}^{(1)} \le Y_{i\beta}^{(2)}\} + \frac{1}{2}P\{Y_{i\alpha}^{(1)} \le Y_{i\beta}^{(3)}\}$$

$$(3.28)$$

since if $Y_{i\alpha}^{(1)}$ is larger than some other observation $Y_{i\beta}^{(l)}$, it is equally likely that that observation comes from either group 2 or group 3. Then, noting that under H_0 the relation from equation (3.22) holds for any two of groups 1, 2, and 3, we have that:

$$\frac{1}{2}P\{Y_{i\alpha}^{(1)} \ge Y_{i\beta}^{(2)}\} + \frac{1}{2}P\{Y_{i\alpha}^{(1)} \ge Y_{i\beta}^{(3)}\} = \frac{1}{2}$$
(3.29)

$$\frac{1}{2}P\{Y_{i\alpha}^{(1)} \le Y_{i\beta}^{(2)}\} + \frac{1}{2}P\{Y_{i\alpha}^{(1)} \le Y_{i\beta}^{(3)}\} = \frac{1}{2}.$$
(3.30)

Similarly, if the test statistic for group 2 is insignificant, then under H_0 , it is also a mean zero process implying that:

$$\frac{1}{2}P\{Y_{i\alpha}^{(2)} \ge Y_{i\beta}^{(1)}\} + \frac{1}{2}P\{Y_{i\alpha}^{(2)} \ge Y_{i\beta}^{(3)}\} = \frac{1}{2}$$
(3.31)

$$\frac{1}{2}P\{Y_{i\alpha}^{(2)} \le Y_{i\beta}^{(1)}\} + \frac{1}{2}P\{Y_{i\alpha}^{(2)} \le Y_{i\beta}^{(3)}\} = \frac{1}{2}.$$
 (3.32)

Adding and rearranging equations (3.30) and (3.32), and equations (3.29) and (3.31), yields

$$\frac{1}{2}P\{Y_{i\alpha}^{(1)} \le Y_{i\beta}^{(3)}\} + \frac{1}{2}P\{Y_{i\alpha}^{(2)} \le Y_{i\beta}^{(3)}\}
= 1 - \frac{1}{2}P\{Y_{i\alpha}^{(1)} \le Y_{i\beta}^{(2)}\} - \frac{1}{2}P\{Y_{i\alpha}^{(2)} \le Y_{i\beta}^{(1)}\}$$
(3.33)

and

$$\frac{1}{2}P\{Y_{i\alpha}^{(2)} \ge Y_{i\beta}^{(3)}\} + \frac{1}{2}P\{Y_{i\alpha}^{(1)} \ge Y_{i\beta}^{(3)}\}
= 1 - \frac{1}{2}P\{Y_{i\alpha}^{(2)} \ge Y_{i\beta}^{(1)}\} - \frac{1}{2}P\{Y_{i\alpha}^{(1)} \ge Y_{i\beta}^{(2)}\}$$
(3.34)

respectively. Noticing that the right-hand-sides of equations (3.33) and (3.34) are equivalent, we have that,

$$\frac{1}{2}P\{Y_{i\alpha}^{(1)} \le Y_{i\beta}^{(3)}\} + \frac{1}{2}P\{Y_{i\alpha}^{(2)} \le Y_{i\beta}^{(3)}\}
= \frac{1}{2}P\{Y_{i\alpha}^{(2)} \ge Y_{i\beta}^{(3)}\} + \frac{1}{2}P\{Y_{i\alpha}^{(1)} \ge Y_{i\beta}^{(3)}\}$$
(3.35)

which implies that the test statistic for group 3 is also a mean zero process.

Note that this proof could be modified for unequal group sizes, relaxing the assumption that $n_1 = n_2 = n_3$. It can also be shown that if c populations are to be compared, then it is sufficient to monitor c-1 of them, via mathematical induction. In light of this, and the fact that the test statistics for each group are independent partial sum processes, we have that

$$(1 - \alpha) = (1 - \alpha^*)^{c-1} \tag{3.36}$$

where α is the overall error rate, and α^* is the nominal significance level. This α^* can be calculated for any given α .

The basic idea behind the monitoring procedures of Test 1 and Test 2 is that if the null hypothesis is not true, in that locations differ among treatment groups, we should expect to see

$$E[R_{i\alpha}^{(k)}] > \frac{m_{i\alpha}^{(k)} + 1}{2} \quad \text{or} \quad E[R_{i\alpha}^{(k)}] < \frac{m_{i\alpha}^{(k)} + 1}{2}$$
 (3.37)

for at least one $k \in \{1, 2, ..., c\}$. In turn, that would lead to large values of $Z_{i\alpha}^{(k)}$, and hence the $S_{\alpha}^{(k)}$ and $S^{(k)}(t)$.

Although both Test 1 and Test 2 are fully sequential, the data is not necessarily analyzed after each new observation is received. Rather, for the observation received at time t, the number of complete subjects n(t) is calculated. The data are then analyzed if this total number of complete subjects is larger (by one) than it was at the last analysis time. Otherwise, sampling continues.

3.2.3 Boundary calculation

The bounds used for both Test 1 and Test 2 are based on large sample approximations. The theory presented here is from Gombay [14].

To be consistent with notation from previous chapters, in particular Section 1.2.1, we write $S_j^{(k)}$ to be the value of the test statistic for group k at time t_j ,

i.e. $S^{(k)}(t_j)$. To ease the notation, we omit the superscript corresponding to treatment group, so that the quantity of interest is S_j . Then,

$$\lim_{N \to \infty} P\{a(N) \max_{1 \le j \le N} j^{-1/2} |S_j| - b(N) \le y\} = exp(-2e^{-y})$$
 (3.38)

where N is the number of subjects in any given group (i.e. n_k), $a(N) = (2 \log \log N)^{1/2}$, and $b(N) = 2 \log \log N + \frac{1}{2} \log \log \log N - \frac{1}{2} \log \pi$. The critical values for Test 1 can be found according to equation (3.38). However, Gombay [18] notes that better approximations are available, citing the work of Vostrikova [44]. Select Vostrikova critical values for Test 1 can be found in Tables 3.1 and 3.2.

Table 3.1: Critical values $C(\alpha, n_1)$ for Test 1 with c = 2.

n_1	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
10	3.41	2.84	2.55
15	3.45	2.90	2.61
20	3.48	2.93	2.65
50	3.56	3.02	2.74
100	3.60	3.07	2.80
150	3.63	3.10	2.83
200	3.64	3.12	2.85

Table 3.2: Critical values $C(\alpha^*, n_1)$ for Test 1 with c = 3 and overall error rate α .

n_1	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
10	3.62	3.10	2.83
15	3.66	3.15	2.88
20	3.69	3.18	2.92
50	3.76	3.26	3.01
100	3.80	3.31	3.06
150	3.82	3.33	3.09
200	3.84	3.35	3.11

Now, suppose W(t) is a standard Brownian motion. That is, W(0) = 0, $\{W(t), t \geq 0\}$ has stationary and independent increments, and for all t > 0, W(t) is N(0,t) [35]. Then, for Test 2, the critical values $C(\alpha)$ and $C(\alpha^*)$ are found according to the distribution of

$$\sup_{0 \le u \le 1} |W(u)|. \tag{3.39}$$

Select critical values $C(\alpha)$ and $C(\alpha^*)$ are presented in Table 3.3.

Table 3.3: Critical values $C(\alpha)$ for Test 2 with c=2, and $C(\alpha^*)$ with c=3 and overall error rate α .

	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
$C(\alpha)$	2.80	2.24	1.96
$C(\alpha^*)$	3.00	2.49	2.23

Formulas for calculating the Test 1 and Test 2 boundaries are given in Gombay [17]. According to Gombay [16], Test 2 has higher power when there are small differences between the population distributions. On the other hand, Test 1 has shorter stopping times if the differences are large.

3.3 Small-sample version

3.3.1 The test statistic

Recall that at time t, we assume that a total of n(t) complete subjects are enrolled in the trial, where $n(t) = n_1(t) + n_2(t) + \ldots + n_c(t)$. Each of these patients has all p repeated measurements observed.

We have previously considered sums

$$S_{\alpha}^{(k)} = \sum_{i=1}^{p} Z_{i\alpha}^{(k)} \tag{3.40}$$

for k = 1, ..., c and $\alpha = 1, ..., n_k(t)$, where $Z_{i\alpha}^{(k)}$ was the standardized sequential rank for the measurement indexed by i, k, and α . Now, we define the following quantity,

$$\operatorname{sgn}(S_{\alpha}^{(k)}) = \begin{cases} 1 & , \text{ if } S_{\alpha}^{(k)} > 0\\ 0 & , \text{ if } S_{\alpha}^{(k)} = 0\\ -1 & , \text{ if } S_{\alpha}^{(k)} < 0 \end{cases}$$
 (3.41)

using the so-called sign function. Under the null hypothesis, the $\operatorname{sgn}(S_{\alpha}^{(k)})$ are i.i.d for $\alpha = 1, \ldots, n_k(t)$ and for fixed $k = 1, \ldots, c$, with

$$P\{\operatorname{sgn}(S_{\alpha}^{(k)}) = 1\} = P\{\operatorname{sgn}(S_{\alpha}^{(k)}) = -1\} = \frac{1}{2}.$$
 (3.42)

Thus the sequences

$$S^{(k)}(t) = \sum_{\alpha=1}^{n_k(t)} \operatorname{sgn}(S_{\alpha}^{(k)})$$
 (3.43)

for k = 1, ..., c, over time, are simple symmetric random walks.

3.3.2 Monitoring

We consider a single fully sequential monitoring procedure, which we call Test 3. Again, for this procedure the data is analyzed only after a newly received observation makes a subject complete.

First we consider the special case of c = 2. As with the large-sample version of Section 3.2.2, we only need to monitor one of the two groups. Without loss of generality, monitor group 1.

Test 3. Stop sampling and reject the null hypothesis if

$$|S^{(1)}(t)| \ge C(\alpha, n_1)$$
 (3.44)

holds. The bound $C(\alpha, n_1)$ depends upon the overall significance level α and the fixed total number of subjects receiving treatment 1, n_1 . Sampling continues if equation (3.44) does not hold. This test is two-sided.

Next we consider the comparison of three groups, that is where c=3. We only need to monitor two of the groups, without loss of generality, groups 1 and 2. We again employ the relation

$$(1 - \alpha) = (1 - \alpha^*)^{c-1}. \tag{3.45}$$

with c = 3.

Test 3. Stop sampling and reject the null hypothesis if either

$$|S^{(1)}(t)| \ge C(\alpha^*, n_1)$$
 (3.46)

or

$$|S^{(2)}(t)| \ge C(\alpha^*, n_2)$$
 (3.47)

holds. The bounds $C(\alpha^*, n_1)$ and $C(\alpha^*, n_2)$ depend upon the overall significance level α through α^* , and the fixed total numbers of subjects receiving treatments 1 and 2, n_1 and n_2 . Sampling continues if neither equation (3.46) nor equation (3.47) holds. This test is two-sided.

3.3.3 Boundary calculation

The bounds for Test 3 are calculated using theory on simple random walks found in Csáki [5], as it was applied in Gombay [13]. In contrast to the critical values for Test 1 and Test 2, the bounds here are exact, not asymptotic approximations.

Similarly to the boundary calculation for the large-sample version, we write S_j to be the value of the test statistic at t_j . The superscript corresponding to treatment group is once again omitted. First we define the following two quantities

$$M_N = \max_{0 \le i \le N} S_j \tag{3.48}$$

$$M_N = \max_{0 \le j \le N} S_j$$

$$m_N = \min_{0 \le j \le N} S_j$$
(3.48)

where N is the number of patients in any given group (i.e. n_k). Then, for $x_j = \frac{j\pi}{2a},$

$$P\{-a < m_N < M_N < a\}$$

$$= \frac{1}{a} \sum_{j=0}^{2a-1} (\cos x_j)^N \sin ax_j \frac{1 + \cos x_j}{\sin x_j} \left(\frac{1 - (-1)^j}{2}\right)$$
(3.50)

where a > 1 is an integer. Select critical values for Test 3 can be found in Tables 3.4 and 3.5. Note that as a is restricted to the set of integers, the bounds might not correspond exactly to the desired α . For this reason, we include the exact α in brackets after each bound, within both tables.

Table 3.4: Critical values $a = C(\alpha, n_1)$ for Test 3 with c = 2. The exact value for α is given in brackets after each critical value.

n_1	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
10	8 (0.0234)	7 (0.0430)	6 (0.1309)
15	10 (0.0148)	9 (0.0425)	8 (0.0703)
20	12 (0.0144)	10 (0.0532)	9 (0.0828)
30	15 (0.0105)	12 (0.0589)	11 (0.0856)
50	20 (0.0092)	16 (0.0482)	14 (0.0978)
100	28 (0.0102)	22 (0.0562)	20 (0.0921)
150	34 (0.0110)	27 (0.0543)	24 (0.1009)
200	39 (0.0114)	32 (0.0475)	28 (0.0960)

Table 3.5: Critical values $a = C(\alpha^*, n_1)$ for Test 3 with c = 3 and overall error rate α . The exact value for α is given in brackets after each critical value.

n_1	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.10$
10	9 (0.0078)	8 (0.0463)	7 (0.0841)
15	12 (0.0039)	10 (0.0293)	9 (0.0833)
20	13 (0.0103)	11 (0.0467)	10 (0.1036)
30	16 (0.0133)	14 (0.0422)	12 (0.1143)
50	21 (0.0104)	18 (0.0434)	16 (0.0941)
100	30 (0.0106)	25 (0.0476)	22 (0.1092)
150	37 (0.0096)	31 (0.0440)	27 (0.1057)
200	43 (0.0091)	35 (0.0518)	32 (0.0928)

Chapter 4

Simulation

4.1 Preliminaries

This simulation study examines the performance of Test 1, Test 2, and Test 3 in the context of comparing either two or three treatment groups. Each subject from each group is assumed to have a maximum of three repeated measurements. In other words, we set c = 2 or 3 and p = 3. We assume that there are equal numbers of subjects from each group: $n_1 = n_2$, or $n_1 = n_2 = n_3$.

Data is simulated in Fortran using the IMSL Numerical Libraries. To induce correlation among repeated observations, we use the following moving average (MA) time series model, for its simplicity:

$$Y_{i\alpha}^{(k)} = w_{i\alpha}^{(k)} + \theta_1 w_{(i-1)\alpha}^{(k)} + \theta_2 w_{(i-2)\alpha}^{(k)}. \tag{4.1}$$

The $w_{j\alpha}^{(k)}$ are simulated independent random variates, for $j=-1,0,\ldots,3, k=1,2$ or $k=1,\ldots,3,$ and $\alpha=1,\ldots,n_k,$ that are either normally distributed, with mean μ_k and variance 1, or exponentially distributed with mean $1/\lambda_k$. In the normal case, we set $\mu_2=0$ or $\mu_2=\mu_3=0$, while μ_1 is varied over the set $\{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0\}$. For the exponential case, we set $\lambda_2=1$ or $\lambda_2=\lambda_3=1$, while $1/\lambda_1$ is varied over the set $\{1.00,1.25,1.50,1.75,2.00,2.25,2.50,2.75,3.00\}$.

Within-subject correlation arises when we restrict θ_1 and θ_2 to be nonzero. In our case, we choose $\theta_1 = \theta_2 = \frac{1}{2}$. Then, omitting the k and α indices for brevity,

$$COV[y_{i+u}, y_i] = COV[w_{i+u} + \frac{1}{2}w_{i+u-1} + \frac{1}{2}w_{i+u-2}, w_i + \frac{1}{2}w_{i-1} + \frac{1}{2}w_{i-2}]$$

$$= COV[w_{i+u}w_i] + \frac{1}{2}COV[w_{i+u}w_{i-1}] + \frac{1}{2}COV[w_{i+u}w_{i-2}]$$

$$+ \frac{1}{2}COV[w_{i+u-1}w_i] + \frac{1}{4}COV[w_{i+u-1}w_{i-1}]$$

$$+ \frac{1}{4}COV[w_{i+u-1}w_{i-2}] + \frac{1}{2}COV[w_{i+u-2}w_i]$$

$$+ \frac{1}{4}COV[w_{i+u-2}w_{i-1}] + \frac{1}{4}COV[w_{i+u-2}w_{i-2}].$$

$$(4.2)$$

Recalling that for $i \neq j$, $COV[w_i, w_j] = 0$, and that $COV[w_i, w_i] = VAR[w_i]$, we have:

$$u = 0 \implies COV[y_i \quad , y_i] = VAR[w_i] + \frac{1}{4}VAR[w_{i-1}] + \frac{1}{4}VAR[w_{i-2}]$$

$$u = 1 \implies COV[y_{i+1}, y_i] = \frac{1}{2}VAR[w_i] + \frac{1}{4}VAR[w_{i-1}]$$

$$u = 2 \implies COV[y_{i+2}, y_i] = \frac{1}{2}VAR[w_i].$$

As the variance of w_i does not change, for various i, we may rewrite the above as:

$$COV[y_i , y_i] = \frac{3}{2}VAR[w_i]$$

$$COV[y_{i+1}, y_i] = \frac{3}{4}VAR[w_i]$$

$$COV[y_{i+2}, y_i] = \frac{1}{2}VAR[w_i].$$

Now, using

$$CORR[y_{i+u}, y_i] = \frac{COV[y_{i+u}, y_i]}{\sqrt{VAR[y_{i+u}]VAR[y_i]}}$$

$$(4.3)$$

and writing $\rho(u) = CORR[y_{i+u}, y_i]$, we have

$$\rho(u) = \begin{cases} 1 & , u = 0 \\ \frac{1}{2} & , |u| = 1 \\ \frac{1}{3} & , |u| = 2 \end{cases}$$
 (4.4)

where u is the lag value. Values of $\rho(u)$ for $|u| \geq 3$ are not relevant for this study, as setting p = 3 implies that repeated measurements can be a maximum of two time points apart. In any case, $\rho(u) = 0$ for $|u| \geq 3$.

For computational purposes, it is also necessary to simulate the order in which the data are received. We simulate the orders all at once, in a process that is independent from the data generation. This is done for two reasons: first, it guarantees an equal distribution of subjects across groups; and second, the corresponding code was thought to be less computationally expensive than alternative algorithms.

Given that we have three measurements on n subjects, we must generate a random permutation of the numbers $\{1, 2, ..., 3n\}$, where the numbers 1, 2, ..., n represent the first measurements on the n subjects, n + 1, n + 2, ..., 2n represent the second measurements, and so on. We must ensure however that, for example, 1 is not observed after n + 1 or 2n + 1, as this would be nonsensical. Denote \mathbf{o} to be the $3n \times 1$ ordering vector. Initially, this vector is empty. The simulation algorithm proceeds as follows, where, to begin with $\mathcal{H} = \{1, 2, ..., n\}$.

- 1. Randomly choose an integer h from \mathcal{H} .
- 2. Place h, n + h, and 2n + h in that order, in the next three available entries of \mathbf{o} (the first three entries if \mathbf{o} is empty).
- 3. Remove h from \mathcal{H} .
- 4. Repeat steps 1-3 until \mathcal{H} is empty.

Then, the first entry of \mathbf{o} is taken to be the observation number corresponding to the first observation received, the second entry is taken to be the number corresponding to the second observation, and so on. The group index k is accounted for in the structure of our data storage. In particular, the first n_1 subjects out of $1, \ldots, n$ belong to group 1, the next n_2 subjects belong to group 2, and so on.

We define empirical power (P) to be the relative frequency of null hypothesis rejection, for a single set of replicates, and given a treatment difference. When there is no treatment difference, empirical power is equivalent to the estimate of empirical Type I error, $\hat{\alpha}$. The average stopping time (AVST) is taken to be the average of either the number of complete observations that are observed at the time of rejection (for replicates that reject the null hypothesis), or the maximal total sample size, within a single set of replicates.

Finally, the results of each simulation are based upon 10^4 replications.

4.2 Comparing c=2 groups

4.2.1 Algorithms

Test 1

- 1. Generate data according to equation (4.1) for specified $n_1 = n_2$, and μ_1 or λ_1 , depending on the response distribution.
- 2. Generate the hypothetical orders of observation.
- 3. Calculate n test statistics using the complete subjects from group 1; treat the data as if it arrives according to the ordering generated in step (2).
- 4. Compare the test statistics from step (3) to a critical value, according to equation (3.20) and the values of n_1 and α .
- 5. Record the first observation for which equation (3.20) is satisfied, nothing otherwise.
- 6. Repeat steps (1) (5) 9999 additional times.
- 7. Calculate and record $\hat{\alpha}$ (for $\mu_1 = 0$, $\lambda_1 = 1$) or empirical power (for $\mu_1 \neq 0$, $\lambda_1 \neq 1$), along with the average stopping time.

Test 2

- 1. Generate data according to equation (4.1) for specified $n_1 = n_2$, and μ_1 or λ_1 , depending on the response distribution.
- 2. Generate the hypothetical orders of observation.
- Calculate n test statistics using the complete subjects from group 1; treat the data as if it arrives according to the ordering generated in step (2).
- 4. Compare the test statistics from step (3) to a critical value, according to equation (3.21) and the value of α .
- 5. Record the first observation for which equation (3.21) is satisfied, nothing otherwise.
- 6. Repeat steps (1) (5) 9999 additional times.
- 7. Calculate and record $\hat{\alpha}$ (for $\mu_1 = 0$, $\lambda_1 = 1$) or empirical power (for $\mu_1 \neq 0$, $\lambda_1 \neq 1$), along with the average stopping time.

Test 3

- 1. Generate data according to equation (4.1) for specified $n_1 = n_2$, and μ_1 or λ_1 , depending on the response distribution.
- 2. Generate the hypothetical orders of observation.
- 3. Calculate n test statistics using the complete subjects from group 1; treat the data as if it arrives according to the ordering generated in step (2).
- 4. Compare the test statistics from step (3) to a critical value, according to equation (3.44) and the values of n_1 and α .
- 5. Record the first observation for which equation (3.44) is satisfied, nothing otherwise.

- 6. Repeat steps (1) (5) 9999 additional times.
- 7. Calculate and record $\hat{\alpha}$ (for $\mu_1 = 0$, $\lambda_1 = 1$) or empirical power (for $\mu_1 \neq 0$, $\lambda_1 \neq 1$), along with the average stopping time.

4.2.2 Results

Here we present the results of our simulation study for c=2. The results corresponding to Test 1, Test 2, and Test 3 are shown in Tables 4.1 to 4.8.

Table 4.1: Simulated power (P) and average stopping time (AVST) for Test 1 (Pocock) with c=2 and normally distributed responses. We set $\mu_2=0$ and $\sigma^2=1$, while μ_1 is allowed to vary. Critical values are obtained from Table 3.1. For this simulation, $n_1=n_2=20$ or 50.

		$\alpha =$	0.01	$\alpha =$	= 0.05	$\alpha = 0.10$	
n	μ_1	P	AVST	Р	AVST	Р	AVST
40							
	0.0	0.0173	39.5133	0.0554	38.4350	0.1096	36.8780
	0.1	0.0194	39.4797	0.0603	38.3560	0.1104	37.0020
	0.2	0.0260	39.3964	0.0805	38.0311	0.1498	36.3116
	0.3	0.0337	39.2752	0.1115	37.5975	0.1994	35.6633
	0.4	0.0591	38.9247	0.1695	36.7517	0.2708	34.5776
	0.5	0.0891	38.6271	0.2433	35.7444	0.3612	33.2796
	0.6	0.1378	38.0450	0.3257	34.6365	0.4602	31.7124
	0.7	0.1978	37.4216	0.4244	33.3640	0.5636	29.8730
	0.8	0.2547	36.8803	0.5157	31.9556	0.6553	28.2752
	0.9	0.3246	36.0526	0.6004	30.4940	0.7275	26.7073
	1.0	0.3934	35.2575	0.6642	29.3492	0.7819	25.4803
100							
	0.0	0.0151	98.7768	0.0607	95.3353	0.1044	91.6534
	0.1	0.0213	98.4530	0.0758	94.5691	0.1279	90.8122
	0.2	0.0453	97.6264	0.1322	92.6771	0.2198	87.0641
	0.3	0.1084	95.6903	0.2733	87.0563	0.3874	79.7445
	0.4	0.2333	91.8371	0.4694	79.2748	0.5941	70.5520
	0.5	0.4228	85.0126	0.6648	70.6474	0.7839	59.7643
	0.6	0.6283	77.2578	0.8332	60.2236	0.8985	50.9883
	0.7	0.7948	68.0099	0.9130	52.7937	0.9603	43.4149
	0.8	0.8872	61.1412	0.9674	45.3806	0.9843	37.4322
	0.9	0.9424	55.2382	0.9838	40.6740	0.9949	33.2430
	1.0	0.9714	50.2889	0.9943	36.7755	0.9972	30.9528

Table 4.2: Simulated power (P) and average stopping time (AVST) for Test 2 (O'Brien-Fleming) with c=2 and normally distributed responses. We set $\mu_2=0$ and $\sigma^2=1$, while μ_1 is allowed to vary. Critical values are obtained from Table 3.3. For this simulation, $n_1=n_2=20$ or 50.

		$\alpha =$	0.01	$\alpha =$	= 0.05	$\alpha = 0.10$	
n	μ_1	P	AVST	Р	AVST	Р	AVST
40							
	0.0	0.0113	39.9116	0.0485	39.4809	0.0992	38.8507
	0.1	0.0156	39.8808	0.0681	39.3601	0.1172	38.7396
	0.2	0.0343	39.7747	0.1100	39.0462	0.1849	38.0607
	0.3	0.0689	39.5443	0.1931	38.3686	0.2928	36.9608
	0.4	0.1254	39.2127	0.3014	37.3615	0.4250	35.5745
	0.5	0.2150	38.6921	0.4255	36.1377	0.5653	33.7774
	0.6	0.3020	38.0834	0.5481	34.7093	0.6857	32.0186
	0.7	0.4154	37.1331	0.6734	33.2374	0.7801	30.3460
	0.8	0.5206	36.2689	0.7610	31.7551	0.8438	28.8237
	0.9	0.6134	35.3126	0.8272	30.4689	0.8960	27.4258
	1.0	0.6904	34.4186	0.8749	29.3694	0.9271	26.3040
100							
	0.0	0.0102	99.8554	0.0481	98.8953	0.0945	97.4671
	0.1	0.0268	99.5778	0.0902	98.0556	0.1560	96.1170
	0.2	0.0926	98.4398	0.2445	94.4426	0.3399	91.0472
	0.3	0.2440	95.6965	0.4689	88.2038	0.5859	82.6154
	0.4	0.4752	90.4047	0.7066	79.6203	0.8075	72.4948
	0.5	0.6920	83.6821	0.8683	70.9685	0.9230	63.6770
	0.6	0.8504	76.6676	0.9512	63.3259	0.9752	56.2283
	0.7	0.9388	69.8403	0.9851	57.2303	0.9928	50.6957
	0.8	0.9757	64.9024	0.9957	52.5814	0.9981	46.4053
	0.9	0.9914	60.7696	0.9987	49.3626	0.9994	43.5393
	1.0	0.9957	57.5219	0.9996	46.7485	0.9997	41.2584

Table 4.3: Simulated power (P) and average stopping time (AVST) for Test 3 with c=2 and normally distributed responses. We set $\mu_2=0$ and $\sigma^2=1$, while μ_1 is allowed to vary. Critical values are obtained from Table 3.4. For this simulation, $n_1=n_2=10$ or 15.

		$\alpha =$	0.01	$\alpha =$	0.05	$\alpha = 0.10$	
n	μ_1	P	AVST	Р	AVST	Р	AVST
20							
	0.0	0.0135	19.9691	0.0342	19.8944	0.0958	19.6232
	0.1	0.0138	19.9693	0.0446	19.8668	0.1034	19.5845
	0.2	0.0244	19.9443	0.0589	19.8175	0.1423	19.4238
	0.3	0.0362	19.9271	0.0835	19.7386	0.1749	19.3135
	0.4	0.0625	19.8740	0.1300	19.5972	0.2353	19.0525
	0.5	0.0916	19.7970	0.1810	19.4404	0.3073	18.7081
	0.6	0.1354	19.7030	0.2470	19.2351	0.3889	18.3226
	0.7	0.1907	19.5669	0.3155	18.9659	0.4675	17.9176
	0.8	0.2423	19.4401	0.3837	18.7125	0.5375	17.5350
	0.9	0.3022	19.3008	0.4542	18.4306	0.6019	17.1138
	1.0	0.3612	19.1005	0.5237	18.1477	0.6599	16.7249
30							
	0.0	0.0125	29.9475	0.0328	29.8495	0.0617	29.6430
	0.1	0.0172	29.9346	0.0379	29.8136	0.0743	29.5589
	0.2	0.0291	29.8836	0.0652	29.6889	0.1114	29.3495
	0.3	0.0533	29.7879	0.1017	29.5078	0.1601	29.0229
	0.4	0.0987	29.5874	0.1570	29.2143	0.2508	28.4765
	0.5	0.1416	29.3891	0.2328	28.8069	0.3312	27.9046
	0.6	0.2199	29.0468	0.3278	28.2333	0.4348	27.1160
	0.7	0.3006	28.6415	0.4208	27.6018	0.5467	26.1137
	0.8	0.3890	28.1130	0.5159	26.8844	0.6391	25.2488
	0.9	0.4795	27.5732	0.5980	26.2403	0.7094	24.4556
	1.0	0.5754	26.9621	0.6778	25.4138	0.7824	23.5164

Table 4.4: Simulated power (P) and average stopping time (AVST) for Test 3 with c=2 and normally distributed responses. We set $\mu_2=0$ and $\sigma^2=1$, while μ_1 is allowed to vary. Critical values are obtained from Table 3.4. For this simulation, $n_1=n_2=20$ or 50.

		$\alpha =$	0.01	$\alpha =$	= 0.05	$\alpha = 0.10$	
n	μ_1	P	AVST	Р	AVST	P	AVST
40							
	0.0	0.0098	39.9491	0.0422	39.6785	0.0781	39.3054
	0.1	0.0157	39.9190	0.0486	39.6390	0.0944	39.1801
	0.2	0.0299	39.8271	0.0946	39.3086	0.1391	38.7755
	0.3	0.0610	39.6658	0.1559	38.8287	0.2314	37.9492
	0.4	0.1170	39.3273	0.2497	37.9685	0.3416	36.8532
	0.5	0.1835	38.9078	0.3611	36.9027	0.4613	35.4598
	0.6	0.2956	38.1492	0.4782	35.7502	0.5896	33.8157
	0.7	0.3958	37.3613	0.5846	34.4587	0.6912	32.1288
	0.8	0.4989	36.4311	0.6958	32.8527	0.7864	30.4702
	0.9	0.6033	35.2340	0.7761	31.3424	0.8490	28.8872
	1.0	0.6854	34.1926	0.8353	30.0287	0.8919	27.7650
100							
	0.0	0.0063	99.9020	0.0409	99.2356	0.0876	97.9282
	0.1	0.0204	99.6872	0.0728	98.4573	0.1335	96.6854
	0.2	0.0631	99.0528	0.1802	96.1684	0.2769	92.9619
	0.3	0.1573	97.4256	0.3578	91.6262	0.4757	86.7851
	0.4	0.3179	94.1400	0.5591	85.4084	0.6799	78.8087
	0.5	0.5133	89.2990	0.7534	77.6799	0.8345	70.2216
	0.6	0.7088	83.2849	0.8751	70.0850	0.9234	62.5338
	0.7	0.8417	76.5417	0.9484	62.7229	0.9741	55.5933
	0.8	0.9278	70.1710	0.9794	57.3000	0.9904	50.7586
	0.9	0.9697	65.1492	0.9911	52.9423	0.9973	46.6311
	1.0	0.9841	61.1805	0.9970	49.5758	0.9993	43.7730

Table 4.5: Simulated power (P) and average stopping time (AVST) for Test 1 (Pocock) with c=2 and exponentially distributed responses. We set $\lambda_2=1$ while λ_1 is allowed to vary. Critical values are obtained from Table 3.1. For this simulation, $n_1=n_2=20$ or 50.

		$\alpha =$	0.01	$\alpha =$	0.05	$\alpha = 0.10$	
n	$1/\lambda_1$	Р	AVST	Р	AVST	P	AVST
40							
	1.00	0.0187	39.4615	0.0558	38.4326	0.1053	37.0108
	1.25	0.0244	39.4253	0.0853	37.9654	0.1441	36.4624
	1.50	0.0529	39.0391	0.1592	36.9231	0.2660	34.5801
	1.75	0.1015	38.5135	0.2789	35.3512	0.4068	32.4878
	2.00	0.1613	37.8548	0.3956	33.6558	0.5352	30.4308
	2.25	0.2430	37.0023	0.4944	32.3860	0.6461	28.5310
	2.50	0.3104	36.2751	0.5961	30.6735	0.7155	27.0975
	2.75	0.3603	35.7146	0.6482	29.7022	0.7629	26.0088
	3.00	0.4179	34.9914	0.7004	28.7951	0.8132	24.9169
100							
	1.00	0.0164	98.6860	0.0545	95.6698	0.1049	91.5986
	1.25	0.0510	97.4387	0.1534	91.5293	0.2471	85.7574
	1.50	0.2164	92.3186	0.4451	80.5251	0.5820	71.2014
	1.75	0.5036	82.0065	0.7420	65.9060	0.8412	55.9079
	2.00	0.7429	71.3736	0.9017	54.2947	0.9421	45.6626
	2.25	0.8659	63.5733	0.9617	46.8587	0.9832	38.3031
	2.50	0.9371	56.4107	0.9822	41.5005	0.9928	34.1177
	2.75	0.9661	51.8288	0.9911	38.2637	0.9982	31.3079
	3.00	0.9798	48.4616	0.9964	35.4533	0.9985	29.3085

Table 4.6: Simulated power (P) and average stopping time (AVST) for Test 2 (O'Brien-Fleming) with c=2 and exponentially distributed responses. We set $\lambda_2=1$ while λ_1 is allowed to vary. Critical values are obtained from Table 3.3. For this simulation, $n_1=n_2=20$ or 50.

		$\alpha =$	0.01	$\alpha =$	0.05	$\alpha =$	0.10
n	$1/\lambda_1$	Р	AVST	Р	AVST	P	AVST
40							
	1.00	0.0118	39.9012	0.0531	39.4518	0.0951	38.8878
	1.25	0.0361	39.7707	0.1215	38.9322	0.1979	37.9518
	1.50	0.1151	39.2990	0.2901	37.5493	0.4131	35.6887
	1.75	0.2425	38.4504	0.4862	35.6353	0.6111	33.2663
	2.00	0.3729	37.5814	0.6415	33.6804	0.7563	30.9513
	2.25	0.4905	36.5747	0.7531	32.0924	0.8369	29.1562
	2.50	0.5954	35.5478	0.8202	30.8010	0.8977	27.5710
	2.75	0.6639	34.8116	0.8578	29.7516	0.9222	26.6656
	3.00	0.7240	34.0519	0.8990	28.9439	0.9380	25.8254
100							
	1.00	0.0089	99.8459	0.0458	98.9693	0.0935	97.5444
	1.25	0.1111	98.2016	0.2747	93.7279	0.3782	89.7691
	1.50	0.4498	91.1298	0.6975	80.2560	0.7842	73.7791
	1.75	0.7622	80.9086	0.9082	67.7756	0.9517	60.3091
	2.00	0.9227	72.2142	0.9762	59.2226	0.9884	52.4821
	2.25	0.9709	66.0885	0.9945	53.6038	0.9976	47.2075
	2.50	0.9887	61.7309	0.9974	49.9684	0.9991	43.9182
	2.75	0.9955	58.4604	0.9993	47.4265	0.9995	42.0699
	3.00	0.9980	56.2937	0.9996	45.7383	0.9999	40.4613

Table 4.7: Simulated power (P) and average stopping time (AVST) for Test 3 with c=2 and exponentially distributed responses. We set $\lambda_2=1$ while λ_1 is allowed to vary. Critical values are obtained from Table 3.4. For this simulation, $n_1=n_2=10$ or 15.

		$\alpha =$	0.01	$\alpha =$	= 0.05	$\alpha = 0.10$	
n	$1/\lambda_1$	Р	AVST	Р	AVST	Р	AVST
20							
	1.00	0.0125	19.9721	0.0388	19.8820	0.1025	19.5772
	1.25	0.0247	19.9483	0.0607	19.8154	0.1351	19.4750
	1.50	0.0585	19.8833	0.1215	19.6287	0.2232	19.1301
	1.75	0.1032	19.7793	0.1894	19.4256	0.3128	18.7106
	2.00	0.1569	19.6611	0.2775	19.1165	0.4208	18.1860
	2.25	0.2164	19.5009	0.3439	18.8905	0.5112	17.7164
	2.50	0.2625	19.3987	0.4261	18.5693	0.5769	17.3481
	2.75	0.3035	19.2948	0.4871	18.3403	0.6283	16.9803
	3.00	0.3589	19.1403	0.5353	18.1301	0.6796	16.6863
30							
	1.00	0.0117	29.9575	0.0305	29.8549	0.0647	29.6278
	1.25	0.0312	29.8775	0.0627	29.6882	0.1188	29.3127
	1.50	0.0782	29.6856	0.1461	29.2803	0.2209	28.6703
	1.75	0.1526	29.3781	0.2539	28.6867	0.3591	27.7185
	2.00	0.2527	28.9031	0.3626	28.0436	0.4984	26.6228
	2.25	0.3419	28.4504	0.4673	27.3269	0.5979	25.7248
	2.50	0.4386	27.8970	0.5638	26.5706	0.6857	24.8404
	2.75	0.5073	27.4298	0.6225	25.9931	0.7481	24.1080
	3.00	0.5722	26.9911	0.6857	25.4013	0.8004	23.4199

Table 4.8: Simulated power (P) and average stopping time (AVST) for Test 3 with c=2 and exponentially distributed responses. We set $\lambda_2=1$ while λ_1 is allowed to vary. Critical values are obtained from Table 3.4. For this simulation, $n_1=n_2=20$ or 50.

	$\alpha = 0.01$		$\alpha = 0.05$		$\alpha = 0.10$		
n	$1/\lambda_1$	P	AVST	Р	AVST	P	AVST
40							
	1.00	0.0097	39.9455	0.0423	39.6858	0.0773	39.3524
	1.25	0.0294	39.8466	0.0989	39.2916	0.1507	38.7172
	1.50	0.0994	39.4503	0.2292	38.2280	0.3128	37.1374
	1.75	0.2084	38.7867	0.3861	36.8053	0.4938	35.1434
	2.00	0.3286	37.9632	0.5413	35.0343	0.6498	32.9573
	2.25	0.4492	36.9257	0.6579	33.4954	0.7565	31.2254
	2.50	0.5517	35.9283	0.7396	32.2339	0.8271	29.7844
	2.75	0.6425	34.9190	0.8120	30.8671	0.8746	28.4851
	3.00	0.7129	34.0637	0.8568	29.8053	0.9055	27.5556
100							
	1.00	0.0069	99.8942	0.0466	99.0283	0.0867	97.9341
	1.25	0.0607	99.0467	0.1948	95.8104	0.2926	92.5216
	1.50	0.2856	95.0681	0.5201	86.9291	0.6484	80.4260
	1.75	0.5739	87.7758	0.7948	75.6497	0.8727	68.1847
	2.00	0.7836	80.0483	0.9224	66.3601	0.9575	58.9282
	2.25	0.9043	73.0946	0.9725	59.5967	0.9848	52.6946
	2.50	0.9601	67.3859	0.9898	55.0059	0.9949	48.7150
	2.75	0.9816	63.4632	0.9945	51.6112	0.9975	45.3563
	3.00	0.9901	60.2169	0.9986	48.7659	0.9995	43.2986

4.3 Comparing c=3 groups

4.3.1 Algorithms

Test 1

- 1. Generate data according to equation (4.1) for specified $n_1 = n_2 = n_3$, and μ_1 or λ_1 , depending on the response distribution.
- 2. Generate the hypothetical orders of observation.
- 3. Calculate n test statistics corresponding to group 1, and n corresponding to group 2; treat the data as if it arrives according to the ordering generated in step (2).
- 4. Compare the test statistics from step (3) to a critical value, according to equations (3.23) and (3.24), and the values of $n_1 = n_2$, and α^* .
- 5. Record the first observation for which one of equations (3.23) or (3.24) is satisfied, nothing otherwise.
- 6. Repeat steps (1) (5) 9999 additional times.
- 7. Calculate and record $\hat{\alpha}$ (for $\mu_1 = 0$, $\lambda_1 = 1$) or empirical power (for $\mu_1 \neq 0$, $\lambda_1 \neq 1$), along with the average stopping time.

Test 2

- 1. Generate data according to equation (4.1) for specified $n_1 = n_2 = n_3$, and μ_1 or λ_1 , depending on the response distribution.
- 2. Generate the hypothetical orders of observation.
- 3. Calculate n test statistics corresponding to group 1, and n corresponding to group 2; treat the data as if it arrives according to the ordering generated in step (2).

- 4. Compare the test statistics from step (3) to a critical value, according to equations (3.25) and (3.26), and the value of α^* .
- 5. Record the first observation for which one of equations (3.25) or (3.26) is satisfied, nothing otherwise.
- 6. Repeat steps (1) (5) 9999 additional times.
- 7. Calculate and record $\hat{\alpha}$ (for $\mu_1 = 0$, $\lambda_1 = 1$) or empirical power (for $\mu_1 \neq 0$, $\lambda_1 \neq 1$), along with the average stopping time.

Test 3

- 1. Generate data according to equation (4.1) for specified $n_1 = n_2 = n_3$, and μ_1 or λ_1 , depending on the response distribution.
- 2. Generate the hypothetical orders of observation.
- 3. Calculate n test statistics corresponding to group 1, and n corresponding to group 2; treat the data as if it arrives according to the ordering generated in step (2).
- 4. Compare the test statistics from step (3) to a critical value, according to equations (3.46) and (3.47), and the values of $n_1 = n_2$ and α^* .
- 5. Record the first observation for which one of equations (3.46) or (3.47) is satisfied, nothing otherwise.
- 6. Repeat steps (1) (5) 9999 additional times.
- 7. Calculate and record $\hat{\alpha}$ (for $\mu_1 = 0$, $\lambda_1 = 1$) or empirical power (for $\mu_1 \neq 0$, $\lambda_1 \neq 1$), along with the average stopping time.

4.3.2 Results

Here we present the results of our simulation study for c=3. The raw results may be found in Tables 4.9 to 4.16, while plots of P and AVST are given in Figures 4.1 and 4.2, for all three tests, with $\alpha=0.05$ and normal data.

Table 4.9: Simulated power (P) and average stopping time (AVST) for Test 1 (Pocock) with c=3 and normally distributed responses. We set $\mu_2=\mu_3=0$ and $\sigma^2=1$, while μ_1 is allowed to vary. Critical values are obtained from Table 3.2. For this simulation, $n_1=n_2=n_3=20$ or 50.

	$\alpha = 0.01$			$\alpha = 0.05$		$\alpha = 0.10$	
n	μ_1	Р	AVST	Р	AVST	Р	AVST
60							
	0.0	0.0112	59.4918	0.0421	58.1473	0.0781	56.6818
	0.1	0.0114	59.5664	0.0522	57.8831	0.0970	56.1211
	0.2	0.0191	59.3742	0.0821	57.2639	0.1434	55.1444
	0.3	0.0361	59.0950	0.1420	56.1916	0.2422	52.9045
	0.4	0.0905	58.2109	0.2505	54.1084	0.3750	50.1662
	0.5	0.1648	57.2173	0.4063	51.0016	0.5608	45.7705
	0.6	0.2941	55.1023	0.5829	46.9640	0.7288	40.9650
	0.7	0.4588	52.2672	0.7503	42.6465	0.8645	36.2469
	0.8	0.6252	48.9990	0.8648	38.6983	0.9372	32.2200
	0.9	0.7537	45.7909	0.9340	34.7796	0.9718	29.4000
	1.0	0.8582	42.6957	0.9734	31.8365	0.9891	26.4426
150							
	0.0	0.0086	148.9492	0.0433	144.8926	0.0824	140.5927
	0.1	0.0159	148.4534	0.0677	143.5271	0.1184	138.4873
	0.2	0.0571	146.6917	0.1808	137.5318	0.2812	128.2342
	0.3	0.2126	139.4573	0.4372	123.0427	0.5726	109.8453
	0.4	0.5087	124.6682	0.7495	100.2828	0.8467	85.6244
	0.5	0.8084	103.1930	0.9328	78.6921	0.9679	65.0683
	0.6	0.9537	83.2035	0.9910	61.4096	0.9964	50.5286
	0.7	0.9940	68.3289	0.9994	50.3649	0.9999	41.7366
	0.8	0.9995	58.6947	0.9999	42.7846	1.0000	35.8507
	0.9	1.0000	51.8400	1.0000	38.0242	1.0000	31.6645
	1.0	1.0000	46.2481	1.0000	34.4057	1.0000	28.8427

Table 4.10: Simulated power (P) and average stopping time (AVST) for Test 2 (O'Brien-Fleming) with c=3 and normally distributed responses. We set $\mu_2=\mu_3=0$ and $\sigma^2=1$, while μ_1 is allowed to vary. Critical values are obtained from Table 3.3. For this simulation, $n_1=n_2=n_3=20$ or 50.

$\alpha = 0.01$			$\alpha = 0.05$		$\alpha = 0.10$		
n	μ_1	Р	AVST	Р	AVST	Р	AVST
60							
	0.0	0.0078	59.9238	0.0409	59.5271	0.0826	58.8365
	0.1	0.0148	59.8609	0.0652	59.2237	0.1220	58.3655
	0.2	0.0450	59.6100	0.1398	58.3835	0.2364	56.9005
	0.3	0.1150	58.9987	0.2913	56.6210	0.4159	54.3650
	0.4	0.2360	57.8644	0.4906	53.8017	0.6107	50.8125
	0.5	0.4144	56.0512	0.6870	50.4219	0.8080	46.3183
	0.6	0.6161	53.2047	0.8418	46.5305	0.9199	42.2828
	0.7	0.7776	50.3510	0.9335	42.9881	0.9704	38.6886
	0.8	0.8925	47.4663	0.9770	40.0687	0.9918	35.8449
	0.9	0.9516	44.8595	0.9931	37.5970	0.9982	33.7374
	1.0	0.9798	42.7174	0.9977	35.8021	0.9995	32.0828
150							
	0.0	0.0085	149.8272	0.0469	148.6833	0.0905	146.8945
	0.1	0.0340	149.2424	0.1147	146.8049	0.1904	143.6319
	0.2	0.1692	146.1499	0.3522	138.8879	0.5048	131.2216
	0.3	0.4593	136.9078	0.7096	122.3051	0.8104	112.5175
	0.4	0.7865	121.8153	0.9237	103.6689	0.9658	92.9724
	0.5	0.9582	104.9302	0.9911	87.9098	0.9974	78.7036
	0.6	0.9950	91.9151	0.9993	76.7315	0.9998	68.9431
	0.7	0.9995	82.8947	1.0000	69.0984	1.0000	61.8037
	0.8	1.0000	76.3594	1.0000	63.5991	1.0000	56.9427
	0.9	1.0000	71.2220	1.0000	59.4892	1.0000	53.3318
	1.0	1.0000	67.4635	1.0000	56.3992	1.0000	50.6889

Table 4.11: Simulated power (P) and average stopping time (AVST) for Test 3 with c=3 and normally distributed responses. We set $\mu_2=\mu_3=0$ and $\sigma^2=1$, while μ_1 is allowed to vary. Critical values are obtained from Table 3.5. For this simulation, $n_1=n_2=n_3=10$ or 15.

$\alpha = 0.01$			$\alpha = 0.05$		$\alpha = 0.10$		
n	μ_1	Р	AVST	Р	AVST	Р	AVST
30							
	0.0	0.0077	29.9740	0.0344	29.8735	0.0807	29.5674
	0.1	0.0088	29.9719	0.0363	29.8657	0.0908	29.5071
	0.2	0.0162	29.9472	0.0576	29.7830	0.1322	29.2815
	0.3	0.0314	29.8941	0.0947	29.6549	0.1865	28.9907
	0.4	0.0523	29.8268	0.1593	29.4314	0.2732	28.4790
	0.5	0.0834	29.7287	0.2344	29.0978	0.3755	27.8859
	0.6	0.1409	29.5350	0.3281	28.6765	0.4845	27.0953
	0.7	0.2106	29.3107	0.4374	28.1689	0.5994	26.2964
	0.8	0.2839	29.0399	0.5452	27.5870	0.7061	25.4152
	0.9	0.3709	28.7496	0.6392	27.0679	0.7884	24.5649
	1.0	0.4639	28.3809	0.7228	26.4768	0.8531	23.8692
45							
	0.0	0.0038	44.9789	0.0313	44.7739	0.0627	44.5309
	0.1	0.0057	44.9672	0.0381	44.7418	0.0847	44.3385
	0.2	0.0104	44.9479	0.0643	44.5523	0.1355	43.9335
	0.3	0.0266	44.8612	0.1179	44.1838	0.2264	43.1788
	0.4	0.0580	44.7254	0.2139	43.4716	0.3580	41.9787
	0.5	0.1146	44.4174	0.3327	42.4979	0.4959	40.5046
	0.6	0.1981	43.9886	0.4672	41.2406	0.6433	38.6421
	0.7	0.3015	43.3596	0.6132	39.6171	0.7710	36.7532
	0.8	0.4292	42.5024	0.7301	38.1086	0.8601	34.8593
	0.9	0.5501	41.6571	0.8336	36.5983	0.9236	33.2521
	1.0	0.6663	40.7826	0.9041	35.1223	0.9599	31.8088

Table 4.12: Simulated power (P) and average stopping time (AVST) for Test 3 with c=3 and normally distributed responses. We set $\mu_2=\mu_3=0$ and $\sigma^2=1$, while μ_1 is allowed to vary. Critical values are obtained from Table 3.5. For this simulation, $n_1=n_2=n_3=20$ or 50.

		α =	= 0.01	α =	= 0.05	α =	= 0.10
n	μ_1	Р	AVST	P	AVST	Р	AVST
60							
	0.0	0.0088	59.9320	0.0442	59.5478	0.0861	59.0302
	0.1	0.0158	59.8751	0.0640	59.3175	0.1210	58.6446
	0.2	0.0366	59.7149	0.1152	58.7282	0.2041	57.6249
	0.3	0.0831	59.3402	0.2219	57.6036	0.3331	55.7869
	0.4	0.1727	58.4767	0.3662	55.7209	0.5069	53.1087
	0.5	0.3023	57.2007	0.5492	52.9723	0.6704	49.8642
	0.6	0.4698	55.3353	0.7078	50.0092	0.8212	46.2371
	0.7	0.6244	53.1322	0.8331	47.0388	0.9088	42.9753
	0.8	0.7674	50.8110	0.9199	44.0723	0.9596	40.0907
	0.9	0.8620	48.6000	0.9637	41.5481	0.9841	37.7370
	1.0	0.9335	46.3139	0.9865	39.5229	0.9956	35.9282
150							
	0.0	0.0102	149.7985	0.0410	148.8816	0.0880	147.3017
	0.1	0.0277	149.4389	0.0849	147.7077	0.1549	145.1954
	0.2	0.1030	147.7213	0.2438	142.8844	0.3604	137.4381
	0.3	0.2935	142.4214	0.5087	133.0608	0.6578	123.0977
	0.4	0.5896	132.0983	0.7739	118.3120	0.8767	106.8096
	0.5	0.8209	118.5655	0.9416	102.8100	0.9711	91.8074
	0.6	0.9480	105.7963	0.9872	90.4770	0.9952	80.4723
	0.7	0.9920	94.8924	0.9985	81.2443	1.0000	72.0168
	0.8	0.9989	86.7986	0.9999	74.2384	1.0000	66.4159
	0.9	1.0000	80.8194	0.9999	69.4605	1.0000	61.9039
	1.0	1.0000	76.4510	1.0000	65.6134	1.0000	58.3219

Table 4.13: Simulated power (P) and average stopping time (AVST) for Test 1 (Pocock) with c=3 and exponentially distributed responses. We set $\lambda_2=\lambda_3=1$ while λ_1 is allowed to vary. Critical values are obtained from Table 3.2. For this simulation, $n_1=n_2=n_3=20$ or 50.

		$\alpha =$	= 0.01	α =	= 0.05	α =	= 0.10
n	$1/\lambda_1$	Р	AVST	Р	AVST	Р	AVST
60							
	1.00	0.0111	59.5043	0.0445	58.0785	0.0766	56.6822
	1.25	0.0231	59.2486	0.0832	57.4152	0.1571	54.7946
	1.50	0.0821	58.3215	0.2326	54.5203	0.3711	50.3864
	1.75	0.2176	56.4521	0.4813	49.4895	0.6318	43.8494
	2.00	0.4123	53.1151	0.7061	44.0520	0.8271	37.7385
	2.25	0.5939	49.8125	0.8468	39.0657	0.9212	33.3328
	2.50	0.7341	46.6340	0.9216	35.8426	0.9662	29.6429
	2.75	0.8266	43.7871	0.9630	32.8091	0.9859	27.2422
	3.00	0.8869	41.5038	0.9812	30.6726	0.9945	25.6025
150							
	1.00	0.0100	148.7463	0.0463	144.6410	0.0852	140.0826
	1.25	0.0702	145.9093	0.2115	135.5367	0.3200	126.9630
	1.50	0.4811	125.4595	0.7279	102.0638	0.8276	87.2194
	1.75	0.8801	95.2217	0.9689	70.7442	0.9852	58.4110
	2.00	0.9866	73.1737	0.9979	53.5627	0.9996	44.2208
	2.25	0.9989	60.7293	0.9999	44.5231	1.0000	36.9201
	2.50	1.0000	52.7399	1.0000	38.8416	1.0000	32.4302
	2.75	1.0000	48.1233	1.0000	35.5908	1.0000	29.7305
	3.00	1.0000	44.7669	1.0000	32.9585	1.0000	27.8222

Table 4.14: Simulated power (P) and average stopping time (AVST) for Test 2 (O'Brien-Fleming) with c=3 and exponentially distributed responses. We set $\lambda_2=\lambda_3=1$ while λ_1 is allowed to vary. Critical values are obtained from Table 3.3. For this simulation, $n_1=n_2=n_3=20$ or 50.

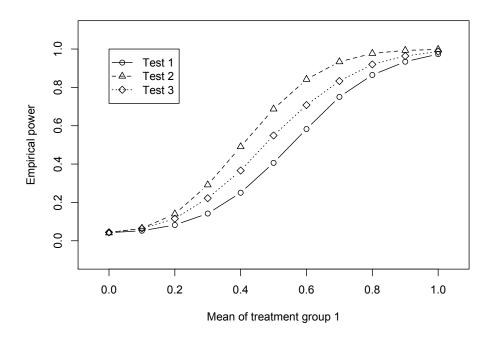
		$\alpha =$	= 0.01	$\alpha =$	= 0.05	$\alpha = 0.10$	
n	$1/\lambda_1$	Р	AVST	Р	AVST	Р	AVST
60							
	1.00	0.0073	59.9313	0.0428	59.4659	0.0842	58.8269
	1.25	0.0466	59.6065	0.1565	58.1682	0.2561	56.5803
	1.50	0.2300	58.0235	0.4756	54.1139	0.5953	51.0572
	1.75	0.4969	54.8683	0.7484	49.0646	0.8483	44.7725
	2.00	0.7222	51.3871	0.9082	44.1643	0.9542	40.0286
	2.25	0.8662	48.1642	0.9691	40.5743	0.9877	36.5112
	2.50	0.9397	45.5588	0.9909	38.2797	0.9968	34.3952
	2.75	0.9708	43.5415	0.9971	36.3442	0.9986	32.6027
	3.00	0.9867	42.0094	0.9993	35.1142	0.9996	31.6309
150							
	1.00	0.0093	149.7966	0.0409	148.8153	0.0918	146.8402
	1.25	0.1910	145.3541	0.4153	136.3195	0.5453	128.8503
	1.50	0.7628	122.9867	0.9142	105.0798	0.9570	94.6540
	1.75	0.9776	100.4006	0.9950	83.2943	0.9987	74.9540
	2.00	0.9989	86.0597	0.9999	71.5144	1.0000	64.2597
	2.25	1.0000	77.4560	1.0000	64.7975	1.0000	58.1422
	2.50	1.0000	72.4695	1.0000	60.5805	1.0000	54.4879
	2.75	1.0000	68.6527	1.0000	57.4353	1.0000	51.5617
	3.00	1.0000	66.0040	1.0000	55.2850	1.0000	49.6979

Table 4.15: Simulated power (P) and average stopping time (AVST) for Test 3 with c=3 and exponentially distributed responses. We set $\lambda_2=\lambda_3=1$ while λ_1 is allowed to vary. Critical values are obtained from Table 3.5. For this simulation, $n_1=n_2=n_3=10$ or 15.

		$\alpha =$	0.01	$\alpha =$	= 0.05	$\alpha =$	0.10
n	$1/\lambda_1$	P	AVST	Р	AVST	Р	AVST
30							
	1.00	0.0064	29.9782	0.0352	29.8744	0.0790	29.5650
	1.25	0.0191	29.9324	0.0585	29.7901	0.1260	29.3175
	1.50	0.0495	29.8402	0.1366	29.4777	0.2575	28.5697
	1.75	0.0885	29.7097	0.2545	29.0206	0.3942	27.7066
	2.00	0.1560	29.4615	0.3794	28.4946	0.5357	26.7563
	2.25	0.2315	29.2277	0.4860	27.9472	0.6535	25.8331
	2.50	0.3078	28.9495	0.5763	27.4712	0.7370	25.1051
	2.75	0.3847	28.6756	0.6640	26.9171	0.8058	24.3598
	3.00	0.4452	28.4433	0.7178	26.5123	0.8479	23.8833
45							
	1.00	0.0028	44.9868	0.0271	44.8124	0.0649	44.5025
	1.25	0.0130	44.9324	0.0683	44.5180	0.1500	43.8320
	1.50	0.0504	44.7520	0.1885	43.6366	0.3227	42.3010
	1.75	0.1295	44.3222	0.3577	42.2533	0.5276	40.1540
	2.00	0.2393	43.7269	0.5380	40.5536	0.7007	37.9380
	2.25	0.3480	43.0296	0.6729	38.9604	0.8142	35.9111
	2.50	0.4719	42.2252	0.7815	37.4621	0.8888	34.2313
	2.75	0.5686	41.5116	0.8486	36.2909	0.9363	32.9321
	3.00	0.6587	40.7824	0.9038	35.2312	0.9592	31.8807

Table 4.16: Simulated power (P) and average stopping time (AVST) for Test 3 with c=3 and exponentially distributed responses. We set $\lambda_2=\lambda_3=1$ while λ_1 is allowed to vary. Critical values are obtained from Table 3.5. For this simulation, $n_1=n_2=n_3=20$ or 50.

		$\alpha =$	= 0.01	$\alpha =$	= 0.05	$\alpha =$	= 0.10
n	$1/\lambda_1$	Р	AVST	Р	AVST	Р	AVST
60							
	1.00	0.0088	59.9384	0.0455	59.5051	0.0915	58.9156
	1.25	0.0377	59.7028	0.1306	58.6151	0.2062	57.5873
	1.50	0.1470	58.8247	0.3327	56.1877	0.4772	53.7623
	1.75	0.3312	56.8978	0.5867	52.3068	0.7084	49.2820
	2.00	0.5288	54.6244	0.7572	48.8314	0.8573	45.0540
	2.25	0.7022	52.0999	0.8803	45.4285	0.9387	41.6053
	2.50	0.8067	50.0038	0.9439	43.1553	0.9733	39.1647
	2.75	0.8796	48.1477	0.9724	41.0395	0.9891	37.2456
	3.00	0.9343	46.5193	0.9882	39.4830	0.9946	36.0308
150							
	1.00	0.0094	149.7916	0.0368	148.9459	0.0886	147.3095
	1.25	0.1262	147.1535	0.2666	142.1740	0.3933	136.0882
	1.50	0.5257	134.5031	0.7394	121.6317	0.8489	109.9476
	1.75	0.8637	116.2698	0.9537	100.4810	0.9829	89.3358
	2.00	0.9780	101.2626	0.9952	86.8219	0.9986	76.9177
	2.25	0.9973	91.1417	0.9997	77.8712	1.0000	69.4758
	2.50	0.9998	80.2413	1.0000	72.7223	1.0000	64.3905
	2.75	1.0000	80.2273	1.0000	68.6684	1.0000	61.1518
	3.00	1.0000	77.0099	1.0000	65.8899	1.0000	58.5831



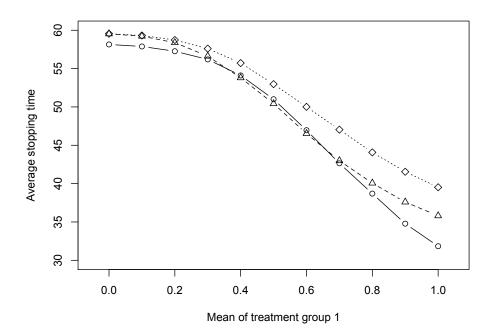
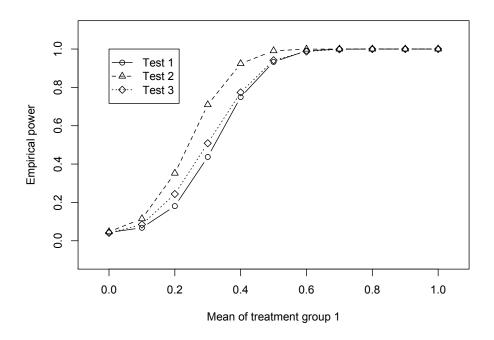


Figure 4.1: Plots of empirical power (P) and average stopping time (AVST) for Tests 1, 2, and 3, where c=3, $n_1=n_2=n_3=20$, $\alpha=0.05$, and where the response distribution is normal.



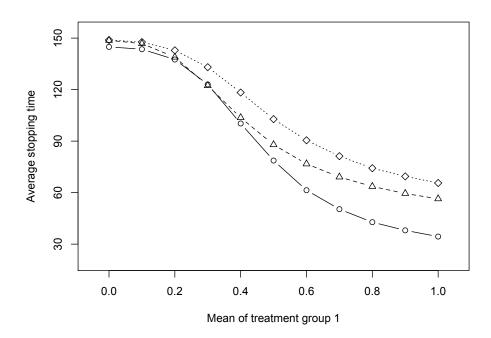


Figure 4.2: Plots of empirical power (P) and average stopping time (AVST) for Tests 1, 2, and 3, where c=3, $n_1=n_2=n_3=50$, $\alpha=0.05$, and where the response distribution is normal.

4.4 Discussion

Overall, we observed that all three tests perform similarly for both normal and exponential responses. Power is higher when c=3 compared to c=2, for all tests and both response types. This may be attributed to the fact that the total sample size, n, is larger for simulations involving three groups. Rather than matching the total sample size, we chose to maintain the same group sizes between all simulations.

We also made some test-specific observations:

Test 1

- 1. Test 1 is reasonably powered for $n_1 = 20$ and well-powered for $n_1 = 50$.
- 2. Test 1 has earlier average stopping times than both Test 2 and Test 3, for large treatment differences.

Test 2

- 1. Test 2 appears to have higher power than Test 1 and Test 3, for small treatment differences.
- 2. We observed average stopping times for Test 2 that were larger than those of Test 1, similar to those of Test 3 for c=2, and smaller than those of Test 3 for c=3.

Test 3

- 1. The performance of Test 3 is acceptable for $n_1 = 10, 15$, with decent power and somewhat lengthy average stopping times.
- Overall, Test 3 has the longest average stopping times; this is to be expected however, as the test is nonparametric, and suffers from some degree of information loss.

Chapter 5

Application

In this section, we apply Tests 1, 2, and 3 to data from an orthodontic clinical trial. The objective of the trial was to determine whether the skeletal and dental effects of maxillary expansion are the same between subjects, and for different treatment groups. A total of n = 62 patients were recruited from the Graduate Orthodontic Clinic patient pool. They were randomly assigned to one of three treatment groups: Hyrax (1), bone-anchored expander (2), or control (3). Two patients were excluded from this analysis due to missing data, leaving group sample sizes of $n_1 = 21$, $n_2 = 20$, and $n_3 = 19$.

Three-dimensional volumetric scans were obtained for each patient via cone-beam computerized tomography (CBCT), a maximum of three times over the course of the trial. From these scans, three-dimensional landmarks, descriptors of shape, were derived. The response variables are taken to be the Euclidean distance between pairs of landmarks. We will restrict our analysis here to the response derived from comparing landmarks 1 and 6. Finally, we refer to the three measures of our response as T1, T2, and T3.

For all three tests, we use $\alpha = 0.05$ with corresponding $\alpha^* = 0.0253$. For Test 1 and both groups 1 and 2 we use boundaries corresponding to $n_k = 20$. These may be found in Table 3.2 of Chapter 3. The boundaries for Test 2 on the other hand, which are not dependent on sample size, are found in Table 3.3. As Test 3 is exact, we calculate the appropriate boundaries for our specific values of n_1 and n_2 . We arrive at the same boundary value for both groups.

The critical values for all three tests may be found in Table 5.1.

Table 5.1: Critical values for Test 1, Test 2, and Test 3, for the skeletal and dental effects study. For Test 3, the exact significance levels are provided in brackets.

	Group 1	Group 2
Test 1	3.18	3.18
Test 2	2.49	2.49
Test 3	$11 \ (0.0467)$	11 (0.0665)

The test statistics for Tests 1, 2, and 3, are presented in Tables 5.2 and 5.3 for analyses 1-30 and 31-60, respectively. Plots of the sample paths of each test statistic along with the corresponding critical values are given in Figure 5.1. For Test 1, H_0 is rejected at analysis 31, for Test 2 we reject at analysis 36, and for Test 3 we reject at analysis 50. Again, all tests use an overall significance level of $\alpha = 0.05$.

Table 5.2: Test statistics at analyses 1-30, to be compared to a critical value, for landmarks 1 and 6, and Tests 1, 2, and 3.

	Tes	st 1	Tes	st 2	Tes	st 3
Analysis	Group 1	Group 2	Group 1	Group 2	Group 1	Group 2
1	0.0000	0.0000	0.0000	0.0000	0	0
2	0.0000	0.0000	0.0000	0.0000	0	0
3	0.0000	0.0000	0.0000	0.0000	0	0
4	0.9440	0.0000	0.2060	0.0000	1	0
5	0.9316	0.0000	0.2033	0.0000	1	0
6	0.9556	0.9172	0.2085	0.2051	1	1
7	1.0171	0.9763	0.2219	0.2183	1	1
8	1.0786	0.6448	0.2354	0.2039	1	0
9	0.9939	0.5942	0.2169	0.1879	1	0
10	1.0327	0.6173	0.2253	0.1952	1	0
11	1.0488	0.6270	0.2289	0.1983	1	0
12	1.0121	1.4784	0.2209	0.5726	1	1
13	1.2835	1.5096	0.3961	0.5847	2	1
14	1.3148	1.5436	0.4058	0.6903	2	2
15	1.2948	2.0731	0.3996	1.0365	2	3
16	2.0288	2.0160	0.7668	1.0080	3	3
17	2.4371	2.0422	1.0636	1.0211	4	3
18	2.4878	2.0847	1.0858	1.0423	4	3
19	2.5229	2.3356	1.1011	1.2793	4	4
20	2.4971	2.3710	1.2185	1.2987	5	4
21	2.4760	1.9474	1.2082	1.1521	5	3
22	2.6646	1.9819	1.4243	1.1725	6	3
23	2.6940	2.2357	1.4400	1.4140	6	4
24	2.7244	2.2078	1.4562	1.4811	6	5
25	2.7639	2.2399	1.4774	1.5026	6	5
26	2.7464	2.6540	1.4680	1.8767	6	6
27	2.9639	2.5809	1.7112	1.8250	7	6
28	3.0562	2.6040	1.8863	1.8413	8	6
29	3.0729	2.8646	1.8966	2.1244	8	7
30	2.3583	2.7857	1.5439	2.0659	7	7

Table 5.3: Test statistics at analyses 31-60, to be compared to a critical value, for landmarks 1 and 6, and Tests 1, 2, and 3.

	Tes	st 1	Tes	st 2	Tes	st 3
Analysis	Group 1	Group 2	Group 1	Group 2	Group 1	Group 2
31	2.3434	3.1845	1.5341	2.4667	7	8
32	2.3252	3.1598	1.5222	2.4475	7	8
33	2.3036	3.1304	1.5081	2.4248	7	8
34	2.3503	3.1938	1.5386	2.4739	7	8
35	1.8957	3.1729	1.3082	2.4577	6	8
36	1.8910	3.3935	1.3049	2.7359	6	9
37	1.9176	3.4412	1.3233	2.7744	6	9
38	1.9287	3.5856	1.3309	2.9999	6	10
39	2.1948	3.5934	1.5885	3.0065	7	10
40	2.0415	3.6133	1.5432	3.0231	6	10
41	1.9792	3.6423	1.5572	3.0474	7	10
42	1.9953	3.6719	1.5699	3.0721	7	10
43	2.4412	3.6534	1.9933	3.0566	8	10
44	2.4571	3.5504	2.0063	3.0747	8	9
45	2.8425	3.5399	2.4024	3.0657	9	9
46	2.7669	3.4457	2.3385	2.9841	9	9
47	2.7815	3.5632	2.3508	3.1870	9	10
48	2.7488	3.0925	2.3232	2.8511	9	9
49	3.0831	3.0798	2.6912	2.8394	10	9
50	3.3172	3.0867	2.9846	2.8458	11	9
51	3.3405	3.1084	3.0056	2.8658	11	9
52	3.3401	3.1080	3.0052	2.8654	11	9
53	3.3156	3.0852	2.9832	2.8444	11	9
54	3.3290	3.2085	2.9952	3.0438	11	10
55	3.5382	3.2095	3.2758	3.0448	12	10
56	3.5564	3.2554	3.2925	3.1730	12	11
57	3.5695	3.3836	3.3047	3.3836	12	12
58	3.6868	3.3961	3.5069	3.3961	13	12
59	3.8380	3.4105	3.7455	3.4105	14	12
60	4.0777	3.4083	4.0777	3.4083	15	12

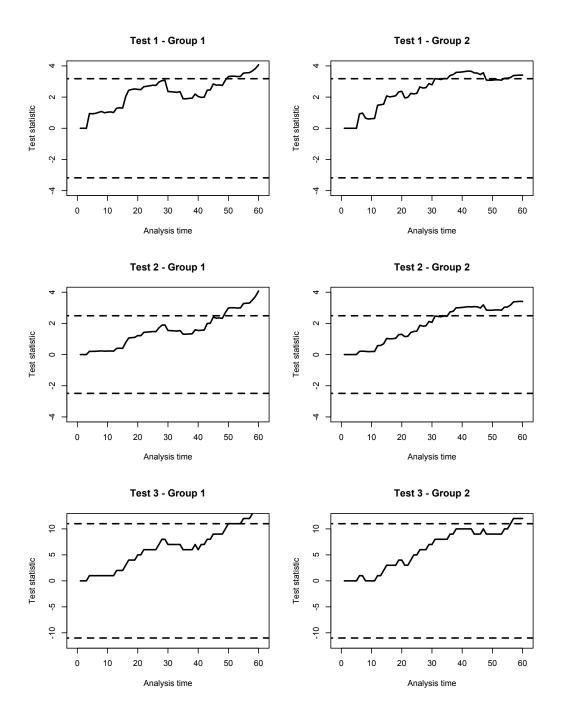


Figure 5.1: Plots of the sample paths of the test statistics for Tests 1, 2, and 3, along with the corresponding critical values, for landmarks 1 and 6.

Chapter 6

Summary and conclusions

This thesis has examined the application of sequential methods to longitudinal data. We developed several new, nonparametric, fully sequential monitoring procedures to be used for the comparison of two or more groups. Performance of the new procedures was assessed via a Monte Carlo simulation study. Finally, the procedures were applied to data from an orthodontic clinical trial, for illustrative purposes.

The following are our recommendations for application of the new procedures:

- Test 1 should be used if early stopping is of the utmost importance.
- Test 2 should be used if high power is paramount.
- Test 3 should be used when group sample sizes are small, where $n_k < 20$.

Given the results of this thesis, we believe that there is potential for future research in the following directions:

- Performance of the new procedures could be examined for scenarios in which there are more than three repeated measures, and more than three treatment groups, as well as for various other response distributions.
- Theory could be developed for the pairwise comparison of treatment groups, to be applied when the null hypothesis is rejected.

- The procedure could be revised to accommodate complicated forms of missing data.
- The procedure could be compared to some of the longitudinal group sequential methods.
- Finally, the procedure could be adapted to accommodate multiple outcome response variables.

Bibliography

- [1] P. Armitage, I. M. Stratton, and H. V. Worthington. Repeated significance tests for clinical trials with a fixed number of patients and variable follow-up. *Biometrics*, 41(2):353–359, 1985.
- [2] P. Bogowicz, C. Flores-Mir, P. W. Major, and G. Heo. Sequential analysis applied to clinical trials in dentistry: a systematic review. *Evidence-Based Dentistry*, 9(2):55–60, 2008.
- [3] H. D. Brunk. An Introduction to Mathematical Statistics. Blaisdell: New York, 2nd edition, 1965.
- [4] B. Cerutti, T. Zoubeidi, and D. M. Reboussin. Adaptive group sequential procedures for multiple comparison of treatments. *Communications in Statistics Theory and Methods*, 31(5):781–793, 2002.
- [5] E. Csáki. Some applications of the classical formula on ruin probabilities. Journal of Statistical Planning and Inference, 14:35–42, 1986.
- [6] C. S. Davis. Statistical Methods for the Analysis of Repeated Measurements. Springer-Verlag: New York, 1st edition, 2002.
- [7] P. J. Diggle, P. Heagerty, K. Liang, and S. L. Zeger. *Analysis of Longitu-dinal Data*. Oxford University Press: New York, 2nd edition, 2002.
- [8] G. M. Fitzmaurice, N. M. Laird, and J. H. Ware. *Applied Longitudinal Analysis*. Wiley-Interscience: Hoboken, 1st edition, 2004.

- [9] S. Galbraith and I. C. Marschner. Interim analysis of continuous longterm endpoints in clinical trials with longitudinal outcomes. *Statistics in Medicine*, 22:1787–1805, 2003.
- [10] S. J. Gange and D. L. DeMets. Sequential monitoring of clinical trials with correlated responses. *Biometrika*, 83(1):157–167, 1996.
- [11] D. N. Geary. Sequential testing in clinical trials with repeated measurements. *Biometrika*, 75(2):311–318, 1988.
- [12] B. K. Ghosh and P. K. Sen. Handbook of Sequential Analysis. Marcel Dekker: New York, 1st edition, 1991.
- [13] E. Gombay. Testing for change-points with rank and sign statistics. *Statistics and probability letters*, 20:49–55, 1994.
- [14] E. Gombay. Nonparametric truncated sequential change-point detection. Statistics & Decisions, 13:71–82, 1995.
- [15] E. Gombay. The weighted sequential likelihood ratio. *Canadian Journal of Statistics*, 24(2):229–239, 1996.
- [16] E. Gombay. Parametric sequential tests in the presence of nuisance parameters. *Theory of Stochastic Processes*, 8(24):106–119, 2002.
- [17] E. Gombay. Sequential testing of composite hypotheses. Limit Theorems in Probability and Statistics: Fourth Hungarian Colloquium on Limit Theorems in Probability and Statistics, Balatonlelle, Hungary, June 28-July 2, 1999, Volume II, 2:107-125, 2002.
- [18] E. Gombay. Weighted logrank statistics in sequential tests. Sequential Analysis, 27(1):97–104, 2008.
- [19] E. Gombay and D. Serban. Sequential comparison of d populations and related tables. Communications in Statistics - Simulation and Computation, 36:55–72, 2007.

- [20] C. Jennison and B. W. Turnbull. Group-sequential analysis incorporating covariate information. *Journal of the American Statistical Association*, 92(440):1330–1341, 1997.
- [21] C. Jennison and B. W. Turnbull. Group Sequential Methods with Applications to Clinical Trials. Chapman and Hall-CRC: Boca Raton, 1st edition, 2000.
- [22] R. A. Johnson and D. W. Wichern. *Applied Multivariate Statistical Analysis*. Prentice-Hall: New Jersey, 2nd edition, 1988.
- [23] J. M. Kittelson, K. Sharples, and S. S. Emerson. Group sequential clinical trials for longitudinal data with analyses using summary statistics. Statistics in Medicine, 24:2457–2475, 2005.
- [24] J. M. Lachin. Group sequential monitoring of distribution-free analyses of repeated measures. Statistics in Medicine, 16:653–668, 1997.
- [25] J. M. Lachin, S. W. Greenhouse, and O. M. Bautista. Group sequential large sample T^2 -like χ^2 tests for multivariate observations. *Statistics in Medicine*, 22:3357–3368, 2003.
- [26] K. K. G. Lan and D. L. DeMets. Discrete sequential boundaries for clinical trials. *Biometrika*, 70(3):659–663, 1983.
- [27] J. W. Lee and D. L. DeMets. Sequential comparison of changes with repeated measurements data. *Journal of the American Statistical Asso*ciation, 86(415):757–762, 1991.
- [28] J. W. Lee and D. L. DeMets. Sequential rank tests with repeated measurements in clinical trials. *Journal of the American Statistical Association*, 87(417):136–142, 1992.
- [29] S. J. Lee, K. Kim, and A. A. Tsiatis. Repeated significance testing in longitudinal clinical trials. *Biometrika*, 83(4):779–789, 1996.

- [30] P. C. O'Brien and T. R. Fleming. A multiple testing procedure for clinical trials. *Biometrics*, 35:549–556, 1979.
- [31] C. R. Palmer and W. F. Rosenberger. Ethics and practice: Alternative designs for phase III randomized clinical trials. *Controlled Clinical Trials*, 20:172–186, 1999.
- [32] E. A. Parent, Jr. Sequential ranking procedures. PhD thesis, Statistics, Stanford University, 1965.
- [33] S. J. Pocock. Group sequential methods in the design and analysis of clinical trials. *Biometrika*, 64:191–199, 1977.
- [34] M. L. Puri and P. K. Sen. Nonparametric Methods in Multivariate Analysis. Wiley: New York, 1st edition, 1971.
- [35] S. M. Ross. *Introduction to Probability Models*. Academic Press: San Diego, 8th edition, 2003.
- [36] D. O. Scharfstein and A. A. Tsiatis. The use of simulation and bootstrap in information-based group sequential studies. *Statistics in Medicine*, 17:75–87, 1998.
- [37] D. O. Scharfstein, A. A. Tsiatis, and J. M. Robins. Semiparametric efficiency and its implication on the design and analysis of group-sequential studies. *Journal of the American Statistical Association*, 92(440):1342–1350, 1997.
- [38] V. Sébille and E. Bellissant. Sequential methods and group sequential designs for comparative clinical trials. Fundamental and Clinical Pharmacology, 17:505–516, 2003.
- [39] E. Slud and L. J. Wei. Two-sample repeated significance tests based on the modified wilcoxon statistic. *Journal of the American Statistical* Association, 77(380):862–868, 1982.

- [40] B. Spiessens, E. Lesaffre, and G. Verbeke. An overview of group sequential methods in longitudinal clinical trials. Statistical Methods in Medical Research, 9:497–515, 2000.
- [41] J. Q. Su and J. M. Lachin. Group sequential distribution-free methods for the analysis of multivariate observations. *Biometrics*, 48(4):1033–1042, 1992.
- [42] S. Todd, A. Whitehead, N. Stallard, and J. Whitehead. Interim analyses and sequential designs in phase III studies. *British Journal of Clinical Pharmacology*, 51:394–399, 2001.
- [43] J. F. Troendle, A. Liu, C. Wu, and K. F. Yu. Sequential testing for efficacy in clinical trials with non-transient effects. Statistics in Medicine, 24:3239–3250, 2005.
- [44] L. J. Vostrikova. Detection of a "disorder" in a wiener process. *Theory of Probability and Its Applications*, 26:356–362, 1981.
- [45] K. Wegscheider. Advantages and disadvantages of sequential designs. Herzschrittmachertherapie und Elektrophysiologie, 9:248–254, 1998.
- [46] L. J. Wei, J. Q. Su, and J. M. Lachin. Interim analyses with repeated measurements in a sequential clinical trial. *Biometrika*, 77(2):359–364, 1990.
- [47] M. C. Wu and K. K. G. Lan. Sequential monitoring for comparison of changes in a response variable in clinical studies. *Biometrics*, 48(3):765– 779, 1992.

Appendix A

Examples

Example A.0.1 (Sequential ranking) Suppose that we have received five observations on some random process:

Time	1	2	3	4	5
Observation	0.1	0.5	0.2	0.7	0.8

where hypothetical times are given to indicate the order in which the data were received. The process of sequentially ranking the data would proceed as follows:

Example A.0.2 (Sequential ranking) Suppose that we have received five observations on another random process:

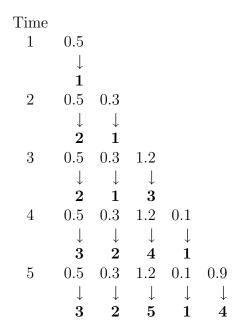
Time	1	2	3	4	5
Observation	0.5	0.3	1.2	0.1	0.9

where once again hypothetical times are given to indicate the order in which the data were received. The process of sequentially ranking the data would proceed as follows:

Example A.0.3 (Regular ranking) Suppose that we have received the same five observations as in Example A.0.2:

Time	1	2	3	4	5
Observation	0.5	0.3	1.2	0.1	0.9

The process of ranking the data by the usual method would proceed as follows:



Notice how the ranks found by the regular method differ from sequential ranks in that they do not generally stay the same after each new observation is received.

Example A.0.4 (Independence of sequential ranks) Consider the ranking of three i.i.d. observations, similar to what would be done in our testing framework, under the null hypothesis of no distributional difference. Denote these observations by y_1 , y_2 , and y_3 , and assume that they have arrived in some particular order, without loss of generality, y_1 first, y_2 second, and y_3 third. In keeping with the notation of Chapter 3, we denote the sequential ranks of y_1 , y_2 , and y_3 , by R_1 , R_2 , and R_3 , respectively. The corresponding parameters are $m_1 = 1$, $m_2 = 2$, and $m_3 = 3$. Under the assumption that the data are i.i.d., we have six possibilities for their sequential ranking:

R_1	R_2	R_3
1	1	1
1	2	1
1	1	2
1	2	2
1	1	3
1	2	3

The i.i.d. assumption implies that each of these rankings is equally likely to occur, in other words that

$$P\{R_1 = 1, R_2 = 1, R_3 = 1\} = \frac{1}{6}$$

$$P\{R_1 = 1, R_2 = 2, R_3 = 1\} = \frac{1}{6}$$

$$P\{R_1 = 1, R_2 = 1, R_3 = 2\} = \frac{1}{6}$$

$$P\{R_1 = 1, R_2 = 2, R_3 = 2\} = \frac{1}{6}$$

$$P\{R_1 = 1, R_2 = 1, R_3 = 3\} = \frac{1}{6}$$

$$P\{R_1 = 1, R_2 = 2, R_3 = 3\} = \frac{1}{6}.$$
(A.1)

Similarly, it can easily be verified that

$$P\{R_1 = 1, R_2 = 1\} = P\{R_1 = 1, R_2 = 2\} = \frac{1}{2}$$

$$P\{R_1 = 1, R_3 = 1\} = P\{R_1 = 1, R_3 = 2\} = P\{R_1 = 1, R_3 = 3\} = \frac{1}{3}$$

$$P\{R_2 = 1, R_3 = 1\} = P\{R_2 = 1, R_3 = 2\} = P\{R_2 = 1, R_3 = 3\} = \frac{1}{6}$$

$$P\{R_2 = 2, R_3 = 1\} = P\{R_2 = 2, R_3 = 2\} = P\{R_2 = 2, R_3 = 3\} = \frac{1}{6}$$
(A.2)

and that

$$P\{R_1 = 1\} = 1$$

$$P\{R_2 = 1\} = P\{R_2 = 2\} = \frac{1}{2}$$

$$P\{R_3 = 1\} = P\{R_3 = 2\} = P\{R_3 = 3\} = \frac{1}{3}.$$
(A.3)

One can then show that for any integers α , β , and γ ,

$$P\{R_1 = \alpha, R_2 = \beta, R_3 = \gamma\} = P\{R_1 = \alpha\} \times P\{R_2 = \beta\} \times P\{R_3 = \gamma\}$$
(A.4)

and that for $i, j \in \{1, 2, 3\}$ with $i \neq j$, and integers α and β ,

$$P\{R_i = \alpha, R_j = \beta\} = P\{R_i = \alpha\} \times P\{R_j = \beta\}$$
 (A.5)

implying that R_1 , R_2 , and R_3 are independent.

Example A.0.5 (Dependence of regular ranks) Now consider the ranking of three i.i.d. observations by the usual ranking method. Again, observations y_1 , y_2 , and y_3 have corresponding ranks R_1 , R_2 , and R_3 . Under the i.i.d. assumption, the following six rankings are equally likely:

R_1	R_2	R_3
1	2	3
1	3	2
2	1	3
2	3	1
3	1	2
3	2	1

In particular, it can be verified that

$$P\{R_1 = 1, R_2 = 2, R_3 = 3\} = \frac{1}{6}$$
(A.6)

and that

$$P\{R_1 = 1\} = P\{R_2 = 2\} = P\{R_3 = 3\} = \frac{1}{3}.$$
 (A.7)

Hence,

$$P\{R_1 = 1\} \times P\{R_2 = 2\} \times P\{R_3 = 3\} = \frac{1}{9}$$
 (A.8)

which is not equal to the probability on the right hand side of equation (A.6). Thus, R_1 , R_2 , and R_3 cannot be independent, and hence must be dependent.

Appendix B

Code

The following Fortran code was written for the simulation study of Chapter 4. The program requests as inputs the sample size for group 1, the number of groups, the method of analysis, the response distribution, and the overall error rate, alpha.

```
program simseq

use IMSL_LIBRARIES

implicit none

real, dimension(:,:), allocatable :: X, output
real, dimension(10000,2) :: reps
real, dimension(:), allocatable :: means
real, dimension(:), allocatable :: progres
real :: alpha, avst
integer, dimension(:,:), allocatable :: 0
integer :: method, d, n1, k, i, j, n

! Read in parameter values:
write(*,*) 'n1 = '; read(*,*) n1
```

```
write(*,*) 'k (# of groups) = '; read(*,*) k
write(*,*) 'method (1=P, 2=OBF, 3=SS) = '; read(*,*) method
write(*,*) 'd (1=N, 2=E) = '; read(*,*) d
write(*,*) 'alpha = '; read(*,*) alpha
! Set means, the vector for mu1 or lambda1 depending on d,
! also allocating eventual output dimensions:
if (d==1) then
    allocate(means(11))
    do i=1, 11
        means(i) = (real(i)-1.0)/10.0
    end do
    allocate(output(11,2))
else if(d==2) then
    allocate(means(9))
    do i=1, 9
         means(i) = (real(i)+3.0)/4.0
    end do
    allocate(output(9,2))
end if
! Total number of subjects:
n = n1*k
allocate(X(3,n))
allocate(0(3,n))
allocate(progres(2))
do i=1, size(means)
   do j=1, 10000
```

```
X = datagen(n1, k, d, n, means(i))
         0 = ordergen(n)
         progres = seqrank(X, 0, alpha, method, n, k, n1)
         reps(j,1) = progres(1)
         reps(j,2) = progres(2)
    end do
    output(i,1) = sum(reps(1:10000,1))/10000.0
    output(i,2) = sum(reps(1:10000,2))/10000.0
end do
! Output values
do i=1, size(means)
    write (*,"(f9.4,4x,f9.4)") (output(i,j), j=1, 2)
end do
contains
function datagen(n1, k, d, n, m1)
     ! This function generates a 3xn matrix of raw data.
     real, dimension(:,:), allocatable :: datagen
     real, dimension(5) :: rand
     real :: m1, temp1, temp2, temp3
     integer :: n1, k, d, n, dgi, dgj
     allocate(datagen(3,n))
     do dgi=1, n
          if (d==1) then
               call RNNOR(rand)
               if ((m1.gt.0.0).and.(dgi.le.n1)) call SADD(5,m1,rand,1)
```

```
else if (d==2) then
               call RNEXP(rand)
               if ((m1.gt.1.0).and.(dgi.le.n1)) call SSCAL(5,m1,rand,1)
          end if
          do dgj=1, 3
               temp1 = rand(dgj+2)
               temp2 = (1.0/2.0)*rand(dgj+1)
               temp3 = (1.0/2.0)*rand(dgj)
               datagen(dgj,dgi) = temp1 + temp2 + temp3
          end do
     end do
     return
end function datagen
function ordergen(n)
     ! This function generates a 3xn random matrix of orders.
     integer, dimension(:,:), allocatable :: ordergen
     integer, dimension(:), allocatable :: temp
     integer :: n, ogi, ogj
     allocate(ordergen(3,n))
     allocate(temp(n))
     call RNPER(temp)
     do ogi=1, n
```

```
ordergen(ogj,ogi) = 3*temp(ogi) + ogj - 3
          end do
     end do
     deallocate(temp)
     return
end function ordergen
function segrank(X, O, alpha, method, n, k, n1)
     ! This function returns the results of one simulation.
     real, dimension(:,:,:), allocatable :: C
    real, dimension(:,:), allocatable :: X, R, M, Z
    real, dimension(:,:), allocatable :: Ztemp
    real, dimension(2) :: seqrank
     real, dimension(:), allocatable :: tempr1
     real, dimension(:), allocatable :: snt, snt2
     real, dimension(:), allocatable :: nsubs1, nsubs2
     real, dimension(:), allocatable :: tsum1, tsum2
     real, dimension(:), allocatable :: tstat1, tstat2
     real :: alpha, sd, b
     integer, dimension(:,:), allocatable :: 0
     integer, dimension(:), allocatable :: rowobs, colobs, Orow1
     integer, dimension(:), allocatable :: tempi1, tempi2
     integer, dimension(3) :: tempi3
     integer :: method, n, k, n1
     integer :: nt, sri, srj, srk, srl, count, rind
```

do ogj=1, 3

```
nt = 3*n
allocate(R(3,n),M(3,n),Z(3,n))
allocate(rowobs(nt),colobs(nt))
allocate(Orow1(n),tempi1(n),tempi2(n))
allocate(snt(n**2), snt2(n**2))
! Pull out the permutation that rearranges the first
! row of the matrix O, and place it in tempi2:
0row1(1:n) = 0(1,1:n)
do sri=1, n
     tempi1(sri) = sri
end do
call SVIGP(Orow1,tempi2, tempi1)
do sri=1, 3
     tempi3(sri) = sri
end do
do sri=1, n
     rowobs( (3*(sri-1)+1) : (3*(sri-1)+3) ) = tempi3(1:3)
     colobs((3*(sri-1)+1) : (3*(sri-1)+3)) = tempi1(sri)
end do
deallocate(tempi1, tempi2)
```

```
! Calculate the sequential ranks:
do sri=1, nt
     ! Figure out how many observations occurred before the one
     ! indexed by sri.
     count = 0
     do srj=1, n
          if (O(rowobs(sri),srj).le.sri) count = count + 1
     end do
     allocate(tempr1(count))
     ! Extract the X's for the observations that occurred
     ! before the one indexed by sri.
     srk=1
     do srj=1, n
          if (O(rowobs(sri),srj).lt.sri) then
                tempr1(srk) = X(rowobs(sri),srj)
                srk = srk + 1
          else if (O(rowobs(sri),srj)==sri) then
                tempr1(srk) = X(rowobs(sri),srj)
                rind = srk
                srk = srk + 1
          end if
     end do
     ! Find and store the sequential rank for sri, as well as its
     ! distributional parameter.
     if (count.ge.2) then
          call RANKS(tempr1, tempr1, ITIE=3)
```

```
R(rowobs(sri),colobs(sri)) = tempr1(rind)
          M(rowobs(sri),colobs(sri)) = real(count)
     else
          R(rowobs(sri), colobs(sri)) = 1.0
          M(rowobs(sri),colobs(sri)) = 1.0
     end if
     deallocate(tempr1)
end do
! Standardize the sequential ranks:
do sri=1, n
     do srj=1, 3
          sd = sqrt((M(srj,sri)**2.0-1.0)/12.0)
          if (sd.gt.0.0) then
               Z(srj,sri) = (R(srj,sri)-(M(srj,sri)+1.0)/2.0)/sd
          else
               Z(srj,sri) = 0.0
          end if
     end do
end do
! Estimate covariances, calculate within-subject sums, and
! determine how many patients are in the trial at any
! given analysis time:
if (method.ne.3) then
     allocate(C(n,3,3))
     allocate(nsubs1(n),nsubs2(n))
```

```
do sri=1, n
     srk = 3*sri
     allocate(Ztemp(3,sri))
     count = 1
     do srj=1, n
          if (0(3,srj).le.srk) then
               snt(n*(sri-1)+srj) = Z(1,srj)+Z(2,srj)+Z(3,srj)
               Ztemp(1:3,count) = Z(1:3,srj)
               count = count + 1
          else
               snt(n*(sri-1)+srj) = 0
          end if
     end do
     if(method.ne.3) then
          if (sri.ge.2) then
               call CORVC(3,.t.Ztemp,C(sri,1:3,1:3))
          else
               C(sri,1:3,1:3) = 0.0
          end if
          count = 0
          do srj=1, n1
               if (0(3,srj).le.srk) then
                    count = count + 1
```

end if

end if

```
end do
          nsubs1(sri) = real(count)
          count = 0
          do srj=n1+1, 2*n1
               if (0(3,srj).le.srk) then
                    count = count + 1
               end if
          end do
          nsubs2(sri) = real(count)
     end if
     deallocate(Ztemp)
end do
! Calculate standardized sums, for Test 1/Test 2, and
! signs of the sums for Test 3:
do sri=1, n
     if (method.ne.3) then
           sd = sqrt(sum(C(sri,1:3,1:3)))
           if((sri.ge.2).and.(sd.gt.0.0)) then
                do srj=1, n
                     snt2(n*(sri-1)+srj) = snt(n*(sri-1)+srj)/sd
                end do
           else
                snt2(n*(sri-1)+1:n*(sri-1)+n) = 0.0
           end if
     else
           do srj=1, n
```

```
if(snt(n*(sri-1)+srj).gt.0.0) then
                     snt2(n*(sri-1)+srj) = 1.0
                else if (snt(n*(sri-1)+srj).lt.0.0) then
                     snt2(n*(sri-1)+srj) = -1.0
                else
                     snt2(n*(sri-1)+srj) = 0.0
                end if
           end do
     end if
end do
! Calculate test sums:
allocate(tsum1(n), tsum2(n))
allocate(tstat1(n), tstat2(n))
do sri=1, n
     tsum1(sri) = sum(snt2(n*(sri-1)+1:n*(sri-1)+n1))
     tsum2(sri) = sum(snt2(n*(sri-1)+n1+1:n*(sri-1)+2*n1))
end do
! Set the boundaries and test statistics:
if (method==1) then
     if (k==2) then
          if (alpha==0.1) then
               if (n1==20) then
                     b = 2.65
               else if (n1==50) then
                     b = 2.74
```

```
end if
     else if (alpha==0.05) then
          if(n1==20) then
                b = 2.93
          else if (n1==50) then
                b = 3.02
          end if
     else if (alpha==0.01) then
          if (n1==20) then
                b = 3.48
          else if (n1==50) then
                b = 3.56
          end if
     end if
     do sri=1, n
          if (nsubs1(sri).gt.0.0) then
               tstat1(sri) = tsum1(sri)/sqrt(nsubs1(sri))
          else
               tstat1(sri) = 0.0
          end if
     end do
else if (k==3) then
     if (alpha==0.1) then
          if (n1==20) then
                b = 2.92
          else if (n1==50) then
                b = 3.01
          end if
     else if (alpha==0.05) then
```

```
if (n1==20) then
                     b = 3.18
               else if (n1==50) then
                     b = 3.26
               end if
          else if (alpha==0.01) then
               if (n1==20) then
                     b = 3.69
               else if (n1==50) then
                     b = 3.76
               end if
          end if
          do sri=1, n
               if (nsubs1(sri).gt.0.0) then
                     tstat1(sri) = tsum1(sri)/sqrt(nsubs1(sri))
               else
                     tstat1(sri) = 0.0
               end if
               if (nsubs2(sri).gt.0.0) then
                     tstat2(sri) = tsum2(sri)/sqrt(nsubs2(sri))
               else
                     tstat2(sri) = 0.0
               end if
          end do
     end if
else if (method==2) then
     if (k==2) then
          if (alpha==0.1) then
```

```
b = 1.96
     else if (alpha==0.05) then
          b = 2.24
     else if (alpha==0.01) then
          b = 2.80
     end if
     tstat1(1:n) = tsum1(1:n)/sqrt(real(n1))
else if (k==3) then
     if (alpha==0.1) then
          b = 2.23
     else if (alpha==0.05) then
          b = 2.49
     else if (alpha==0.01) then
          b = 3.00
     end if
    tstat1(1:n) = tsum1(1:n)/sqrt(real(n1))
     tstat2(1:n) = tsum2(1:n)/sqrt(real(n1))
end if
if (k==2) then
     if (alpha==0.1) then
          if (n1==10) then
                b = 6.0
          else if (n1==15) then
                b = 8.0
          else if (n1==20) then
                b = 9.0
          else if (n1==50) then
```

else

tstat1(1:n) = tsum1(1:n)
else if (k==3) then
 if (alpha==0.1) then
 if (n1==10) then
 b = 7.0
 else if (n1==15) then

tstat2(1:n) = tsum2(1:n)

```
end if
! Monitor:
count = 1
if (k==2) then
     if (method.ne.3) then
          do sri=1, n
               if (abs(tstat1(sri)).gt.b) then
                     exit
               else
                     count = count + 1
               end if
          end do
     else
          do sri=1, n
               if (abs(tstat1(sri)).ge.b) then
                     exit
               else
                     count = count + 1
               end if
          end do
     end if
else if (k==3) then
     if(method.ne.3) then
          do sri=1, n
               if ((abs(tstat1(sri)).gt.b).or.(abs(tstat2(sri)).gt.b)) then
                     exit
               else
```

end if

```
count = count + 1
               end if
          end do
     else
          do sri=1, n
               if ((abs(tstat1(sri)).ge.b).or.(abs(tstat2(sri)).ge.b)) then
                     exit
               else
                     count = count + 1
               end if
          end do
     end if
end if
! Set the vector of results:
if (count==(n+1)) then
     segrank(1) = 0.0
     seqrank(2) = real(n)
else
     seqrank(1) = 1.0
     seqrank(2) = real(count)
end if
if (method.ne.3) then
     deallocate(C)
     deallocate(nsubs1,nsubs2)
end if
deallocate(R, M, Z)
```

```
deallocate(snt, snt2)
deallocate(tsum1, tsum2)
deallocate(tstat1, tstat2)
deallocate(rowobs, colobs, Orow1)
```

return

end function seqrank

end program simseq