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Abstract

Interactions between droplets were studied using two lattice Boltzmann methods (LBMs).

The Shan-Chen LBM, in which repulsive forces between fluids maintain phase separa-

tion, was used to simulate systems with three immiscible components. The simulations

demonstrated the three equilibrium configurations of two droplets in a third fluid: adher-

ing, separated, and engulfed. Simulations of adhering droplet pairs, called Janus droplets

due to their two-sided structure, in shear flow revealed the structure of the internal flow and

the dependence of the rotation rate on the orientation of the droplet. A second type of in-

teraction between droplets was simulated with the free-energy binary-liquid LBM: binary

droplet collisions in confined simple shear flow. The conditions for coalescence were quan-

tified and the effects of geometry and the parameters of this Cahn-Hilliard-type phase field

model on the critical conditions were examined. Two parameters of the phase field model,

the thickness of the diffuse interface and the mobility of the phase field, are important. Sim-

ulations with highly-resolved droplets, with radii spanning 200 lattice nodes, were used to

determine the minimum film thickness before coalescence, its relationship to the interface

thickness, and the effect of the mobility on the evolution of the minimum distance between

the droplet interfaces during collisions. The critical conditions for coalescence in these sim-

ulations were compared with published experiments with polymers. Unlike the experimen-

tal polymer system, the interfaces of interacting droplets are often charged, as in the case of

oil-water emulsions. To simulate such liquid systems, the free-energy binary-liquid LBM

was coupled with an iterative finite difference solver for the linearized Poisson-Boltzmann

equation that describes the electrostatic potential near a charged surface in an electrolyte

solution. Simulations of collisions between charged droplets with constant zeta potentials
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in a sheared electrolyte showed the effects of surface charge on the critical conditions for

coalescence.
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4.4 Position of the centre of mass (x̄, ȳ) of the upper droplet during collisions
at several capillary numbers. The solid line shows the trajectory of one
sphere in a pair of touching rigid spheres rotating about the origin. The
time interval between consecutive symbols is γ̇∆t = 0.133. . . . . . . . . . 78

4.5 Minimum distance between droplets as a function of time for collisions at
capillary numbers between 0.01 and 0.25. . . . . . . . . . . . . . . . . . . 79

4.6 Dependence of the minimum film thickness on the capillary number. The
proportionality factor, exponent, critical film thickness (h̃c/`ϕ = 3.00), and
critical capillary number (C̃ac = 0.20245) were determined by least squares
fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xii



4.7 Dynamics of the film thickness h at near-critical capillary numbers. The
dashed curves connect points at equal times spaced by γ̇∆t = 0.4 with the
latest (upper left) at γ̇t = 8. The arrows indicate the locations of the es-
timated critical minimum thickness and potential position of the critical
minimum thinning rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8 Flow fields in the film relative to rigid rotation at the rotation rate of the film
dθf/dt for the simulation with Ca = 0.2028 at times γ̇t = 4.5 (top) and 6.9
(bottom). The images have been rotated so that the film is horizontal. One
arrow is shown for every fourth lattice node in both directions. To illustrate
the structure of the flow, the lengths of the arrows are scaled relative to the
maximum relative flow speeds at each time, which are 0.18γ̇R (γ̇t = 4.5)
and 0.12γ̇R (γ̇t = 6.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.9 Vorticity Ω = ∂xuy− ∂yux (normalized by the applied shear rate γ̇) in the
film, the drops, and the nearby fluid at γ̇t = 4.5 (left) and 6.9 (right) for the
collision with Ca = 0.2028. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.10 Film inclination angle as a function of time for several capillary numbers. . 85
4.11 Cross-sections through the droplets at the time of minimum film thickness

for Ca = 0.2028,0.2035,0.205,0.21,0.22, and 0.25. The arrows indicate
the locations where the films are thinnest. . . . . . . . . . . . . . . . . . . 85

4.12 Cross-sections through the droplets at the time of slowest film thinning
(left), at the last saved time step before coalescence (centre), and the first af-
ter coalescence (right) for (top to bottom) Ca= 0.01,0.05,0.1,0.15,0.2,0.202.
The time interval between the right pair of images is γ̇∆t = 0.133. The ar-
rows indicate the locations where the films are thinnest. . . . . . . . . . . . 86

4.13 Film inclination angle at several events in the sub- and supercritical colli-
sion processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.14 Times of key events in the collision processes at sub- and supercritical cap-
illary numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Absolute difference between the analytical potential solution ψexact and the
iterative finite-difference solution ψnum for two Debye lengths (κ−1 = 15
and 25 in lattice units) and two domain sizes (2W = 127 and 255 also in
lattice units) through the centre (z = 0) of a cross-section of the square
channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xiii



5.2 Convergence of the electroosmotic flow velocity in the coupled solver at an
early time (t̃ =W 2t/ν = 0.021, red symbols) and near steady state (t̃ = 2.1,
blue symbols). The exact solution for the potential (ψexact) was used in the
convergence study (circle and square symbols), and for comparison, sample
results with the numerical solution for the potential are also shown (star and
cross symbols). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Exact (infinite domain, solid line) and numerical (cubic domain, symbols)
solutions for the electrostatic potential around a sphere with a 25 l.u. radius
in a 128× 128× 128 domain. Results are shown for two Debye lengths
(κ−1 = 15: red and 25: blue) along two lines in the cross-section through
the middle of the sphere: z = 0,y = 0 (circles) and z = 0,y = x (triangles). . 109

5.4 Pressure as a function of electrostatic potential at equilibrium in the elec-
trolyte around a charged sphere (radius 25 l.u.) in a periodic cubic domain
(128×128×128). The symbols show the pressures for two Debye lengths
(κ−1 = 15: red, 25: blue) at the same points from a cross-section through
the centre of the droplet as in Fig. 5.3. The solid line indicates the expected
relationship (Eq. 5.18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Difference between the internal and external pressures for drops with in-
creasing curvature 2/R. The expected relationship (solid lines, Eq. 5.20)
and simulation results (symbols) are shown for uncharged (black squares)
and charged drops with two Debye lengths (κ−1 = 15: red circles, 25: blue
triangles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 Sample collisions of uncharged (upper sequence) and charged (lower se-
quence) droplets. The colour ranges from white (ϕ = −1) to blue (ϕ = 1)
for the phase field and white (ψ = 0) to red (ψ = ζ ) for the potential outside
the drops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xiv



5.7 Outcomes of binary droplet collisions at varying capillary numbers Ca,
droplet radii R relative to the characteristic interface thickness `ϕ , and sev-
eral strengths of the electrostatic interactions (uncharged and κ−1 = (a) 15
and (b) 25 l.u. with ε = 10−1,10−2,10−3,10−5 l.u.). In each cluster of data
points with different ε , the radius is the same as in the uncharged case,
but the symbols have been offset horizontally to separate them. Only the
simulation results that are closest to a critical capillary number are shown:
open triangles indicate the lowest capillary number at which sliding was
observed, open circles indicate capillary numbers at which coalescence
is temporary, and filled triangles indicate the highest capillary numbers at
which the droplets coalesce. . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8 Effect of the ratio of electric and viscous forces on the critical capillary
numbers for coalescence. The symbols have the same meaning as in Fig. 5.7
but are coloured by the droplet radius: R/`ϕ = 12.5 in red, R/`ϕ = 18.75
in blue, and R/`ϕ = 25 in green. . . . . . . . . . . . . . . . . . . . . . . . 117

A.1 Film thickness (normalized by interface thickness) as a function of time
for several resolutions at non-coalescing conditions (Ca = 0.1, ∆Y/(2R) =

0.86) and two Péclet numbers. For all cases, `ϕ = 2. . . . . . . . . . . . . . 132
A.2 Film thickness normalized by the droplet radius R at the same conditions

as Fig. A.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xv



List of Tables

2.1 Input parameters for the six simulations . . . . . . . . . . . . . . . . . . . 20

3.1 Performance of the simulation software with different domain sizes and
types of parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Parameters of a sample physical system with the same dimensionless pa-
rameters as the simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xvi



List of Symbols
A, B, κϕ Parameters in free energy functional

A1, A2 Cross-sectional areas of droplets 1 and 2 in Janus droplet

Ai, Bi, Ci, Di, Gi Parameters in equilibrium distribution f eq
i

α Proportionality factor in scaling law

Amn, an, αn, βm, γn, λmn Factors in series solution

~b Body force

Ca Capillary number

Cac Critical capillary number

~ci Lattice velocity

d Separation distance

∆P Pressure difference

∆Pϕ , ∆Pψ Phase field and electric contributions to pressure difference

∆x Lattice spacing

∆X , ∆Y Initial distances in x and y directions between droplet centres of mass

e Elementary charge

EL2 L2 norm of error

ε Dielectric permittivity

ηi Number density of component i

ηi∞ Number density of component i in bulk

η∞ Number density in bulk

xvii



~E Electric field

Ex External electric field component in x direction

fi, gi Density distributions in lattice Boltzmann method

f eq
i , geq

i Equilibrium density distributions in lattice Boltzmann method

fn Function in series solution

fp Force on charged flat plates

F [ϕ] Free energy functional

Γ Parameter in lattice Boltzmann method for phase field

γ̇ Shear rate

gi j Interaction strength between fluids i and j in Shan-Chen LBM

h Film thickness (minimum distance between droplet interfaces)

hc Critical film thickness

hJ Distance between drops in Janus droplet

hmin Minimum film thickness

i, j, k Node indices in each coordinate direction

κ Inverse Debye length

kB Boltzmann constant

L, W , H Domain length, width, and height

lc Characteristic length

`ϕ Characteristic length of phase field interface thickness

M Phase field mobility

µ Fluid dynamic viscosity

µϕ Chemical potential

n Scaling law exponent

xviii



n, m Term indices in series

n̂ Outward unit normal on droplet interface

ν Fluid kinematic viscosity

Nx, Ny, Nz Number of grid/lattice nodes in each coordinate direction

Ω Vorticity

ω Rotation rate

ω̄ Average rotation rate

P Pressure

P0, P1, P2 Pressures inside and outside a Janus droplet

Pref Reference pressure

Pe Péclet number

P̂e Modified Péclet number

φ Janus droplet orientation angle

ϕ Phase field order parameter

ϕ0 Bulk value of phase field

ψ Electrostatic potential

ψref Reference potential

qs Surface charge density

R Droplet radius

r Radial distance from centre of droplet

R1, R2 Radii of droplets 1 and 2 in Janus droplet geometry

Rb Bridge radius

Rc Radius of curvature of internal interface in Janus droplet

Re Reynolds number

xix



Reb Bridge growth Reynolds number

ρ Fluid density

ρe Free charge density

ρk Density of fluid k

σ Interfacial tension

σi j Interfacial tension between fluids i and j

Su Suratman number

T Temperature

t Time

τ Period of rotation

τ f , τg Relaxation rates in lattice Boltzmann method

τi Inertial time scale

τs Shear time scale

θ1, θ2, θc Angles in Janus droplet geometry

θf Film orientation angle

t̃ Normalized time

u0 Shear speed
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CHAPTER 1

Introduction

1.1 Motivation

In flows of droplet dispersions, the droplets are distorted by the flow and collide with other
droplets. With sufficient distortion, the droplets break apart, and some collisions lead to co-
alescence. A common natural example of interacting droplets is rain, in which coalescence
and breakup contribute to the distribution of droplet sizes[1–4]. The collective behaviour
of large numbers of droplets in flow is also relevant to many industrial applications. In-
teractions between droplets during turbulent agitation of liquid-liquid mixtures[5–9] and
pipe flows[10–12] determine the drop size distribution (DSD). The DSDs produced in such
flows depend on the intensity of the turbulence, the physical properties of the fluids, and
the nature of any surface active agents (surfactants) that are present[13–16]. DSDs and their
changes due to flow are significant to industrial applications because they affect, for exam-
ple, the quality of food products[17], the rates of mass transfer between the fluids[18, 19],
and the effective viscosity of the dispersion[20].

Relatively recent progress in the fabrication of devices with microscale functional com-
ponents has provided motivation and methods for studying the fundamental physical and
chemical phenomena that determine the behaviour of droplets[21]. In such microfluidic de-
vices, droplets can be created[22] and used as reactors[23]. Controlling the coalescence of
adjacent droplets in a chain flowing through a microchannel is a common topic, and various
techniques have been developed to promote and suppress coalescence[24]. For example, a
pair of droplets coalesces while separating as one droplet enters a narrower channel[25]. To
prevent coalescence of adjacent droplets, drops of a third fluid that is immiscible with the
other two have been inserted between them[26]. The precise control of flow and droplets
that is possible in microfluidics has allowed the production of emulsions with controlled
DSDs, such as highly monodisperse emulsions[27, 28]. Complex multiple emulsions[29–
31], which are emulsions with several droplets encapulated inside another droplet, have also
been created. Another type of complex emulsion is a Janus emulsion[31–33] that consists
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of droplets with two adhering lobes of different fluids.
Simulations supplement experimental investigations of droplets in several valuable ways.

One advantage of simulations is that they can provide information about an evolving system
that is impossible to obtain from experiments, especially without disturbing the quantities
that are being measured. For example, accurate measurements of droplet sizes in a stirred
vessel are difficult[34]. In comparison, information about the size of every simulated drop
in a flow is in principle available for every time increment of the simulation (though the
time needed to store and process this data limits how much of it can be used). Details about
droplet flows, such as the thicknesses of the films between drops are even more difficult
to measure but would be available from a sufficiently well-resolved simulation that models
the relevant physical phenomena of interacting interfaces. Simulations also allow precise
control over initial conditions in ways that are experimentally impossible. As an exam-
ple, simulations of droplet flows starting from various initial DSDs could be used to study
the rates of coalescence and breakage as they evolve to a steady DSD. This information
could contribute to population balance models that describe the evolution of DSDs as a
function of flow conditions[35–37]. Finally, simulations, unlike experiments, allow differ-
ent physical phenomena to be turned on and off at will to assess their relative importance
in determining observed outcomes. Simulations are therefore appealing for studying inter-
actions between droplets, however to simulate coalescence they must model and resolve
phenomena at length scales much smaller than the droplets, i.e. the length scale of the films
between droplets. Consequently such simulations require significant computing power and
appropriate computational frameworks.

Computing hardware has advanced at a rapid pace in recent years, resulting in systems
that can perform more calculations every second and have faster access to larger amounts of
memory. An example of such an advance is the use of graphics processing units (GPUs) for
scientific computing. Originally designed to render images of digital scenes at high frame
rates for computer games, GPUs have hundreds to thousands of arithmetic units instead of
the 1 to 16 found on current central processing units (CPUs). The effective use of systems
with multiple computing cores that can operate simultaneously depends on the implemen-
tation of algorithms that access memory efficiently and minimize the need to share data
between cores. Consequently, numerical methods that can compute the flow in a portion
of the whole simulation domain with minimal information from adjacent portions are ideal
for GPUs (and also clusters of interconnected CPUs). While their high performance could
be used to simulate larger systems with more droplets at resolutions that are typical of ex-
isting studies (with radii on the order of 10 nodes[38, 39]), GPUs are applied in this thesis
to highly-resolved simulations of the interactions between interfaces.
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1.2 Simulation methods for multiphase flow

The different methods for simulating multiphase flows are briefly introduced here. The
main chapters of the thesis provide greater detail about the advantages and disadvantages
of the methods that are relevant to the systems simulated in each chapter.

Conventional computational fluid dynamics (CFD) methods in general convert the par-
tial differential governing equations for flow into a set of algebraic equations that are
then solved numerically. Three methods are popular: the finite difference, finite volume,
and finite element methods[40]. In the finite difference method, finite differences replace
derivatives in the governing equations. Fluxes across the faces of a discretizing mesh are
computed in the finite volume method, which ensures that transported quantities are con-
served. An optimization approach is used in finite element methods to determine a solution
that minimizes the residual between an interpolating function (often a polynomial) and
the governing equation in every element of the domain[41]. The Navier-Stokes governing
equations do not include an evolution equation for the pressure, and instead a Poisson-type
equation is solved. This step is computationally expensive, accounting for up to 60% of the
time needed for each step of a simulation[42].

Multiphase flow simulations combine one of the previously mentioned solvers for the
Navier-Stokes equations with a method for tracking the locations of regions with differ-
ent fluid properties. They also impose interfacial tension on the boundaries between fluids.
Several methods are used to describe the motion and deformation of the fluid regions. The
volume-of-fluid method advects a scalar that specifies the volume fraction of one phase
throughout the domain[43], and the level set method advects a scalar that is initialized to
be the distance to the nearest interface[44]. In these methods, interfaces connect when the
thickness of the film between them cannot be resolved by the discretizing mesh. Another
approach uses a scalar that specifies the composition of the fluid and models the thermody-
namics of phase separation. These are called phase-field methods, an example of which is
the Cahn-Hilliard approach[45, 46]. Instead of tracking a scalar that specifies the locations
of different fluid domains, other methods use moving meshes located at the interfaces be-
tween fluid domains. Examples are boundary integral[47], arbitrary Lagrangian-Eulerian
(ALE)[48], and front-tracking[49] methods. In these mesh-based methods, the computa-
tional expenses of evolving the mesh and maintaining its quality can be significant. Topo-
logical changes occur when the width of a thread or the thickness of a film falls below a
user-specified threshold.
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1.2.1 Lattice Boltzmann methods

Lattice Boltzmann methods (LBMs)[50, 51] do not directly discretize the governing equa-
tions for flow and instead imitate the behaviour of gas molecules. While gas molecules
may move freely in any direction and their velocities satisfy the Maxwell-Boltzmann dis-
tribution, the fictitious molecules in LBMs may only move between the nodes of a lattice
along a finite set of directions that connect the nodes. LBMs track the amount of molecules
moving in each direction and thus compute the evolution of the velocity distribution at
each node of the lattice. Collisions between molecules are handled through a relaxation
process that brings the velocity distribution at each node towards a discrete version of
the Maxwell-Boltzmann distribution. Many variations of the collision process are avail-
able, and the BGK method (Bhatnagar et al. [52]) remains popular. As the kinetics of gas
molecules may be linked to the Navier-Stokes equations at a macroscopic level, the par-
ticle densities that propagate along a lattice can be shown to also satisfy the macroscopic
flow equations, making LBMs suitable for CFD. The rate of relaxation towards the equi-
librium distribution determines the viscosity of the fluid. LBMs are typically implemented
in a two-step process. In one step, densities propagate to adjacent nodes along the lattice
directions; in the next step, the velocity distribution at each node relaxes towards the equi-
librium distribution. This process is highly amenable to parallelization, a key advantage
over other CFD methods, because no communication is required during the collision step,
and communication with only the adjacent nodes is required for the propagation step.

Several LBMs that are suitable for simulating mixtures of liquids have been proposed
in the academic literature. The multicomponent Shan-Chen method[53, 54] consists of a
coupled set of single-phase LBMs, one for each component in the flow. The separation of
components and interfacial tensions between them are implemented through a repulsive
interaction potential that acts between each pair of fluids. This method is used in Chapter 2
to simulate Janus droplets. Though advantageous for its simplicity and ability to simulate
an arbitrary number of components, this method was found to be unsuitable for studies
of droplet collisions and the conditions for coalescence. In a system with two fluids, only
one parameter specifies the strength of the repulsive interaction between them. As this
parameter is decreased to simulate lower interfacial tensions, the transition in composition
across the interfaces between fluids spreads over a longer distance, called the interface
thickness. When droplets collide, they coalescence unless shear forces exceed interfacial
tension forces sufficiently (i.e. the capillary number, the ratio of viscous and interfacial
forces, exceeds a critical value). In early exploratory simulations with the Shan-Chen LBM,
interfaces became excessively thick as the interfacial tension was lowered to find non-
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coalescing conditions.
The free-energy LBM[55, 56] is used to study binary droplet collisions. This method,

which is effectively a Cahn-Hilliard phase field method, has a scalar that specifies the com-
position of the fluid. Both the fluid flow and evolution of the scalar are solved with LBMs.
This scalar advects with the flow and also diffuses towards minimization of a free-energy
functional. The functional has two terms: a double-well potential that causes separation
into two phases and an energy penalty against composition gradients that endows interfaces
with tension. Two parameters of the model together specify the thickness of the interface
and its interfacial tension, which can therefore be specified independently, an important
advantage over the Shan-Chen LBM. This method has been used to simulate, for example,
droplet deformation and breakup[57, 58], droplet spreading on patterned substrates[59],
and droplet formation in a microfluidic T-junction[60]. In addition to its practical advan-
tages, this method is preferred for its thermodynamic description of interfaces. For exam-
ple, the presence of a disjoining pressure in thin films[61] suggests suitability for studying
coalescence. In physical systems, van der Waals forces across liquid films lead to the rup-
ture of the film between two droplets and coalescence.

A third LBM, the colour model LBM [62, 63], has also been used to simulate mixtures
of liquids. In this method, each component, or fluid colour, has its own particle distribu-
tion as in the Shan-Chen LBM. An additional collision step is applied to the nodes at the
interface between the fluids. This collision step redistributes the fluid densities among the
discrete directions so that they move towards regions with the same composition[50]. Due
to the non-thermodynamic treatment of interfacial interactions, this method is not used in
this thesis. Colour model simulations of droplet collisions and systems with three or more
components are possible areas for future study.

1.3 Thesis objectives

This thesis presents studies of interactions between droplet interfaces through simulations
with the Shan-Chen and free-energy LBMs. The thesis focuses on two types of interac-
tions: adhesion in three-component systems and coalescence in two-component systems
first without then with interfacial charge. The goals of the studies are to assess the ability
of the simulation methods to reproduce the expected physical behaviour of the systems
(based on past theory and experiments) and to use the simulations to provide insight about
the physical systems they model. As a whole, the work described in this thesis advances
knowledge about and progresses towards realistic simulations of interfacial interactions in
multiphase flow.
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1.4 Thesis outline

Chapter 2 presents a study of the equilibrium configurations of two adjacent droplets in a
three-fluid mixture. The simulations in this chapter are performed using the multicompo-
nent Shan-Chen LBM, and this chapter evaluates the ability of this LBM to model a system
with three components and the interfacial tensions between them. The simulations show
that the three possible configurations of two droplets are achieved and have the expected
geometry as determined by the interfacial tensions. Simulations of a compound droplet
with two adhering parts, a Janus droplet, in shear are then described. The internal interface
of a Janus droplet disrupts the internal circulation patterns, making them differ from those
in a usual single-phase droplet. These differences provide insight into the rheology of Janus
droplet emulsions.

The outcomes of collisions between droplets of the same fluid in shear are studied in
Chapter 3. Since the Shan-Chen LBM was found to be unsuitable to study the critical
conditions for coalescence, this chapter and the subsequent chapters use the free-energy
binary-liquid LBM. The parameters of this phase-field model, the flow conditions, and the
geometry are systematically varied to determine the critical conditions for coalescence and
their dependence on these variables. This chapter identifies the key role of the ratio of the
droplet radius and interface thickness on the conditions for coalescence. The high capillary
numbers at which droplet coalescence is observed indicate that the simulated droplets are
smaller than those in typical experiments. Though the droplets and the film between them
are sufficiently resolved that critical conditions can be found, the resolution is insufficient
to draw precise conclusions about the effective physical size of the simulated droplets.

This study of the conditions for coalescence of droplets is then extended in two dif-
ferent directions, both of which require additional computational power. Chapter 4 reports
simulations with twice the maximum resolution considered in Chapter 3. With this resolu-
tion, critical capillary numbers may now be found at a sufficiently small initial separation
between the droplets that a comparison with published experiments is meaningful. The
evolution of the minimum distance between the droplet interfaces during collisions is com-
puted, the dynamics of the thinning rate are examined, and a critical minimum thickness
for cases without coalescence is determined. The effective physical size of the droplets is
then estimated, and the effects of the phase field mobility on the conditions for coalescence
are considered.

Chapter 5 reports simulations of collisions between charged droplets in electrolyte,
which is the second extension of the work in Chapter 3. The flow solver from Chapter 3
was coupled with an iterative finite difference solver for the linearized Poisson-Boltzmann
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equation governing electrostatic potential in an electrolyte near a charged surface. Attention
is restricted to the case of droplets with fixed surface (zeta) potentials. The simulations are
used to study the strength of electrostatic interactions that is needed to affect the critical
capillary numbers for coalescence that were determined in Chapter 3.

The last chapter, Chapter 6, summarizes the results of the preceding chapters and offers
perspectives on their implications and areas for future investigation.
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CHAPTER 2

Simulations of Janus droplets at
equilibrium and in shear1

2.1 Introduction

Simulation methods are available for studying the various industrial processes that involve
flows of three fluids. While many applications involve a gas phase and two liquid phases,
such as oil recovery from porous media (simulations of two-phase imbibition were de-
scribed by Gunde et al. [1]) and bubbly flows relevant to nuclear safety[2], dispersions of
two immiscible liquids in a third liquid have been studied only recently. These new ex-
amples of three-component systems motivate a detailed analysis of their behaviour and the
evaluation of simulation methods specifically for their unique characteristics. Under certain
conditions, droplets of the two dispersed liquids may adhere to form a compound droplet
called a Janus droplet after the two-faced character in Roman mythology[3, 4].

Several interesting phenomena involving Janus droplets have been recently discussed
in the literature. Hasinovic et al. described a method for generating bulk quantities of an
emulsion with Janus droplets, called a Janus emulsion [5, 6]. Adhering, engulfed, and dis-
tinct droplets have been produced in microfluidic devices [7, 8]. Droplet adhesion was also
considered by Chen et al. [9], who used a third immiscible liquid to separate droplets for
microfluidic protein crystallization. Finally, Guzowski et al. [10] recently produced long
Janus droplet chains in a microfluidic device. These chains are long sequences of adhering
fluid drops of alternating compositions. Such chains can coil up without coalescing and
could create a fluid with interesting rheology[10]. Considering the range of possible ge-
ometries for a Janus droplet, emulsions of Janus droplets and chains likely have complex
rheologies that depend on the interfacial tensions between the liquids. Simulations provide
a way to investigate the behaviour of Janus emulsions, starting with simulations of one

1A version of this chapter has been published as Orest Shardt, J.J. Derksen, Sushanta K. Mitra, “Simula-
tions of Janus droplets at equilibrium and in shear,” Physics of Fluids, 26:012104 (2014).
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droplet.
Simulations of three-component systems have been previously performed using the

Cahn-Hilliard model [2, 11] and the free-energy lattice Boltzmann method (LBM) [12].
However, these methods were evaluated for lenses at the interface between two stratified
fluids and not adhering droplets. Lenses between two stratified fluids have also been studied
by Leclaire et al. [13], who used the colour-model LBM. Another simulation method, the
multicomponent LBM of Shan and Chen [14], has not been evaluated for lenses or adhering
droplets. Hence, the focus of the present work is to evaluate the Shan-Chen method specif-
ically for its ability to simulate Janus droplets. Though phase separation is automatic in
the Shan-Chen LBM, a disadvantage of the method is that interfacial tensions are not input
parameters and a theoretical equation that relates interfacial tensions to input parameters
is not available [15]. Therefore interfacial tensions must be determined “empirically” from
simulations by applying the Young-Laplace law to droplet interfaces and their pressure
jumps. Since interfacial tensions specify the equilibrium geometry of adhering droplets,
we derive equations for calculating interfacial tensions from the equilibrium geometry. We
show that the Young-Laplace law and the equilibrium geometry provide consistent results
for the interfacial tensions when using the Shan-Chen LBM to simulate Janus droplets. We
then study the rotation of individual Janus droplets in shear flow, as observed experimen-
tally by Torza and Mason [16], as a first step towards gaining insight into the rheology of
Janus emulsions and chains[10].

2.2 Equilibrium droplet geometry

The equilibrium geometry of adhering droplets was analyzed by Torza and Mason in a pa-
per published in 1970[16]. However, they did not use the nomenclature of “Janus droplet”
or “Janus emulsion” and their work is rarely cited in the literature on these more recent
topics. Due to the importance of the equilibrium geometry for analyzing simulations, we
briefly review this topic. We also derive convenient explicit equations for measuring inter-
facial tensions from the equilibrium geometry and for the inverse problem of determining
the geometry for known interfacial tensions. The equations could be used, for example, to
measure changes in interfacial tensions over time due to diffusion of the three components
and their non-zero solubilities in each other[9].

The geometry of a pair of adhering droplets is shown in Fig. 2.1. For the analysis that
follows, we consider a cross sectional plane through the centres of the spherical droplets.
The analysis is therefore two dimensional, but results are provided for the full three-dimensional
geometry as well. The bulk fluid is denoted Fluid 0. The upper droplet consists of Fluid 1,
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R1 is the primary radius of curvature, and the angle between the centre line and the three
fluid contact point is θ1. The definitions are the same for the lower droplet of Fluid 2, but
a subscript 2 replaces the 1. The radius of curvature of the interface between the droplets
is Rc. Without loss of generality, the lower droplet is assumed to have a higher internal
pressure P2 than the upper droplet (with pressure P1). The interfacial tension between fluids
i and j is denoted σi j.

R1

R2

Rc

θ1

θ2

θc

aBulk Fluid 0

Fluid 1

Fluid 2

Figure 2.1: Geometry of a cross section through a pair of adhering droplets

As in Torza and Mason [16], a force balance between the interfacial tensions is used
to study the equilibrium geometry. Figure 2.2 shows the geometry of the interfacial forces.
The horizontal force balance is:

σ01 cos(θ1)+σ02 cos(θ2) = σ12 cos(θc) (2.1)

The vertical force balance is:

σ01 sin(θ1)+σ12 sin(θc) = σ02 sin(θ2) (2.2)

Since the co-linear circles defined by the radii R1, R2, and Rc all intersect at the three fluid
contact point, we have the condition that

a≡ R1 sin(θ1) = R2 sin(θ2) = Rc sin(θc) (2.3)
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Substitution of Eq. 2.3 into Eq. 2.2 provides

σ01

R1
+

σ12

Rc
=

σ02

R2
(2.4)

The vertical force balance is therefore equivalent to the Young-Laplace law condition that
the pressure jump across one droplet-bulk interface must be the sum of the pressure jumps
across the other droplet-bulk interface and the droplet-droplet interface. That is:

P2−P0 = (P2−P1)+(P1−P0)⇒
2σ02

R2
=

2σ12

Rc
+

2σ01

R1
(2.5)

Here we have used the Young-Laplace law for the pressure jump ∆P across a droplet inter-
face with radius R and interfacial tension σ , which is

∆P = ξ
σ

R
(2.6)

where ξ = 1 for a circle in 2D and ξ = 2 for a sphere in 3D.

R1

R2

Rc

hJ
θ1

θ2

θc

γ01
θ1

γ02

θ2

γ12

θc

Figure 2.2: Force balance at the three fluid contact point between two adhering droplets

Interfacial tensions and droplet volumes can be determined from measurements of the
equilibrium geometry. Using Eqs. 2.1 and 2.4, the ratios of the interfacial tensions as a
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function of the angles and radii are:

σ01

σ12
=

R1

Rc

(
Rc cos(θc)−R2 cos(θ2)

R1 cos(θ1)+R2 cos(θ2)

)
(2.7)

σ02

σ12
=

R2

Rc

(
Rc cos(θc)+R1 cos(θ1)

R1 cos(θ1)+R2 cos(θ2)

)
(2.8)

Alternatively, using Eqs. 2.1 and 2.2, the ratios as a function of only the angles are:

σ01

σ12
=

sin(θ2)cos(θc)− cos(θ2)sin(θc)

cos(θ1)sin(θ2)+ cos(θ2)sin(θ1)
(2.9)

σ02

σ12
=

cos(θ1)sin(θc)+ sin(θ1)cos(θc)

cos(θ1)sin(θ2)+ cos(θ2)sin(θ1)
(2.10)

The individual interfacial tensions cannot be determined because the force balance would
be satisfied without a change in geometry if all interfacial tensions were to be scaled by the
same factor.

For completeness, we provide equations for calculating the cross-sectional areas of the
droplets and their volumes. The droplet cross-sectional areas for the geometry shown in
Fig. 2.1 are:

A1 = πR2
1−

1
2

R2
1 (2θ1− sin(2θ1))−

1
2

R2
c (2θc− sin(2θc)) (2.11)

A2 = πR2
2−

1
2

R2
2 (2θ2− sin(2θ2))+

1
2

R2
c (2θc− sin(2θc)) (2.12)

The droplet volumes are:

V1 =
4
3

πR3
1−

πR3
1

3
(
2−2cosθ1− cosθ1 sin2

θ1
)
− πR3

c
3
(
2−2cosθc− cosθc sin2

θc
)

(2.13)

V2 =
4
3

πR3
2−

πR3
2

3
(
2−2cosθ2− cosθ2 sin2

θ2
)
+

πR3
c

3
(
2−2cosθc− cosθc sin2

θc
)

(2.14)

Determining the equilibrium geometry explicitly for given interfacial tensions (σ01,
σ02, and σ12) and droplet sizes (R1 and R2) is more complex. The required angles, inter-
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droplet distance, and internal interface curvature are:

θ1 +θ2 = cos−1




1
2

1−
((

σ01
σ12

)2
+
(

σ02
σ12

)2
)

(
σ01
σ12

)(
σ02
σ12

)


 (2.15)

h2
J = R2

1 +R2
2 +2R1R2 cos(θ1 +θ2) (2.16)

θ1 = cos−1
[

R2
1 +h2

J−R2
2

2R1hJ

]
= cos−1

[
R1 +R2 cos(θ1 +θ2)

hJ

]
(2.17)

θ2 = cos−1
[

R2
2 +h2

J−R2
1

2R2hJ

]
= cos−1

[
R2 +R1 cos(θ1 +θ2)

hJ

]
(2.18)

θc =−θ1 + cos−1




1
2

−1+
((

σ01
σ02

)2
+
(

σ12
σ02

)2
)

(
σ01
σ02

)(
σ12
σ02

)


 (2.19)

1
Rc

=
1

R2

σ02

σ12
− 1

R1

σ01

σ12
(2.20)

The radii can be related to the areas using Eqs. 2.11 and 2.12; the volumes are specified by
Eqs. 2.13 and 2.14.

When ensuring that the arguments of cos−1 are bounded between ±1, we obtain the
same conditions as Chen et al. [9] for equilibrium adhesion of droplets:

σ01 ≤ σ02 +σ12 (2.21)

σ02 ≤ σ01 +σ12 (2.22)

σ12 ≤ σ01 +σ02 (2.23)

If these conditions are not satisfied, the interfacial tensions cannot balance and the droplets
will remain separated (when σ12 > σ01 +σ02) or one will engulf the other (when σ01 >

σ02+σ12 or σ02 > σ01+σ12). An interesting observation is that the conditions for adhesion
depend only on the interfacial tensions; the relative sizes of the droplets do not affect the
outcome of droplet interactions. This explains why adhering droplets with a wide range
of diameters were produced by the bulk emulsification method of Hasinovic et al. [5].
Another consequence of the adhesion conditions is that for a given set of three fluids,
changing which phase is the continuous phase can turn a system with engulfing droplets
into one with distinct droplets or vice versa. If droplets adhere for one choice of dispersed
and continuous phases, the dispersed phase droplets will adhere for all choices.

The special case of a flat interface between adhering droplets must be considered sepa-
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rately. The condition for a flat interface is

σ01

R1
=

σ02

R2
(2.24)

When this condition is satisfied, Rc→ ∞ and the pressures in the droplets are equal.
We now apply the results of the geometric analysis to determine interfacial tensions

in three-component Shan-Chen LBM simulations. We verify that the correct equilibrium
geometry is obtained.

2.3 Simulation method

Systems with multiple immiscible fluids can be simulated using the multicomponent lat-
tice Boltzmann method of Shan and Chen [14]. In this model, multiple fluids are coupled
through a repulsive interaction potential that maintains phase separation and provides in-
terfacial tension. For simplicity, two-dimensional simulations were used to study droplet
interactions. A regular lattice with nine discrete directions was used (a D2Q9 lattice). For
brevity, the details of the lattice Boltzmann method and Shan-Chen multicomponent model
are omitted here. Chen and Doolen [17] and Aidun and Clausen [18] provide a review of
lattice Boltzmann methods, the multicomponent model is described by Shan and Chen [14]
and Shan and Doolen [19], and examples of applications are provided by Yang et al. [20]
and Kang et al. [15]. We used a single-relaxation-time BGK collision operator with equal
relaxation times for each component of the multicomponent Shan-Chen model. Since sepa-
ration of the components into liquid and vapour phases is undesirable, each component was
treated as ideal. The interaction forces between components were implemented by shifting
the velocity used in the calculation of the equilibrium density distribution.

The magnitudes of the repulsive interactions between each pair of fluids are inputs into
the Shan-Chen model. The effect of the interaction potential strength on interfacial tension
must be determined empirically [15, 20]. This is performed by measuring the interfacial
curvature and the pressure difference from simulation data and applying the Young-Laplace
law. Pressures in LBM simulations are obtained using an equation of state. For the multi-
component model, the equation of state for the pressure P at each lattice node is [15, 19, 20]

P =
1
3 ∑

k
ρk +

3
2 ∑

k,k̄

gkk̄ρkρk̄ (2.25)

where gi j is the interaction potential strength between fluids i and j, k counts over the num-
ber of components, and ρk is the density of the kth component. The notation k̄ denotes the

19



values of the index that differ from k. The factor of 3
2 arises from the projection of a four

dimensional face-centred hypercubic (FCHC) lattice to two dimensions. Due to this pro-
jection, the interaction strengths along the directions of the lattice have different weights.
Like the weighting used by Kang et al. [15] for a three-dimensional simulation, we use gi j

for the directions with length 1 and 1
4gi j for the directions with length

√
2. The values of

gi j used in this work are between 0.15 and 0.4 (Table 2.1), ensuring that the components
remain separated and the simulations are stable.

2.4 Results and discussion

2.4.1 Equilibrium configurations

Table 2.1 lists the parameters for the six runs that were used to study equilibrium configu-
rations. In all cases, the domain was fully periodic with 256×256 nodes, chosen to ensure
adequate resolution of the droplets. For each case, the domain was initialized with two
circular droplets of Fluids 1 and 2 in Fluid 0. To ensure slight overlap and therefore inter-
action between the droplets, the distance between the centres of the circles was 98% of the
sum of their radii. The density of each fluid was initialized as 1 where that fluid is present
and 0.01 in the remainder of the domain. The relaxation times of all three fluids were one,
corresponding to a kinematic viscosity of 1

6 . These values are given in lattice units, with
the lattice spacing (length scale), time step (time scale), and reference mass (density scale)
all being one.

Table 2.1: Input parameters for the six simulations

Case g01 g02 g12 R1 R2
1 0.30 0.25 0.20 45 45
2 0.23 0.33 0.27 45 45
3 0.30 0.30 0.15 45 45
4 0.26 0.24 0.31 45 27
5 0.17 0.17 0.40 45 30
6 0.15 0.38 0.15 45 30

Figure 2.3 shows the simulation state for each case after 500000 time steps, which was
found to be sufficient to achieve steady state in all cases. The circles shown in Fig. 2.3
were determined by fitting circles to points on the interface between each pair of fluids.
The interface between fluids i and j was considered to be located where the densities of the
two fluids were equal as determined using linear interpolation between nodal values. The
centres and radii of the circles were obtained using the least-squares fitting method of Pratt
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[21]. This method was chosen due to its robustness when fitting circles with a large radius
to data from a small arc such as the interface between two droplets. While the droplets
adhere in Cases 1 to 4, they remain separate in Case 5, and one engulfs the other in Case 6.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Figure 2.3: Equilibrium droplet shapes for Cases 1 to 6 with circles fitted to the interfaces

Figure 2.4 shows the evolution of the Case 2 simulation from the initial condition to-
wards equilibrium. After the upper fluid spreads over the lower droplet, it retracts slightly
before reaching the equilibrium shape.

Figure 2.4: Initial droplet shapes followed by the shapes after 1000, 2000, 5000, and 10000
time steps (left to right) for Case 2.

We can obtain the interfacial tensions from the Young-Laplace law by using the radii
of the fitted circles and the pressures in each fluid phase. The dependence of the interfacial
tension, which was measured in this way, on the strength of the interaction potential is
shown in Fig. 2.5. Since the fluid interface is absent for one fluid pair in Cases 5 and 6,
the interfacial tensions between those pairs of fluids cannot be obtained by applying the
Young-Laplace law. The Young-Laplace law also cannot be used for Case 3 because the
interface between the two droplet phases is flat and the pressure difference vanishes. The
interfacial tensions can, however, be estimated using a linear least-squares fit to the data
in Fig. 2.5. We note that the horizontal axis intercept at gi j = 0.085 reflects the fact that
the interaction potential strength must exceed a threshold for phase separation to occur. For
Case 5, the tension of the interface that is absent at equilibrium is estimated as 0.14; in
Case 6, it is 0.13. In both of these cases, the tension of the absent interface exceeds the
sum of the tensions of the present interfaces, preventing adhesion of the droplets. In the
other cases (1 to 4), the maximum tension is less than the sum of the others, and we obtain
adhering droplets. In Case 3, the tension of the flat interface σ12 is estimated to be 0.03,
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which is about one third of the other two interfacial tensions (0.08), creating the nearly
semicircular shape of both droplet phases. The simulation results are therefore consistent
with the adhesion conditions, Eqs. 2.21 to 2.23.
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Figure 2.5: Interfacial tension (in lattice units) as a function of interaction potential strength
for all cases (dots) together with the least-squares linear fit (line), σi j = 0.444gi j−0.0377

The interfacial tension ratios determined from the equilibrium geometry are compared
with the ratios of the Young-Laplace interfacial tensions in Fig. 2.6. Only the cases in
which all three tensions could be determined from the Young-Laplace law are considered,
i.e. 1, 2, and 4. The excellent agreement throughout the range of tested ratios indicates that
the Shan-Chen LBM for simulating ternary mixtures of immiscible fluids reproduces the
expected interfacial force behaviour. The relative differences between the ratios computed
using Eqs. 2.7 and 2.8 (shown in Fig. 2.6) versus 2.9 and 2.10 were below 0.2%. The
equivalence of the two sets of equations for the tension ratios depends on the geometry
satisfying the mutual contact constraint given by Eq. 2.3. The close agreement between
the results for the two sets of equations therefore indicates that the three fitted circles all
intersect at the same points.

2.4.2 Janus droplets in shear flow

The behaviour of a Janus droplet in shear, and therefore the rheology of Janus emulsions,
depends on the shape of the compound drop. Torza and Mason [16] studied the rotation
of Janus droplets in shear experimentally, and we now consider analogous simulations. In
the simulations of droplets at equilibrium, all four boundaries are periodic. In the simula-
tions of sheared droplets that follow, the left and right boundaries remain periodic while the
upper and lower boundaries are replaced with solid walls moving at a constant horizontal
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Figure 2.6: Parity plot of the tension ratios obtained from the equilibrium geometry
(Eqs. 2.7 and 2.8) and the Young-Laplace law

speed (in opposite directions). These velocity boundary conditions were applied using the
method of Ladd [22] to each of the three fluids. This method conserves the mass of each
component. In contrast, the boundary condition of Zou and He [23] does not ensure mass
conservation, causing problems with the low-concentration components along the bound-
aries. In simulations with the Zou and He [23] boundary condition, layers with fluid of one
of the droplet components formed at the sheared walls.

While the steady-state flow field around a stationary droplet should be zero, spurious
currents are present near interfaces in many multiphase fluid simulation methods due to
discretization errors. In the Shan-Chen method, spurious currents are the result of dis-
cretization in density gradient calculations and a consequent lack of isotropy[24]. Fig-
ure 2.7 shows the steady-state spurious currents for Cases 2 and 3 (in Table 2.1). The
maximum spurious current magnitudes occur at the nodes along the interfaces and are of
order 10−2. As shown in Fig. 2.7, the spurious currents then rapidly decrease by an order
of magnitude as the distance from the interface increases. Spurious currents are typically of
order 10−3 at nodes that are at least three nodes away from an interface. The magnitude of
the spurious currents imposes a lower bound on the shear speeds that can be considered for
simulations of droplets in shear. The characteristic speed γ̇R, where γ̇ is the shear rate and
R is a characteristic radius of the compound drop, and therefore the wall shear speed must
be higher than the speed of the spurious currents. Otherwise, spurious currents dominate,
and unphysical results are expected. High shear rates are therefore desirable, but arbitrarily
large shear rates cannot be used because flow speeds must be lower than the speed of sound
in the LBM simulations

(
1√
3

)
to ensure that incompressible flow is simulated. Due to these

constraints on the shear speed, we consider shear speeds u0 between 0.005 and 0.05 at the
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walls.
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Figure 2.7: Spurious currents at steady state in Cases 2 (left) and 3 (right). The maximum
speed is 0.034 in Case 2 and 0.020 in Case 3. The bottom figures show the spurious current
magnitudes along the dashed vertical lines in the upper figures.

The behaviour of two types of Janus droplets (Case 2 and 3) in shear was studied to
show the effect of the surface tension ratios on the behaviour of one droplet in shear. Fig-
ure 2.8 illustrates the behaviour of a Case 2 droplet. For all the simulations of shear flow, the
two initial drop radii were 45 lattice nodes. The shear flow was started instantaneously after
100000 time steps of equilibration. The domain size was W ×H = 256×256. For droplets
in shear flow, we can define a Reynolds number Re = γ̇l2

c
ν

, where γ̇ = 2u0
H is the shear rate,

lc is a characteristic length, and ν is a kinematic viscosity (all three fluids have ν = 1
6 ).

The ratio of viscous and capillary forces is described by a capillary number Ca = µγ̇lc
σ

,
where µ is a dynamic viscosity and σ is an interfacial tension. In a system with three fluids
and three fluid-fluid interfaces, there are many choices for specifying the capillary number.
For the simulations with fixed fluid properties and varying shear rates, it is convenient to
define another dimensionless parameter: the ratio of the Reynolds and capillary numbers
Re
Ca = σ lc

ρν2 . This parameter does not depend on the shear rate and contains only geometric
and fluid parameters. Using the initial droplet radius (45) as the characteristic length, a
fluid density of one, and a typical droplet-bulk interfacial tension of 0.1 (density and ten-
sion are in lattice units), we obtain Re

Ca = 162. With the initial radius of the droplets (45) as
the characteristic length and shear speeds between 0.005 and 0.05, the range of Reynolds
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numbers is 0.47 and 4.7. For such Reynolds numbers of order 1, capillary numbers are of
order 10−2 , which indicates that little deformation from a circular interface shape should
be expected due to the dominance of interfacial forces over viscous stresses. The absence
of noticeable deformation from the equilibrium shape is confirmed in Fig. 2.8.

Figure 2.8: Janus droplet in shear at Re = 0.95. A solid line connects the centres of mass of
the two adhering droplets. The view shifts horizontally with the centre of mass of the red
drop. The definition of the orientation angle φ is shown in the first frame. Time proceeds
from left to right, and the dimensionless time interval between each frame is γ̇t = 3.9.

The rotation rate of a Janus droplet and the vertical component of its centre of mass
at two shear rates (Reynolds numbers) are shown in Fig. 2.9 for one rotation cycle. For
Re� 1, rigid spherical droplets[25] and cylinders in shear[26] rotate at an average angular
rate ω = 1

2 γ̇ . The speed of a point on the interface of a droplet depends on its position
along the interface[25, 27], and the rotation rate of a pair of spheres depends on its angle
relative to the flow[28]. We therefore show the dimensionless rotation rate 2ω

γ̇
as a function

of the orientation angle φ . The orientation of the Janus droplets was determined by finding
the centres of mass of the two constituent droplets. The angle φ is the angle between the
horizontal axis and the line connecting the centres of mass (this line segment is shown in
Fig. 2.8). Rotation rates were obtained using central finite differences. In the two cases, the
rotation rates vary around an average of about ω̄ = 0.35γ̇ with an amplitude of 0.25γ̇ . The
rotation rates are lowest when the droplet is horizontal, i.e. φ ≈ 0; rotation is fastest when
φ ≈ π/2 and the droplet is oriented vertically. The rotation rates are nearly the same for the
two Reynolds numbers. Despite the subtle asymmetry in the shape of the Janus droplet, the
rotation rate exhibits a periodicity with a period of π with respect to the orientation angle.
The vertical motion, however, repeats over a period of 2π . At both Reynolds numbers, the
Janus droplet is closest to either wall when the larger-radius (red) portion of the droplet
is closer to the wall and the droplet is oriented with the shear flow (i.e. 0 < φ < π/2 or
−π < φ <−π/2). The amplitude of the vertical motion decreases slightly with increasing
Reynolds number. This trend of decreasing amplitude in the vertical motion continues to
higher Reynolds numbers; in a simulation with Re = 4.7, the droplet did not rotate or move
vertically, but instead adopted a steady orientation and vertical position. The changes in
behaviour may be due to the increasing effects of confinement and the finite size of the
periodic domain with increasing Reynolds numbers. Simulations with larger domains are
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needed to assess these effects. However, such studies are not currently possible due to the
restricted range of parameters in which simulations are feasible. Maintaining the same Re
and droplet radius while increasing the domain size by a factor of two (while keeping the
relaxation time equal to one for low spurious currents) requires increasing the shear speed
by the same factor, making it approach the speed of sound in the LBM.
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Figure 2.9: Non-dimensional rotation rate (left) of a Case 2 Janus droplet and the verti-
cal component of the centre of mass (right) as a function of the orientation angle at two
Reynolds numbers and several domain widths at Re = 0.95. Due to the definition of φ ,
time proceeds from right to left (π to −π).

Simulations in wider domains are possible, and Fig. 2.9 shows the effects of increasing
the width of the domain on the motion of a Case 2 Janus droplet sheared at Re = 0.95. The
size of droplets in these simulations with the Shan-Chen method is the result of an equilib-
rium between the droplet and bulk concentrations, and therefore the initial concentrations
of the droplet components in the bulk (see Section 2.4.1) must be changed as the domain
size is increased to ensure that the equilibrium droplet size remains constant. Several sim-
ulations were performed to find the required initial concentrations of the two phases in the
larger domains that would provide the same drop size as in the smallest domain. Though
varying one concentration affects the size of both adhering drops, the effect on the drop of
the phase that is not varied is significantly smaller than the effect on the drop of the phase
that is varied. Consequently, the two unknown initial concentrations may be determined by
independently varying them until the sizes of both drops are correct. In the widest domain,
the required drop sizes could not be achieved only by varying the bulk concentration of
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the drop phases, and therefore the initial concentration in the drop phase was also varied.
Keeping all other parameters constant, increasing the width of the domain alters the rota-
tion and translation of the droplets. The effect of the domain width on the vertical motion
is small: the amplitude of the vertical oscillation decreases 19% as the width of the domain
increases by a factor of six. Over this six-fold increase in width, the orientations for min-
imum and maximum rotation rate remain effectively constant, the minimum rotation rate
decreases slightly, and the maximum rotation rate increases. The result is a net increase
in the average rotation rate from ω̄ = 0.35γ̇ to 0.4γ̇ . The amplitude of the variation in the
rotation rate increases from 0.25γ̇ to 0.35γ̇ .

For comparison with the Case 2 simulations, the experimental rotation rates obtained
for a similar Janus droplet geometry by Torza and Mason [16] are shown in Fig. 2.10. The
data for the two shear rates collapse to a single curve with an average rotation rate ω̄ = 0.5γ̇

and an amplitude of 0.2γ̇ . Torza and Mason [16] also measured the periods τ of the rotation,
obtaining values of γ̇τ/4π between 1.09 and 1.26. In the simulations (Fig. 2.9), the periods
are γ̇τ/4π ≈ 1.8 for both Reynolds numbers and independent of the domain width. The
periods of rotation in the experiments and simulations may be compared with the period of
a rigid ellipsoid with a similar aspect ratio. For a rigid ellipsoid with an axis ratio of 1.3 (a
typical aspect ratio of the experimental and simulated Janus droplets), the period of a Jef-
fery [29] orbit is γ̇τ/4π = 1.03. The experimental droplets therefore rotate slightly slower
than rigid ellipsoids and faster than the simulated droplets. In the experiments, the droplet
liquids are 830 (castor oil) and 6400 (silicone oil) times more viscous (dynamic viscosity)
than the external liquid (water with surfactant). All three components had similar densities.
In the simulations, both the densities and viscosities of the three liquids were nearly the
same. Since the rotation rate of fluid spheres increases towards the rate of rigid particles as
the viscosity of the internal fluid increases[25], the difference in rotation rates between the
experiments and simulations is tentatively attributed to the higher viscosity of the experi-
mental droplets relative to the external fluid. The viscosity ratio between the two droplet
fluids is also expected to affect the dynamics of Janus droplets, but the effect may be small
when both droplet fluids are significantly more viscous than the external fluid and the cap-
illary number is low, making the Janus droplet move as a rigid body through the external
fluid. It should be noted that the simulations are two-dimensional and the effect of this dif-
ference between the simulations and experiments has not been evaluated. Since both rigid
spheres[25] and cylinders[26] rotate at half the shear rate, the effect of dimensionality on
the rotation rate might not be significant, but remains to be verified with three-dimensional
simulations. Analyses of the effects of the vertical confinement are also left for future work
with three-dimensional simulations.
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Figure 2.10: Non-dimensional rotation rates of the Janus droplets studied experimentally
by Torza and Mason [16] at two shear rates

In simulations with Re < 0.2, the Case 2 Janus droplet did not rotate. At these low
shear rates, spurious currents become comparable in magnitude to the imposed shear flow,
and the absence of rotation (unlike the low-Re experiments of Torza and Mason [16]) is
considered an unphysical effect of the spurious currents. Results at 0.2 < Re < 0.47 are not
presented because it is unclear if the behaviour is unphysical due to the role of spurious
currents.

Case 3 Janus droplets, in which the shape of the adhering droplets is nearly semicircular,
behave very differently from Case 2 droplets. One significant difference is the absence of
vertical motion: fluctuations in the vertical position of the centre of mass are less than
half the lattice spacing. Another difference is in the dependence of the angular velocity on
the orientation angle, as shown in Figure 2.11. Results are shown only for Re = 4.7, at
which spurious currents do not appear to have a significant effect. With lower Reynolds
numbers (0.47, 0.95 and 1.9) the internal flow field relative to rigid rotation (as will be
described in the following paragraph) resembled the eight-pole structure of the spurious
currents shown in Fig. 2.7. At Re = 4.7, the rotation rate ω fluctuates around a mean of
ω̄ = 0.35γ̇ with an amplitude of 0.1γ̇ . Case 3 droplets therefore rotate at about the same
average rate as Case 2 droplets, but the amplitude of the fluctuations is significantly lower
for Case 3. Furthermore, the maximum and minimum rotation rates no longer occur when
the two halves of the Janus droplet are oriented vertically or horizontally. The differences
between the two cases are related to the more even distribution of mass around the centre
of mass in Case 3. Unlike Case 2, the area exposed perpendicular to the flow does not
change significantly as the Case 3 Janus droplet rotates, creating a weaker dependence of
the rotation rate on the orientation. A better understanding of the rotation behaviour of Case
3 droplets can be obtained by studying the flow inside them.
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As for the Case 2 droplets, we examine the effects of increasing the width of the do-
main on the behaviour of Case 3 Janus droplets. Simulations in a larger horizontal domain
assist future comparison of the (two-dimensional) simulations with experiments, which
have not been reported for sheared semi-circular droplets. Experiments with (homoge-
neous) droplets sheared in a narrow gap (only slightly larger than the diameter of the
drop) have been performed [30], and therefore experiments are possible with the same ratio
2R/H ≈ 0.5 as in the simulations, where R is the radius of the undeformed, semi-circular
Janus droplet. Replicating a periodic domain (with a series of equally-spaced drops) is not
practical, but simulations in successively larger domains can be used to evaluate the effect
of horizontal periodicity. Maintaining constant drop size while increasing the domain size
is easier with Case 3 droplets than with Case 2 droplets because the two drop phases in-
teract identically with the bulk phase. Only one initial concentration therefore needs to be
found to keep the sizes of both drops constant. As shown in Fig. 2.11, the change in the
rotation rate when doubling the domain size from W = 768 to W = 1536 is small, indicat-
ing that these simulations describe droplets that are not confined horizontally. Comparing
the horizontally confined (W = 256) and unconfined (W ≥ 768) cases, the orientations for
minimum and maximum rotation speed remain the same, while the rotation speeds are dif-
ferent. For horizontally unconfined droplets, the maximum rotation rate increases to 0.5γ̇

and the minimum rate decreases from 0.25γ̇ to 0.14γ̇ . The amplitude of the fluctuation in
the rotation rate of unconfined droplets is therefore nearly double the amplitude of con-
fined droplets. The period of the rotation increases from γ̇τ/4π = 1.6 (confined) to 2.1
(unconfined).

To gain insight into the dependence of the rotation rate on the orientation angle and the
difference between the rotation of a Case 3 Janus droplet and a rigid body, we consider the
motion of the fluid in the Janus droplet relative to the motion of an equivalently-shaped
rigid body that rotates with the same angular velocity. For each orientation φ shown in
Fig. 2.12, the velocity due to rigid rotation (~urot) at a rate ω(φ) about the centre of mass
of the compound droplet was subtracted from the fluid velocity (~u). The streamlines of the
resulting velocity field are shown in Fig. 2.12. For reference, the relative velocity field for a
cross-section of an undeformed, spherical, homogeneous drop in creeping flow[25, 27, 31]
is shown in Fig. 2.13. While simulations at lower Reynolds numbers showed a pattern
with eight rotation centres, the streamlines at Re = 4.7 clearly differ from the eight-pole
spurious current structure (Fig. 2.7). A four-pole vortex structure can be seen in the even-
numbered frames. The structure and magnitude of the relative flow are similar to those
of the exact solution (Fig. 2.13), supporting the conclusion that the flow is not spurious.
Compared to the exact solution, the structure in the deformed drop is only slightly rotated
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Figure 2.11: Non-dimensional rotation rate of a Case 3 Janus droplet at Re = 4.7. Due to
the definition of φ , time proceeds from right to left (π to −π). The time interval between
consecutive symbols is constant. The filled circles and numbers indicate the positions of
the frames shown in Fig. 2.12.

in the direction of the applied shear. The centres of the four vortices remain constant in a
stationary reference frame; they do not rotate with the droplet. The upper (right of centre)
and lower (left of centre) vortices circulate in the direction of the applied shear, while the
left (above centre) and right (below centre) vortices rotate in the opposite direction. When
the internal interface passes near two of the vortex centres, the corresponding vortices are
not present. Thus, all four vortices are present in frames 2, 4, 6, and 8, while only two are
clearly visible in the other orientations. The periodicity with period π in Fig. 2.11 indicates
that the simulation results are symmetric with respect to an exchange of the two droplet
fluids.

Figure 2.12 also shows the relative velocities in positions 5 to 8 for three horizontal
domain sizes. Again, the differences between the simulations with W = 768 and W = 1536
are small, indicating that the results with these domain sizes represent the behaviour of
a droplet that is not confined horizontally. In the two larger domains, the droplets deform
more from a circular shape. Horizontal confinement reduces the amplitude of the oscillation
in the rotation rate (Fig. 2.11) and the magnitude of the flow relative to rigid rotation, but
the structure of the vortices remains generally unchanged.

The rotation rate and vortex structure depend on the orientation of the droplet in the
following manner:
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Figure 2.12: Streamlines of the internal flow relative to pure rotation (~u−~urot) at the instan-
taneous rate ω(φ) and different droplet orientation angles φ . The numbers shown match the
labels in Fig. 2.11. The colour in the upper row identifies the fluid composition; in the lower
rows, the colour shows the magnitude of the relative velocity (γ̇R)−1 |~u−~urot|. The radius
R used to scale the velocity magnitude is the radius of the undeformed Janus droplet.

• Position 1 The droplet rotates fastest in this position. The internal interface is inclined
with the applied shear direction. Two vortices are present and both rotate against
the applied shear. The (absolute not relative) fluid flow in the vortex near the outer
interface therefore moves slower than rigid rotation, while the flow near the centre of
the Janus droplet moves faster. As the droplet rotates past position 1, the two vortices
decrease in size and the rotation slows.

• Position 2 All four vortices are present and the rotation rate is halfway between the
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minimum and maximum rates. After position 2, the two vortices that rotate against
the shear direction are no longer present, and the two vortices that rotate with the
shear flow grow. The growth continues until position 3.

• Position 3 The rotation rate is slowest, and the vortices are largest. In this position,
the internal interface is aligned against the applied shear. Fluid in the vortices moves
faster than the local speed due to rigid-body rotation in the region near the outer
interface and slower near the centre of the droplet. After position 3, the two vortices
shrink and the other two form.

• Position 4 The two vortices that started forming after position 3 are present, and they
rotate against the applied shear. These vortices then grow and the cycle repeats.

Due to symmetry, positions 5–8 are equivalent to positions 1–4. To summarize, the rotation
rate is in the upper half of its range when two vortices that rotate against the shear flow
are present; the rate is in the lower half when vortices that rotate with the shear flow are
present.
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2.5 Conclusions

The equilibrium states of Janus droplets in stationary fluid and the rotation of Janus droplets
in shear flow were simulated. A force balance model was used to obtain equations for cal-
culating interfacial tension ratios from the equilibrium geometry of a Janus droplet. The
inverse problem of determining the equilibrium geometry for known interfacial tensions
was also solved. These equations were used to evaluate the use of the two-dimensional
Shan-Chen lattice Boltzmann method for simulations of Janus droplets. Excellent agree-
ment was found between the interfacial tensions obtained from the equilibrium geometry
and from the Young-Laplace law. Systems with adhering, separated, and engulfed droplets
were shown.

Adhering droplets with two different geometries in shear flow were studied in two di-
mensional simulations. When the geometry of the Janus droplet is two slightly overlapping
circles, the Janus droplet rotates fastest when oriented vertically and slowest when horizon-
tal. While the droplet rotates, its centre of mass oscillates between the shear planes. This
first type of Janus droplet rotates at an average rate of 70% the rate of solid cylinders in
unconfined shear flow. The average rotation rate increases to 80% as the aspect ratio of
the domain increases from 1:1 (width:height) to 6:1. In the second type of Janus droplet,
the two portions of the droplet had a nearly semicircular shape. These droplets do not os-
cillate between the shear planes and rotate at the same average rate as the first type. The
amplitude of the fluctuation in the rotation rate is smaller for the second type of droplet,
and the orientations for maximum and minimum rotation are also different. The internal
flow in the second type of Janus droplet was analyzed by subtracting the rotation of an
identically-shaped rigid body from the flow field. A four-pole vortex structure was found,
and its structure and magnitude are similar to those of the flow in a sheared homogeneous
drop. The vortices are present in nearly constant locations (in a stationary frame of refer-
ence; the vortex positions do not rotate with the droplets) provided that the inter-droplet
interface does not pass through them. The maximum and minimum rotation rates occur
when the internal interface passes through two of the vortex positions, leaving only two
co-rotating vortices. These simulations of semicircular Janus droplets were performed in
square domains with twice the width and height of the droplet’s diameter. In simulations
with domains that are sufficiently large to approximate horizontally unconfined droplets,
the structure of the vortices remains the same, the average rate of rotation decreases to
60% of the rate of a solid cylinder, and the amplitude of the fluctuation in the rotation rate
doubles.

Surface tension ratios determine the geometry and consequently the behaviour of Janus
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droplets in shear. Though spurious currents restrict the parameter range in which physically-
correct results can be obtained, simulation results with the Shan-Chen method provide in-
sight into the ways that Janus droplets with different geometries behave in shear flow. To de-
termine the feasible parameter range for Shan-Chen simulations of droplets and emulsions
in shear, it is recommended to first perform simulations with high shear speeds ( 0.1 lattice
units, near the upper limit for incompressible flow) and well-resolved droplets (R > 20 lat-
tice units). The shear speed may then be decreased until unphysical behaviour occurs when
spurious currents and the imposed shear flow have comparable magnitudes. The streamlines
of the flow with shear should be compared with the streamlines of the spurious currents in
the absence of shear to assess whether the effects of spurious currents are small. Based
on the results for single droplets, Janus emulsions are expected to exhibit a rich and com-
plex range of behaviours and therefore rheologies. Further work is needed to study droplets
in three-dimensional simulations, reduce spurious currents and thus expand the range of
feasible parameters, and eventually simulate emulsions of Janus droplets and chains.
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CHAPTER 3

Simulations of droplet coalescence
in simple shear flow1

3.1 Introduction

Predicting and understanding the conditions for droplet coalescence are important for many
applications. At a large scale, emulsions, which consist of drops of one fluid dispersed in
another, may be subjected to complex turbulent flows for example during mixing. In such a
flow, droplets are sheared and collide, causing breakup and coalescence. The result of these
interactions is a particular droplet size distribution[1–3]. Since macroscopic properties,
such as the effective viscosity of an emulsion, and mass transfer rates between the fluids
depend on the droplet size distribution, it is useful to predict how flow conditions change
droplet sizes. To make such predictions, an understanding of when drops break up and
coalesce is required. In addition to emulsion flows in large vessels and process equipment,
droplet interactions are also important in microfluidic devices in which individual droplets
can be formed and manipulated[4–6]. For example, droplets can be formed by injecting one
liquid into another in a T-junction or the nozzle of a flow-focusing device[4, 5]. Microfluidic
devices can be used to study coalescence directly, and Bremond et al. [7] found that droplets
coalesce when separating rather than when they are compressed.

Droplet collisions in shear flow have been studied by several authors. Guido and Sime-
one [8] used optical microscopy to measure droplet trajectories during collisions in sim-
ple shear. They did not, however, determine the conditions for coalescence. Leal and co-
workers[9–12] used a four-roll mill to determine the conditions for coalescence under vary-
ing system parameters. Their results are for predominantly extensional flows (flows with
streamlines towards and away from a stagnation point), rather than simple shear flows.
More recently, Chen et al. [13] studied the effect of confinement on droplet coalescence

1A version of this chapter has been published as Orest Shardt, J.J. Derksen, Sushanta K. Mitra, “Simula-
tions of droplet coalescence in simple shear flow,” Langmuir, 29:6201–6212 (2013).
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in simple shear. The experimental results identify parameter ranges over which the transi-
tion from coalescence to non-coalescence occurs, and they are useful for comparisons with
simulations. In general, there are two motivations for using simulations to study coales-
cence. The first reason is to gain an understanding of coalescence by obtaining data and
using initial conditions that are experimentally impractical. The second reason is to verify
the accuracy of the simulation method so that simulations of coalescence in more complex
systems can be used to predict or optimize the performance of that system. For example,
simulations of polydisperse emulsion flows must correctly model the dependence of the
conditions for coalescence on the size of the droplets.

The outcome of a droplet collision is a macroscopic event that depends on phenomena at
a much shorter length-scale[14]. As two droplets approach, the fluid between them drains.
If this drainage continues long enough and the film between the droplets becomes suffi-
ciently thin, attractive intermolecular forces across the film dominate and a bridge forms
between the droplets. This bridge grows due to capillary forces, and the droplets coalesce.
For a surfactant-free mixture of two polymers, such as the polydimethylsiloxane (PDMS)
and polyisobutylene (PIB) studied by Chen et al. [13], van der Waals forces determine the
minimum film thickness before a bridge forms. An order-of-magnitude estimate of this
critical thickness is 27 nm [13]. In comparison, typical droplet diameters in emulsions and
microfluidic devices range from 1 to 500µm, factors of 37 to 18500 times larger than this
sample critical film thickness.

The range of length scales poses significant challenges for fully resolved simulations
of droplet collisions and coalescence. When simulating such a system, one must use an
exceedingly fine uniform mesh, a non-uniform mesh with significant refinement in the
vicinity of interacting interfaces, or multi-scale modelling that incorporates the effects of
phenomena at a small scale into larger more coarsely-resolved simulations. In general, sim-
ulations of droplets have been performed using interface-tracking or interface-capturing
methods[15]. Interface-tracking methods use meshes or other computational elements that
lie on the interface. In these methods, the interface is “sharp” because fluid properties vary
discontinuously over the interface. Examples of interface-tracking methods include the
boundary integral, finite element, and immersed-boundary methods [15]. Loewenberg and
Hinch [16] used the boundary integral method to simulate binary drop collisions in shear
flow. They did not, however, include attractive forces in the simulations and did not there-
fore simulate coalescence. The boundary integral method has also been used to study the
flow of concentrated emulsions[17, 18] in periodic domains and model porous media[19].
Simulating topological changes, i.e. breakup and coalescence, in interface-tracking meth-
ods is computationally challenging due to the mesh transformation that must be performed.
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The methods also require a somewhat arbitrary choice about the distance when two inter-
faces are close enough that they should merge or pinch-off. Such a critical distance may
not actually be a constant; Leal [11] notes the critical film thickness may depend on the
droplet radius. Because a length-scale must be provided as an input to the model, the use
of these simulation methods requires prior knowledge of this length, making the methods
non-predictive.

Unlike interface-tracking methods, interface-capturing methods do not explicitly de-
scribe the position of the interface. Instead, a scalar identifies regions of different compo-
sition and the interface is located where this scalar equals a constant value that is typically
zero or one half. Fluid properties vary continuously over the diffuse interface between
two fluids. Examples of such methods include lattice Boltzmann, level-set, volume-of-fluid
(VoF), and phase field models[15]. Changes in interface topology are handled automati-
cally by these methods. However, it is necessary to understand the conditions when these
changes (breakup and coalescence) occur in simulations and if the conditions match exper-
iments. In some interface-capturing methods, the critical distance between interfaces for
coalescence and breakup is determined by the grid, in contrast to the arbitrary (but spec-
ified) critical distance for interface-tracking methods. In the VoF and level-set methods,
two interfaces connect when the chosen grid cannot resolve the gap between them (see e.g.
Tryggvason et al. [20]). For example, the VoF method aims at simulating non-interacting
sharp interfaces. As Zaleski et al. [21] mention, a cutoff length-scale is introduced and in-
terfacial physics below this length scale are ignored. The cells in the simulation domain
have compositions of zero or one, except those cells that contain an interface. In these
cells, the composition varies continuously between zero and one. The interfaces of col-
liding droplets connect when the chosen grid resolution can no longer resolve the two
interfaces. Consequently, the conditions for coalescence are expected to depend on the cell
size, though a detailed analysis, analogous to the present lattice Boltzmann method (LBM)
work, is required to confirm the nature of the dependence. Grid-dependence is expected
because the film between two droplets is resolved better as the mesh is refined, decreasing
the critical thickness for rupture. As a result, a longer time is needed for the film to drain
before rupturing. Coalescence would therefore occur later in higher-resolution simulations.
In contrast, as we show in the “Interface resolution” section, we obtain grid-independent re-
sults with high-resolution free-energy LBM simulations. Similar results are expected with
other phase-field methods, but LBMs are convenient to parallelize, making high-resolution
simulations practical.

Lattice Boltzmann methods have seen much popularity for simulating microfluidic
flows [22]. While several multiphase and multicomponent LBMs have been proposed, we
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focus on the binary-liquid free-energy method[23] due to its thermodynamic treatment of
fluid mixtures. Simulations of droplet formation have been successful[24] with this method,
and the deformation and breakup of droplets has been studied in detail to determine the
numerical parameters that are required for accurate simulations[25]. The conditions for
coalescence, however, have not been studied in detail, though other researchers have noted
that droplets coalesce too easily [26]. While droplet coalescence in microfluidic devices has
been studied experimentally[6, 7, 27, 28], it is not currently possible to predict such coales-
cence phenomena with simulations. The need to study simulations of droplet coalescence
in detail is underscored by the development of non-coalescing emulsion models by several
researchers[29, 30]. Though these models can be used for flow conditions when coales-
cence does not occur, such models with suppressed coalescence cannot be used to study
the transition to coalescence. Therefore, there is a need to characterize the coalescence
behaviour of existing simulation models, investigate the previously-noted discrepancy be-
tween simulations and experiments, and determine whether conditions can be found in
which droplets do not coalesce.

Due to the thermodynamic treatment of the diffuse interface, i.e. the use of a Cahn-
Hilliard fluid model, the behaviour of fluid interfaces in the free-energy LBM can be re-
lated to van der Waals forces. This is an important advantage over other methods in which
a specified length or the grid resolution determines the conditions for coalescence. The
connection between the free-energy model and interfacial forces has been explained, for
example, by Yue et al. [31], who studied coalescence after a head-on collision with a
spectral phase-field method. Dupuy et al. [32] used an LBM with a Cahn-Hilliard free-
energy model to study the coalescence of liquid droplet pairs in vapour. Premnath and
Abraham [33, 34] also studied liquid droplets in vapour, but considered both head-on and
off-centre collisions. They showed several cases of coalescence and splitting after tem-
porary coalescence, but no cases where the interfaces never merged. The results agreed
with experimental findings. Their work, however, is in the high Reynolds number regime
(Re ≈ 50), and the easy coalescence noted by Jia et al. [26] occurs at low Reynolds num-
bers (Re < 1). Different LBMs, i.e. other than the free-energy LBM, have also been used to
study droplet collisions at high Reynolds numbers. Inamuro et al. [35], Lee and Lin [36],
and Sun et al. [37] focused on achieving high density ratios between the liquid and vapour
phases. Chiappini et al. [38] used a (two-dimensional) finite-difference lattice Boltzmann
method[36] to study the Rayleigh-Taylor instability, droplet breakup, and droplet coales-
cence, while Lycett-Brown et al. [39] studied collisions with an improved Shan-Chen[40]
LBM for liquid-vapour systems. To the authors’ knowledge, studies of droplet collisions
in liquid-liquid systems that are similar to those for liquid-vapour systems have not been
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reported. Perlekar et al. [41] studied large numbers of droplets (approximately 10 to 50) in
turbulence using the Shan-Chen method, but the behaviour of a colliding pair of droplets
was not investigated. Interestingly, simulations of droplet collisions and coalescence using
the colour-model LBM[42, 43], the third LBM model that is commonly used for multi-
phase simulations, have not been reported. Simulations of deformation and breakup[44]
and droplet formation in a microfluidic channel[45, 46] have been described. Due to this
success, the colour-model LBM may be a good candidate for coalescence simulations, but a
comparison of coalescence behaviour in the colour-model and free-energy LBMs is beyond
the scope of the current work. It should be noted that a link between numerical interface
parameters in the color-model LBM and intermolecular forces is not immediately evident,
suggesting a disadvantage of this model in comparison to the free-energy method.

In this work, we quantify the conditions for coalescence in the free-energy LBM during
collisions of two liquid droplets in a liquid matrix. The Reynolds number is fixed at one,
a low value that is efficient to simulate with this explicit numerical method. We determine
the effects of droplet size, diffuse interface thickness, interface diffusivity, vertical offset
between the droplets, and droplet confinement. This information is important for know-
ing the conditions when simulations of multiphase microfluidic flows and fully-resolved
simulations of emulsions in turbulence correctly model droplet coalescence.

3.2 Coalescence theory

A schematic of the coalescence problem that we simulate is shown in Fig. 3.1. Two initially
spherical droplets of radius R are initialized with a horizontal distance ∆X and a vertical
distance ∆Y between their centres in a domain with a height H between the shear planes.
A shear flow with a rate γ̇ = 2u0

H , where u0 is the horizontal speed of the two shear planes,
is started impulsively. The interfacial tension (or energy) between the droplet liquid and
the surrounding liquid is σ . We do not currently study the effects of density or viscosity
differences between the two liquids. Both liquids therefore have the same density ρ and
kinematic viscosity ν . A domain with a finite length L and a finite depth W is used to
represent a domain that is infinite in these dimensions. Thus the domain size is chosen to
be large enough that the effects of the finite size can be neglected, and the adequacy of
the choice is verified in the section “Domain size effect.” To use available computational
resources efficiently, we use symmetry boundary conditions and simulate only one quarter
of the whole system as shown in Fig. 3.1.

The physical parameters give rise to several non-dimensional parameters. Hydrody-
namic similarity is specified by the Reynolds number Re, which we define using the char-
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Figure 3.1: Schematics of the system geometry (top) and simulation domain (bottom). Two
droplets with radii R are located between two shear planes that are a distance H apart and
move at a speed u0 in opposite directions. The horizontal (parallel to the shear planes) dis-
tance between the centres of the droplets is ∆X ; the vertical distance is ∆Y . The definitions
of the coordinate axes and domain dimensions are also provided. Due to the symmetry of
the full system (top), only one quarter is simulated (bottom). The boundary conditions on
each face of the simulated domain are shown.
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acteristic velocity γ̇R and the droplet radius R as the characteristic length:

Re≡ γ̇R2

ν
(3.1)

The effects of surface tension are captured by the capillary number Ca, which is the ratio
of viscous (µγ̇R2) and interfacial (σR) forces:

Ca≡ µγ̇R
σ

(3.2)

where µ = ρν is the dynamic viscosity of both fluids. The geometric parameters are the
confinement 2R

H , the horizontal separation ∆X
2R , and the vertical offset ∆Y

2R .
The outcome of a collision is determined by the capillary number. With increasing cap-

illary number, the deformation of droplets increases as the interfacial forces that keep a
drop spherical give way to the viscous forces that shear the droplet. When droplets are
deformable, their interfaces flatten when they are pushed together in a shear flow. The
fluid film that forms between the droplets must drain before the interfaces can come close
enough that intermolecular forces dominate and the interfaces merge. If the film does not
thin sufficiently over the time of a collision, the drops slide over each other; otherwise
they coalesce. As the capillary number decreases, the reduced deformability of the droplets
suppresses the formation of a flat film. In the limit of high surface tension (Ca� 1), the
drops would remain effectively spherical and a flat film could not form to delay coales-
cence. Thus, droplets cannot coalesce when the capillary number is sufficiently high and
they coalesce when it is sufficiently low. There is therefore a critical capillary number Cac,
and droplets coalesce when Ca < Cac; they slide when Ca > Cac.

The outcome of a collision is determined by hydrodynamic, capillary, and geometric
effects, as well as a characteristic length scale lc at which intermolecular forces become
important and destabilize the thin film that separates colliding droplets. The dependence of
these factors on the critical capillary number can be expressed as

Cac = Cac

(
Re,

∆X
2R

,
∆Y
2R

,
2R
H

,
R
lc

)
(3.3)

3.3 Numerical method

We use the free-energy lattice Boltzmann method for binary liquid mixtures[23]. In this
method, two discrete density distributions fi and gi model the hydrodynamics and the evo-
lution of a phase field, respectively. A brief overview of the method is provided here to
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establish the definitions that are required for this chapter; more details about the method
and theory can be found elsewhere [22–24, 47–50]. In general, lattice Boltzmann methods
solve advection-diffusion equations through a two-step process that mimics the behaviour
of molecules in a gas. In the first step, the densities at each lattice node are propagated to
adjacent nodes along a set of discrete directions~ci, where i identifies the discrete direction.
We use a three-dimensional lattice with 19 discrete directions, i.e. a D3Q19 lattice, for
both density fields. The second step imitates the effect of collisions between molecules by
relaxing the densities at each node towards an equilibrium distribution. Thus, the density
distributions fi and gi evolve according to

fi(~x+~ci∆t, t +∆t) =
(

1− 1
τ f

)
fi(~x, t)+

1
τ f

f eq
i (~x, t) (3.4)

gi(~x+~ci∆t, t +∆t) =
(

1− 1
τg

)
gi(~x, t)+

1
τg

geq
i (~x, t) (3.5)

where τ f and τg specify the relaxation rates. By relating macroscopic values to the density
distributions and appropriately choosing the equilibrium distributions f eq

i and geq
i , the sim-

ulations model the required continuum equations. For the fi field, the macroscopic density
and momentum are

ρ = ∑
i

fi (3.6)

ρ~u = ∑
i

fi~ci (3.7)

and the equilibrium distribution is

f eq
i = Ai +Bi~u ·~ci +Ci~u ·~u+Di(~u ·~ci)

2 +Gi,αβ ci,αci,β (3.8)

where index notation has been used for the last term and summation over repeated Greek in-
dices is implied. The coefficients Ai, Bi, Ci, Di and Gi must satisfy conservation constraints,
but these constraints do not determine the coefficients uniquely. We use coefficients that
minimize spurious currents[51]. With these definitions of the macroscopic variables and
equilibrium function, the fi field simulates the mass conservation (continuity) equation

∂ρ

∂ t
+∇ · (ρ~u) = 0 (3.9)

and the incompressible Navier-Stokes equation

∂~u
∂ t

+(~u ·∇)~u =− 1
ρ

∇P+ν∇2~u (3.10)
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where the pressure is determined with the equation of state P = 1
3ρ and the kinematic

viscosity is related to the relaxation rate by ν = 1
3

(
τ f − 1

2

)
. In the limit of incompressible

flow, Eq. 3.9 simplifies to
∇ ·~u = 0 (3.11)

To simulate incompressible flow, flow speeds must be kept low, and we achieve this by
limiting the shear speed to approximately 0.02 lattice units per time step.

For the phase field, the scalar ϕ specifies the composition of the fluid, and it varies
between −1 (continuous phase) and 1 (droplet phase). It is determined from the density
distribution gi by

ϕ = ∑
i

gi (3.12)

The continuum equation for ϕ is

∂ϕ

∂ t
+∇ · (ϕ~u) = M∇2

µϕ (3.13)

In this advection-diffusion equation for ϕ , M is the diffusivity of the chemical potential µϕ .
This diffusivity is determined by the relaxation time τg and a free parameter Γ according
to M = Γ

(
τg− 1

2

)
, while the chemical potential is determined by the free-energy of the

system. The free-energy functional F [ϕ(~x)] is [23]

F =
∫

V

[
1
3

ρ lnρ +
1
2

ϕ
2
(
−A+

B
2

ϕ
2
)
+

κϕ

2
(∇ϕ ·∇ϕ)

]
dV (3.14)

The first term provides an ideal gas equation of state, the second term is a double-well
potential that causes phase separation at minima with compositions of ϕ0 = ±

√
A
B , and

the third term creates interfacial energy by associating energy with changes in ϕ . The pa-
rameters A and B specify the shape of the double-well potential. To have two phases with
ϕ0 = ±1, we use A = B. The magnitude of the energy due to concentration gradients is
determined by the parameter κϕ . The chemical potential for this free energy is

µϕ =
δF
δϕ

=−Aϕ +Bϕ
3−κϕ∇2

ϕ (3.15)

The one-dimensional steady-state solution for ϕ between two infinite domains provides im-
portant information about the interface, specifically its characteristic thickness and excess
energy. The solution is[23]

ϕ(x) = ϕ0 tanh
x
`ϕ

(3.16)
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The length scale `ϕ =

√
2κϕ

A characterizes the thickness of this diffuse interface. Though
96.4% of the total change in ϕ across an interface occurs over a distance 4`ϕ , the length `ϕ

is often called the interface thickness. The excess interfacial energy of this interface profile
is

σ =
2
√

2
3

√
κϕA (3.17)

For the large droplet sizes that are used in this work (R > 20 lattice nodes), the interfa-
cial energy for a planar interface provides a good estimate of the energy of a spherical
interface[26].

In this first detailed characterization of the coalescence of droplets in LBM simulations,
we keep several parameters constant and leave studying their effects as future work. To
minimize spurious currents and enhance stability, we keep the two relaxation rates fixed
(τ f = τg = 1). Consequently, ν = 1

6 and M = Γ
2 . The Reynolds number is fixed at one,

and we consider pairs of fluids with equal densities and viscosities. In earlier work[52],
the critical capillary number for film rupture was found to be independent of the Reynolds
number over the range 0.2 < Re < 1.4 in simulations with R = 25.

To maximize the droplet size that can be simulated with available computational re-
sources, we take advantage of the symmetry in the full domain and simulate only one
quarter of it. As shown in Fig. 3.1, the quarter-domain has two periodic boundaries, two
symmetry boundaries, a rotational symmetry condition at the bottom (y = 1

2H), and a shear
plane on top (y = H). The shear velocity condition ~u|y=H = (u0,0,0) on this plane was
implemented using the method of Ladd [53]. This method was chosen because it ensures
mass conservation (unlike e.g. the method of Zou and He [54]), an important feature for
the long simulation times that are used to study droplet collisions.

The central results of this chapter are the effects of the parameters in the free-energy
model on the outcome of a simulated droplet collision. The model provides a convenient
choice for the characteristic length lc: the characteristic length `ϕ of the diffuse interface
thickness. The Péclet number

Pe =
γ̇R`ϕ

MA
(3.18)

is the ratio of the time scales of advection and chemical potential diffusion over a length
scale given by `ϕ [24]. Using lc = `ϕ and including the Péclet number, we write

Cac = Cac

(
Re,

∆X
2R

,
∆Y
2R

,
2R
H

,
R
`ϕ

,Pe
)

(3.19)

We study the effects of the droplet size relative to the interface thickness R
`ϕ

, the interface
Péclet number Pe, the confinement 2R

H , and the vertical offset ∆Y
2R on Cac at constant Re and
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∆X
2R to determine whether free-energy LBM simulations can be used to accurately model the
physical problem. Other numerical factors that may affect the results, such as the relaxation
rate, are kept constant. We study a parameter range in which the effects of the parameters
on the critical capillary number can be determined with the computational resources that
are currently available to us. We hypothesize that the model parameter `ϕ can be related
to a physical lc so that the simulations represent the physical situation when R

`ϕ
and R

lc
are matched. If this is correct, the effective physical size of the simulated droplets can be
determined from the experimental size of a droplet system with the same Cac, Re, and
geometry.

3.3.1 Implementation

A highly-parallel code was used to simulate the large domains that are required to dis-
cern the effects of the parameters on the outcome of a collision. The smallest (R = 25
lattice nodes) simulations were performed on a single graphics processing unit (GPU). The
largest (R = 100 lattice nodes) simulations were parallelized over nine GPUs (NVIDIA
Tesla M2070), with three GPUs per computational node. For these multi-GPU simulations,
only one CPU core (Intel Xeon E5649) was used on each node for communication. This
communication was implemented with a Message Passing Interface (MPI) library. Sample
performance data for the simulations are listed in Table 3.1. All computations were per-
formed with double (64 bit) precision. The memory bandwidth that is shown is an effective
bandwidth that includes only memory transfers that are required by the LBM calculations;
memory transfers for communication are excluded. The speed is measured in million lat-
tice updates per second (Mlups). For the largest domain size, 232 Mlups is approximately
300000 time steps per day. The corresponding non-dimensional strain for 300000 time
steps at Re = 1 and R = 100 is γ̇t = 5.

Table 3.1: Performance of the simulation software with different domain sizes and types of
parallelization

Nodes GPUs Domain Size Drop Radius, R GPU Memory Bandwidth Speed
(lattice nodes) (lattice nodes) (GB) (GB/s) (Mlups)

1 1 256×64×64 25 0.5 75 40.8
1 3 256×64×64 25 0.5 132 72.8
3 9 1024×256×256 100 34 426 232
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3.4 Results and discussion

Many parameters remain constant for all the simulations that are presented in this section,
unless specified otherwise. These parameters are: Re = 1, `ϕ = 2, Pe = 10, ∆X

2R = 1.26,
∆Y
2R = 0.86, and 2R

H = 0.39.

3.4.1 Interface resolution

Before studying the conditions that determine when colliding droplets coalesce, we first
examine whether the simulation results are sensitive to the resolution of the interface and
the size of the periodic domain. To determine if the interface is adequately resolved with
`ϕ = 2, simulations with twice this resolution were also performed. As illustrated in the
upper portion of Fig. 3.2, the transition from ϕ = −1 to ϕ = 1 occurs over a distance of
about 8 nodes when the characteristic length `ϕ of the diffuse interface is 2. With `ϕ = 4,
the distance is 16 nodes. Since the higher-resolution interface profile is effectively identi-
cal to the lower-resolution profile, the interface is judged to be well-resolved at the lower
resolution.

Three capillary numbers were considered to see the effect of the interface resolution
on the outcome of a collision. All the simulations, shown in Fig. 3.2, were performed with
the same geometry, Reynolds number (1), Péclet number (10), and R/`ϕ = 18.75. The
simulation at the lower resolution had a droplet radius of 37.5, a domain size of 384×96×
96, and an interface thickness of `ϕ = 2; the simulation with R = 75 was in a 768×192×
192 domain and had `ϕ = 4. At both resolutions, the transition from coalescence to sliding
occurs over the range of capillary numbers from 0.08 to 0.1. At the higher resolution and
Ca = 0.09, a bridge between the two drops is visible in the fourth frame of the sequence in
Fig. 3.2. Such a bridge also forms and breaks at the lower resolution, but it breaks sooner
and is not visible in the frames chosen for Fig. 3.2. These results show that doubling the
resolution does not change the critical capillary number significantly. As will be described
in “Droplet size effect,” keeping the interface thickness constant at `ϕ = 2 in simulations
with R = 37.5 and R = 75 lowers the critical capillary number by almost a factor of three.
Due to the absence of a significant change in the critical capillary number when doubling
the resolution, the interface is judged to be adequately resolved with `ϕ = 2. This choice
for `ϕ agrees with the findings of van der Graaf and van der Sman[24, 25], who used
this interface thickness because it provided the correct critical capillary number for droplet
breakup in a shear flow. They found that the critical capillary number for breakup was too
low with `ϕ = 1. Since `ϕ = 2 provides adequate resolution, all further simulations were
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performed with this interface thickness. This choice allows us to simulate larger droplet
sizes relative to the interface thickness with less computational resources.
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Figure 3.2: Effect of resolution on droplet collision simulations. The upper portion shows
the value of ϕ along the x direction through the middle of the domain. Profiles are shown
for the two resolutions (R = 37.5 and 75) at an early time when a smooth profile has been
established but before significant shear has occurred (γ̇t = 0.13). The profiles were visually
identical for the three capillary numbers considered in the lower portion. The lower portion
shows time series of the interface shape in cross-sections through the middle of the domain
with R = 37.5 (dashed red) and R = 75 (solid black) at Ca = 0.08 (left), 0.09 (middle),
and 0.1 (right). Time progresses from top (γ̇t = 0) to bottom (γ̇t = 6.67) in increments of
γ̇t = 1.33.
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3.4.2 Domain size effect

Since the simulated domain is periodic in the two directions that are perpendicular to the
height of the domain (i.e. the x and z axes in Fig. 3.1), we evaluated the effect of the
domain size in these directions. The results for two domain sizes with R = 37.5 and Ca =
0.08, 0.09, and 0.10 were compared. The larger domain was 768× 192× 384, which has
twice the length and width of the smaller 384× 192× 192 domain. Doubling these two
dimensions did not change the shape of the droplets or the outcome of a collision at the
three capillary numbers. A domain with L ≈ 10R and W ≈ 5R is therefore large enough
that the effects of periodicity are minor. However, the effect of confinement, which is the
ratio of the domain height and droplet diameter, is important, and this effect is discussed in
the section “Confinement effect.”

3.4.3 Droplet size effect

The effect of the droplet size on the outcome of a collision was studied by increasing the
droplet radius and domain size in proportion while keeping the interface thickness (`ϕ , ex-
pressed as a number of lattice nodes) constant. This is in contrast to the simulations used to
study the effects of the interface resolution (Fig. 3.2) in which the interface thickness was
also scaled up by the same factor as the droplet radius and domain size. In the simulations
used to study the effect of the droplet size, the Reynolds number, Péclet number, and ge-
ometry were kept constant at the previously-listed values. The simulations with different
droplet sizes but the same interface thickness represent the physical situation of studying
collisions of differently-sized droplets of the same pair of liquids. When the same liquid
pair is used, the intermolecular interactions that determine the critical film thickness remain
constant.

Figure 3.3 shows how the capillary number and the size of the droplet relative to the
interface thickness determine the outcome of a collision. A bisection search method was
used to find the critical values when the transitions between different outcomes occur. In
general, droplets slide unless the capillary number is below a critical value. This critical
capillary number decreases as the droplet becomes larger relative to the interface thick-
ness, or equivalently, the interface thickness becomes smaller relative to the droplet radius.
Considering previous discussion, this decreasing trend occurs because reducing the critical
thickness for film rupture delays coalescence by increasing the time required for the film
to drain. If the observed decreasing trend in the critical capillary number with increasing
droplet size continues beyond the parameter range we studied, it is expected that droplets
will not coalesce in the limit of a sharp interface, i.e. as R/`ϕ → ∞. Thus, to simulate a
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physical system in which droplets coalesce, a finite R
`ϕ

value is required.
As illustrated in Fig. 3.3, there are three possible outcomes of a simulated droplet col-

lision for the parameter ranges that we consider. For every droplet size, there is a critical
capillary number above which the droplets slide over each other and their interfaces remain
distinct. There is also a critical capillary number below which the droplets coalesce. These
two critical capillary numbers, however, are not necessarily the same.

The effect of the droplet size relative to the interface thickness
(

R
`ϕ

)
on the two critical

capillary numbers is shown in Fig. 3.3. When R
`ϕ

> 22, there is only one critical capillary
number that separates the regions of sliding and coalescence. When R

`ϕ
< 22 the situa-

tion is more complex. The higher critical capillary number specifies when the interfaces
come close enough for the film to rupture. The newly-formed bridge is pulled apart by the
shear flow. This happens until the capillary number falls below the lower critical capillary
number that specifies when the outcome of a collision is coalescence. Both critical capil-

lary numbers follow a simple scaling rule Cac ∼
(

R
`ϕ

)−n
with different values of n (with

n > 0). Since n for the lower Cac is smaller than n for the higher Cac, the two capillary
numbers eventually become the same, and then the critical capillary number for film rup-
ture becomes the critical value that determines if drops coalesce. This result is consistent
with experiments[13] in which only one critical Ca for coalescence was observed. This
suggests that the droplets in the experiments are sufficiently large that only one Cac exists.
Experiments with smaller droplets are not available to verify if temporary bridges would
be observed with smaller droplets.

To interpret the existence of a temporary bridge in simulations, we can compare the
characteristic time scales of shear and bridge growth. The shear time scale is τs = γ̇−1.
The growth of the liquid bridge between drops is a complex phenomenon and only a brief
discussion is presented here. There are two regimes for the growth of the bridge radius Rb

over time (see e.g. Paulsen et al. [55]): a viscous and an inertial regime. Fig. 3.4 shows
the growth of the bridge as a function of time for a simulation with R = 37.5, `ϕ = 2,
and σR

ρν2 = 10.8. The bridge radius Rb is proportional to the square root of time scaled by

the inertial time scale τi =

√
ρR3

σ
, indicating that our binary-liquid simulations, like the

liquid-vapour simulations by Lee and Fischer [56], are consistent with modelling for the
inertial regime[57]. The proportionality factor of 0.7, however, is lower than the 1.2 found
by Lee and Fischer [56]. An important difference between the modelling discussed here and
the liquid-liquid coalescence experiments and simulations is that the modelling considers
liquid drops in a vapour whose effects are often neglected. The slower growth of the bridge
in liquid-liquid simulations may be due to the increased inertia of a liquid film compared
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Figure 3.3: The effect of the droplet size (top) on the critical capillary numbers that separate
the three possibilities (bottom) for the outcome of a simulated droplet collision. The open
circles show the simulations with the lowest capillary number for a given droplet radius
at which the two droplets remained separate. The filled circles show the highest capillary
number at which the droplets coalesce. Solid lines show fitted scaling laws. The time se-
quences at the bottom show sample collisions with R/`ϕ = 18.75 in which the droplets
slide (top), a temporary bridge forms (middle), and the droplets coalesce (bottom). Cross-
sections of the ϕ field are shown in the x-y plane through the middle of the domain with
colours ranging from white (ϕ =−1) to blue (ϕ = 1). The ϕ = 0 contour is shown in red.
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to a lower-density vapour film. Having shown that the inertial time scale determines the
rate of bridge growth in the simulations, we can consider the ratio of the shear and inertial
bridge growth time scales

τs

τi
=

γ̇−1
√

ρR3

σ

=
1√

ReCa
(3.20)

to determine the outcome of the competition between growth and shear that starts when the
film ruptures and the bridge forms. When τs/τi � 1, the shear time scale is smaller than
the bridge growth time scale, and we expect the slowly-growing bridge to be pulled apart;
when τs/τi� 1, the bridge grows faster than shear pulls it apart, allowing the droplets to
coalesce. A critical value of the ratio τs/τi must be exceeded for the droplets to coalesce.
The value of this critical ratio may depend on various parameters. Based on the lower Cac

values in Fig. 3.3, the critical value of τs/τi for the conditions of these simulations is slightly
higher than 3. If this critical time scale ratio remains constant, the critical capillary number
for bridge destruction scales as Cac ∼ Re−1 based on Eq. 3.20. At low Re, the dynamics
switch to a viscous regime, and the Re−1 scaling is not applicable (by using the viscous time
scale τv =

µR
σ

instead of τi, the time scale ratio Eq. 3.20 becomes the inverse of the capillary
number and is therefore independent of Re). Thus in addition to the difference in droplet
size relative to intermolecular length scales, the absence of experimental observations of
a regime where a bridge forms and breaks may be also due to the difference in Reynolds
numbers: the experiments of Chen et al. [13] had Re < 1×10−7 compared with Re = 1 in
the simulations.
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3.4.4 Interface diffusivity effect

The chemical potential diffusivity, or mobility M (defined in Eq. 3.13), affects the criti-
cal capillary number for coalescence. Qualitatively, if the diffusivity is low, the ϕ profile
over an interface responds slowly to changes in local conditions. As diffusion speeds up
compared to advection, the interaction time between two interfaces that is required for suf-
ficient diffusion to cause film rupture decreases. The critical capillary number increases,
i.e. coalescence becomes “easier,” as the mobility increases (Pe decreases).

Previous studies of the effect of the interface diffusivity in multiphase flow simulations
with the free-energy method have not considered coalescence. Van der Graaf et al.[24] per-
formed three-dimensional simulations of droplet formation in a microfluidic T-junction.
They verified that the critical capillary number for droplet breakup in a simple shear flow
was correct for their choice of resolution and Péclet number. Van der Sman and van der
Graaf[25] systematically studied droplet deformation and breakup in two-dimensional sim-
ulations with the free-energy method. Yue and Feng [58] discuss diffuse-interface mod-
elling of contact line motion on solid surfaces, a problem with features that are relevant
to simulations of coalescence. In the limit of a sharp interface (a non-diffusing interface
with zero thickness), contact lines remain unphysically pinned. The sharp-interface limit
is also unphysical for simulations of coalescence. Reducing the interface thickness relative
to the droplet size delays coalescence because the thickness of the film between the drops
must thin to a greater extent before coalescence, as was shown in the section “Droplet size
effect”. Zero diffusivity is also undesirable because, in the absence of diffusivity, adjacent
interfaces would not merge to cause coalescence. In simulations of contact line motion,
the limit of zero thickness and non-zero diffusivity is desired[58], while both a non-zero
interface thickness and diffusivity (and therefore a finite Péclet number) are required for
coalescence. In fact, van der Sman and van der Graaf [25] found that the critical capil-
lary number for droplet breakup in shear is correct when the rates of interface advection
and diffusion balance, i.e. the Péclet number is near one. In three-dimensional simulations,
van der Graaf et al. [24] obtained the correct critical capillary number for breakup in shear
with Pe = 10. Droplet breakup and coalescence, however, involve topologically and hydro-
dynamically different interactions between two interfaces. As a result, the correct choice
of the Péclet number for simulations of breakup and coalescence may not be the same. We
therefore study the effect of the Péclet number on coalescence in this section. In the other
sections, Pe = 10 was used.

The effect of the Péclet number on the collision outcome map (Fig. 3.3) is shown in
Fig. 3.5. All dimensionless parameters were kept constant except the interface Péclet num-
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ber that was varied between 1 and 100. Numerical instability prevented simulations with
Pe = 100 and R/`ϕ > 25. In general, as the Péclet number decreases, the critical capillary
numbers increase and the area of the region where temporary bridges form increases. The
critical capillary numbers as a function of the Péclet number for R/`ϕ = 18.75 are also
shown in Fig. 3.5. As expected, increasing the Péclet number lowers Cac. Compared to the
effect of R/`ϕ on Cac, the effect of the Péclet number is weaker: Cac decreases by a factor
of four as the Péclet number increases by a factor of 100, while doubling R/`ϕ reduces Cac

by a factor of three. In the advection dominated region with Pe > 50, a temporary bridge
does not form, and both Cac values become constant at about 0.05. As the Péclet num-
ber decreases, both critical capillary numbers increase and the difference between them
also increases. If both breakup and coalescence can be simulated correctly with the same
Péclet number, the results with Pe = 10 (with which van der Graaf et al. [24] obtained
breakup at the correct capillary number) may be considered predictive. A region of tempo-
rary bridge formation is thus expected to exist in experiments, but experimental evidence
is not presently available to assess this prediction. The existence and size of the parameter
range for temporary bridge formation is highly sensitive to the Péclet number.
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Figure 3.5: Effect of the Péclet number on the collision outcome map (left). The results
for Péclet numbers of 1 (blue), 10 (red), 50 (orange) and 100 (green) are shown. The solid
and dashed lines show fitted scaling laws. The dashed lines are for the high Ca at which
the droplets remain coalesced; the solid lines are for the lowest Ca at which the droplets
slide. At capillary numbers between these lines, a bridge forms then breaks. The effect
of the Péclet number on the two critical capillary numbers at a constant droplet size of
R/`ϕ = 18.75, indicated by the vertical dash-dotted line on the left, is shown on the right.
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3.4.5 Offset effect

To study the effect of the vertical offset, we performed additional simulations with a lower
offset ∆Y between the droplets. Simulations with capillary numbers exceeding 0.2 were not
performed because the deformation of the droplets became significant, and the periodicity
of the domain began to influence the outcome of the simulations. The non-dimensional
vertical offset for the second set of simulations was 0.6. All other parameters were kept
constant. The results of these simulations are compared with the previous simulations with
an offset of 0.86 in Fig. 3.6. As the vertical offset decreases, the geometry approaches that
of a head-on collision, and the Cac for coalescence increases. Simulations with R = 100
were also performed at ∆Y

2R = 0.3 and 0.4. Results for ∆Y
2R = 0.4 are shown in Fig. 3.7. At

these offsets, critical capillary numbers between 0.1 and 0.25 are expected. Precise values
were not obtained due to the computational requirements of the large domains. At these
lower offsets, the droplets switch to coalescing in the compression stage (i.e. before sliding
over each other) rather than the extension stage (when they move apart after sliding over).
Comparing Figs. 3.3 and 3.7, the change in the critical capillary numbers and the relative
orientation at coalescence (compression versus extension) can be seen. Complex behaviour
is seen at Ca = 0.15. An internal droplet is present in the bridge and multiple drops form
when the bridge breaks. Simulations at low offsets will be studied in greater detail in the
future. Significantly larger droplets (and therefore simulation domains) are needed to de-
termine the critical capillary number at the vertical offset of 0.16 for the droplets in the
experiments of Chen et al[13].

3.4.6 Confinement effect

The effect of confinement was studied using simulations with the same range of radii as
previously but in a domain with a constant size. In Fig. 3.8, the results of these simulations
with a fixed domain size of 1024×256×256 are compared to the previous simulations that
had a constant confinement. Numerical instability prevented the completion of simulations
at 2R

H = 0.29 with Ca < 0.008. The critical capillary number is therefore not known for this
confinement, but must be below 0.008. The open circle indicates this lowest capillary num-
ber that could be simulated. Comparing with the constant high-confinement

(2R
H = 0.39

)

simulations, reducing the confinement first decreases the critical capillary numbers, then
increases them until they eventually exceed those for the highly-confined case. The reason
for the reduction in the critical capillary numbers at R

`ϕ
= 25 is illustrated in Fig. 3.8. In

the larger domain, the droplets are more free to move vertically and slide over each other.
As a result, a lower shear rate (and therefore Ca) is needed to prevent sliding and cause
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Figure 3.6: Effect of the vertical offset on the critical capillary numbers for coalescence.
The red lines are for an offset of 0.86; the blue lines are for 0.60. A temporary bridge forms
for capillary numbers between the open and filled symbols.

Ca = 0.1

Ca = 0.15

Ca = 0.2

Figure 3.7: Sample collisions between droplets with ∆Y
2R = 0.4 and R

`ϕ
= 50. The time in-

crements are not uniform, differ between the three cases, and were chosen to illustrate the
different stages of the collisions well.
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coalescence.

0.01

0.02

0.04

0.06
0.08

0.1

0.2

0.4

C
ap

ill
ar

y
nu

m
be

r,
C

a

10 20 30 40 50 60
Droplet size, R

ℓϕ

droplets slide

droplets coalesce
2R

H = 0.39

2R
H = 0.10

2R
H = 0.15

2R
H = 0.20

2R
H = 0.29

unstable
Cac for coalescence
Cac for film rupture

2R
H = 0.20

2R
H = 0.39

Ca = 0.06, R/`ϕ = 25

Figure 3.8: (top) Effect of confinement on the critical capillary numbers for coa-
lescence. The red lines are for a constant confinement 2R

H = 0.39. The blue lines
are for a constant domain size and varying droplet sizes (and therefore confine-
ments). (bottom) Sample collisions between droplets with confinements of 2R

H =
0.20 (upper sequence) and 0.39 (lower sequence) and the same capillary number (Ca =
0.06) and droplet size (R/`ϕ = 25). The images have been scaled so that the domains are
the same size; the domain for 2R

H = 0.20 is double the size of the domain for 2R
H = 0.39.

3.5 Comparison with experimental results

While detailed experimental results are available for droplet coalescence in the extensional
flow of a four-roll mill[9–12], few experimental results are available for simple shear flow.
Early work by Guido and Simeone[8] did not determine critical capillary numbers. Re-
cently, Chen et al. [13] reported critical capillary number ranges for confined and uncon-
fined droplets in simple shear. Though these results are the most relevant to our simulations,
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they cannot be compared quantitatively. Considering the increasing trend in the critical
capillary number with decreasing droplet size, the high critical values for the simulations
indicate that the effective physical sizes of the simulated droplets are smaller than those
used in the experiments (radii 50 to 150 µm). Furthermore, the vertical offsets produced by
breaking a drop are lower (0.16) than the lowest offset for which critical capillary numbers
could be estimated in the simulations (0.3). Chen et al. [13] also present results for effec-
tively unconfined droplets and droplets with varying confinement, while simulations with
constant high confinement are most practical to obtain from simulations. Finally, the small
difference in horizontal offset likely has a minor effect, while the difference in Reynolds
number (1 in simulations vs. 10−7 in experiments) may be important. This Reynolds num-
ber is based on the droplet radius, and a Reynolds number based on the film thickness
would be one to two orders of magnitude smaller in the simulations. The flow in the drain-
ing film is therefore likely in the Stokes regime for both the simulations and experiments.
Due to the differences in the parameters between the simulations and experiments, we can
only compare the results qualitatively. The simulation results are nonetheless useful be-
cause they indicate how different numerical parameters affect the critical capillary number
and therefore how experiments and simulations can be matched by choosing the parameters
correctly.

One key difference between the simulations and the experiments of Chen et al. [13]
is the stage of the collision process in which coalescence occurs. Chen et al. obtained
critical capillary numbers between 0.001 and 0.008 and always saw coalescence during
the compression stage of the collision when the shear flow pushes the droplets together. In
contrast, Guido and Simeone[8] observed coalescence during extension at Ca = 0.13, but
with a viscosity ratio of 0.36 (droplet phase over continuous phase; the ratio is 1.1 for the
experiments by Chen et al. [13] and 1 in the LBM simulations). The coalescence of droplets
in the extension stage of the simulations is likely due to the high capillary numbers at which
the droplets coalesce and the large vertical offset.

To understand the differences in fluid and interface parameters between the experiments
and simulations better, we re-visit the bridge growth phenomenon. By differentiating the

equation describing the growth rate of the bridge, Rb
R = 0.7

(
t
√

σ

ρR3

)1/2

, a Reynolds num-

ber Reb that characterizes the speed of the interface can be defined. Taking the growth rate
of the bridge radius Rb at time t = τi as the characteristic speed and the droplet radius as
the characteristic length, this Reynolds number is

Reb ≡
R
ν

dRb

dt

∣∣∣∣
t=τi

=
1
2

√
σR
ρν2 (3.21)
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The proportionality factor of order one has been omitted. In the limit of high Reb, the
momentum generated at the growing bridge cannot diffuse over the radius of the droplet
in the time it takes the bridge to grow. If Reb is low, momentum diffusion is fast, and the
inertial growth model is invalid. This Reynolds number is related to the non-dimensional
quantity σR

ρν2 , called the Suratman number Su[59]. With this definition of Su, Reb =
1
2

√
Su.

For the shear flow simulations, Su = Re
Ca and is between 5 and 100. In contrast, σR

ρν2 ≈ 10−6

for the experiments by Chen et al. [13] due to the high viscosity of the polymers they used.
The growth of bridges between their polymer droplets is therefore not in the inertial regime,
but rather in the viscous regime. If experiments are possible with a fluid pair that has a
viscosity similar to water, the results could be compared with the simulations. Using σ =

2 mN/m, ρ = 1000 kg/m3, R = 10 µm, and ν = 10−6 m2/s, the value of σR
ρν2 is 20, which is

within the range that is feasible for simulations. While the difference in Suratman number
between the experiments and simulations clearly affects the post-coalescence growth of the
bridge, its effect on the pre-coalescence shape and trajectory of the droplets remains to be
studied in greater detail.

In both experiments and simulations, the critical capillary number decreases as the
droplet size increases. Due to the differences in parameters between the simulations and
experiments, comparing the rate of the decrease is difficult. For reference, the experimental
data of Chen et al. [13] for unconfined droplets are provided in Fig. 3.9. The experimental
data do not follow a simple power law scaling, but the slope for simulations with Pe = 10
is shown for comparison. The exponent was determined for simulations at a constant con-
finement of 0.39, while the experimental results are for unconfined droplets (2R/H < 0.1).
Considering Figs. 3.5 and 3.8, the rate of decrease is higher for low confinement and in-
creases with increasing Péclet number. The apparent agreement between the exponent for
unconfined experimental droplets and the confined droplet simulations at Pe = 10 is likely
coincidental. Further experiments or simulations at matching parameters are required to
evaluate the results. Due to the effect of the Péclet number on the exponent in the scal-
ing law, the correct Péclet number for simulations could be determined by matching the
exponent to experimental data.

It is worth noting that experimental results and scaling laws for the effect of the droplet
size on the capillary number are presented by showing the capillary number (a dimension-
less quantity) as a function of the droplet radius (a dimensional quantity)[9–13]. Ideally,
one would non-dimensionalize the droplet size by an appropriate physical length scale,
but the correct choice is not clear. If simulations and experiments with equal values for
all dimensionless parameters were feasible, it would be possible to determine the effective
physical length that corresponds to the interface thickness `ϕ in simulations. This length,
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however, would likely not be universal and would depend on the specific liquid pair being
considered.

As the vertical offset is decreased from 0.86 to 0.3 in the simulations, the critical cap-
illary numbers increase by about one order of magnitude. The collision stage in which the
droplets coalesce changes from being the extension stage at high offsets to the compression
stage at low offsets. Coalescence during compression at low offsets and extension at high
offsets is qualitatively consistent with the observations of Yoon et al. [12] for extensional
flows.

The trend in the critical capillary numbers for constant domain size qualitatively matches
the experimental results of Chen et al. [13]. Chen et al. found that the critical capillary num-
ber decreases monotonically as the droplet size increases in a fixed domain height when the
confinement is low (< 0.2). The critical capillary number then rises once the confinement
exceeds 0.2. In the simulations, a decrease in the critical capillary number was seen until a
confinement of about 0.3, after which the critical capillary number increases.
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Figure 3.9: Experimental data of Chen et al.[13] for unconfined droplets in simple shear
flow. The open symbols show the lowest capillary number at which the droplets slide; the
filled symbols show the highest capillary number at which they coalesce.

3.6 Conclusions

Highly-resolved, three-dimensional simulations of equal-size liquid droplets colliding in
the simple shear flow of another liquid were performed using the free-energy lattice Boltz-
mann method. In such a shear flow, the droplets coalesce unless a critical capillary num-
ber is exceeded. While the droplets in previous simulations were too small to determine
the critical capillary number, we used a highly-parallel code to simulate sufficiently large
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domains. With these large-scale simulations, we determined the critical capillary number
and explained why droplets coalesced at unrealistically high capillary numbers in previ-
ous simulations. The most important factor that determines the critical capillary number in
the simulations is the relative size of the droplets with respect to the thickness of the dif-
fuse interface. The critical capillary number decreases as the size of the droplets increases.
When the droplet radius is 25 lattice nodes and the characteristic thickness of the inter-
face is 2, which are typical values for droplet simulations, the critical capillary number is
0.16. Our largest simulations had droplets with radii of 100 lattice nodes; with these large
droplets, the critical capillary number was 0.016. The interface diffusivity, expressed as a
Péclet number, also affects the critical capillary number. With faster diffusion (lower Pé-
clet number), droplets coalesce at higher capillary numbers. A parameter range was found
where small droplets temporarily coalesce until shear pulls the newly-formed droplet apart.
Two geometric parameters, the vertical offset and confinement, were also considered. As
the vertical offset between the droplets is decreased, the critical capillary number increases
and the time of coalescence switches from the extension stage to the compression stage of
the collision. If the domain size is kept constant and the droplet size is increased (thereby
increasing the confinement), the critical capillary number first decreases then increases, as
in experiments.

The results of the simulations appear to be physically reasonable. However, simulations
at the scale required to match experimental work reported in the literature remain computa-
tionally impractical. If experiments were instead performed with smaller droplets and less
viscous fluids than the previously-used polymers, a direct comparison with simulations
may now be possible due to the feasibility of sufficiently large-scale simulations. For such
a direct comparison, we estimate that 1 to 50µm diameter droplets are required together
with a fluid for which σR

ρν2 ≈ 20. This value could be achieved with a fluid whose viscos-
ity is approximately that of water. Such experiments are needed to determine the interface
thickness and diffusivity (Péclet number) that should be used in simulations to correctly
model physical systems. Experiments and simulations at matched conditions would also
reveal the physical length scale that corresponds to the numerical interface thickness. Fu-
ture work will involve simulations of larger droplets relative to the interface thickness and
lower offsets to further explore the parameter space. The results presented in this chapter
are not only relevant to free-energy LBM simulations and likely also apply to simulations
with other phase-field Cahn-Hilliard methods, such as those of Ceniceros et al. [60]

63



References

[1] C. Tsouris and L.L. Tavlarides. Breakage and coalescence models for drops in turbu-
lent dispersions. AIChE J., 40:395–406, 1994.

[2] M. Kostoglou and A.J. Karabelas. A contribution towards predicting the evolution of
droplet size distribution in flowing dilute liquid/liquid dispersions. Chem. Eng. Sci.,
56:4283–4292, 2001.

[3] F. Laurenzi, M. Coroneo, G. Montante, A. Paglianti, and F. Magelli. Experimental
and computational analysis of immiscible liquid-liquid dispersions in stirred vessels.
Chem. Eng. Res. Des., 87:507–514, 2009.

[4] S.-Y. Teh, R. Lin, L.-H. Hung, and A.P. Lee. Droplet microfluidics. Lab Chip, 8:
198–220, 2008.

[5] C.N. Baroud, F. Gallaire, and R. Dangla. Dynamics of microfluidic droplets. Lab

Chip, 10:2032–2045, 2010.

[6] N. Bremond and J. Bibette. Exploring emulsion science with microfluidics. Soft

Matter, 8:10549–10559, 2012.

[7] N. Bremond, A.R. Thiam, and J. Bibette. Decompressing emulsion droplets favors
coalescence. Phys. Rev. Lett., 100:024501, 2008.

[8] S. Guido and M. Simeone. Binary collision of drops in simple shear flow by computer-
assisted video optical microscopy. J. Fluid Mech., 357:1–20, 1998.

[9] Y.T. Hu, D.J. Pine, and L.G. Leal. Drop deformation, breakup, and coalescence with
compatibilizer. Phys. Fluids, 12:484–489, 2000.

[10] H. Yang, C.C. Park, Y.T. Hu, and L.G. Leal. The coalescence of two equal-sized drops
in a two-dimensional linear flow. Phys. Fluids, 13:1087–1106, 2001.

[11] L.G Leal. Flow induced coalescence of drops in a viscous fluid. Phys. Fluids, 16:
1833–1851, 2004.

[12] Y. Yoon, M. Borrell, C.C. Park, and L.G. Leal. Viscosity ratio effects on the coales-
cence of two equal-sized drops in a two-dimensional linear flow. J. Fluid Mech., 525:
355–379, 2005.

64



[13] D. Chen, R. Cardinaels, and P. Moldenaers. Effect of confinement on droplet coales-
cence in shear flow. Langmuir, 25:12885–12893, 2009.

[14] A.K. Chesters. The modelling of coalescence processes in fluid-liquid dispersions: A
review of current understanding. Chem. Eng. Res. Des., 69:259–270, 1991.

[15] V. Cristini and Y.-C. Tan. Theory and numerical simulation of droplet dynamics in
complex flows — a review. Lab Chip, 4:257–264, 2004.

[16] M. Loewenberg and E.J. Hinch. Collision of two deformable drops in shear flow. J.

Fluid Mech., 338:299–315, 1997.

[17] A.Z. Zinchenko and R.H. Davis. Shear flow of highly concentrated emulsions of
deformable drops by numerical simulations. J. Fluid Mech., 455:21–62, 2002.

[18] A.Z. Zinchenko and R.H. Davis. Large-scale simulations of concentrated emulsion
flows. Phil. Trans. R. Soc. Lond. A, 361:813–845, 2003.

[19] R.H. Davis and A.Z. Zinchenko. Motion of deformable drops through granular media
and other confined geometries. J. Colloid Interf. Sci., 334:113–123, 2009.

[20] G. Tryggvason, R. Scardovelli, and S. Zaleski. Direct Numerical Simulations of Gas-

Liquid Multiphase Flows. Cambridge University Press, 2011.

[21] S. Zaleski, J. Li, and S. Succi. Two-dimensional Navier-Stokes simulation of defor-
mation and breakup of liquid patches. Phys. Rev. Lett., 72:244–247, 1995.

[22] J. Zhang. Lattice Boltzmann method for microfluidics: models and applications. Mi-

crofluid Nanofluid, 10:1–28, 2011.

[23] A.J. Briant and J.M. Yeomans. Lattice Boltzmann simulations of contact line motion.
II. Binary fluids. Phys. Rev. E, 69:031603, 2004.

[24] S. van der Graaf, T. Nisisako, C.G.P.H. Schroën, R.G.M. van der Sman, and R.M.
Boom. Lattice Boltzmann simulations of droplet formation in a T-shaped microchan-
nel. Langmuir, 22:4144–4152, 2006.

[25] R.G.M. van der Sman and S. van der Graaf. Emulsion droplet deformation and
breakup with lattice Boltzmann model. Comput. Phys. Commun., 178:492–504, 2008.

[26] X. Jia, J. B. McLaughlin, and K. Kontomaris. Lattice Boltzmann simulations of flows
with fluid-fluid interfaces. Asia-Pac. J. Chem. Eng., 3:124–143, 2008.

65



[27] G.F. Christopher, J. Bergstein, N.B. End, M. Poon, C. Nguyen, and S.L. Anna. Co-
alescence and splitting of confined droplets at microfluidic junctions. Lab Chip, 9:
1102–1109, 2009.

[28] D. L. Chen, L. Li, S. Reyes, D.N. Adamson, and R.F. Ismagilov. Using three-phase
flow of immiscible liquids to prevent coalescence of droplets in microfluidic chan-
nels: Criteria to identify the third liquid and validation with protein crystallization.
Langmuir, 23:2255–2260, 2007.

[29] H. Farhat and J.S. Lee. Suppressing the coalescence in the multi-component lattice
Boltzmann method. Microfluid Nanofluid, 11:137–143, 2010.

[30] T.J. Spencer, I. Halliday, and C.M. Care. A local lattice Boltzmann method for mul-
tiple immiscible fluids and dense suspensions of drops. Phil. Trans. R. Soc. Lond. A,
369:2255–2263, 2011.

[31] P. Yue, J.J. Feng, C. Liu, and J. Shen. Diffuse-interface simulations of drop coa-
lescence and retraction in viscoelastic fluids. J. Non-Newtonian Fluid Mech., 129:
163–176, 2005.

[32] P.M. Dupuy, M. Fernandino, H.A. Jakobsen, and H.F. Svendsen. Using Cahn-Hilliard
mobility to simulate coalescence dynamics. Computers and Mathematics with Appli-

cations, 59:2246–2259, 2010.

[33] K.N. Premnath and J. Abraham. Lattice Boltzmann simulations of drop-drop interac-
tions in two-phase flows. Int. J. Mod. Phys. C, 16:25–44, 2005.

[34] K.N. Premnath and J. Abraham. Simulations of binary drop collisions with a multiple-
relaxation-time lattice-Boltzmann model. Phys. Fluids, 17:122105, 2005.

[35] T. Inamuro, T. Ogata, S. Tajima, and N Konishi. A lattice Boltzmann method for
incompressible two-phase flows with large density differences. J. Comput. Phys.,
198:628–644, 2004.

[36] T. Lee and C.-L. Lin. A stable discretization of the lattice Boltzmann equation for
simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys.,
206:16–47, 2005.

[37] K. Sun, M. Jia, and T. Wang. Numerical investigation of head-on droplet collision
with lattice Boltzmann method. Int. J. Heat and Mass Transfer, 58:260–275, 2013.

66



[38] D. Chiappini, G. Bella, S. Succi, and S. Ubertini. Applications of finite-difference
lattice Boltzmann method to breakup and coalescence in multiphase flows. Int. J.

Mod. Phys. C, 20:1803–1816, 2009.

[39] D. Lycett-Brown, I. Karlin, and K.H. Luo. Droplet collision simulation by a multi-
speed lattice Boltzmann method. Commun. Comput. Phys., 9:1219–1234, 2011.

[40] X. Shan and H. Chen. Lattice Boltzmann model for simulating flows with multiple
phases and components. Physical Review E, 47:1815–1820, 1993.

[41] P. Perlekar, L. Biferale, M. Sbragaglia, S. Srivastava, and F. Toschi. Droplet size
distribution in homogeneous isotropic turbulence. Phys. Fluids, 24:065101, 2012.

[42] A. Gunstensen, D. Rothman, S. Zaleski, and G. Zanetti. Lattice Boltzmann model of
immiscible fluids. Phys. Rev. A, 43:4320–4327, 1991.

[43] M. Latva-Kokko and D.H. Rothman. Diffusion properties of gradient-based lattice
Boltzmann models of immiscible fluids. Phys. Rev. E, 71:056702, 2005.

[44] H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice boltzmann model for
immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.

[45] L. Wu, M. Tsutahara, L.S. Kim, and M.Y. Ha. Three-dimensional lattice Boltzmann
simulations of droplet formation in a cross-junction microchannel. Int. J. Multiphase

Flow, 34:852–864, 2008.

[46] H. Liu and Y. Zhang. Droplet formation in microfluidic cross-junctions. Phys. Fluids,
23:082101, 2011.

[47] R. Benzi, S. Succi, and M. Vergassola. The lattice Boltzmann equation: Theory and
applications. Phys. Rep., 222:145–197, 1992.

[48] S. Chen and G.D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev.

Fluid Mech., 30:329–364, 1998.

[49] C.K. Aidun and J.R. Clausen. Lattice-Boltzmann method for complex flows. Annu.

Rev. Fluid Mech., 42:439–472, 2010.

[50] G. Falcucci, S. Ubertini, C. Biscarini, S. Di Francesco, D. Chiappini, S. Palpacelli,
A. De Maio, and S. Succi. Lattice Boltzmann methods for multiphase flow simula-
tions across scales. Commun. Comput. Phys., 9:269–296, 2011.

67



[51] C.M. Pooley and K. Furtado. Eliminating spurious velocities in the free-energy lattice
Boltzmann method. Phys. Rev. E, 77:046702, 2008.

[52] O. Shardt, J.J. Derksen, and S.K. Mitra. Simulations of droplet collisions in shear
flow. In Proceedings of the ASME 2012 International Mechanical Engineering

Congress & Exposition, 2012.

[53] A.J.C. Ladd. Numerical simulations of particulate suspensions via a discretized Boltz-
mann equation. part 1. theoretical foundation. J. Fluid Mech., 271:285–309, 1994.

[54] Q. Zou and X. He. On pressure and velocity boundary conditions for the lattice
Boltzmann BGK model. Phys. Fluids, 9:1591–1598, 1997.

[55] J.D. Paulsen, J.C. Burton, and S.R. Nagel. Viscous to inertial crossover in liquid drop
coalescence. Phys. Rev. Lett., 106:114501, 2011.

[56] T. Lee and P.F. Fischer. Eliminating parasitic currents in the lattice Boltzmann equa-
tion method for nonideal gases. Phys. Rev. E, 74:046709, 2006.

[57] L. Duchemin, J. Eggers, and C. Josserand. Inviscid coalescence of drops. J. Fluid

Mech., 487:167–178, 2003.

[58] P. Yue and J.J. Feng. Can diffuse-interface models quantitatively describe moving
contact lines? Eur. Phys. J. Special Topics, 197:37–46, 2011.

[59] W. Yao, H.J. Maris, P. Pennington, and G.M. Seidel. Coalescence of viscous liquid
drops. Phys. Rev. E, 71:016309, 2005.

[60] H.D. Ceniceros, R.L. Nós, and A.M. Roma. Three-dimensional, fully adaptive simu-
lations of phase-field fluid models. J. Comp. Phys., 229:6135–6155, 2010.

68



CHAPTER 4

The critical conditions for coales-
cence in phase field simulations of
colliding droplets in shear1

4.1 Introduction

Phase field models for computing multiphase flows describe interface motion and defor-
mation in a way that conveniently handles the topological changes of breakup and coales-
cence. These methods have been used to study the deformation and breakup of droplets
in simple shear[1, 2] and microfluidic junctions[3] as well as the motion of three phase
contact lines[4–7]. In fact, simulations of contact line motion with the Cahn-Hilliard[8]
model have matched molecular dynamics simulations[5, 9]. While these interfacial flow
phenomena have been studied in detail with phase field methods, the interactions between
interfaces that lead to coalescence have received comparatively little attention. A key reason
is the need for high resolution: the colliding droplets in simulations of coalescence must be
significantly larger than the films that can form between them. The difficulty of achieving
sufficient resolution led to the observation that coalescence was too easy in simulations[10]
and methods with suppressed coalescence were developed[11, 12]. While models with sup-
pressed coalescence are useful for studying flows where coalescence does not occur, they
cannot be used to study the transition to coalescence. The ability to perform simulations
with accurate predictions of the conditions for coalescence would be useful in a wide vari-
ety of applications. Examples include droplet collisions in shear, confined droplet flows in
microchannels[13], and situations where breakup and coalescence must both be modelled
correctly, such as the droplet size distributions of falling raindrops[14] and emulsions in
turbulence[15, 16]. Consequently, there is a need to understand the conditions for and dy-

1A version of this chapter will be submitted to a journal.
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namics of coalescence in phase field simulations of fluid mixtures to assess their ability to
describe coalescence phenomena. Due to its physical foundations and success in describing
other flow phenomena, the Cahn-Hilliard model is the focus of this work. We perform sim-
ulations of droplet collisions in confined simple shear flow, a flow configuration in which
the critical conditions for coalescence have been studied experimentally[17, 18].

Simulations of colliding droplets in shear were first performed by Loewenberg and
Hinch [19] using a boundary integral method and preceded the experimental work of Guido
and Simeone [20], who found agreement with the simulations. These experiments did not
provide the critical conditions for coalescence, but revealed the trajectories and deforma-
tion of drops during collisions at different conditions. A sample experimental trajectory
was reproduced in simulations by Cristini et al. [21]. Earlier experiments by Bartok and
Mason [22] and Allan and Mason [23] showed that deformation of the drops was needed
for their separation in the velocity gradient direction to increase during a collision. The
critical conditions for coalescence in primarily extensional linear shear flows were studied
by Yang et al. [24] and the effect of the viscosity ratio was determined[25]. Mousa et al.
[26] studied the coalescence efficiency of droplets in simple shear flow, and recently the
critical conditions for coalescence in confined simple shear flow were determined[17, 18].
In these and previous experimental studies, flow inertia has been negligible. Simulations
with a front-tracking finite difference method have examined the effects of finite inertia,
confinement, and viscosity ratio[27–29].

While the purpose of these previous studies was to examine the self-diffusion of sheared
droplets due to collisions, the focus of our work is not on the trajectories and deformation of
colliding droplets but rather on determining the critical conditions for coalescence in phase
field models and studying the behaviour of the film between the drops at near-critical condi-
tions. In simulations with the free-energy lattice Boltzmann method[6], we have previously
found[30] conditions at which colliding droplets in impulsively-started simple shear flow
do not coalesce. In these simulations, the interface profile was resolved well to ensure that
coalescence occurred as a consequence of the phase field dynamics without artifacts of a
poorly resolved diffuse interface. The resolution of these previous simulations proved in-
sufficient to determine the effective physical size of the simulated droplets, and we now
address this question by presenting simulations with twice the previous droplet size. Due
to the larger drop size, we can now determine the critical capillary number for coalescence
at an initial offset in the velocity gradient direction of 20% the diameters of the drops, near
the value (16%) in the experiments of Chen et al. [17].

In the sections that follow, we briefly describe the numerical method and sample results
with twice the resolution of our previous work[30]. We then present the details of the inter-
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face behaviour during a collision, including the evolution of the minimum distance between
the droplets and the orientation of the film between them. We compare the critical capil-
lary number in the simulations with experimental values, accounting for differences in the
conditions, and examine the role of diffusion in the behaviour of the thin film between the
drops. We conclude with remarks on the prospects of predictive simulations of coalescence
with Cahn-Hilliard-type phase field models.

4.2 Numerical model

The numerical method and its implementation are the same as we have used previously[30];
the scale of the computations is, however, significantly larger. We use the free-energy
binary-liquid lattice Boltzmann method[6] to perform the simulations. In general, lattice
Boltzmann methods (LBMs) compute flows by evolving a discrete probability density
function for the velocity distribution of fictitious fluid molecules[31]. This is typically im-
plemented in a two-step process: motion (or streaming) of the molecules along the dis-
crete directions connecting adjacent lattice nodes and collisions between molecules, which
are modelled as relaxation towards an equilibrium velocity distribution. We use the BGK
(Bhatnagar-Gross-Krook[32]) collision operator. The bulk flow properties (density, veloc-
ity, and stress) are computed by summation of moments of the probability distribution, and
provided that flow speeds are slow (compared to the speed of sound in the lattice), they
satisfy the incompressible Navier-Stokes equation.

To model a mixture of two liquids, a second probability density function is used to
compute the advection and diffusion of a scalar composition variable, the phase field ϕ .
The simulations are three dimensional, and both the hydrodynamic and phase field lattices
have 19 discrete velocities. The phase field evolves according to the advection-diffusion
equation

∂ϕ

∂ t
+∇(ϕ~u) = M∇2

µϕ (4.1)

where µϕ = Aϕ
(
ϕ2−1

)
− κϕ∇2ϕ is the chemical potential, and M is the mobility. The

phase field dynamics and flow are coupled through a modified pressure tensor in the flow
solver. With the specified chemical potential, the fluid separates into two phases with ϕ =

±1. The two parameters A and κϕ in the chemical potential together specify the thickness
and tension of the interface. The steady solution for ϕ across a planar interface between
two semi-infinite domains is

ϕ(x) = tanh
(
`−1

ϕ x
)

(4.2)

where `ϕ =
√

2κϕ/A is a characteristic length of the distance over which ϕ varies between
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its values in the two domains (±1). Based on previous work[30], all simulations were per-
formed with `ϕ = 2 (lattice spacings) to ensure that the interface is well-resolved. It was
previously shown[30] that simultaneously doubling `ϕ , the droplet radius, and the domain
size does not change the behaviour of colliding drops. Therefore with `ϕ = 2, coalescence
is a consequence of the dynamics of the phase field without significant discretization errors.
The thickness of the interface is larger than the characteristic length `ϕ : 95% of the change
in composition across an interface occurs over the distance 3.7`ϕ ; 99% of the change oc-
curs over 5.3`ϕ . For large droplets (with a radius that exceeds 20 lattice nodes[10]), the
interfacial tension σ may be determined from the excess free energy of a planar interface
(Eq. 4.2) to be

σ =
2
√

2
3

√
κϕA (4.3)

The conditions of the simulations can be described with several dimensionless numbers
that capture the hydrodynamics, interfacial properties, and geometry of the simulated sys-
tem. Figure 4.1 shows a schematic of the cross-section through the centre of the simulation
domain along the omitted z axis. This figure provides the definitions of the variables that
describe the initial geometry of the simulated system and the variables of interest for the
later analysis. Two shear planes separated by a distance H move in opposite directions at
a speed u0. Between them, two droplets with equal radii R are located in the middle of the
domain, separated by a (non-dimensional) horizontal separation ∆X/(2R) = 1.26 and a ver-
tical offset ∆Y/(2R) = 0.2. The confinement of the droplets is 2R/H = 0.39. The minimum
distance between the interfaces of the droplets is h, and the film inclination angle θf is the
angle of the tangent to the interface of the higher droplet at the point of minimum distance
from the lower droplet. The other dimensions of the system are a length L = 2H in the x

direction (shear direction), a height H in the y direction (velocity gradient direction), and
a width W = H in the z direction (vorticity direction). The simulations only compute one
quarter of the full L×H×W system because symmetry boundary conditions are employed
along the z = 0 and z =W/2 planes and a rotational symmetry condition is used at y = 0.
The x =±L/2 boundaries are periodic. While the hydrodynamic field has a shear condition
at y = H/2, the phase field has a symmetry condition on this plane. The shear condition is
implemented using the method of Ladd [33] because this method conserves the density of
the fluid along the boundary, which is an important feature for our simulations that run for
several million time steps.

The Reynolds number of the shear flow is

Re =
γ̇R2

ν
(4.4)
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Figure 4.1: Schematic of the cross section through the simulated three dimensional do-
main including the definitions of variables that describe the geometry and conditions of the
colliding droplets. The omitted z axis points out of the page, and this cross section is at
z = 0.

based on γ̇R as the characteristic speed, where γ̇ = 2u0/H is the shear rate, and the radius
R of both droplets as the characteristic length. The kinematic viscosity of the droplet and
bulk fluids is ν = 1/6 (in lattice units which corresponds to a relaxation time of one for
the collision operator of the LBM hydrodynamic density distribution). All simulations are
performed with Re = 1 as in previous work[30].

We define the capillary number Ca as

Ca =
ρνγ̇R

σ
(4.5)

where ρ = 1 (in lattice units) is the density of the fluid. The interface Péclet number

Pe =
γ̇R`ϕ

MA
(4.6)

expresses the ratio of the rates of advection and diffusion of ϕ over the characteristic dis-
tance of the interface thickness. As in previous work[30], we use Pe = 10, a value at which
simulations of droplet deformation in shear were found to be accurate[3]. In the specifi-
cation of the mobility in the LBM for the phase field, the relaxation time in the collision
operator is kept fixed at one.

We present simulations in which the radius of each droplet spans 200 lattice spacings,
twice the radius of our previous work[30] and 100 times the characteristic length `ϕ of
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the diffuse interface. The simulated domain is eight times larger than previously, span-
ning 2048× 512× 512 lattice nodes (which is one quarter of the full system domain due
to symmetry). We consider the range of capillary numbers from 0.01 to 0.25 with more
simulations performed near the critical capillary number for coalescence, approximately
0.2.

4.2.1 Implementation

The numerical model is highly amenable to parallelization because the computations at
each lattice node of the domain require information from only the adjacent nodes. The
locality of the calculations also allows acceleration of the simulations through the use of
graphics processing units (GPUs) instead of conventional (multicore) central processing
units (CPUs). The limited memory available on GPU devices, however, necessitates split-
ting the computational domain across multiple devices and communicating boundary lay-
ers between them. The simulations were run on two Compute/Calcul Canada GPU clusters
with NVIDIA Tesla M2070 GPUs. One cluster has three GPUs per node (of which 66
GPUs were used); the other, which has two per node (of which 64 were used), performs the
computations slightly faster. The average speed on the faster system is 1248 million lattice
updates per second (Mlups). In comparison, an implementation of the same method runs
at 2 Mlups on eight conventional CPU cores[2]. On both systems, communication between
GPUs on the same node occurs over a system bus, while communication over the Infiniband
interconnect between nodes is performed with a Message Passing Interface (MPI) library.
A cross section of the phase and velocity fields through the middle of the domain is saved
every 32000 time steps (a non-dimensional time interval of γ̇∆t = 0.133). All computations
are performed with double precision and with error checking and correction (ECC) enabled
on the GPUs.

4.3 Results and discussion

Since the critical capillary numbers at the conditions of the new simulations, specifically
R/`ϕ = 100 and ∆Y/(2R) = 0.2, were not known, several capillary numbers between 0.01
and 0.25 were chosen to explore the parameter range and observe the nature of the col-
lisions. These simulations also provided the intervals that were then bisected repeatedly
to determine the critical capillary numbers. At the conditions of the present and previous
work[30], two critical capillary numbers separate three possible outcomes. Below the lower
critical capillary number, droplets coalesce. Above the upper critical capillary number, the
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droplets slide over each other and their interfaces never merge. Between the two critical
values, the droplet interfaces merge, the bridge between them grows, and eventually this
bridge breaks because the merging droplet is sheared apart faster than the bridge grows[30].
A sample simulation at Ca = 0.200, which is in this intermediate region and near the up-
per critical capillary number, is shown in Figure 4.2. The visualizations of cross-sections
through the droplets reveal several fine details due to the high resolution of the simulations.
After the droplets approach, a thin film forms with an initial inclination angle θf ≈ 45◦.
The shapes of the droplets until this time qualitatively match the front-tracking simula-
tions of Olapade et al. [27] at similar conditions (Re = 2, Ca = 0.2, ∆X/(2R) = 1.25, and
∆Y/(2R) = 0.125). They are also similar to boundary integral simulations at Ca = 0.3 with
∆X/(2R) = 5 and ∆Y/(2R) = 0.25 [19]. While Olapade et al. [27] and Loewenberg and
Hinch [19] do not simulate coalescence, in our simulations the droplets start to slide over
each other, and the film rotates and thins until two dimples form when the film is parallel to
the shear direction. As the interfaces merge, a drop of the bulk fluid is trapped in the grow-
ing bridge. As this bridge grows, the lobes at the ends continue to be sheared apart, and
the bridge thins and rotates. The end lobes eventually pinch off. The bridge retracts, leav-
ing an encapsulated droplet of the bulk fluid in the centre and a droplet between this central
droplet and each of the recently pinched-off drops. At Ca= 0.202, the breakup of the bridge
produces two additional drops (Fig. 4.3). The number of drops and their positions and sizes
is notably similar to the experiments and simulations of filament breakup by Tjahjadi et al.
[34] for equal drop and external liquid viscosities. These sample simulations shown in
Figs. 4.2 and 4.3 are very close to the upper critical capillary number. This upper critical
Ca is between 0.2020 and 0.2028 based on a sequence of simulations that successively bi-
sected the initial range 0.2–0.25. A precise estimate of the lower critical capillary number
that determines whether the growing bridge breaks is not available from the simulations
of this study. The lower critical capillary number is between 0.1 and 0.2, and likely be-
tween 0.15 and 0.2, but the simulation at 0.15 was stopped immediately after the interfaces
merged to provide computing resources instead for simulations near the upper critical Ca.
Complete coalescence at Ca = 0.15 is expected because θf > 0 at the time of coalescence.
In this orientation, the applied shear compresses the growing bridge rather than stretching
it. In all the cases where the droplet breaks after coalescing, the capillary number is less
than required to break an initially stationary drop. Breakup after temporary coalescence oc-
curs because the bridge does not grow quickly enough to achieve a near-equilibrium shape
before the growing drop is sheared apart[30] and not because the critical Ca for breakup
in an impulsively-started flow is exceeded by the coalesced drop. With Re = 1 and equal
droplet and external viscosities, initially spherical droplets in an impulsively-started shear
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flow break when the capillary number exceeds 0.28[2, 35]. Since the coalesced drop has
twice the volume of each initial drop, its radius and capillary number would be 21/3 ≈ 1.26
times larger than those of the initial drops. Therefore the droplet formed after coalescence
must break when the capillary number of the two initial droplets exceeds 0.22, which is
higher than the critical capillary number for coalescence at the simulated conditions.

γ̇t = 0.3 γ̇t = 4.3 γ̇t = 6.7

γ̇t = 8.1 γ̇t = 8.4 γ̇t = 10.3

γ̇t = 18.8 γ̇t = 20.9 γ̇t = 21.3

γ̇t = 21.7 γ̇t = 22.3

Figure 4.2: Coalescence and subsequent breakup at Ca = 0.200, Re = 1, ∆X/(2R) = 1.26,
∆Y/(2R) = 0.2, and 2R/H = 0.39.

Sample trajectories of the upper droplet at capillary numbers between 0.01 and 0.25
are shown in Fig. 4.4. The droplets coalesce at progressively later stages of the collision
with increasing capillary number. These trajectories reveal two features of the collisions.
The first feature is the compression and deformation of the droplets. For reference, the solid
line in Fig. 4.4 shows the circle that would be traced out by a sphere rotating in contact with
another identical sphere with the same size as the initially spherical droplets. The centres
of mass of the two colliding droplets approach much closer than the initial diameters of the
drops. At Ca = 0.25, the minimum distance between the centres of mass of the two drops
is 58% of the diameters. Only at the lowest capillary number considered (Ca = 0.01) does
the trajectory temporarily follow the path of rigidly rotating spheres before coalescing. We
point out that at this low capillary number, the droplets coalesce slightly later and higher
than at Ca = 0.05. The second noteworthy feature of the trajectories is the absence of
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γ̇t = 16.8

γ̇t = 17.1

γ̇t = 17.6

Figure 4.3: Breakup of the temporarily coalesced drop at Ca = 0.202. Compared to Ca =
0.200 (Fig. 4.2), the drop breaks earlier and two more drops form. The full domain has
been cropped to focus on the breaking bridge.

an abrupt change as the capillary number crosses the upper critical value. As the critical
capillary number is approached from above and below, the trajectories converge to the same
shape. The motion of the droplets is unaffected by the details of the behaviour of the film
between them unless this film ruptures and triggers a change in the topology of the fluid
domain. As will be shown later, the film behaviour changes significantly in several ways as
the capillary number approaches the upper critical value.

We briefly compare the trajectory of a non-coalescing drop (Ca = 0.21 in Fig. 4.4) with
other simulations reported in the literature for similar conditions. The vertical position of
this trajectory achieves a minimum soon after the shear flow starts and later reaches a max-
imum of ȳ/R = 0.79. Guido and Simeone [20] obtained a peak of ȳ/R = 0.88, independent
of the initial vertical offset in experiments at low Re, Ca = 0.13, and a droplet viscosity
0.36 times the external viscosity. Simulations by Loewenberg and Hinch [19] with equal
viscosities, ∆Y/(2R) = 0.25, and Ca = 0.1 and 0.3 show peaks at ȳ/R = 0.88 and 0.77, re-
spectively. Front tracking simulations have been used to study collision trajectories under a
wide range of conditions, including finite inertia[27–29]. A maximum ȳ is not seen in sim-
ulations of unconfined droplets at Re = 1, equal viscosities, and Ca = 0.2[27], but a finite
domain size causes a maximum to appear[27]. The presence of an initial downward trajec-
tory has been observed by others. It is enhanced by high Re, high Ca, small vertical offset,
large horizontal separation and low drop viscosity relative to the external fluid[27, 28]. The
purpose of these previous studies was, in general, to determine the increase in vertical off-
set between droplets after a collision and study the self-diffusion of drops in emulsions.
Our interest, however, is in the details of the film behaviour and we do not consider the
trajectories in further detail.

In the sections that follow, we examine the behaviour of the film between the drops at

77



−1 0 1 2
x component of centre of mass, x̄/R

0

0.2

0.4

0.6

0.8

1

y
co

m
po

ne
nt

of
ce

nt
re

of
m

as
s,

ȳ/
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Figure 4.4: Position of the centre of mass (x̄, ȳ) of the upper droplet during collisions at
several capillary numbers. The solid line shows the trajectory of one sphere in a pair of
touching rigid spheres rotating about the origin. The time interval between consecutive
symbols is γ̇∆t = 0.133.

capillary numbers near the upper critical value. Of the two critical capillary numbers, the
upper critical number decreases faster with increasing radius of the drops (relative to the
interface thickness)[30]. For sufficiently large drops, only one critical Ca separates the con-
ditions for coalescence and sliding; temporary coalescence is not observed. These trends
were determined for collisions with higher vertical offsets (0.86 and 0.6) than the present
work, and we assume that the same trends hold for ∆Y/(2R) = 0.2, specifically that the
lower critical Ca decreases slower than the upper critical Ca as R/`ϕ increases. Therefore
it is the upper critical Ca that should be compared with critical Ca for coalescence of larger
droplets, for which experimental critical capillary numbers are available but simulations
are not feasible due to excessive computational demands. In the remainder of this chapter,
the upper critical capillary number is denoted Cac, and we do not discuss the lower critical
Ca further.

4.3.1 Film behaviour

Due to the large domain size and limited computing and storage resources (20 GiB is
required to store all values of ϕ , ρ , and the three velocity components in the 2048×512×
512 domain), we analyze cross-sections through the middle of the domain (z = 0) in the
x− y plane. The interface is located where ϕ = 0, and we calculate the minimum distance
between polygonal droplet contours determined by bilinear interpolation of the values of ϕ

at each lattice node[36]. We focus on capillary numbers near the critical value and examine
the minimum distance between the two interface contours when they are in close proximity
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and a film can be considered to exist. Figure 4.5 shows the evolution of the minimum
distance between the drops as a function of time for all simulations. Three stages are evident
in the interaction between the droplets for capillary numbers in the interval 0.20 ≤ Ca ≤
0.25: an approach phase that lasts until γ̇t ≈ 5, a film thinning stage until γ̇t ≈ 8.5 at the
latest, and finally a separation or coalescence stage. At lower capillary numbers, i.e. Ca <
0.2, droplets coalesce before a distinct film thinning stage occurs.
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Figure 4.5: Minimum distance between droplets as a function of time for collisions at cap-
illary numbers between 0.01 and 0.25.

Among the simulations in which the interfaces never merge, the smallest film thickness
observed is 3.3`ϕ with Ca = 0.2028. Over this distance, 93% of the change in ϕ across
a flat interface (Eq. 4.2) occurs. The minimum film thickness is therefore similar to the
thickness of the interface, and only a small overlap of adjacent interfaces is needed to
start coalescence. While the range for the critical capillary number (0.202–0.2028) is at
most 0.4% of its value, the minimum film thickness at the lowest supercritical capillary
number (0.2028) provides a significantly less precise estimate of the critical film thickness.
The dependence of the minimum film thickness on the capillary number reveals a better
estimate of the critical thickness. A power law model hmin−hc = α (Ca−Cac)

n describes
the dependence well. In this model, the difference between the minimum film thickness
hmin and the critical film thickness hc is proportional to a power of the difference between
the capillary number and the critical capillary number Cac. The capillary number Ca is an
input to the simulations, hmin is an output, and hc, α , Cac, and n are fitting parameters.
As shown in Fig. 4.6, the fit is excellent, though we note that four model parameters have
been estimated from six simulations. A least squares fit provided the estimated critical
capillary number C̃ac = 0.20245 and the estimated critical film thickness h̃c/`ϕ = 3.00.
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The fitted exponent is ñ = 0.363, and the proportionality factor is α̃ = 5.13. The fitted
critical capillary number is higher than the highest subcritical Ca that has been simulated
(0.202), raising confidence in the model. The critical film thickness cannot be determined
more precisely with the current resolution of the simulations. Based on the fitted model,
the capillary number may only exceed the critical value by 3× 10−4% for the minimum
film thickness to be within 1% of the critical value. At the lowest supercritical Ca we
simulate (0.2028), the minimum film thickness is 0.29`ϕ , or 0.58 lattice nodes, higher
than the critical value, which is 10% of the critical thickness. To determine a more precise
critical thickness, simulations with a thicker interface, i.e. `ϕ > 2 and a proportionally larger
droplet radius and domain, are needed. Further bisections of the critical range with `ϕ = 2
are not worthwhile due to the imprecision of minimum film thicknesses obtained from
interface contours that are computed by interpolating between the values of ϕ at lattice
nodes.
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Figure 4.6: Dependence of the minimum film thickness on the capillary number. The pro-
portionality factor, exponent, critical film thickness (h̃c/`ϕ = 3.00), and critical capillary
number (C̃ac = 0.20245) were determined by least squares fitting.

The dynamics of the film thinning process can be understood better by considering how
the rate of film growth/thinning varies with the film thickness near the critical conditions.
Figure 4.7 shows a phase portrait of the film thinning dynamics at near-critical capillary
numbers. Time proceeds from the bottom right to the top right (supercritical Ca) or the
bottom left (subcritical Ca). States in the upper left quadrant of the figure, where the film
would grow while having a subcritical thickness, are not reached. The phase portrait em-
phasizes the sensitivity of the collision outcome and film dynamics to small changes in the
capillary number, and it reveals several interesting features of the film drainage process. At
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supercritical capillary numbers, a minimum film thickness must necessarily exist, and the
thinning rate must be zero when the film is thinnest. An arrow along dh/dt = 0 indicates
the extrapolated critical film thickness (Fig. 4.6). As Ca ↓ Cac, dh/dt increases quickly
soon after dh/dt = 0 (see also Fig. 4.5). This can be seen as a vertical straightening of the
trajectory in phase space as it crosses dh/dt with decreasing Ca and a corner in the film
thickness as a function of time (at γ̇t ≈ 8.5 in Fig. 4.5). These results suggest that dh/dt

soon after the time of minimum thickness may diverge as Ca ↓ Cac.
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Figure 4.7: Dynamics of the film thickness h at near-critical capillary numbers. The dashed
curves connect points at equal times spaced by γ̇∆t = 0.4 with the latest (upper left) at
γ̇t = 8. The arrows indicate the locations of the estimated critical minimum thickness and
potential position of the critical minimum thinning rate.

The bisection method for finding the critical conditions led to few simulations at sub-
critical capillary numbers. Fig. 4.7 shows that the presence of a minimum thinning rate is a
unique feature of the subcritical simulations, a feature that can also be seen as an inflection
point in Fig. 4.5. In general, the film thins at a decreasing rate until reaching either a min-
imum thickness (and then separating) or a minimum thinning rate (and then accelerating
to coalescence). The minimum thinning rate decreases as the capillary number increases to
its critical value, but the two highest subcritical cases do not clearly indicate whether the
critical minimum thinning rate reaches zero or a particular positive value (negative dh/dt).
The region of inadmissible states in Fig. 4.7 is therefore not yet precisely known. The film
thickness at the time when the thinning rate reaches its minimum exceeds the critical film
thickness, and it decreases as Ca ↑ Cac. Therefore the outcome of subcritical simulations
is known the moment a minimum thinning rate occurs, which is before the critical thick-
ness is reached. Furthermore, at near-critical Ca, the film rotates rapidly, and therefore
its inclination at the time of coalescence differs from the inclinations when the thinning

81



rate is minimum and when the thickness crosses the critical value. This raises questions
about whether the attainment of a critical film thickness is an appropriate phenomenologi-
cal model for determining when coalescence occurs. This criterion has been used to specify
when meshes of nearby droplets are connected in some simulation methods[37, 38].

Figures 4.5 and 4.7 have shown the outcome of the competition between the hydro-
dynamic forces that pull the droplets apart in the late stages of the collision and the film
flow and phase field dynamics that lead to coalescence. It is important to emphasize that
the dynamics described in these figures are for the distance between the two closest points
on the droplets, and the behaviour in the whole film is more complex. An examination of
the flow in a cross-section of the film at the lowest supercritical capillary number (0.2028)
reveals an interesting feature of the flow in the film near the critical conditions. The flow
field ~u in the film may be considered the sum of a rigid rotation at the rate with which
the film is rotating (dθf/dt) and a velocity relative to this rigid rotation. Figure 4.8 shows
that this relative fluid motion is out of the film at γ̇t = 4.5, as expected for a draining film.
However, by γ̇t = 6.9, the flow reverses, and now points into the film. These relative flow
speeds are small, about one tenth of the characteristic speed γ̇R, and should be compared
with spurious currents (in the absence of applied shear) to ensure that the relative flows are
not a similar magnitude. Though a stationary simulation was not performed with R = 200,
results for R = 50 and R = 100 indicate that spurious currents are sufficiently low. When
Re and Ca are kept constant as R is increased by factor of two, γ̇R and σ are halved. With
increasing R, spurious currents decrease because of the larger radius of curvature of the
interface and the lower interfacial tension. The decrease in the maximum spurious speed
appears to match the decrease in γ̇R: maximum spurious speeds are 0.008γ̇R with R = 50
and 0.009γ̇R with R = 100, both at Ca = 0.1. For R = 200 and Ca = 0.1, spurious speeds
are not expected to exceed 0.01γ̇R and are likely lower for Ca = 0.2 due to the lower inter-
facial tension. The relative flow in the film is therefore an order of magnitude faster than the
expected maximum spurious currents around a stationary droplet with the same interfacial
tension.

The presence of a reversal in the film flow can also be seen in the absolute (not relative
to rotation) flow field. Over the same time interval that the relative flow in the film reverses,
the vorticity Ω = ∂uy/∂x− ∂ux/∂y (calculated by central finite differences of the veloc-
ity data) in the film changes sign from positive (counterclockwise) at γ̇t = 4.5 to negative
(clockwise) at γ̇t = 6.9, as illustrated in Fig. 4.9. The flow fields do not change significantly
near the critical capillary number and the same reversal phenomena were found in both sub-
and supercritical simulations near Cac. The reversal therefore happens before coalescence
when the capillary number is sufficiently high: at Ca = 0.202, coalescence does not occur
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until γ̇t = 8.5. The reversal of the flow in the film occurs surprisingly early in the interac-
tion: the film orientation angle is positive and the centres of mass of the droplets are not
yet vertically aligned (they align at γ̇t ≈ 7.1). The reversal therefore occurs during what is
usually considered the “compressive” stage of the collision.

γ̇t = 4.5

γ̇t = 6.9

Figure 4.8: Flow fields in the film relative to rigid rotation at the rotation rate of the film
dθf/dt for the simulation with Ca = 0.2028 at times γ̇t = 4.5 (top) and 6.9 (bottom). The
images have been rotated so that the film is horizontal. One arrow is shown for every fourth
lattice node in both directions. To illustrate the structure of the flow, the lengths of the
arrows are scaled relative to the maximum relative flow speeds at each time, which are
0.18γ̇R (γ̇t = 4.5) and 0.12γ̇R (γ̇t = 6.9).
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Figure 4.9: Vorticity Ω = ∂xuy− ∂yux (normalized by the applied shear rate γ̇) in the film,
the drops, and the nearby fluid at γ̇t = 4.5 (left) and 6.9 (right) for the collision with Ca =
0.2028.

When the flow reversal occurs, the thickness of the film is between one and two times
the interface thickness. One should therefore consider whether the flow in the film is ade-
quately resolved with this thickness. Simulations of confined droplet motion in a channel
with the same free-energy binary-liquid LBM have been reported[39]. The thickness of the
film between the drop and the wall was found to be accurate when it was at least twice the
interface thickness. However, the thickness of the film changed only 4% when the resolu-
tion was halved. We therefore consider that the flow in the film is reasonably resolved until
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the thickness of the film approaches the critical thickness (which is similar to the interface
thickness). It is important to note that one cannot have full resolution of the film (by choos-
ing R/`ϕ so that for example hmin & 8`ϕ to meet the criterion given by Kuzmin et al. [39])
yet still observe coalescence, which requires the film thickness to reach the critical film
thickness hc = 3`ϕ . Low resolution of the flow in the film is not the reason for coalescence:
coalescence occurs due to the phase field dynamics and gradients in chemical potential in
the adjacent interfaces.

The continued decrease of the minimum distance between the interfaces despite the
reversal of the flow in the film occurs due to fluxes of ϕ that counteract sharp gradients
of chemical potential. Based on the film thickness and time when the reversal occurs, we
may consider the mobility of the phase field to contribute significantly to the dynamics of
h in the portion of Fig. 4.5 where h . 5`ϕ . Consequently, diffusion of ϕ contributes to the
dynamics of h throughout the ranges of time, thickness, and growth rate shown in the phase
portrait, Fig. 4.7. This choice is consistent with a convergence study of the film thickness
at supercritical capillary numbers (see appendix “Convergence of film thickness”) in which
the film thicknesses for two different Pe cross when h = 6`ϕ at near critical Ca. The in-
dependence of the film thickness to the Péclet number prior to the cross-over thickness
suggests that the mobility does not have a significant effect on interfaces that are further
apart.

We look more closely now at the rotation and thinning of the film during near-critical
collisions. Figure 4.10 shows the film inclination angle as a function of time for several
capillary numbers. Like the centre of mass (Fig. 4.4), the sub- and supercritical inclination
angles converge as Ca→ Cac. Figure 4.11 illustrates the shapes of the thinnest films at the
simulated capillary numbers, and Fig. 4.12 shows the films when the thinning rate is slowest
and at moments before and after coalescence. For Ca ≤ 0.15, a single point of minimum
film thickness exists, while two dimples are present when Ca ≥ 0.2 and a droplet of the
external fluid forms inside the bridge. In the supercritical cases (Fig. 4.11), two dimples
are present and the separation between them increases with increasing capillary number.
The presence of two dimples is a hydrodynamic feature of a draining film[40]. As the
capillary number decreases to the critical value, the minimum thickness occurs later in the
collision process and therefore when the film is inclined further clockwise. At the lowest
supercritical capillary number (0.2028), the film slopes downward (θf = −4.2◦ < 0). At
subcritical capillary numbers (Fig. 4.12), the minimum thinning rate and coalescence occur
later and with further clockwise rotation as the capillary number increases to its critical
value. At the low capillary numbers, the film does not rotate significantly between the
time of minimum thinning and subsequent coalescence. In contrast, a significant change in
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inclination can be seen between these two times at Ca≈Cac. For Ca= 0.202, the minimum
thinning rate occurs when the film is inclined upward (θf = 16◦ > 0) while coalescence
occurs with a downward-inclined film (θf = −23◦ < 0). Considering the phase portrait of
the film thinning process (Fig. 4.7), we hypothesize that as Ca→Cac the angle at minimum
thickness converges to the angle at minimum thinning rate and not the coalescence angle.
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Figure 4.10: Film inclination angle as a function of time for several capillary numbers.

Ca = 0.2028
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Figure 4.11: Cross-sections through the droplets at the time of minimum film thickness for
Ca = 0.2028,0.2035,0.205,0.21,0.22, and 0.25. The arrows indicate the locations where
the films are thinnest.

Figure 4.13 summarizes the variation in the film inclination angle as a function of
the capillary number at key events in the sub- and supercritical collision processes, and
Fig. 4.14 presents the times of these events. As mentioned previously, the critical events
occur later and with a lower film angle as the critical capillary number is approached from
above and below. The time between the minimum thinning rate and coalescence increases
as Ca→ Cac. Since the interaction between colliding drops occurs over a finite time inter-
val, maximum times of minimum film thickness, minimum thinning rate, and coalescence
must exist. However, the high sensitivity of the film behaviour to the capillary number
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Figure 4.12: Cross-sections through the droplets at the time of slowest film thinning (left),
at the last saved time step before coalescence (centre), and the first after coalescence (right)
for (top to bottom) Ca = 0.01,0.05,0.1,0.15,0.2,0.202. The time interval between the
right pair of images is γ̇∆t = 0.133. The arrows indicate the locations where the films
are thinnest.
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near Cac prevents an accurate estimate of these times and the critical angles. Based on the
highest subcritical and lowest supercritical simulations, the maximum time for minimum
thickness or minimum thinning exceeds γ̇t = 8.1 while the maximum coalescence time ex-
ceeds 8.5. The corresponding critical angles are θf < −1.4◦ for minimum film thickness
and thinning rate and θf <−23◦ for coalescence. Considering the small change in spacing
between the lines that connect points at the same time in the phase portrait (Fig. 4.7), we
estimate an upper bound of γ̇t ≈ 8.4 on the times of minimum film thickness and thinning
rate, from which a lower bound of −17◦ on the corresponding critical angle is estimated
using θf(γ̇t) at the lowest supercritical Ca.
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Figure 4.13: Film inclination angle at several events in the sub- and supercritical collision
processes
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Figure 4.14: Times of key events in the collision processes at sub- and supercritical capil-
lary numbers
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4.3.2 Physical size of droplets

To estimate the physical size of the simulated droplets, we compare the critical capillary
number of the simulations with experiments at similar conditions. Chen et al. [17] present
critical capillary numbers for Newtonian polymer droplets (polydimethylsiloxane in poly-
isobutylene) with radii between 54 and 158 µm at confinements 2R/H up to 0.315. The
ratio of the droplet to bulk liquid viscosities was 1.1, and the difference in density was
considered negligible. De Bruyn et al. [18] present similar experiments, but their viscosity
ratio was 0.1, which we judge to be too low for a meaningful comparison with our current
simulations. Guido and Simeone [20] did not determine critical capillary numbers for coa-
lescence, but depending on the initial vertical offset, observed sliding and coalescence dur-
ing extension with a ∼100 µm radius drop at Ca = 0.13 and a viscosity ratio of 0.36. The
power law Cac ∼ R−0.84, in which the exponent is independent of the viscosity ratio[41],
fit the confined and unconfined experiments of De Bruyn et al. [18] reasonably, and we
use this model to extrapolate experimental Cac to smaller drop sizes. Using Cac = 0.0075
for experiments with 2R = 315 µm, 2R/H = 0.315 and ∆Y/(2R) = 0.16[17], the critical
capillary number is Cac = 0.202 when R = 3.12 µm. Use of this power law at high capil-
lary numbers (at which the droplet trajectories deviate from those of rigid spheres) requires
caution since this power law was determined for primarily extensional flow and has not
been evaluated experimentally at capillary numbers higher than the 10−2 to 10−1 range
considered by Hu et al. [41]. We note also that simulations at an initial offset of 0.6 and
0.86 provided exponents of -1.15 and -1.57, respectively[30], for critical capillary numbers
between 0.02 and 0.2. We consider therefore the effect of a different exponent on the ex-
trapolated physical size: With Cac ∼ R−1, the physical radius is 5.9 µm for the simulated
drops; with Cac ∼ R−0.65 it is 1 µm.

A second way to estimate the physical size of the droplets is to consider the ratio of the
droplet radius and the critical film thickness. In the simulations, this ratio is 33 based on
the extrapolated critical thickness 3.00`ϕ . An order of magnitude estimate for the critical
film thickness for the experimental polymer system is 27 nm[17]. The resulting physical
size of the simulated droplets is R = 0.89 µm. Extrapolating this size and Cac = 0.202 to
the experimental droplet size with the scaling Cac ∼ R−0.84, we obtain a critical capillary
number of 0.0026 for a droplet with 2R = 315 µm, compared with 0.007–0.008 reported
by Chen et al. [17].

The two methods for estimating the physical size of the droplets agree to within a factor
of 3.5 and indicate a physical radius between 0.9 and 3.1 µm. We consider this agreement
to be reasonable given the uncertainty in determining physical critical film thicknesses,
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the differences between the experimental and simulated parameters, and uncertainty in the
variation of the critical capillary number with drop sizes in the range 1–10 µm where Cac

is of order 10−1. This range of droplet sizes is relevant to studies of polymer blends[42] and
emulsions, such as those used in enhanced oil recovery that have mean droplet diameters
between 1 and 12 µm[43].

Now that an estimate of the physical size of the droplets is available, we may assess
whether the interface Péclet number is physically reasonable. For this purpose we define
a modified Péclet number P̂e that is the ratio of the timescale h2

c/(MA) for phase field
diffusion over the critical film thickness and the droplet advection timescale γ̇:

P̂e =
γ̇h2

c
MA

= Pe
h2

c
`ϕR

(4.7)

For the simulations, we have P̂e = 0.9, and the two timescales are effectively equal. In
the limit P̂e� 1 interfaces cannot merge because insufficient diffusion occurs over the
interaction time of a collision; for P̂e� 1 diffusion is quick and does not hinder coalescence
during the interaction time. To relate the modified Péclet number with the other parameters
of the system we note that

P̂e = Re
ν

MA

(
hc

R

)2

(4.8)

The modified Péclet number is thus the product of the Reynolds number, the ratio of the
fluid kinematic viscosity and the phase field diffusivity, and the square of the ratio of the
critical thickness and droplet radius. We estimate the diffusivity for liquids to be on the or-
der of 10−9 m2/s, as estimated by Jacqmin [4]. Using the viscosity of water ν = 10−6 m2/s
and R/hc = 33, we obtain P̂e = 0.92. The simulations are therefore at a physically reason-
able Péclet number. Since shear rates (and the factors in Eq. 4.8) may span many orders
of magnitude, for example 10−4 to 104 s−1 for a typical rheometer, the Péclet numbers for
physical systems are expected to span a similarly wide range. Since maximum possible
shear rates and micron size droplets provide P̂e of order one, P̂e exceeding one are not
expected for physical systems unless they have diffusivities much lower than 10−9 m2/s.
Table 4.1 summarizes the parameters of a sample physical system with the dimensionless
parameters of the simulations. The required shear rate is below the maximum of a com-
mercially available viscometer (107 s−1 for the Ultra Shear Viscometer, PCS Instruments,
London, UK) and the required gap size is larger than the 1.25 µm of this device. The re-
maining values are typical for liquid systems. The purpose of this comparison is to show
that the conditions of the simulations are applicable to physical systems; experiments with
droplet collisions at this small size and high shear would need to address challenges such
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as the generation and observation of the drops. Simulations at lower Re are possible, but
would take longer to run since Re would be decreased by reducing the shear rate rather
than increasing the fluid viscosity in the LBM we use.

Table 4.1: Parameters of a sample physical system with the same dimensionless parameters
as the simulations

parameter symbol value
droplet radius R 1 µm
gap between shear planes H 5.1 µm
confinement 2R/H 0.39
kinematic viscosity (droplet and external) ν 10−6 m2/s
fluid density (droplet and external) ρ 103 kg/m3

shear rate γ̇ 106 s−1

wall speed u0 2.6 m/s
wall shear stress ρνγ̇ 103 Pa
Reynolds number Re 1
interfacial tension σ 5×10−3 N/m
capillary number Ca 0.2

4.4 Conclusions

The interactions between adjacent interfaces during binary droplet collisions in simple
shear flow were examined in high resolution phase field simulations with the free-energy
lattice Boltzmann method. Large-scale parallel GPU computing was used to simulate droplets
with radii spanning R = 200 lattice nodes in a 10R× 5R× 5R domain, of which only one
quarter was computed by exploiting symmetry. The drops had the same density and vis-
cosity as the external fluid, and the Reynolds number of the flow was fixed at one. The
critical capillary number for coalescence at a low initial offset between the droplets (20%
of the droplet diameters) was determined to within 0.4%. In collisions without coalescence,
the difference between the minimum distance and a critical film thickness depends on the
difference between the capillary number and the critical capillary number through a simple
power law. This relationship was used to estimate a more precise critical capillary num-
ber and critical film thickness by fitting the power law to the minimum thicknesses and
capillary numbers of several supercritical simulations. At subcritical capillary numbers, an
inflection point (and a corresponding minimum thinning rate) exists in the evolution of the
minimum film thickness over time. This inflection point occurs before the critical thickness
is reached.

90



The rotating film between the droplets exhibits interesting behaviour at near-critical
conditions. In this film, the flow relative to rigid rotation at the angular speed of the film
reverses from exiting to entering the gap between the drops. The reversal of the (relative)
flow coincides with a change in sign of the vorticity in the film. The minimum thickness
between the interfaces continues to decrease after the flow reversal due to the phase field
mobility. At near-critical capillary numbers, there are two points in the film where it is
thinnest. As the critical capillary number is approached from subcritical conditions, the
minimum thinning rate and coalescence occur at later times and with further clockwise
rotation of the film. When approaching the critical capillary number under supercritical
conditions, the minimum film thickness also occurs later and with further film rotation.
Due to the high sensitivity of the film behaviour to the capillary number (even within 0.5%
of the critical value), the details of the film behaviour in the critical capillary number limit,
such as whether the minimum thinning rate approaches zero or a finite value, remain open
questions.

The effective physical size of the simulated droplets could be estimated due to the sim-
ilarity of the simulated conditions with those of droplet collision experiments in confined
shear flow. The use of an empirical scaling for the dependence of the critical capillary num-
ber on the size of the droplets provided a 3.1 µm effective physical radius for the simulated
droplets. The ratio of the simulated droplet size and the (numerical) critical film thickness,
together with an (order of magnitude) estimate of the critical film thickness for the experi-
mental fluid pair, provided another estimate of the physical size of the simulated droplets:
0.9 µm. The difference between these estimates is judged reasonable considering the im-
precision of the scaling law, critical film thickness, and the differences in properties of the
numerical and experimental fluid pair.

The late stages of the interaction between interfaces, specifically at and near the points
of minimum distance to the adjacent interface, are determined by the phase field mobility.
If it is sufficiently low, this mobility delays the merging of the interfaces. We show that
the interface Péclet number Pe of the simulations, which was chosen based on studies of
droplet deformation in shear, is reasonable for physical systems. However, a wide range
of Péclet numbers is possible, and there is therefore a need to understand the effects of
Pe better. Future work could examine how the mobility affects the phase portrait of the
film thickness dynamics at near-critical conditions. The effects of the viscosity ratio, initial
distance between the drops, and size ratio could also be evaluated. However, further studies
of the behaviour under one set of conditions and comparison with experimental results are
currently more important as they would examine the adequacy of phase field models in
describing coalescence physics, thereby revealing the utility of further parameter studies.
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Several other avenues are open for future work. Clusters with thousands of GPUs exist,
and larger scale computations could be used to further bridge the gap between simulations
and experiments. Multiscale modelling of interface behaviour would be useful for studies
of large-scale flows where films cannot be fully resolved. Studies of relatively small fluid
volumes could be used to study drop size distributions and population balance models for
their evolution. A question to be addressed by multiscale modelling is whether the simplifi-
cation that interfaces merge when they reach a critical thickness is reasonable. Considering
the small length scales of the simulations, the effects of non-continuum phenomena are
also an area for future work. One aim for future work is to further evaluate the applicability
of phase field models to studies of coalescence phenomena and work towards nanoscale
direct numerical simulations of interacting interfaces in the spirit of such studies of contact
line motion[4, 44]. A second aim is to apply the insights from simulations to flows of many
droplets under a wide range of conditions.
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CHAPTER 5

Simulations of charged droplet col-
lisions in shear flow1

5.1 Introduction

Interfaces between fluids are often charged for a variety of reasons[1], such as adsorption
of ions and dissociation of acidic groups, and these charges give rise to a wide range of
phenomena. For example, air bubbles[2, 3] and oil drops in water[4–6] have a negative
charge that depends on the pH of the electrolyte solution they are in. Because of the charge
on their surface and the diffuse charge in the electrolyte around them, drops move when
external fields are applied[7–11]. Attractive and repulsive forces due to electric interac-
tions between charges on interfaces and ions in the fluid also play an important role in the
stability of emulsions against coalescence[1]. In the classic DLVO (Derjaguin and Landau
[12] and Verwey and Overbeek [13]) theory, the balance between van der Waals attraction
and electric attraction/repulsion on droplets and particles is used to assess the stability of
emulsions and particle suspensions. Interactions between interfaces are not limited to elec-
tric and van der Waals forces[1]; for example many types of surfactants are used to control
interfacial interactions, and they may have molecular structures, such as long hydrocarbon
chains, that allow them to interact over longer distances. As a further complication, the
distribution of surfactants and charges on an interface may not be uniform[14, 15]. Further-
more, variations in surface tension on interfaces give rise to Marangoni stresses and flows
that alter the motion of droplets[16] and the flow between them during collisions[17].

Despite the important role of charge in the interactions between interfaces, simulations
of multiphase flow rarely include electric phenomena. In fact, the details of the interactions
are usually neglected due to the already considerable computational expense of simulating
the flow. In typical simulations, interfaces merge and threads break when their size falls be-

1A version of this chapter will be submitted to a journal.
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low the resolution of the simulation or a specified critical size[18–20]. Since small changes
in composition, such as addition of a surfactant or a change in pH, can have a profound
effect on macroscopic characteristics of multiphase flows, there is a need to account for the
different interactions between interfaces that determine the conditions for the coalescence
and breakup of droplets. The ability to perform such detailed simulations of multiphase
flows would be relevant to studies of droplet size distributions in turbulent mixing[21, 22]
and the behaviour of droplets in micro-scale devices[23]. Working towards this goal, we
have coupled a multiphase flow solver with a solver for electrostatic potential to simu-
late collisions of deforming charged droplets. To our knowledge, simulations of moving
charged interfaces and collisions of charged droplets have not been previously reported in
the open literature.

The critical conditions for coalescence of uncharged droplets in shear flow have been
previously studied in experiments with polymers[24–29] and simulations[30] with the free-
energy binary-liquid lattice Boltzmann method (LBM)[31]. In general, droplets coalesce
unless the capillary number (ratio of viscous and interfacial forces) exceeds a critical value.
The phase field method is straightforward to parallelize and has been implemented on
graphics processing units (GPUs), whose improved performance relative to conventional
CPUs has allowed highly-resolved simulations with droplet radii that span up to 200 lattice
nodes. In these simulations, the diffuse interface was sufficiently resolved that the merging
of adjacent interfaces was determined by the phase field dynamics rather than the resolu-
tion limit of the simulations. We now add electrostatic forces and charged interfaces to the
previous simulations of clean interfaces.

While Matsuyama et al. [32] studied the Rayleigh instability[33] of a charged drop,
most previous simulations of coupled flow and electric phenomena with LBM have con-
sidered the effects of external fields on diffuse charges and interfaces between dielectric
media (droplets and their surrounding fluid). For example, Wang et al. [34], Wang and
Kang [35], and Lin and Chen [36] used coupled lattice Boltzmann methods to study elec-
troosmotic flow, while Hlushkou et al. [37] coupled a lattice Boltzmann flow solver with
a finite difference solver for the potential. Wang et al. [38] studied electroosmotic flow in
porous media. The effects of external fields on multiphase flows with interfaces between
(leaky) dielectrics have been simulated with the volume-of-fluid[39], level set[40], and
phase field[41] methods.

In the sections that follow we describe the relevant theory of electrokinetic phenomena
and the numerical methods that have been combined to form the coupled multiphase flow
and electrostatic potential solver. We then assess the accuracy of the solver through bench-
marks of transient electroosmotic flow in a square channel and the equilibrium pressure in
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and around charged and uncharged droplets. Finally, we present and interpret the effects of
surface charge on the critical conditions for coalescence of a droplet pair in simple shear
flow.

5.2 Theory and numerical models

The simulation method consists of two parts: a multiphase flow solver and a potential
solver. Both solvers have been implemented on GPUs. In this work, we use only one GPU,
though the methods may also be implemented on clusters of GPUs as has been done for the
flow solver[30].

5.2.1 Multiphase flow

The multiphase flow solver provides the solution to the incompressible Navier-Stokes equa-
tions, consisting of the usual mass balance and the momentum balance

∂~u
∂ t

+(~u ·∇)~u =− 1
ρ

∇P+ν∇2~u+
1
ρ

~b (5.1)

where~u is the flow velocity, ρ is the fluid density, P is the pressure, ν is the fluid kinematic
viscosity, and~b is the sum of any external forces (per unit volume) acting on the fluid. For
simplicity, we consider a pair of fluids with equal densities and viscosities. The composition
of the fluid mixture is tracked by the order parameter ϕ , which varies between -1 and +1,
and evolves according to the advection-diffusion equation

∂ϕ

∂ t
+∇ · (ϕ~u) = M∇2

µϕ (5.2)

In Eq. 5.2, µϕ is the local chemical potential of the fluid that depends on the composition ϕ

and its gradient ∇ϕ . The mobility of the phase field is M. We solve this system of equations
with the binary-liquid free-energy lattice Boltzmann method[31]. Both the flow and phase
field evolution are solved in three dimensions with LBM density distributions that have 19
discrete directions. The phase field is coupled bidirectionally with the flow: the velocity in
Eq. 5.2 is obtained from the flow field and the pressure tensor in the momentum balance
(Eq. 5.1) is modified to include a thermodynamic component. The resulting pressure is

P =
1
3

ρ− 1
2

Aϕ
2 +

3
4

Aϕ
4 (5.3)
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where A is a parameter of the free-energy model (terms with gradients of ϕ have been
omitted for simplicity and Eq. 5.3 is therefore only applied far from interfaces). Due to the
use of a free energy with two minima, the fluid mixture separates into regions with ϕ =±1
and interfaces between regions have an excess energy (interfacial tension) σ . The transition
in composition across interfaces is smooth, has a characteristic length `ϕ , and 99% of the
change occurs over the distance 5.3`ϕ that may be considered the thickness of the interface.
The body force is included in the collision operation of the LBM using the method of He
et al. [42]. We note that including the term~b∆t/(2ρ) in the calculation of the physical flow
velocity (see e.g. Ref. [43]) is essential for the simulations of electroosmotic flow in which
the force is highest where the flow speed is slowest.

For single phase flow simulations, we initialize ϕ to -1 throughout the domain. In the
simulations of sheared droplet pairs, ϕ is initialized to 1 inside the drops and -1 outside.
We allow the interface to smooth out for 100 time steps before starting the shear flow and
applying the electrostatic body force.

For the purposes of this chapter, we consider the LB method to provide the velocity,
pressure, and phase fields that describe the evolution of the system. The details of the
specific method used, and in general the use of lattice Boltzmann methods for computing
flows, are available in a wide variety of sources[31, 43–45]. The free-energy LBM we
employ has been used to study, for example, droplet formation in microchannels[46] and
droplet deformation and breakup in shear[47]. We do not describe the free-energy LBM in
further detail, and instead turn our attention to the modelling of electrokinetic phenomena.
These effects are coupled with the multiphase flow solver through the body force~b. The
nature of the body force, which depends on the electrokinetic phenomena being considered,
is described in the next section.

5.2.2 Electrokinetics

The literature on electrokinetic phenomena, which are flow phenomena that occur due to
charge, is extensive and has a long history[48]. Near charged surfaces or interfaces, the
distribution of ions is determined by the balance between the electrostatic forces on them
and their thermal diffusion. The result is an electric double layer (EDL) in which ions with
the same charge as the interface are repelled from it, and ions with the opposite charge are
attracted. The net charge in the EDL is opposite to the charge of the interface, and it decays
with increasing distance from the interface. In electro-neutral systems, the total charges on
the interface and in the electrolyte balance. The Poisson equation

ε∇2
ψ =−ρe (5.4)
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relates the electrostatic potential ψ to the free charge density ρe in a linear dielectric mate-
rial with permittivity ε . At equilibrium, the concentration of ions is related to the electro-
static potential through the Boltzmann distribution

ηi = ηi∞ exp
(
−zieψ

kBT

)
(5.5)

where ηi is the number density (number per unit volume) of the ith charged component,
ηi∞ is the density in the bulk (far from the interface), zi is the valence, e is the elementary
charge, kB is the Boltzmann constant, and T is the absolute temperature. We restrict our
attention to symmetric z : z electrolytes, with components denoted by i = +,−, for which
η+∞ = η−∞ ≡ η∞. It follows that the net free charge density is

ρe = ez(η+−η−) =−2ezη∞ sinh
zeψ

kBT
(5.6)

For zeψ

kBT sufficiently small, the hyperbolic sine may be linearized as sinh zeψ

kBT ≈
zeψ

kBT . Us-
ing this simplification, which is called the Debye-Hückel approximation, and combining
Eqs. 5.4 and 5.6 yields the linearized Poisson-Boltzmann equation:

∇2
ψ = κ

2
ψ (5.7)

where

κ
2 =

2e2z2η∞
εkBT

(5.8)

The Debye length κ−1 characterizes the thickness of the EDL. We note that under the
Debye-Hückel approximation, ρe =−εκ2ψ , a form that simplifies computations by avoid-
ing the evaluation of the Laplacian of the potential (Eq. 5.4).

Boundary conditions for the electrostatic potential are in general complex due to the ad-
sorption and reaction phenomena that are responsible for surface charges[1]. Two limiting
cases are commonly considered[49–51]: a prescribed surface charge or surface potential.
We limit our scope to the latter case and consider only the zeta potential ζ , which is the
potential at the slip plane that separates the fluid from molecules that stay attached to the
surface. Since we study systems that are characterized by only one zeta potential, we nor-
malize the potential by ζ in the numerical solver. In simulations of electroosmotic flow, the
zeta potential is imposed on the walls of the channel; in the droplet collision simulations, it
is imposed on the liquid-liquid interface.

The electrostatics and flow solvers are coupled through the body force term in Eq. 5.1.
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The general form for the body force is

~b = ρe~E (5.9)

where terms due to non-uniform dielectric permittivity and electrostriction have been omit-
ted from the Korteweg-Helmholtz force density[1]. The electric field ~E depends on the
problem being considered. For the electroosmotic flow benchmark it is the applied exter-
nal field and the charge density is determined from the potential ψ . In the simulations of
charged droplets, it is electric field in the EDL,−∇ψ . For these simulations with only inter-
nal fields, we include the osmotic pressure of the ions in P (Eq. 5.1). One may alternatively
add an osmotic body force, the difference between the two methods being an irrotational
body force that can be absorbed into a modified P[52]. For the droplets with constant sur-
face potential that we simulate, the osmotic pressure at their surface is constant and does
not contribute a net force on them[51].

We solve Eq. 5.7 on a uniform grid whose points are aligned with the nodes of the
LBM flow solver. We discretize the Laplace operator in Eq. 5.7 with a 19 point stencil[43,
53]. This matches the stencil used to compute the Laplacian of the phase field in the free-
energy LBM[43]. Discretization provides a system of linear equations, one per grid point,
which are solved with the Jacobi iteration method implemented on a GPU. Though other
methods, such as successive over-relaxation[54], converge in fewer iterations, the Jacobi
method is straightforward to parallelize. At this time, we consider only the Dirichlet type
boundary condition ψ = ζ at various locations in the domain, depending on the system
being simulated. When required for the body force term, the gradient of ψ is computed
with a 10 point stencil[43].

In the simulations with moving droplet interfaces, we adopt several simplifying assump-
tions. We assume that the two fluids are perfect dielectrics with equal permittivity (leaky
dielectrics have been previously coupled with phase field simulations[41]). No ions are
present in the droplets, and we assume that the potential in the external electrolyte evolves
quasi-statically. In other words, we assume that the charge distribution relaxes quickly to
its equilibrium compared to the time scale of the flow. Without this assumption, a Nernst-
Planck advection-diffusion equation would need to be solved for each ion. While this is a
reasonable direction for future work, it is not pursued in this chapter. At every time step
of the flow solver, we update the location of the interface. This is performed by setting
ψ/ζ = 1 in all nodes with ϕ > 0 and ψ/ζ < 1 (arbitrarily chosen to be ψ/ζ = 0.99) in any
nodes where ϕ ≤ 0 having previously been > 0. We then iterate the finite-difference solver
at all nodes with ψ/ζ < 1 until convergence. Due to the absence of free charge inside the
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drops and a fixed potential on their surface, the potential inside the drops is ψ = ζ .
The body force in the droplet simulations is computed at each time step from the

updated potential field. Nodes are classified into three groups that have different body
forces. In bulk nodes (nodes with ψ/ζ < 1), the body force is ~b = εκ2ψ∇ψ (Eq. 5.9
with ~E = −∇ψ). Droplet nodes, which are nodes with ψ/ζ = 1 that are not adjacent to
any nodes with ψ/ζ < 1, have~b = 0. Nodes with ψ/ζ = 1 that are adjacent to at least one
node with ψ/ζ < 1 are considered interface nodes. For these nodes, the force per unit area
of the interface is distributed over the (unit) volume of the node. This force per unit area
is the product of the surface charge density qs and the average of the internal (zero) and
external (−(n̂ ·∇ψ)n̂, where n̂ is the outward unit normal of the droplet interface) electric
fields[55], which may also be derived from the Maxwell stress[1] on a constant-potential
surface. The surface charge density is

qs =−ε n̂ ·∇ψ (5.10)

where ∇ψ is evaluated (infinitesimally) outside the droplet. We compute the surface normal
from the gradient of the phase field as n̂ =−∇ϕ/||∇ϕ||, with the negative sign because ϕ

decreases from 1 inside to -1 outside the drop. The body force on surface nodes ~bs is
therefore

~bs =−
1
2

qs∆x2

∆x3 (n̂ ·∇ψ)n̂ =
ε

2∆x
(n̂ ·∇ψ)2n̂ (5.11)

where ∆x = 1 is the spacing of the (uniform) computational grid. The gradient of ϕ (for n̂)
is computed with a 10 point stencil. The gradient of ψ outside the drop is computed with
forward finite differences between the potential of the surface node (ζ ) and the potentials
at adjacent bulk nodes. If an adjacent bulk node is not available along a coordinate axis,
this component of the gradient is taken to be zero.

As an alternative to coupling electrostatics with multiphase flow through a body force,
the electrostatic free energy could be added to the free energy of the system[56] and coupled
through a modified pressure tensor, like the coupling of the phase field. We expect that this
alternative method would increase spurious currents[43], and we therefore use a body force.

5.3 Results and discussion

5.3.1 Benchmarks

Before studying collisions of charged droplets in shear, we evaluate the accuracy of the
electrostatic potential solver, the convergence of the coupled solver applied to transient
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single-phase electroosmotic flow, and the potential and hydrostatic pressure in and around
a stationary drop.

Electrostatic potential in a square channel

We first assess the accuracy of the iterative finite-difference solver for the electrostatic po-
tential. Through this benchmark we select a termination criterion for the iterative solver
that is then used in subsequent simulations. Two types of error contribute to the error in the
numerical solution: the error due to the discretization of the governing differential equation
and the error in the solution of the resulting linear system. The discretization error is con-
trolled by the number of grid points in the EDL. Keeping in mind the goal of simulating
droplet collisions, we need a Debye length that is larger than half the interface thickness
(≈ 5 lattice nodes) to ensure that droplets interact electrically before their diffuse interfaces
overlap and coalesce. For relevance to physical systems, the Debye length must be smaller
than the droplet radius, but computational demands limit the maximum droplet radii (rel-
ative to the interface thickness and therefore Debye length) that are feasible. Due to these
constraints, we select the two Debye lengths κ−1 = 15 and 25 lattice spacings.

The chosen termination criterion for the iterative solver determines the accuracy of the
solution to the discretized linear system. Since the electrostatic potential decays to zero
over several Debye lengths, a criterion based on the maximum relative change at each node
is unreasonable because a significant number of iterations would be required due to nodes
where ψ→ 0. We therefore pick a maximum absolute change as the termination condition.

Figure 5.1 shows the difference between the numerical and exact solutions for the po-
tential along a line through the centre of a square channel with constant wall potential ζ .
Solutions are shown for the two Debye lengths and two channel widths. The square domain
has a width 2W and covers the region (y,z) ∈ (−W,W )× (−W,W ). Though the system is
two-dimensional, we use the full three-dimensional solver and several (32) layers in the
x direction together with periodic boundaries. The series solution for the potential ψexact

is[57]:

ψexact(y,z) = ζ

(
1−

∞

∑
n=1

cos
(

αn
y

W

)
fn

( z
W

))
(5.12)

where
αn =

(
n− 1

2

)
π

fn(z/W ) =
an(κW )2

γ2
n

[
1− cosh(γnz/W )

cosh(γn)

]

an = 2(−1)n+1
α
−1
n
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γn =
√

α2
n +(κW )2

We evaluate 75 terms of the series. The initial guess for the numerical solver was ψ = 0, and
iteration proceeded until the absolute change in ψ/ζ at all nodes was less than 10−6 in the
last iteration. With this termination criterion, the maximum error between the numerical and
exact solutions is between 4×10−4 and 2×10−3. The error is lowest (10−5−10−4) near the
channel walls. Convergence was reached after approximately 4000 iterations (0.5 seconds
in the narrower domain; 1.8 in the wider domain) with κ−1 = 15 and 9000 iterations (1 and
4 seconds) with κ−1 = 25. Significantly more iterations (and time) are needed to improve
the accuracy of the solution appreciably, and since the accuracy is high and convergence
time is reasonable with the chosen convergence criterion, this criterion was used in the
simulations of charged droplet collisions.
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Figure 5.1: Absolute difference between the analytical potential solution ψexact and the
iterative finite-difference solution ψnum for two Debye lengths (κ−1 = 15 and 25 in lattice
units) and two domain sizes (2W = 127 and 255 also in lattice units) through the centre
(z = 0) of a cross-section of the square channel.

As a potentially faster alternative to Jacobi iteration, multigrid acceleration[54] was
evaluated for the electrostatic potential solver. Although such acceleration provided a sig-
nificant improvement for the first time step (in which the initial guess is zero throughout the
domain), it did not reduce the time required for convergence in subsequent time steps. For
multigrid acceleration to be useful in the simulations we perform, the interpolated solution
from a coarser mesh must be closer to the solution than the converged solution from the
previous time step. Given that flow speeds are necessarily low (measured in lattice spac-
ings per time step) due to the low Mach number constraint in LBM for incompressible
flow, only small changes in the position of the interface can occur over one time step. As a
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result, the potential from one time step is a good initial guess for the next time step, while
the interpolated solution used in multigrid methods is a worse initial guess.

Transient electroosmotic flow

We now examine a transient benchmark of the coupled flow and electrostatics solvers:
the starting electroosmotic flow of an initially stationary electrolyte in response to a step
change in the applied electric field. The system geometry is the same square channel that
was considered in the analysis of the accuracy of the potential solution. An electric field
with strength Ex is applied in the x direction and the result is a flow u(y,z, t) parallel to the
applied field. The boundary conditions at the walls are ψ = ζ and u = 0. To ensure that
the location of the no-slip boundary coincides with the position where the wall zeta poten-
tial is specified, i.e. the centre of each lattice node, we use the on-site velocity boundary
conditions of Hecht and Harting [58]. The domain is periodic in the x direction.

The series solution for the transient flow is given by Chang and Wang [57]:

ũexact(y,z, t) =
ρν

εExζ
uexact(y,z, t)

= ũe0−
∞

∑
m=1

∞

∑
n=1

Amn cos(αny/W )cos(βmz/W )exp
(
−λmn

W 2

ν
t
)

(5.13)

where ũe0 is the normalized steady flow speed

ũe0 = 1−ψ/ζ =
∞

∑
n=1

cos(αny/W ) fn(z/W )

and

Amn =
2an(κW )2(−1)m+1

βm(β 2
m + γ2

n )

βm =

(
m− 1

2

)
π

λmn = α
2
n +β

2
m

As for the potential solution, 75 terms of each sum were computed.
To evaluate the convergence of the transient solution, we consider the L2 norm of the

error between the normalized numerical solution ũnum and the exact solution ũexact, defined
as:

E2
L2(t) =

1
NyNz

Ny

∑
j=1

Nz

∑
k=1

(
ũnum(y j,zk, t)− ũexact(y j,zk, t)

)2 (5.14)
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where Ny and Nz are the number of nodes along the sides of the square (2W = Ny− 1 =

Nz−1).
In all simulations, the ratio of the characteristic internal electric field in the EDL and

the external applied field was κζ/Ex = 25. This is the value for a typical physical system
with ζ = 25 mV, κ−1 = 0.1 µm, and Ex = 10 kV/m. Simulations were performed with
two values of εζ 2/ρν2 that span the range used in the simulations of droplet collisions:
3.6 and 3.6×10−4. The difference in the L2 error between these two cases was negligible,
and we present results only for εζ 2/ρν2 = 3.6. With these parameters, the maximum flow
speed among all cases is 0.003 l.u., which is sufficiently smaller than the speed of sound in
the LBM that the flow can be considered incompressible.

Figure 5.2 demonstrates the second order convergence of the L2 error in the velocity
at two times, an early time t̃ = W 2t/ν = 0.021 and a late time t̃ = 2.1 at which the flow
is nearly steady. Intermediate times show the same trends but were omitted for clarity.
Simulations were performed for two ratios of the channel width and Debye length, κW =

2.5 and 4.2, and three domain sizes: 32×64×64, 32×128×128 and 32×256×256 l.u.
(The extent of the domain in the first dimension could be decreased to 1 but was fixed at 32
due to the design of the GPU-based code for large domains.) In simulations with the same
domain size, the error is higher with the shorter Debye length. The difference is due to the
resolution of the potential (i.e. the number of lattice nodes per Debye length), and the error
trends for the two κW values effectively collapse to one line for each time. The L2 error at
the later time is about three times higher than the early error. In this convergence study, the
exact solution for the potential ψexact (Eq. 5.12) was used to compute the body force. This
choice separates the effects of the termination criterion in the finite-difference solver on the
accuracy of the transient flow solution. For comparison, L2 errors for two simulations with
the numerical solution ψnum are also shown in Fig. 5.2. In these simulations, which had
32×128×128 domains and κ−1 = 15 and 25 l.u., the L2 error is nearly the same as with
the exact potential solution at the early time and about an order of magnitude higher at the
late time. The error with the numerical potential solution, though higher, is satisfactory: the
relative errors in the maximum flow speed are between 0.3 and 1%, depending on the time
and Debye length. With the exact potential the relative errors are 0.001 to 0.5%.

Stationary droplets

While the previous benchmarks have considered planar boundaries, in this section we eval-
uate the accuracy of the coupled solvers for stationary droplets. We assess the accuracy in
three ways: the potential solution, the pressure field around a solid charged sphere, and the
difference in pressure between the inside and outside of a droplet. As before, we consider
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Figure 5.2: Convergence of the electroosmotic flow velocity in the coupled solver at an
early time (t̃ =W 2t/ν = 0.021, red symbols) and near steady state (t̃ = 2.1, blue symbols).
The exact solution for the potential (ψexact) was used in the convergence study (circle and
square symbols), and for comparison, sample results with the numerical solution for the
potential are also shown (star and cross symbols).

the two Debye lengths κ−1 = 15 and 25. Droplets are implemented with a stair-stepped
interface. The domains are cubic and periodic.

Figure 5.3 shows the potentials along two lines in cross-sections through a 128×128×
128 domain with a 25 l.u. radius sphere. Solid lines indicate the exact potential outside a
sphere of radius R in an infinite domain:

ψ(~x) = ζ
R
r

exp(κ(R− r)) (5.15)

where r = ||~x|| is the distance of the point ~x from the centre of the sphere (~x = 0). The
numerical (periodic domain) and exact (infinite domain) solutions agree well until a dis-
tance of one radius from the surface (2R from the centre). The computed potentials along
the two lines then deviate from the exact solution, with greater deviation along the line to
the closest boundary (y = 0). The difference between the numerical and exact potentials is
larger, as expected, for the longer Debye length.

The gradient of the potential at the surface is used to compute the surface charge in the
droplet simulations. It follows from Eqs. 5.10 and 5.15 that the expected surface charge
density qs is εζ (R−1+κ). Forward finite differences along the two lines underestimate the
exact value by at most 14%, with slightly lower error for the shorter Debye length. The
error is attributed to the resolution of the Debye length, the finite difference approximation
of the derivative, and the finite domain size.
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z = 0,y = x (triangles).

From the Navier-Stokes momentum balance (Eq. 5.1), the static pressure with the body
force~b = εκ2ψ∇ψ satisfies

∇P = εκ
2
ψ∇ψ (5.16)

which may be rewritten as

∇P =
1
2

εκ
2∇ψ

2 (5.17)

from which it follows that

P−Pref =
1
2

εκ
2 (

ψ
2−ψ

2
ref
)

(5.18)

where Pref and ψref are a reference pressure and potential at an arbitrary point in the do-
main. This is the expected dependence of the osmotic pressure with potential[1]. In Fig. 5.4
we examine the relationship between the computed static pressure and potential around a
sphere in a periodic cubic domain. The reference point was a corner node of the domain,
and pressures were computed along the same lines as in Fig. 5.3 using Eq. 5.3. For the two
simulations shown (with Debye lengths 15 and 25 in a 128×128×128 domain), bounce-
back (no slip) boundaries were implemented for the fluid solver for all internodal links that
cross the stair-stepped sphere with radius 25 nodes in the centre of the domain. A single-
phase flow was simulated outside the solid surface; the multiphase flow solver was used
but with ϕ fixed at -1. The agreement between the numerical and exact dependence of the
pressure on the potential is good. The slight offset between the two numerical results and
the exact trend is attributed to scatter in the values near the chosen reference point. The
results for ε spanning four orders of magnitude were visually indiscernible, and data for
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only one value are shown.
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Figure 5.4: Pressure as a function of electrostatic potential at equilibrium in the electrolyte
around a charged sphere (radius 25 l.u.) in a periodic cubic domain (128×128×128). The
symbols show the pressures for two Debye lengths (κ−1 = 15: red, 25: blue) at the same
points from a cross-section through the centre of the droplet as in Fig. 5.3. The solid line
indicates the expected relationship (Eq. 5.18).

We now replace the solid spherical boundary with a droplet and consider the equilib-
rium of a charged drop in electrolyte. Using the exact solution for the potential (Eq. 5.15),
the spherical shell of interfacial charge experiences an outward electrostatic pressure (the
product of the surface charge, Eq. 5.10, and the average of the internal and external electric
fields):

1
2

qs

(
− dψ

dr

∣∣∣∣
r=R+

)
=

1
2

ε
dψ

dr

∣∣∣∣
2

r=R+

=
εζ 2

2R2 (κR+1)2 (5.19)

The decrease in pressure inside the drop due to the electrostatic pressure is (partially) bal-
anced by the rise in pressure outside the drop. From Eq. 5.18, the pressure at the surface is
1
2εκ2ζ 2 higher than infinitely far from the surface. The total difference in pressure between
the inside and outside of a drop may be expressed as the sum of the usual Laplace pressure
∆Pϕ and the electrostatic contribution ∆Pψ such that

∆P = ∆Pϕ +∆Pψ (5.20)

where the two components of the pressure change are

∆Pϕ =
2σ

R
(5.21)
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and

∆Pψ =
1
2

εκ
2
ζ

2− εζ 2

2R2 (κR+1)2 =−εζ 2

2R2 (2κR+1) (5.22)

We may define an effective interfacial tension σnet =
1
2R∆P that leads to

σnet = σ − εζ 2

4R
(2κR+1) (5.23)

In the limit of a small Debye length relative to the drop radius (κR� 1), the decrease in
the interfacial tension is 1

2εκζ 2. For physical parameters that create a large decrease (for
example, the permittivity of water, a 0.1 µm Debye length, and a 100 mV zeta potential),
the decrease is 35 µN/m, a small fraction of typical mN/m interfacial tensions. (We note
that with a 100 mV zeta potential, the Debye-Hückel approximation no longer holds.)

In the simulations, we consider a wide range of strengths of the electrostatic interac-
tions. We therefore evaluate the accuracy of the pressure difference between the interior of
a drop and its surroundings. For this benchmark, we consider a stationary drop with phase
field parameters that match the simulations of uncharged collisions with a capillary number
of 0.15 and a 25 l.u. drop radius. Keeping the phase field parameters constant, simulations
with droplet radii of 25, 37.5, and 50 l.u. were performed in periodic cubic domains with
128, 192, and 256 l.u. sides. For each drop radius, three simulations were performed: one
without charge, one with κ−1 = 15 l.u., and one with κ−1 = 25. In the charged simula-
tions, εκζ 2/σ was 0.9 with κ−1 = 15 and 0.53 with κ−1 = 25. The pressure difference
at steady state between the centre of the drop and the corner of the domain is shown in
Fig. 5.5. Excellent agreement is seen in the uncharged cases. In the charged cases, the pres-
sure differences are consistently overestimated by at most 10% (for κ−1 = 25) and 35%
(for κ−1 = 15). Though the agreement appears to be better for the larger Debye length, this
is only true for the pressure difference: the relative error in the decrease in pressure from the
uncharged cases is consistently near 30%. Considering the 14% error in the computation
of the surface charge density, the higher error in the pressure difference is attributed to the
error in the other factors in the force on interface nodes: the finite difference approxima-
tions of the potential gradient and surface normal. While the parameters of this benchmark
were chosen to examine the decrease in pressure difference, the decrease in pressure from
the uncharged case is negligible at the conditions of most of the simulations we present in
the section that follows. However, the possibility of errors up to 30% in the forces on the
droplet interfaces should be kept in mind in the interpretation of the results.

In diffuse interface methods, spurious currents are present at static equilibrium. With
the high body forces used in the pressure benchmark, the maximum spurious speed was
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ing curvature 2/R. The expected relationship (solid lines, Eq. 5.20) and simulation results
(symbols) are shown for uncharged (black squares) and charged drops with two Debye
lengths (κ−1 = 15: red circles, 25: blue triangles).

3.8×10−4 (l.u.) while the average in a cross-section through the droplet was 1.5×10−5 for
the worst case. In the simulations without charge, the maximum speed was 2.8×10−5 and
the average was 1.1×10−6. To assess the magnitude of these spurious currents, we compare
them with the characteristic shear speed γ̇R, where γ̇ is the shear rate, of the collision
simulations we perform at the same conditions. For the worst charged case, the maximum
spurious speed is 5% of γ̇R, and the average spurious speed is 0.2% of γ̇R. In comparison,
the maximum and average spurious speeds are 0.4% and 0.02%, respectively, in simulations
without electric body forces. Though spurious currents are an order of magnitude higher in
the simulations with charge, they are low compared to the flow speeds we impose to shear
the droplets.

We briefly point out that the pressure change given by Eq. 5.20 is negative when the
electrostatic contribution exceeds the contribution from the phase field. Such cases are
easy to implement in the simulations by specifying a sufficiently low interfacial tension.
Under these conditions, the interface is unstable, and the drop breaks apart. This outcome
is similar to the Rayleigh instability of charged drops in air[32, 33], but we do not study
this phenomenon in electrolytes further.

Overall, the benchmark simulations indicate high accuracy for the potential solution
and coupling with the flow. Errors in the finite difference calculations of surface charges
and therefore forces on interfaces are more significant, but this error is small compared
to the range of electric force strengths, which spans several orders of magnitude, that we
consider next in the simulations of droplet collisions.
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5.3.2 Droplet collisions

Simulations of collisions between charged droplets in shear were performed to determine
the effects of varying strengths of the electrostatic repulsion on the critical conditions for
coalescence. These simulations were performed under conditions identical to those in our
previous study of uncharged droplets[30]. Two shear planes moving in opposite directions
are separated by a height H (in y, the velocity gradient direction) in a domain with a width
W = H (in z, the vorticity direction) and a length L = 2H (in x, the shear direction). Two
droplets with radius R are placed in the middle of the domain, with their centres separated
by a vertical offset ∆Y/(2R) = 0.86 and a horizontal distance ∆X/(2R) = 1.26. The con-
finement of the drops is 2R/H = 0.39. The two fluids have equal densities and viscosities.
The domain is periodic in the x direction, and reflection boundary conditions are specified
at the ends of the domain in the z direction. On the shear planes, the flow velocity is the
shear velocity, and a reflection condition is used for the phase field. For the simulations with
charge, the potential is periodic in the x direction and has reflection (zero charge) condi-
tions on the other planes. As before[30], we use internal symmetry and rotational symmetry
boundary conditions through the centres of the drops to reduce the computed domain size
to one quarter of the full L×W ×H system.

In all simulations of droplet collisions in shear, the shear rate γ̇ was specified such
that the Reynolds number was Re = γ̇R2

ν
= 1. The phase field parameters were chosen

to have well-resolved interfaces with `ϕ = 2. When interfaces are resolved, coalescence
is a consequence of the dynamics of the phase field rather than inadequate resolution of
interfaces and films between drops[30]. The Péclet number that characterizes the phase
field mobility (M in Eq. 5.2) was fixed at 10. The interfacial tension between the drop and
bulk phases was varied to study the effect of the capillary number Ca = ρνγ̇R

σ
.

Droplets coalesce unless the capillary number exceeds a critical value that is affected
by the ratio of the drop radius and interface thickness[30]. For fixed capillary and Reynolds
numbers, a larger radius relative to the interface thickness suppresses coalescence. There-
fore, critical capillary numbers decrease with increasing R/`ϕ . The rate of this decrease
was has been previously studied[30] by performing simulations with increasing droplet
(and domain) sizes while keeping the interface thickness constant. We now study the ef-
fects of electrostatic repulsion on the relationship between the critical capillary number and
droplet size.

The inclusion of electrostatic interactions between charged droplets through an elec-
trolyte introduces two non-dimensional parameters. The first parameter is the ratio of the
Debye length and a characteristic length for which two choices are meaningful: the drop
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radius and interface thickness. The resulting ratios are κR and κ`ϕ , respectively. For the
second parameter, which characterizes the strength of electric forces, we choose the ratio
of electric and viscous forces εζ 2

ρν2 . In the simulation parameter space, the zeta potential,

density, and viscosity are all fixed, leading to εζ 2

ρν2 = 36ε . While in physical experiments
the strength of electric interactions usually varies due to ζ , in the simulations potentials are
normalized with respect to ζ and we vary ε .

Figure 5.6 illustrates sample collisions between uncharged and charged droplets at oth-
erwise identical conditions. In these simulations, the droplet radius was 50 l.u., the largest
we consider in this work, and the computed domain was 512× 128× 128. Running on
one NVIDIA Tesla M2070 GPU, the uncharged simulation completed 240000 time steps
in 16 hours at a speed of 34.9 million lattice updates per second (Mlups). The speed of
simulations with charge depends on the number of iterations required for the potential to
converge. For the charged simulation shown in Fig. 5.6, the effective speed was 2.8 Mlups
with an average of 147 iterations of the potential solver at each time step. Though 12.5
times slower than the uncharged simulation, this simulation running on a GPU is faster
than an implementation of the free-energy LBM (without charge) on 8 conventional CPUs
that ran at 2 Mlups[47]. Comparing the outcomes of the two simulations in Fig. 5.6, we see
that the repulsion between the charged droplets prevents coalescence at the chosen capillary
number.

Ca = 0.06, R/`ϕ = 25, uncharged

Ca = 0.06, R/`ϕ = 25, κR = 3.33, εζ 2

ρν2 = 0.036

Figure 5.6: Sample collisions of uncharged (upper sequence) and charged (lower sequence)
droplets. The colour ranges from white (ϕ = −1) to blue (ϕ = 1) for the phase field and
white (ψ = 0) to red (ψ = ζ ) for the potential outside the drops.

The effects of the Debye length and the strength of the electrostatic interactions on the
outcomes of droplet collisions are shown in Fig. 5.7. To imitate physical experiments with
the same fluid system and increasing droplet radii, the Debye length was kept constant
while the droplet radius and domain size were increased in the same proportion. Simula-
tions were performed with εζ 2

ρν2 from 3.6×10−4 to 3.6 (based on choosing ε from 10−5 to
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10−1 in lattice units). The simulations of uncharged collisions were repeated (instead of
using previous results[30]) to include an equilibration delay because the simulations with
charge included a short delay for interface equilibration before shearing is started. As would
be expected, this delay did not change the critical capillary numbers. At the conditions of
the simulations, two critical capillary numbers separate the capillary number ranges for
three possible outcomes. Below the lower critical capillary number, the droplets coalesce,
while above the upper critical capillary number the droplets slide over each other. Between
the two critical Ca, the interfaces of the droplets temporarily merge, but the bridge breaks
because the drops are sheared apart faster than the bridge grows[30]. Capillary numbers
were systematically searched until the range of each critical capillary number was nar-
rowed to 0.005. In the cases with the strongest electric interactions, coalescence was not
observed, and a symbol is shown for the lowest capillary number that could be simulated
before numerical instability occurred. This instability is attributed to the high interfacial
tensions needed to achieve low capillary numbers.

Figure 5.7 shows that the critical capillary numbers for coalescence shift downward
with increasing εζ 2/ρν2 and the decrease is smaller for the longer Debye length. This
means that a slower shear rate is needed to coalesce charged drops than uncharged drops.
To interpret these outcomes, we consider the force per unit area fp on two parallel plates
with equal potential separated by a distance d[1]:

fp =
εκ2ζ 2

2cosh2(κd/2)
(5.24)

For a compressed pair of colliding droplets, we choose a separation distance equal to the
thickness of the phase field interface, d = 5`ϕ = 10 l.u.. At this separation, fp is maximum
when κ−1 ≈ 0.42d = 4.2 l.u. and decreases with increasing Debye length (decreasing κ).
This explains the weaker repulsion of droplets with thicker EDLs. Due to the flattening of
drops during collisions (Fig. 5.6), we estimate the force on the drops as πR2 fp rather than
being proportional to πRεκζ 2 for spheres in the Derjaguin limit[1]. To determine when
electrostatic forces affect droplet collisions, we therefore compare fp with the viscous stress
ρνγ̇ and form the ratio

εκ2ζ 2

ρνγ̇
(5.25)

We have omitted the proportionality constant 1
2 and also the factor cosh2(κd/2) because

cosh(κd/2)≈ 1 for the parameters we consider. As shown in Fig. 5.8, the critical capillary
number decreases as this ratio increases. Electrostatic forces change the critical capillary
numbers for coalescence once εκ2ζ 2

ρνγ̇
≈ 1. With increasing R and fixed physical properties,
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Figure 5.7: Outcomes of binary droplet collisions at varying capillary numbers Ca,
droplet radii R relative to the characteristic interface thickness `ϕ , and several strengths
of the electrostatic interactions (uncharged and κ−1 = (a) 15 and (b) 25 l.u. with ε =
10−1,10−2,10−3,10−5 l.u.). In each cluster of data points with different ε , the radius is the
same as in the uncharged case, but the symbols have been offset horizontally to separate
them. Only the simulation results that are closest to a critical capillary number are shown:
open triangles indicate the lowest capillary number at which sliding was observed, open
circles indicate capillary numbers at which coalescence is temporary, and filled triangles
indicate the highest capillary numbers at which the droplets coalesce.
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the maximum shear rate for coalescence decreases and the relative magnitude of electric
forces at near critical conditions increases. Presumably, sufficiently large droplets cannot
coalesce because electric repulsion is too high compared to shear stress at the low shear
rates required for coalescence. In the simulations, we resolve the Debye length (and inter-
face thickness), and the droplets are not large enough to study the behaviour at this limit. In
fact, considering the high critical capillary numbers at a high initial vertical offset between
the drops (in comparison with experiments[28]), the droplets we simulate are quite small.
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Figure 5.8: Effect of the ratio of electric and viscous forces on the critical capillary numbers
for coalescence. The symbols have the same meaning as in Fig. 5.7 but are coloured by the
droplet radius: R/`ϕ = 12.5 in red, R/`ϕ = 18.75 in blue, and R/`ϕ = 25 in green.

To compare the simulations with an aqueous system, we first estimate the physical size
of the droplets through the ratio of the droplet radius and minimum stable film thickness be-
fore coalescence, estimated to be 3`ϕ = 6 l.u. for simulations with uncharged interfaces[30].
Taking a physical critical film thickness on the order of 10 nm, the physical radius of the
R = 25 l.u. droplets is estimated to be 42 nm, and 83 nm for the drops with R = 50 l.u.,
both in the range of microemulsions[59]. The Debye lengths are then 25 nm and 42 nm
for κ−1 = 15 l.u. and 25, respectively, which are reasonable for dilute aqueous systems[1].
Using the larger drop radius and shorter Debye length with the permittivity, density, and
viscosity of water, the condition for a noticeable change in critical capillary numbers be-
comes

εκ2ζ 2

ρνγ̇
≈ 1⇒ ζ ≈ 360 mV (5.26)

which is higher than typical zeta potentials, e.g. up to |ζ | = 120 mV for hexane in 1 mM
KCl solution[6]. At these high zeta potentials the Debye-Hückel approximation becomes
poor, and the effects of finite ion size need to be considered[1]. In comparison, the required
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potential is 25 mV for a droplet with R = 1.2 µm at the same conditions.
For the points shown in Figs. 5.7 and 5.8, the difference between σ and σnet is at most

20% for the three points with ε = 0.1, less than 5% for the points with ε = 0.01, and less
than 1% for all other points. The change in the conditions for coalescence cannot therefore
be attributed to changes in the effective interfacial tension of the drops and therefore their
capillary numbers. The 30% error in the electrostatic forces noted in the benchmark of the
steady pressure difference is not expected to have a significant impact on the interpretation
of the results because the error is small compared to the range of the electric forces that
span four orders of magnitude.

The colliding droplets in the simulations have constant surface potentials. Since surface
charges are proportional to the local normal potential gradient, surface charges decrease as
the proximity to another (equal potential) interface decreases. Such a decrease in charge on
approaching interfaces would not occur with constant-charge interfaces, causing a stronger
repulsion between the droplets. Simulations with constant surface charge and other charge
regulation models[1, 50] are areas for future investigation.

5.4 Concluding remarks

Simulations of charged droplet collisions in shear were performed by coupling a phase field
method for two-component flows with an iterative finite difference solver for the electro-
static potential in the EDL around the deforming drops. A benchmark study of transient
electroosmotic flow in a square channel was used to assess the accuracy of the coupled
solvers for single phase flow. A static benchmark of the pressure differences across charged
and uncharged droplet interfaces was used to evaluate the accuracy of the forcing in the
multiphase solver.

Collisions of droplets with constant surface potential and electric forces spanning four
orders of magnitude were performed to determine the effect of surface charges on the
critical conditions for coalescence. The main result is that critical capillary numbers for
coalescence decrease with increasing strength of electric forces, and the extent of this de-
crease was determined. The change in critical capillary numbers begins once electric forces
are comparable to viscous forces. The decrease in critical capillary numbers is greater for
shorter Debye lengths. Since the simulations resolve the Debye length and the film be-
tween the droplets, the droplet radii are only several times larger than these length scales.
Consequently, the effective physical radii of the droplets we simulate are between 10 and
100 nm, as found in microemulsions. For droplets of this size in the simulated conditions,
electric repulsion is weak compared to shear forces. In common systems, which have larger
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droplets and lower shear rates, electric repulsion would be more significant.
Several areas for future work are available towards the goals of developing accurate

simulations of the electric phenomena that contribute to interfacial interactions in multi-
phase flows and understanding their impact on larger scales of such flows. The reasons for
the error in the calculation of the force on the charged interface need to be examined and
corrected. The simulations may be developed further by solving the non-linear Poisson-
Boltzmann equation, including external electric fields and modelling leaky dielectrics[41],
solving Nernst-Planck advection-diffusion equations for ion concentrations, and imple-
menting constant surface charge and charge regulation boundary conditions on fluid in-
terfaces. To be able to simulate droplet sizes that are more relevant to typical droplet flows,
the simulations methods can be adapted to use multiple GPUs in parallel, as has been done
for simulations without charge[30]. Simulations with larger droplets and large domains
could be used to study droplet interactions in a flowing emulsion. The simulation meth-
ods may also be adapted to study other electric phenomena in fluids, such as the Rayleigh
instability, droplet electrophoresis, and electrowetting.

119



References

[1] Jacob H. Masliyah and Subir Bhattacharjee. Electrokinetic and Colloid Transport

Phenomena. Wiley-Interscience, 2006.

[2] H.A. McTaggart. The electrification at liquid-gas surfaces. Philos. Mag., 27:297–314,
1914.

[3] J.K. Beattie, A.M. Djerdjev, and G.G. Warr. The surface of neat water is basic. Fara-

day Discuss., 141:31–39, 2009.

[4] J.C. Carruthers. The electrophoresis of certain hydrocarbons and their simple deriva-
tives as a function of pH. T. Faraday Soc., 34:300–307, 1938.

[5] W. Dickinson. The effect of pH upon the electrophoretic mobility of emulsions of
certain hydrocarbons and aliphatic halides. T. Faraday Soc., 37:140–148, 1941.

[6] J. Liu, Z. Zhou, and Z. Xu. Electrokinetic study of hexane droplets in surfactant
solutions and process water of bitumen extraction systems. Ind. Eng. Chem. Res., 41:
51–57, 2002.

[7] M. Mooney. Variations in the cataphoretic mobilities of oil drops in water. Phys. Rev.,
23:396–411, 1924.

[8] F. Booth. The cataphoresis of spherical fluid droplets in electrolytes. J. Chem. Phys.,
19:1331–1336, 1951.

[9] A.J. Taylor and F.W. Wood. The electrophoresis of hydrocarbon droplets in dilute
solutions of electrolytes. T. Faraday Soc., 53:523–529, 1957.

[10] S. Levine and R.N. O’Brien. A theory of electrophoresis of charged mercury drops in
aqueous electrolyte solution. J. Colloid Interf. Sci., 43:616–629, 1973.

[11] J.C. Baygents and D.A. Saville. Electrophoresis of drops and bubbles. J. Chem. Soc.

Faraday Trans., 87:1883–1898, 1991.

[12] B.V. Derjaguin and L. Landau. Theory of the stability of strongly charged lyophobic
sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta

Physicochim. (URSS), 14:633–662, 1941.

[13] E.J.W. Verwey and J.Th.G. Overbeek. Theory of the Stability of Lyophobic Colloids.
Elsevier, 1948.

120



[14] J. Drelich, J. Long, and A. Yeung. Determining surface potential of the bitumen-water
interface at nanoscale resolution using atomic force microscopy. Can. J. Chem. Eng.,
85:625–634, 2008.

[15] P. Esmaeili, F. Lin, and A. Yeung. Stability of emulsified heavy oil: The combined
effects of deterministic DLVO forces and random surface charges. Langmuir, 28:
4948–4954, 2012.

[16] D.A. Saville. The effects of interfacial tension gradients on the motion of drops and
bubbles. Chem. Eng. J., 5:251–259, 1973.

[17] H. Liu and Y. Zhang. Phase-field modeling droplet dynamics with soluble surfactants.
J. Comput. Phys., 229:9166–9187, 2010.

[18] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han,
S. Nas, and Y.-J. Jan. A front-tracking method for the computations of multiphase
flow. J. Comp. Phys., 169:708–759, 2001.

[19] S. Quan, J. Lou, and D.P. Schmidt. Modeling merging and breakup in the moving
mesh interface tracking method for multiphase flow simulations. J. Comp. Phys.,
228:2660–2675, 2009.

[20] G. Tryggvason, R. Scardovelli, and S. Zaleski. Direct Numerical Simulations of Gas-

Liquid Multiphase Flows. Cambridge University Press, 2011.

[21] C. Tsouris and L.L. Tavlarides. Breakage and coalescence models for drops in turbu-
lent dispersions. AIChE J., 40:395–406, 1994.

[22] P. Perlekar, L. Biferale, M. Sbragaglia, S. Srivastava, and F. Toschi. Droplet size
distribution in homogeneous isotropic turbulence. Phys. Fluids, 24:065101, 2012.

[23] V. Cristini and Y.-C. Tan. Theory and numerical simulation of droplet dynamics in
complex flows — a review. Lab Chip, 4:257–264, 2004.

[24] Y.T. Hu, D.J. Pine, and L.G. Leal. Drop deformation, breakup, and coalescence with
compatibilizer. Phys. Fluids, 12:484–489, 2000.

[25] H. Yang, C.C. Park, Y.T. Hu, and L.G. Leal. The coalescence of two equal-sized drops
in a two-dimensional linear flow. Phys. Fluids, 13:1087–1106, 2001.

[26] L.G. Leal. Flow induced coalescence of drops in a viscous fluid. Phys. Fluids, 16:
1833–1851, 2004.

121



[27] Y. Yoon, M. Borrell, C.C. Park, and L.G. Leal. Viscosity ratio effects on the coales-
cence of two equal-sized drops in a two-dimensional linear flow. J. Fluid Mech., 525:
355–379, 2005.

[28] D. Chen, R. Cardinaels, and P. Moldenaers. Effect of confinement on droplet coales-
cence in shear flow. Langmuir, 25:12885–12893, 2009.

[29] P. De Bruyn, R. Cardinaels, and P. Moldenaers. The effect of geometrical confinement
on coalescence efficiency of droplet pairs in shear flow. J. Colloid Interf. Sci., 409:
183–192, 2013.

[30] O. Shardt, J.J. Derksen, and S.K. Mitra. Simulations of droplet coalescence in simple
shear flow. Langmuir, 29:6201–6212, 2013.

[31] A.J. Briant and J.M. Yeomans. Lattice Boltzmann simulations of contact line motion.
II. Binary fluids. Phys. Rev. E, 69:031603, 2004.

[32] T. Matsuyama, T. Abe, and H. Yamamoto. Lattice Boltzmann method study of
rayleigh instability of a charged droplet. Advanced Powder Technol., 18:93–104,
2007.

[33] Lord Rayleigh. On the equilibrium of liquid conducting masses charged with elec-
tricity. Philos. Mag., 14:184–186, 1882.

[34] J. Wang, M. Wang, and Z. Li. Lattice Poisson-Boltzmann simulations of electro-
osmotic flows in microchannels. J. Colloid Interf. Sci., 296:729–736, 2006.

[35] M. Wang and Q. Kang. Modeling electrokinetic flows in microchannels using coupled
lattice Boltzmann methods. J. Comput. Phys., 229:728–744, 2010.

[36] T.-Y. Lin and C.-L. Chen. Analysis of electroosmotic flow with periodic electric and
pressure fields via the lattice-Poisson-Boltzmann method. Appl. Math. Model., 37:
2816–2829, 2013.

[37] D. Hlushkou, D. Kandhai, and U. Tallarek. Coupled lattice-boltzmann and finite-
difference simulation of electroosmosis in microfluidic channels. Int. J. Numer. Meth.

Fluids, 46:507–532, 2004.

[38] M. Wang, N. Pan, J. Wang, and S. Chen. Lattice Poisson-Boltzmann simulations
of electroosmotic flows in charged anisotropic porous media. Communications in

Computational Physics, 2:1055–1070, 2007.

122



[39] J.M. López-Herrera, S. Popinet, and M.A. Herrada. A charge-conservative approach
for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Com-

put. Phys., 230:1939–1955, 2011.

[40] K.E. Teigen and S.T. Munkejord. Influence of surfactant on drop deformation in an
electric field. Phys. Fluids, 22:112104, 2010.

[41] Y. Lin, P. Skjetne, and A. Carlson. A phase field model for multiphase electro-
hydrodynamic flow. Int. J. Multiphase Flow, 45:1–11, 2012.

[42] X. He, Q. Zou, L.-S. Luo, and M. Dembo. Analytic solutions of simple flows and
analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J.

Stat. Phys., 87:115–136, 1997.

[43] C.M. Pooley and K. Furtado. Eliminating spurious velocities in the free-energy lattice
Boltzmann method. Phys. Rev. E, 77:046702, 2008.

[44] S. Chen and G.D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev.

Fluid Mech., 30:329–364, 1998.

[45] C.K. Aidun and J.R. Clausen. Lattice-Boltzmann method for complex flows. Annu.

Rev. Fluid Mech., 42:439–472, 2010.

[46] S. van der Graaf, T. Nisisako, C.G.P.H. Schroën, R.G.M. van der Sman, and R.M.
Boom. Lattice Boltzmann simulations of droplet formation in a T-shaped microchan-
nel. Langmuir, 22:4144–4152, 2006.

[47] A.E. Komrakova, O. Shardt, D. Eskin, and J.J. Derksen. Lattice Boltzmann simula-
tions of drop deformation and breakup in shear flow. Int. J. Multiphase Flow, 59:
24–43, 2014.

[48] S. Wall. The history of electrokinetic phenomena. Curr. Opin. Colloid In., 15:119–
124, 2010.

[49] S.L. Carnie and D.Y.C. Chan. Interaction free energy between identical spherical
colloidal particles: The linearized Poisson-Boltzmann theory. J. Colloid Interf. Sci,
155:297–312, 1993.

[50] S.L. Carnie, D.Y.C. Chan, and J. Stankovich. Computation of forces between spher-
ical colloidal particles: Nonlinear Poisson-Boltzmann theory. J. Colloid Interf. Sci,
165:116–128, 1994.

123



[51] P.K. Das, S. Bhattacharjee, and W. Moussa. Electrostatic double layer force between
two spherical particles in a straight cylindrical capillary: Finite element analysis.
Langmuir, 19:4162–4172, 2003.

[52] T.M. Squires and M.Z. Bazant. Induced-charge electro-osmosis. J. Fluid Mech., 509:
217–252, 2004.

[53] M. Dowle, R.M. Mantel, and D. Barkley. Fast simulations of waves in three-
dimensional excitable media. Int. J. Bifurcat. Chaos, 7:2529–2545, 1997.

[54] P. Moin. Fundamentals of Engineering Numerical Analysis. Cambridge University
Press, 2nd edition, 2010.

[55] E.M. Purcell and D.J. Morin. Electricity and Magnetism. Cambridge University
Press, 3rd edition, 2013.

[56] D. Jacqmin. Calculation of two-phase Navier-Stokes flows using phase-field model-
ing. J. Comput. Phys., 155:96–127, 1999.

[57] C.C. Chang and C.Y. Wang. Starting electroosmotic flow in an annulus and in a
rectangular channel. Electrophoresis, 29:2970–2979, 2008.

[58] H. Hecht and J. Harting. Implementation of on-site velocity boundary conditions for
D3Q19 lattice Boltzmann simulations. J. Stat. Mech., 2010:P01018, 2010.

[59] Laurier L. Schramm. Emulsions, Foams, and Suspensions. Wiley-VCH, 2005.

124



CHAPTER 6

Concluding remarks and outlook

6.1 Concluding remarks

The simulations presented in this thesis have examined the behaviour of droplets in several
configurations. The studies have presented valuable information about these systems as
well as the nature of the methods used to model them.

Simulations of Janus droplets were performed using the Shan-Chen LBM. The ratios
of the interfacial tensions between the three fluids determine the equilibrium geometry of
two interacting droplets suspended in the third fluid. The steady-state geometries of simula-
tions at conditions that lead to the three possible equilibrium configurations were consistent
with an interfacial tension balance at the three-fluid contact point (if one is present). The
behaviour of adhering droplets in confined shear flow depends on their geometry. When
two nearly-circular lobes are present, the compound droplet oscillates in the shear gradient
direction, while droplets with two semi-circular lobes do not oscillate. The rotation rates of
both droplet types vary with the orientation of the droplets in the flow; droplets with semi-
circular halves rotate slightly slower on average. The internal flow in Janus droplets with
semi-circular halves was analyzed by subtracting the flow field due to rigid rotation, which
revealed the presence of vortices in this flow relative to rigid rotation. The number of vor-
tices that are present depends on the orientation of the internal interface, and the variation
in rotation rate was related to the structure of these vortices.

A free-energy LBM was used to investigate the conditions for coalescence of a pair
of droplets in shear. The high resolution of these simulations allowed the critical capillary
numbers for coalescence to be determined, and the influence of several variables on the
critical conditions was investigated. These simulations were sufficiently resolved that in-
terfaces merge due to the dynamics of the phase field. The most important result is that the
critical capillary number decreases as the ratio of the droplet radius and interface thickness
increases. This is analogous to the effect of the ratio of the droplet size and critical film
thickness in physical systems. Through this dependence of the critical capillary number on
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the size of physical and simulated droplets, the effective physical size of simulated droplets
may be estimated. The high critical capillary numbers of the droplets in the simulations
indicate that their effective physical sizes are small. The effects of the phase field mobility,
the initial separation between the droplets in the shear gradient direction, and the confine-
ment of the droplets (ratio of the droplet radius and the gap between the shear planes) on
the critical capillary numbers for coalescence as a function of the droplet size were also de-
termined. High mobility (or a low Péclet number, the ratio of advection and diffusion rates)
and small initial separation promote coalescence and increase the critical capillary num-
bers. The effect of confinement is more complex, and the differences between collisions
with increasing droplet size (constant confinement) and increasing domain size (constant
droplet size; decreasing confinement) were shown.

The simulations of droplet collisions in Chapter 4, with twice the maximum ratio of
the droplet size and interface thickness in Chapter 3, revealed details about the behaviour
of adjacent interfaces during a collision. A lower initial separation between the droplets
was used in Chapter 4 than in Chapter 3 to approach the conditions of experimental stud-
ies of polymer droplet coalescence in confined shear. The minimum distance between the
droplet interfaces as a function of time during collisions at several near-critical capillary
numbers was computed. The presence of two places with minimum film thickness was
found, causing the entrapment of a droplet of the external fluid during coalescence. From
the minimum film thickness during collisions without coalescence, the critical film thick-
ness for these phase field simulations was determined. In the simulations with coalescence,
a minimum film thinning rate was observed. The orientation of the film at the times of min-
imum thickness, minimum thinning rate, and coalescence was examined, and the behaviour
in the limit as the critical capillary number is approached from sub- and supercritical values
was discussed. The physical size of the simulated droplets was estimated in two ways: the
ratio of the droplet size and critical film thickness, and by extrapolation to small sizes of an
experimental scaling law for the dependence of critical capillary numbers on droplet size.
Both methods provided a radius on the order of 1 µm.

Unlike the comparatively simple ternary system in Chapter 2 and the binary liquid
system studied in Chapters 3 and 4, real liquid mixtures exhibit many complex phenomena
at interfaces. One phenomenon that occurs frequently and has therefore received much
scientific attention is the presence of electric charge on interfaces. Chapter 5 presented
a coupling of the free-energy binary-liquid LBM with a finite difference solver for the
linearized Poisson-Boltzmann model of electrostatic potential in an electrolyte adjacent to
a charged surface. A benchmark study of electroosmotic flow in a square channel was used
to assess the accuracy of the coupled solver. Collisions of droplets with constant surface
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potential were then simulated. The effects of the strength of electrostatic interactions due
to the Debye length and surface potential on the critical capillary numbers for coalescence
were studied. The small size of the simulated droplets led to weak effects of charge on the
critical capillary numbers for parameters that are representative of physical systems.

6.2 Outlook

The simulations described in this thesis have examined several aspects of droplet behaviour
with an emphasis on droplets in shear flow. Some extensions of the presented work are
straightforward: for example, the effects of variations in density and viscosity between the
fluid phases could be considered, as well as the size ratio of the droplets that adhere to form
a Janus droplet or collide in shear flow. Different initial conditions could also be studied, as
well as different flow configurations such as extensional flow[1] or pressure-driven flow in
a channel[2] instead of simple shear. Modifications to the lattice Boltzmann methods that
were used may be needed to ensure stability and low spurious currents under these condi-
tions. For some cases, such as high density ratios, potentially suitable methods are currently
described in the literature[3, 4]. With sufficient computing resources, systems with many
drops and their collective behaviour could be studied. Many options for parameter studies
and extended models exist, however the simulations raise several fundamental questions
about the droplet interactions that have been considered and the limitations of simulations
as a method for studying them. A few of these questions are now examined.

Some of the simulation results suggest directions for experimental investigations. For
Janus droplets, observations of internal flow patterns would be valuable for validation of
the simulations. Considering the complex rotational motion of Janus droplets in shear and
the dependence of the motion on the geometry of the droplet, measurements of the rhe-
ology of Janus emulsions with different droplet geometries and droplet volume fractions
could reveal interesting phenomena about the collective motion of many Janus droplets.
While collisions of polymer droplets, in which van der Waals forces between droplets are
the primary non-hydrodynamic forces, have been studied experimentally[5, 6], analogous
experiments with aqueous systems (with or without significant interfacial charge) have not
been reported but would be useful. Experimental confirmation of the behaviour of the film
at near critical capillary numbers would be valuable to evaluate the phase field simulation
method. However, simple optical methods cannot be used, and new experimental methods
are needed to measure moving films that are thinner than the wavelengths of visible light.
Furthermore, the precision with which the capillary number must be controlled to observe
these effects is another obstacle to overcome.
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Despite the significant computational resources that were used, the physical radii of the
simulated droplets are small, on the order of one micron. Though micron-sized droplets
occur in some applications[7, 8], experiments on droplet collisions and coalescence have
been performed with ten to one hundred times larger drops[1, 5, 6]. Simulations appear
capable of describing the coalescence of micron-sized droplets, but experimental results at
this length scale are unavailable. To bridge the gap between the capabilities of experiments
and resolved simulations, two options are possible: smaller experiments and larger simu-
lations. The world’s largest cluster with GPUs, currently the Titan cluster at Oak Ridge
National Laboratory (USA), has 18688 GPUs, 292 times more than the 64 used for the
largest simulations in this thesis. Given that the volume of the simulated domain scales
with the cube of the droplet radius, the GPUs on the world’s largest cluster only have suf-
ficient memory to simulate droplets that are 6.6 times larger than those simulated with 64
GPUs. With the scaling used in this thesis, the number of time steps to simulate the same
physical time is proportional to the square of the radius, making the expected runtime of
such a simulation on the order of one year (assuming perfectly efficient parallelization).
Unless significant advances in computing capabilities are achieved, resolved simulations
of ten to hundred micron droplets require new simulation strategies, such as locally refined
grids near interacting interfaces[9–11].

In general, the simulations of droplet collisions raise questions about what level of de-
tail is needed in the modelling of interfacial interactions to obtain useful predictions about
real systems. Is, for example, the phase field method with a simple polynomial double well
potential adequate, or are more realistic free-energy functionals necessary to match phys-
ical systems? What are the impacts of different choices for the free-energy[12–14] on the
disjoining pressure[15] and the dynamics of film thinning? To what extent can the free en-
ergy functional be modified[16–18] to account for various interfacial phenomena? Would
molecular dynamics simulations (of coalescence[19], for example) be useful to couple with
or guide the development of new simulation models? The computational demands of sim-
ulations that capture the physics of additional interfacial interactions, such as the details
of surface reactions, ion motion, surfactant adsorption, and the forces between surfactant
molecules, would be even more significant than the already high requirements of the sim-
ulations in this thesis. Perhaps multiscale models could be developed to capture subgrid
scale effects in simulations that do not resolve films. The challenge here should not be
underestimated: interfacial interactions exhibit a rich variety of phenomena and some are
highly sensitive to small changes, for example in the amount of surfactant on interfaces.
Further development of the capabilities of simulations would provide useful insights about
multiphase flows such as the rheology of stable concentrated emulsions. The steps that re-
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main to be taken to answer the questions raised and work towards this goal of simulating
concentrated emulsions suggest many possibilities for future theoretical, experimental, and
simulation studies of coupled fluid and interfacial dynamics.
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APPENDIX A

Convergence of film thickness
In this appendix, we analyze the distance between colliding droplets at the conditions of the
simulations in Chapter 3[1]. In these simulations, Re = 1, `ϕ = 2, Ca = 0.1, ∆X/(2R) =

1.26, ∆Y/2R = 0.86, and 2R/H = 0.39. The key difference in parameters between the
results in this appendix and the higher-resolution results in Chapter 4 is the vertical offset
∆Y/(2R) = 0.86. With this vertical offset the droplets do not coalesce with Ca = 0.1 for
R/`ϕ ≥ 18.75. We consider two Péclet numbers, 10 and 50, to demonstrate the role of the
mobility on the evolution of the minimum film thickness.
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Figure A.1: Film thickness (normalized by interface thickness) as a function of time for
several resolutions at non-coalescing conditions (Ca = 0.1, ∆Y/(2R) = 0.86) and two Pé-
clet numbers. For all cases, `ϕ = 2.

Figures A.1 and A.2 show the minimum distance between the drops as a function time.
Of all the cases, only the simulation with R/`ϕ = 18.75 and Pe = 10 is near the critical
conditions for coalescence(Chapter 3). In general, the critical Ca decreases with increasing
R/`ϕ and Pe (increasing mobility M). The difference between the dynamics of h at near-
critical conditions is highlighted in Fig. A.2, in which h/R evolves clearly differently from
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Figure A.2: Film thickness normalized by the droplet radius R at the same conditions as
Fig. A.1.

the other cases. In this near-critical case, h has a longer period of thinning and a later min-
imum. In the other cases, convergence towards different limits is seen for the two Péclet
numbers. With the higher mobility (lower Pe), the minimum thickness of the film is lower,
consistent with the expectation that the late stages of thinning are determined by the mo-
bility rather than fluid flow in the film. In Figure A.1 we see that the curves for the smallest
radius cross at γ̇t = 1.7 and h/`ϕ = 6. Until this point, one may consider the interfaces to
be non-interacting because the thickness of the film is independent of the mobility.
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