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Abstract—Infrastructure projects for harnessing renewable energy (e.g., wind farm projects) have recently gained popularity because of their 9 
low adverse impact on the environment. However, it is challenging to perform risk assessments for these projects because data are either scarce 10 
or of low quality. Therefore, risk assessments for renewable energy infrastructure projects must rely on expert knowledge and can be treated as 11 
multi-criteria group decision-making (MCGDM) problems. In group decision-making problems, consensus must be built between individual 12 
decision makers who each supply their own preference indices for decision alternatives. This paper introduces a novel technique for consensus 13 
building in MCGDM problems using the principle of justifiable granularity, thereby producing an interval-valued fuzzy set that represents the 14 
aggregated value of the preference indices assigned to decision alternatives by decision makers. The preference indices obtained from each expert 15 
are realized through the analytic hierarchy process (AHP). In this paper, the introduced MCGDM technique is used to assess risk for wind farm 16 
projects. First, a context-specific work breakdown structure for wind farm projects is developed. Second, construction work packages are ranked 17 
based on how much they contribute to the overall risk or uncertainty involved in achieving the project objectives of time, cost, quality, and safety. 18 
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I. INTRODUCTION 20 

Finding the right balance between efficiency, cost-effectiveness, and safety throughout an energy facility’s life cycle depends 21 

on the proper construction, operation, and maintenance of that facility. Facilities that use energy resources are classified as energy 22 

infrastructure, which is defined as the “physical infrastructure required for producing, transforming, transmitting, distributing, and 23 

storing energy” [1]. Improving performance on energy infrastructure projects is a significant concern in many engineering 24 

disciplines, including construction, civil and electrical engineering. In order to improve performance, the numerous risks that energy 25 

infrastructure projects are exposed to throughout their life cycles need to be properly addressed. Renewable energy projects (i.e., 26 

projects intended to harness energy from renewable resources, such as solar panels and wind farms) have attracted much attention 27 

from academia in recent years, but it is challenging to assess risk on these projects because the data are either scarce or of low 28 

quality. Data scarcity and their low quality can be attributed to new technologies that are not commonly used on conventional 29 

energy infrastructure projects (e.g., oilsands projects), but that are necessary for renewable energy projects. Therefore, risk 30 

assessments for renewable energy projects must rely on expert judgment and can be treated as group decision-making problems. In 31 

order to perform comprehensive risk assessments for energy infrastructure projects, experts need to take into consideration the risks 32 

or uncertainties involved in achieving project objectives in terms of four different criteria: cost, time, quality, and safety. Thus, risk 33 

assessment problems for renewable energy infrastructure projects can be solved using multi-criteria group decision-making 34 

(MCGDM) techniques. 35 

Developed by Saaty [2], the analytic hierarchy process (AHP) is a multi-criteria decision-making (MCDM) technique based on 36 

the pairwise comparison of decision alternatives, and it has a broad range of applications in decision-making problems [3]. However, 37 

this technique has limitations in terms of building consensus between decision makers, making its application to group decision-38 

making problems challenging. Consensus can be described as an acceptable resolution of the decision outputs that is supported by 39 

a majority of decision makers; extreme decision outputs may be excluded. When using the AHP technique, consensus can be built 40 

by developing a methodology for aggregating the preference indices determined by different experts for each decision alternative. 41 

Previous research on aggregation methodologies for group decision-making using the AHP technique can be categorized into two 42 

groups [4]: 1) methodologies that focus on the aggregation of the elements of reciprocal matrices using the weighted geometric 43 

mean or the weighted median (see [5]) and 2) methodologies that focus on the aggregation of vectors produced by the AHP 44 

technique. 45 

This paper has two objectives. The first is to develop a new technique for MCGDM as an extension of the AHP technique. This 46 

new technique aggregates the results produced by individual AHP models into interval-valued fuzzy sets of preferences. The 47 

interval-valued fuzzy sets, which represent consensus between the decision makers, are developed using the principle of justifiable 48 

granularity. This principle maximizes both the coverage of the intervals (including the largest number of individual preference 49 

indices) and their specificity (including the lowest level of uncertainty). The second objective of this paper is to assess the risks of 50 

wind farm projects using the newly developed MCGDM technique. To make this assessment, the work breakdown structure (WBS) 51 



of wind farm projects must first be developed. The new MCGDM technique is then used to rank the construction work packages 52 

(CWPs) based on how much they contribute to the overall risk or uncertainty involved in achieving project objectives in terms of 53 

cost, time, quality, and safety. 54 

The rest of this paper is structured as follows. Section II presents a brief introduction of the AHP technique and describes the 55 

challenges of group decision-making using the AHP technique. In Section III, the principle of justifiable granularity is described, 56 

the application of this principle for building consensus in group decision-making using the AHP technique is discussed, and the 57 

MCGDM technique developed in this paper is introduced. Section IV presents the WBS of wind farm projects and the results of 58 

the risk assessment for these projects. Finally, Section V discusses conclusions and suggests future research on this topic. 59 

II. AHP AND ITS APPLICATION IN GROUP DECISION-MAKING 60 

A. A Brief Introduction to the AHP Technique 61 

The AHP is an MCDM technique developed by Saaty [2] that is based on the pairwise comparison of decision alternatives. 62 

According to Saaty [2], more accurate results are achieved when only two alternatives are evaluated at a time, as opposed to when 63 

all decision alternatives are compared simultaneously. Moreover, the AHP technique can be used to develop fuzzy membership 64 

functions that represent the linguistic or subjective uncertainties of real-world variables. It is challenging to address subjective 65 

uncertainties related to real-world systems through probability theory, but the application of fuzzy set theory enhances the ability 66 

of MCDM techniques for risk management to address these subjective uncertainties [6]. Particularly in risk management, the AHP 67 

is a pivotal part of analyzing uncertainties and risks [7]. In this paper, the collection of 𝑛 alternatives 𝑥1, 𝑥2, … , 𝑥𝑛 is used for 68 

decision-making with the AHP technique. The degree of preference of the alternatives over one another (i.e., the results of the 69 

pairwise comparisons) are represented by the reciprocal pairwise comparison matrix 𝐴 = [𝑟𝑖𝑗], 𝑟𝑖𝑗 =
1

𝑟𝑗𝑖
, 𝑖, 𝑗 = 1, 2, … , 𝑛, where 70 

𝑟𝑖𝑗 represents the result of pairwise comparison between the alternatives 𝑖 and 𝑗 and the elements of the main diagonal (𝑖 = 𝑗) are 71 

equal to 1. The degree to which one alternative is preferred over another is expressed using the nine-level linguistic scale provided 72 

in Saaty [2], as shown in Table 1. 73 

Table 1. The linguistic scale of the AHP technique. 74 

Grade AHP linguistic scale 

1 Equally essential 

3 Moderately more essential 

5 Strongly more essential 

7 Demonstratively more essential 

9 Extremely more essential 

2, 4, 6, 8 Compromises/between 

Once the reciprocal matrix 𝐴  has been developed, the maximal eigenvalue 𝜆𝑚𝑎𝑥  and its corresponding eigenvector are 75 

determined using Equation 1: 76 

(𝐴 − 𝜆𝑚𝑎𝑥𝐼) 𝑒 = 0  (1) 77 

where A is the reciprocal matrix, 𝜆𝑚𝑎𝑥 stands for the maximum eigenvalue of matrix A, and 𝐼 is the identity matrix. The consistency 78 

of the reciprocal matrix is the consistency of the pairwise comparisons between the different alternatives. For example, if alternative 79 

J is more important than K, and alternative K is more important than L, then alternative J needs to be more important than L in a 80 

consistent reciprocal matrix. In a perfectly consistent reciprocal matrix, the maximum eigenvalue should be equal to the number of 81 

alternatives. Accordingly, the consistency index (CI) of the reciprocal matrix is determined by comparing the maximum eigenvalue 82 

of the reciprocal matrix with perfect conditions, as presented below. 83 

𝐶𝐼 =
λ𝒎𝒂𝒙−𝑛

𝑛−1
  (2) 84 

where λ𝑚𝑎𝑥 stands for the maximum eigenvalue of the reciprocal matrix and n represents the dimensionality of the reciprocal matrix 85 

(i.e., the number of alternatives). Because the reciprocal matrices of real-world decision-making problems are usually inconsistent 86 

to some extent, it is necessary to specify a threshold for maximum acceptable inconsistency in order to rule out reciprocal matrices 87 

that are extremely inconsistent. Per Saaty [8], the consistency ratio (CR) of a reciprocal matrix is determined by comparing the 88 

consistency index of the reciprocal matrix to the consistency index of a randomly generated matrix (RI) with the formula 𝐶𝑅 =89 

𝐶𝐼/𝑅𝐼. The threshold for the maximum acceptable consistency ratio (CR) is specified to rule out any inconsistent reciprocal matrices. 90 

In this paper, the threshold for the maximum acceptable consistency ratio is less than 10% [2], [3], [9]. Any reciprocal matrix with 91 

a consistency ratio of 10% or higher is excluded from the decision-making process and the reciprocal matrix is reevaluated. If the 92 

difference between the preference indices of two alternatives is extremely small, the difference between those two alternatives will 93 

be ambiguous and they may not be distinguishable [10]. In such situations, the difference between the two alternatives is reevaluated 94 

in order to find out: 1) if the two alternatives are in fact distinguishable, in which case the choice for one alternative over the other 95 



may be made based on the personal preference of the decision maker rather than the results of the AHP technique, or 2) if the two 96 

alternatives should be combined into a single alternative. In this paper, the difference between the preference indices of any two 97 

alternatives should be greater than 0.05 for the two alternatives to be considered distinguishable alternatives in decision-making. 98 

B. Group Decision-Making with the AHP Technique 99 

Traditionally, collective intelligence is recommended as a way achieve accuracy in decision-making [11]. However, in group 100 

decision-making, different decision makers may make similar or completely opposite choices, since their decisions are based on 101 

various factors including educational background, personal preference, experience, the decision environment and even moral values 102 

[12]. Therefore, an essential part of solving group decision-making problems is the aggregation of the preference indices assigned 103 

to each decision alternative by different decision makers into one single preference index [13]. In this paper, p number of decision 104 

makers are involved in group decision-making, and they provide the reciprocal matrices 𝐴1, 𝐴2, … , 𝐴𝑝 that are used to evaluate the 105 

preference indices of n number of alternatives (refer to Section II). For each decision maker, the consistency level of the reciprocal 106 

matrix is determined as 𝐶1, 𝐶2, … , 𝐶𝑝. Next, for all the obtained reciprocal matrices, the vectors of the preference indices for n 107 

alternatives are determined as A, 𝑃1, 𝑃2, … , 𝑃𝑛. Then, as discussed in Section III, the preference indices for each alternative (𝑃𝑖) are 108 

aggregated using the principle of justifiable granularity to build consensus between the decision makers. 109 

III. THE AGGREGATION OF PREFERENCE MATRICES USING THE PRINCIPLE OF JUSTIFIABLE GRANULARITY 110 

This section describes the methodology for building consensus between a group of decision makers whose decisions are 111 

presented as preference matrices that are developed using the AHP technique. In order to build such consensus, the preference 112 

matrices developed by decision makers are aggregated. The elements of the aggregated preference matrix are represented as type-2 113 

fuzzy sets, where the preference index of each alternative is expressed as an interval rather than a crisp number. Type-1 fuzzy sets, 114 

defined over a discrete space of alternatives, return a crisp number for the preference index of each alternative, while interval-115 

valued, or type-2, fuzzy sets return an interval for the preference index of each alternative. While using type-1 fuzzy sets only 116 

provides information about the preference index of the alternatives, using interval-valued fuzzy sets provides information about the 117 

preference indices of the alternatives and the level of agreement (or disagreement) between decision makers. Using interval-valued 118 

fuzzy sets is therefore preferable in this case since it provides more information than using type-1 fuzzy sets. Fig. 1 represents an 119 

example of the triangular membership function of interval-valued fuzzy sets. 120 

 121 
Fig. 1. Example of a triangular membership function of interval valued fuzzy sets. 122 

In Fig. 1, �̃�𝐿  and  �̃�𝑈  represent the triangular membership functions for the lower and upper limits, respectively, of the 123 

interval-valued preference indices. 𝐻 �̃�𝐿 and 𝐻 �̃�𝑈 represent the height of the triangular membership functions for the lower and 124 

upper limits, respectively, of the interval-valued preference indices. The minimum, core and maximum values of the triangular 125 

membership function for the lower of the interval-valued preference indices are �̃�0
𝐿 , �̃�1

𝐿  and �̃�2
𝐿 , and �̃�0

𝑈 , �̃�1
𝑈  and �̃�2

𝑈  are the 126 

minimum, core and maximum values for the upper limit of the interval-valued preference indices. The alternatives and their 127 

membership degrees are expressed on the x axis and the μ axis, respectively. 128 

In this paper, the interval-valued fuzzy sets representing the preference indices of alternatives are developed through the 129 

following steps. In the first step, the preference indices determined by each decision maker are normalized as follows. 130 

𝑒𝑖
′ =

𝑒𝑖−𝑒𝑚𝑖𝑛

𝑒𝑚𝑎𝑥−𝑒𝑖
  (3)  131 

where 𝑒𝑖
′ stands for the normalized value of the preference index for alternative 𝑖, 𝑒𝑖 stands for the original value of the preference 132 

index and 𝑒𝑚𝑖𝑛 and 𝑒𝑚𝑎𝑥 represent the minimum and maximum preference index, respectively. 133 

In the second step, the aggregation of the preference index for each decision alternative i is determined by 𝐴𝑖= [𝑒′1, 𝑒′2, … , 𝑒′𝑝], 134 

where 𝑒𝑗
′ represents the normalized preference index determined by decision maker j and p stands for the number of decision 135 

makers. In the third step, the consistency indices (𝐶𝐼𝑗) of the reciprocal matrices are determined as discussed in Section II (refer to 136 

(2)), and the consistency of each reciprocal matrix j is calculated as 𝐶𝑗 = 1 − 𝐶𝐼𝑗  in order to weight the preference indices 137 



determined by the decision maker j. Thus, the aggregation of preference indices for decision alternative i is determined by 𝐴𝑖 =138 

[(𝐶1, 𝑒1
′), (𝐶2, 𝑒2

′ ), … , (𝐶𝑝, 𝑒𝑝
′ )], where 𝐶𝑗 stands for the consistency of the reciprocal matrix developed by decision maker j. In the 139 

fourth step, the principle of justifiable granularity is used to determine the interval-valued fuzzy sets representing the preference 140 

indices of alternatives, in which the preference index of each alternative is represented by an interval [𝑒−, 𝑒+]. In order to determine 141 

the values of 𝑒− and 𝑒+ for each alternative, the weighted median of the preference indices of each alternative is determined using 142 

(4). 143 

𝑒𝑖
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐶𝑗|𝑒𝑗,𝑖 − 𝑒𝑖

∗|
𝑝
𝑗=1   (4)  144 

where 𝑒∗ stands for the weighted median of the preference indices of alternative i, 𝐶𝑗 stands for the consistency of the reciprocal 145 

matrix determined by decision maker j and 𝑒𝑗,𝑖 represents the value of the preference index determined for alternative i by decision 146 

maker j. Next, the lower and upper bounds of the interval-valued preference index of each alternative is determined by maximizing 147 

the coverage and the specificity of the interval simultaneously. Since there is a conflict between maximization of the coverage and 148 

maximization of the specificity, the composite index of the two measures—determined as the product of the two expressions—is 149 

maximized [14]. Thus, the lower and the upper bounds of the interval-valued preference index of the alternative i (i.e., 𝑒𝑖
−, 𝑒𝑖

+) are 150 

determined using (5) and (6), respectively. 151 

𝑒𝑖
− = 𝑎𝑟𝑔𝑚𝑎𝑥  𝐶𝑜𝑣(𝑒𝑖

−). 𝑆𝑝(𝑒𝑖
−)  (5)  152 

𝑒𝑖
+ = 𝑎𝑟𝑔𝑚𝑎𝑥  𝐶𝑜𝑣(𝑒𝑖

+). 𝑆𝑝(𝑒𝑖
+)  (6)  153 

where 𝐶𝑜𝑣(𝑒𝑖
−) stands for the coverage of the lower bound of the interval-valued preference index of alternative i and 𝑆𝑝(𝑒𝑖

−) 154 

stands for the specificity of the lower bound of the interval-valued preference index of alternative i. 𝐶𝑜𝑣(𝑒𝑖
+) and 𝑆𝑝(𝑒𝑖

+) can be 155 

similarly defined for the upper bound of the interval. The values of coverage and specificity for the lower and upper bounds of the 156 

interval-valued preference index of alternative i are calculated using (7) and (8), respectively [14], [15], [16]. 157 

𝐶𝑜𝑣(𝑒𝑖
−) = ∑ 𝐶𝑗          𝑤ℎ𝑒𝑛  𝑒− < 𝑒𝑝 < 𝑒∗𝑝

𝑗=1   (7)  158 

𝐶𝑜𝑣(𝑒𝑖
+) = ∑ 𝐶𝑗          𝑤ℎ𝑒𝑛  𝑒∗ < 𝑒𝑝 < 𝑒+𝑝

𝑗=1   (8)  159 

The specificity of the lower and upper bounds of the interval-valued preference index of alternative i are calculated in the 160 

following form [14], [15], [16]. 161 

𝑆𝑝(𝑒𝑖
−) = 1 − 

|𝑒−−𝑒∗|

|𝑒𝑚𝑖𝑛−𝑒∗|
  (9) 162 

𝑆𝑝(𝑒𝑖
+) = 1 − 

|𝑒+−𝑒∗|

|𝑒𝑚𝑎𝑥−𝑒∗|
  (10) 163 

IV. THE RISK ASSESSMENT OF WIND FARM PROJECTS USING THE PROPOSED MULTI-CRITERIA GROUP DECISION-MAKING 164 

TECHNIQUE 165 

The definition of energy infrastructure projects (see Section I) is used to develop the context-specific WBS of wind farm 166 

projects, as presented in Fig. 2. In this paper, the WBS is developed through an extensive literature review and the investigation of 167 

two actual wind farm projects that are located in Canada. Further information about these wind farm projects is publicly available 168 

at [17], [18]. 169 

Wind Farm Project 1:  The Port Ryerse Wind Power Project, which is located east of the hamlet of Port Ryerse in Norfolk 170 

County, Ontario, is developed by Boralex Inc. (Boralex) in association with UDI Renewables Corporation (UDI). This project 171 

includes four Siemens SWT 3.0 113 wind turbine generators. The 3.0 MW turbines are customized to a nameplate capacity of 2.5 172 

MW for this project. The total maximum installed nameplate capacity of all four turbines does not exceed 10 MW. Other basic 173 

components of the project include step-up transformers located adjacent to the base of each turbine (steps up voltage from 174 

approximately 0.69 kV to 27.6 kV), a 27.6 kV underground collector system, fiber optic data lines, a distribution substation, a 175 

permanent parking lot (if required), a meteorological tower and turbine access roads. 176 

Wind Farm Project 2: The second wind farm project is located in the Township of West Lincoln in the Niagara region of 177 

Ontario and is owned by IPC Energy. The project consists of five Vestas V-100 18 MW wind turbines producing a nameplate 178 

capacity of 9 MW. The undertaking includes three phases: construction, operation and maintenance, and decommissioning of the 179 

facility and its associated infrastructure. 180 

The context-specific WBS for wind farm projects, as shown in Fig. 2, represents CWPs at the third level, which are briefly 181 

described as follows: 182 

Pre-Construction Activities: This CWP includes three main tasks, namely clearing (trees, existing structures, etc.), stripping 183 

and removal of topsoil, and site preparation. 184 



Surveying: Land surveys are done to identify the exact location of important structures such as turbines, access roads, etc. The 185 

positions of other structures necessary for construction, such as temporary crane pads and laydown areas, are also specified during 186 

surveying. 187 

Turbine Foundation: This CWP includes construction activities such as excavation, formwork construction, concrete delivery, 188 

steel reinforcement installation, concrete pouring, curing, hauling, backfilling, and compaction. The construction of this CWP may 189 

differ at each wind turbine, depending on the location of each foundation and its accessibility to other site facilities (e.g., access 190 

roads, etc.). 191 

 192 
Fig. 2. Work breakdown structure (WBS) for wind farm projects. 193 

Turbine Assembly: This CWP involves all the activities required for the assembly of the wind turbines, including cable 194 

installation, unloading turbines, tower lower-part erection, tower upper-part erection, nacelle assembly, nacelle lifting, nacelle 195 

bolting, rotor assembly (hub and blades), and rotor lifting and bolting. 196 

Electrical Collector Lines: Underground collector lines and fiber optic data lines are put into place for the interconnections 197 

and distribution systems that are below ground. This CWP involves all activities required to install the electrical collector and optic 198 

data lines, including trench plowing, sand bedding and backfilling. The construction activities included in this CWP may differ 199 

depending on the construction method selected for installing the collector and data fiber lines (i.e., open-cut/trenching versus 200 

closed-cut). 201 

Electrical Distribution Substation: This CWP involves the construction of the electrical distribution station building and 202 

includes activities such as formwork construction, steel reinforcement installation, transport and placement of concrete, and curing 203 

for reinforced concrete structures. The construction activities included in this CWP may differ depending on the structure type of 204 

the electrical distribution station building (i.e., concrete structure versus steel structure).  205 

Access Roads and Parking Lot: Access roads connect the site entrance to an existing municipal road. They are built 206 

specifically to provide access for construction services.  207 

Stormwater Management System: This CWP involves the construction of ditches in order to avoid stormwater damage to 208 

incomplete construction works or the exposed surfaces of site facilities.  209 

Meteorological Tower: This CWP involves the construction of the meteorological tower building, which is accomplished 210 

through the following activities: excavation for anchors, anchor installation, assembly of meteorological tower segments, base plate 211 

installation, sensor and boom installation, and erection of the meteorological tower. 212 



Dewatering: Dewatering activities include removing unwanted water that may come as a form of stormwater runoff or ground 213 

water that manifests when performing excavations. 214 

O&M Building: The operation and maintenance building CWP includes the construction of a building to host the facilities 215 

required for the operation and maintenance of the wind farm project, as well as the provision of a workspace for the on-site 216 

management, engineering, and technician teams who are responsible for the operation and maintenance of the facility. 217 

In order to evaluate the risks associated with each CWP using the MCGDM technique introduced in this paper, a questionnaire 218 

survey was designed to acquire expert knowledge. The questionnaire asks experts to compare each pair of CWPs in terms of their 219 

contribution to the overall risk or uncertainty involved in achieving the project objectives in terms of cost, time, quality, and safety. 220 

Fig. 3 presents an example of questionnaire survey questions. 221 

 222 
Fig. 3. Questionnaire survey example. 223 

A total 15 responses were collected from construction researchers and used to evaluate the risks associated with each CWP 224 

using the MCGDM technique introduced in this paper. 225 

While the four criteria for decision-making—project cost, time, quality and safety—are equally weighted, the interval-valued 226 

preference index of each CWP (i.e., the decision alternative) is determined as presented in Table 2. As discussed in Section III, the 227 

interval values of the preference indices represent 1) the amount of risk each CWP contributes to the overall risk or uncertainty 228 

involved in achieving the project objectives and 2) the variability of the preference index given to each alternative by each different 229 

decision maker. The interval-valued preference indices are used to rank the CWPs in descending order, as shown in Table 2, where 230 

a higher preference index is associated with a higher level of risk contributed by the CWP. While the preference index for each 231 

CWP is calculated as a crisp interval (i.e., a non-fuzzy interval), interval ranking methods are used to rank the CWPs. Sengupta and 232 

Pal [19] discussed the three types of interval ranking problems: (1) non-overlapping intervals, in which there is no overlap between 233 

any pair of intervals; (2) partially overlapping intervals, in which there are overlaps between different intervals but none of the 234 

intervals are completely overlapped (i.e., covered) by others; and (3) overlapping intervals, in which some of the intervals are 235 

completely overlapped by others. According to Sengupta and Pal [19], non-overlapping intervals can be ranked using transitive 236 

relation, as presented below for two intervals 𝐴 =  [𝑎𝐿, 𝑎𝑅] and 𝐵 =  [𝑏𝐿, 𝑏𝑅]. 237 

𝐴 < 𝐵 ⟺ 𝑎𝑅 < 𝑏𝐿  (11) 238 

Since the transitive relation is not applicable to the ranking of partially overlapping and overlapping intervals, Sengupta and Pal 239 

[19] suggested using the midpoint and/or the width of intervals for ranking. There are also more complicated approaches for ranking 240 

partially overlapping and overlapping intervals using the probability theory; these approaches consider each interval a uniform 241 

distribution and use probabilistic relationships to rank them [19]. In this paper, the CWPs are ranked based on the geometric mean 242 

(GM) of their interval-valued preference index, as Sheen [20] suggested that ranking generalized fuzzy numbers by GMs is 243 

“computationally simple” and “logically sound.” According to Sheen [20], when ranking generalized fuzzy numbers by GMs, an 244 

alternative with a higher GM is ranked higher, and when there are two alternatives with an equal GM, the number with a lower 245 

geometric variance is ranked higher. 246 

As presented in Table 2, the results of the analysis show that the top three CWP contributors to project risk or uncertainty are 247 

the turbine foundation, the meteorological tower and turbine assembly. The turbine foundation has the highest aggregated 248 

preference index, the highest preference index in terms of the cost and quality criteria and the second highest preference index for 249 

the safety criterion. The high preference index of this CWP (i.e., turbine foundation) stems from the uncertainty involved in its 250 

associated activities such as excavation, which is extremely dependent on unseen underground conditions. The CWP for the 251 

meteorological tower has the second highest aggregated preference index and the highest preference index in two individual criteria: 252 

time and safety. The high preference index of this CWP in the safety criterion stems from the involvement of heavy construction 253 

equipment, such as cranes, in the execution of activities such as anchor installation, assemblies and raising the meteorological 254 

tower. The use of heavy construction equipment also elevates the preference index of this CWP for the time and cost criteria. 255 

Finally, the CWP for turbine assembly has the third highest aggregated preference index and the second highest preference index 256 

for the cost criterion. 257 



Table 2. Ranking of CWPs of wind farm projects based on their contribution to project risks or uncertainties. 258 

 

CWP 

Interval-Valued 

Preference Index 
Rank 

Lower 

Limit 

Upper 

Limit 
GM 

Turbine foundation 0.732 0.867 0.800 1 

Meteorological tower 0.533 0.741 0.637 2 

Turbine assembly 0.524 0.737 0.631 3 

Electrical collector lines  0.450 0.637 0.544 4 

Electrical distribution 

substation  

0.388 0.589 0.488 5 

O & M building 0.349 0.547 0.448 6 

Stormwater management 

system 

0.291 0.467 0.379 7 

Surveying works 0.243 0.471 0.357 8 

Access roads 0.250 0.444 0.347 9 

Pre-construction activities 0.215 0.418 0.316 10 

Dewatering  0.202 0.335 0.269 11 

V. CONCLUSIONS AND FUTURE WORK 259 

The AHP is a widely accepted MCDM technique that is used in a variety of engineering applications. However, making 260 

decisions in group settings using the AHP technique is challenging because this technique is not capable of building consensus 261 

within a group of decision makers. This paper’s first contribution is to extend the application of the AHP technique for MCGDM 262 

by introducing a new methodology for building consensus using the principle of justifiable granularity. The introduced methodology 263 

provides the results of decision-making (i.e., preference indices of alternatives) as type-2 fuzzy sets, which represent 1) the 264 

preference index of each alternative and 2) the variability of the preference indices given to each alternative by different decision 265 

makers. The lower and upper bounds of the interval-valued preference index need to be determined by satisfying two contradictory 266 

conditions. First, the lower and the upper bounds of the intervals need to be far enough away to maximize the inclusion of decisions 267 

(i.e., maximize the coverage). Second, the lower and upper bounds need to be close enough together to deliver a sound semantic 268 

(i.e., maximize specificity). The methodology presented in this paper shows that these two contradictory conditions can be satisfied 269 

simultaneously by maximizing the composite index of the two measures, which is the product of the coverage and the specificity 270 

of the intervals. 271 

The MCGDM technique developed in this paper is applied to the risk assessment of wind farm projects. Traditional techniques 272 

for the risk assessment of construction projects (e.g., the Monte Carlo simulation technique) usually rely on the availability of 273 

historical data. However, the risk assessment of renewable energy infrastructure projects (e.g., wind farm projects) relies extensively 274 

on expert judgment because data are either scarce or of low quality due to the novelty of the technologies used in these projects. 275 

This paper’s second contribution is the implementation of the developed MCGDM technique, using expert judgment, to the 276 

assessment of risks associated with construction wind farm projects. This is accomplished as follows. First, the WBS of wind farm 277 

projects is developed through an extensive literature review and the investigation of two real case studies. Next, using the introduced 278 

MCGDM technique, the CWPs (i.e., decision alternatives) of wind farm projects are ranked based on how much they contribute to 279 

the overall risk or uncertainty involved in the achieving the project objectives in terms of cost, time, quality, and safety (i.e., the 280 

decision criteria). The results of the risk assessment reveal that the three CWPs that have the most impact on overall risks or 281 

uncertainties associated with project success are the turbine foundation, the meteorological tower and turbine assembly. These three 282 

CWPs therefore need to be carefully planned and monitored on wind farm projects. In future research, the MCGDM technique 283 

introduced in this paper will be extended to ascertain the weights of decision criteria prior to the preference indices of the alternatives 284 

in order to improve accuracy. In addition, the extended technique will be applied to the risk assessment of wind farm projects to 285 

obtain a more accurate and comprehensive overview of the risks associated with each CWP. 286 
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