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A b s t r a c t

Reliability measures the ability of a system performing its intended functions. 

It is one of the most critical performance measures of today’s complex systems, 

such as transportation systems, power systems, communication systems and 

aircraft systems, and has been emphasized more and more by academia, indus­

try and government. Reliability of a system needs to be evaluated accurately, 

and it can be improved through design optimization.

In traditional binary reliability framework, both systems and components 

can only take two possible states: completely working and totally failed. How­

ever, engineering systems typically have multiple partial failure states in ad­

dition to the above-mentioned completely working and totally failed states. 

Reliability analysis considering multiple possible states is known as multi-state 

reliability analysis. Multi-state reliability analysis recognizes the multiple pos­

sible states of engineering systems, and enables more accurate system reliability 

analysis.

Efficient methods were not available for some types of multi-state systems, 

such as multi-state fc-out-of-n systems and multi-state network systems. With­

out such efficient methods, it is time-consuming, sometimes impossible, to eval­

uate the reliability of complex systems, and approximation approaches have 

to be used. Efficient reliability evaluation methods are also required in relia­

bility based system design, which typically involves many iterations of system
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reliability evaluation.

This dissertation documents research contributions to multi-state system 

reliability theory, including reliability modeling, evaluation and optimal design 

of multi-state system. The contributions are summarized as follows:

(1) Efficient methods have been developed for reliability evaluation of multi­

state systems with fc-out-of-n structures.

(2) An efficient method has been developed for reliability evaluation of 

multi-state two-terminal networks given all minimal path vectors.

(3) The recursive computation principle is the common principle in all 

system reliability evaluation algorithms proposed in this work.

(4) An effective method has been developed for dealing with multiple ob­

jectives typically involved in the optimal design of multi-state series-parallel 

systems.

(5) A joint reliability and redundancy optimization method has been de­

veloped for multi-state series-parallel systems.

With efficient reliability evaluation methods and effective reliability based 

design approaches for multi-state engineering systems, the research results out 

of this work provides useful tools for achieving highly reliable and cost effective 

engineering systems.
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I

C h a p t e r  1 

I n t r o d u c t i o n  

1.1 Reliability

The reliability of a device is defined to be the probability that it will perform its 

intended functions satisfactorily for a specified period of time under specified 

operating conditions. Today’s engineering systems are sophisticated in design 

and powerful in function. Examples of such systems include aircrafts, space 

shuttles, telecommunication networks, robots, and manufacturing facilities. 

Reliability is a critical performance measure of these systems, and it has been 

emphasized more and more by the industry and the government.

The reliability issue exists because of the uncertainties in engineering sys­

tems. There are uncertainties in manufacturing processes. There are also 

uncertainties in the external operating environment and internal operations 

of an engineering system. Because of these uncertain factors that can not be 

completely controlled or predicted, an engineering system can not be 100% 

guaranteed to perform its intended function at all times. Failures in one form 

or another sometimes are unavoidable.

Reliability engineering emerged as a separate engineering discipline during 

the 1950s in the United States [71, 85]. The military electronic systems became
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1.1 Reliability 2

less reliable due to the increasingly complexity of the systems, the new solid 

state electronics technology, and the increasing use of large number of new 

component types and new manufacturing processes. Against this background, 

the Advisory Group on Reliability of Electronic Equipment (AGREE) was 

set up in 1952 jointly by the US Department of Defence and the electronics 

industry. The AGREE report published in 1957 concluded that reliability 

could be specified, allocated and demonstrated, and this report was the symbol 

of the birth of reliability engineering as a discipline. In the 1960s, there was an 

increased specialization in the reliability engineering, with branches including 

reliability theory, reliability physics and structural reliability, and there was 

a trend from component-level to system-level reliability [85]. In the 1970s, 

system-level reliability was more emphasized, risk analysis techniques such as 

probabilistic risk assessment (PRA) was developed, and software reliability 

was focused on.

The area of reliability engineering focuses on analyzing the reliability of 

a component or a system and enhancing the reliability through measures in 

its design, manufacturing and operation. Major topics covered by reliability 

engineering include: (1) systematically collecting lifetime data of a device from 

tests or field for reliability evaluation, (2) estimating the reliability of a compo­

nent based on the collected lifetime data, (3) reliability modeling for practical 

systems, (4) analyzing system reliability based on the reliability of components,

(5) enhancing system reliability through optimal design and maintenance ac­

tions, followed by verifying the decisions by thorough analysis and test. A wide 

range of powerful methods and tools have been developed in this framework, 

such as Failure Data Analysis, Fault Tree Analysis (FTA), and Failure Modes 

and Effects Analysis (FMEA).
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1.2 Multi-state reliability and several practical examples 3

1.2 M ulti-state reliability and several practical exam ples

Traditional binary reliability theory assumes that a system and its compo­

nents may take only two possible states: totally failed and perfectly working, 

or state 0 and state 1. However, many practical systems can actually per­

form their intended functions at more than two different levels, from perfectly 

working to completely failed. These kinds of systems are known as multi-state 

systems [46]. A typical example of a multi-state component is a 300 MW 

thermal power generating unit in a power station presented by Billinton and 

Allan [6], as shown in Figure 1.1. Such a generator can work at full capacity, 

which is its nominal capacity, say 300 MW, when there are no failures at all. 

Certain types of failures, including the boiler failure and turbine failure, can 

cause the generator to be completely failed. Other failures, such as the forced 

draught fan (FD fan) failure and the pulverizer failure, will lead to the gener­

ator working at reduced capacities, say at 150 MW, 200 MW or 225 MW. A 

group of power generating units can be connected in parallel to make a power 

generation system, as shown in Figure 1.2. The capacity of the power gener­

ation system is equal to the sum of the capacities of its components. Thus, 

the power generation system can be regarded as a multi-state system with 

multiple possible states. In these cases, the binary reliability theory will be 

an over-simplification of the actual system or component. Reliability analysis 

considering multiple possible states is known as multi-state reliability analy­

sis. Multi-state reliability analysis recognizes the multiple possible states of 

engineering systems. It can map component performances to system perfor­

mances more accurately, and be able to answer more questions such as the 

probabilities of a system in different possible states.

Let’s describe two more practical examples of multi-state systems:
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1.2 Multi-state reliability and several practical examples

Cap. = 150 MW

5. One FD fan 
down

Cap. = 0 MW

7. Boiler 
down

Cap. = 150 MW

6. One ID fan 
down

Cap. = 0 MW

8. Turbine 
down

Cap. = 300  MW

1. Full capac ity 
Available

3. One CV pump 
down

Cap. = 200 MW

2. One pulverizer 
down

Cap. = 225 MW

4. One FW pump 
down

Cap. = 200 MW

Figure 1.1: A multi-state 300 MW power generating unit [6]

Unit 1

Unit 2

Unit 3

Unit 4

Figure 1.2: A multi-state power generation system
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1.3 Historical overview o f multi-state system reliability 5

Exam ple 1: coal transm ission system . Consider a coal transmission 

system in a power station which continuously supplies coal to the boilers [55]. 

The transmission system consists of five basic subsystems: a primary feeder, 

a set of primary conveyors, a stacker-reclaimer, a secondary feeder, and a 

set of secondary conveyors. The feeders and the stacker-reclaimer are binary 

components which can only work at the nominal capacity or totally fail. The 

capacity of the set of primary (or secondary) conveyors are determined by the 

availability of individual binary-state conveyors. Thus, the set of primary (or 

secondary) conveyors is a subsystem with multiple levels of capacity. And the 

whole coal transmission system is a multi-state system with five subsystems 

connected in series.

Exam ple 2: wireless com m unication system . Another typical exam­

ple of multi-state systems is wireless communication systems [55]. Suppose 

that a wireless communication system consists of several transmission stations 

arranged in a sequence. Each station can work at three different levels of ca­

pacity. A station is in state 0 if it can not transmit any signals, it is in state 

1 if it can transmit signals only to the next station, and it is in state 2 if it 

can transmit signals to the next two stations. Thus, such a wireless system is 

actually a multi-state consecutively-connected system with components that 

can be in three possible states.

1.3 H istorical overview of m ulti-state system  reliability

1.3.1 The introduction of m ulti-state system  reliability

The idea of multi-state systems was first touched as early as in 1968 by Hirsch 

et al. [27]. It was systematically introduced and studied in 1970s by Barlow 

and Wu [3], El-neweihi et al. [19] and Ross [81] by considering a component or
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1.3 Historical overview o f multi-state system reliability 6

a system having more than two possible states. In their work, the primary 

concepts of multi-state reliability were studied, including system structure 

function, minimal cut (path) set, relevancy and coherency. These concepts 

will be discussed in details in Chapter 2. The results by the early studies 

on multi-state reliability were generalized in the work of Griffith [24], Natvig 

[67], Hudson and Kapur [38], and Block and Savits [7]. The early advances 

in multi-state reliability theory was summarized by El-Neweihi and Proschan 

[20].

1.3.2 M ulti-state system  reliability analysis

An important issue is how to model practical systems in the multi-state context 

through careful analysis and definition. Many binary reliability models [66] 

have been extended to multi-state reliability models, such as the series-parallel 

system model [3, 47], the /c-out-of-n system models [37], the weighted /c-out- 

of-n system model [52], the network system models [55], etc. There might 

be more than one way to extend a binary reliability model to the multi-state 

context. For example, in Barlow and Wu’s definition of multi-state series- 

parallel systems [3], the state of a parallel subsystem is equal to the state 

of the best component. However, in Levitin’s definition of multi-state series- 

parallel systems, the capacity of a parallel subsystem is equal to the sum 

of the capacities of its constituent components. Under traditional definition 

of multi-state k-out-of-n:G system [8, 19], the system is in state j  or above 

when at least k components are in state j  or above. Huang et al. proposed 

the model of generalized multi-state /c-out-of-n:G system by allowing different 

requirements of the number of components on different states [37, 33]. The 

model of multi-state consecutive-/c-out-of-n system was also redefined [36].

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1.3 Historical overview of multi-state system reliability 7

The binary network reliability models have also been extended to multi-state 

versions by allowing the links and/or the nodes to have more than two possible 

states [55, 79, 84].

A multi-state system might have discrete states, such as the power gener­

ation system we mentioned early in this section. The state of a multi-state 

system might also be continuous [9, 10, 28, 53, 102], such as the condition of 

a road section.

One way to analyze multi-state systems is using a binary variable to rep­

resent a single state of a component [101]. The problem is that there will 

be dependencies among variables that characterize the same component. The 

stochastic process approach is a more universal approach in modeling and eval­

uating multi-state systems, and it has been applied to the reliability evaluation 

of power systems [6]. Because the stochastic process approaches require equa­

tion solving whose computation burden can be significantly influenced by the 

number of components and the number of states, the stochastic approach can 

only be applied to relatively small systems. Levitin et al. developed the Uni­

versal Generating Function (UGF) approach to evaluate multi-state systems 

[51, 55], which can be used to deal with a wide range of multi-state systems. 

Like in the reliability evaluation of binary systems, Monte-Carlo simulation 

can be used for the evaluation of multi-state systems [79]. But compared to 

analytical algorithms, the main disadvantage of this approach is that it is not 

computationally efficient, especially for large systems with a large number of 

components.

For complex systems with a large number of components and a large num­

ber of states, reliability bounds can assist us in efficient decision making. Hud­

son and Kapur developed methods for exact reliability evaluation and reliabil­
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1.3 Historical overview of multi-state system reliability 8

ity bounding of multi-state systems in early 1980’s [39, 40, 41, 84], First one 

needs to find all the minimal path vectors or the minimal cut vectors [100, 54]. 

The minimal path (cut) vectors can be used for exact reliability evaluation 

using the Inclusion-Exclusion (IE) method or the Sum of Disjoint Products 

(SDP) method.

1.3.3 Optim al design of m ulti-state system s

For the purpose of maximizing system performance and cost effectiveness, we 

need to consider the issue of optimal design of multi-state systems. Some 

complex engineering systems, e.g. a space shuttle, consist of hundreds of thou­

sands of components. These components functioning together form a system. 

The reliable performance of the system depends on the reliable performance of 

its components and the system configuration. Basically, there are three ways 

to enhance reliability of multi-state systems [55]: (1) to provide redundancy, 

such as adding redundant components in parallel and using redundancy in 

the form of /c-out-of-n systems; (2) to adjust the system configuration while 

keeping the constituent components the same, such as optimal arrangement of 

the existing components; (3) to enhance the reliability or performance of the 

components, either by selecting components with better performance, or by 

building components with high performance in the design stage which will be 

built into the manufacturing process. It is almost impossible to enhance the 

reliability of such a complex system only based on experience. Sophisticated 

and systematic approaches for system reliability optimization are necessary. 

In reliability optimization of multi-state systems, we often aim at maximizing 

system reliability while satisfying physical and economical constraints, or min­

imizing the cost in development, manufacturing and operation while satisfying
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1.3 Historical overview of multi-state system reliability 9

other constraints. El-Neweihi et al. first dealt with the problem of optimal 

allocation of multi-state components [21]. Meng analyzed the optimal alloca­

tion of components in multi-state coherent systems, and gave the principle for 

interchanging components [59]. Zuo et al. investigated the replacement-repair 

policy for multi-state deteriorating products under warranty [104], They ex­

amined the optimal value of the deterioration degree of the item and the length 

of the residual warranty period, so as to minimize the manufacturer’s expected 

warranty servicing cost per item sold. A simple heuristic algorithm was used 

to implement the optimization. Gurler and Kaya proposed a maintenance pol­

icy for a system with multi-state components, using an approximation of the 

average cost function to reduce the problem complexity and using a numer­

ical method to solve the formulated optimization problem [25]. A heuristic 

algorithm was developed to solve the problem. Ramirez-Marquez and Coit 

proposed a heuristic approach for solving the redundancy allocation problem 

where the system utility was evaluated using the universal generating function 

approach [78, 51]. Levitin et al. applied the UGF and genetic algorithms (GA) 

to study a wide range of design optimization problems of multi-state systems 

[55, 47],

1.3.4 Literature on m ulti-state system  reliability

Multi-state reliability theory has been documented in lots of research papers 

published in journals such as IEEE Transactions on Reliability, Reliability En­

gineering and System Safety and HE Transactions, and conference proceed­

ings such as the proceedings of the Industrial Engineering Research Conference 

(IERC)and the Annual Reliability and Maintainability Symposium (RAMS). 

Multi-state reliability theory has also been discussed in a more systematic
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1.4 Motivation 10

and detailed manner in dedicated book chapters and books. Multi-state re­

liability theory was first systematically discussed in Chapter 13 of the book 

titled “Optimal Reliability Modeling: Principles and Applications” by Kuo 

and Zuo [46]. Later, Levitin and Lisnianski gave more details in their book 

titled “Multi-state System Reliability: Assessment, Optimization and Appli­

cations” [55], and in another book titled “Universal Generating Function in 

Reliability Analysis and Optimization” [47].

1.4 M otivation

One deficiency of current research on multi-state reliability is that efficient 

evaluation algorithms are not available for certain multi-state systems, such 

as multi-state /c-out-of-n systems and multi-state network systems. It is desir­

able to have efficient approaches for performance evaluation of complex sys­

tems with a large number of components. With such efficient approaches, 

the system performance evaluation can be completed in a much shorter time. 

Furthermore, the optimal design of complex systems, which requires iterative 

system performance evaluations, will become viable.

The other deficiency is that more effective system optimization approaches 

are needed. Current optimal design of multi-state systems focuses on redun­

dancy allocation. However, state distributions of components (to be discussed 

in Chapter 2) could also be controlled, and thus could be treated as design vari­

ables. Through the joint reliability and redundancy optimization of multi-state 

systems, we would be able to obtain optimal design in the real sense. In prac­

tical situations involving reliability optimization, there often exist mutually 

conflicting goals such as maximizing system reliability and minimizing system 

cost and weight. Current multi-state optimization models usually treat one
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goal as the objective function of the optimization model and the other goals as 

constraints. An effective approach needs to be developed to deal with design 

optimization of multi-state systems considering multiple objectives.

One research goal of this work is to develop effective and efficient methods 

for reliability analysis, including system reliability modeling and evaluation, 

of two types of multi-state systems, i.e., multi-state k-out-of-n systems and 

multi-state two-terminal networks. All of the proposed reliability evaluation 

algorithms in this work will be based on one common general principle, the 

recursive computation principle (to be discussed in Chapter 2). The other 

research goal is to develop effective approaches for reliability based system 

optimization, focusing on addressing the tradeoff among multiple conflicting 

objectives and how to conduct joint reliability and redundancy optimization 

of multi-state series-parallel systems.

1.5 Organization of the thesis

The thesis, with eight chapters, is organized as follows. In Chapter 2, the 

fundamental knowledge of multi-state reliability is presented, including the 

basic concepts and tools such as structure function, state distribution, util­

ity, coherency, and minimal path (cut) vectors. Typical multi-state system 

structures are discussed.

From Chapter 3 to Chapter 5, we discuss how to model and evaluate sys­

tems with the k-out-of-n structures. In Chapter 3, we propose methods for 

the reliability evaluation of generalized multi-state k-out-of-n system model 

defined by Huang et al [37]. Efficient methods are developed for the exact reli­

ability evaluation of generalized multi-state k-out-of-n systems with identically 

and independently distributed components (i.i.d. components). A reliability
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bounding approach is also developed for fast system reliability approximation. 

In Chapter 4, another model of multi-state fc-out-of-n system with higher flexi­

bility is proposed, together with its reliability evaluation algorithm. In Chapter 

5, we propose a unified /c-out-of-n model, which can treat the binary k-ont-oi-n 

system models, multi-state fc-out-of-n models and weighted fc-out-of-n models 

as special cases.

In Chapter 6, we present a method to evaluate reliability of multi-state 

two-terminal networks given all minimal path vectors. The method is based on 

the recursive computation principle and the Sum of Disjoint Products (SDP) 

principle, and it is called the Recursive Sum of Disjoint Products (RSDP) 

method.

In Chapter 7, we present an approach to deal with multiple conflicting 

design objectives, such as system reliability and system cost, which are typi­

cally involved in reliability based design of multi-state systems. The proposed 

approach is based on physical programming and genetic algorithms. We also 

attempt to extend the redundancy allocation to joint reliability and redun­

dancy optimization for multi-state series-parallel systems.

The contributions of this research work are summarized in Chapter 8, and 

some future work is discussed.
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C h a p t e r  2 

F u n d a m e n t a l s  o f  M u l t i - S t a t e  S y s t e m  

R e l i a b i l i t y

The fundamental knowledge of multi-state reliability is presented in this chap­

ter, including some basic concepts and tools such as structure function, state 

distribution, utility, and minimal path (cut) vectors. Typical multi-state sys­

tem structures are discussed, including series-parallel systems, /c-out-of-n sys­

tems and two-terminal network systems. We also present in this chapter the 

general problem of system reliability evaluation and the general framework of 

a recursive algorithm.

2.1 Basic concepts

Unless otherwise stated, the materials in this section is based on [46].

2.1.1 Structure function

A multi-state component or system can be in M + 1 possible states: 0, 1, ..., M. 

Suppose a system has n  components. We use a vector x  — ...,xn) to

represent the component states, where component i is in state x t. “Structure 

function” represents the relationship between the component states and the
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2.1 Basic concepts 14

system state. <f>(x) denotes the system state as a function of the component 

states.

2.1.2 S tate distribution

In binary reliability theory, the reliability of a component or a system actually 

refers to the probability in state 1. In the context of multi-state reliability, 

there are more than two possible states. We use “state distribution” instead 

of “reliability” to denote the probability of a multi-state entity performing 

its intended function at different performance levels. Suppose a component 

or a system has totally M  + 1 states. We use vector p  = (po,pi,...,Pm) to 

represent the state distribution of the component or system, where pj denotes 

the probability of the component of system in state j  (j = 1 , 2 , . . . ,  M).

2.1.3 Relevancy and coherency

A component is relevant if the component state can somehow affect the system 

state. Coherency represents the qualitative relationship between component 

states and system states. A multi-state system is called a coherent system if 

an improvement in any component will not make the whole system worse and 

all the components are relevant.

2.1.4 U tility  as a system  performance measure

In binary-state systems, system reliability is a very important performance 

measure. Performance measures for multi-state systems have been studied 

[2, 10, 57], and utility has been a widely used performance measure for multi­

state systems. A multi-state system can be in different discrete states, in 

contrast to that a binary system can only be in two possible states. When a
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2.1 Basic concepts 15

multi-state system is in a certain state s, it can produce a certain amount of 

benefit. Such benefit is called the system utility when it is in state s, and is 

denoted by us. A multi-state system can be in different states with different 

probabilities. Thus, the measure we are interested in is the expected system 

utility. System utility can be calculated as follows [2]:

M

U =  5 3  us • Pr((j>(x) = s) (2 .1)
s = 0

where U is the expected system utility, and us is the utility when system is in 

state s . In practical applications, us is usually known. Thus, the key issue 

in multi-state system utility evaluation is to evaluate the probabilities of the 

system in different possible states.

2.1.5 M inim al path (cut) set

Using minimal path set and minimal cut set is a general way for reliability 

evaluation of multi-state systems. Before defining minimal path (cut) sets for 

multi-state systems, we will first give definitions of minimal path (cut) vector.

Definition 2.1 (N atvig [67]) A vector x  is called a minimal path vector to 

level j  i f  > j  and <f(y) < j  for all y < x. A vector x  is called a minimal 

cut vector to level j  i f  </>(x) < j  and 4>{y) > j  for all y > x.

y < x  means y* < x t for any element index i, and yt < xy for at least one 

element index i. y > x means yl > Xi for any element index i, and y, > x t 

for at least one element index i. The set of all minimal path (cut) vectors is 

called the minimal path (cut) set.

Note that the minimal path (cut) set defined here for the purpose of multi­

state system analysis is different from its well known use for the traditional
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binary system reliability analysis. A minimal cut set for a binary system is a 

smallest set of components such that if all the components are simultaneously 

failed the system is failed. A minimal path set for a binary system is a smallest 

set of components such that if all of the components are simultaneously func­

tioning the system is functioning. A minimal path set in the traditional binary 

reliability analysis is equivalent to a minimal path vector in the multi-state re­

liability analysis, and it can actually be written in the form of minimal path 

vector. For example, let us consider a binary system with five components, 

component 1 to component 5. Suppose a minimal path set for the binary sys­

tem is {1, 3, 4}, meaning the minimal path set includes component 1, 3 and 

4. Using the terminology in multi-state system analysis, we can say that a 

minimal path vector for the system is {1, 0, 1, 1, 0}.

2.2 Typical structures of m ulti-state system s

When we are dealing with a practical system, the first step is to identify the 

type of the system through reasonable simplification and careful analysis. After 

that, we can use the available results of the identified system to make further 

analysis. In this section, some typical system structures are presented. For 

each system structure, first we discuss it in the binary reliability framework 

where the system and the components can only take two possible states: state 

1 (working state) and state 0 (failed state). Then the system structure is 

discussed in the multi-state reliability framework. We focus our discussions on 

four typical structures of multi-state systems to be studied in this thesis work: 

series-parallel systems, k-out-of-n systems, weighted fc-out-of-n systems, and 

two-terminal network systems.
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2.2 Typical structures of multi-state systems 17

2.2.1 Series-parallel system s

A binary series-parallel system has N  subsystem connected in series, and each 

subsystem is a parallel system [6 6 , 46]. A parallel system is working (in state 

1) as long as at least one of its components is working (in state 1). In another 

word, a parallel system is failed (in state 0 ) if all of its components are failed 

(in state 0). A series system is working (in state 1) if all of its components are 

working (in state 1 ).

The multi-state series-parallel system defined by Barlow and Wu [3] has 

been widely studied. Its structure is shown in Fig. 2.1. A multi-state series- 

parallel system consists of subsystems, Si to Sn , connected in series. Each 

subsystem, say Si, has some components connected in parallel. The following 

assumptions are used: (1) The components in a subsystem are independent.

(2) The components and the system may be in M + l possible states, namely, 

0, 1, 2 , ..., M . (3) The multi-state series-parallel systems under consideration 

are coherent systems. According to the multi-state system definition of Barlow 

and Wu [3], the state of a parallel system is defined to be the state of the best 

component in the system, and the state of a series system is defined to be the 

state of the worst component in the system. Hence, the state of the series- 

parallel system is shown in Fig. 2.1 is

</>(x) =  min max x,,- (2 .2 )
1 < i < N  1 < j < r i i

where Xij is the state of the component j  of subsystem i.
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Figure 2.1: A multi-state series-parallel system

2.2.2 /c-out-of-n system s

The /c-out-of-n system structure is a very popular type of redundancy in fault 

tolerant systems, with wide applications in both industrial and military sys­

tems. Examples of such fault tolerant systems include the multi-engine system 

in an airplane, the multi-display system in a cockpit, and the multi-transmitter 

system in a communication system [46]. We first present the binary fc-out-of- 

n  system models, then discuss fc-out-of-n system models in the multi-state 

context.

D efinition 2.2 A n  n-component system  is called a binary k-out-of-n:G  sys­

tem  i f  it  is working whenever at least k components are working. An n-  

component system  is called a binary k-out-of-n:F system  i f  i t  is failed whenever  

at least k components are failed.

Efficient reliability evaluation algorithms for binary k-out-oi-n  systems with 

independent components have been provided by Barlow and Heidtmann [4] and 

Rushdi [82], as follows:

R (n , k) =  pn ■ R {n  — 1, k — 1) + qn ■ R (n  — l , k ) ,  (2.3)
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Figure 2.2: A multi-state fc-out-of-n system

where R (n , k ) is the recursive function, representing the reliability of a fc-out- 

of-n:G system with n  components, pn is the reliability of component n, and 

qn =  1 — pn. The boundary conditions are:

R (n , 0) =  1,

R ( n , k) = 0, for 0 < n < k. (2.4)

Binary fc-out-of-n systems models have been extended to multi-state k-out- 

of-n system models by allowing components and systems to take more than 

two possible states [46, 55]. A multi-state fc-out-of-n system is illustrated in 

Fig. 2.2. We only show 6  components in the figure, but there can be any 

number of components in a fc-out-of-n systems. From Huang et ai, an 71-  

component system is called a generalized multi-state /c-out-of-ri:G system if 

0(x) > j  (1 < j  < AT) whenever there exists an integer value I (j < I < M) 

such that at least ki components are in state I or above.

When fci < < ■ ■ ■ < kM, the system is called an increasing multi-state

A;-out-of-n:G system [37]. When k-i > k2 > ■ ■ ■ > kM, the system is called a 

decreasing multi-state fc-out-of-n:G system. Let’s use an example to illustrate 

the modeling of an engineering system as a decreasing multi-state fc-out-of-n:G 

system model.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2.2 Typical structures of multi-state systems 20

Exam ple 2.1 Consider a power sta tion with three generators. Each generator  

is treated as a component and there are 3 components in this system. Each  

generator m ay be in four possible states, 0, 1, 2, and 3. When a generator is 

in state 3, i t  is capable of generating 10 megawatts in pow er output; in state  

2, 3 megawatts; state 1, 1 megawatt; and sta te  0, 0 megawatt. The total power  

output of the system  is equal to the sum of the power output from  all three 

generators. The system  m ay also be in four different states: 0, 1, 2, and 3. 

When the total output is greater than or equal to 10 megawatts, the system  is 

considered to be in state 3; otherwise but greater than or equal to 6 megawatts, 

state 2; otherwise but greater than or equal to 3  megawatts, s ta te  1; otherwise, 

state 0. Based on these descriptions, the system  can be considered to be a 

decreasing multi-state k-out-of-n:G system  with the following parameters:

n  =  3, M  =  3, ki — 3, k2 =  2, k3 =  1.

Using the terminology of the definition of generalized m ulti-state k-out-of-  

n :G  system, we can describe this model as follows: The system  is in state 3 

whenever at least 1 component is in state 3; in state 2  or above whenever either  

at least 1 component is in sta te  3 or at least 2 components are in sta te  2 or 

above; in state 1 or above whenever at least 1 component is in sta te  3, or at 

least 2 components are in state 2  or above, or at least 3  components are in 

state 1 or above.

2.2.3 W eighted A>out-of-n system s

A weighted A;-out-of-n system is a special type of k-out-oi-n  systems. Wu and 

Chen generalized the binary k-out-of-n  system models to the binary weighted 

A;-out-of-n models [97].
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Definition 2.3 In a binary weighted k-out-of-n system, component i carries 

a weight of W{, W{ > 0 fo r  i = 1,2 , ,n .  The total weight of all components 

is w, w  — Yfl=i Wi- The system  works i f  and only i f  the total weight of working 

components is at least a pre-specified threshold value k.

In this definition, “weight” does not refer to the physical weight. Instead

it refers to the utility defined earlier in this chapter.

A recursive equation is provided by Wu and Chen [97]. We use j )  

to represent the probability that a system with j  components can output a 

total weight of at least z. Then, R w( k, n)  is the reliability of the weighted k- 

out-of-zz:G system. The following recursive equation can be used for reliability 

evaluation of such systems.

Rw{ i , j )  = P j R w { i  ~  Wj , j  -  1) +  qj R w(i, j  -  1), (2.5)

which requires the following boundary conditions:

Rw( i , j )  = 1, for z < 0 , j  > 0 , (2.6)

Rwif, 0) =  0, for z > 0. (2.7)

An important variation of binary weighted fc-out-of-n systems is weighted 

voting systems. A weighted voting system consists of n  units that each provide 

a binary decision (0 or 1) or abstain from voting (x).  The system output is 1 

if the cumulative weight of all 1-opting units is at least a pre-specified fraction 

r  of the cumulative weight of all non-abstaining units. Otherwise the system 

output is 0 [69, 70, 47].

A definition of a multi-state weighted fc-out-of-n system is as follows [52], 

A multi-state weighted fc-out-of-n system can be regarded as a system with n
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Figure 2.3: A multi-state weighted fc-out-of-n system

multi-state components connected in parallel, as in Fig. 2.3. Each component 

has multiple possible states with multiple levels of capacities. The capacity of 

the system is equal to the sum of the capacities of its components. An algo­

rithm is developed in [52] for the reliability evaluation of multi-state weighted 

/r-out-of-n systems.

2.2.4 M ulti-state networks

Reliability is a critical measure for evaluating the performance of network sys­

tems and for making decisions such as maintenance scheduling [54, 16]. Many 

network systems, such as power generation and transmission systems, oil and 

gas supply systems, and communication systems, consist of components which 

can work at different levels of capacity. These systems are regarded as multi­

state networks. In this research work, we consider a network satisfying the 

following assumptions: (1 ) all nodes are perfect; and (2 ) all links are directed 

and failure prone. The capacity of a link is an independent discrete random 

variable and may take non-negative integer values following a certain probabil­

ity distribution. The most general network reliability problem is the so-called 

all-terminal network reliability problem, which studies the connectivity among
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S ource

Figure 2.4: A multi-state network system

all the nodes of a network [8 6 ]. In this research work, however, we limit our 

discussions to reliability analysis of two-terminal networks [79, 80, 84]. This is 

a classical network reliability problem with a broad range of practical applica­

tions. A two-terminal network is shown in Fig. 2.4. We are interested in the 

flow from a single source node to a single sink node.

2.3 The general problem of reliability evaluation of m ulti-state sys­

tem s

As shown in Figure 2.5, the general problem of reliability evaluation of multi­

state systems is as follows: given the component state distributions and the 

system structure function 4>(X), find the system state distribution.

“Component state distributions” describe the probabilities of the compo­

nents in different possible states. Suppose that there are n components in a 

multi-state system under consideration. Component i might be in Mi + 1 pos­

sible states from state 0  to state Mj. pij is used to represent the probability of
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System Structure 
Function ®(X)

System State 
Distribution

•  lu ll I . . I I I
Figure 2.5: Reliability evaluation of multi-state systems

component i (1 <  i < n) in state j  (0 < j  < Mi). We have

Mi
= 1-

3 =  0

Thus, component state distributions can be described by Pij (1 < i < n,

0 < j< M i) .

“System structure function gives how to determine the system state

based on the component states. X  is a vector with n elements, where element

1 ( 1  <  * < n) indicates the state of the ith component.

“System state distribution” gives us the probabilities of the system in dif­

ferent possible states. Suppose that the system has M s possible states. pS] are 

used to denote the probability of the system in state j  (0 < j  < M s).

We need to note that the state distributions of components and systems 

we study in this thesis are constant values. There are two cases for the state 

distributions to take constant values. The first case is when we have specified 

mission time t. The other case is when a component or a system is in steady-
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state [55, 47]. Take for example psj, the probability of the system in state j .  

This probability is actually a function of time pSj(t). When time t is large 

enough, the system will reach a steady state, and psj(t) will converge to a 

specific value pSj .

2.4 Fundamental elem ents of recursive algorithm s

Recursive algorithms are widely used for system reliability evaluations [46]. 

As to be shown later, the reliability evaluation algorithms for multi-state k- 

out-of-n systems and network systems to be developed in this research are all 

recursive algorithms [105, 95, 52].

In this section, we would like to identify and discuss three fundamental 

elements in a recursive algorithm: recursive function, updating procedure and 

boundary conditions. We would like to use the recursive algorithm for binary 

fc-out-of-n systems, Equation (2.3) and (2.4), as an example to illustrate these 

elements.

2.4.1 Recursive function

Recursive function is the key function that calls itself in the recursive algo­

rithm. It has one or multiple input parameters, which change during the 

course of the recursive algorithm. A recursive function with a set of input 

parameters is calculated via several recursive functions with sets of simpler 

input parameters.

In the recursive algorithm for binary fc-out-of-n systems in Equation (2.3) 

and (2.4), R(n, k) is the recursive function, in which n and k are the param­

eters. As shown in the equations, the recursive function R{n , k) is calculated 

via recursive functions R(n — l ,k  — l) and R(n — 1, k) which have simpler input
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parameters.

2.4.2 U pdating algorithm

The updating algorithm decides how the recursive function calls itself. In 

another word, the updating algorithm decides the relationship between a re­

cursive function with certain parameters and recursive functions with different 

parameters, which are typically less complex.

In the recursive algorithm for binary k-out-of-n systems, Equation (2.3) 

shows the updating algorithm, that is, how to calculate the recursive function 

R(n, k ) via two recursive functions R (n — 1, k) and R (n — 1, k — 1) with simpler 

input parameters.

2.4.3 Boundary conditions

When one of the boundary conditions is met, the recursive function will take 

a certain value, or can be determined in a specific and simple way.

In the recursive algorithm for binary k-out-of-n systems, Equation (2.4) 

shows the boundary conditions. There are two boundary conditions in this 

case. The first one is when k — 0, the value of the recursive function R (n ,k ) is 

1. The other boundary condition is when 0 < n < k, the value of the recursive 

function R(n, k) is 0.
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C h a p t e r  3

R e l i a b i l i t y  A n a l y s i s  o f  G e n e r a l i z e d  

M u l t i - S t a t e  k - o u t - o f - n  S y s t e m s

In this chapter, we propose methods for the reliability evaluation of general­

ized multi-state fc-out-of-n systems defined by Huang et al [37]. We focus on 

generalized multi-state k-out-of-n systems with identically and independently 

distributed (i.i.d.) components. First the method for the exact reliability 

evaluation of generalized multi-state k-out-of-n systems is presented. Then, a 

reliability bounding approach is developed for fast system reliability approxi­

mation.

3.1 R eliability evaluation of generalized m ulti-state k-out-of-n sys­

tem s

In this section, we present an algorithm for the reliability evaluation of gener­

alized multi-state A;-out-of-n systems with i.i.d. components. The materials in 

this section have been published in [105] and [94],

Assum ptions:

• The state space of each component and the system is {0 ,1 , 2 , ,  M} .
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• The states of all components are identically and independently distributed 

(i.i.d.) random variables.

• The state of the system is completely determined by the states of the 

components.

• A lower state level represents a worse or equal performance of the com­

ponent or the system.

Notation:

• x{. state of component i, =  j  if component i is in state j ,  0 < j  < M , 

1 < i < n

• x: an n-dimensional vector representing the states of all components, 

X =  (x i ,x 2, . . . , x n)

• 0 (x): state of the system, which is also called the structure function of 

the system, 0 <  0(x) <  M

• py. probability that a component is in state j  when all components are 

i.i.d.

• Py. probability that a component is in state j  or above when all compo­

nents are i.i.d.

• Qy. 1 -  Pj

• R sJ: Pr(0(x) > j)

• Q s , j -  1

• rs,y Pr(0(x) =  j)
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• R( k,  n; j ) :  probability that the /c-out-of-n:G system is in state j  or above

• N: number of components of a nominal increasing multi-state /c-out-of- 

n:F system

• m: number of possible states of a nominal increasing multi-state fc-out- 

of-n:F system minus 1

• k j : the k value to state j  for a nominal increasing multi-state /c-out-of-n:F 

system

•  p f  the probability of the components in state j  for a nominal increasing 

multi-state /e-out-of-n:F system

• Q(»): the recursive function used by the proposed recursive algorithm, 

Q =  Q(m, N, k, p)

3.1.1 Introduction

Under traditional definition of multi-state /c-out-of-n:G system [8 , 19], the 

system is in state j  or above when at least k components are in state j  or 

above. Huang et al. [37] proposed the generalized multi-state /c-out-of-n:G 

system model, where there can be different k values with respect to different 

states. That is, the system is in state j  or above if there exists an integer 

value I ( j  <  I <  M )  such that at least k3 components in state j  or above. The 

generalized multi-state /r-out-of-n:G model allows describing practical multi­

state systems with more flexibilities. The generalized multi-state /c-out-of-n:G 

model was later extended to multi-state consecutive-/c-out-of-n system as a 

special case [36]. Huang et al. [37] also provided an algorithm to calculate the 

state distribution of generalized multi-state /c-out-of-n:G systems. However,
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this performance evaluation algorithm is enumerating in nature, and therefore 

it is not efficient. In addition, this algorithm is applicable only when the hi 

values follow a monotonic pattern. A more efficient and more general algorithm 

is needed for the evaluation of generalized multi-state fc-out-of-n:G systems.

Under the traditional definition of multi-state fc-out-of-n systems, there is 

an equivalent multi-state fc-out-of-mF system with respect to each multi-state 

A;-out-of-n:G system [46]. We will first present the definition of generalized 

multi-state fc-out-of-n:F systems, and there is an equivalent relationship be­

tween generalized multi-state /c-out-of-n:G and F systems. The general form 

of minimal cut vector for generalized multi-state /c-out-of-n:F systems is pre­

sented. Based on minimal cut vectors, we develop an efficient recursive algo­

rithm to evaluate the state distributions of a generalized multi-state /c-out-of- 

n:F system. Furthermore, a generalized multi-state A>out-of-n:G system can 

first be transformed into its equivalent generalized multi-state fc-out-of-n:F 

system, and then be evaluated using the proposed recursive algorithm. Sev­

eral numerical examples are given to illustrate the effectiveness and efficiency 

of the proposed recursive algorithms.

3.1.2 The generalized m ulti-state £>out-of-n:G system  defined by 

Huang e t  al.

Huang et al. [37] propose the definition of generalized multi-state fc-out-of- 

n:G system and develop reliability evaluation algorithms for this multi-state 

fc-out-of-n:G system model.

D efinition 3.4 (Huang e t  al. [37]) A n n-component sys tem  is called a gen­

eralized m ulti-state k-out-of-n:G system  i f  </>(x) >  j  (I <  j  <  M )  whenever  

there exists an integer value I ( j  <  I <  M )  such that at least ki components
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are in state I or above.

A generalized multi-state fc-out-of-n:G system can also be called multi­

state (fci, k2, . . . , fcjvf)-out-of-n:G system, or (Aq, k2, • • •, kM)-ou.t-oi-n:G system. 

Though the kj values are not necessarily in monotone ordering, they consider 

the following two special cases of this definition:

• When k\ < k2 < ■ • • <  kM, the system is called an increasing multi-state 

fc-out-of-n:G system. In this case, for the system to be in a higher state 

level j  or above, a larger number of components must be in state j  or 

above. In other words, there is an increasing requirement on the number 

of components that must be in a certain state or above for the system to 

be in a higher state level or above. That is why it is called an increasing 

multi-state A;-out-of-n:G system.

• When ki > k2 > ■ ■ ■ > kM, the system is called a decreasing multi-state 

fc-out-of-n:G system. In this case, for a higher system state level j ,  there 

is a decreasing requirement on the number of components that must be 

in state level j  or above.

When kj is a constant, i.e., &q =  k2 = ■ ■ ■ =  kM =  k, the structure of the 

system is the same for all system state levels. This reduces to the definition 

of the simple multi-state A;-out-of-n:G system studied by El-Neweihi [19] and 

Boedigheimer and Kapur [8 ]. Such systems are called constant multi-state 

&-out-of-n:G systems. All the concepts and results of binary fc-out-of-n:G sys­

tems can be easily extended to the constant multi-state /c-out-of-n:G systems. 

The constant multi-state A;-out-of-n:G system is treated as a special case of 

the increasing multi-state /c-out-of-n:G system in our later discussions.
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For an increasing multi-state k-out-of-n:G system, i.e., fci < /c2 < . . .  < kM) 

Definition 3.4 can be rephrased as follows:

0(x ) ^ j  i f  and only if Qt least kj components are in sta te  j  or  

above.

If at least kj components are in state j  or above (these components can be 

considered “working” as far as state level j  is concerned), then the system 

will be in state j  or above (the system is considered to be “working”) for 

1 < j  < M . The only difference between this case of Definition 3.4 and 

the constant multi-state /c-out-of-n:G system structure is that the number of 

components required to be in state j  or above for the system to be in state j  or

above may change from state to state. Other characteristics of this case of the

generalized multi-state A;-out-of-n:G system are exactly the same as those of a 

constant multi-state /c-out-of-n:G system structure. Algorithms for binary k- 

out-of-mG system reliability evaluation can also be extended to the increasing 

multi-state fc-out-of-n:G system for reliability evaluation. Especially, when all 

components are i.i.d., we have

R j(k j,n ) = PjRj(kj — 1, n — 1) +  Q jR j(k j,n  — 1), (3.1)

where Rj(b,a ) is the probability that at least b out of a components are in 

state j  or above. The following boundary conditions are needed for equation 

(3 .1) .

Rj(0,a) = 1, for a > 0, (3.2)

Rj(b,a) — 0, for b >  a > 0. (3.3)
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Since all components are i.i.d., the probability that the system is in j  or above, 

R sj, can also be expressed as:

For a decreasing multi-state fc-out-of-n:G system, i.e., ki > k2 > . . .  > kM, 

the wording of its definition is not as simple. The system is in level M  if at least 

kM components are in level M. The system is in level M — 1 or above if at least 

kM - 1  components are in level M  — 1 or above or at least kM components are 

in level M . Generally speaking, the system is in level j  or above (1 < j  < M ) 

if at least kj components are in level j  or above, at least kj+ 1 components are 

in level j  + 1 or above, at least kj+2 components are in level j  + 2  or above,

. . . ,  or at least kM components are in level M . In this case, the definition of 

the system can be rephrased in terms of the system being exactly in a certain 

state:

0(x) =  j  i f  and only i f  at least kj components are in sta te  j  or  

above and at m ost ki — 1 components are at state I or above fo r  

I = j  +  1, j  + 2, • • •, M  where j  =  1,2, ■ ■ ■, M .

When all of the components are i.i.d., Huang et al. [37] provide the following 

equation for evaluation of the probability that the system is in state j  for

where Pi(k) is the probability that at least one and at most ki — 1 components 

are in state I, at most ku — 1 components are in state u for j  + 1 < u < I, the

(3.5)
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total number of components that are at states between j  and I inclusive is k, 

and the system is in state j .  The following equation was proposed to calculate 

A(*0 [37]

* »  ■
k j + i - i - h - j - 1  / J ,  _  T \  .

x £  ’ )pU * pT '■ (3-6>
i i - j =  0 V ^  3 I

The algorithm above by Huang et al. [37] provides a way to evaluate the 

state distribution of decreasing multi-state /c-out-of-n:G systems. However, 

this algorithm is enumerating in nature, and therefore it is not efficient. In ad­

dition, this algorithm is applicable only when the ki values follow a monotonic 

pattern, that is, decreasing or increasing. A more efficient and more general 

algorithm is needed for the evaluation of multi-state fc-out-of-n:G systems.

An example to illustrate the modeling of an engineering system as a de­

creasing multi-state fc-out-of-n:G model, a power generation system example, 

is provided in Section 1.2. Another example of a decreasing multi-state k- 

out-of-«:G system, a mining operation example, is given in Huang and Zuo 

[34],

3.1.3 The generalized m ulti-state A;-out-of-n:F system s

3.1.3.1 Definition of generalized multi-state fc-out-of-n:F systems

Given the results reported in Huang et al. [37] as we have reviewed in the 

previous section, we observe that the definition of the generalized multi-state 

/c-out-of-n:G system can be stated in terms of the system’s state being below
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a certain level, as follows:

<fi(x) < j  i f  and only i f  at least n  — ki +  1 components are below 

sta te  I fo r  all I such that j  <  I <  M .

In this perspective of linking system state to the states of the components, 

we are focusing on the events that the states of both the system and the 

components are below a certain level. This corresponds to the definition of 

a A>out-of-n:F system in the binary context. Thus, we propose the following 

definition of the generalized multi-state A:-out-of-n:F system.

D efin ition  3.5 A n n-component system  is called a generalized multi-state k- 

out-of-n:F system  i f  </>(x) < j  (1 <  j  <  M )  whenever the sta tes of at least ki 

components are below I fo r  all I such that j  <  I <  M .

Here we also consider the following two special cases of this definition:

D efin ition  3.6 A generalized m ulti-state k-out-of-n:F system  is called in­

creasing multi-state k-out-of-n:F system  i f  k\ <  k% <  • • • <  kM-

D efin ition  3.7 A generalized multi-state k-out-of-n:F system  is called de­

creasing multi-state k-out-of-n:F system  i f  k\ >  k2 >  • ■ • > •

Note that in the definition of increasing multi-state &-out-of-n:F system, kj 

is strictly increasing. This definition is convenient for the descriptions of the 

minimal cut vectors of generalized multi-state fc-out-of-n:F systems and the 

proposed recursive algorithms which will be presented later.

Like in the binary case, the generalized multi-state fc-out-of-n:G system 

defined in Definition 3.4 and the generalized multi-state /c-out-of-n:F system 

defined in Definition 3.5 can be considered to be mirror images of each other.
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For a given set of n components with given state distributions, the state dis­

tribution of a generalized multi-state /c-out-of-n:G system is equal to the state 

distribution of a generalized multi-state fc-out-of-n:F system if k^ =  n  — k^ + l 

for j  =  1, 2 , . . . ,  M .  As a result, an increasing multi-state /e-out-of-n:G system 

becomes a decreasing multi-state (n — k + l)-out-of-n:F system and a strictly 

decreasing multi-state /c-out-of-n:G system becomes an increasing multi-state 

(n — k +  l)-out-of-n:F system.

Suppose that we are interested in evaluating the state distribution of a 

multi-state fc-out-of-n:G system with given kj values for 1 < j  < M  and given 

component state distributions. If it is an increasing multi-state fc-out-of-mG 

system, we may use equation (3.1) directly to evaluate the state distribution 

of the system. If it is a decreasing multi-state /c-out-of-n:G system, we may 

use equation (3.5) directly to evaluate the state distribution of the system. 

However, equation (3.5) is not efficient. In this section, we will present an 

efficient recursive algorithm to evaluate the state distribution of the general­

ized multi-state /c-out-of-n:F systems, and thus we can use them to evaluate 

generalized multi-state fc-out-of-n:G systems as well.

Consider a strictly decreasing multi-state fc-out-of-n:G system with k\ > 

&2 > . . .  > kM and i.i.d. component state distributions. Note that here we only 

consider the case in which kj are strictly decreasing. The cases in which kj are 

not strictly decreasing are regarded as general generalized multi-state fc-out- 

of-/i:G systems, if they are not increasing multi-state /c-out-of-n:G systems. 

We can find k!- — n  — kj +  1 for j  = 1 , 2, . . . ,  M .  Now we can concentrate on 

an increasing multi-state /c-out-of-n:F system with k[ <  k/2 <  . . .  < k'M. The 

state distribution of this increasing multi-state /c-out-of-n:F system is equal to 

the state distribution of the original multi-state £>out-of-n:G system.
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Now, we will focus on the structure of an increasing multi-state /c-out-of-n:F 

system with 1 < ki < k2 < ■.. < Icm < n, as defined in Definition 3.6.

3.1.3.2 Minimal cut vectors of increasing multi-state A:-out-of-n:F systems

In this section, we will present the form of minimal cut vector for increasing 

multi-state /c-out-of-n:F systems. A minimal cut vector to system state M  has 

the following form:

(M -  1 , M  -  1 , . . . ,  M  -  1, M , . . . ,  M),

'----------------------- v----------------------- '
n

Let us use v  to represent this vector. From the definition of generalized multi­

state &;-out-of-n:F system, we can see that 4>{v) < M  since there are Um 

components in states below M. When any component’s state is raised, if it 

can be, there will be less than components which are in states below M, 

that is, we will have <p(v) > M . Therefore, vector v  is a minimal cut vector 

to system state M . Based on the definition of generalized multi-state /c-out- 

of-n:F system, all permutations of the elements of this minimal cut vector are 

all minimal cut vectors to system state M.

Similarly, a minimal cut vector to system state M  — 1 has the following 

form:

(M  -  2, M  -  2 , . . . ,  M  -  2, M  -  1 , . . . ,  M  -  1, M , . . . ,  M).
 ̂ v ^

^m-l'---------------------------- v---------------------------- -
k M

V II . -I. ✓
n

All permutations of the elements of this minimal cut vector are all minimal 

cut vectors to system state M  — 1.
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Finally, a minimal cut vector to system state 1 has the following form:

(0 ,0 , . . . ,  0 ,1, . . . ,  1, . . . ,  M  — 1, . . . ,  M  — 1, M , . . . ,  M ).
v v /

fcl

s  ̂ '

 ̂ 1 1 V v
Aim'--------------------------------- V--------------------------------- '

n

Generally speaking, a minimal cut vector to system state j  has the following 

form:

(j  ~  1, j  ~  1. • • • ,3 ~  1) 3, ■ • • > M  -  1 , . . . ,  M  — 1, M , . . . ,  M ).
k j

'------------------ V------------------ "
k j + 1"---------------------V---------------------'

'--------------------- :------------v----------------------------------'
k M'  -

n

We will use the symbol * as a superscript to this minimal cut vector to 

represent all permutations of the elements of this minimal cut vector, which 

are all minimal cut vectors to system state j ,  that is

(j -  1, j  -  1 , . . . ,  j  -  1 , j , . . . ,  j , . . . ,  M  -  1 , . . . ,  M  -  1, M , . . . ,  M)*

represents all minimal cut vectors to state j ,  where 1 < j  < M.

3.1.3.3 Minimal cut vectors of general multi-state fc-out-of-n:F systems

For a general multi-state A;-out-of-n:F system, the kj values are not necessarily 

in a monotonic ordering. The minimal cut vector form of general multi-state 

fc-out-of-n:F system is similar to that of increasing multi-state /c-out-of-n:F
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system, except that we need to do some transformations first.

Considering the general case, here we will try to find the minimal cut 

vectors with respect to state j  for a general multi-state fc-out-of-n:F system 

with values hi, k2, . . . ,  First we need to find the ki values (j  < I < M) 

which are in strictly increasing order. For instance, if we find that kj < ka < kb 

(j < a < b < M ), it means that ki < kj (j < I < a), ki < ka (a < I < b), and 

h  < kb (b < I < M ). Then a minimal cut vector to state j  has the following 

form:

(j -  1, j  -  1 , . . . ,  j  -  l ,a  -  1, . . .  , a -  l , b -  1, . . .  , b -  1 , M, . . . ,  M) (3.7)
V ^

k j
V------------------------   '

k a
^  ^ v

k \j

Compared with the minimal cut vector structure to state j  of increasing multi­

state fc-out-of-n:F system, it can be considered that ki (j < I < a) are “ab­

sorbed” by k j , ki (a < I < b) are “absorbed” by ka, and k[ (b < I < M ) 

are “absorbed” by kb- All permutations of the elements of this minimal cut 

vector are all minimal cut vectors to system state j ,  which are represented by 

attaching the symbol * a s a  superscript to the minimal cut vector above.

As a special case, a minimal cut vector to state j  for a decreasing multi­

state fc-out-of-n:F system is:

M , . . . ,  M ). (3.8)
kj

V V" *
n

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3.1 Reliability evaluation of generalized multi-state k-out-of-n systems 40 

Consider for example the following general multi-state fc-out-of-n:F system:

n = 4, M  = 3, ki = 2, k2 = 3, k3 = 1.

A minimal cut vector to system state 3 is (2, 3, 3, 3). A minimal cut vector to 

system state 2 is (1, 1, 1, 3), and it can be considered that ks is “absorbed” by 

k2 because k3 is less or equal to k2. A minimal cut vector to system state 1 is 

(0 , 0 , 1 , 3). All minimal cut vectors to a specific system state are all permuta­

tions of the elements of the corresponding minimal cut vector presented above.

3.1.4 Recursive algorithms for reliability evaluation of generalized 

multi-state fc-out-of-n systems

3.1.4.1 Recursive algorithm for increasing multi-state £;-out-of-n:F systems

First we consider the evaluation of increasing multi-state /c-out-of-n:F system 

with k\ < k2 < ■ ■ ■ < kM■ To evaluate the state distribution of an increasing 

multi-state fc-out-of-n:F system, we need to calculate Qs,\, Qs,2 , ■ ■ ■, Qs,m ■ The 

probability that the system state is below j , i.e. Qsj ,  is equal to the probability 

that there exists a minimal cut vector of the system so that each component 

state is no more than the corresponding element of the minimal cut vector [46]. 

Based on the form of minimal cut vector for increasing multi-state A;-out-of-n:F 

systems we presented in Section 3.1.3.2, to any state j ,  we have

Qs,j
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kj+1

/cm

In the following part of this section, we will present a recursive algorithm 

to calculate the probability on the right hand side of equation (3.9).

When j  = M , we have

Qs,m = P r(x <  (M  — 1 , M  — 1 , . . . ,  M  — 1 , M , . . . ,  M)*) (3.10)
/cm

The following formula can be used to evaluate the probability expression in 

equation (3.10):

n 'n
Q..M =  E  , (3-n )

io=/cm

The rationale behind this formula is straight forward. We calculate the proba­

bility when there are exactly i0 components in states below M  (k ^  < < M ),

while taking the combination of the components into consideration, and add 

them together. We can also think in this way: there are only two possible 

states, state M  (so-called state “1 ”) and state below M  (so-called state “0”) , 

the probability of the components in these two possible states are pM and QM 

respectively, and thus equation (3.11) can be interpreted as the probability of 

the two-state system in state “0 ” .
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When j  = M  — 1, we have

Q s ,m - i  =

Pr(x < (M -  2, M  -  2 , . . . ,  M  -  2, M  -  1, . . . ,  M  -  1, M , . . . ,  M)*) (3.12)
s v y

& M - 1

k M

The following formula can be used to evaluate the probability expression in 

equation (3.12):

Qs,m-i =  E *  ( n
h=k,M-i V1

+ E
i 0= k M  \ Z0 /

n —i  i

M —l
io=kM—h

in „ n —i  l -

V m - \ P m

(3.13)

where io and i\ are enumeration variables. We may think that there are totally 

three possible states, state M  (so-called state “2”), state M  — l  (so-called 

state “1 ”) and state below M  — l (so-called state “0”). The probability of the 

components in these three possible states are p m , P m - i and Q m -i respectively. 

Thus equation (3.13) can be interpreted as the probability of the three-state 

system in state “0 ” .

The expression on the right hand side of equation (3.13) consists of two 

terms which are connected by the “+ ” sign. The first term represents the case 

when there are exactly (kM - 1  <  h  < kM — 1 ) components in state “0 ” (states 

below M  — l). The probability when there are exactly i\ {kM- 1  <  h  < kM — 1)
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components in state “0 ” and the system state is “0 ” is

Q m -i

as shown in equation (3.13). The part in the bracket is the probability that the 

other n — i\ components are in state “1” (state M  — 1) or above and at least 

kM — i\ components are in states below “2” (state M ). Therefore, the part in

D efin ition  3.8 A nominal increasing multi-state k-out-of-n:F system is the 

same as an increasing multi-state k-out-of-n:F system except that the proba­

bility of a component in all possible states may be less than 1.

We use the symbol “ - ” to indicate the parameters of this nominal increasing 

multi-state &-out-of-n:F system, and we have h =  n —ii, ki =  kM — ii, Pi = Pm , 

and po = pM- i- That is, the part in the bracket is equal to the probability

Equation (3.11) can be used to calculate this probability. Note that YiiPi is 

not necessarily equal to 1 in the nominal increasing multi-state /c-out-of-n:F 

system.

The second term of the expression on the right hand side of equation (3.13) 

also can be considered to be the probability that a nominal increasing multi­

state &;-out-of-7j:F system with two possible states is in state “0” . We use the

the bracket can be considered to be the probability that a nominal increasing 

multi-state £>out-of-n:F system (to be defined below) with two possible states 

( “0 ” and “1 ”) is in state “0 ” .

(3,14)

n
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symbol “ - ” to indicate the parameters of this nominal increasing multi-state 

A;-out-of-n:F system too, and we have n  =  n ,  k \  =  Um , P i  =  P m  + P m - i , a n d 

Po =  Q m -  1-

In summary, the expression on the right hand side of equation (3.13) can 

be interpreted as the probability that a nominal increasing multi-state fc-out- 

of-n:F system with three possible states is in state “0”. This probability can 

further be calculated via the probabilities that some nominal increasing multi­

state /e-out-of-n:F systems with two possible states are in state “0” .

To the original increasing multi-state fc-out-of-n:F system, when j  is equal 

to M  — 2 or below, we have similar observations as those of the cases when 

j  =  M  — 1 and j  = M. Having these observations in mind, we provide 

a recursive algorithm to calculate the Qsj  value to any state j  for equation 

(3.9) .

T h e recursive  function  we are using in the proposed recursive algorithm 

is denoted by Q(m, N, k, p),  where

m: the number of possible states of the nominal increasing multi-state 

/c-out-of-n:F system minus 1,

N: the number of components of the nominal increasing multi-state 

A;-out-of-n:F system,

k : the k vector of the nominal increasing multi-state fc-out-of-n:F sys­

tem, k = ( k u k i , - - - ,^ , ) ,

p: the probability vector of the nominal increasing multi-state fc-out- 

of-n:F system, p  = (p0 ,Pi, • ■ ■ ,Pm)-

The recursive function Q(m, N, k, p)  is designed to represent the probabil­

ity for the system to be in state “0 ” of a nominal increasing multi-state k-out- 

of-n:F system with m +  1 possible states, totally N  components, vector k, and
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probability vector p.  Thus, to calculate the QSJ value as shown in equation 

(3.9) of an increasing multi-state /c-out-of-n:F system, we can first transform 

it into a nominal increasing multi-state fc-out-of-n:F system to state j .  In a 

general case, assume that the considered increasing multi-state A;-out-of-n:F 

system has n components, M  + 1 possible states, k vector (hi, k2, , ,  kM), 

and probability vector (p0, pi, To calculate Qsj  value to a cer­

tain state j ,  we will get a nominal increasing multi-state /e-out-of-n:F system 

to state j ,  with m  = M  — j  + 1, N  = n, k = (kj, kj + 1, , . . . ,  kM), and 

P =  (Etc1 Pi, Pj, Pj+1) • ■ ■ j Pm)- Using the recursive algorithm, the value 

Qsj  is equal to Q(m, N, k, p).

Assuming the parameters of the nominal increasing multi-state fc-out-of- 

n:F system to state j  are m, N , k and p,  we have

Qsj =  Q(m, N , k , p ) (3.15)

T h e p ro ced u re  o f th e  recursive a lg o rith m s is as follows:

+ Q (m -  1, N, k , p ) (3.16)

where

k = (k2 -  i, h  ~  i, • • • ,k m -  i),  p  = (pi,p2, ■ • • ,Pm),

k  = (k2,k 3, ■ ■ - , km), p  = (po,Pi T p2, p3, ■ ■ ■, Pm), 

The boundary condition for the recursive algorithm is

(3.17)
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for 771=1.

From equations (3.16) and (3.17), we can see that this algorithm is actually 

recursive on the parameter m, not on the number of components N. Therefore, 

we can apply the recursive algorithm to large systems including a large number 

of components, without leading to exponential growth of computation time.

After calculating the Qsj  value of an increasing multi-state /c-out-of-n:F 

system for all state j ,  we can use the following equations to get rsj ,  the prob­

ability of the system in state j

T~s,0 Qs,l

T s , M  1 Q s , M

r , j  = Q s , j + i -  Qsj  (1 <  j  < M)  (3.18)

3.1.4.2 Examples for the proposed recursive algorithm

We will use two examples to illustrate and verify the recursive algorithm for 

increasing multi-state fc-out-of-n:F systems proposed in the previous section.

E xam ple 3.2 We consider an increasing multi-state k-out-of-n:F system with 

10 i.i.d. components and 4 possible states, i.e., n  =  10 and M  = 3. The k 

vector is k =  (Aq, fc2, ^3 ) =  (3, 6, 8). The state distribution of components 

i s p  =  (0.1, 0.3, 0.4, 0.2).

To calculate QS: 3 , we get a nominal increasing multi-state k - out- of-n:F sys­

tem to state 3, withm  =  1, N  =  10, k =  (kf) =  8, andp =  (p0 + p i  + P2 , pf) =  

(0.8, 0.2). Using the recursive algorithm, the value QSy3 is equal to Q(m, N , k, p), 

which is 0.6778.

To calculate QS;2, we get a nominal increasing multi-state k-out-of-n:F sys-
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tem to state 2, with m  = 2, N  =  10, k =  (k2, kf) =  (6, 8), and p = 

(po+Pi, P2 , Pz) =  (0.4, 0.4, 0.2). Using the recursive algorithm, the value 

Qsfi is equal to Q(m, AT, k, p), which is 0.1523.

To calculate Qs;i, we get a nominal increasing multi-state k - out-of-n:F sys­

tem to state 1, with m  =  3, N  = 10, k =  (k\, k2, k3) = (3, 6, 8), and 

P =  (Po, Pi, P2 , P3 ) = (0.1, 0.3, 0.4, 0.2). Using the recursive algorithm, the 

value Qs>i is equal to Q(m, N, k, p), which is 0.0308.

Using equation (3.18), we can get the probability of the system at each 

individual state

r s,0 =  0.0308, r , , i=  0.1214, r Sj2 = 0.5255, rsfi = 0.3222

We also used the enumerating method to calculate the state distribution of 

this increasing multi-state k-out-of-n:F system. The results agree with those 

we get using the proposed recursive algorithm, which verifies the correctness of 

the recursive algorithm.

Example 3.3 In this example, we will mainly investigate the efficiency as well 

as the correctness of the proposed recursive algorithm, by varying the number 

of possible states and number of components of the considered increasing multi­

state k-out-of-n:F system.

First, we consider an increasing multi-state k-out-of-n:F system with the 

following settings: n =  10, M  =  4, the k vector is k =  (1, 2, 4, 5), and the 

state distribution of components is p =  (0.1, 0.2, 0.1, 0.4, 0.2). The results 

obtained using the proposed recursive algorithm are 

Q = (0.4587, 0.6009, 0.6174, 0.9936) 

r = (0.4587, 0.1422, 0.0164, 0.3763, 0.0064)

The enumerating method is also used to calculate the state distribution of 

this increasing multi-state k-out-of-n:F system. The results agree with those by
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Table 3.1: Computation time with respect to different number of components

n 5 8 1 0 15 2 0 30 50 1 0 0

Recursive Algorithm 
Enumerating Method

0 .0 1

0.04
0 . 0 2

3.38
0.03

80.45
0.04 0.06 0.08 0.14 0.32

the recursive algorithm, which further illustrate the correctness of the recursive 

algorithm.

Varying the number of components n while keeping other parameters the 

same, we can investigate the efficiency of the recursive algorithm with respect 

to parameter n. The computation time (seconds) with respect to different n 

values are shown in Table 3.1. We can see that with the increase of the num­

ber of components, the computation time increases, but it does not increase 

exponentially. We also use the enumerating method to evaluate the increas­

ing multi-state k-out-of-n:F systems with varied number of components n, and 

listed the computation time (seconds) in Table 3.1 as well. With respect to 

each number of components n, the enumerating method needs more computa­

tion time than the recursive algorithm. With the increase of the number of 

components, the computation time of the enumerating method increases dra­

matically. We do not list the computation time of the enumerating method for 

n greater than 10 because the computation time for those cases is too long to 

endure. This example has illustrated that the recursive algorithm is far more 

efficient than the enumerating method, especially to systems with a large num­

ber of components.
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3.1.4.3 Evaluating general multi-state A;-out-of-n:F systems using the recur­

sive algorithm

We have presented the form of minimal cut vector of general multi-state k- 

out-of-n:F systems in Section 3.1.3.3. Assuming a minimal cut vector to state 

j  is represented by Vj, we can calculate the probability that the system is in 

state below j ,  Q s,j, by

Qaj  =  Pr(x < (vj)*) (3.19)

where the symbol * is used as a superscript to represent all permutations of 

the elements of this minimal cut vector.

The following procedure is proposed to calculate Qsj  value to any state j  

of a general multi-state /c-out-of-n:F system:

(1). Find the minimal cut vector to state j  of this system using the method 

presented in Section 3.1.3.3.

(2). Generate a nominal increasing multi-state fc-out-of-n:F system to state 

j ,  and calculate the parameters m, N , k  and p. For instance, assume that 

the minimal cut vector to state j  of the general multi-state A;-out-of-n:F sys­

tem has the form shown in equation (3.7). Thus the nominal system has 

4 possible states, i.e., m  =  3. The number of components of the nomi­

nal system is the same as the general multi-state /c-out-of-n:F system, i.e., 

N  = n. The k  vector is k  =  (kj, ka, kb). The probability vector p  is

P = ( J X E fciP i, E fibPi)

(3). Using the recursive algorithm to calculate the Qsj  value: Qsj  =  

Q(m, N, k, p).

Exam ple 3.4 This example is used to illustrate the procedure o f evaluating
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a general multi-state k-out-of-n:F system. The system we investigate has the 

following settings: n =  4, M  =  4, the k vector is k = (2, 3, 3, 1) which is 

not in monotonic ordering, and the state distribution of components is p = 

(0.1, 0.2, 0.1, 0.4, 0.2).

To state j  = 4, a minimal cut vector has the form of (3, 4, 4, 4). To 

calculate Qs,a, we get a nominal increasing multi-state k-out-of-n:F system to 

state 4, with m  = I, N  — 4, k =  1, and p =  (0.8, 0.2). Using the recursive 

algorithm, we get QSj4 =  Q(m, N, k, p) =  0.9984.

To state j  = 3, a minimal cut vector has the form of (2, 2, 2, 4). To 

calculate Qs,z, we get a nominal increasing multi-state k-out-of-n:F system to 

state 3, with m  = 1, N  = 4, k = 3, and p =  (0.4, 0.6). Using the recursive 

algorithm, we get QSi3 =  Q(m, N, k, p) =  0.1792.

To state j  = 2, a minimal cut vector has the form of (1, 1, 1, 4). To 

calculate Qs,2 , we get a nominal increasing multi-state k-out-of-n:F system to 

state 2, with m  = 1, N  =  4, k = 3, and p =  (0.3, 0.7). Using the recursive 

algorithm, we get QSt2 =  Q(m, N, k, p) =  0.0837.

To state j  = 1, a minimal cut vector has the form of (0, 0, 1, 4). To 

calculate Qs,i, we get a nominal increasing multi-state k-out-of-n:F system to 

state 1, with m  =  2, N  = 4, k = (2, 3), and p =  (0.1, 0.2, 0.7). Using the 

recursive algorithm, we get Qs> 1 =  Q(m, N, k, p) =  0.0229.

Using equation (3.18), we can get the probability of the system at each 

individual state

rs = (0.0229, 0.0608, 0.0955, 0.8192, 0.0016)

We also used the enumerating method to calculate the state distribution of 

this general multi-state k-out-of-n:F system. The results agree with those by 

the proposed recursive algorithm, which verifies the correctness of the recursive
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algorithm to general multi-state k-out-of-n:F systems.

Note that the approach proposed in this section is for “general” multi-state 

fc-out-of-n:F systems. That is, this approach can be applied to any special cases 

such as increasing multi-state fc-out-of-n:F systems, decreasing multi-state k- 

out-of-n:F systems and constant multi-state /c-out-of-n:F systems. Especially, 

when a system is decreasing or constant multi-state ft-out-of-n:F system, to 

any state j ,  it has minimal vectors in the form shown in equation (3.8), and 

Qsj  can be evaluated simply by using equation (3.11).

3 .1.4.4 Evaluating generalized multi-state fc-out-of-n:G systems using the re­

cursive algorithm

As we mentioned in Section 3.1.3.1, there is equivalent relationship between 

generalized multi-state /c-out-of-n:G and F systems. Thus the following pro­

cedure can be used to evaluate a generalized multi-state /r-out-of-n:G system:

1. Generate the equivalent generalized multi-state /c-out-of-n:F system of 

the considered generalized multi-state /c-out-of-n:G by letting k j  =  n — 

k f  + 1 for j  = 1,2, . . .  ,M .

2. Using the recursive approach presented in Section 3.1.4.3 to evaluate the 

generated generalized multi-state /c-out-of-n:F system, the state distri­

butions of which are the same as the considered generalized multi-state 

£>out-of-n:G system.

Example 3.5 This example is used to verify the correctness of the proposed 

recursive algorithm to evaluate generalized multi-state k-out-of-n:G systems. 

The generalized multi-state k-out-of-n:G system we investigate is taken from  

Example 7 of Huang et al. [37], It has totally 4 components and 5 possible
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states, i.e ., n  =  4 and M  = 4. the k G vector is kG =  (4, 3, 2, 1), and the 

sta te  d istribu tion  o f com ponents is p = (0.1, 0.2, 0.3, 0.3, 0.1).

The equivalent generalized m ulti-sta te k-ou t-of-n :F  system  has the k vector  

k =  n - k G +  l -  (1, 2, 3, 4). 

while o ther param eters are kept the same.

Using the recursive approach presented in Section 3 .1 .4-3  to evaluate the 

equivalent generalized m ulti-sta te k-out-of-n:F  system , we get the results as 

follows

Q s =  (0.1331, 0.2187, 0.3888, 0.6561) 

r s =  (0.1331, 0.0856, 0.1701, 0.2673, 0.3439)

The results agree with those in Huang et al. [37] and those we get using enum er­

ating method, which verifies the correctness o f the proposed recursive algorithm  

to evaluate generalized m ulti-sta te k-ou t-of-n :G  system s.

3.2 R eliability bounds for generalized m ulti-state k-out-of-n sys­

tem s

In this section, we present a reliability bounding approach for generalized 

multi-state fc-out-of-n systems with i.i.d. components. The materials in this 

section have been published in [90].

Exact performance evaluation algorithms have been available for multi­

state fc-out-of-n systems with identical and independent (i.i.d.) components as 

discussed in Section 3.1, and multi-state k-out-oi-n systems with independent 

components [93]. These algorithms are much more efficient than enumeration 

methods. However, for complex systems with a large number of components 

and a large number of possible states, the calculation of system state distri­

bution will still require a significant amount of time. In practical situations,

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3.2 Reliability bounds for generalized multi-state k-out-of-n systems 53

sometimes we do not have to obtain the exact system state distribution. We 

would rather get a good enough range of the system reliability in a much shorter 

computation time, which will allow us to make decisions more efficiently. This 

is why “reliability bounds” is an interesting and significant issue.

The issue of reliability bounding has been extensively studied, both in 

the binary context [46] and multi-state context [46, 36, 35, 41, 60]. Several 

binary reliability bounding approaches are generalized to multi-state systems 

by Block and Savits [7], and analyzed by Meng [60]. These approaches are 

some simple formulas generalized from the binary case. Hudson and Kapur 

[41] developed bounding approaches for multi-state systems using Inclusion- 

Exclusion (IE) method and Sum of Disjoint Product (SDP) methods, assuming 

that the minimal cut vectors or minimal path vectors are given. Huang et 

al. developed bounding approaches for generalized multi-state /c-out-of-n:G 

systems [35] and consective multi-state /c-out-of-n systems [36], by simplifying 

the minimal path or cut vectors to include no more than two different states. 

The limitation of their approaches are apparent, that is, we can not include 

more than two different states to seek better bounds.

In general, a systematic and flexible approach is still not available to obtain 

reliability bounds for multi-state A;-out-of-n systems with i.i.d. components. As 

mentioned, an efficient recursive algorithm has been available for the exact per­

formance evaluation of multi-state fc-out-of-n systems [94, 105]. In this section, 

we will propose a systematic and flexible reliability bounding approach based 

on the recursive algorithm. Using the bounding approach, we can obtain a 

good estimate of the exact system reliability value while significantly reduc­

ing the computation time. This approach is attractive especially to complex 

systems with a large number of components and a large number of possible
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states. A numerical example will be used to illustrate the significance of the 

proposed bounding approach.

In addition to the notations listed in Section 3.1, the following additional 

notations are given.

Notation:

• Q(*). the recursive function used by the proposed recursive algorithm, 

Q = Q (m ,N ,k ,p )

• the Qs,d value when vector k  has a specific value

• Prub: the obtained upper bound

• P rl b : the obtained lower bound

• ty^: the computation time for calculating the upper bounds

• t iy .  the computation time for calculating the lower bounds

3.2.1 The proposed reliability bounding approach

The systems under consideration are multi-state fc-out-of-n systems with i.i.d. 

components. We will focus on the probability of the system in states below a 

certain state d, that is

Qs4 =  Pr(</>(x) < d) (3.20)

The probability of the system in state d or above, represented by R sd, is equal 

to 1 — Qs,d- Based on the recursive algorithm for performance evaluation 

of multi-state /c-out-of-n systems with i.i.d. components [105], a reliability 

bounding approach is proposed in this section.
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As mentioned in Section 3.1, the calculation of Qsj  can be transformed 

into the probability for the system to be in state “0 ” of a generated nominal 

increasing multi-state fc-out-of-n:F system with ra+1 possible states, totally N  

components, vector k , and probability vector p.  Furthermore, the algorithm 

in [105] is actually recursive on the parameter m, not on the number of com­

ponents N . The algorithm can be applied to large systems including a large 

number of components without leading to exponential growth of computation 

time. However, when the number of possible nominal states m  increases, the 

computation time will increase much faster than the case when N  increases. 

Thus, a bounding approach that requires a shorter vector k  and therefore a 

much shorter computation time is promising.

Qsd is used to represent the exact probability value that the system is in 

states below nominal state d. We use Qf, (ki, k2, ..., km) to represent the QStd 

value when k  =  (£q, k2, ..., krn). We have the following property:

Property: For any nominal state j  (1 < j  < m) of a nominal increasing 

multi-state k-out-of-n:F system, we have

Q k k j> ■"> km) — Q k  ( î> ■■■> kj I; ■ km) (3.21)

The reason is whenever there are kj components in states below j ,  there will 

be always kj — 1 components in states below j .  This property provides us a 

basis to generate bounds for QStd-

Let’s consider a specific example first. Suppose that the generated k  vector 

is (1 , 2, 3, 4), which includes 4 elements in strictly increasing order. Based on 

formula (3.21), if k  vector is equal to (1, 1, 1, 1), we will have a bigger Qsd 

value, since the requirement on nominal state 2, 3 and 4 become less strict.
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Thus we have an upper bound for Q s,d- Based on similar analysis, we can find 

Qk  (4, 4, 4, 4) is smaller than Qs4. Thus, we have a pair of upper and lower 

bounds for Q s4

Q k  (4, 4, 4, 4) < Qs4 = Qk  (1, 2, 3, 4) < Qk  (1, 1, 1, 1) (3.22)

The QStd value of a general multi-state £>out-of-n:F system, where the k  vector 

is not necessarily in a strictly increasing order, can be calculated by transform­

ing the system into a nominal increasing multi-state fc-out-of-n:F system [105]. 

Therefore, Qk  (1, 1, 1, 1 ) can be simplified to include only one element in the

k  vector, that is, Qk  (1, 1, 1, 1) =  Qk  (1). Note that in the case of Qk  (1),

there are only two nominal states, state 0 and 1. Specifically, state 1, 2, 3, 4 

of the original system are combined into one nominal state 1. Thus, the upper 

and lower bounds in (3.22) can be written as

Q k  (4) <  Q s,d =  Q k  (1, 2 , 3, 4) < Qk  (1 ) (3.23)

In the bounds in (3.23), we include only one element in the k  vectors. We 

will have tighter bounds if we include more elements in them. Specifically, in 

the case of lower bounds, we have

Qk  (4, 4, 4, 4) < Q k  (1, 4, 4, 4) < Qk  (1 , 2, 4, 4)

< Qk  (1, 2 , 3, 4) =  Qs d (3.24)

And in the case of upper bounds, we have

Qs4 =  Qk  (1, 2 , 3, 4) < Qk  (1 , 2 , 3, 3) < Qk  (1 , 2 , 2 , 2 )
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<  Qk(h 1. !) (3 -25)

If we write them in a simplified way as in Equation (3.23), we have

Qk  M  ^  Qk  ( i .  4 ) £  Qk  ( r  2 . 4 ) £  Qk  ( 4 > 2 > 3 . 4 ) =  Q x  (3 -2 6 )

and

Qs4 = Qk  (1, 2 , 3, 4) <  Qk (1, 2 , 3) < Q k  (1, 2 ) < Qk  (1 ) (3.27)

All the Qk  (•) values in (3.26) and (3.27) can be calculated using the efficient 

recursive algorithm presented in [105].

Now we consider the general case Qk  (Aq, k2, ..., km), where there are m  

strictly increasing elements in the k  vector. Based on the property in Equation 

(3.21) and the analysis on the specific example above, we have the series of 

lower bounds for Qs^  as follows (showing all the m  elements)

Q k  kmi ■ ■ ■ j km) 5; Q k  (̂ h> kmi • ' ' i km) ^  Q k  ^2 > km, • • • , km) ^

—  Q k  > bm—2, km, km) <  Q k i.k\ 3 ^2 3 • • • 3 ^m—1 3 kfji )  —  Q s,d, (3.

or in the simplified form

Q k  (^m) — Q k  (^1’ km) ^  ^  Q k  (^1’ ^2j ■ ■ ' 7 km—2, km)

—  (^1 ) ^2 ) • • • > km— 1 )  ^m) Qs,d (3.29)

And the series of upper bounds for <5S;(/ are (showing all the m  elements)

Qs,d Q k  (̂ h> ■ j km—i ,  km) ^  Q k  (^1 > ^2 ) • • • j km— 1 ,  km—i) ^  ■
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< Q/g {ki, k2, k2, . . . ,  k2) < Qk  (fci, fci, . . . ,  fci) (3.30)

or in the simplified form

Qs,d —  Q k  ( ^ 1 ’ ' ' ' > —  Q k  • • • ) km—\)  ^  . . .

<  Qk ( fci> fc2) <  Qfc ( fci) (3.31)

In the general case, all the Qfc (•) values in (3.29) and (3.31) can be calculated 

using the efficient recursive algorithm presented in [105]. When calculating the 

bounds, the more elements we include in the k vector, the tighter the bounds 

will be, and the longer the computation time will be.

There is actually another way, other than that in Equations (3.28) and 

(3.29), to calculate the lower bounds:

Q k  ( ^ m > k m i  ■ ■ • i k m ) ^  Q k  ■ ■ ■ ) k m — 1 ) k m )

However, the lower bounds obtained using Equation (3.32) are not as good 

as those obtained using Equations (3.28) and (3.29). This will be illustrated 

using an example later in Section 3.2.2.

Any multi-state fc-out-of-n:G system has an equivalent multi-state fc-out- 

of-n:F system, as pointed out in Chapter 3, therefore, we will focus only on 

multi-state A;-out-of-n:F systems. Given a general multi-state fc-out-of-n:F 

system, the procedure to calculate QStd with respect to a certain state d is as
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follows:

1. Generate the nominal increasing multi-state A;-out-of-n:F system with 

the k  vector including m  elements in a strictly increasing order.

2. Based on how complex the system is, that is, how many components 

there are and how large m  is, we decide how many elements we want 

to include in the k  vector when calculating the reliability bounds. A 

simple and effective way is starting from including only one elements, in­

vestigating the obtained bounds, and increasing the number of elements 

included if necessary. We can certainly include different number of el­

ements when calculating the upper bound and lower bound. From our 

numerical experiments on the bounding approach, the upper bound is 

usually better than the lower bound when including the same number of 

elements in the k  vector. Therefore, it is recommended to include more 

elements in the k  vector when calculating the lower bound.

3. Based on how good the obtained bounds are and how efficient the cal­

culation is, we have the flexibility to choose to include different number 

of elements in the k  vector and investigate more options.

3.2.2 Exam ples

In this section, we will use a numerical example to investigate the accuracy 

and efficiency of the proposed reliability bounding approach. As mentioned in 

Section 3.2.1, Q s,d, the probability of a multi-state A>out-of-n system in states 

below d, can be calculated through the probability of a generated nominal 

increasing multi-state fc-out-of-n:F system in nominal state “0” . The time for 

generating the nominal increasing multi-state /c-out-of-n:F system is negligible.
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In this example, we will use the generated nominal increasing multi-state /c-out- 

of-n:F system directly to investigate the proposed bounding approach. Thus, 

d is specified to be 1 , and QSid represents the probability of the system in state 

0.

The nominal increasing multi-state fc-out-of-n:F system used in this exam­

ple has 100 i.i.d. components, and 8  possible states from state 0 to state 7. 

Thus we have n =  100 and M  = 7. The k  vector is specified to be

k = (10, 15, 20, 25, 30, 35, 40) (3.33)

For convenience, we set the probabilities of a component in different states to 

be identical, that is, the state distribution vector is p  is

p  =  (0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125) (3.34)

Actually, the value of state distribution vector p  will not influence the com­

putation time of the bounding approach. The factors that influence the com­

putation time of the bounding approach are the value of n, M  and vector 

k.

To calculate the exact QStd value, we need to include the total 7 elements 

in Equation (3.33) into the k  vector. Using the proposed bounding approach 

in Section 3.2.1, we can get a series of upper bounds and lowers bounds by in­

cluding different number of elements into the k  vector. The upper bounds and 

lower bounds are calculated using Equation (3.31) and (3.29) respectively. The 

programs for this example are developed with MATLAB 6.5, and implemented 

on a computer with Pentium M 1.7GHz CPU and 512 RAM. The results by the 

bounding approach are shown in Table 3.2, where m  represents the number of
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Table 3.2: Reliability bounding results

m Prlb Prub *lb ^ub
1 4.32E-12 0.81630461 0.03 0.03
2 6.86E-04 0.81595876 0.27 0.13
3 0.31592575 0.81595735 0.91 0.40
4 0.80768654 0.81595735 3.98 1.51
5 0.81595701 0.81595735 17.24 7.65
6 0.81595735 0.81595735 71.32 41.60
7 0.81595735 0.81595735 233.63 233.63

elements included in the k  vector when calculating the bounds, Pry]-, and Pru^ 

represent the obtained lower bound and upper bound, and t i ^ and tn 5  are the 

computation time for calculating the bounds, respectively. When m  = M  = 7, 

both Prub and Pr^b are equal to the exact QSjd value, 0.81595735.

From Table 3.2, we will have more accurate upper and lower bounds with 

the increase of m. It can be found that the obtained upper bounds are close 

to the exact Qs^  value even when m  =  1. From rn =  4, the upper bounds are 

the same in Table 3.2 as the exact QStd value, up to 8  decimal places. On the 

other hand, the lower bounds are not so good when m  is small, but they are 

close to the exact QSjd value as well when m  is 4 or larger. We also investigated 

other increasing multi-state fc-out-of-n:F systems by varying the value of M, 

n, vector k  and vector p. It turns out that we can always get good upper 

bounds which are close to the exact Qs^  value even when m  is relatively small. 

The obtained lower bounds show similar accuracy performance as those of the 

system in Table 3.2.

The computation times ty^  and in Table 3.2 increase greatly with the 

increase of m. Therefore, considering the accuracy of the bounds we mentioned 

in the previous paragraph, it would be a good idea to use appropriate upper
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and lower bounds if we do not have to find the exact value. For example, we 

can use the upper bound when m  = 2, which is 0.81595876, and the lower 

bound when m  = 4, which is 0.80768654. This whole range will be only about 

1 percent of the exact QS)d value, 0.81595735, and the total computation time 

is only 4.11 seconds, about 1.8 percent of that for calculating the exact value. 

These bounds will give us a good idea of the actual QStd value in a much shorter 

time.

We also investigated the efficiency of the bounding approach when the 

number of the components n increases. For instance, when calculating the 

upper bound with m =  4, if we increase n from 100 to 200 while keeping 

other settings the same, the computation time will increase from 1.51 to 3.24. 

This confirms that the recursive algorithm in Section 3.1 used in the bounding 

approach is efficient versus the number of components n. Thus, the proposed 

bounding approach can be used as an efficient performance evaluation approach 

for multi-state A>out-of-n systems with a large number of components and 

possible states.

As mentioned in Section 3.2.1, there is another method for calculating the 

lower bounds, using Equation (3.32). The performances of the two methods 

are compared. The k  vectors (before being simplified) used in the two methods 

are listed in Table 3.3, where “Method 1” refers to the method using Equa­

tions (3.28) and (3.29), and “Method 2” refers to the method using Equation 

(3.32). The results are shown in Table 3.4. When the number of elements 

m  included in the k  vector is 1 , the two methods give the same lower bound 

value, this value is very close to 0  and thus, is not useful for system reliability 

approximation at all. As the m  value increases, the lower bounds provided by 

method 1 grows much faster than those provided by method 2. This shows
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Table 3.3: The k  vectors for calculating the lower bounds with two different 
methods

m  Method 1 Method 2
1 (40, 40, 40, 40, 40, 40, 40) (40, 40, 40, 40, 40, 40, 40)
2 (10, 40, 40, 40, 40, 40, 40) (35, 35, 35, 35, 35, 35, 40)
3 (10, 15, 40, 40, 40, 40, 40) (30, 30, 30, 30, 30, 35, 40)
4 (10, 15, 20, 40, 40, 40, 40) (25, 25, 25, 25, 30, 35, 40)
5 (10, 15, 20, 25, 40, 40, 40) (20, 20, 20, 25, 30, 35, 40)
6 (10, 15, 20, 25, 30, 40, 40) (15, 15, 20, 25, 30, 35, 40)
7 (10, 15, 20, 25, 30, 35, 40) (10, 15, 20, 25, 30, 35, 40)

Table 3.4: The lower bounds results with two different methods

m P rib  (Method 1) P rib  (Method 2) f ib  (Method 1) f ib  (Method 2)
1 4.32E-12 4.32E-12 0.03 0.03
2 6.86E-04 6.16E-09 0.27 0.09
3 0.31592575 3.03E-06 0.91 0.35
4 0.80768654 4.78E-04 3.98 1.23
5 0.81595701 0.02203005 17.24 6.61
6 0.81595735 0.26478972 71.32 38.56
7 0.81595735 0.81595735 233.63 233.63

that method 1 provides much tighter lower bounds for system reliability evalu­

ation. Of course, when m  = M  = 7, all the elements in the k  vector are used, 

both methods give the exact system reliability value.

3.2.3 Conclusions

A reliability bounding approach is proposed in this section based on the re­

cursive algorithm for performance evaluation of multi-state fc-out-of-n systems 

with i.i.d. components. The upper and lower bounds of Qs^  are calculated 

by reducing the length of the k  vector when using the recursive algorithm 

presented in Section 3.1. Usually we can get better upper bounds than lower
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bounds when including the same number of elements in the k  vectors. Us­

ing the bounding approach, we can obtain a good estimate of the exact QStd 

value while significantly reducing the computation time. Generally speak­

ing, the proposed bounding approach can be used as an efficient performance 

evaluation approach to multi-state fc-out-of-n systems with a large number of 

components and possible states.

The contributions of the proposed reliability bounding approach are: (1) 

An approach to obtain reliability bounds for multi-state fc-out-of-n systems 

is proposed. Specifically, the upper and lower bounds of Qs^  are calculated 

by reducing the length of the k  vector when using the recursive algorithm 

presented in Section 3.1. (2) The bounding approach provides a fast reliability 

evaluation way, attractive especially to complex systems with a large number 

of components and a large number of possible states. (3) By controlling the 

length of the k  vector used in the proposed bounding approach, we can obtain 

reliability bounds with different levels of accuracy.

3.3 Concluding Remarks

In this chapter, efficient methods have been developed for the reliability evalu­

ation of generalized multi-state fc-out-of-n systems defined by Huang et al [37]. 

We focus on generalized multi-state /c-out-of-n systems with i.i.d. components. 

A method for the exact reliability evaluation of generalized multi-state fc-out- 

of-n systems is presented in Section 3.1. And a reliability bounding approach 

is developed as well for fast system reliability evaluation in Section 3.2.
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C h a p t e r  4

A n o t h e r  M u l t i - S t a t e  k - o u t - o f - n  S y s t e m  

M o d e l  a n d  I t s  E v a l u a t i o n

4.1 Introduction

In Chapter 3, we present methods to evaluate the reliability of generalized 

multi-state /c-out-of-n systems defined by Huang et al. [37, 105]. It is a natural 

extension from the binary /c-out-of-n system model that we allow different k 

values with respect to different states. However, Huang’s model of multi-state 

/c-out-of-n systems [37] suffers from the fact that few practical applications 

can fit into this model. In Section 2.2.2, we described a power station with 

three generators as an example of decreasing multi-state /c-out-of-n:G system 

model. The limitations are that there can only be three possible states and 

thus two k values, k\ and /C2 , and /C2 can only be equal to 1. There might be 

other applications of Huang’s model yet to be identified.

In this chapter, we attempt to develop a new multi-state /c-out-of-n system 

model which allows different k values with respect to different states as well, 

and, very importantly, more practical engineering systems can fit into this 

model. Two categories of applications have been identified for this model. In
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the first category, multiple states are interpreted as multiple levels of capacity. 

As an example, let’s consider an oil transmission pipeline. The pipeline is used 

to transmit oil from the oil source to spot A, B and C aligned in order along 

the pipeline. We say that the pipeline is in state 0 if it can not transmit oil 

to any of the three spots; it is in state 1 if the oil can reach spot A; it is in 

state 2 if the oil can reach up to spot B, i.e., spots A and B; it is in state 3 

if the oil can reach up to spot C. Thus, an oil transmission system, which will 

be discussed in details later in this chapter, has different requirements on the 

number of components on different levels. In the second category, multiple 

states are interpreted in terms of multiple failure modes. The working state of 

a component has positive cumulative contributions to the system, some failure 

states of a component have no contributions whatsoever to the system, while 

other failure states of a component have negative cumulative contributions to 

the system. The new multi-state /c-out-of-n system model and the detailed 

descriptions of these two categories of applications will be presented later in 

this chapter.

It is critical to find efficient reliability evaluation algorithms for multi­

state /c-out-of-n systems. In Section 4.3, we will propose an approach for 

reliability evaluation of multi-state /c-out-of-n systems with i.i.d. components. 

This approach is very similar to that for generalized multi-state /c-out-of-n:F 

system evaluation, as discussed in Section 3.1, except that it uses minimal path 

vectors while the algorithm in Section 3.1 uses minimal cut vectors, based on 

the differences between the multi-state /c-out-of-n models they deal with. In 

Section 4.4, we will propose a recursive algorithm for reliability evaluation of 

multi-state /c-out-of-n systems with independent components. This algorithm, 

however, can be considered to be an extension from the binary /c-out-of-n
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system reliability evaluation algorithms [4, 82]. Efficiencies of the proposed 

algorithms will be investigated as well in the following sections of this chapter.

The materials in this chapter has been documented in paper [95].

Assum ptions:

• The state space of each component and the system is {0,1, 2 , . . . ,  M }.

• The state of the system is completely determined by the states of the 

components.

Notation:

•  n: The number of components of a system

• M: The maximum state level of a multi-state system and its components

• X{. state of component i, %i = j  if component i is in state j ,  0 <  j  < M, 

1 <  i < n

• x: an n-dimensional vector representing the states of all components, 

X =  {xx, x 2, . . . , x n)

• </>(x): state of the system, 0 < < (̂x) < M

• kj : the k value with respect to level j  of a generalized multi-state A;-out- 

of-n system

• v j : a minimal cut vector to level j  of an increasing multi-state A;-out-of- 

n:F system

• p s,f Pr(</>(x) > j)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.2 The multi-state k-out-of-n system model and its applications 68

• Qs j : Pr(0(x) <j ) ,  i.e., 1 -  PStj

• rs,f Pr(0(x) = j)

• P(*): the recursive function, P  =  P(n, k, P )

• k : the k vector of a multi-state /c-out-of-n system, k =  (ki, /c2, . . . ,  /cm)

•  P: the component state distribution matrix for a nominal multi-state 

/c-out-of-n system

• pnj: the probability of component n  in state j

• kj : the generated k vector when component n  is in state j

• P J: the generated P  matrix when component n is in state j

4.2 The m ulti-state /c-out-of-n system  m odel and its applications

4.2.1 Definition of the m ulti-state /c-out-of-n system  m odel

We define a new multi-state /c-out-of-n:G system model as follows:

Definition 4.9 An n-component system is called a multi-state k-out-of-n:G 

system if  </>(x) > j  (1 < j  < M ) whenever at least ki components are in state 

I or above for all I such that 1 <  / <  j .

Intuitively, to be in state j  or above, the system has to meet all the require­

ments on the number of components at states from 1 to j .  In Huang’s model 

of multi-state /c-out-of-n:G system in Definition 3.4 in Section 3.1, however, 

the system is in state j  or above if any of the requirements on the number of 

components at states from j  to M  can be met.
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A special case of the proposed multi-state /c-out-of-n:G system model given 

in Definition 4.9 is defined as follows:

Definition 4.10 A multi-state k-out-of-n:G system is called a decreasing multi­

state k-out-of-n:G system if ki > /?2 >  • • ■ > k ^ .

As will be shown later in this chapter, the reliability evaluation of the general 

case of multi-state fc-out-of-n:G system given in Definition 4.9 can be handled 

through a decreasing multi-state /r-out-of-n:G system given in Definition 4.10. 

We can also define the multi-state /c-out-of-n:F system model as:

Definition 4.11 An n-component system is called a multi-state k-out-of-n:F 

system if  0(x) < j  (1 < j  < M ) whenever there exists an integer value I 

(i < I <  j )  such that at least ki components are in states below I.

There is an equivalent multi-state /c-out-of-n:G system with respect to each 

multi-state /c-out-of-n :F system, and vice the versa. As to be discussed later in 

this section, The minimal path vectors of the multi-state /c-out-of-n:G system 

model have special patterns, which enables us to develop efficient reliability 

evaluation algorithms for it. A multi-state /c-out-of-n:F system can be eval­

uated via its equivalent multi-state /c-out-of-n:G system. Thus, we will focus 

only on multi-state /c-out-of-n:G systems in later discussions.

4.2.2 Applications of the m ulti-state /c-out-of-n:G system  m odel

Many engineering systems can fit into the proposed multi-state /c-out-of-n:G 

system model given in Definition 4.9. In this section, we will present two 

categories of applications that have been identified.
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Slation 3

Station 2

O il  s o u r c e

Figure 4.1: An oil supply system

4.2.2.1 Multiple capacity level interpretation of multiple states

In the first category of applications of multi-state /c-out-of-n: G system model, 

multiple states are interpreted as multiple levels of capacity. To fit into the 

multi-state /c-out-of-n:G system model, an engineering system should have the 

following characteristics: (1) the system is capable of meeting one or multiple 

types of demands. (2) a component has different levels of capacity, where 

higher level of capacity means that the component can contribute to meet 

additional types of demands on the system level. (3) each type of demand on 

the system level requires at least a certain number of components to contribute 

to meet the demand. We present the following example of this category of 

applications of the multi-state /c-out-of-n:G system model.
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Exam ple 4.6 Consider an oil supply system, as shown in Fig 4-1. Oil is 

delivered from the oil source to three stations through 4 oil pipelines. A pipeline

is considered to be a multi-state component (thus n = 4). Due to the possible

failures in different parts of a pipeline and due to the pumping performance of 

the oil source, a pipeline might be in four possible states:

• state 0: oil can not reach any stations.

• state 1: oil can reach up to station 1.

• state 2: oil can reach up to station 2.

• state 3: oil can reach up to station 3.

Each station has different demands on oil:

• station 1: requires at least 4 pipelines working to meet its demand.

• station 2: requires at least 2 pipelines working to meet its demand.

• station 3: requires at least 3 pipelines working to meet its demand.

On the system level, the oil supply system has four states:

• system state 0: it can not meet the oil demand of any of the stations.

• system state 1: it can meet the oil demand of station 1 only.

• system state 2: it can meet the oil demands of station 1 and station 2 

only.

• system state 3: it can meet the oil demands of station 1, 2 and 3.

Based on the descriptions above, this oil supply system can be regarded as a 

multi-state k-out-of-n:G system given in Definition 4-9 with n = 4, and ki = 4, 

&2 =  2, &)3 =  3.
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Similar applications can be found in power supply systems and telecom­

munication systems.

4.2.2.2 Multiple failure mode interpretation of multiple states

In the second category of applications of multi-state /c-out-of-n:G system model, 

multiple states are interpreted in terms of multiple failure modes [22]. A com­

ponent in a /c-out-of-n system has one working state and several failure states. 

Our view is that a multi-state component might have negative contributions 

as well as positive contributions to the system. The working state of the 

component has positive cumulative contributions to the system to perform its 

intended function, some failure states of the component have no contributions 

whatsoever to the system, while other failure states of the component have 

some kinds of negative cumulative contributions to the system. When there 

are more than a certain number of components in one failure modes with neg­

ative contributions, the system will fail due to not being able to tolerate the 

negative effects, even though there are enough components in the working state 

to provide positive contributions.

E xam ple 4.7 Consider a lighting system with n lighting cells. A lighting cell 

has three possible states (one working state and two failure states):

• state 0: in failure state 1, e.g., short circuit.

• state 1: in failure state 2, e.g., not available due to open circuit, etc.

•  state 2: in normal working state.

On the system level, there are three system states:

• system state 0: system damaged due to overheat or burned.
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• system state 1: system is not damaged, but can not meet the demand on 

lighting.

• state 2: system is working properly.

To prevent system damage due to overheat, at least k\ lighting cells should 

be in state 1 or above. To provide enough lighting, it is required that at least 

k2 lighting cells should be in state 2, and at least k\ lighting cells in state 1 

or above to prevent system damage. Thus, based on the descriptions above, 

this lighting system can be regarded as a multi-state k-out-of-n:G system with 

parameters k\ and k2.

4.2.3 M u lti-s ta te  A>out-of-n:G system  m odel w ith  c o n s tan t k values

The multi-state /c-out-of-n system model with constant k values, which is a 

special case of the general multi-state /c-out-of-n system model, has been stud­

ied for a long time, but only on the theoretical stage [19, 8]. After some 

rephrasing, we present the /c-out-of-n emergency shutdown system in a power 

plant [58] as the first practical application of the multi-state /c-out-of-n system 

model with constant k values.

There are n channels in the emergency shutdown system of a nuclear power 

plant, detecting whether operating parameters are in the safe ranges. If k 

channels warn that operating parameters are out of the safe ranges, the power 

plant will be shut down. A channel has three states:

•  state 0: unavailable, i.e., does not warn when it should.

• state 1: warning properly.

• state 2: spurious operation, i.e., warn when it is and is not supposed to.
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Here we assume that when a channel is in state 2, it also warns when it should. 

The /c-out-of-n emergency shutdown system also has three states:

• system state 0: unavailable, i.e., does not warn when it should.

• system state 1: warning properly.

• system state 2: false alarming, i.e., warn when it is not supposed to.

The basic logic for the shutdown system is that if k channels warn, the 

power plant will be shutdown. Thus, if at least k channels are in state 1 or 

2, the system will be shutdown. However, if at least k channels are in state 

2, the system will be shutdown spuriously. Thus, the /c-out-of-n emergency 

shutdown system in a power plant is an example of the multi-state /c-out-of- 

n system model with constant k values. Based on the probabilities of the 

components in different possible states, this model can be used to determine 

the probabilities of the system in different possible states: unavailable, warning 

properly, and false alarming.

4.2.4 M in im al p a th  vectors

Using minimal path (cut) vectors is a general way of making reliability evalu­

ations. The definition of minimal path (cut) vectors are given in Section 2.1.5. 

In this section, we will present the minimal path vectors for the multi-state 

/c-out-of-n:G systems described in this chapter.

4.2.4.1 Minimal path vectors of decreasing multi-state /c-out-of-n:G systems

First let’s look at the minimal path vectors of strictly decreasing multi-state 

/c-out-of-n systems, where ki > k2 > ■ ■ ■ > kM.
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We would like to present and justify the following form of a minimal path 

vector to system state 1 of a decreasing multi-state fc-out-of-n:G system:

( 1, 1, . . . ,  1, 0 , . . .  , 0),
' ----------------V--------------- '

fcl
n

Let us use v  to represent this vector. From the definition of multi-state k- 

out-of-n:G system, we can see that <f>(v) > 1 since there are k\ components in 

state 1 or above. When any component’s state is lowered, if it can be, there 

will be less than k\ components which are in state 1 or above, that is, we will 

have 4>{v) < 1. Therefore, vector v  is a minimal path vector to system state 

1. Since it is assumed that all components are independent, all permutations 

of the elements of this minimal path vector are all minimal path vectors to 

system state 1.

Generally speaking, a minimal path vector to system state j  has the fol­

lowing form:

(j  j j ) • • • > j  j j  T • • • > j  l , . . . ,  l , . . . ,  l , o, . . . ,  o).

ki—j - 1

fci

We use the symbol * as a superscript to this minimal path vector to rep­

resent all permutations of the elements of this minimal path vector, which are 

all minimal path vectors to system state j ,  that is

(j, j ,  ■ ■ ■ , j ,3 ~  1 , • ■ • J  ~  1) • • • ,  1, • • • .  1, 0 , • • • , 0 ) *
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represents all minimal path vectors to state j , where 1 < j  <  M.

4.2.4.2 Minimal path vectors of general multi-state /c-out-of-n: G systems

For a general multi-state /c-out-of-n:G system, the kj values are not necessarily 

in a monotonic ordering. The minimal path vector form of multi-state fc-out- 

of-n:G system is similar to that of decreasing multi-state /c-out-of-n:G system 

where the k values are in a strictly decreasing order, except that we need to 

do some transformations first.

Considering the general case, here we will try to find the minimal path 

vectors with respect to state j  for a multi-state /c-out-of-n :G system with 

values ki, k2, ■ ■ ■, Awn First we need to find the ki values (1 < Z < j )  which are 

in strictly increasing order, starting with kj, for I from j  to 1, ignoring those 

ki that are not following this order. For instance, if we find that kb > ka > kj 

(1 < b < a < j) ,  it means that ki < kj (a < I < j) ,  ki < ka (b < I < a), and 

h  < h  (1 <  I < b). And a minimal path vector to state j  has the following 

form:

.0) (4,1)

All permutations of the elements of this minimal path vector are all minimal 

path vectors to system state j ,  which are represented by attaching the symbol 

★ as a superscript to the minimal path vector above.

E xam ple 4.8 Let’s look at a general multi-state k-out-of-n:G system with 4 

components. There are 4 possible states 0, 1, 2 and 3, and k\ =  3, k2 =  1 and

( j , j , - - - , j , a , . . . , a , b , . . . , b ,  0, . . .
k j

ka"----------------v----------------'
kb

' ----------------------------------------------------------------V-------------------------------------------------------

n
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k3 =  2. We are going to find the minimal path vectors with respect to state 3. 

First we need to find the kt values which are in strictly increasing order for I 

from 3 to 1, and we got ki = 3 and k3 = 2 (7c2 is ignored because /c2 is not 

greater than k3). Thus, from Equation (4-1), a minimal path vector to state 3 

is v 3 =  (3, 3,1,0), and thus all the minimal path vectors to state 3 are: 

v 3 =  {(3, 3, 1, 0), (3, 3, 0, 1), (3, 0, 1, 3), (3, 0, 3, 1), (3, 1, 0, 3), (3, 1, 

3, 0), (1, 3, 3, 0), (1, 3, 0, 3), (1, 0, 3, 3), (0, 3, 3, 1), (0, 3, 1, 3), (0, 1, 3, 

3)}.

A minimal path vector to state 2 is v 2 =  (2,1,1, 0), and thus all the minimal 

path vectors to state 2 are:

v* =  { ( 1, 1, 2, 0), (1, 1, 0, 2), (1, 0, 2, 1), (1, 0, 1, 2), (1, 2, 0, 1), (1, 2, 

1, 0), (2, 1, 1, 0), (2, 1, 0, 1), (2, 0, 1, 1), (0, 1, 1, 2), (0, 1, 2, 1), (0, 2, 1, 

l ) h

A minimal path vector to state 1 is Vi =  (1,1,1, 0), and thus all the minimal 

path vectors to state 1 are:

v? =  { ( 1, 1, 1, 0) ,  ( 1, 1, 0, 1) ,  ( 1, 0, 1, 1) ,  ( 0, 1, 1, 1) } .

As a special case, a minimal path vector to state j  for an increasing multi­

state /c-out-of-n:G system, where the k values are in increasing order, is:

(j> jl ■ ■ ■ ) j  J 0) ' ■ ■ ) 0) J '-----v-----'
k j

^  j
n

4.2.5 Nom inal decreasing m ulti-state /c-out-of-n:G system  m odel

Similar to the nominal increasing multi-state /c-out-of-n :F system model de­

fined in Section 3.1.4, here we define the nominal decreasing multi-state /c-out- 

of-n:G system model.
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D efin ition  4.12 A nominal decreasing multi-state k-out-of-n:G system is the 

same as an decreasing multi-state k-out-of-n:G system except that the proba­

bility of a component in all possible states may be less than 1.

A nominal decreasing multi-state /c-out-of-n:G system is a result of only 

considering part of the component states and/or combining several adjacent 

states together. Suppose we have a general multi-state /c-out-of-n:G system 

with a minimal path vector to state j  shown in equation (4.1). To calculate the 

probability of this system in state j  or above, i.e. PSj, we need to generate a 

nominal decreasing multi-state /r-out-of-n:G system with four nominal states. 

States 0 to b — 1 of the original system are combined into nominal state “0 ” , 

states b to a — 1 are combined into nominal state “1 ”, states a to j  — 1 are 

combined into nominal state “2” , and states j  to M  are combined into nominal 

state “3” . The probability of a component in nominal state “0” is equal to the 

sum of the probabilities of the component in state 0  to b — 1 of the original 

system, and so forth. As can be seen, the number of ki values that are useful 

in equation (4.1) (i.e., kj, ka and kf) is equal to the number of nominal states 

minus 1 .

The nominal decreasing multi-state /c-out-of-n:G system model plays an 

important role in the evaluation of multi-state /c-out-of-n:G systems. The PSJ 

for any state j  of a general multi-state /c-out-of-n:G system can be evaluated 

by transforming this general multi-state /r-out-of-n:G system into a nominal 

decreasing multi-state /c-out-of-n:G system, and calculating the probability of 

this nominal decreasing multi-state /c-out-of-n :G system in the highest nominal 

state.
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4.3 Evaluation of m ulti-state fc-out-of-n:G system s w ith  i.i.d. com­

ponents

4.3.1 R eliability evaluation of decreasing m ulti-state £>out-of-n:G 

system s w ith i.i.d. com ponents

To evaluate the state distribution of a decreasing multi-state /c-out-of-n:G sys­

tem, we need to calculate P3>i, PS)2 , . . . ,  Ps,m ■ The probability that the system 

is in state j  or above, i.e. Psj ,  is equal to the probability that there exists 

a minimal path vector of the system so that each component state is no less 

than the corresponding element of the minimal path vector.

Based on the form of minimal path vector for decreasing multi-state /c-out- 

of-n: G systems, to any state j ,  we have

p s,j = P r(x  > (j j ,  •• •, j , j  ~  1, • • •, j  ~  1, • • 1, • • •, 1,0, • ■ ■, 0)*) (4.2)
k j

k i

n

In Section 3.1, we proposed an efficient algorithm for the reliability evalu­

ation of multi-state fc-out-of-n:F systems under Huang’s definition [37] based 

on minimal cut vectors. In that algorithm, the probability of the system in 

states below j ,  i.e., Qsj ,  is equal to the probability that there exists a minimal 

cut vector of the system so that each component state is not bigger than the 

corresponding element of the minimal path vector:
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Qs,j —

Pr(x < (j -  1, j  -  1 , . . . ,  j  -  1, j , . . . ,  j , . . . ,  M  -  1 , . . . ,  M  -  1, M , . . . ,  M)*|4.3)
k j

' --------------------------------------------------v -------------------------------------------------'

k j j f .  i
 ̂  ̂ - - - —  -- ^

"---------------------- :-----------V--------------------------------- '
k M

n

The probability calculations of Psj  in equation (4.2) and Qsj  in equation 

(4.3), we would say, are mathematically the same. Thus, we would be able 

to reformat PS)] and use the algorithm by in Section 3.1 to do the probability 

calculation. Actually, Psj  in equation (4.2) can be expressed in the form 

in equation (4.3) by reversing the order of the component states, i.e., letting 

Pj = PM-j ■ Under the reversed order of component states, PSJ can be expressed 

as

Ps,j =

Pr(x < (M  — j , . . . ,  M  — j,  M  — j  + 1 , . . . ,  M  — j  + 1, . . . ,  M  — 1, . . . ,  M  — 1, M , . . . ,  M)*
s  v* 1 /

k j
' v -

k j  — i
'------------------------------- v ------------------------------- -

_______________________________  ^ J
k iN---------------------------------------------------v--------------------------------------------------- '

n

The probability in Equation (4.4) has the same form as that in Equation (4.3), 

and thus can be calculated using the algorithm presented in Section 3.1.

The algorithm proposed in Section 3.1, which is simple and elegant, has 

been shown to be very efficient. In their efficiency investigation example of
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an increasing multi-state /c-out-of-n:F system with k\ =  1, k2 = 2, /c3 =  3, 

k4 =  4 and /c5 =  5, the reliability evaluation time only increases approximately 

linearly with the increase of the number of components.

4.3.2 R eliability evaluation of general m ulti-state A>out-of-n:G sys­

tem s w ith i.i.d. com ponents

We have presented the minimal path vectors for general multi-state /c-out- 

of-n:G systems in Section 4.2 .4.2 . The following procedure is proposed to 

calculate Psj  value to any state j  of a general multi-state /c-out-of-n:G system:

(1). Find the minimal path vector to state j  of this system using the 

method presented in Section 4.2.4.2.

(2). Generate a nominal decreasing multi-state /c-out-of-n:G system to 

state j ,  and determine the number of nominal states, k vector and the proba­

bility vector p.  For instance, assume that the minimal path vector to state j  

of the general multi-state /c-out-of-n:G system has the form shown in equation 

(4.1). Thus the nominal system has 4 possible states, i.e., M  = 3. The number 

of components of the nominal system is the same as the general multi-state 

/c-out-of-n:G system. The k vector is k =  (kb, ka, kj). The probability vector

P  iS P  =  (E to'ft.E t l P . .  SC.1 Pi. E," ft)
(3). Using the approach presented in Section 4.3.1 to calculate the proba­

bility of the system in the highest nominal state, i.e. state 3 in this example, 

of the nominal  decreasing multi-state /c-out-of-n:G system. This value is equal 

to Psj  of the considered general multi-state Zc-out-of-n:G system.
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4.4 Evaluation of m ulti-state /c-out-of-n system s w ith independent 

com ponents

4.4.1 The proposed reliability evaluation algorithm

A multi-state /c-out-of-n: G system with independent components is a more 

general and practical case. In this case, the probabilities of different compo­

nents in a certain state can be different. The probability that a system with 

independent components is in state j  or above, i.e. Psj ,  can be calculated 

using Equation (4.2). The challenge in evaluating a multi-state /c-out-of-n:G 

systems with independent components is that different components typically 

have different state distributions in such a system.

The Psj  for any state j  of a multi-state /c-out-of-n:G system can be eval­

uated by transforming this multi-state /c-out-of-n:G system into a nominal 

decreasing multi-state /c-out-of-n:G system, and calculating the probability of 

this nominal decreasing multi-state /c-out-of-n:G system in the highest nom­

inal state. Therefore, in the following part, we will focus on evaluating the 

probability of a nominal decreasing multi-state /c-out-of-n:G systems with in­

dependent components in the highest nominal state.

We propose a recursive algorithm to calculate the probability of a nominal 

decreasing multi-state /c-out-of-n :G systems with independent components in 

the highest nominal state. The recursive function we are using in this 

recursive algorithm is denoted by P(n, k, P) ,  where

• n: the number of components of the nominal decreasing multi-state k- 

out-of-n:G system,

• k: the k  vector of the nominal decreasing multi-state /c-out-of-n:G sys­

tem, k  =  (/ci, /c2, . . . ,  kM), where M  is the number of possible states of
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the nominal decreasing multi-state /c-out-of-n:G system minus 1 ,

• P.  the component state distribution matrix for the nominal decreasing

multi-state /c-out-of-n:G system,
/  \

P l f i  P l , l  ■ ■ ■ P l , M

P 2 ,Q  P 2 , l  ■ ■ ■ P 2 , M

^ P n ,0 P n ,  1 • • ■ P n , M  j

The recursive function P ( n , k , P ) is designed to represent the probability in

the highest nominal state of a nominal decreasing multi-state /c-out-of-n:G

system with n independent components, vector k,  and probability matrix P.

To evaluate Psj  in equation (4.2), the states j  and above are combined into

the highest nominal state of the generated nominal decreasing multi-state k-

out-of-n:G system with vector k  and probability matrix P.  Thus we have

Paj  = P{ n , k , P ) .

T h e recursive a lg o rith m  is as follows:

M

P(n, k, P)  = Y , P n J - P ( n - l , k j , P j ) (4.5)
j = o

The basic idea of this algorithm is similar to that of the recursive algorithm 

for binary multi-state /c-out-of-n systems: we enumerate the cases where com­

ponent n is in different possible states, and thus evaluate a system with n 

components via evaluating several systems with n — 1 components. For each 

certain j  on the right hand side of equation (4.5), we need to reorganize k  and 

P  to generate k3 and P J.

First for 0 < j  < M,

kj = kt, for l > j
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kj = k[ — 1, for I < j. (4.6)

The idea is that if component n  is in state j ,  the required number of compo­

nents for any state equal to or below j  should be decreased by 1. For j  — M,  

we have kj =  kt — 1 for 1 < I < M.  For j  = 0, we have kj =  ki for 1 < I < M.  

p i  is obtained by deleting the n ^  row from matrix P,  and thus P 3 is a r t - 1  

by M  + 1 matrix.

There is a special case when generating k J and P 3, under which a certain 

state will be “absorbed” by the adjacent upper state, and we should make 

further transformations on k 3 and P 3. This special case is the case when 

k?h = for a state h (1 < h < M).  In this case, state h — 1 is absorbed 

by state h. k j ^  is deleted from k 3\ p?i h =  p lh + for 1 <  i <  n — 1 ,

and then the column h — 1 is deleted from P 3. Thus, the number of possible 

states is decreased from M  +  1 to M . This is actually a major reason that 

the computation time using this algorithm will not increase exponentially with 

the increase of n. By generating k 3 and P 3 in this way, k 3 will always be a 

strictly increasing vector.

The boundary conditions for the recursive algorithm are as follows:

B o u n d a ry  co n d itio n  1: ki > n. In this case, Pin, k, P ) = 0 .

B o u n d a ry  co n d itio n  2 \ M  = 1. In this case, the decreasing multi-state 

/c-out-of-n:G system is reduced to a binary /c-out-of-n:G system with indepen­

dent components. The recursive algorithms by by Barlow and Heidtmann [4] 

and Rushdi [82] can be used for the reliability evaluation.

The approaches to evaluate other types of multi-state /c-out-of-n:G systems 

with independent components are as follows.

1 . As mentioned in the previous section, the Psj  for any state j  of a general
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multi-state /c-out-of-n:G system can be evaluated by transforming this 

system into a nominal decreasing multi-state /c-out-of-n:G system, and 

calculating the probability of this nominal decreasing multi-state k-out- 

of-n:G system in the highest nominal state “M” .

2 . An increasing multi-state /c-out-of-n:G system is a special case of a gen­

eral multi-state /c-out-of-n:G system. An increasing multi-state /c-out-of- 

n:G system can also be transformed into a nominal decreasing multi-state 

/c-out-of-n:G system. To any state j ,  the generated nominal decreasing 

multi-state /c-out-of-n:G system is actually a binary /c-out-of-n:G system 

with k =  kj. The probability of component i in nominal state “1” is 

“Boundary condition 2” of the proposed recursive algorithm 

will be activated, and binary /c-out-of-n:G algorithms can be used for 

reliability evaluation.

4.4.2 Exam ples

In this section, we will use several examples to illustrate the correctness and 

efficiency of the proposed recursive algorithm for reliability evaluation of multi­

state /c-out-of-n:G systems with independent components.

4.4.2.1  Example 4.1: Evaluation of an decreasing multi-state /c-out-of-n:G 

systems with i.i.d. components

A decreasing multi-state /c-out-of-n:G system with i.i.d. components is a special 

case of decreasing multi-state /c-out-of-n:G system with independent compo­

nents, and thus the proposed recursive algorithm should be applicable in this 

case.

We consider a decreasing multi-state /c-out-of-n:G system with four i.i.d.
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components and three possible states. The k  vector is k  =  (k\, k2) = (3, 2). 

The state distribution of components is p  — (0.5, 0.3, 0.2). Using the recur­

sive algorithm, we got

P s =  (0.3125, 0.1208), r s =  (0.6875, 0.1917, 0.1208).

That is, the probability of the system in state 2 or above is 0.1208, and the 

probability of the system in state 1 or above is 0.3125. And the probability of 

the system in state 0, 1, and 2 is 0.6875, 0.1917 and 0.1208, respectively.

We also applied the enumerating method and the algorithm for systems 

with i.i.d. components presented in Section 4.3 to this example. Their results 

agree with the result listed above, which illustrates the correctness of the 

proposed recursive algorithm in the case of i.i.d. components.

4.4.2.2 Example 4.2: Evaluation of a decreasing multi-state fc-out-of-n:G sys­

tems with independent components

In this example, we consider an decreasing multi-state A>out-of-n:G system 

with independent components. The system under consideration has five inde­

pendent components and five possible states. The k  vector is k — (£4 , k2, k:i, k4)

(4, 3, 2, 1). The state distribution matrix is
/  \

0.2 0.4 0.1 0.2 0.1

P  =

0.3 0.3 0.1 0.1 0.2

0.4 0.2 0.1 0.2 0.1

0.2 0.1 0.1 0.2 0.4

0.4 0.2 0.2 0.1 0.1 
Using the recursive algorithm, we got

\

P s = (0.5261, 0.3350, 0.2939, 0.2526)

r s = (0.4739, 0.1910, 0.0412, 0.0413, 0.2526).

That is, the probability of the system in state 0, 1, , 2, 3 and 4 is 0.4739,
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0.1910, 0.0412, 0.0413 and 0.2526, respectively. We also used the enumerating 

method to evaluate this system, and the results agree with the results by the 

recursive algorithm, which illustrates the correctness of the recursive algorithm 

in case of independent components.

4.4.2.3 Example 4.3: Efficiency investigation of the proposed recursive algo­

rithm

In this section, first we consider an decreasing multi-state A;-out-of-n:G system 

with 5 possible states and n  independent components. The state distribution of 

each component is randomly generated. The k  vector is k — (Aq, k2, k3, k4) = 

(4, 3, 2, 1). Apparently P s 4 requires the longest calculation time among all 

Ps,i ( 1  <   ̂ <  4). Here we will investigate the time to calculate Ps>4 with 

respect to different number of components n. The resulting computation time 

(seconds) of the recursive algorithm with respect to n is shown in Table 4.1. 

The calculations were made with a computer with Pentium-M (1.7GHz) CPU, 

512MB RAM, Windows XP Professional and MATLAB 6.5. The enumerating 

method is also used to evaluate these systems, and the computation time is 

listed in Table 4.1 as well.

Table 4.1: Computation time (seconds) for P S;4 versus n for systems with 5 
possible states

n 5 8 10 15 20 30
Recursive Algorithm (Seconds) 
Enumerating Method (Seconds)

0.06
0.05

0.30
3.78

0.60 2.50 7.55 36.9 
89.50

We can see that with the increase of the number of components, the com­

putation time of the proposed algorithm increases, but does not increase dra­

matically. The increase of computation time seems to be polynomial. On
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the other hand, the computation time by the enumerating method increases 

dramatically with the increase of n. This example has illustrated that the re­

cursive algorithm is far more efficient than the enumerating method, especially 

to systems with a large number of components.

Next, we consider the case when the considered systems have 3 possible 

states. The k  vector is k — (ki, k2) =  (3, 2). We will investigate the time 

to calculate Ps$ with respect to different n value. The results are shown in 

Table 4.2. We can see that the increase magnitude of the computation time 

with respect to n  increased from a certain number to another (say, from 15 to 

20) is relatively smaller than the case of systems with 5 possible states.

Table 4.2: Computation time for PS)2 versus n for systems with 3 possible 
states

n 5 8  10 15 20 30 40
Computation time (Seconds) 0.01 0.05 0.08 0.24 0.40 0.80 2.05

To have a better idea on how good the efficiency of the proposed recur­

sive algorithm is, we will investigate the efficiency of the algorithm by Barlow 

and Heidtmann [4] for evaluating a binary A;-out-of-n system. The considered 

system is a binary fc-out-of-n:G system with n independent components, and 

k — 3. The reliability of each component is randomly generated. The efficiency 

investigation results are shown in Table 4.3. We can see that the trend of the 

computation time versus n in evaluating the binary &-out-of-ro:G systems using 

the binary recursive algorithm is similar to those when evaluating multi-state 

systems with 5 or 3 possible state using the proposed recursive algorithm. If 

we examine them more closely, we can see when n  is increased from 15 to 20, 

for instance, the computation time of evaluating the binary systems will in-
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crease about 2.3 times (from 0.07 to 0.16), the computation time of evaluating 

multi-state systems with 3 possible states will increase about 1.7 times (from 

0.24 to 0.40), and the computation time of evaluating multi-state systems with 

5 possible states will increase about 3 times (from 2.50 to 7.55). These increase 

magnitudes of the computation time with the increase of n are close, at least 

they are at a similar level. Therefore, we can say that the efficiency of the 

proposed recursive algorithm for multi-state systems is comparable to that of 

the binary system recursive evaluation algorithms. And the proposed recur­

sive algorithm seems to be a natural extension of the binary system recursive 

evaluation algorithm.

Table 4.3: Efficiency of the algorithm for binary fc-out-of-n systems

n  5 8  10 15 20 30 40 60
Computation time (Seconds) 0.01 0.015 0 . 0 2  0.07 0.16 0.31 0.63 1.76

4.4.3 Com putational com plexity analysis

In the following, we will provide an upper bound on the computational com­

plexity of the recursive algorithm presented in Section 4.4.1.

For evaluation of each P( n , k. P ) term in Equation (4.5) given all its ar­

guments, it takes 2M  +  1 summation and multiplication operations. The 

argument n can take values from 1 to n. The j th  element of vector k  can take 

values in [0, kj}. Therefore, the complexity of the proposed algorithm using
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Equation (4.5) is

O I M  ■ n ■ (kj +  1) (4.7)

When the proposed algorithm is used to evaluate the system reliability of 

a binary /c-out-of-n system, there is only one element in the k  vector. The 

proposed algorithm described in Section 4.4.1 is reduced to the algorithm by 

Rushdi [82] and the second BASIC program by Barlow and Heidtmann [4], 

The computational complexity in this case becomes 0 ( k ( n  — k +  1)).

An alternative to the proposed approach for reliability evaluation of multi­

state fc-out-of-n:G systems with independent components is to use a general­

ized multinomial distribution. We will illustrate this idea here and show that 

it will result in a less efficient algorithm.

The idea of the generalized multinomial distribution can be described as 

follows [5]. Consider a statistical experiment wherein there are L groups and on 

the n th  trial, the probability of joining group j  is qnj .  Let x  =  (x\, x 2, . . . ,  Xl ) 

denote the numbers of items in each of the L groups. One is interested in the 

probability of being in state x  after n trials.

We now describe the idea of the generalized multinomial distribution using 

the terminology of multi-state reliability analysis. Consider a system with 

n components wherein each component and the system may be in M  + 1 

possible states. Let Xj denote the number of components in state j  for j  =  

0 , 1 , 2 , . . . ,  M,  and x  =  (x0, aq, x 2, ■. ■, x M)- If we are interested in finding the 

probability of having exactly Xj components in state j  for j  =  0 , 1 ,2, . . . ,  M,
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the following formula may be used:

M

P n ( x .)  =  J 2 < ln , j P n - l ( T j x ) ,  (4.8)
j = 0

where Pj(») is the recursive function, (T)x) is the updated vector of x when 

component n is in state j ,  and

(T-x); =  X j -  1 , for i = j\

(Tjx)i = Xi, for i ^ j .

Equation (4.8) can be used to evaluate the probability that exactly Xj 

components are in state j  for j  — 0 , 1,2, . . . ,  M . However, the definitions of 

the multi-state k-out-of-n:G systems are in terms of at least a certain number 

of components being in a certain state or above a certain state. Thus, M  

additional summation loops have to be performed if one is to use Equation

(4.8) for evaluation of the state distribution of generalized multi-state fc-out- 

of-n systems. The computational complexity of this approach would then be

0 { M n M+l). When a binary A:-out-of-n system is considered, M  =  1, this

approach is similar to the first BASIC program by Barlow and Heidtmann 

[4], with the computational complexity of 0 ( n 2). Thus, this approach is less 

efficient than the one proposed in this chapter, which evaluates the probability 

that at least a certain number of components are in a certain state range 

directly.
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4.5 Concluding remarks

In this chapter, we attem pt to develop a new multi-state fc-out-of-n system 

model which allows different requirements on the number of components for 

different state levels, and, very importantly, more practical engineering systems 

can fit into this model. The developed model is a multi-state /e-out-of-n:G sys­

tem model. Two categories of applications of the multi-state fc-out-of-n system 

model have been identified: (1) In the first category, multiple states are inter­

preted as multiple levels of capacity. The system has different requirements 

at the number of components on different levels. (2) In the second category, 

multiple states are interpreted in terms of multiple failure modes. The work­

ing state of a component has positive cumulative contributions to the system, 

some failure states of a component have no contributions whatsoever to the 

system, while other failure states of a component have some kinds of negative 

cumulative contributions to the system. An approach is presented for efficient 

reliability evaluation of multi-state fc-out-of-n systems with i.i.d. components. 

A recursive algorithm is proposed for reliability evaluation of multi-state k-out- 

of-n systems with independent components. Numerical investigations show 

that the proposed algorithm is efficient. The emergency shutdown system in a 

power plant is presented as an application of the multi-state fc-out-of-n system 

model with constant k value, which is a special case of the general multi-state 

/c-out-of-n system model.

The multi-state A;-out-of-n system model presented in this chapter is more 

flexible than the model proposed by Huang et al. [37], However, it is still not 

flexible enough to explain many engineering systems with /c-out-of-n system 

structures. A more flexible and unified /r-out-of-n model is yet to be developed.
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C h a p t e r  5

A  U n i f i e d  k - o u t - o f - n  S y s t e m  M o d e l  a n d  I t s  

E v a l u a t i o n

5.1 Introduction

We have discussed the generalized multi-state A>out-of-n system model defined 

by Huang et al. [37] in Chapter 3, and another more flexible multi-state k-out- 

of-n model in Chapter 4. However, these models are still not flexible enough 

to explain many engineering systems with fc-out-of-n system structures. In 

this chapter, we propose a unified /c-out-of-n model for reliability modeling 

and evaluation of systems with complex /c-out-of-n structures. The materials 

in this section has been documented in paper [89].

5.1.1 R eported m odels o f £>out-of-n system s

There are currently several models of fc-out-of-n systems, listed as follows (here 

we don’t consider consecutive systems [36]).

(1) Binary /c-out-of-n system models. A system with n  components is called 

/c-out-of-n :G system if it is working as long as there are at least k components 

working, and a system with n components is called /c-out-of-n:F system if it
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is failed as long as there are at least k components failed. There are wide 

applications of binary /c-out-of-n systems in both industrial and military sys­

tems. Efficient reliability evaluation algorithms for binary /c-out-of-n systems 

with independent components have been provided by Barlow and Heidtmann

[4] and Rushdi [82].

(2) Multi-state /c-out-of-n system models. Boedigheimer and Kapur [8] and 

El-Neweihi and Proschan [19] presented multi-state /c-out-of-n models with a 

constant k value. Huang et al. [37] proposed the generalized multi-state k- 

out-of-n model which allows different k values with repsect to different states, 

with efficient evaluation algorithms following up (Section 3.1). We proposed 

another multi-state /c-out-of-n model so that more practical applications can 

fit into it (Chapter 4). The reasons that a component is multi-state, we would 

like to summarize here, are the following three:

(a) the component has multiple levels of performance in a certain perfor­

mance measure [46, 47, 55], e.g., multi-state power generator with different 

levels of power outputs;

(b) the component has multiple failure modes [22], e.g., a light bulb has 

three possible states: working state, failed open state and failed closed state 

as discussed in Section 4.2.2. Another example is the fluid valves in the flow 

control system [47];

(c) the component can provide multiple functions. The example of oil 

pipeline, as described in Section 4.2.2, could be considered as an example of 

this. Another example is a machine tool that can do two machining processes, 

such as milling and turning, and these two functions are not totally indepen­

dent in terms that they will be both failed if the main power of the machine 

fails.
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(3) Weighted /c-out-of-n system models. The weighted /c-out-of-n system 

model was proposed in the binary context by Wu and Chen [97], and general­

ized to the multi-state context by Li and Zuo [52], Each state of a component 

is associated with a weight, and the system is said to be working if the total 

weight of the components is above a pre-specified threshold value.

5.1.2 The core characteristics o f /c-out-of-n system s

There are three core characteristics that all /c-out-of-n systems mentioned 

above share:

(1) a constituent component of the system has some performance indexes 

(functions and/or failure modes);

(2) for each of a group of selected performance indexes, the system has 

certain requirement on the combined effect of the components;

(3) the topological positions of the components do not matter.

Based on these common characteristics, we define the unified /c-out-of-n 

system model to be presented in this chapter.

5.1.3 M otivation

The reported models of /c-out-of-n systems have certain limitations. The multi­

state /c-out-of-n model by Huang et al. has limited applications [37], as dis­

cussed in Section 4.1. The model by proposed in Chapter 4 has more practical 

applications, however, the states of a component have to satisfy certain require­

ments in orde for the model to be used, as described in Section 4.2. The model 

of weighted /c-out-of-n systems only considers one performance measure of a 

system and its components [97, 12, 52], On the other hand, practical applica­

tions might involve more general and complex situations, where requirements
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on multiple performance indexes might be involved, and these performance 

indexes might be dependent.

In this chapter, we will propose a so-called “unified /c-out-of-n model” . This 

model aims to provide high flexibility to model and analyze practical and com­

plex problems involving /c-out-of-n structures. Efficient reliability evaluation 

algorithms will also be developed for this model.

Based on the common characteristics of /c-out-of-n systems, we define the 

unified /c-out-of-n system model. The unified /c-out-of-n system model pro­

posed in this chapter can deal with all the /c-out-of-n related scenarios covered 

so far in the literature: (1) a component can have multiple performance in­

dexes (functions and/or failure modes); (2) a function can have multiple levels 

of performance; (3) the performance indexes can be dependent.

In the remainder of this chapter, first we will describe the proposed unified 

/c-out-of-n system model with its fundamental elements. An algorithm will 

be developed for the reliability evaluation of the unified /c-out-of-n systems, 

and an numerical example will be used to illustrate the reliability evaluation 

algorithm.

5.2 The unified /c-out-of-n m odel

5.2.1 Fundam ental elem ents o f the unified /c-out-of-n m odel

5.2.1.1 Function and performance level

A component may have only one function, e.g., a power generator for gener­

ating power. A component may also have multiple functions. For example, a 

machine tool might be able to conduct two different machining processes such 

as turning and milling.
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A function of a component might have multiple “performance levels” . For 

example, a power generator might have three performance levels: 0 MW (mega 

watt) output, 4 MW output and 10 MW output.

5.2.1.2 Failure modes and performance index

A component might have one or multiple failure modes. For example, a fluid 

valve can fail open or fail closed. The system might fail if there are over a 

certain number of components in a certain failure mode [46, 47].

The term “performance index” is used to denote a function or a failure 

mode that we are interested in.

5.2.1.3 Dependencies among functions and/or failure modes in a component

The functions and/or failure modes of a component might be dependent. They 

can be regarded as the attributes of the component. Take for example the 

machine tool that is able to conduct two machining processes. These two 

functions are dependent in that both of them will be failed if the motor of the 

machine is failed.

The capability of dealing with components with dependent functions and/or 

failure modes is a key advantage of the unified /c-out-of-n model, comparing 

to previous /c-out-of-n models.

5.2.1.4 Function diagram

A function diagram is used to describe the relationships among the functions 

and/or failure modes of a component, and thus determine the component state 

distribution. Examples of the function diagrams will be given later in Section 

5.2.4.
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5.2.1.5 Component utilities

A group of performance indexes (functions and/or failure modes) will influence 

the overall system performance, and these are the performance indexes that 

we consider.

A function, or a performance level of a function if the function has mul­

tiple levels, carries a certain utility depending on the contribution it makes 

to the whole system. A function can make positive or negative contribution 

to the system. Positive contribution of a component is easy to understand, 

e.g., power output of a power generator. Examples of negative contributions 

of a component include resource consumptions, noise, pollution, etc. If the 

requirement of the system on the function is expressed as at least (or at most) 

how many components should be able to perform the function, it is a /c-out-of- 

n requirement; If the requirement of the system on the function is expressed 

as the total utilities of all the components should be at least (or at most) a 

certain value, it is a weighted-/c-out-of-n requirement.

A failure mode under consideration will make negative contributions to the 

system. It can be treated as a function with negative contributions.

The utility of a function or failure mode with /c-out-of-n requirement is 1. 

The utility of a function or failure mode with weighted-/c-out-of-n requirement 

is a positive integer value. If a component does not have a certain function or 

failure mode, the component’s utility with respect to the function or failure 

mode is 0.

5.2.1.6 System requirements

The system has certain requirement on the total utilities of all components 

on each of the selected group of performance indexes (functions and/or failure
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modes). For the system to be in system state s or above, it has to meet all 

the requirements. A requirement, indexed by j ,  might be expressed in one of 

the forms shown in Table 5.1 (suppose there are n  components in the system), 

where Uij is the utility (associated with index j ) of component i, and kfj is the 

system requirement on this index. For a function with positive contribution, 

it is like a fc-out-of-n:G structure, and the “> ” is used. For a function with 

negative contribution or a failure mode, it is like a fc-out-of-n:F structure, and 

the “< ” is used.

Table 5.1: System requirement on a function or failure mode

Requirement
Function (positive contribution) E"=i > ksj
Function (negative contribution) £?= i

Failure mode

5.2.2 Definition of the unified k-out-o f-n  m odel

A system with n  components is called a unified /c-out-of-n system if:

(1) a component has one or multiple performance indexes (functions and/or 

failure modes), associated with certain utilities. Some of the performance 

indexes can be dependent.

(2) in order to be in a certain system state s or above, the system has to 

meet certain requirement on each of a selected group of performance indexes 

(functions and/or failure modes). A requirement j  on a performance index 

with positive contribution to the system is expressed as £ ”=1 utj > /cj. And a 

requirement j  on a performance index with negative contribution is expressed

as E ”=i uij < k']-
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J  is used to denote the total number of the selected performance indexes 

(functions and/or failure modes).

5.2.3 Com ponent states in the unified &-out-of-n m odel

Functions, performance levels and failure modes are not component states. It 

is more appropriate to describe them as the causes for a component to have 

multiple states. A component state is characterized by its utility vector where 

each element corresponds to a certain function or failure mode. (1) All the 

states of a component are mutually exclusive; (2) All the states of a component 

make a complete component state space.

Usually, the component states are the combinations of the J  selected func­

tions (and their performance levels) and/or failure modes. However, it is also 

possible that two functions, for example, are exclusively associated with one 

state.

System states are defined based on the requirements on the performance 

indexes. An example will be given in the next section to illustrate how the 

system states are defined.

5.2.4 Exam ples o f the unified £>out-of-n m odel

Several examples of the unified fc-out-of-n systems are given in this section. 

The function diagrams are given, and the component states are defined.

5.2.4.1 Machine tool example

Many multi-functional machining centers have the capability to do several 

machining processes.

Consider a machine tool with two functions: turning and milling. The
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function diagram is shown in Figure 5.1. Link LI, L2 and L3 determine how 

the functions fail. Link LI is the common cause of the failures of the two 

functions. The turning function will fail if link LI or link L2 fails, and the 

milling function will fail if link LI or link L3 fails. Based on the two functions, 

four states are defined for the component:

• state 0: the component has neither of the two functions;

• state 1: the component has the turning function, but does not have the

milling function;

• state 2: the component has the milling function, but does not have the 

turning function;

• state 3: the component has both of the two functions.

Suppose that a system with n  machine tools requires that at least /q machines 

with the turning function to meet the turning demand, and at least k2 machines 

with the milling function to meet the milling demand. Four system states can 

be defined:

• state 0: the system can not meet either of the demands;

•  state 1: the system can meet the turning demand, but can not meet the

milling demand;

• state 2: the system can meet the milling demand, but can not meet the 

turning demand;

• state 3: the system can meet both of the demands.

Thus, this system is a unified /c-out-of-n system with /c-out-of-n requirements 

on two functions.
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Turning Milling

L2 L3

Figure 5.1: Function diagram of the machine tool

5.2.4.2 Machine tool involving multiple performance levels

The case above can be extended to the case where one or more of the functions 

has multiple performance levels, as shown in Figure 5.2. In this case, the 

turning function has two performance levels, while the milling function has 

only one performance level. And the component states are defined as follows 

based again on the two functions:

• state 0: the component has neither of the two functions;

• state 1: the component has the turning function at level 1, but does not 

have the milling function;

• state 2: the component has the turning function at level 2, but does not 

have the milling function;

• state 3: the component does not have the turning function, but it has 

the milling function.

• state 4: the component has the turning function at level 1, and it has 

the milling function.
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Turning 
Level 2

Turning 
Level 1 Milling

L2

Figure 5.2: Function diagram of a machine tool involving multiple performance 
levels

• state 5: the component has the turning function at level 2, and it has 

the milling function.

Suppose that a system with n  machine tools requires that at least k2 ma­

chines with milling function should be available to meet the demand. Perfor­

mance levels 1 and 2 of the turning function correspond to certain utilities un  

and Ui2 - The sum of the turning function utilities of all the components should 

be great than or equal to k\ to meet the system demands. Four system states 

can be defined in the same way as that in the previous example:

• state 0: the system can not meet either of the demands;

• state 1: the system can meet the turning demand, but can not meet the
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milling demand;

• state 2: the system can meet the milling demand, but can not meet the 

turning demand;

• state 3: the system can meet both of the demands.

Thus, this system is a unified /c-out-of-n system with weighted-/c-out-of-n re­

quirement on the turning function and /c-out-of-n requirement on the milling 

function.

5.2.4.3 Fluid valve example

Consider a flow control system with n valves connected in parallel. A valve, as 

shown in Figure 5.3, has two failure modes: “stuck open” , failed to close when 

it is demanded to, and “stuck closed” , failed to open when it is demanded to. 

That is, a valve (component) has three possible states: state 0 (stuck closed 

state), state 1 (working state) and state 2 (stuck open state).

A flow control system is working properly if it can control the flow rate f r  

within a certain range, from the lower limit fru  to the upper limit f r ui [46, 47]. 

Thus, the system would be failed when there are at least /ci (a pre-specified 

value) valves in “stuck open” failure mode, since it won’t meet the flow rate 

lower limit in this case. And the system would be failed if there are at least 

/c2 valves in “stuck closed” failure mode, since it won’t be able to meet the 

flow rate upper limit in this case. Thus, this flow control system is a unified 

/c-out-of-n system with /c-out-of-n requirements on two failure modes.
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Stock closedStock open

Figure 5.3: Function diagram of a fluid valve

5.2.4.4 Light bulb example

Consider a lighting system with n  light bulbs. Each light bulb has dual failure 

modes: failed open and failed short, as shown in Figure 5.4.

If one light bulb is in short failure mode, the whole lighting system will be 

disconnected. Thus, for the system to be working, there are two requirements: 

at least k\ light bulb working to provide enough lighting, and no light bulb 

should be in the short failure mode. Thus, this is another example of a unified 

/c-out-of-n system with /c-out-of-n requirements on multiple failure modes.

5.2.4.5 A production system

Consider a production system with n  machines. The machines have different 

production rates, and they have different operating costs. The system is re­

garded as working satisfactorily if the total production rate is at least hi, and 

the total operating cost is at most /c2. Thus, the production system is a system 

with /c-out-of-n requirements on both production rate and cost.
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L2

Fail open Fail short

Working

Figure 5.4: Function diagram of a light bulb with dual failure modes 

5.3 The reliability evaluation algorithm s

The reliability evaluation algorithms are the extensions of the recursive algo­

rithms for binary /c-out-of-n systems [4, 82], multi-state /c-out-of-n systems 

presented in Chapter 4, and weighted-/c-out-of-n systems [97, 52].

The general definition of unified /c-out-of-n systems is given in Section 5.2.2. 

However, there are several special cases of the general model. The special cases 

are defined based on whether /c-out-of-n requirements and/or weighted /c-out- 

of-n requirements are included, and whether requirements on positive and/or 

negative contributions are included.

We will first present the reliability evaluation algorithms for some special 

cases, and finally we will present the algorithm for the general model. We are 

interested in calculating the probability of the system in a certain state s or 

above. First, some notions are defined as follows:

• n: the number of components of the system.

• J : the total number of performance indexes (functions and/or failure
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modes) of interest.

• M: the total number of possible states of a component minus 1.

•  P im '-  probability of component i in state m.

•  k s: the k vector of the system with respect to system state s, k s =  

(ksv ks2, . . . , k sj).

• k sG, k sF, k sWG, ksWF: the k vector for the performance indexes with k- 

out-of-n:G requirements, /c-out-of-n:F requirements, weighted-/c-out-of- 

n:G requirements and weighted-/c-out-of-n:F requirements, respectively.

• R( i ,ks): recursive function.

• uim: the utility vector of component i when it is in state m.

5.3.1 R eliability evaluations of som e special cases o f the unified 

/c-out-of-n system s

5.3.1.1 Systems with /c-out-of-n:G structure

This is the case where only /c-out-of-n requirements and positive contributions 

are involved. The machining system with components presented in Figure

5.1 is an example of this case. We define the reliability of the system as the 

probability of the multi-state system in system state s or above, that is, the 

probability that the system meet the requirements specified by vector k s.

The “recursive function” R(i, ks) represents the reliability of the system 

with the first i components, i.e., the probability of such a system meeting the 

requirements specified by vector k s.
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The updating algorithm  for the reliability evaluation is as follows:

M

R( i ,ks) =  ' £ p itm- R { i - l , k am)
m = 0

where uim represents the utility vector of component i when it is in state m, 

and kfm is the Zth element of vector k sm. uvrn is a vector with J  elements, 

where an element j  represent the utility with respect to performance index j .  

In this case of /c-out-of-n:G structure, the elements of u im can only take 0 or 

1 .

The boundary conditions are:

It is worth noting that the updating algorithm in Equation (5.1) and (5.2) 

is the general updating algorithm for unified /c-out-of-n systems, and it is 

applicable to all the cases of unified /c-out-of-n systems. The only differences 

among the algorithms for different special cases are their boundary conditions. 

This algorithm can be regarded as an extension of the recursive algorithms for 

binary /c-out-of-n systems [4, 82], multi-state /c-out-of-n systems as discussed

k sm =  ks -  u im (kfm = 0 , i f  /cfm < 0 )

R( i ,ks) =  1, i f  max(/cs) =  0

R( i ,ks) =  0, i f  i < max(Zcs)

(5.3)

(5.4)

where max(Zcs) represents the biggest element of vector k s. 

The computational complexity of the algorithm is

(5.5)
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in Chapter 4, and weighted-/c-out-of-n systems [97, 52], as mentioned earlier 

in this section.

5.3.1.2 Systems with /c-out-of-n:F structure

This is the case where only /c-out-of-n requirements and negative contributions 

are involved. The flow control system with components presented in Figure

5.3 is an example of this case.

As mentioned in the previous section, the updating algorithm is still the 

same, as presented in Equation (5.1) and (5.2). The /c-out-of-n:F structure 

is different from the /c-out-of-n:G structure in that the relationship among 

different requirements is “OR” instead of “AND”.

W ith all the other parts of the reliability evaluation algorithm the same, 

the boundary conditions of this case are:

where min(ks) gives the smallest element of vector k s.

5.3.1.3 Systems with /c-out-of-n structure and both G and F requirements

This is the case where only k-out-of-n requirements and both positive and 

negative contributions are involved. The lighting system with light bulbs pre­

sented in Figure 5.4 is an example of this case.

In the k s vector, there are both G (positive) requirements and F (negative) 

requirements. We use vector k sG to group all the G requirements, and use 

vector k sF to group all the F requirements. Thus, we have k s = (ksG, k sF).

R ( i , k s) = 0, i f  min(fcs) =  0

R(i, k s) =  1, i f  i < min(fcs)

(5.6)

(5.7)
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The updating algorithm is still the same, as presented in Equation (5.1) and 

(5.2).

The boundary conditions are:

R( i ,ks) =  0, i f  min(fcsF) =  0

R( i ,ks) =  0, i f  i < max(fcsG)

R( i ,ks) =  1, i f  i < min(fcsF) AND max(A:sG)

5.3.1.4 Systems with weighted-/c-out-of-n:G structure

This is the case where only weighted-/c-out-of-n requirements and only positive 

contributions are involved. Utilities with respect to such a performance index 

are non-netative integer numbers, instead of just 0  or 1 .

The updating algorithm is the same as that in Equation (5.1) and (5.2). 

The boundary conditions are:

R( i ,ks) =  1, i f  max(fcs) =  0 (5-11)

R( i ,ks) =  0, i f  i =  0 AND max(fcs) > 0 (5.12)

Because of the ways the intermediate results are saved and reused [4, 97],

the algorithms for evaluating weighted-/c-out-of-n systems are not as efficient

as those for evaluating /c-out-of-n systems. Therefore, it is preferable that a 

requirement is expressed in a /c-out-of-n structure.

5.3.1.5 Systems with weighted-/c-out-of-n:F structure

This is the case where only weighted-/c-out-of-n requirements and only nega­

tive contributions are involved. The updating algorithm is still the same, as

(5.8)

(5.9)

=  0 (5.10)
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presented in Equation (5.1) and (5.2).

The boundary conditions are:

R( i ,ks) =  0, i f  min(fcs) =  0 (5.13)

R( i ,ks) =  1, i f  i =  0 (5.14)

5.3.1.6 Systems with weighted-/c-out-of-n structure and both G and F re­

quirements

This is the case where only weighted-/c-out-of-n requirements and both positive 

and negative contributions are involved. We use vector k sWG to group all the 

G requirements, and use vector k sWF to group all the F requirements. Thus, 

we have k s =  (ksWG, k sWF). The updating algorithm is still the same, as 

presented in Equation (5.1) and (5.2).

The boundary conditions are:

R( i ,ks) =  0, i f  min(ksWF) =  0 (5.15)

R( i ,ks) =  0, i f  2 =  0 AND ma.x(ksWG) > 0 (5.16)

R(i, ks) =  1, i f  i =  0 AND max(fc*WG) =  0 (5.17)

Certainly there are other special cases. But we will not talk in details

about them. The evaluation algorithms for the special cases presented in this

section help to derive and understand the general algorithm for evaluating

unified /c-out-of-n systems, which will be presented in the next section.
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5.3.2 General reliability evaluation algorithm  for unified A;-out-of-n 

system s

First, we need to group the requirements on different performance indexes. 

We use vector k sG to group all the fc-out-of-n:G requirements, use vector k sF 

to group all the /c-out-of-n:F requirements, use vector k sWC to group all the 

weighted-/c-out-of-n:G requirements, and use vector k sWF to group all the 

weighted A;-out-of-n:F requirements. Thus, we have k s =  (ksG, k sWG, k sF, k sWF) 

The updating algorithm  is shown in Equation (5.1) and (5.2). And they 

are copied here as follows:

M
R ( i , k s) =  Y , P i , m - R ( i - l , k sm)

m = 0

k sm = k s - u im (fcfm =  0, i f  k r  <  0)

The boundary conditions are:

R(i, k s) =  o, i f min((fcsF, k sWF)) = 0 (5.18)

R(i, k s) =  o, i f i < max (k sG) (5.19)

R ( i , k s) =  0, i f i = 0 AND max((fcsG, k sWG)) > 0 (5.20)

R ( i , k s) =  1, i f i = 0 AND max((fcsG, k sWG)) = 0 (5.21)

It can be seen that the only difference between the boundary conditions above 

and those for systems with weighted-fc-out-of-n structure and both G and F 

requirements is the second boundary condition in Equation (5.19), which is 

introduced due to the fc-out-of-n:G requirements.

A general comment is that the evaluation processes for weighted-/c-out-of-n 

requirements are not as efficient as those for /c-out-of-n requirements. There-
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fore, when modeling the system, it is preferable to model the requirements as 

/c-out-of-n requirements.

5.3.3 M odeling and evaluation procedure of a unified /c-out-of-n 

system

The modeling and reliability evaluation procedure for a unified /c-out-of-n sys­

tem is as follows:

(1). Build the function diagram of a component, and identify the system  

requirem ents on the performance indexes.

(2) Analyze the possible states of a components.

(3) Obtain the com ponent state distributions.

(4) Evaluate system  reliability using algorithms in Section 5.3.1 and 

5.3.2.

5.3.4 Evaluation of com ponent state distribution

This is the third step in the modeling and evaluation procedure for a unified 

/c-out-of-n system.

As stated in Section 5.2.4.1, in the machine tool example shown in Figure 

5.1, component state distributions are determined by the links, such as link LI, 

L2 and L3 in this example. The links describe how the performance indexes 

(functions and/or failure modes) occur and their dependencies. Each link is 

binary, and is associated with a probability of its occuring.

The component state distributions are calculated by simply enumerating 

all the links of in the function diagram of a component. This approach of 

calculating component state distribution is viable since typically there are not 

so many performance indexes in a component and the function diagram is not

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5.4 An example 

too complex.
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5.4 An exam ple

Consider a machining system with components described in Section 5.2.4.1  

and Figure 5.1, where component states as well as system states are defined. 

This is a system with fc-out-of-n:G structure, as discussed in Section 5.3.1.1. 

Suppose there are 5 such machine tools in the machining system, and any 

machine is capable of doing two machining functions: turning and milling. In 

this example, we assume all the components are identically and independently 

distributed (i.i.d.).

(1) The function diagram is as shown in Figure 5.1. Suppose the require­

ments are k\ — 4 and k2 =  3, i.e., at least 4 machine tools with turning function 

are required to meet the turning demand, and at least 3 machine tools with 

milling function are required to meet the milling demand.

(2) A component has 4 possible states, as defined in Section 5.2 .4.1.

(3) Suppose the reliability of the links (probabilities of working) are:

Pl i  =  0.9, p L2 = 0.9, p L3 =  0.8.

From Figure 5.1, the relationship between the functions and the links can be 

described using boolean expressions as:

P I  = LI ■ L2, P2 = LI  ■ L3, (5.22)

where P I  and P2 represent whether a component has the functions.

The enumerating method is used to determine the component state distri­

bution. There are three links in the function diagram of a machine tool in this
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example, and each link is binary. Thus, there are totally 23 =  8  combinations 

of the links. For each combination, we can calculate the probability of the 

combination occuring, and the correponding component state. For example, 

let’s consider the combination of links as follows: LI  =  1, L2 =  0 and L3 =  1. 

The combination of this combination occuring is

P l i  * (1 — P l 2 ) * PL3 =  0-9 * (1 — 0.9) * 0.8 =  0.072.

Based on the Equation (5.22), P I  =  0 and P2 =  1. That is, the machine tool 

can not perform the turning function but it can perform the milling function, 

and it is in state 2. Summing up the probabilities of all the combinations of 

links that make the component in state 2 , we can obtain the probability of the 

component in state 2 . And we can obtain the probabilities of the component in 

state 0, state 1 and state 3 in the same way. Eventually, we get the component 

state distributions as follows:

p t = (0.1180, 0.1620, 0.0720, 0.6480) (5.23)

where the elements represent the probabilities of a component in state 0 , 1 ,2  

and 3, respectively.

(4) Since this system includes only fc-out-of-n:G requirements, we can di­

rectly use the algorithm for this special case in Section 5.3.1.1, i.e., Equations

(5.1), (5.2), (5.3), (5.4).

To evaluate the reliability of the system with respect to system state 3, 

or the probability of the system in system state 3, we use recursive function 

P(5, k 3), where the number “5” represents the number of components and 

k 3 = (ki, ^2 ) =  (4,3). Using the proposed algorithm, we got P(5, fc3) =  0.6873.
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To evaluate the reliability of the system with respect to system state 2, or 

the probability of the system in system state 3 and state 2, we use recursive 

function R(5, fc2), where fc2 =  (0, Â ) =  (0,3). Using the proposed algorithm, 

we got R(5, fc2) =  0.8624. Thus the probability of the system in system state 

2  is

R(5, fc2) -  R(5, fc3) =  0.8624 -  0.6873 =  0.1751.

Similarly, to evaluate the reliability of the system with respect to system 

state 1, or the probability of the system in system state 3 and state 1, we use 

recursive function R(5, fc1), where fc1 =  (fci,0) =  (4,0). Using the proposed 

algorithm, we got R(5, fc1) =  0.7576. Thus the probability of the system in 

system state 1 is

R(5, fc1) -  R(5, fc3) =  0.7576 -  0.6873 =  0.0703.

Finally, the probability of the system in state 0 is

1 -  0.6873 -  0.1751 -  0.0703 =  0.0673.

Summarizing the results above, we got the probabilities of the system in 

state 0, 1, 2, 3 are 0.0673, 0.0703, 0.1751, 0.6873, respectively. We also used 

enumerating method to verify the result, and the same result was obtained.

The computation time with respect to different number of components is 

also investigated for the probability of the system in system state 3. The 

cases with up to 50 components are investigated, and the results are listed in 

Table 5.2. The computation time does not go up dramatically with n, which 

illustrates the efficiency of the proposed algorithm.
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Table 5.2: Computation time (seconds) with respect to the number of compo­
nents

n 5 10 15 2 0 30 50
time (seconds) 0 . 0 2  0.08 0.15 0.24 0.27 0.41

5.5 Concluding remarks

It is a critical issue to evaluate the reliability of a complex system with a large 

number of components. Since it is very hard to develop an efficient method 

that be used for reliability evaluation of systems with any type of structure, 

it is thus very important to develop efficient reliability evaluation methods for 

systems with special structures. In this chapter, we have focused on systems 

with /c-out-of-n structures.

The common characteristics of all the reported /c-out-of-n systems in the 

literature are as follows: (1 ) a constituent component has some performance 

indexes (functions and/or failure modes); (2 ) for each of a group of selected 

performance indexes, the system has certain requirement on the combined 

effect of the components; and (3) the topological positions of the components 

do not matter. Based on these common characteristics, we have proposed the 

unified /c-out-of-n system model, which is significant in that: (1 ) it provides 

a general model for /c-out-of-n systems. All the reported binary /c-out-of-n 

models, multi-state /c-out-of-n models and weighted /c-out-of-n models, are 

special cases of the unified /c-out-of-n model; (2 ) it can deal with problems 

that current models are not able to deal with: a component has multiple 

performance indexes, and these performance indexes are dependent.

We have provided some simple examples in this chapter to illustrate the 

possible applications of the unified /c-out-of-n system model. Complex real
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world applications are yet to be identified and applied to.
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C h a p t e r  6  

R e l i a b i l i t y  E v a l u a t i o n  o f  M u l t i - S t a t e  

T w o - t e r m i n a l  N e t w o r k s

6.1 Introduction

In Chapter 3, 4 and 5, we have discussed the reliability evaluation of multi-state 

systems with /c-out-of-n structures. In this chapter, we discuss the reliability 

evaluation of another type of multi-state systems, the multi-state network sys­

tems. And our discussion will be focused on the reliability evaluation of multi­

state two-terminal networks given all minimal path vectors. The materials in 

this chapter have been published in [106].

Many network systems, such as power generation and transmission systems, 

oil and gas supply systems, and communication systems, consist of components 

which can work at different levels of capacity. These systems are regarded 

as multi-state networks [46, 54, 55]. Reliability is an important index for 

evaluating the performance of these systems and for making decisions such as 

maintenance scheduling. We consider a network which satisfies the following 

assumptions: (1 ) all nodes are perfect, and (2 ) all links are directed and failure 

prone. In reliability evaluation of binary two-terminal networks, if the nodes

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6.1 Introduction 12 0

are not perfect, the node failure probabilities can be allocated to the links, 

and thus the network can be transformed into a network with perfect nodes. 

In reliability analysis of multi-state two-terminal networks discussed in this 

chapter, we assume that all nodes are perfect and study this simpler case first. 

Hopefully, results out of this work can be extended to deal with multi-state 

two-terminal networks with imperfect nodes, which might be transformed to 

multi-state two-terminal networks with perfect nodes.

The capacity of a link is an independent discrete random variable which 

may take non-negative integer values following a certain probability distribu­

tion. The term “components” , which is usually used in multi-state system 

analysis [46, 55], are used to refer to these failure prone “links” .

We limit our discussions to two-terminal reliability analysis. This is a clas­

sical network reliability problem with a broad range of practical applications, 

such as transportation networks and telecommunication networks [43, 79]. We 

are interested in the flow capacity from a single source node, s, to a single sink 

node, t. Under these assumptions, we can call the flow capacity from node s to 

node t the capacity or the state of the system, represented by 0(x). For such a 

network, we are interested in evaluating the probability that the system state 

is equal to or greater than d units, i.e. </>(x) > d, which can also be considered 

to be the reliability of the network once d is specified.

A general method for the multi-state network reliability evaluation is us­

ing minimal path (cut) vectors, as defined in Section 2.1.5. A minimal path 

vector to level d is called a d-MP for short. For the purpose of evaluating 

the probability of event 0(x) > d, where x denotes a component state vector, 

Xue reported an algorithm for generating all d-MPs [100]. Lin et al. proposed 

another algorithm for the same purpose, claiming it to be more efficient [54].
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Using either algorithm, one can find all d-MPs. Let’s suppose that there are 

L such d-MPs and, for simplicity, denote them as z1, z2, . . . ,  z L. Then, the 

probability that </>(x) > d can be calculated as follows:

Pr(0(x) > d) =  Pr ({x > z1} U {x > z2} U • • • U {x > zL}) . (6.1)

Given that all d-MPs have been found, the issue becomes how to evaluate 

the probability of the union of the events that the component state vector 

is greater than or equal to at least one of the d-MPs, as shown in Equation

(6.1). Hudson and Kapur presented methods using the Inclusion-Exclusion 

(IE) principle and the Sum of Disjoint Products (SDP) principle to evaluate 

system reliability and reliability bounds for multi-state systems given all min­

imal path vectors or minimal cut vectors [39, 40, 41]. However, these methods 

are not systematic and not efficient. Aven proposed an algorithm based on 

state-space decomposition, which provides a systematic way of evaluating the 

union probability no matter how many d-MPs there are [1]. It has been proved 

to be much more efficient than the IE method [1], except for the situation when 

the number of d-MPs is much smaller than the number of components, which 

exists in very few real systems.

In this chapter, we propose an efficient recursive algorithm for evaluation 

of multi-state network reliability based on the SDP principle, and name it 

Recursive Sum of Disjoint Products (RSDP) algorithm. The basic idea is that, 

based on the SDP principle and a specially defined “maximum” operator, “©” , 

the probability of a union with L vectors can be calculated via calculating the 

probabilities of several unions with L — 1 vectors or less. The correctness and 

efficiency of this algorithm will be investigated.
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A cronym s:

SDP: Sum of Disjoint Products

RSDP: Recursive Sum of Disjoint Products

IE: Inclusion-Exclusion

MP: minimal path vector

d-MP: minimal path vector to system state d

N o tatio n :

n: the number of components in the network

Mi : an integer value representing the maximum state or maximum capacity

of component i, Mi > 1, i = 1, 2 , . . . ,  N  

s: the source node

t: the sink node

d: the demand of flow from the source node to the sink node

Xi. a discrete random variable representing the state or the capacity of

component i, Xj may take values 0, 1, 2, . . . , M i , i = 1, 2 , . . . ,  N  

x: =  ( x i , x 2, ■ ■ ■ ,Xn)- We call x  the component state vector. It represents

the states of all failure prone components (i.e., all components).

</>(x): state of the system

Pif  =  Pr(xj =  j) ,  i =  1,2 , . . . ,  N ,  j  = 0,1, 2 , . . . ,  M t. Pij = 1

Piji = P r (xi > j ) ,  i =  1, 2 , . . . ,  N ,  j  =  0,1, 2 , . . . ,  M {.

z l : the zth minimal path vector of the considered multi-state network,

yh a general vector with n  elements and with index i.

Y J'1: a vector generated by the “©” operator, Y j '1 =  y j © y l
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PrU(»): the recursive function of the RSDP algorithm 

TMj: the ith  term in SDP calculation.

T\. The CPU time by Aven’s algorithm.

T2: The CPU time by RSDP.

A: the ratio .

6.2 Som e definitions

Some definitions that are to be used in the proposed RSDP algorithm are 

presented in this section.

Definition 6.13 Event { x  > y} means Xi > yi for all i, where x  and y  are 

vectors with the same length.

Consider a multi-state network with n independent components. Compo­

nent i (1  <  i <  n) has Mj +  1 discrete and mutually exclusive states 0 , 1 , ..., 

Mi. For a certain vector y  in which represents the state of component i, we 

have

n  n

Pr(x > y) =  J ]  Pr{xi > 2/i) =  J ]  P<lW, (6.2)
i = 1 i = 1

where PltVi is the probability of component % in state yl or above, 0 <y%< Mj. 

That is

M,

^*,1li ~
i= y i

where Mj represents the highest state of component i, and phJ is the probability 

of component i in state j .
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Definition 6.14 Event { x  ^  y} is the complement of event { x  > y}. 

Definition 6.15 A special “maximum” operator, “® ”, is defined as:

V1 © y2 =  (fnax(y], y2)) , 1 < j  < n. (6.3)

For example, if y 1 =  (1, 2, 3,4), and y 2 =  (4,3, 2,1), we will have y 1 © y 2 = 

(4,3,3,4). The “©” operator defined in equation (6.3) is designed to ma­

nipulate those d-MPs, and it plays an important role in the proposed RSDP 

algorithm.

6.3 Recursive sum of disjoint products algorithm

6.3.1 The proposed R SD P algorithm

In this section, we will propose a recursive algorithm based on the SDP princi­

ple for the evaluation of multi-state network reliability. We call this proposed 

algorithm Recursive sum of disjoint products (RSDP) algorithm.

Suppose we have three minimal path vectors z1, z2 and z3. From the SDP 

principle [46, 39], we have

Pr ({x  > z1} U {x  > z2} U {x  > z3}) =  Pr (x >  z1) +  Pr ({x  ^  zx}{x  > z2})

+  Pr ({x  ^ z1}{x  ^ z2}{x  > z3}  ̂ (6.4)

The first term can be calculated directly using equation (6 .2 ). The second term

is the probability that events {x > z2} and {x  z1} occur simultaneously. To 

evaluate the second term, we can use the following basic probability formula

Pr(^4R) =  Pr(R) — Pr (AB),  (6.5)
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where A and B are two arbitrary events. Applying equation (6.5), the second 

term in equation (6.4) can be written as

Term2 =  Pr (x > z*{x > z2})

=  Pr (x > z2) — Pr ({x  > z1}{x  > z2})

=  Pr (x > z2) — Pr ( x  >  (z1 © z2))

=  Pr (x > z2 j — Pr (x > Y 1’2) (6 .6 )

where Y 1,2 =  z1 0  z2. As shown in equation (6 .6 ), the probability of an event

involving two vectors, z 1 and z2, is calculated via the probability of an event

involving only one vector, z2, and the probability of another event involving 

only one vector, Y 1,2.

The third term in Equation (6.4) is the probability that events {x  > z3}, 

{x ^  z1} and {x  ^  z2} occur simultaneously. Let Y 1,3 =  z1 © z3, and 

Y 2’3 =  z2 © z3. Similarly, we can find that the third term “Term3” can be 

represented as

Term3 =  Pr (x > z3) -  Pr ({x > Y 1’3} (J{x > Y 2’3}) (6.7)

As can be seen, the third term can be calculated via the probability of a union 

of two events. From this specific example, we find that a recursive algorithm 

based on the SDP principle is viable.

Now we will consider the general case. Suppose we have L general vectors 

y 1; y 2> • • • i y L ■ We define the recursive function as

PrU(y\ y 2, . . . ,  y L) =  Pr (̂J {x > y '} j (6 .8 )
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From the SDP principle, we develop the following recursive algorithm:

PrU(y1, y2, . . . , y i ) =  ^TMi, (6.9)
i = 1

where TM̂ is the Rh term in the SDP calculation.

TMx =  P r ( x > y x) (6.10)

TMi =  Pr (x > y*) -  Pr ^ jj  {x > Y

=  Pr (x > y*) -  PrU(Y1,i, . . . ,  Y*-1’®), for i > 2, (6.11)

where vector Y 3’1 =  y 3 ® y®. The length of Y 3'1 is the same as yJ and y®, 

and the value of an element of Y 3,1 refers to the corresponding state of the 

corresponding component. Therefore, from Equations (6.9), (6.10) and (6.11), 

the PrU(») function with L input vectors can be calculated via PrU(») functions 

with L — 1 input vectors or fewer.

The boundary condition is L =  1. In this case

PrU(«) =  T M i  =  Pr (x > y 1) . (6.12)

The sim plifying procedure is used in RSDP to reduce whenever possible 

the number of input vectors in function PrU(«). That is, for any input vector, 

y®, if there is an input vector y 3 (j  ^  i) satisfying y® > y 3, y® will be deleted 

from the set of input vectors. The reason is, under the assumption that y® > y 7, 

we have (x > y*) U (x > y 3) =  (x > yJ).

For a multi-state network with L d-MPs z1, z2, . . . ,  zL, its reliability with
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Table 6 .1 : State distributions of the components in the example network

State 0 1 2 3
Component 1 0.05 0 . 1 0 0.25 0.60
Component 2 0 . 1 0 0.30 0.60 -

Component 3 0 . 1 0 0.90 - -

Component 4 0 . 1 0 0.90 - -
Component 5 0 . 1 0 0.90 - -

Component 6 0.05 0.25 0.70 -

respect to level d is

Pr(^(x) > d) — PrU(zx, z2, . . . ,  zL).

6.3.2 A n illustrative exam ple

The detailed implementation of RSDP will be illustrated in this section, using 

the example given by Lin et al. [54]. The network system under investigation is 

a bridge network as shown in Fig. 6.1. This network has 6  components (links) 

represented by C l, C2, ..., and C6 , respectively. The components have different 

numbers of possible states [54]. The state distributions of the components are 

listed in Table 6.1.

C l c i

C3 C'4

C5 C 6

Figure 6.1: A multi-state network with 6  components

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6.3 Recursive sum of disjoint products algorithm 128

There are three 3-MPs:

(3, 2 , 1 , o, 0 , 1 )

(2 , 2 , o, o, 1 , 1 )

(2 , 1 , 1 , o, 1 , 2 ). (6.13)

The proposed RSDP algorithm is used to calculate Pr(0(x) > 3). From equa­

tion (6.9) of the RSDP algorithm, there will be three terms in this problem:

Pr(</>(x) > 3 )  =  Pr ({x > z1} U {x > z2} U {x > z3})

=  TMx +  TM2 +  TM3. (6.14)

(1)

TMx =  Pr (x  > z1)

=  (0.6) ■ (0.6) ■ (0.9) • (0.1 +  0.9) • (0.1 +  0.9) • (0.25 +  0.7)

=  0.3078.

(2) From equation (6.11), we have

TM2 =  Pr (x >  z2) -  Pr (x  > Y 1,2) , (6.15)

where

Y 1,2 =  z1 ® z2 =  (3, 2, 1, 0, 1, 1).

Thus, we get TM2 =  0.1590.
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(3) From equation (6.11)

1 2 9

TM3 -  Pr (x > z3) -  Pr ({x > Y 1’3} (J{x > Y 2’3}) (6.16)

where

Y 1’3 =  z1 © z3 — (3, 2, 1, 0, 1, 2), and 

Y 2'3 =  z2 © z3 =  (2, 2, 1, 0, 1, 2).

Since Y 1,3 > Y 2’3, based on “the simplifying procedure” , Y 1,3 will be 

removed. Thus we have

TM3 =  P r ( x > y 3) - P r ( x > Y 2’3) =  0.1446. (6.17)

Eventually we have

Pr(0(x) > 3) =  TMX +  TM2 +  TM3 =  0.6114.

This result agrees with the result in Lin et al. [54], and this has illustrated the 

correctness of the proposed RSDP algorithm.

In this example, the RSDP approach evaluates 5 probability terms. If the 

IE procedure is used, we need to evaluate 7 probability terms. The advantage of 

the proposed RSDP procedure over the IE principle is clear from the following:

Pr ({x > Y 1’3} |J{x > Y 2-3}) -  Pr (x > Y 2’3) .
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6.4 Efficiency investigation of R SD P

Aven’s algorithm [1] has been recognized as an efficient reliability evaluation al­

gorithm for multi-state systems compared to conventional methods such as the 

IE method. The computation time with the IE method increases exponentially 

as the number of MPs, L, increases [1]. In this section, we will compare the 

efficiency of the proposed RSDP algorithm with that of Aven’s algorithm. We 

wrote Aven’s algorithm by following the procedure in Aven’s paper [1] and the 

FORTRAN program in its appendix. The programs of both RSDP and Aven’s 

algorithm have been developed with MATLAB 6.5, and were implemented on 

a computer with Pentium M 1.7GHz CPU and 512MB of RAM.

In terms of the efficiency of the two algorithms, we are interested in the 

required computation time with respect to different numbers of components, n, 

and different numbers of MPs, L. First we consider a hypothetical multi-state 

network system with 10 components. Each component has 10 states, from 0 

to 9; and the state distributions of all the components are set to be the same. 

Specifically, the state distribution vector, p, is set to be

p  =  (0.05, 0.15, 0.1, 0.05, 0.15, 0.05, 0.15, 0.1, 0.05, 0.15).

We randomly generate 50 vectors, z1 to z50, indicating the components’ 

states, and ensure that there are no two vectors z l and z-7 satisfying zl > zj . 

That is, no vector is dominated by other vectors in this group [35]. As a result, 

these 50 vectors can be treated as all the MPs to a hypothetical system state, 

say state d. Thus the probability of the component state vector being not less 

than any of these hypothetical MPs can be calculated using RSDP or Aven’s 

algorithm. First, assume that only the first 5 MPs, z1 to z5, are available.
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RSDP and Aven’s algorithm are used respectively to evaluate the probability 

of interest. Then we change L, the number of MPs, by assuming only the first 

10, 15, 20, 25 , 30, 40 or 50 MPs are available, respectively, and calculate the 

same probability of interest. In all these cases, RSDP and Aven’s algorithm 

lead to the same results, which further shows the correctness of RSDP.

We need to note that the 50 MPs used above are generated randomly. The 

computation time using RSDP or Aven’s algorithm may be different if we use 

another group of 50 MPs. To make more sense in comparing the efficiency of 

RSDP and Aven’s algorithm, we randomly generate 10 groups of MP vectors, 

with 50 MPs in each group. The average CPU time using these 10 groups of 

MP vectors is used to represent the CPU time with respect to a certain L. The 

CPU time (in seconds) using RSDP or Aven’s algorithm is listed in Table 6.2, 

where Ti and T2 represent the CPU time by Aven’s algorithm and by RSDP, 

respectively. Let A =  denote the ratio between the CPU time of Aven’s 

algorithm and that of RSDP. That is, A represents the advantage of RSDP 

over Aven’s algorithm in terms of CPU time. If 0 < A < 1, RSDP is slower 

than Aven’s algorithm; if A > 1, RSDP is faster than Aven’s algorithm. The 

bigger the A is, the more advantageous RSDP is over Aven’s algorithm. Prom 

Table 6.2, it appears that the computation time does not increase exponentially 

as L increases for either RSDP or Aven’s algorithm. In this specific network 

system with 10 components, RSDP is a little bit faster when there are 15 MPs 

or less, while Aven’s algorithm is faster when there are 20 MPs or more. From 

the trend of A, Aven’s algorithm becomes more advantageous with the increase 

of the number of MP vectors (L) for the network with 10 components.

Next, we investigate a multi-state network with only 5 components. The 

other settings, such as the number of states and the state distribution for each
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component, remain the same as in the case of a system with 10 components. 

Similarly, we generate 10 groups of MP vectors with 50 MPs in each group, 

and investigate the efficiency of RSDP and Aven’s algorithm. The results are 

shown in Table 6.3. We find that for the network with 5 components, Aven’s 

algorithm is faster than RSDP. There is no clear trend for A with respect to the 

number of d-MPs. We also conclude that for networks with a small number of 

components (less than 10 in this example), Aven’s algorithm is more efficient 

than RSDP.

Now, we will investigate multi-state networks with more than 10 compo­

nents. First, we consider a multi-state network with 15 components. All the 

other settings remain the same as in the case of system with 10 components. 

The results are shown in Table 6.4. We have also investigated the case of 

multi-state networks with 20, 30, and 40 components respectively in the same 

way, and the results are listed in Table 6.5, 6.6 and 6.7. We did not do the case 

for Aven’s algorithm when there are 40 components and 20 d-MPs, because in 

this case the expected CPU time using Aven’s algorithm is around 40 hours 

and thus determining the average CPU time would take quite a few days.

In the case of 15 components in Table 6.4, RSDP is faster than Aven’s 

algorithm with respect to all L values investigated. From the trend of A, the 

advantage of RSDP decreases with the increase of L; however, this trend does

Table 6.2: Efficiency comparison when the system has 10 components

Number of d-MPs (L) 5 10 15 20 25 30 40 50
CPU time by Aven’s (Ti) 0.03 0.22 0.44 0.69 1.20 2.15 9.26 15.71
CPU time by RSDP (T2) 0.01 0.09 0.29 0.83 1.62 2.74 16.475 23.95

Ratio A =  If 2.60 2.52 1.54 0.83 0.74 0.78 0.56 0.66
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Table 6.3: Efficiency comparison when the system has 5 components

Number of d-MPs (L) 5 10 15 20 25 30 40 50
CPU time by Aven’s (Ti) 0.008 0.023 0.055 0.085 0.13 0.20 0.25 0.29
CPU time by RSDP (T2) 0.008 0.04 0.10 0.21 0.27 0.35 0.47 0.69

Ratio A = 1.00 0.56 0.55 0.40 0.48 0.56 0.53 0.41

Table 6.4: Efficiency comparison when the system has 15 components

Number of d-MPs (L) 5 10 15 20 25 30
CPU time by Aven’s (Ti) 0.11 0.67 2.37 4.97 17.22 35.70
CPU time by RSDP (T2) 0.01 0.10 0.35 1.39 6.40 17.95

Ratio A =  211-2 11.00 6.70 6.76 3.58 2.69 1.99

not exist in the cases of 20, 30 and 40 components, as shown in Table 6.5,

6.6 and 6.7. In fact, RSDP is much more efficient than Aven’s algorithm in 

these cases. Specifically, RSDP is about 20 times faster than Aven’s algorithm 

in the case of the system with 20 components, and hundreds or thousands 

of times faster than Aven’s algorithm in the cases of the systems with 30 

and 40 components. Thus, it seems that the efficiency of Aven’s algorithm is 

much more sensitive to the number of components than that of RSDP. We can 

conclude that RSDP is more efficient than Aven’s algorithm when the number 

of components of a system is not too small (say, when there are more than 

15 components in the system), and the advantage of RSDP becomes stronger 

with the increase of the number of components in the system.

In Figure 6.2, we present ratio A with respect to different number of compo­

nents and different number of minimal path vectors L in a graphical manner. 

The vertical axis represents the ratio A in the logarithm format. Again, it is 

very obvious that the advantage of RSDP over Aven’s method becomes more
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significant with the increase of the number of components in the system. 

Table 6.5: Efficiency comparison when the system has 20 components

Number of d-MPs (L) 5 8 10 15 20
CPU time by Aven’s (Ti) 0.31 0.97 3.27 33.55 114.53
CPU time by RSDP (T2) 0.01 0.06 0.18 0.95 6.42

Ratio A = 31.27 16.17 18.17 35.44 17.84

Table 6.6: Efficiency comparison when the system has 30 components

Number of d-MPs (L ) 5 8 10 15 20
CPU time by Aven’s (Ti) 
CPU time by RSDP (T2) 

Ratio A = T2

0.93
0.01

93.00

17.28
0.06

288.00

75.49
0.19

397.29

992
1.92

518.02

15,646
20.00

782.30

Table 6.7: Efficiency comparison when the system has 40 components

Number of d-MPs (L ) 5 8 10 15 20
CPU time by Aven’s (Ti) 
CPU time by RSDP (T2) 

Ratio A =  ifT i

2.58
0.01

258.00

80.2
0.06

1,336.67

670 8,698 
0.22 2.25 

3,045.45 3,865.96
37.80

6.5 Concluding remarks

In this chapter, we developed the RSDP algorithm, an efficient recursive al­

gorithm based on the SDP principle for reliability evaluation of multi-state 

two-terminal networks given all the minimal path vectors. Based on the SDP 

principle and a specially defined “maximum” operator, “©” , RSDP can calcu­

late the probability of a union with L vectors via calculating the probabilities 

of several unions with L — 1 vectors or fewer. The implementation of RSDP
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Figure 6.2: Ratio A with respect to different number of components and dif­
ferent L
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has been illustrated using a simple example. The efficiency of this algorithm 

has been investigated by comparing it with Aven’s algorithm [1] which is rec­

ognized as efficient. It has been found that RSDP is more efficient than Aven’s 

algorithm when the number of components of a system is not too small (say, 

greater than 15), and it can efficiently deal with the reliability evaluation of 

complex systems with a large number of components. RSDP provides us with 

an efficient, systematic and simple approach for evaluating multi-state network 

reliability when all d-MPs are given.

The RSDP algorithm might be extended to develop more efficient methods 

for reliability evaluation of more complex multi-state network systems, such 

as multi-state all-terminal networks.

From Chapter 3 to Chapter 6, we have discussed reliability modeling and 

evaluation of multi-state systems, focusing on multi-state fc-out-of-n systems 

and multi-state two-terminal networks. It is important to efficiently and ac­

curately assess system reliability. On top of system reliability analysis, we can 

do optimal reliability design to improve system reliability. In next chapter, we 

will discuss how to improve reliability and cost measures of multi-state systems 

through optimal reliability design.
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C h a p t e r  7  

O p t i m a l  D e s i g n  o f  M u l t i - S t a t e  

S e r i e s - p a r a l l e l  S y s t e m s

In this chapter, we will discuss how to improve system reliability and cost effec­

tiveness through optimal design. We focus on the optimal design of multi-state 

series-parallel systems, which has been intensively studied in the literature.

In the first section of this chapter, we focus on how to deal with multiple 

conflicting design objectives, such as system reliability and system cost, which 

are typically involved in reliability based optimization of multi-state systems. 

An approach based on physical programming and genetic algorithms is pro­

posed in this chapter for this purpose. The materials in the first section of this 

chapter has been documented in paper [8 8 ].

In the second section of this chapter, we will investigate how to improve the 

optimal design of multi-state series-parallel systems by extending the redun­

dancy optimization of multi-state series-parallel systems to the joint reliability- 

redundancy optimization of multi-state series-parallel systems. That is, in ad­

dition to redundancies, component state distributions are treated as design 

variables as well. The materials in the second section of this chapter has been 

documented in paper [91].
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7.1 Optim al system  design considering m ultiple design objectives

In practical situations involving reliability optimization, there often exist mu­

tually conflicting goals such as maximizing system utility and minimizing sys­

tem cost and weight [45]. Current multi-state optimization methods typically 

treat one goal as the objective function of the optimization model and the 

other goals as constraints. Levitin et al [51] studied the redundancy optimiza­

tion problem for series-parallel multi-state systems, and the model they used 

aimed at minimizing the system cost under the constraint of system availabil­

ity. Levitin and Lisnianski [50] presented a structure optimization approach 

for multi-state systems with two failure modes. They proposed two optimiza­

tion problem formulations: one aims at maximizing system availability and the 

other aims at providing the maximal proximity of the expected system perfor­

mance to the desired levels for both the open mode and the close mode, while 

satisfying the system cost and reliability requirements. Ramirez-Marquez and 

Coit [78] proposed a heuristic approach for solving the redundancy allocation 

for multi-state series-parallel systems. Liu et al [56] presented a neural network 

approximation approach for optimal design of continuous-state parallel-series 

systems, so as to reduce the computational complexity in the utility evaluation 

of continuous-state systems. Their model was built to maximize system utility 

subject to system cost constraints.

However, it is very difficult to specify in advance the constraint values for 

the goals used as constraints. After a solution is obtained, we often need to 

modify these constraint values to find a better tradeoff between goals such as 

system utility and system cost. But finding the most appropriate constraint 

values is a trial and error process, it is time-consuming, and there is no clear 

guidance as to how to converge to the right set of constraint values. Partic­
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ularly, when there are many constraint values that need to be specified, it is 

almost impossible to find the most appropriate values for these constraints.

There has been intensive research on redundancy allocation of binary sys­

tems considering multiple objectives. Sakawa [83] presented a multi-objective 

formulation to maximize reliability and minimize cost for system structure op­

timization by using the surrogate worth trade-off method. Inagaki et al [42] 

proposed to maximize reliability and minimize cost and weight by using an 

interactive optimization method. Park [72] used fuzzy logic theory to analyze 

a multi-objective reliability apportionment problem for a two-component se­

ries system. Dhingra [15] and Rao and Dhingra [76] studied the reliability and 

redundancy allocation problem for a four-stage and a five-stage over-speed pro­

tection system, using crisp and fuzzy multi-objective optimization approaches, 

respectively. Huang [29] proposed an approach for fuzzy multi-objective op­

timization decision-making involving a series reliability system. Ravi et al 

[77] modeled the problem of optimizing the reliability of a complex system as 

a fuzzy multi-objective optimization problem [30]. Huang et al [31] applied a 

proposed interactive physical programming approach to reliability-redundancy 

optimization of a binary-state system. However, this approach is too compli­

cated to be used conveniently in practical problems, and the improvement on 

the solution’s quality is trivial compared to using the original physical pro­

gramming approach. A sophisticated intelligent interactive multi-objective 

optimization method was later used adopted for the reliability optimization 

of binary systems [32]. Taboada et al. proposed two practical approaches for 

multi-objective optimization with the application to system reliability opti­

mization [87].

In this section, we present a multi-objective optimization model for redun­
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dancy allocation for multi-state series-parallel systems, which optimizes the 

goals of system utility, system cost and system weight simultaneously. The 

physical programming method is used as an effective approach to optimize the 

system structure within this model’s framework. Physical Programming elim­

inates the typical iterative process involving the adjustment of the physically 

meaningless weights, which is required by virtually all other multi-objective 

optimization methods, and thus substantially reduces the computational in­

tensities. The DMs’ preferences are specified individually on each goal through 

physically meaningful values, which makes the physical programming method 

easy to use and advantageous in dealing with a large number of objectives. 

Physical programming has proved its effectiveness in addressing a wide array 

of multi-objective problem [61, 62, 63, 64, 74], In the present application, we 

apply physical programming to the redundancy allocation for multi-state sys­

tems. As will be shown, physical programming offers a flexible and effective 

approach for the optimal design of multi-state system.

Genetic algorithm (GA) is a very powerful optimization approach [14], 

and it is used to solve the proposed physical programming based optimization 

model due to the following three reasons: (1 ) the design variables, the number 

of components of each subsystems, are integer variables, (2 ) the objective func­

tions in the physical programming based optimization model do not have nice 

mathematical properties, and thus traditional optimization approaches are not 

suitable in this case, (3) genetic algorithm has good global optimization per­

formance. An example is used to illustrate the flexibility and effectiveness of 

the proposed physical programming approach over the approaches that are 

traditionally used in binary and multi-state redundancy allocation problems, 

e.g., the single-objective method and the fuzzy optimization method.
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Acronym s

• DM: Decision Maker

• OVO: One vs. Others 

Nom enclature

• gt\ Class function of objective i

• g if  Boundary value of preference ranges for objective i. j = 1, 2, . . .  ,5

• N: Number of subsystems (stage)

• Sp Subsystem (stage) i , 1 < i < N

• np Number of components in St

• hi: Component version in St

• Hi'. The number of types of components available for Si

• M: The maximum state level of the components and the system

• Xif The state of component j  of subsystem i

• p i f  Probability of a component of subsystem i in state k

• x: A vector representing the states of all components in the multi-state 

system

• 4>(x): State of the system. <f>(x) = 0, 1, ..., M

• U: System utility
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• C : System cost

• W : System weight

• s: State s of component or system

• us: The utility when system is in state s

• cp Cost function of component in Si

• wp Weight function of component in Si

• n  =  (n i,n 2, ...nN)

• h =  (hi, h,2, ...hN)

• gu : Class function of system utility

• g c : Class function of system cost

• gw- Class function of system weight

• Uq: System utility constraint value

• Co: System cost constraint value

• Wo: System weight constraint value

• pfj\ Fuzzy membership function of system utility

• p,Qm. Fuzzy membership function of system cost

• pyy: Fuzzy membership function of system weight
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Figure 7.1: Qualitative meaning of soft class function 

7.1.1 Physical programming synopsis

Physical Programming [61] is a multi-objective optimization tool that explicitly 

incorporates the DM’s preferences on each design metric into the optimization 

process. Within the physical programming procedure, the design metrics are 

classified into four classes: smaller is better (i.e., minimization), larger is bet­

ter (i.e., maximization), value is better, and range is better. There are two 

so-called class functions, one soft and one hard, with respect to each class 

[61]. The hard class functions are used to represent the constraints, while the 

soft class functions become additive constituent components of the aggregate 

objective function (to be minimized) of the optimization model. Consider for 

example the case of class-1 soft class function (class 1-S), the qualitative mean­

ing of the preference function is depicted in Fig. 1. The value of the design 

metric, <7* , is on the horizontal axis, and the corresponding class function, g.t , 

is on the vertical axis. A lower value of the preference function is better than 

a higher value thereof.

Physical programming allows the DM to express ranges of differing levels of 

preference with respect to each design metric with more flexibility and speci-
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ficity than by simply declaring minimize, maximize or equal to. For Class 1-S, 

shown in Figure 7.1, the ranges are defined as follows.

Highly desirable range: gi < gn ,

Desirable range: ga < gi < gl2 ,

Tolerable range: gi2 < gi < ga ,

Undesirable range: gi3 <  gt < ga ,

Highly undesirable range: ga < gi < ga ,

Unacceptable range: gi > gi5 .

The parameters gn through ga are physically meaningful constants associated 

with each design metric i . What the DM needs to do in the physical program­

ming framework is just to specify the values of the parameters gn , gi2 , ga , 

ga , and gi5 for each design metric i, and the class function can be completely 

determined by these parameters. Refer to Messac [61] for the details on how 

to build class functions from these boundary parameters.

The range limits define the intra-criteria preference, while the “One vs. 

Others” criteria rule (OVO rule) describe the inter-criteria preference. Sup­

pose there are two options: (1 ) full reduction for one criterion across a given 

preference range, say, the tolerable range; (2 ) full reduction for all the other 

criteria across the next better range, say, the desirable range. The OVO rule 

decides that option (1) is preferred over option (2). For example, assume that 

we have four criteria to be minimized, criterion 1 to 4. We say that the reduc­

tion of criterion 1 from the right boundary to the left boundary of the tolerable 

range is preferred over the reductions of criterion 2, 3, and 4 all from the right 

boundary to the left boundary of the desirable ranges. The OVO rule is built 

into the generated class function of each criterion.

Class functions also transform design metrics with disparate units and phys­

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



7.1 Optimal system design considering multiple design objectives 145

ical meaning into a dimensionless scale. The aggregate objective function is 

built by combining all the soft class functions. In redundancy allocation prob­

lems, there are only Class 1-S functions (to be minimized) and Class 2-S func­

tions (to be maximized), thus the physical programming problem model has 

the following form [61]:

mm g(x) = log10 £?=! &[&(x)]}

s.t. gi(%) < gib (f°r class 1 — S)
(7.1)

9 i ( x )  >  9 i b  (f°r class 2 — S)

X j m  ^  x j  ^  x j M

where Xjm and x jM represent corresponding minimum and maximum values, 

nsc is the number of the soft design metrics that the problem comprises.

The physical programming approach has the following characteristics: (1) 

it eliminates the iterative weight-adjusting process, thus substantially reduces 

the computational intensity; (3) The DM only needs to specify desirability 

ranges for each design metric, not those meaningless weights, which makes 

this approach very friendly to users; (3) The DM’s preferences are specified 

on each design metric individually, therefore, physical programming is suitable 

to deal with a larger number of design objectives. While in the weight-based 

methods, there’s no reasonable way to specify the weights for the objectives in 

advance.

7.1.2 Physical programming based m ulti-state system  optim ization  

m odel and solution approach

In this section, we will present the approach to evaluate the system utility of 

a multi-state series-parallel system, formulate the multi-state redundancy al­
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location problem model based on physical programming, and give the solution 

approach using GA for the physical programming based optimization model.

7.1 .2 .1  System utility evaluation of multi-state series-parallel system

As shown in Figure 2.1, a multi-state series-parallel system consists of N  sub­

systems, Si to iSjv> connected in series. Each subsystem, say Su has nl identical 

components connected in parallel.

To design such a system, we need to select the type of components to use 

for each subsystem and determine the number of components of the selected 

type [13, 51]. The following assumptions are used:

(1). For each subsystem Si, there are Hi types of components available 

in the market. For a type hi (1 <  ht < Hi) component, its state probability 

distribution, cost and weight are specified.

(2). The states of the components in a subsystem are identically and inde­

pendently distributed.

(3). The component and the system may be in M + l  possible states, 

namely, 0, 1, 2, . . . ,  M.

According to multi-state system definition of Barlow and Wu [3], the state 

of a parallel system is defined to be the state of the best component in the 

system, and the state of a series system is defined to be the state of the worst 

component in the system. Hence, the system state of the series-parallel shown 

in Figure 2.1 is

0 ( z ) = m in  max ^  (7.2)
\ < i < N  1 <3<ri i

And the probability that the system is in state s or above ( s =  0, 1, ..., M  ) 

is
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N  /  M

Pr (4>(x) >  s) =  J ]  1 -  1 - (7.3)
1 =  1 \  fc= S

where pik = Pr {xl3 = k ) for any j  .

The index of system utility is used to measure the performance of a multi­

state series-parallel system [2 ]

where U is the expected system utility, and us is the utility when system is in 

state s .

For given h\ , and ni , ri2 ,.. ., values, we need to determine

the system cost and system weight, the other two design objectives. We use

the system cost and system weight formulations suggested by Dhingra [15].

The total cost of the system is expressed as

N

C = Y l Ci(hi) +  eXP (n*/4)] ’ (7‘5)
i — 1

And the system weight takes the form:

N

W  = '52wi(hi)ni exp (rii/4) (7.6)
i=i

7.1.2.2 Physical programming based redundancy allocation model

In the redundancy allocation problem for multi-state series-parallel system, the 

design variables are the component version vector h  and component number

M
(7.4)
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vector n

h = ( h i , h 2, ...hN) , n = (nx, n2, ...nN) (7.7)

The design metrics under consideration are system utility, system cost and 

system weight. The system utility, which is to be maximized, is described using 

class-2S class function in the physical programming approach framework. The 

system cost and system weight, which are to be minimized, are both described 

using class-IS class function.

The multi-objective optimization model of the multi-state system is formu­

lated as

min g(n, h) =  log10 {± [gv (U(n, h)) + gc (C{n , h)) +  gw (W{n , /i))]} 

s.t.

U(n, h) > U0

C(n, h) < Co

W(n, h) < W0

0 < hi < Hi, i = 1,2,..., N

0 < rii, i = 1, 2,..., N

Hi, hi are integers
(7.8)

where g(n,h) is the aggregate objective function, gu , gc and gw are the 

class functions of system utility, system cost and system weight, respectively, 

Hi is the number of types for component Ct , and Uq , Co and Wo are the 

constraint values, which are equal to the boundaries of the acceptable ranges 

of the corresponding design metrics.
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7.1.2.3 Genetic algorithm as a solution approach

GA is a very powerful optimization approach with two key advantages. (1 ) 

Flexibility in modeling the problem. GA has no strict mathematical require­

ments, such as derivative requirement, on the objective functions and con­

straints. The only requirement is that the objective functions and constraints 

can be evaluated in some way. GA is also suitable for dealing with those prob­

lems including discrete design variables. (2) Global optimization ability. GA 

has been recognized as one of the most effective approaches in searching for 

the global optimal solution.

The procedure of GA is as follows.

(1). Initialization. Set the size of population and the length of the chro­

mosome. Set k = 0 , and generate the initial population P (0) .

(2). Evaluation. Calculate the fitness value of each chromosome of the 

current population P(k) . Save the chromosome B(k) with the best fitness 

value.

(3). Select. Select chromosomes from the current population based on their 

fitness values to form a new population P(k + 1) .

(4). Cross. One point crossover is used to P(k  +  1) .

(5). Mutate. Implement even mutation on P{k +  1) .

(6 ). Duplication. Use B (k ) to replace the first chromosome in P(k  +  1) .

(7). If the maximal iteration is reached, terminate the procedure and out­

put the result. Otherwise, set k — k + 1 , and go to step (2 ).
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7.1.2.4 Advantages of the proposed physical programming based multi-state 

system optimization approach

The redundancy allocation problem of multi-state system is formulated as 

multi-objective optimization problem in this section, because there are multi­

ple objectives such as utility, cost and weight under consideration. The pro­

posed multi-objective optimization model provides us a systematic framework 

to deal with these multiple objectives. Previous studies used single-objective 

optimization methods to solve such problems, with one objective as the opti­

mization criterion and the other objectives as constraints. The single-objective 

optimization method is easy to understand, but it is difficult to specify these 

constraint values in advance. After a solution is obtained, it is often needed 

to modify these constraint values to find a better tradeoff between these goals. 

But finding the most appropriate constraint values is a trial and error process, 

it is time-consuming, and there is no guarantee that a satisfactory solution will 

be obtained in the end.

Multi-objective optimization methods have been applied to redundancy op­

timization of binary-state systems, and a popular one among these methods is 

fuzzy optimization method [15, 76, 77]. Fuzzy optimization method allows DM 

to express his or her preferences on different objectives using fuzzy member­

ship functions. However, fuzzy membership functions are not flexible enough 

to clearly express DM’s preferences, and there is no internal mechanism to 

control the tradeoff among different objectives.

Physical programming, however, provides more flexibility for the DM to 

specify his or her preferences on each objective using class functions. The DM 

can specify different levels of preference on each objective easily. In addition, 

the OVO rule of physical programming provides the internal mechanism to
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control tradeoff among different objectives. In addition to optimizing each 

individual objective, physical programming will drive the optimal values of 

different objectives to preference ranges close to one another.

7.1.3 An example

An example is used to illustrate the redundancy allocation procedure for a 

multi-state series-parallel system using physical programming based multi­

objective optimization approach, and demonstrate the advantages of the phys­

ical programming approach over single-objective method and the fuzzy opti­

mization method.

A multi-state series-parallel system with four subsystems is considered. The 

state space of the component and the system is {0, 1, 2, 3} . Suppose we have 

different versions of components for each subsystem, with their characteristics 

listed in Table 7.1, which gives component cost Cj(/ij) , component weight 

Wi(hi) , and the state distribution for each component, pi0 to Pi3 . The system 

utility us with respect to the corresponding system state s is shown in Table 

7.2.

Three methods, single-objective optimization method, fuzzy optimization 

method and the physical programming approach, are used to optimize this 

multi-state system so as to maximize system performance utility and minimize 

system cost and system weight simultaneously. Comparative studies are made 

to show the advantages of the physical programming approach over the other 

two methods.

GA is used to solve the formulated optimization models for all the three 

methods. The GA parameter settings we used in this example are as follows. 

The decimal encoding is used. The population size is chosen to be 100. The
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Table 7.1: Characteristics of available components

Si A{K) PiO Pi i Pi2 P a Ci(hj) W i( h i)
1 1 0.100 0.450 0.250 0.200 0.545 7

2 0.060 0.450 0.200 0.290 0.826 3
3 0.045 0.400 0.150 0.405 0.975 10
4 0.038 0.350 0.160 0.452 1.080 8

2 1 0.050 0.450 0.300 0.200 0.550 12
2 0.040 0.400 0.300 0.260 0.630 5
3 0.040 0.300 0.320 0.340 0.740 8
4 0.030 0.250 0.250 0.470 0.900 10
5 0.025 0.215 0.180 0.580 1.150 12

3 1 0.145 0.625 0.130 0.100 0.250 10
2 0.110 0.400 0.250 0.240 0.380 12
3 0.065 0.450 0.230 0.255 0.494 13
4 0.080 0.300 0.300 0.320 0.625 15
5 0.050 0.250 0.250 0.450 0.790 13
6 0.038 0.235 0.240 0.487 0.875 17

4 1 0.115 0.535 0.200 0.150 0.545 10
2 0.074 0.550 0.186 0.190 0.620 15
3 0.045 0.440 0.215 0.300 0.780 12
4 0.035 0.330 0.250 0.385 1.120 14

Table 7.2: System utility with respect to each system state

s 0 1 2 3
us 0.0 0.5 0.8 1.0
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chromosome length is 12: the first 4 digits are used to represent the component 

version variables hi to hA , and the rest 8  digits are used to represent the 

numbers of components ri\ to 77,4 , each with 2 digits. We use the roulette- 

wheel selection scheme, one-point cross operator with cross rate of 0.25, and 

even mutation operator with mutate rate of 0 .1 .

In any iteration of GA, we have a population of 100 candidate solutions to 

be evaluated. Suppose the single aggregate objective function to be minimized 

is /  • / max and / mm are the maximum and minimum value of the population 

in current iteration. The fitness value for a candidate solution with aggregate 

objective function value /  is

ym a x    y  _|_ q  g  ^ ym ax    ym in^

F  ~~ (1 +  0.3) • ( / max -  / min)

where the number 0.3 is the so-called “selection pressure” [99]. The “selection 

pressure” factor in the formula above is used to adjust the fitness value of 

a candidate solution based on its aggregate objective function value. When 

the “selection pressure” is bigger, the probability for those candidate solutions 

with relatively large aggregate objective function values will become higher, 

while that for those with relatively small aggregate objective function values 

will become lower. If the “selection pressure” is set to be zero, the probability 

for the candidate solution with the largest aggregate objective function value 

will be zero.

7.1.3.1 Single-objective optimization method

First, we use single-optimization method to get the optimal redundancy allo­

cation scheme. Here, system utility is used as the objective, and system cost

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



7.1 Optimal system design considering multiple design objectives 154

Table 7.3: Optimization results using different methods

Single-objective optimization Fuzzy optimization Physical programming
u 0.9654 0.9492 0.9245
c 38.7021 32.2833 27.9569
w 985.8467 699.2584 548.8717
h (4, 5, 6, 4) (4, 5, 6, 4) (4, 5, 5, 4)
n (6, 5, 4, 6) (5, 4, 4, 5) (4, 3, 4, 5)

and system weight are used as constraints in the optimization model:

max U(n, ft)
n ,  h  

S.t. 

C(n, h) < Co

W(n, h) < W0 (7-9)

0 < hi < Hi, i = 1,2, . . . ,N  

0 < rij, z =  1 ,2 , ..., N  

rii, hi are integers

where the utility constraint value and the weight constraint value are chosen 

as C0 = 45 and Wo = 1000 .

Solve the constrained single-objective optimization problem formulated in

(7.9), and we get the optimization results shown in Table 7.3. After inves­

tigating the optimization result, the DM may think that the utility goal is 

better than enough, and he wants to improve the cost and weight goals by 

partly sacrificing the utility goal. But it is hard to specify the new constraint 

values for cost and weight design metrics. The constraint-adjusting process is 

a trial-and-error process, and it is quite time-consuming.
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7.1.3.2 Fuzzy optimization method

Like Dhingra’s work [15], we use the logarithm sigmoid function to define the 

fuzzy membership functions for the design metrics of system utility, cost and 

weight, since the logarithm sigmoid function is a popular nonlinear function to 

define fuzzy membership functions. The standard logarithm sigmoid function 

is

(7.10)

We have /(5 ) =  0.9933 , / ( —5) =  0.0067 . Hence, we use the range [-5, 

5] of the standard logarithm sigmoid function to define the fuzzy membership 

functions for the three design metrics (shown in Figure 7.2):

p 0 (x) =
0, x < 0.9

/[100(%—0.9)—5]—/ ( —5) n q < T < 1
/ ( 5 ) —/ ( —5) > U 'y  — X -  1

Pc{x)  =  < f \ ( x - 2 5 ) /2 —51 — f (S)  
/ ( —5)—/(5 )

1,

x > 45 

25 < x  <  45

x < 25

(7.11)

(7.12)

Pw(x) =

0,

1,

/ f ( x —400)/40—51—/(5 )  
/ ( - 5 ) - / ( 5 )

x  > 1000 

400 < x < 1000

x < 1000

(7.13)

There are two critical values for each fuzzy membership function. For 

instance, for the cost objective, the two critical values are 25 and 45, which are
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Figure 7.2: Fuzzy membership functions

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



7.1 Optimal system design considering multiple design objectives 157

the starting point and the ending point of the sigmoid part of the membership

function, respectively. To ensure a fair comparison, for the cost and weight 

objectives, we select the critical points with respect to membership function 

value 0 as the constraint values used in the single-optimization method. The

the utility objective with respect to membership function value 0.

Solving the optimization above, we get the optimization results shown in 

Table 7.3. Compared to the results obtained using single-objective optimiza­

tion method, the cost and weight objectives are improved, while the utility 

objective deteriorates. The fuzzy optimization method aims at optimizing the

critical point for the utility objective with respect to membership function

value 0 is set to be 0.9.

The aggregate objective function is defined as

Mfi =  min (Mu (u ) . K  (C ) . m  (u )) (7.14)

where the fuzzy set D is the intersection set of fuzzy sets U , C  and W  . And 

the fuzzy multi-objective optimization model is formulated as

max p,f)

U(n, h) > Uq 

C(n, h) < C0 

W (n, h) < Wo
(7.15)

0 < hi < Hi, i = 1,2,..., N  

0 < 7~j, * =  1,2, . .. ,N

Ti, hi are integers

where the constraint values U0 , C0 and W0 are equal to the critical points for
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Table 7.4: Physical programming class functions setting

9 il 9i2 9iZ 9 i4. 9i5
Utility 0.99 0.98 0.95 0.92 0.9
Cost 15 20 25 30 45

Weight 400 500 600 800 1000

three objectives simultaneously, and finding a compromising solution.

7.1.3.3 Physical programming approach

In the physical programming framework, the utility objective has Class-2S class 

function (larger is better), while the cost and weight objectives have Class-lS 

class functions (smaller is better). The class functions settings for the three 

objectives are shown in Table 7.4. In order to get a result with better system 

cost performance, we enforce more strict requirements on the cost objective 

through the class function setting.

For the purpose of a fair comparison, the constraint values in the physical 

programming optimization model formulated in (7.8) are set to be the same as 

those in fuzzy optimization models, and they are also equal to the g^  values 

for the three objectives.

Solving the physical programming optimization model, we get the opti­

mization results shown in Table 7.3. The cost objective is improved greatly. 

The optimal utility and cost values both fall into the undesirable ranges, while 

the optimal weight value falls into the tolerable range. The optimal system 

costs with both signle-objective optimization approach and fuzzy optimization 

approach fall into the highly undesirable range, which is what the designers 

highly do not want. From the results shown in Table 7.3, the physical pro­

gramming approach can generate the optimal results that best meet designers’

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



7.1 Optimal system design considering multiple design objectives 159

preferences on the three design objectives.

From the optimization procedures and results, we can find that the physical 

programming method has two advantages over the fuzzy optimization method:

(1). The class function of physical programming provides more flexibility 

for the DM to specify his or her preferences on each objective. The DM 

can specify different levels of preference on each objective. By modifying the 

preference ranges of the cost objective, we can get a greatly improved optimal 

cost value. Using fuzzy optimization, however, the DM can only specify two 

critical points for each objective. There are different kinds of fuzzy membership 

functions available, e.g. sigmoid membership function and linear membership 

function, but it won’t provide more flexibility, either.

(2). The class function provides the preference inside a single objective, 

and the OVO rule of physical programming provides the preferences among 

different objectives. Therefore, besides optimizing each individual objective, 

physical programming will drive the optimal values of different objectives to 

preference ranges close to one another. The class functions and the OVO rule 

lead to optimal solution that best satisfies the DM’s preferences on different 

objectives.

(3). A problem of using fuzzy optimization approach is that maybe the 

resulted optimal cost and weight are good while the utility objective is totally 

unsatisfying. Of course we can adjust the fuzzy membership functions when 

encountering this problem, but we can not ensure that the optimal results 

will be satisfying next time. When using the physical programming approach, 

however, with class functions accurately describing the DM’s preferences on 

each objective and with the OVO rule as the inter-criteria preference, we can 

ensure to get satisfying optimal results with respect to each design criterion.
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7.1.4 Conclusions

In this section, we present a multi-objective optimization approach for redun­

dancy allocation for multi-state series-parallel systems. This approach seeks 

to maximize system performance utility while minimizing system cost and 

system weight simultaneously. Physical programming is used as an effective 

approach to optimize the system structure within this multi-objective opti­

mization framework. The physical programming approach offers a flexible and 

effective way to address the conflicting nature of these different objectives. Ge­

netic algorithm is used in solving the proposed physical programming based 

optimization model. The example illustrates the flexibility and effectiveness of 

the proposed physical programming approach over the single-objective method 

and the fuzzy optimization method.

The multi-objective optimization approach for multi-state series-paralle 

systems presneted in this section can be extended to deal with multi-objective 

optimization problems for other types of multi-state systems.

7.2 Joint reliability-redundancy allocation for m ulti-state series- 

parallel system s

In the previous section, we discussed how to improve reliability based design 

from the standpoint of design objectives, that is, how to deal with multiple 

conflicting design objectives. In this section, however, we will look at how to 

improve reliability based design from the standpoints of design variables.

In binary-state system design, there are basically two options to improve 

the reliability of the system: to increase the component reliability, or to pro­

vide redundancy at various stages [45]. The reliability-redundancy allocation 

problem was first introduced by Misra and Ljubojevic [65]. They considered
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the problem of simultaneously determining optimal component reliabilities 

and optimal redundancy levels for a series-parallel system subject to a cost 

constraint. The component cost was assumed to be an exponential function 

of component reliability at each stage. Tillman et al [96] assumed a differ­

ent cost-reliability relationship, and, in addition to cost constraint, included 

weight and volume constraints in their optimization model. Mathematically, 

the reliability-redundancy allocation problem is a mixed integer nonlinear pro­

gramming problem. Misra and Ljubojevic and Tillman et al used heuristic 

approaches to solve it [65, 96]. Other solution approaches include the branch- 

and bound technique [44], XKL method [98], surrogate constraints method 

[26], and evolutionary algorithms [75].

In multi-state systems, the concept corresponding to the concept of relia­

bility in binary system is state distribution. State distribution of a component 

refers to the probabilities of the component in different possible states. Simi­

larly, there can also be two options to improve the system utility of a multi­

state series-parallel system: (1) to provide redundancy at each stage, (2) to 

improve the component state distribution, that is, make a component in states 

with respect to higher utilities with higher probabilities.

Current studies on optimal design of multi-state series-parallel systems 

mainly focus on the problem of determining the optimal redundancy for each 

stage. Levitin et al [51] assumed that there were different versions of com­

ponents for selection for each stage, and proposed a redundancy optimization 

model for multi-state series-parallel systems to determine the optimal com­

ponent versions and redundancies for various stages. The problem was later 

extended to including both redundancy and maintenance optimization [48]. 

Ramirez-Marquez and Coit [78] proposed a heuristic approach for solving the
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redundancy allocation problem formulated by Levitin et al. [51]. Liu et al 

[56] presented a neural network approximation approach for redundancy op­

timization of continuous-state parallel-series systems. Their model only had 

component redundancies as design variables.

The multi-state system structure optimizations reviewed above for multi­

state systems are only partial optimization. Component state distributions 

should also be considered to be design variables. The option of selecting 

different versions of components provides more flexibility than just using re­

dundancy. But this option totally depends on the products available on the 

market, and the available versions are always limited. By determining the 

optimal values of component state distributions, we can have our design op­

timization built into the manufacturing or scheduling process, so as to have 

more flexibility and get better optimization results.

In this work, we present an optimization model for multi-state series- 

parallel system to jointly determine the optimal component state distribution 

and optimal redundancy for each stage. The reason why component state 

distribution can be used as a controllable design variable is presented. The 

relationship between component state distribution and component cost is dis­

cussed based on an assumption on the treatments on the component. The 

physical programming-based optimization model is presented. An example 

is used to illustrate the optimization model and its solution approach. The 

materials in this section has been documented in paper [91].

7.2.1 Problem  formulation

Acronym s

DM: Decision Maker
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N otation

M : The maximum state level of the components and the system 

N: Number of subsystems (stage)

S f  Subsystem (stage) i , 1 < i < N

rif Number of components in subsystem St

Pij: Probability of component i in state j

x\ A vector representing the states of all components in the multi-state 

system

State of the system. <p(x) =  0, 1, M  

U : System utility 

C\ System cost

us: The utility when system is in state s

rik: Defined term, rik = pikj  EjL0Pu, k = 1, 2, M

ct\ Cost function of component in Si

cx.ik , Pik. Characteristic constants with respect to state k in Si 

t: The mission time

/ :  Aggregate objective function in physical programming-based model

gu'. Class function of system utility

gc : Class function of system cost

Uq: System utility constraint value

Co: System cost constraint value

gif Boundary value of preference ranges for objective i  j = 1, 2, . . .  ,5 

X : Design variable vector 

hp Component version for stage i
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A ssum ptions

(1) The components in a subsystem are identical and independently dis­

tributed.

(2) The components and the system may be in M + l  possible states, namely, 

0 , 1 , 2 ,  . . . , M .

(3) The multi-state series parallel systems under consideration are coherent 

systems.

The structure of a multi-state series-parallel system is given in Figure 2.1 

in Chapter 2. A multi-state series-parallel system has N  subsystems connected 

in series, and each subsystem i has nt identical and independently distributed 

components connected in parallel. The probability of component i in state j  

is pij .

7.2.1.1 Design variables

The design variables in the reliability-redundancy allocation problem for multi­

state series-parallel system are component state distributions (i = 1,2,..., N, j  — 

1 , 2 and redundancies n; (i =  1, 2,..., A). It is apparent that redun­

dancy is controllable, so that it can be used as design variable. We will justify 

in this part that component state distribution is also a controllable design 

variable.

In the binary-state case, the reliability of a component is its probability of 

working, and it has been used as a design variable in reliability-redundancy 

allocation problems of binary-state systems. In the case of multi-state system, 

let us consider a three-state system where the components and system have 

three states {0, 1 ,2 } . We have the following two statements: (a) The proba-
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bility of a component in state 1 or 2 can be regarded as the reliability of this 

component if the word “working” means that the component’s state is greater 

or equal to 1. (b) Similarly, the probability of a component in state 2 can be 

regarded as the reliability of this component if the word “working” means that 

the component’s state is greater than or equal to 2. Therefore, just like the 

binary case, the state distribution of each component can be used as a design 

variable.

If we want to get a component with state distribution {po,Pi,P2 } , we can 

first ensure the component’s reliability is p2 under the reliability meaning of 

(b), and then ensure the component’s reliability is pi + p2 under the reliability 

meaning of (a).

Let’s investigate an example of how the component state distribution is con­

trolled. Suppose that there is a three-state component, and two treatments 

can be used to influence the state distribution of the component. Treatment 

1: will increase the probability of the component in state 1, but will not influ­

ence the probability of the component in state 2; Treatment 2: will increase 

the probability of the component in state 2. Therefore, for this three-state 

component, using the two treatments on the component, we can control the 

state distribution of the component. That is, the state distribution of this 

component can be regarded as a controllable design variable.

7.2.1.2 System utility evaluation

System utility is one of the most widely used performance measures for multi­

state systems [2]. There is a utility value related to each possible system 

state, and system utility is the expected utility of the multi-state system. The 

probability that the system state of a multi-state series-parallel system is in

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



7.2 Joint reliability-redundancy allocation for multi-state series-parallel systems 166

state s (s = 0, 1, M)  or above can be determined using Equation (7.3), 

and the system utility can be determined using Equation (7.4).

7.2.1.3 Formulation of system cost

In the binary-state reliability-redundancy allocation problem, Misra and Ljubo- 

jevic [65] assumed that there is an exponential relationship between compo­

nent cost and component reliability. Tillman et al [96] assumed another cost- 

reliability relationship, which is smoother than the one proposed by Misra and 

Ljubojevic.

The cost of subsystem i given by Tillman et al [96] is

where cprp  is the cost-reliability relationship function for a component in 

subsystem i, oti and Pi are constants representing the inherent characteristics 

of components in subsystem i, and t is the required mission time.

Now let’s investigate the possible cost formulation in the case of multi-state 

system, where the system and components may be in M + 1 states. The state 

distribution of a component in subsystem i is denoted by {pio,Pn, ■

The cost formulation of the component is based on the following assumption:

A ssu m p tio n :  there are M  treatments that can influence the component’s 

state distribution, and treatment k will increase the probability of the compo­

nent in state k, but will not influence the probability of the component in the 

states above k.

(7.16)

in which

(7.17)
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Let

(7.18)

Here can be considered to be the binary-state reliability of component i 

under treatment k. We define the cost of the component as

where ctjfc and Afc are characteristic constants with respect to state k, 0 < 

an < a i2 < ... < a iM and 1 < Ai < Pi2 < ... <  Am , and t is the mission time. 

The system cost is

For each subsystem, the additional cost C i (p n ,P i 2 , ■ ■■,Pim) exp (n*/4) is included 

to represent the cost for interconnecting parallel components.

7.2.1.4 Characteristics of the optimization problem

Two objectives, system utility and system cost, are considered in our optimiza­

tion model. Component state distributions Pij (i = 1,2,..., N, j  = 1,2,..., M) 

and redundancies rii ( i = 1,2,..., N  ) are to be determined so as to maximize 

system utility and minimize system cost. Note that pio — 1 — J2h=i Pik ■ This 

problem is formulated mathematically as a mixed integer multi-objective opti­

mization problem, in which the continuous variables represent the component 

state distributions and the integer variables represent the redundancies.

Available multi-objective optimization approaches include surrogate worth 

trade-off method [83], fuzzy optimization method [76], physical programming

[61], etc. The fuzzy optimization approach and the physical programming ap­

(7.19)

N

c  = J2°i(Pa,Pi2, -,PiM ) K  +  exp (rii/4)] (7.20)
i= 1
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proach have been describeed in Chpater 7. Compared to other multi-objective 

optimization approaches, physical programming provides a better way to spec­

ify designers’ preferences on different objectives, and it is easier to be used in 

practical problems. In this work, the physical programming approach is used 

to model and solve this reliability-redundancy optimization problem with two 

objectives.

7.2.1.5 Physical programming-based optimization problem formulation

The physical programming approach has been briefly discussed in Section 7.1.1.

In the work, we only consider system utility and system cost as design objec­

tives, since the focus of this work is the joint reliability redundancy optimiza­

tion. The physical programming-based optimization model for the multi-state 

reliability allocation problem is formulated as follows:

min /  =  log10 { i [gv (U) + gc  (C)]} 

s.t.

U > U 0 

C<c0
o < Pij < 1 , * =  1,2,..., N, j  =  1,2,..., M

T,jLiPij < 1> i =  1,2,..., IV 

0 < rii, i =  1, 2,..., N  

rii are integers

where /  is the aggregate objective function; gjj and gc are the class functions 

of system utility and system cost, and they are functions of system utility U 

and system cost C  , which can be calculated using the formula presented in 

this section; gv is Class-2S class function, and gc is Class-IS class function; U0
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Table 7.5: System utility with respect to each system state

s 0 1 2

us 0 .0 0.5 1 .0

and Co are constraint values, they are equal to the boundaries of the accept­

able ranges of the corresponding objectives. Refer to Messac [61] for detailed 

descriptions on the physical programming approach.

The physical programming-based model presented in equation (7.21) is a 

mixed integer single-objective optimization model. Algorithms such as branch- 

and-bound, and generalized Benders decomposition and outer approximation 

[23] have been used to solve this kind of problems. However, the most effective 

algorithm to solve mixed integer optimization problems, we believe, is genetic 

algorithm (GA). The encoding method of GA enables it to directly represent 

continuous design variables and discrete design variables as well, which makes 

the solution process much simpler. In addition, GA has very good global opti­

mization capability. Therefore, GA is used to solve the physical programming 

based model in this work.

7.2.2 A n exam ple

A 3-stage multi-state series-parallel system is used to illustrate the proposed 

reliability-redundancy allocation approach. The three stages (subsystems) are 

connected in series, and each subsystem i has n l identical and independently 

distributed components connected in parallel. The system is a three-state 

system, where the system and components can be in three states 0 , 1 and 

2. The system utility us with respect to the corresponding system state s is 

shown in Table 7.5.
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Table 7.6: Characteristic constants for the system

Stage i ag______ag fin f3i2
1 1.510-5 4.010-5 1.2 1.5
2 0.910-5 3.210-5
3 5.210-5 9.010-5

Table 7.7: Physical programming class functions setting

_____________ 9 il fli2 fh z  9iA 9i5
Utility 0.99 0.97 0.92 0.85 0.75
Cost 30 50 100 150 200

The cost of component is assumed to follow the relationship given in equa­

tion (7.19). The characteristic constants used in this example are presented in 

Table 7.6. The mission time is set to be t = 1000 .

In the physical programming framework, the utility objective has Class-2S 

class function (larger is better), while the cost objective has Class-lS class 

functions (smaller is better). The class function settings for the three ob­

jectives are shown in Table 7.7, where gn to g& represent the boundaries of 

different desirable ranges for the utility and cost objectives (Messac, 1996). 

The constraint values JJq and Co are equal to the boundary values gl$ of the 

corresponding objectives. There are 9 design variables in this problem:

X  = {pn,  P 1 2 , P 2 1 , P 2 2 , Pai, P 3 2 , n u n 2, n3} (7.22)

GA is used to solve the formulated single-objective nonlinear optimization 

model shown in equation (7.21). In this problem, the population size is chosen 

to be 100. The decimal encoding is used and the chromosome length is set to 

be 15. We use the roulette-wheel selection scheme, one-point cross operator
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Table 7.8: Optimization results for the reliability-redundancy allocation prob­
lem

Stage i State distribution rii System utility System cost /
Pn Pi2

1 0.2030 0.4200 8 0.9734 89.4761 -0.1581
2 0.2109 0.4300 8

3 0 . 2 1 0 0 0.4000 7

with cross rate of 0.25, and even mutation operator with mutation rate of 0.1.

The results obtained from the GA algorithm are listed in Table 7.8, where 

/  denotes the aggregate objective function value in the physical programming- 

based optimization model. The optimal system utility value is 0.9734, which 

falls into the highly desirable range. The optimal system cost value is 89.4761, 

which falls into the desirable range. Such a result is satisfactory considering 

the DM’s preferences on these two objectives.

If there are only limited versions of components with specific state dis­

tribution for each stage, the result we get will not be as optimal. Suppose 

that there are four different versions of components available for each stage, as 

shown in Table 7.9, where hi denotes the component version for stage i . We 

can select component from the available versions for each stage and determine 

the optimal redundancy values. We use the same characteristic constants 

setting and the same approach to evaluate the system cost as those in the 

reliability-redundancy allocation problem above. The physical programming 

class functions setting and the system utility with respect to each system state 

are also set to be the same.

After solving the redundancy optimization problem, we get the results 

shown in Table 7.10. Compared with the results obtained by reliability- 

redundancy allocation optimization in Table 7.8, we can find that the opti-
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Table 7.9: Characteristics of available components

Stage % hi Pn Pi2
1 1 0.30 0.52

2 0.25 0.35
3 0 . 1 2 0.45
4 0 . 1 0 0.60

2 1 0 .2 1 0.64
2 0.25 0.33
3 0.30 0.48
4 0.14 0.40

3 1 0.28 0.40
2 0 .2 1 0.50
3 0.15 0.55
4 0.30 0.15

Table 7.10: Optimization results for the redundancy allocation problem

Stage i H State distribution rii System utility System cost /
Pn Pi2

1 3 0 . 1 2 0 0 0.4500 7 0.9721 89.5769 -0.1533
2 3 0.3000 0.4800 7
3 1 0.2800 0.4000 7

mized system utility and system cost are both a little bit worse. The aggregate 

objective function value is larger, which is caused by the additional constraints. 

The state distributions of the selected components will not happen to be the 

same as the optimal state distribution obtained in the joint optimization of 

state distributions and redundancies presented above.

7.2.3 Conclusions

This work identifies that there are two options to improve the system utility of 

a multi-state series-parallel system: (1 ) to provide redundancy at each stage,
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(2 ) to improve the component state distributions. We present an optimization 

model for multi-state series-parallel system to attempt to jointly determine 

the optimal component state distribution and optimal redundancy for each 

stage. This work explains how component state distribution might be used as 

controllable design variable, and presents the relationship between component 

state distribution and component cost based on an assumption on the treat­

ments on the component. The example illustrates the optimization model and 

its solution approach, and the reason why the proposed reliability-redundancy 

allocation model is superior to the current redundancy allocation models.

7.3 Concluding remarks

In this chapter, we have discussed how to improve the reliability based optimal 

design of multi-state series-parallel systems. We develop a physical program­

ming and genetic algorithms based approach for dealing with multiple con­

flicting design objectives, such as system reliability and system cost, which are 

typically involved in reliability based optimization of multi-state systems. It 

has been illustrated that the proposed approach is more effective in capturing 

designers’ preferences on different design objectives.

We have also in this chapter discussed how to extend the redundancy opti­

mization of multi-state series-parallel systems to the joint reliability-redundancy 

optimization of multi-state series-parallel systems. That is, in addition to re­

dundancies, component state distributions are treated as design variables as 

well. The optimization model is developed, and a numerical example is used to 

illustrate the superiority of the proposed model over current redundancy alloca­

tion models. Practical applications of the proposed joint reliability-redundancy 

optimization needs to be futher explored. Hopefully, what have been done in
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this chapter can provide basic approaches for joint reliability-redundancy op­

timization of multi-state systems, and inspire people to develop more effective 

and practical approaches for this purpose.
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C h a p t e r  8

C o n c l u s i o n s  a n d  F u t u r e  W o r k

8.1 Conclusions

Reliability is one of the most critical performance measures of today’s complex 

systems, and has been emphasized more and more by academia, industry and 

government. Reliability of a system needs to be evaluated accurately, and it 

can be achieved through optimal reliability design.

In traditional binary reliability framework, both systems and components 

can only take two possible states: completely working and totally failed. How­

ever, engineering systems typically have multiple partial failure states in ad­

dition to the above-mentioned completely working and totally failed states. 

Reliability analysis considering multiple possible states is known as multi-state 

reliability analysis, and systems under consideration are known as multi-state 

systems. Multi-state reliability analysis recognizes the multiple possible states 

of engineering systems. It can map component performances to system per­

formances more accurately, and be able to answer more questions such as the 

probabilities of a system in different possible states.

In conclusion, this research work makes significant contributions to multi­

state system reliability theory, including reliability modeling, evaluation and
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optimal design of multi-state systems.

(1) Efficient m ethods have been developed for reliability evalua­

tion of m ulti-state system s w ith  fc-out-of-n structures. Since it is hard 

to find a method that can be used to efficiently evaluate the reliability of sys­

tems with any type of system structures, it is thus very important to develop 

methods for efficient reliability evaluation of systems with special structures. 

We have studied multi-state systems with A;-out-of-n structures and developed 

more efficient reliability evaluation methods. We have developed exact reli­

ability evaluation methods as well as a reliability bounding approach for the 

generalized multi-state &-out-of-n system model defined by Huang et al (2000). 

We have presented another special multi-state k-out-of-n system model with 

higher flexibility, compared to Huang’s model (2000), together with its reli­

ability evaluation algorithm. Finally, we have proposed a unified A;-out-of-n 

system model, which can treat the binary /c-out-of-n system models, multi­

state /c-out-of-n models and weighted A;-out-of-n models as special cases, and 

developed efficient methods for its reliability evaluation.

(2) A n efficient m ethod has been developed for reliability eval­

uation of m ulti-state two-term inal networks given all m inim al path  

vectors. The proposed method is based on the recursive computation prin­

ciple and the Sum of Disjoint Products principle, and is called the Recursive 

Sum of Disjoint Products (RSDP) method. It is more efficient than reported 

methods including the Inclusion-Exclusion (IE) method and Aven’s method 

(1985).

(3) The recursive com putation principle is the com m on princi­

ple in the system  reliability evaluation algorithm s proposed in this 

work. Three basic elements in a recursive algorithm have been identified
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and discussed: recursive function, updating procedure and boundary condi­

tions. The system reliability evaluation algorithms developed in this work for 

multi-state A>out-of-n systems and multi-state two-terminal networks are all 

recursive algorithms.

(4) A n effective m ethod has been developed for dealing w ith  mul­

tip le objectives involved in the optim al design of m ulti-state series- 

parallel system s. The method is based on physical programming and genetic 

algorithms, and it has been illustrated to be more effective in capturing de­

signers’ preferences on different design objectives than the reported methods in 

the literature such as single-objective method and fuzzy optimization method.

(5) A joint reliability and redundancy optim ization m ethod has 

been developed for m ulti-state series-parallel system s. In addition to 

redundancies, component state distributions are treated as design variables as 

well. The method has been illustrated to be superior to current redundancy 

allocation methods.

W ith efficient reliability evaluation methods and effective reliability based 

design approaches for multi-state engineering systems, the research results out 

of this work would provide useful tools for achieving highly reliable and cost 

effective engineering systems.

8.2 Future work

Based on the multi-state system reliability modeling, evaluation and design 

methods presented in this research work, there are some interesting topics for 

future study.
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8.2.1 A pplication study of m ulti-state system  reliability

In the area of multi-state system reliability, most of the reported research 

studies are focused on theoretical study. The contributions of this thesis work 

are also mainly on the theoretical side. More application study should be 

carried on.

The fact is on one hand, a lot of practical reliability related problems are 

multi-state reliability problems, such as those for power transmission and gen­

eration systems, transportation systems, communication systems, etc. These 

problems are currently dealt with using less efficient methods such as simula­

tion methods. On the other hand, there are a lot of research going on in the 

area of multi-state system reliability and a lot of challenging problems have 

been given better solutions, such as the reliability evaluations methods pro­

posed in this work for multi-state fc-out-of-n systems. Thus, more application 

study of multi-state system reliability would be very valuable to fill the gap. 

The most immediate step would be to identify practical multi-state systems 

with /c-out-of-n structures, and apply the methods developed in this work for 

the reliability evaluation of such systems. I would also like to explore large scale 

practical applications of multi-state network reliability methods. Practical en­

gineering systems that I would like to investigate further include transportation 

systems particularly road transportation systems and railway transportation 

systems, manufacturing systems, and power generation and transmission sys­

tems.

8.2.2 Study of more com plex m ulti-state system s

We might be able to develop more effective methods for more complex multi­

state systems, based on the methods developed in this thesis work. For exam-
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pie, we have developed an efficient method for evaluating reliability of multi­

state two-terminal networks. The method might be able to be extended to the 

case of multi-state all-terminal networks, which is a more general and practical 

case.

In this thesis work, we have focused on multi-state systems with explicitly 

specified system structures, such as /c-out-of-n structures and two-terminal 

network structure. Many multi-state systems do not have such a special struc­

ture. The structure function, describing the relationship between system per­

formance and component performances, might be a general function. Or the 

system model might be a simulation based model. As an example, let us con­

sider the road transportation system within the city of Edmonton, Alberta, 

Canada. A road section might be in different states, depending on the road 

conditions. The system level performance measure is the satisfaction level of 

the residents on the road transportation system, which is dependent on the 

conditions of the road sections in the system. This is a complex relationship 

and can not be described using a simple system structure. Thus, this road 

transportation system is a multi-state system with no special structures. Ef­

fective reliability modeling and evaluation methods are yet to be developed for 

such complex cases of multi-state system.

8.2.3 Integrated design and maintenance optimization

In Section 7.2, we present an approach for joint reliability and redundancy 

optimization of multi-state series-parallel systems. In addition to considering 

system reliability at the design stage, maintenance is an important way to 

improve system reliability when the system is in the operation stage. There 

are reported researches studies in separate reliability based optimal design
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and maintenance optimization. However, in the reliability based optimization 

of systems such as power generation systems, we would be able to generate 

better optimization results, in terms of improving system reliability and low­

ering system cost, if we conduct the integrated design and maintenance opti­

mization. Specifically, the integrated optimization model for a series-parallel 

system might be built by using system reliability and system cost as design 

objectives and using the following variables as design variables: the number of 

components in each subsystem, the versions of components in each subsystem, 

maintenance intervals, and maintenance resources allocation.

8.2.4 Convergence of multi-state system reliability analysis and re­

liability based design optimization

Multi-state system reliability has been intensively studied in the field of reli­

ability engineering, mainly focusing on systems with special structures, such 

as network systems, fc-out-of-n systems and consecutively connected systems. 

The developed reliability evaluation algorithms aims at efficiently evaluating 

systems with a large number of components. In the area of mechanical en­

gineering, however, a lot of research studies on reliability based design opti­

mization (RBDO) have been conducted [18, 17, 6 8 ]. RBDO has been mainly 

focused on systems with general structures. And reported RBDO approaches 

typically suffer from the limitation of only being able to deal with a small 

number of uncertainty sources, or components if we use the term in multi­

state system reliability analysis. However, the goals for multi-state system 

reliability in the reliability engineering area and RBDO in mechanical engi­

neering area are the same, that is, to develop effective and efficient tools for 

system reliability evaluation and design optimization. There is a good po­
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tential to develop more effective and efficient tools based on research results 

developed in these two areas. Specifically, we might be able to apply results 

developed in one area to the other to achieve better solutions, and we might 

also be able to develop efficient reliability evaluation approaches for systems 

with general system structure and a large number of components.
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