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Abstract 

A precision feeding (PF) system developed at the University of Alberta is an 

innovation in precise nutrition and management for broiler breeders. The PF system can 

automatically feed individual broiler breeders and record vast amounts of real-time data 

regarding the feeding activity of individual broiler breeders that provides a valuable data 

source. Machine learning (ML) is an effective tool for big data analytics, because it can be 

helpful in revealing hidden patterns and correlations in data. The current thesis aimed to 

apply ML approaches to extract information from the data collected by a PF system and 

make predictions based on the information. The first study investigated predicting daily 

oviposition events of individual broiler breeders by a random forest (RF) classification 

model. The raw dataset from the PF system was processed for 34 features in relation to the 

feeding activity and body weight (BW) change of individual breeders in one day. Important 

features were selected using the RF-recursive feature elimination method, and 28 features 

were selected to build the classification model. Overall accuracy of the model was 0.8482, 

and the out-of-bag score was 0.8510. Precision of no egg-laying and egg-laying, recall of 

no egg-laying and egg-laying were 0.8814, 0.8090, 0.8520 and 0.8453, respectively. The 

Kappa coefficient of the model was 0.6931, indicating substantial agreement. This model 

was able to identify whether a free-run broiler breeder laid an egg or not on a certain day 

during the laying period with around 85% accuracy. The second study investigated 

detecting anomalous real-time BW data of individual broiler breeders that are sometimes 

recorded by a PF system. A supervised learning approach was developed to detect 

anomalies by considering the data distribution and features regarding the feeding activity 

of individual birds recorded by the PF system. Based on a manually labelled dataset, 4 
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supervised learning algorithms were applied, including RF, support vector machine, k-

nearest neighbor, and artificial neural network (ANN). It showed that RF was the best 

algorithm because it had the highest F1 score (0.9712) and area under the precision-recall 

curve (0.9948). Compared with common anomaly detection approaches including Z-scores, 

interquartile range (IQR), density-based spatial clustering of applications with noise 

(DBSCAN), and local outlier factor (LOF), RF had a higher average F1 score (0.9448), 

which indicated that RF was an effective solution to clean anomalous real-time BW data of 

individual broiler breeders fed by the PF system. The third study investigated improving 

the prediction for daily oviposition events of individual broiler breeders in the first study. 

In the first study, the model could only be used to identify daily oviposition events on the 

subsequent day and the prediction outputs were binary labels. An ANN model was used to 

predict and output the probability of daily oviposition events occurring using a specific time 

point in one day. The anchor point was newly defined as a specific time point in one day, 

and 26 features around the anchor point were created. The area under the receiver operating 

characteristic (ROC) curve was 0.9409, indicating that the model had an outstanding 

classification performance. The ANN model could predict oviposition events on the current 

day, and the output was a probability that could be informative to indicate how likely 

oviposition of an individual breeder occurred in the day. In situations where total egg 

production was known for a group, the ANN model could predict the probability of daily 

oviposition events occurring of all individual birds and then rank them to choose those most 

likely to have laid an egg. We concluded that ML approaches could extract meaningful 

information from the data recorded by a PF system for making predictions.  
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1. Chapter 1. General Introduction 

1.1. Summary 

The current thesis used machine learning (ML) approaches to extract information 

from the data recorded by a precision feeding (PF) system and make predictions based on 

the information. The PF system can not only feed the birds automatically but also record 

vast amounts of real-time data regarding the feeding activity of individual birds. Analyzing 

the data by ML approaches can be helpful in revealing hidden patterns and correlations in 

the data and make data-based decisions to further improve the PF system for feeding broiler 

breeders.  

1.2. Introduction 

With computer technology, animal agriculture is entering into an era of precision 

livestock farming (PLF). Implementation of a range of hardware and software helps 

precisely, continuously and automatically monitor individual animals within a herd or a 

flock in real-time, which can keep farmers informed about animal health, welfare, 

productivity, and environmental impact (Berckmans, 2017). PLF also makes it possible to 

apply big data analytics in animal agriculture since vast amounts of real-time data such as 

image and sound that reflect animal responses can be generated. By extracting meaningful 

information from the data, it is possible for farmers to improve management and make data-

driven decisions to better meet their animal's needs (Norton and Berckmans, 2018). 

The PF system developed at the University of Alberta is an innovation designed for 

broiler breeders (Zuidhof et al., 2019), and it is an excellent example of PLF application in 

poultry nutrition and management. It aimed to increase the flock uniformity of broiler 

breeders by allocating the right amounts of feed to each individual, which is critical for 
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maximizing egg production and profit. Since every breeder has a radio frequency 

identification tag that can be read by PF stations, the PF system can identify each bird once 

it visits a station and then determine whether the bird needs to be fed by comparing its real-

time body weight (BW) with its target BW that can be pre-assigned. A benefit of using the 

PF system is that it can record vast amounts of data with a high-speed data flow regarding 

the feeding activity of each bird 24 hours in a day, such as the amount of feed, the number 

of visits, the real-time BW of the bird, and the bird’s ID. A previous study (Zuidhof, 2018) 

reported when feeding 40 broiler breeder pullets in a pen by a PF station from 2 to 22 weeks 

of age, the average number of visits and meals were 61 and 10 per day, respectively. The 

data collected by the PF system is a valuable source of big data in poultry science.  

There are many analytical techniques to investigate the intricate patterns and 

correlations hidden in big data. Among these techniques, ML, which is a subfield of 

artificial intelligence, is an effective tool for exploring big data since it can glean important 

information from big data. Compared with standard statistical methods, ML can deal with 

a large number of correlated variables, and is less influenced by assumptions such as data 

distribution or homogeneity of variances. There are two main types of learning based on 

the nature of the available data: supervised learning explores the relationship between input 

variables and corresponding output results; unsupervised learning explores the underlying 

pattern in input data without any information from output data (L’Heureux et al., 2017). In 

supervised learning, regression aims to build a model to predict continuous output variables 

from input features, and classification can be applied to handle categorical output variables 

as it predicts a label. Many studies have reported using regression or classification in poultry 

science to predict egg production (Felipe et al., 2015), detect egg freshness (Soltani and 
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Omid, 2015), estimate the weight of broilers (Mortensen et al., 2016; Amraei et al., 2017; 

Johansen et al., 2019), analyze behaviours of broilers (Li et al., 2019), and the like. The 

main objective of the current thesis was to apply ML approaches to extract information 

from the data recorded by a PF system and make predictions based on the information. 

In the current thesis, a literature review discussed the concept and application of 

PLF, PF system, big data, and ML (Chapter 2). There were three sub-projects in the current 

project: In Chapter 3, an ML model was built to predict daily egg-laying events of 

individual broiler breeders fed by a PF system; In Chapter 4, a supervised learning approach 

was developed to detect anomalies in real-time body weight of broiler breeders recorded by 

a PF system; In Chapter 5, an ML model was built to predict the probability of daily 

oviposition events occurring of individual broiler breeders fed by a PF system. In the end, 

innovation, limitation, implication, future research, and conclusion of the current project 

were discussed in Chapter 6. 

1.3. References 

Amraei, S., Abdanan Mehdizadeh, S., Salari, S., 2017. Broiler weight estimation based on 

machine vision and artificial neural network. British Poultry Science, 58, 200-205, 

doi 10.1080/00071668.2016.1259530. 

Berckmans, D., 2017. General introduction to precision livestock farming. Animal 

Frontiers, 7, 6-11, doi 10.2527/af.2017.0102. 

Felipe, V.P.S., Silva, M.A., Valente, B.D., Rosa, G.J.M., 2015. Using multiple regression, 

Bayesian networks and artificial neural networks for prediction of total egg 

production in European quails based on earlier expressed phenotypes. Poultry 

Science, 94, 772-780, doi 10.3382/ps/pev031. 
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Johansen, S.V., Bendtsen, J.D., R.-Jensen, M., Mogensen, J., 2019. Broiler weight 

forecasting using dynamic neural network models with input variable selection. 

Computers and Electronics in Agriculture, 159, 97-109, doi 

10.1016/j.compag.2018.12.014. 

L’Heureux, A., Grolinger, K., Elyamany, H.F., Capretz, M.A.M., 2017. Machine 

Learning With Big Data: Challenges and Approaches. IEEE Access, 5, 7776-7797, 

doi 10.1109/ACCESS.2017.2696365. 

Li, G., Zhao, Y., Chesser, G.D., Lowe, J.W., Purswell, J.L., 2019. Image processing for 

analyzing broiler feeding and drinking behaviors. 2019 ASABE Annual International 

Meeting, 2019, 1, doi 10.13031/aim.201900165. 

Mortensen, A.K., Lisouski, P., Ahrendt, P., 2016. Weight prediction of broiler chickens 

using 3D computer vision. Computers and Electronics in Agriculture, 123, 319-326, 

doi 10.1016/j.compag.2016.03.011. 

Norton, T., Berckmans, D., 2018. Engineering advances in precision livestock farming. 

Biosystems Engineering, 173, 1-3, doi 10.1016/j.biosystemseng.2018.09.008. 

Soltani, M., Omid, M., 2015. Detection of poultry egg freshness by dielectric 

spectroscopy and machine learning techniques. LWT - Food Science and 

Technology, 62, 1034-1042, doi 10.1016/j.lwt.2015.02.019. 

Zuidhof, M.J., 2018. Lifetime productivity of conventionally and precision-fed broiler 

breeders. Poultry Science, 97, 3921-3937, doi 10.3382/ps/pey252. 

Zuidhof, M.J., Fedorak, M.V., Kirchen, C.C., Lou, E.H.M., Ouellette, C.A., Wenger, I.I. 

2019. System and method for feeding animals. U.S. Patent. 10,506,793. 2019-12-17. 
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2. Chapter 2. Literature review 

2.1. Precision livestock farming 

2.1.1. Concepts 

The incorporation of technological advances is beneficial to agriculture. Application 

of new technologies in agriculture helps to make efficient use of intensive data and 

information from a variety of networked sensors with the goal of improving crop production 

and environmental quality, which is called precision agriculture (Mulla, 2013). Precision 

livestock farming (PLF) refers to application of precision agriculture in animal production, 

which continuously and automatically monitors animal behaviours and environment, and 

manages animal production (Tullo et al., 2017; Berckmans, 2017a; Berckmans and Guarino, 

2017). PLF is developed for the farmers who want to know more details of their animals 

like health and welfare, to make quick and evidence-based decisions on animals' needs 

(Norton and Berckmans, 2018). PLF relies on a range of information and computer 

technologies on the farm. Among them, sensor technology that measures different factors 

such as temperature, vision, and sound is crucial for PLF (Neethirajan, 2020). Other 

technologies that are responsible for generating, processing, storing, sharing, and 

visualizing data are essential as well (Van Hertem et al., 2017; Perakis et al., 2020; Astill 

et al., 2020). Implementation of these technologies enables farmers to monitor animal 

health and welfare and detect changes in animal behaviours that might negatively impact 

production, which increases animal production and economic efficiency. Since PLF can 

optimize livestock performance, the management supported by PLF might also reduce the 

environmental impact of livestock farming due to early warnings of PLF that can detect 

unwanted emissions when animals face health or welfare problems (Tullo et al., 2019). 
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Another benefit is that less physical contact between people and animals occurs when using 

PLF, which can reduce the risk of infections or diseases and the risk of influencing animal’s 

response (Berckmans, 2017a). In conclusion, PLF can make livestock farming 

economically, environmentally, and socially sustainable. 

2.1.2. Application of PLF in animal production 

Europe is the birthplace of PLF, and it has been about 30 years since research on 

PLF started there (Norton and Berckmans, 2018). Many studies have reported application 

of automated and continuous techniques aiming at the goal of PLF. A recent Europe PLF 

(EU-PLF) project from 2012 to 2016 set a great example for the PLF application. This 

project was immense and comprehensive because several PLF systems involving health, 

welfare, production, and environment were implemented and explored in broiler, pig, and 

dairy farms in the project (Berckmans and Norton, 2017; Berckmans and Guarino, 2017; 

Guarino et al., 2017; Berckmans, 2017b). In the EU-PLF project, PLF systems were 

installed in 20 farms (10 fattening pig farms, 5 broiler farms, and 5 dairy cattle farms) 

selected in 8 different countries in Europe. Many parameters were monitored in real-time, 

including animal activity and distribution, sound, feed intake, climate, water intake, weight 

(broiler), and location (cow). It showed that these PLF systems had a lot of potential in 

commercial farms. In broiler farms, most general problems could be detected by continuous 

analysis of animal behaviour using a camera-based system. In pig farms, health problems 

in pigs were detected much faster by a sound-based continuous monitoring system than by 

farmers who were able to monitor only a few hours in a day. In dairy cattle farms, activities 

of dairy cattle like eating, resting, walking, or standing were monitored at individual-level 
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for health and welfare. These applications indicated that the PLF systems could increase 

the production and efficiency of livestock and improve the health and welfare of animals. 

2.2. Precision feeding system 

2.2.1. Concepts 

Precision feeding (PF) refers to any feeding strategy that provides the right amount 

of feed to the right animal at the right time. A PF system was developed for broiler breeders 

at the University of Alberta (Zuidhof et al., 2019). The PF system is an innovation in precise 

nutrition and management, as it can meet the requirements of each individual by providing 

precisely measured amounts of feed and record the feeding activity of each individual. The 

PF system can be considered as a PLF application in poultry nutrition and management 

because they both rely on information and computer technologies to continuously, precisely, 

and automatically monitor animals and record data.  

The feeding process of the PF system for broiler breeders is based on a precision 

feeding algorithm (Zuidhof et al., 2017). The PF stations can be installed in pens to feed 

broiler breeders, and they are connected to computers. Each bird has a radio frequency 

identification tag on its wing that can be read by PF stations. As a result, a bird can be 

recognized when it goes into a PF station. The PF station has two chambers: a sorting stage 

and a feeding stage, and both stages have one entry door allowing birds to go into the stage 

and two exit doors where birds can leave the stage. Green LEDs are mounted above entry 

doors and in the feeder, which can not only help birds to find their way through the PF 

station at night when light is off but also prevent the birds from being photo stimulated. 

Each bird that goes into a station needs to wait in the sorting stage where a built-in platform 

scale can weigh it. Since body weight (BW) of broiler breeders needs to be controlled to 
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improve BW uniformity, a BW curve for individual birds is pre-assigned in the PF system 

before using the PF system to feed birds. The real-time BW of an individual bird is 

compared with its pre-assigned BW to determine whether an individual bird needs to be 

fed. If the real-time BW is greater than or equal to the pre-assigned BW, the bird would be 

gently ejected from the sorting stage. If the real-time BW is less than the pre-assigned BW, 

the bird would be allowed to walk into the feeding stage where it can have access to the 

feeder. A bird can eat for 45 seconds called a feeding bout, and then it is gently ejected 

from the feeding stage. The feeding bout can also end early if the bird leaves the feeding 

stage. Each time only one bird is allowed to go into the sorting stage in the PF station. The 

next bird can go into the sorting stage once the first bird is ejected from the sorting stage or 

goes into the feeding stage.  

The PF system can record a lot of real-time information regarding the feeding 

activity of individual birds in a flock 24 hours a day. Zuidhof et al., (2018) reported that 

when feeding 40 broiler breeder pullets in a pen by a PF station from 2 to 22 weeks of age, 

the average number of visits and meals were 61 and 10 per day, respectively. In addition to 

the number of visits and meals, feed weight before and after the feeding bout can be 

recorded, respectively, which can be used to calculate the feed intake for each bird for each 

visit. Other information can also be recorded, including the real-time BW, the pre-assigned 

BW, the time at the start of each visit, the time at the end of each visit, and the bird's ID. 

The data collected by the PF system makes it possible to analyze the feeding behaviour of 

birds. 
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2.2.2. Background 

The development of the PF system aimed to increase BW uniformity of broiler 

breeders by controlling feed intake. Broiler breeders are parents of broiler chicken and lay 

fertilized eggs for incubation. BW uniformity that measures variation in a flock is important 

for broiler breeders, because it impacts the reproductive performance of broiler breeders 

(Abbas et al., 2010). Generally, a high uniform flock that means few underweight and 

overweight birds in a flock is expected, because too many underweight or overweight birds 

in a flock have a negative impact on egg production (Hudson et al., 2001). Since sexual 

maturity is affected by BW, the heavier hens start egg production early while the onset of 

egg production of lighter hens can be delayed. If underweight or overweight birds account 

for a large proportion in a flock, the flock would reach the peak egg production later than a 

normal flock and its peak production would be lower than a normal flock. Besides, the 

overweight birds tend to produce more double-yolk eggs due to the simultaneous 

development of two or more follicles, and the size of eggs laid by underweight birds are 

likely to be variable (Robinson and Wilson, 1996). There is an economic loss in a low 

uniform flock, not only because of the late and low peak egg production and useless double-

yolk eggs or uneven-size eggs that can hardly be incubated, but also because of 

overconsumption of feed by overweight birds. Thus, increasing the flock uniformity of 

broiler breeders can maximize egg production and profit in the poultry industry. 

Increasing flock uniformity relies on controlling the BW of individual birds. To 

control the BW of each individual in a flock, restricting feed intake of broiler breeders is 

important (Richards et al., 2010). The amount of restriction, timing, and duration are three 

factors for feed restriction programs (Bruggeman et al., 1999). Skip-a-day (birds are fed 
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every other day), or 5-2 programs (in a week, birds are fed 3 days and then 1 non-feed day 

follows; then the birds are fed 2 days followed by 1 non-feed day) are preferred to use for 

improving flock uniformity in modern breeder production (de Beer and Coon, 2007). 

Attempts have been made to increase flock uniformity. The highest uniformity was a CV 

of 6.2% at 22 weeks of age reported by Zuidhof et al., (2015), which required a labour-

intensive grading process. Moreover, feed restriction programs bring about a concern 

regarding animal welfare as feed restriction programs can result in abnormal behaviours 

like overdrinking and stereotypic pecking that delays social stability within a flock (Shea 

et al., 1990; Savory and Maros, 1993; Savory and Kostal, 1996; Tolkamp et al., 2005). 

The PF system is an effective solution for increasing flock uniformity. Zuidhof et 

al., (2017) reported an unprecedented high BW uniformity (CV = 2%) of broiler breeder 

pullets at 20 weeks of age achieved by using the PF system that allocated feed to individual 

birds based on their real-time BW, which was much better than the best uniformity (CV= 

6.2%) in a previous study (Zuidhof et al., 2015). Moreover, compared with the skip-a-day 

feed restriction program, the PF system kept a more stable social order despite higher 

overall levels of aggression and decreased feeding motivation in feed-restricted broiler 

breeder pullets to some extent (Girard et al., 2017a; b). 

2.3. Big data 

2.3.1. Concepts 

Big data typically refers to vast amounts of data with complex structure and 

variation, and it can also refer to a field of processing and analyzing vast amounts of data. 

Big data can be defined as 3 “V”s in three dimensions: 1. volume: a big size of collected 

data; 2 variety: different forms of data (text, audio, image, etc.); 3. velocity: data are 
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generated at high speed (Sagiroglu and Sinanc, 2013). The other definition has five 

dimensions, including not only volume, variety, and velocity, but also veracity that 

addresses to confidentiality, integrity, and availability of the data (Kepner et al., 2014) and 

value that refers to the capacity of turning data into something useful (Demchenko et al., 

2014). Morota et al., (2018) concluded the characteristics of big data: 1. In big data, there 

are a large number of columns (variables) and rows (observations); 2. There might be some 

missing data, outliers, and confounding data in big data, so the data need to be cleaned 

before using; 3. Big data requires high computational costs. 

Three keywords can help people understand big data: collection, methodology, and 

application (Chi et al., 2016). Generally, big data can be collected based on a high-

performance data processing platform, including hardware and software, to capture, 

manage, process, store, share, and visualize a high-speed data flow in different forms (Singh 

and Reddy, 2014). Big data can be analyzed by several approaches, like statistical 

approaches, machine learning, and data mining (Wu et al., 2014). Big data can be applied 

to make better data-based decisions, predictions, and strategies because there is often a lot 

of meaningful information hidden in the data.  

2.3.2. Application of big data in animal production 

Big data has been applied in areas like marketing, banking, and manufacturing. In 

animal production, deployment of PLF makes it possible to analyze big data, as it can record 

vast amounts of data regarding the health, welfare, production, and environmental impact 

of animals. A great example was the EU-PLF project (Berckmans and Norton, 2017; 

Berckmans, 2017a; Norton and Berckmans, 2018). In this project, a massive number of 

sensors such as cameras and microphones were installed in 5 broiler farms, 10 pig farms, 
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and 5 dairy cattle farms in 8 different countries in Europe. Field data were recorded 

efficiently: 25 images, 20,000 sound samples, and 250 sensor samples were generated per 

second, respectively. During 3 years of monitoring over 90 fattening periods (5,475 

measuring days in total) for pigs, more than 120 terabytes of image data and 4.9 million 

files of sound data were generated. One potential application of the collected data was to 

detect respiratory problems by counting the number of coughs in the sound data. Notably, 

collecting data in a conventional way in animal production (e.g. recording BW and feed 

intake manually every two weeks in one trial) can not meet the requirements of big data 

analytics which typically require thousands to millions of records for training models. 

Compared with PLF, the conventional way for data collection can not provide real-time 

monitoring for animal production, which can just generate limited information. In other 

words, a small amount of data involving a limited number of variables is collected at a low 

speed. Only if the data are accumulated from a large number of trials for different herds or 

flocks at different locations over a long period of time, can it be used for big data analytics. 

Johansen et al., (2017a) reported gathering data regarding environmental variables and 

broiler behavior indicators over a period of 19 months including 12 batches of broilers (each 

batch contains about 40,000 broilers) for big data analytics. 

2.4. Machine learning 

2.4.1. Concepts 

Machine learning is a subfield of artificial intelligence that is a branch of computing 

science. It has been widely used in many areas including biochemistry, robotics, medicine, 

bioinformatics, climatology, and the like. ML can be defined as educating computers to 

perform specific tasks without explicitly programming to do so (Samuel, 1959). It can also 
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be broadly defined as computational methods to improve performance and make accurate 

predictions based on experience (Mohri et al., 2018). It is an interdisciplinary field that 

involves statistics, probability theory, cognitive science, information theory, and the like 

(Qiu et al., 2016). ML models are data-driven models for making predictions or clustering 

data, and it is suitable for exploring big data and learning important information from big 

data. The more data provided, the better results obtained by ML. ML has a lot of potential 

for big data analytics. Compared with statistical models that are commonly used in research, 

ML has a couple of characteristics (Bzdok et al., 2018): 1. Unlike statistical models, ML is 

less influenced by assumptions such as data distribution or homogeneity of variance; 2. 

Statistical models are used for description, while ML is used for prediction. 

Machine learning algorithms include supervised learning, unsupervised learning, 

semi-supervised learning, reinforcement learning, transduction, and learning to learn 

(Information Resources Management Association, 2020). Supervised learning and 

unsupervised learning are most commonly used. Supervised learning aims to investigate 

the relationship between input variables and output variables. Based on the nature of output 

variables, supervised learning can be separated into two parts: classification and regression. 

Regression can be applied for continuous output variables as it predicts a quantity, whereas 

classification including binary and multiclass classification can be applied to handle 

categorical output variables as it predicts a label. On the other hand, unsupervised learning 

aims to investigate the underlying pattern in input data without any information from output 

data. Unsupervised learning consists of clustering and dimensionality reduction. Clustering 

is to separate data into several groups so that the points are similar to each other in the same 

group and are different in the other groups (Saxena et al., 2017). Dimensional reduction 
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refers to the techniques that reduce the number of input variables (Huang et al., 2019). Some 

ML algorithms are introduced as follows: 

2.4.1.1. k-nearest neighbor (KNN) 

KNN is a simple, efficient, and effective supervised learning method for 

classification and regression. When training data and a test sample point are given, distance 

from all training data points to the test sample point can be evaluated. Nearest neighbors 

refer to the points from training data within the lowest distance that can be measured by 

metrics like Euclidean distance, Hamming distance, Manhattan distance, and Minkowski 

distance, and k refers to the number of nearest neighbors (Wu et al., 2002). A test sample 

point would be assigned to the class that is the most similar to the majority of its nearest 

neighbors. KNN performs better when there are fewer variables because it requires high 

computational costs. Several techniques such as ball tree, k-d tree, and tunable metric can 

be implemented for improving over limitation of KNN (Dhanabal and Chandramathi, 2011). 

2.4.1.2. Support Vector Machine (SVM)  

SVM was first introduced by Cortes and Vapnik (1995), and it is a robust and 

efficient method for classification and regression, even for clustering. SVM was initially 

developed to classify objects that are linearly separable (Raghavendra. N and Deka, 2014). 

Support vectors refer to objects that determine hyperplanes that are decision boundaries to 

separate two classes of objects. There can be many hyperplanes. The dimension of the 

hyperplane depends on the number of input variables, in which the dimension of hyperplane 

is n-1 if the number of variables is n (Noble, 2006). For example, if the number of variables 

is 2, the dimension of hyperplane is 1 indicating the hyperplane is a line; if the number of 

variables is 3, the dimension of hyperplane is 2 indicating the hyperplane is a plane. SVM 
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aims to find the optimal hyperplane that can maximize the margin between support vectors. 

The margin is associated with training error, and the trade-off between maximizing the 

margin and minimizing the training error can be controlled. By using kernel trick that can 

be more efficient and less computationally expensive to transform data into higher 

dimensions, SVM can also be applied for non-linearly separable data. 

2.4.1.3. Decision Trees 

Decision trees are supervised learning models with an upside-down tree-like 

structure to show the decision-making process and final decisions (Stiglic et al., 2012). A 

decision tree grows from a root node that is a selected variable and breaks the training 

dataset into smaller subsets. Iteratively, each of the smaller subsets is split into much 

smaller subsets by a new variable called decision node until end criteria (e.g. the number of 

depth and the number of samples at a node) are met. Terminal nodes refer to nodes without 

splitting, and they represent final decisions that place data observations into cagtegories 

(Alsagheer et al., 2017). Decision tree algorithms determine split values at nodes, and ID3 

and CART (Classification and Regression Tree) are two common ones (Che et al., 2011). 

The predictive performance of decisions trees can be overfitting if a decision tree is big or 

underfitting if a decision tree is small, so the end criteria that can control the growth of 

decision trees are crucial to set up properly. 

2.4.1.4. Ensemble learning 

Ensemble learning refers to models constructed by combining multiple base learners 

like several decision trees (Sagi and Rokach, 2018). Such a strategy makes it possible to 

improve the predictive performance of ensemble learning because it reduces the likelihood 

of relying on a poor base learner. Two techniques are used in ensemble learning: boosting 
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and bagging. Boosting is sequential ensemble learning that can decrease the bias error and 

the variance, and it builds strong predictive models by sequentially learning from individual 

base learners. Bagging is parallel ensemble learning that can mainly decrease the variance 

by averaging the responses of the learners trained by bootstrapping samples (Zhou, 2009). 

Several ensemble learning algorithms have been proposed, such as random forest, 

AdaBoost, and Gradient Tree Boosting. 

2.4.1.5. Artificial Neural Network (ANN) 

ANN refers to an adaptive nonlinear algorithm consisting of numerous processing 

units characterized by self-adapting, self-organizing and real-time learning (Ding et al., 

2013). It can be used for implementing various complex functions, including pattern 

generation, cognition, learning, and decision making. A multiple-perceptron neural network 

structure includes three layers: one input layer for receiving data, one or more hidden layers 

for learning, and one output layer for prediction. ANN is a supervised learning approach, 

so it can be used for regression and classification. ANN is a big family of analytical 

approaches including the back-propagation neural networks, general regression neural 

networks, extreme learning machines, and the like (Li et al., 2017). Compared with 

traditional ANN, deep neural networks (DNN), also known as deep learning, have more 

hidden layers and connections, enabling the model to learn complex data representations 

from meaningful abstractions of input data (LeCun et al., 2015). One of the typical DNN is 

the convolutional neural networks (CNN) that are mainly used for image processing (Jin et 

al., 2017). Another one is generative adversarial networks (GAN) that can tackle problems 

of unsupervised learning (Goodfellow et al., 2014). 
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2.4.2. ML workflow  

A typical workflow for using ML includes three steps: data preprocessing, learning, 

and evaluation (Raschka and Mirjalili, 2017). In the data preprocessing step, the original 

dataset can be cleaned, and feature engineering approaches can be used to create features 

based on the cleaned dataset. In the learning step, machine learning algorithms can be 

chosen to build models using the preprocessed dataset. In the evaluation step, metrics can 

be chosen to evaluate the performance of the models. If the evaluation results are poor or 

not as good as we expect, it might be due to two reasons: 1. Features created in the data 

preprocessing step make little contribution to model prediction; 2. The algorithm used in 

the learning step is not appropriate. As a result, we can improve model performance by 

repeating the data preprocessing step to create more valuable features or the learning step 

to use other machine learning algorithms. 

2.4.2.1. Data preprocessing 

Since raw data are usually not in good format and shape, it is necessary to preprocess 

the raw data before training models. There are mainly two steps in data preprocessing: data 

cleaning and feature engineering. The purpose of data cleaning is to improve the quality of 

data. Since missing values, duplicated values, and inconsistent values are likely to appear 

in the collected raw data, the data need to be examined and corrected in terms of accuracy, 

consistency, completeness, and validity (Rahm and Do, 2000). Feature engineering is a 

critical task in data preprocessing. In machine learning, a feature refers to a variable or an 

attribute that can describe some aspects of individual data objects (Dong and Liu, 2018), 

and it can be continuous or categorical. Feature engineering aims to improve predictive 

performance by creating suitable features from given features (Nargesian et al., 2017). 
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Feature engineering involves several approaches like feature transformation, feature 

generation, feature selection, and feature extraction. 

2.4.2.2. Learning 

A model can be trained after data preprocessing. The preprocessed data are 

separated into two sets: the training set used for training models and the testing set used for 

testing the models. The ratio of the training set and the testing set is usually set to 60:40, 

70:30, or 80:20 depending on the amount of available data (Anifowose et al., 2011). The 

best model can be selected by training different algorithms. As a popular strategy for model 

selection, cross-validation trains several models on subsets of input data to achieve the 

average performance of these models (Arlot and Celisse, 2010). Although cross-validation 

is computationally expensive, the risk of overfitting can be reduced. There are different 

strategies for cross-validation such as k-fold and leave-one-out. In k-fold cross-validation, 

the dataset is split into k subsets, and then each subset is used once as a validation while the 

k-1 remaining subsets are used for training. As a result, k models are fitted to calculate the 

average performance (Meijer and Goeman, 2013). Leave-one-out cross-validation is a 

special case of k-fold cross-validation, when the number of samples is equal to the number 

of folds (Wong, 2015). Compared with k-fold cross-validation, leave-one-out can provide 

an almost unbiased estimation of generalization performance but require high 

computational costs. Thus, leave-one-out is appropriate for the models that are less 

computational. Hyper-parameters refer to parameters in machine learning algorithms that 

control the learning process and can not be estimated from data. Since the predictive 

performance of some algorithms relies on the hyper-parameters, an appropriate 

combination of the hyper-parameters is crucial. The hyper-parameters can be optimized by 
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using techniques including grid search, random search, and Bayesian optimization (Nishio 

et al., 2018). 

2.4.2.3. Evaluation 

An appropriate metric is needed to evaluate the performance of a trained model. In 

supervised learning, classification and regression are evaluated by different metrics. The 

confusion matrix is a fundamental tool for binary classification and multi-label 

classification (Tripathy et al., 2016). Based on the confusion matrix, a series of metrics can 

be generated to evaluate how well a model predicts a label, including overall accuracy, 

precision, recall, and the like. For regression models that predict a quantity, MSE (mean 

squared error), RMSE (root mean squared error), MAE (mean absolute error), and R square 

are usually used as the metrics. Compared with supervised learning, unsupervised learning 

like k-means and DBSCAN (Density-based spatial clustering of applications with noise) 

can not be immediately evaluated by output results since the output results are not available. 

Silhouette coefficient that considers both the intra-cluster metric and the inter-cluster metric 

for each sample is the most common metric for evaluating unsupervised learning (Palacio-

Niño and Berzal, 2019).  

2.4.3. Application of ML in poultry production 

Egg production of laying hens and growth performance of broilers are big concerns 

in poultry production, and ML has a lot of potential to deal with them. Felipe et al., (2015) 

reported using an artificial neural network for predicting total egg production of quail from 

35 to 260 days of age at flock-level. Weight, weight gain, egg production, egg quality 

measurements at the early age, and the like were used as input variables. In addition to egg 

production, machine learning can also be used to detect drops in the egg production curve 
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in commercial laying hens. Morales et al., (2016) reported using an SVM approach to detect 

the problematic days and achieved an accuracy of 0.9854. Ramírez-Morales et al. (2017) 

reported a similar study that used neural networks with an accuracy of 0.9896. These two 

studies are helpful for commercial farms to monitor the health of hens and the production 

of eggs. For broilers, growth performance can be affected by many factors that could be 

used as input variables for BW prediction. Some studies reported using dynamic neural 

networks to capture the relationships (Johansen et al., 2017b, 2019a; b). One of the studies 

aimed to forecast BW, feed consumption, and water consumption using environmental 

conditions such as heating, light, ventilation, humidity, and temperature as input variables. 

With the application of image capture techniques, images can be used as input data for 

supervised learning algorithms to predict the weight and drinking and feeding behaviour of 

broilers (Mortensen et al., 2016; Li et al., 2019). Using sensor technology and big data for 

monitoring animal behaviours and the environment, ML can be applied for welfare 

improvement. Lee et al., (2015) reported using an SVM model with an accuracy of about 

96% for analyzing sounds of laying hens, which could detect and classify the stress from 

changes in the sounds, such as physical stress from changes in temperature and mental 

stress from fear. A similar study (Du et al., 2020) reported a vocalization detection method 

based on an SVM model to assess thermal comfort conditions for laying hens, and the 

sensitivity and precision of the SVM classifier were around 95% and 97%, respectively. 

These applications can be used to indicate the state of animal welfare that helps people to 

manage the welfare of the flock. ML can also be applied in other aspects in the poultry 

industry, such as egg freshness detection, poultry catching, and environment control 

(Jaiswal et al., 2005; Soltani and Omid, 2015; Debauche et al., 2019).  
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2.5. Conclusion 

Application of PLF, big data, and ML is beneficial for animal agriculture. PLF that 

monitors animal behaviours and the environment by different kinds of sensors can record a 

lot of information for big data analytics. To deal with big data, ML is a useful tool because 

it can take into account a large number of variables in the presence of complicated 

interactions and capture complex relationships among these variables. By using ML, the 

hidden patterns and correlations in data can be revealed to make better data-based decisions, 

predictions, and strategies. Similar to PLF, the PF system is an innovation in precise 

nutrition and management developed for broiler breeders. It can continuously, precisely, 

and automatically feed birds and record vast amounts of real-time data regarding the feeding 

activity of birds. The vast amounts of data recorded by the PF system can provide a valuable 

source of big data. However, it is challenging to extract meaningful information from the 

data recorded by the PF system and make predictions based on the information. Thus, it 

would be worth dealing with the data using ML approaches, which could help to understand 

the information in the data and make data-based predictions for knowing behaviour of 

breeders fed by the PF system. 

2.6. Objectives 

The main objective of the current thesis was to apply ML approaches to extract 

information from data recorded by a PF system and make predictions based on the 

information. There were three subprojects in the current project, and the objective of each 

sub-project was shown below: 
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1. The objective of the first subproject was to build an ML model to identify daily egg-

laying events of individual broiler breeders fed by a PF system based on the data that 

recorded their feeding activity (Chapter 3). 

2. Anomalous real-time BW data are sometimes recorded by a PF system, which have 

negative impacts on BW estimation. Although common anomaly detection methods were 

used to clean these anomalous real-time BW data, these methods were not very effective. 

Before further investigating prediction of oviposition events, the second subproject aimed 

to develop a supervised learning approach to detect anomalies in real-time BW of individual 

broiler breeders recorded by a PF system (Chapter 4). 

3. Since the ML model in Chapter 3 had two limitations: i) It could only be used to identify 

a daily egg-laying event on a subsequent day; ii) The prediction outputs were binary labels, 

the objective of third subproject was to improve it. An ML model was built to predict the 

probability of oviposition events occurring of individual broiler breeders in one day using 

features around a specific time in the day (Chapter 5). 

2.7. Hypotheses 

1. Features regarding the feeding activity of individual birds in one day developed from a 

dataset recorded by a PF system could predict oviposition events of individual birds  

(Chapter 3). 

2. Features regarding the feeding activity of individual birds recorded by a PF system could 

detect anomalous real-time BW observations recorded by the PF system (Chapter 4). 

3. Features regarding the feeding activity of individual birds around a specific time in one 

day developed from a dataset recorded by a PF system could predict oviposition events of 

individual birds (Chapter 5). 
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3. Chapter 3. Application of random forest classification to predict daily oviposition 

events in broiler breeders fed by a precision feeding system 

3.1. Abstract 

In group-housed poultry, hormone and environment modulated variability in the 

processes of follicle maturation and egg formation make it difficult to predict a daily egg-

laying event (oviposition). Recording daily egg laying events has required individual cages 

or expensive technology such as RFID equipped nests or labor intensive trap nests. The 

current study implemented the random forest classification algorithm to predict oviposition 

events of 202 free run Ross 708 broiler breeder hens fed by a precision feeding system from 

week 21 to 55, based on a dataset recording information of all visits to the station. The raw 

dataset from the precision feeding system was processed for 6 classes of features (34 

features in total) in relation to feeding activity and real-time body weight of birds. The 

dataset of the features was then combined with a corresponding daily individual oviposition 

record. The processed data were shuffled and separated into 2 subsets: 90% for training, 

and 10% for testing. Important features were selected using random forest-recursive feature 

elimination with 5-fold cross-validation. A total of 28 features were selected to build the 

classification model. Overall accuracy of the model using the testing samples was 0.8482, 

and out-of-bag score was 0.8510. Precision (a measure of purity in retrieving) of no egg-

laying and egg-laying, recall (a measure of completeness in retrieving) of no egg-laying 

and egg-laying were 0.8814, 0.8090, 0.8520 and 0.8453, respectively. The Kappa 

coefficient of the model was 0.6931, indicating substantial agreement (substantial 

agreement range: 0.61-0.80). This model was able to identify whether a free run broiler 

breeder laid an egg or not on a certain day during the laying period with around 85% 
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accuracy. 

Key words: binary classification; egg-laying event; machine learning; variable selection.  

3.2. Introduction 

Domestic hens lay eggs in sequences of one or more eggs, separated by one or more 

non-laying days called a pause (Robinson et al., 1991; Zakaria et al., 2005). Sequence length 

and pause length depend on the timing of ovulation and oviposition, which are further 

determined by follicle maturation and egg formation processes (van der Klein et al., 2020). 

Because of variability in the maturation process modulated by hormone and environmental 

factors, the exact day and time of oviposition events during the laying period is highly 

variable. Given that oviposition contributes to nutrient requirement, identifying oviposition 

events might be helpful in future precision feeding applications aimed at increasing feed 

efficiency and reducing excretion of N, P, and CO2 to the environment. The daily 

oviposition event of a caged bird can be readily recorded upon the onset of egg laying. In a 

flock of free run birds, however, it is difficult to determine the daily oviposition event of 

each individual bird unless a trap nesting system is provided. There might be some clues to 

indicate the oviposition in broiler breeders, like a decreased body weight (BW) after 

oviposition because of the expulsion of the egg mass (e.g. about 60 g). However, these 

subtle performances are not easily noticed, due to a series of complex daily activities of the 

broiler breeder and no effective machine to monitor the bird’s status and behavior over the 

whole laying period. 

A precision feeding system was developed at the University of Alberta (Zuidhof et 

al., 2017; Zuidhof et al., 2019). The system was designed to increase BW uniformity in the 

flock by making decisions in real-time on whether or not to feed the individual bird after 
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weighing it and feeding it (or not) based on its BW relative to the target BW. In contrast 

with conventional feeding management, the individual precision-fed bird is able to get free 

access to the station 24 h per day. Vast amounts of real-time feed intake, time of visiting, 

and BW data can be recorded, being helpful to analyze each bird’s behavior. 

Random forest is an ensemble learning algorithm in machine learning proposed by 

Breiman (1999), and it is a widely used machine learning method with high prediction 

accuracy. It consists of a large number of decision trees with randomly selected features, 

which are used to construct a deterministic forest by averaging their predictions (Breiman, 

2001). Moreover, it is suitable to deal with data of high dimensionality and multi-

collinearity (Evans et al., 2011), because the most relevant variables can be selected from a 

large number of variables (Genuer et al., 2010). Since there were many features regarding 

feeding activity and real-time BW of birds in this study, random forest algorithm was used 

to handle these features. 

The objective of the current research was to develop a random forest classification 

model to predict oviposition events of free run broiler breeders fed by a precision feeding 

system, based on observations recorded by the system.  

3.3. Materials and methods 

3.3.1. Data Collection 

The data used in this study was obtained from previous studies in our laboratory 

(van der Klein et al., 2018a; van der Klein et al., 2018b). The animal protocol for the study 

was approved by the University of Alberta Animal Care and Use Committee for Livestock 

(AUP00000121). 
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3.3.1.1. Precision Feeding System Dataset  

A total of 202 Ross 708 free run broiler breeder pullets were randomly allocated to 

8 environmentally controlled rooms so that temperature and humidity of 8 rooms were as 

similar as possible. Each room was equipped with a precision feeding station (Figure 3-1). 

Birds were trained to use the precision feeding station with ad libitum feed intake from d 0 

to d 16 of age. From d 17 to week 55, birds were allowed to access to the feeder in the 

precision feeding station for a duration of no more than 45 seconds (a feeding bout). The 

precision feeding system was developed to increase BW uniformity in a flock. Thus, if a 

bird’s BW was lower than the target BW, the bird could have a meal and then ejected. Birds 

were immediately ejected by the precision feeding station without any provision of feed if 

their BW were greater than target BW. During the entire experiment, water was provided 

ad libitum with nipple drinkers. Water intake was not recorded. Each bird was given a radio 

frequency identification tag on the wing so that information about each bird upon each visit 

to the station could be recorded in a database. From week 21 to 55, 2,378,920 visiting events 

for 202 birds recorded by precision feeding system were considered as observations. The 

relevant information from the database are shown in Table 3-1. 

3.3.1.2. Egg Production Dataset 

Daily oviposition events were confirmed by palpation every morning at 7:00 AM. 

Since it takes about 20 hours to synthesize egg shell in shell gland, it indicates the egg shell 

has almost or completely formed and the egg would be laid in the following hours if the 

egg shell can be palpated by finger. Thus, hens with a hard-shelled egg in the shell gland at 

7:00 AM were assumed to have laid an egg later that day. From week 21 to 36, cloacae of 

all hens were palpated every day; from week 37 to 55, daily palpation was performed for 7 
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consecutive days followed by 7 days without palpation. As a result, egg-laying events were 

not counted in even week 38, 40, 42…54. Once a bird was dead or a sick bird was culled, 

palpation was stopped and its oviposition events were not counted. A detailed explanation 

of the materials and methods can be found in the previous studies (van der Klein et al., 

2018a; van der Klein et al., 2018b). 

3.3.2. Data Processing 

3.3.2.1. Feature Engineering 

Since the precision feeding stations were sometimes visited by more than one bird 

at a time, the raw dataset was cleaned by using Z-scores method (Shiffler, 1988) (deleting 

observations where daily BW were not within the range of mean ± 3 × standard deviation 

(SD) of daily BW of each individual bird). Among 2,378,920 observations, 14,159 

observations were identified as outliers and were removed. After cleaning the data, 

2,364,761 observations in the station dataset were processed to extract 6 classes of features 

(34 features; Table 3-2): 

1. Age: The age (d) of each bird was recorded by precision feeding system.  

2. BW: Mean and SD of BW (g) for each bird in a given day was calculated according 

to RealtimeBW recorded by the precision feeding system. μBW and σBW were the 

mean and SD of BW for each bird in one day, respectively. 

3. FI: For each bird, feed intake (FI) (g) in every hour (from 00:00 h to 24:00 h) in 

each day was calculated, and there were twenty four features in total (e.g. FI_0h 

represented 00:00 h to 01:00 h feed intake from to in one day). 

4. TI: Time interval (TI) (s) between 2 successive meals was calculated according to 

the equation: 



38 
 

TI = BoutStartTime(m+1) − BoutEndTime(m)                      (1) 

where BoutStartTime (m+1): BoutStartTime corresponding to the m+1th meal in one 

day; BoutEndTime (m): BoutEndTime corresponding to the mth meal in one day. 

μTI and σTI were the mean and SD of TI for each bird in one day, respectively. 

5. ΔBW: BW (g) change between 2 successive meals was calculated according to the 

equation: 

ΔBW = RealtimeBW(m+1) − RealtimeBW(m)                              (2) 

where RealtimeBW(m): RealtimeBW recorded by a precision feeding system 

corresponding to the mth meal in one day. μΔBW and σΔBW were the mean and SD 

of ΔBW for each bird in one day, respectively. 

6. Daily: FI, Meals, and Visits represented feed intake (g), number of meals, and 

number of visits to a precision feeding station in one day, respectively.  

3.3.2.2. Data Combination 

The 34 features were combined with ID and daily oviposition result of each bird to 

form the processed dataset (Figure 3-2). Eventually, the data with 35,443 rows (daily 

oviposition events from week 21 to 55, and week 38, 40, 42…54 were not included) × 36 

columns (34 features, “ID” of the birds, and oviposition results) was acquired. Following 

machine learning methodology, the processed data were shuffled and randomly divided into 

training samples and testing samples, with 90% (31,898 samples) and 10% (3,545 samples), 

respectively (Table 3-3). Although a split ratio of 70:30 or 80:20 of training samples and 

testing samples are usually used, 10% processed data was used for testing in this study 

because it included 1,541 egg-laying events and 2,004 no egg-laying events and it was large 

enough. 
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3.3.3. Random Forest Classification 

Random forest classification was implemented by using Python 3.7.0 and 

sklearn.ensemble.RandomForestClassifier (RFC) in scikit-learn library 0.21.0 (Pedregosa 

et al., 2011). Graphviz 2.3.8 (Ellson et al., 2001) was used to draw the decision trees in 

random forest algorithm. In RFC, three hyper-parameters n_estimators, random_state and 

oob_score were “500”, “0” and “True”, respectively. Among them, n-estimators referred to 

the number of trees in random forest, and a large number of trees can improve model 

accuracy because of limited generalization error (Prasad et al., 2006). In this study, 500 

trees were grown in the model for higher accuracy than the default value (10 trees). It can 

also partially reduce the negative impact of the problem that one of the correlated features 

might become more important when it was randomly selected at a node (Alsahaf et al., 

2018). Random_state = 0 was for randomness of the bootstrapping of samples and the 

sampling of features. Oob_score = True meant out-of-bag samples were considered as 

another data set of testing samples to validate the random forest model. The other hyper-

parameters were default values, including min_samples_leaf = “1”, min_samples_split = 

“2”, max_depth = “None”, and max_features = “auto”. It meant the nodes would not stop 

splitting until only one class of samples was at the node or at least 2 samples at the node, 

and each node should contain at least 1 sample. There was no restriction for maximum 

depth of growth, and the size of the random subsets of features to split a node was the square 

root of the number of features. The default value of bootstrap which was “True” was used, 

indicating subsets of samples were used to grow a tree by drawing samples randomly with 

replacement (Strobl et al., 2007). The default value of class_weight which was “None” was 

used, because there was no need to adjust weights of egg-laying events and no egg-laying 
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events. Importance is the decrease of Gini impurity in random forest classification (Louppe 

et al., 2013), which reflects how well the samples at a parent node which is a selected feature 

are separated into 2 child nodes (Menze et al., 2009). In scikit-learn library, the default 

value of measuring importance was Gini, which measures the impurity of the samples at 

child nodes resulted from a parent node split by a feature (Qi, 2012). In each split, the sum 

of Gini value of child nodes must be less than that of their parent node. Based on the 

reduction of Gini value from the parent node to child nodes for a feature, the average of the 

reduction among all the trees was calculated, which was the importance of the feature. 

In this study, random forest-recursive feature elimination (RF-RFE) was used to 

select important features. At each iteration, it ranks the features based on measured 

importance of features and then eliminates the least relevant feature till the most informative 

features are retained (Granitto et al., 2006; Pang et al., 2012; Diao et al., 2020). RF-RFE 

was implemented by using scikit-learn library 0.21.0 sklearn.feature_selection.RFECV 

(Pedregosa et al., 2011). All parameters were all default values, except that estimator, cv, 

and scoring were RFC, 5, and “accuracy”, respectively. Among them, estimator = RFC 

referred to the random forest classification model. Cv = 5 meant that 5-fold cross-validation 

was applied for feature selection using training samples, based on the importance of the 

features measured by random forest. Score = “accuracy” indicated accuracy was used to 

evaluate the model during feature selection.  

Testing samples were used to evaluate the performance of the classification model 

built on the selected features, and out-of-bag samples were used to validate the model. True 

positive (TP), true negative (TN), false positive (FP), and false negative (FN), respectively, 

were presented in a confusion matrix (Tripathy et al., 2016), and they were then used to 
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calculate overall accuracy, precision, recall (Lu et al., 2004), as well as Kappa coefficient 

(Cohen, 1960): 

Overall Accuracy (P0) =  
TP+TN

TP+TN+FP+FN
                                       (3) 

Precision (egg-laying) =  
TP

TP+FP
                                                  (4) 

Precision (no egg-laying) =  
TN

TN+FN
                                            (5) 

Recall (egg-laying) =  
TP

TP+FN
                                                       (6) 

Recall (no egg-laying)  =  
TN

TN+FP
                                                 (7) 

Kappa coefficient =  
Po − Pe

1 − Pe
                                                             (8) 

where Po is the proportion of observed level of agreement (Overall Accuracy), and Pe is 

the proportion of agreements expected by chance: 

Pe =  
(TP + FP) ∗ (TP + FN)+(TN + FP) ∗ (TN + FN)

(TP+TN+FP+FN)2                                       (9) 

3.4. Results 

3.4.1. Feature importance and selection 

To build the classification model, important features were selected from original 34 

features and the number of the selected features was determined using RF-RFE with 5-fold 

cross validation. Figure 3-3 showed the highest accuracy was 0.8522 with 28 features 

selected. Figure 3-4 showed the ranked importance score of the 28 selected features which 

were used to build the model. Among the 28 features, FI was the most important one, 

followed by μTI, Age (d), σBW, etc. FI _0h, FI _1h, FI _2h, FI _3h, FI _22h, and FI _23h 

were not selected. 
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3.4.2. Model Evaluation 

Testing samples were used to evaluate the classification model. In Table 3-4, the 

performance of the model was described in a confusion matrix. Based on the values (TP, 

TN, FP, FN) in the confusion matrix, a series of rates for the binary classifier were computed. 

The overall accuracy of the model was 0.8482, and out-of-bag score was 0.8510. Precision 

of no egg-laying and egg-laying, recall of no egg-laying and egg-laying were 0.8814, 

0.8090, 0.8520 and 0.8453, respectively. The Kappa coefficient of this classification model 

was 0.6931. 

3.5. Discussion 

There have been some studies regarding prediction of egg production using 

mathematical or artificial intelligence models (Grossman and Koops, 2001; Ahmad, 2011; 

Omomule et al., 2020). These studies stimulated egg production curve for a flock or an 

individual over a period of time, and they used hen-day egg production (percentage) or 

number of eggs to measure the prediction results. Compared with these previous studies, 

this study is the first time to identify oviposition events that if a hen lays in one day, and the 

result was binary classification which were “ yes” and “no”. Previous studies have also 

reported prediction of oviposition times which was based on a mathematical model of 

ovulatory cycle (Etches and Schoch, 1984; Johnston and Gous, 2007). In this study, feeding 

activity and body weight were used for prediction. Another innovation of this study was 

using vast amounts of real-time data for prediction due to application of precision feeding 

system. 

As data-driven models, machine learning methods are able to solve a large number 

of features and produce accurate predictions (Ellis et al., 2020). Felipe et al. (2015) reported 
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artificial neutral network was the best predictive model for total egg production in meat 

type quail, based on 30 input variables including weekly body weight, body weight gain, 

egg weight and the like. In this study, machine learning method was used to predict 

oviposition based on the visit information recorded by a precision feeding system. The 

precision feeding system is capable of capturing a lot of details throughout 24 hours as long 

as birds visit the station. Zuidhof (2018) reported the average visit frequency and average 

meal frequency of the bird fed by precision feeding system were 61 and 10 per d, 

respectively, which indicated 61 observations regarding a bird’s feed intake, real-time BW, 

and time were recorded per day, on average. Such frequent visits lay a foundation for 

analyzing bird’s behavior. A series of features were used to describe a bird’s age, fluctuation 

of BW, distribution of feed intake, time interval between the successive meals, and BW 

change between the successive meals. However, no features performed very well in 

prediction because they were all weak classifiers. As an ensemble machine learning 

algorithm, random forest algorithm can combine several weak classifiers together so that a 

strong classifier was built to achieve better performance with low bias and low variance 

(Diaz-Uriarte and Alvarez de Andres, 2006). On the basis of decision trees, random forest 

classifier can make an accurate prediction by the majority votes of many trees. Overfitting 

is no longer an issue for random forest because of its ensemble and bootstrapping schemes 

(Qi, 2012).  

Although random forest was regarded as a “black-box”, it can be explicable to some 

extent. To construct a single tree, 20,195 samples were randomly drawn from 31,898 

training samples with replacement. In each decision tree, binary splits were determined by 

choosing the optimal threshold value to minimize the impurity if the attribute is numeric 
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(Berzal et al., 2004). In this study, 34 features were all numeric attributes. For example, the 

optimal threshold of FI_12h was <=13.359 (Figure 3-5) leading to the highest information 

gain, which was selected from the range of FI_12h. This was a conditional statement at the 

node for 167 samples (bootstrapping samples) to make a split. By answering True or False, 

166 samples and 1 sample were separated into two child nodes, respectively, with a Gini 

value of 0.26. At this node, 226 samples (training samples) indicating no oviposition events 

and 41 samples (training samples) indicating oviposition events would be classified by the 

conditional statement that FI_12h was no more than 13.359. 

By using the RF-RFE, the least important features can be pruned from the set of 

features, which recursively repeated several times until the desired number was reached. In 

this study, 28 features were selected to build the model, suggesting that the highest accuracy 

of the model appeared when the first 28 features were selected. The importance score of FI 

was the highest among the 28 features, which indicated that the daily feed intake in one day 

made the greatest contributions to the prediction. Feed intake increased in the egg forming 

day (Morris and Taylor, 1967), because more nutrients and energy were needed for egg 

formation. In this study, however, the prediction benefited from feed intake mainly due to 

a decrease of BW. Target BW was preset in precision feeding system before the experiment, 

and a breeder was allowed to have a meal only if its real-time BW was lower than target 

BW. Body weight drop can be caused by oviposition, excretion, and metabolic losses (CO2 

and water), and a dramatic body weight drop is most likely to follow oviposition. As a result, 

a dramatic BW drop caused by oviposition can help the bird to meet the criterion for 

receiving a meal, which would increase the daily feed intake or number of meals in a short 

time on an egg-laying day. Given that the same amount of feed was distributed by the 
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precision feeding system every meal, more feed intake resulted in more meals in one day. 

Thus, there might be differences in the number of meals on egg-laying and no egg-laying 

days. As a result, Meals was an important feature for prediction. In relation to Meals, μTI 

and σTI were selected as important features, because more meals in one day meant a shorter 

time interval between two successive meals. On the other hand, the BW drop caused by 

egg-laying might decrease the average of BW in one day and increase the standard deviation 

of BW in one day, which explained why μBW and σBW were selected as important features 

for prediction. Similarly, considering the BW drop was associated with the change of BW 

between two successive meals, μΔBW and σΔBW were selected as well. The features of feed 

intake from 22:00 h to 03:00 h were pruned, whereas the features of feed intake from 04:00 

h to 21:00 h were retained. Although the features of feed intake at 04:00 h, 05:00 h and 

21:00 h were selected as important features, they were less important than the other selected 

features. According to Campo et al. (2007), eggs are normally laid from 7:00 am to 16:00 

pm. Since oviposition events are more likely to occur in the daytime, features of feed intake 

in the evening were less important for prediction. Age (d) was a selected feature because 

there might be a threshold day of age from week 21 to 55 as a potential binary split.  

The classification model aimed to classify the oviposition events into 2 groups: no 

egg-laying and egg-laying. This study focused on prediction of when an egg-laying event 

occurs, as well as when a no egg-laying event occurs. In the confusion matrix, TN and FN 

represented the correct and wrong prediction of the event of no egg-laying, respectively. 

Similarly, TP and FP represented the correct and wrong prediction of the event of egg-laying, 

respectively. Precision and recall were used to measure the effectiveness in retrieving of the 

model: precision was for excluding non-relevant items from the retrieved set, and recall 
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was for including relevant items in the retrieved set (Buckland and Gey, 1994). The results 

showed that the precision of no egg-laying event (0.8830) was higher than that of egg-

laying event (0.8080), indicating the model was more effective to exclude egg-laying events 

when predicting no egg-laying event than to exclude no egg-laying events when predicting 

egg-laying event. The recall of both no egg-laying and egg-laying were around 0.85, 

indicating the effectiveness of predicting no egg-laying events in including no egg-laying 

events was almost the same as that of predicting egg-laying events in including egg-laying 

events. By bootstrapping samples, around 37% of samples called out-of-bag samples were 

randomly excluded to build the random forest model (Breiman, 1996). The out-of-bag 

accuracy (0.8510) was in line with overall accuracy (0.8482), indicating the model was not 

overfitting and can generalize to new data. The Kappa coefficient of the model was in the 

substantial agreement range (0.61-0.80) (Viera and Garrett, 2005), indicating a robust 

measure of the difference between observed agreement (0.8482) and expected agreement 

(0.5055; the expected agreement was not shown in Table 3-4). 

The improvement in accuracy of predicting oviposition in the study should be 

further explored by considering biological characteristics of broiler breeders and strategies 

of machine learning. On the one hand, features for prediction in this study were associated 

with each visit of breeders to the precision feeding station. There might be some features 

regarding nutrition (e.g. energy requirement) which can make a contribution to the 

prediction. On the other hand, since the objective of this study was just to propose a 

prediction method using random forest classification, there was no comparisons with other 

machine learning methods like SVM and ANN. Thus, the improvement of prediction might 

be achieved by using other machine learning methods. 
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3.6. Conclusion 

To our knowledge, this is the first time the random forest algorithm was applied to 

predict daily oviposition events in broiler breeders. The dataset was from a precision 

feeding system which can automatically feed the broiler breeders and precisely record data 

in relation to each visit of the bird. Built on the selected 28 features extracted from the raw 

dataset, the strong classifier (classification model) was able to predict the daily oviposition 

event of free run broiler breeders with an overall accuracy of 0.8482. Since oviposition is a 

contributor to nutrient requirements, identifying egg-laying events of free run broiler 

breeders would be beneficial for providing the birds with precise amounts of feeds 

appropriate for individual egg production levels. This approach would increase feed 

efficiency, reduce production costs, and reduce excretion of N, P, and CO2 into the 

environment. To improve the prediction accuracy of the model, the biological 

characteristics of broiler breeders and other machine learning methods might be considered. 
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3.9. Tables 

Table 3-1. Crucial information regarding each visit of breeders to the station in database recorded by 

precision feeding system. 

Variable Units Description 

ID - The unique number identifying an individual bird. 

Day d The age of the bird. 

DateTime s Unix time at the start and end of every visit to a precision feeding station. 

RealtimeBW g The BW recorded by the precision feeding system to make the feed or no 

feed decision when a bird visited the station. 

FI g Feed intake. 

Hour h Hour of the day. 

BoutStartTime s Unix time at the start of a feeding bout. 

BoutEndTime s Unix time at the end of a feeding bout. 
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Table 3-2. Six classes of features extracted from the precision feeding system dataset. 

Class1 Features Number 

Age2 Age (d) 1 

BW3 μBW, σBW 2 

FI4 FI _0h, FI _1h, FI _2h, FI _3h, FI _4h, FI _5h, FI _6h, FI _7h, FI _8h, FI _8h, 

FI _9h, FI _10h, FI _11h, FI _12h, FI _13h, FI _14h, FI _15h, FI _16h, FI_17h, 

FI _18h, FI _19h, FI _20h, FI _21h, FI _22h, FI_23h 

24 

TI5 μTI, σTI 2 

ΔBW6 μΔBW, σΔBW  2 

Daily7 FI, Meals, Visits 3 

Total  34 
1 Class refers to a category of features describing certain aspect of broiler breeders.  

2 Age: a class in relation to age of a broiler breeder (Age (d)). 
3 BW: a class in relation to BW of a broiler breeder in one day. μBW indicates mean of BW, and σBW indicates 

SD of BW. 
4 FI: a class in relation to feed intake in a specific hour of the day. E.g. FI _0h indicates feed intake from 00:00 

h to 01:00 h. 
5 TI: a class in relation to time interval between two successive meals. μTI indicates mean of TI, and σTI 

indicates SD of TI. 
6 ΔBW: a class in relation to change of BW between two successive meals in one day. μΔBW indicates mean of 

ΔBW, and σΔBW indicates SD of ΔBW. 
7 Daily: a class in relation to feed intake in one day (FI), number of meals in one day (Meals), and number of 

visits to a precision feeding station in one day (Visits).  
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Table 3-3. The number of no egg-laying events and egg-laying events in processed dataset. 

Oviposition events Processed dataset Training samples Testing samples 

No egg-laying event 20,530 18,526 2,004 

Egg-laying event 14,913 13,372 1,541 

Total 35,443 31,898 3,545 
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Table 3-4. Evaluation results of random forest classification model by using the 10% testing data (3,545 

samples included).  

 Predicted oviposition event 2 (d) Precision 3 Recall 4 

Egg-laying No egg-laying 

Actual 

oviposition 

event (d) 

Egg-laying 1,313 228 0.8090 0.8520 

No egg-laying 310 1,694 0.8814 0.8453 

Overall accuracy 5 Out-of-bag score 6 Kappa coefficient 7 

0.8482 0.8510 0.6931 
1 True positive (TP): predicted and actual oviposition event was an egg-laying event; true negative (TN): 

predicted and actual oviposition event was no egg-laying event; false positive (FP): predicted oviposition 

event was an egg-laying event but actual oviposition event was no egg-laying event; false negative (FN): 

predicted oviposition event was no egg-laying event but actual oviposition event was an egg-laying event.  
2 Oviposition event indicated whether a bird laid an egg or not in one day. Predicted oviposition event was 

estimated by the random forest classification model.  
3 Precision (egg-laying) = TP / (TP + FP); precision (no egg-laying) = TN / (TN + FN), based on 10% testing 

samples. 
4 Recall (egg-laying) = TP / (TP + FN); recall (no egg-laying) = TN / (TN + FP), based on 10% testing samples. 
5 Overall accuracy = (TP + TN) / (TP + TN + FP + FN), based on 10% testing samples. 
6 Out-of-bag score was the validation result of the random forest model by using the out-of-bag samples which 

were randomly excluded samples from 90% training samples. 
7 Kappa coefficient = (Po - Pe) / (1 - Pe), where Po is overall accuracy, Pe = ((TP + FP) * (TP + FN) + (TN + 

FP) * (TN + FN)) / (TP + TN + FP + FN)2, based on 10% testing samples. 
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3.10. Figures 

 

Figure 3-1. Photo of a precision feeding system which was used to feed broiler breeders in the trial.  
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Figure 3-2. Graphical illustration of data processing. Six classes of features were extracted from a precision 

feeding system dataset (1.Age: a class in relation to the age of hens, including 1 feature; 2. BW: a class in 

relation to BW of hens in one day, including 2 features; 3. FI: a class in relation to feed intake in a specific 

hour of the day, including 24 features; 4. TI: a class in relation to time interval between two successive meals, 

including 2 features; 5. ΔBW: a class in relation to change of BW between two successive meals, including 2 

features; 6. Daily: a class in relation to the sum of certain feature, including 3 features). Then, they were 

combined with the daily oviposition events recorded in egg production dataset to form the processed dataset. 
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Figure 3-3. Feature selection by using random forest-recursive feature elimination with 5-fold cross 

validation and 90% training samples. The curve represented the classification accuracy and the dots represent 

the number of features which were used to build the model. The circle marked in the figure showed the highest 

accuracy of the classification where the first 28 features were selected.  
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Figure 3-4. The ranked importance scores of the 28 selected features estimated by the random forest 

classification model and 90% training samples. FI: feed intake in one day; μTI: mean of TI (time interval 

between two successive meals) in one day; σBW: SD of BW of a broiler breeder in one day; μBW: mean of BW 

of a broiler breeder in one day; Meals: number of meal in one day; σΔBW: SD of ΔBW (change of BW between 

two successive meals) in one day; σTI: SD of TI in one day; μΔBW: SD of ΔBW (change of BW between two 

successive meals) in one day; FI_7h: feed intake from 07:00 h to 08:00 h; Visits: number of visits to a precision 

feeding station in one day.  
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Figure 3-5. Part of a decision tree in random forest classification model. σTI: SD of TI which was the time 

interval between two successive meals in one day; FI_12h: feed intake from 12:00 h to 13:00 h in one day; 

μΔBW : mean of ΔBW which was the change of BW between two successive meals in one day; Meals: number 

of meals in one day; σBW: SD of real-time BW in one day. A cell in the figure represented an impure node in 

a decision tree if the first line was a conditional statement that a feature was not greater than a certain value 

(e.g. fi_12h <= 13.359). A cell represented a leaf node (or a pure node) in a decision tree if the first line was 

not the conditional statement. By following the true or false path, an impure node can split into two nodes or 

a node and a leaf or two leaves. “gini” represented a metric that quantifies the purity of the node or leaf. If 

gini > 0.0 (e.g. gini = 0.26), samples belonged to different classes. If gini = 0.0, only one class of samples 

existed in the leaf. “samples” referred to the number of drawn samples (20,195 drawn samples by 

bootstrapping from 31,898 training samples) in the data set at the node or leaf (e.g. samples = 167 meant there 

were 167 samples in the data set at the node). “value” represented how many training samples (31,898 training 

samples) fell into each class. The first value was the class of no egg-laying and the second value was the class 

of egg-laying (e.g. value = [226, 41] meant that 226 samples belonged to no egg-laying class and 41 samples 

belonged to egg-laying). If the first value was greater than or equal to the second value, “class” showed “0” 

which meant the prediction result of a given node or leaf node was no egg-laying; if the first value was less 

than the second value, “class” showed “1” which meant the prediction result was egg-laying.  
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4. Chapter 4. A supervised machine learning method to detect anomalous real-time 

broiler breeder body weight data recorded by a precision feeding system 

4.1. Abstract 

A precision feeding (PF) system is an intelligent computer-controlled feeding 

system that can be used to feed individual broilers, breeders or layers automatically based 

on measuring real-time body weight (BW). Vast amounts of real-time BW data can be 

generated every day when birds visit a PF station. However, anomalous observations 

occurred in real-time BW observations, which were caused by multiple birds entering the 

station at the same time, upward or downward variation in scale measurement in the 

recorded data due to the movement of the bird, or a misread for radio frequency 

identification tag. Known anomalous data should be removed because they have a negative 

impact on the interpretation of the data. Manually cleaning the anomalies is accurate, but 

time-consuming and labor-intensive. Statistical methods and unsupervised machine 

learning methods are effective in detecting anomalies to some extent because they just 

check data distribution. The current study reported a supervised machine learning method 

to detect anomalies in real-time BW recorded by the PF system. Real-time BW data of 5 

broiler breeders from day 15 to day 306 were checked and the anomalies were manually 

labeled. Variables regarding the statistical distribution of data and features regarding the 

feeding activity recorded by the PF system in each day were extracted from the dataset. 

Four machine learning algorithms were used to identify anomalies including k-nearest 

neighbor (KNN), random forest classifier (RF), support vector machine (SVM), and 

artificial neural network (ANN). RF produced the highest F1 score (0.9712) and area under 

the precision-recall curve (0.9948). Compared with 4 other common anomaly detection 
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methods including Z-scores, interquartile range (IQR), density-based spatial clustering of 

applications with noise (DBSCAN), and local outlier factor (LOF), RF had the highest 

average F1 score (0.9448), which indicated that RF was the most effective anomaly 

detection algorithm for this type of data. 

Key words: outlier detection; machine learning; model selection; imbalanced classification. 

4.2. Introduction 

Applying computer technology has proved to be beneficial to animal agriculture. 

Hardware and software can be used to automatically monitor animal’s performance 

(Banhazi et al., 2012; Berckmans, 2014), making research and production less labor-

intensive, while at the same time collecting big data that is helpful to interpret and improve 

animal performance. A current example is a precision feeding (PF) system for poultry, 

which was developed at the University of Alberta (Zuidhof et al., 2017; Zuidhof et al., 2019). 

It is a sequential feeding system that aims to increase the body weight (BW) uniformity in 

a flock of birds by allocating the right amount of feed over several small meals each day to 

birds on an individual basis. Birds are individually weighed in the PF station, and then a 

decision is made within the system on whether or not to feed the bird based on comparing 

its real-time BW to the target BW. Birds frequently visit the PF station to gain access to 

feed, and BW and feed intake data are recorded upon each visit and meal, respectively 

(Figure 4-1). Visit frequency of breeder pullets from 2 to 22 weeks of age varied from 28 

to 138 visits per day (Zuidhof, 2018). These data are likely to be contaminated by occasional 

anomalous observations, which can be caused by multiple birds entering the station at the 

same time, upward or downward variation in scale measurement in the recorded data due 

to the movement of the bird, or a misread for radio frequency identification (RFID) tag. 
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These anomalous observations would cause incorrect estimations of daily BW and daily 

BW gain. Although statistical methods and unsupervised learning methods might be used 

to detect the anomalies in real-time BW, these methods were only somewhat effective 

because they focused on checking data distribution alone, and were incapable of 

distinguishing reasonable variations of BW caused by the feeding activity from 

unreasonable variations of BW that can not be explained by the feeding activity. Removing 

the anomalies in the data manually is assumed to be more accurate but time-consuming and 

labor-intensive. In the current study, a supervised machine learning method was developed 

to detect anomalies in real-time BW of individual birds recorded by a PF system, based on 

manually labeled data. Variables regarding not only statistical distribution but also features 

associated with the feeding activity of individual birds recorded by the PF system were 

extracted from a dataset recorded by a PF system. Based on the labeled data, various 

machine learning algorithms were applied, and then the algorithm with the highest F1 score 

and area under the precision-recall curve (AUCPR) was selected to compare with 4 other 

common anomaly detection methods.  

4.3. Methods 

Figure 4-2 illustrates the key steps for developing supervised learning methods to 

detect anomalies. In the current study, Python 3.7.0 was used to facilitate all the data 

analysis work including data preprocessing, feature engineering, algorithm selection, and 

comparison with other common anomaly detection methods. Scikit-learn library 0.21.0 

(Pedregosa et al., 2011) and the deep learning framework Keras (Kumar and Manjula, 2019) 

were used to implemented machine learning algorithm. 
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4.3.1. Data Collection 

The data were obtained from a study that used broiler breeders with an approved 

animal care and use protocol. The breeders were fed with the PF stations from day 15 to the 

end of the trial (day 306). As shown in Figure 4-3, a PF station consisted of two stages: a 

sorting stage and a feeding stage. Each breeder was required to walk into the sorting stage 

where the bird was identified by reading a unique RFID tag on its right wing, then recorded 

its real-time BW. The real-time BW was compared with its target BW, which was pre-

assigned prior to the beginning of the trial. If the real-time BW was lower than the target 

BW, the bird was allowed to progress to the feeding stage where it could access a feeder for 

a duration of no more than 60 seconds (a feeding bout) before being gently ejected from the 

exit door of the feeding stage. If the real-time BW was higher than or equal to the target 

BW, the bird was immediately ejected from the exit door of the sorting stage without being 

given access to feed. The date and time, real-time BW, target BW, and feed intake for each 

visit were recorded in the PF system database. 

To manually label anomalous real-time BW of broiler breeders, 5 breeders from day 

15 to day 306 were randomly selected from the flock and their real-time BW data were 

checked. If the real-time BW value of an observation deviated a lot from that of other 

observations in one day and the deviation could not be explained by the feeding activities 

of a bird, the observation was defined as an anomaly or an anomalous observation. On the 

other hand, if the real-time BW value of an observation did not deviate too much from that 

of other observations in one day, or the real-time BW value of an observation deviated a lot 

from that of other observations in one day but the deviation could be explained by the 

feeding activities of a bird, the observation was defined as a normal observation. The 
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labeled results of 5 breeders are shown in Table 4-1.  

4.3.2. Feature Engineering 

In the current study, the whole period of the trial (day 15 to day 306) was segmented 

into days, and each observation in one day was described by variables extracted from the 

dataset based on the following terms. To check data distribution of real-time BW in one day, 

Fisher’s skewness and kurtosis (Cain et al., 2017) were calculated using the equation below 

(Kokoska and Zwillinger, 2000): 

Skewness =
√𝑛(𝑛−1)

𝑛−2
∙

𝑚1
2

𝑚2

3
2⁄
                                           (1) 

Kurtosis =  
𝑛−1

(𝑛−2)(𝑛−3)
∙ [(𝑛 + 1) (

𝑚4

𝑚2
2 − 3) + 6]                       (2) 

where n was the number of the observations (real-time BW) in one day, and m was 

calculated as the equation below: 

𝑚𝑟 =  ∑
(𝑥𝑖−�̅�)𝑟

𝑛

𝑛
𝑖=1                                                      (3) 

where n was the number of the real-time BW observations in one day; x̄ was the mean of 

real-time BW in one day; xi was the real-time BW of the ith observation in one day; r was 

the subscript of m, and r could be 1, 2, and 4, as shown in equation (1) and (2).  

In the current study, original skewness and original kurtosis were newly defined to 

calculate the skewness of all real-time BW observations of a bird in one day and the kurtosis 

of all real-time BW observations of a bird in one day, respectively. Variable 3, 4, 5, and 6 

were newly defined based on original skewness and original kurtosis (Table 4-2). 

In the current study, average distance to neighbor observations (ADNO) was newly 

defined to describe how far an observation deviated from its neighbors, and the equation 

used is shown below: 
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ADNO𝑛 =  
|𝑅ealtime BW 𝑛+1−𝑅ealtime BW 𝑛|+|𝑅ealtime BW 𝑛−𝑅ealtime BW 𝑛−1|

2
              (4) 

As shown in Table 4-2, variable 7, 8 and 9 were based on ADNO. 

Number of station visits, the age of bird, and the difference between target BW and 

real-time BW were also included as variables. The descriptions of all variables are shown 

in detail in Table 4-2. 

4.3.3. Algorithm selection 

Four supervised learning classification algorithms were applied to distinguish 

anomalies from normal observations. K-nearest neighbor (KNN; Coomans and Massart, 

1982), random forest classifier (RF; Breiman, 2001), and support vector machine (SVM; 

Cortes and Vapnik, 1995) were implemented by sklearn.neighbors.KNeighborsClassifier 

function, sklearn.ensemble.RandomForestClassifier function, and sklearn.svm.SVC 

function , respectively. Artificial neural network (ANN; Jain et al., 1996) was implemented 

by Keras package, and a 4-layer perceptron including 1 input layer, 2 hidden layers, and 1 

output layer was constructed. For KNN, RF, and SVM, observations of the 5 labeled birds 

were randomly split into 2 parts: 80% (48,120 observations) for training and 20% (12,030 

observations) for testing. For ANN, the data were randomly split into 3 parts: 60% (36,090 

observations) for training, 20% (12,030 observations) for validating, and 20% (12,030 

observations) for testing. The grid search method (Buitinck et al., 2013), implemented by 

sklearn.model_selection.GridSearchCV function, was used to optimize hyper-parameters 

of KNN, RF, SVM, and ANN. F1 score (Jeni et al., 2013) that took both precision and recall 

into account was used as the metric for evaluation, and 5-fold cross validation was used in 

optimization. To select the best algorithm, the result of each machine learning algorithm 

with optimized hyper-parameters was presented in terms of the confusion matrix (Tripathy 
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et al., 2016). True positive (TP), false positive (FP), false negative (FN) and true negative 

(TN) were used to calculate precision, recall, and F1 score, using the equations below 

(Kumar et al., 2011): 

Precision =  
TP

TP+FP
                                                         (5) 

Recall =  
TP

TP+FN
                                                              (6) 

F1 score =  
2×Recall×Precision

Recall+Precision
                                         (7) 

The precision-recall (PR) curve was used to displays the trade-off between precision 

(Y axis) and recall (X axis) for different threshold values (Ozenne et al., 2015). Compared 

with the receiver operating characteristic curve that was appropriate for the balanced dataset, 

the PR curve can be informative for the imbalanced dataset (Davis and Goadrich, 2006). 

The precision and recall in the PR curve both captured the minority class (anomalies), and 

they were not concerned with the majority class (normal observations). If the PR curve was 

close to the top right corner where the precision and recall were both 100%, the model had 

an almost perfect classification performance. The AUCPR was a metric that used a float 

number between 0 and 1 to summarize the information of the PR curve (Boyd et al., 2013). 

A higher AUCPR value represented a larger area beneath the PR curve that meant a better 

classification performance. In the current study, AUCPR was applied to evaluate 4 

algorithms. The algorithm with the highest F1 score and AUCPR was selected. 

4.3.4. Comparison with common methods 

The selected machine learning algorithm was compared with common anomaly 

detection methods including two statistical methods: Z-scores (Shiffler, 1988) and 

interquartile range (IQR; Tukey, 1977), and two machine learning methods: Density-based 

spatial clustering of applications with noise (DBSCAN; Ester et al., 1996) and local outlier 
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factor (LOF; Breunig et al., 2000). To compare performance of these methods, the detection 

results of each labeled bird was presented. For the machine learning method presented in 

the current study, data of each labeled bird were tested by a model built on the data of the 

other 4 birds, which was similar to 5-fold cross-validation. Since Z-scores, IQR, DBSCAN, 

and LOF were not model-based methods, they were implemented on each bird without 

using the data of other birds for training a model. The Z-scores and IQR methods were used 

to detect anomalies day by day in each bird. Z-scores of +3 and -3 were used in the current 

study, which meant the mean of real-time BW ± 3 standard deviations of real-time BW 

within each day. A point was recognized as an anomaly if it was not within this range. In 

the IQR method, IQR referred to the difference between third quartile (Q3) of data and first 

quartile (Q1) of data. The upper limit was calculated as Q3 + 1.5 x IQR and the lower limit 

was calculated as Q1 - 1.5 x IQR, and a point was considered as an anomaly if it was beyond 

either limit (Barbato et al., 2011). As a clustering algorithm, DBSCAN created a clustering 

area by finding a center that had a dense neighborhood and then connecting the center with 

its neighborhood (Sukmasetya and Sitanggang, 2016). Based on the cluster, all points in a 

dataset can be classified as: 1. Core point that was inside a cluster; 2. Border point that was 

on the edge of the cluster; 3. Noise point (Anomaly) that was neither a core point nor a 

border point. In contrast to DBSCAN, LOF detected anomalies by searching local density 

of points with respect to local density of its neighbors rather than whole data (Behera and 

Rani, 2016). It considered observations that had lower density than their neighbors as outlier 

samples. In the current study, DBSCAN and LOF were implemented by 

sklearn.cluster.DBSCAN function and sklearn.neighbors.LocalOutlierFactor function. 

Hyper-parameters of DBSCAN algorithm were “eps” = 15 and “min_samples” = 20 in the 
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current study, which meant the radius of the neighborhood area of center and minimum 

number of samples in the neighborhood area (Karami, 2013). Hyper-parameters of LOF 

were “n_neighbors” = 50 and “contamination” = 0.12 in the current study, which meant the 

number of neighbors that were used to calculate the local density and the percentage of 

anomalous values in the dataset. “eps” and “min_samples” of DBSCAN and “n_neighbors” 

and “contamination” of LOF were optimized based on the manually labeled dataset. Other 

hyper-parameters were all default values. Anomalies were detected in each bird from day 

15 to day 306 using the same hyper-parameters. 

4.4. Results  

Table 4-3 shows the evaluation of 4 machine learning algorithms with optimized 

hyper-parameters. KNN had the highest precision (0.9746) and SVM had the highest recall 

(0.9917); however, RF had the highest F1 score (0.9712) that was the harmonic mean of 

precision and recall. In addition, Figure 4-4 shows AUCPR of RF (0.9948) was higher than 

all other algorithms, indicating that RF was a more effective model for this imbalanced 

binary classification problem. Thus, RF was selected as the best algorithm for anomaly 

detection. 

As the best selected machine learning algorithm in this application, RF was 

compared with other common anomaly detection methods (Table 4-4). RF had a higher 

precision, recall, and F1 score (over 90%) than other 3 methods including Z-scores, LOF, 

and DBSCAN. Although the recall of IQR was higher than RF, its precision and F1 score 

were much lower than RF. As shown in Figure 4-5, Z-scores, LOF and DBSCAN were able 

to identify anomalies that deviated from normal observations, but were not able to detect 

anomalies that were close to normal observations. On the other hand, there were many 
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normal observations that were incorrectly recognized as anomalies. RF detected almost all 

anomalous observations without identifying many normal observations as anomalies. 

4.5. Discussion 

The PF system recorded real-time broiler breeder BW in two dimensions: real-time 

BW and time. There were two characteristics for the recorded data: regularly shaped over 

a long period of time and irregularly scattered in one day (Figure 1). Since the PF system 

fed each individual birds following a target BW curve that was a sigmoidal shape, real-time 

BW data of an individual bird throughout the trial (from day 15 to day 306) that were 

temporally sequenced can be described by a triphasic Gompertz model (Zuidhof, 2020). 

However, there was no pattern for the real-time BW data in a short period of time (e.g. 

within 24 hours). The real-time BW of an individual bird could fluctuate drastically or 

slightly due to BW variations resulted from one or several activities of the bird including 

feed intake, water intake, excretion, and oviposition that commenced at 22 weeks of the 

age. The fluctuation of the real-time BW should be in a reasonable range determined by 

these activities, and normal real-time BW observations could be explained by these 

activities. Anomalous real-time BW observations could not be explained by the activities 

of birds, and they might be caused by three reasons. First, there were multiple birds in the 

station. Second, there was a substantial upward or downward variation in scale 

measurement caused by the movement of a bird when it was weighed in the station. Third, 

there was a misread for the RFID tag. The RFID antenna generated electromagnetic (EM) 

fields to energize the RFID tag, and then the RFID tag sent the data to the RFID reader. 

There were complex EM fields inside the PF station, but small EM fields were likely to 

leak outside the PF station. In most cases, the RFID tag can be read successfully because 
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the RFID tag of a bird was in alignment with the EM fields when the bird was in the sorting 

stage. However, a misread might occur if the RFID tag of a bird in the sorting stage was 

insufficiently aligned with the EM field and the RFID tag of a nearby bird outside the 

sorting stage was aligned with the leaky EM field. Such a misread would cause an 

anomalous real-time BW record if the two birds had different BW. 

The anomalies were temporally occasional and quantitatively random, which meant 

that extremely higher or lower real-time BW were likely to appear at any time of a day 

during the period of the trial once birds walked into the station where they were weighed. 

Manually labeling the anomalies was accurate but time consuming and labor-intensive. 

People first tried to find the extreme values that deviated a lot from other observations as 

suspected anomalies. Then the anomalies were confirmed by considering the activities of 

the bird that could cause BW variation: If a suspected anomaly can be explained by the 

activities, it would be a normal observation. Otherwise, it would be a real anomaly. In the 

current study, the PF system that was used to feed the birds recorded the feeding activity of 

each individual birds, which made it possible to mimic the process of manually labeling the 

anomalies. Variables were extracted to describe observations in terms of data distribution 

and features regarding the feeding activity of individual bird recorded by the PF system in 

each day. Variable 1 through 6 indicated the impact of each observation on the data 

distribution in one day in terms of skewness and kurtosis. Skewness was a measure of 

asymmetry of a distribution around its mean, and kurtosis was a measure of flatness of the 

distribution compared with normal distribution (Čisar and Čisar, 2010). If an anomalous 

real-time BW occurred, the data distribution might be severely affected and reflected by 

skewness or kurtosis. The variable OS and OK represented the distribution of all 
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observations in one day, whereas ES, EK, ΔS, and ΔK were used to evaluate the impact 

of eliminating a certain observation on the distribution of all observations. Variable 7 

through 12 were used to describe features associated with the feeding activity of an 

individual bird recorded by the PF system for each observation. ADNO was a measure of 

how far an observation deviated from the previous and subsequent observations. The 

variable A/F represented the proportion of ADNO to feed intake in one day, and the two 

variables A/S and A/R represented the proportion of ADNO to variation of BW (range and 

standard deviation of real-time BW, respectively) in one day. These variables were included 

because feed intake and variation of BW in one day might determine a reasonable range for 

the ADNO of each observation in the day. Other information of each bird including the 

number of visits, age, and ΔBW was additionally taken into account for anomaly detection. 

The number of visits might be associated with feed intake and standard deviation of real-

time BW in one day. Age was associated with the activities of a bird. For example, once a 

bird has begun to lay eggs (after photo-stimulation at 22 weeks of age) oviposition can 

result in a BW decrease of about 60 g, but such a BW change was very likely to indicate an 

anomaly at the age of day 50. In the current study, each individual birds was fed based on 

the preset target BW. Although the target BW was a sigmoid curve throughout the trial, it 

changed very slightly within a day. The real-time BW could be higher or lower than the 

target BW, or equal to the target BW, but the real-time BW should not deviate a lot from 

the target BW. ΔBW represented the difference between each target BW and the 

corresponding real-time BW, and a substantial ΔBW might be related to an anomaly.  

In the current study, 4 supervised learning classification algorithms were applied, 

and F1 score and AUCPR were used to select the best algorithm on the dataset that was 
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heavily imbalanced. A similarity between F1 score and AUCPR was that they were both 

associated with precision and recall. F1 score represented the balance between precision 

and recall, and AUCPR was the area beneath the PR curve. The difference between F1 score 

and AUCPR was regarding the classification threshold. The machine learning classification 

algorithms were usually not able to predict labels immediately, and they calculated 

probabilities and then classified the labels based on a threshold. F1 score showed the 

classification performance of the algorithm based on a single threshold, but AUCPR was 

based on the PR curve that provided an overview of different performance with multi-

thresholds (Saito and Rehmsmeier, 2015). In the current study, when using F1 score to 

compare 4 algorithms, it aimed to select the best algorithm that identified anomalies from 

normal observations by the threshold of 0.5; when using AUCPR, the best algorithm was 

selected by considering its classification performance at different thresholds. 

As the best algorithm selected from the 4 different machine learning algorithms, RF 

was compared with 4 common anomaly detection methods. When detecting anomalous 

real-time BW data with statistical methods, anomalies were checked just in the dimension 

of real-time BW. In the current study, the recall and precision of the Z-scores method were 

lower than other methods, because the assumption of the Z-scores method was that data 

should be normally distributed. When real-time BW data did not follow normal distribution, 

some real-time BW observations that were not anomalies could be identified as anomalies. 

This would decrease precision of the Z-scores method, which was what we observed. 

Although recall of the IQR method was much higher than other methods, precision of IQR 

was the lowest. This indicated that the IQR method recognized a large number of normal 

observations as anomalies regardless of detecting almost all real anomalies. The IQR 
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method was ineffective to deal with asymmetric data distribution, since it checked absolute 

deviation from the center (Jones, 2019). In the current study, the high recall and low 

precision of IQR might be due to the asymmetry in data. As a result, these two statistical 

methods were ineffective to detect anomalous observations. Unlike the Z-score and IQR 

methods, DBSCAN and LOF were implemented simultaneously in two dimensions (real-

time BW and time). In the pre-trial of the current study, hyper-parameters of these two 

unsupervised learning methods had been optimized based on the manually labelled dataset. 

The basic idea of DBSCAN was to identify the observations in low density region as 

anomalies. As an unsupervised machine learning algorithm, anomaly detection of 

DBSCAN relied on its hyper-parameters: “eps” and “min_samples” which determined the 

area of and the density of a cluster. Samples in the cluster with high density were normal 

while samples in clusters with low density were detected as anomalies (Emadi and Mazinani, 

2018). However, the density of observations was different among birds since some birds 

had more visits than others. For example, the bird whose ID was 1902 visited PF station 

15,596 times but the bird whose ID was 1811 only visited 9,380 times during the trial. In 

addition, frequency of visits for each bird would change during the trial even during one 

day, which resulted in variation of density of observations for each bird. Like DBSACN, 

LOF was over-sensitive to its hyper-parameters: “n-neighbors” and “contamination”. It was 

difficult to determine a proper value for “n-neighbors” which meant the number of 

surrounding neighbors which was used to estimate the local density, due to variation of 

number of visits among birds. It was also difficult to estimate “contamination” which meant 

percentage of anomalous values in the dataset, because the percentage of anomalies ranged 

from 0.73 to 1.32 in the 5 labeled birds in the current study and a higher or lower estimation 
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of “contamination” would have a negative impact on anomaly detection. Thus, the 

disadvantage of LOF and DBSCAN was the difficulty in determining an appropriate 

combination of hyper-parameters for each bird before detection. In the current study, “eps” 

and “min_samples” of DBSCAN and “n_neighbors” and “contamination” of LOF were 

optimized based on the manually labeled dataset. However, when DBSCAN and LOF were 

implemented to a new dataset, an appropriate combination of hyper-parameters of 

DBSCAN and LOF would be difficult to determine without the manually labeled results. 

Statistical methods and unsupervised learning methods detected anomalies by investigating 

input data (distribution or density of observations), whereas RF as a supervised learning 

method detected anomalies by building a relationship between input data (12 features) and 

output data (anomalies). Compared with Z-score, IQR, LOF, and DBSCAN, RF had better 

performances (higher precision, recall, and F1 score) on detecting anomalies in real-time 

BW data of each bird recorded by the PF system.  

4.6. Conclusion 

The current study was the first to propose a supervised machine learning method to 

detect anomalies in real-time BW data of broiler breeders collected by a PF system. Real-

time BW data of 5 randomly selected broiler breeders were used in the current study. To 

detect the anomalous observations over the period of trial (from day 15 to day 306), 12 

variables considering statistical distribution of data and features regarding the feeding 

activity recorded by the PF system for each day were created, and then supervised learning 

algorithms were used to identify anomalies from normal observations. RF was selected as 

the best algorithm among 4 different supervised learning algorithms because it had the 

highest F1 score (0.9712) and AUCPR (0.9948). Comparing with common anomaly 
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detection methods (Z-scores, IQR, DBSCAN, and LOF) that just checked data distribution, 

the RF method in the current study had a higher average F1 score (0.9448). The current 

study provided an effective solution to clean anomalous observations of real-time BW of 

broiler breeders fed by the PF system.  
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4.9. Tables 

Table 4-1. Anomalous observations and normal observations of 5 breeders that were manually labeled. 

ID 
Number of  

total observations 

Number of anomalous 

observations 

Number of  

normal observations 

Percentage of 

anomalous observations 

(%) 

1811 9,380 101 9,279 1.08 

1887 11,695 85 11,610 0.73 

1902 15,596 165 15,431 1.06 

1961 13,923 103 13,820 0.74 

1987 9,556 126 9,430 1.32 

Total 60,150 580 59,570 0.96 
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Table 4-2. Variables created for describing a real-time BW observation of one bird in one day. 

No. Variable  Description 

1 OS The skewness1 of all observations of real-time BW of a breeder in one day.  

2 OK The kurtosis2 of all observations of real-time BW of a breeder in one day. 

3 ES 
The eliminated skewness for an observation that was the skewness all real-time 

BW of a breeder in one day without the observation.  

4 EK 
The eliminated kurtosis for an observation that was the kurtosis of all real-time 

BW of a breeder in one day without the observation. 

5 ΔS 
The difference of skewness for an observation that was the difference between 

original skewness and eliminated skewness.  

6 ΔK 
The delta difference of kurtosis for an observation that was the difference 

between original kurtosis and eliminated kurtosis. 

7 A/S 
The ratio of ADNO3 of an observation and standard deviation of real-time BW in 

one day. 

8 A/R The ratio of ADNO of an observation and range of real-time BW in one day.  

9 A/F The ratio of ADNO of an observation and sum of feed intake in one day. 

10 Number Number of observations (visits) in one day. 

11 Day The age (d) of each bird recorded by precision feeding system. 

12 ΔBW Target BW minus Real-time BW 

1.  

Skewness =
√𝑛(𝑛−1)

𝑛−2
∙

𝑚3

𝑚2

3
2⁄
  

where 𝑚𝑟 =  ∑
(𝑥𝑖−�̅�)𝑟

𝑛

𝑛
𝑖=1   

2.  

Kurtosis =  
𝑛−1

(𝑛−2)(𝑛−3)
∙ [(𝑛 + 1) (

𝑚4

𝑚2
2 − 3) + 6]  

 where 𝑚𝑟 =  ∑
(𝑥𝑖−�̅�)𝑟

𝑛

𝑛
𝑖=1   

3. Average distance to neighbor observations, newly defined in the current study as:  

ADNO𝑛 =  
|𝑅ealtime BW 𝑛+1−𝑅ealtime BW 𝑛|+|𝑅ealtime BW 𝑛−𝑅ealtime BW 𝑛−1|

2
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Table 4-3. Comparison of evaluation of different machine learning algorithms using testing samples.  

 KNN 2 RF 3 SVM 4 ANN 5 

TP 6 115 118 119 115 

FP 7 3 5 33 7 

FN 8 5 2 1 5 

TN9 11,907 11,905 11,877 11,903 

Precision 10 0.9746 0.9593 0.7829 0.9426 

Recall 11 0.9583 0.9833 0.9917 0.9583 

F1 score 12 0.9664 0.9712 0.8750 0.9504 

1. The hyper-parameters of these machine learning algorithms has been optimized by using grid search 

method implemented by sklearn.model_selection.GridSearchCV. 

2. KNN: k-nearest neighbor implemented by sklearn.neighbors.KNeighborsClassifier. Hyper-parameters 

were optimized as follows: n_neighbors = 3; weights = “distance”; algorithm = “ball_tree”; other hyper-

parameters were all default value.  

3. RF: random forest classifier implemented by sklearn.ensemble.RandomForestClassifier. Hyper-parameters 

were optimized as follows: n_estimators = 190; min_samples_leaf = 6; max_depth = 9; class_weight = 

"balanced”; other hyper-parameters were all default value.  

4. SVM: support vector machine implemented by sklearn.svm.SVC. Hyper-parameters were optimized as 

follows: gamma = 0.075; C =1.22; class_weight = "balanced”; other hyper-parameters were all default value.  

5. ANN: artificial neural network implemented by Keras. A 4-layer perceptron was constructed and hyper-

parameters of each layer were optimized as follows:  

a. Input layer: units= 64; activation = “relu”. 

b. First hidden layer: units = 64; activation = “relu”. 

c. Second hidden layer: dropout = 0.5. 

d. Output layer: units = 1. 

The model was compiled with following hyper-parameters: loss =“binary_crossentropy”; optimizer= 

“rmsprop”. The batch size was 6000 and the number of epochs was 500. Other hyper-parameters were all 

default value. 

6. TP: true positive. It meant actual anomalies and the model predicts them as anomalies. 

7. FP: false positive. It meant actual normal observations but the model predicts them as anomalies. 

8. FN: false negative. It meant actual anomalies but the model predicts them as normal observations. 

9. TN: true negative. It meant actual normal observations and the model predicts them as normal observations. 

10. Precision = TP / (TP + FP). 

11. Recall = TP / (TP + FN). 

12. F1 score = 2 x Precision x Recall/ (Precision + Recall). 
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Table 4-4. Comparison of anomalies detection by machine learning method (selected algorithm) presented 

by the current study with other common methods (Z-scores, IQR, LOF, and DBSCAN). 

Methods 
ID 

Average 13 
1811 1887 1902 1961 1987 

RF1 

TP 6 100 80 154 95 124  

FP 7 1 5 10 5 18  

FN 8 2 5 11 8 2  

TN 9 9,277 11,605 15,421 13,815 9,412  

Precision 10 0.9804 0.9412 0.9390 0.9500 0.8732 0.9368 

Recall 11 0.9901 0.9412 0.9333 0.9223 0.9841 0.9542 

F1 score 12 0.9852 0.9412 0.9362 0.9360 0.9254 0.9448 

Z-scores 2 

TP 58 76 129 85 88  

FP 35 36 53 67 28  

FN 43 9 36 18 38  

TN 9,244 11,574 15,378 13,753 9,402  

Precision 0.6237 0.6786 0.7088 0.5592 0.7586 0.6658 

Recall 0.5743 0.8941 0.7818 0.8252 0.6984 0.7548 

F1 score 0.5980 0.7716 0.7435 0.6666 0.7273 0.7014 

IQR 3 

TP 100 83 156 98 126  

FP 267 289 419 377 288  

FN 1 2 9 5 0  

TN 9,012 11,321 15,012 13,443 9,142  

Precision 0.2725 0.2231 0.2713 0.2063 0.3043 0.2555 

Recall 0.9901 0.9765 0.9455 0.9515 1.0000 0.9727 

F1 score 0.4274 0.3632 0.4216 0.3391 0.4666 0.4036 

LOF 4 

TP 84 70 138 71 111  

FP 29 71 50 97 4  

FN 17 15 27 32 15  

TN 9,250 11,539 15,381 13,723 9,426  

Precision 0.7434 0.4965 0.7340 0.4226 0.9652 0.6723 

Recall 0.8317 0.8235 0.8364 0.6893 0.8810 0.8124 

F1 score 0.7851 0.6195 0.7819 0.5240 0.9212 0.7263 

DBSCAN 5 

TP 90 65 136 70 116  

FP 12 47 46 47 101  

FN 11 20 29 33 10  

TN 9,267 11,563 15,385 13,773 9,329  

Precision 0.8824 0.5804 0.7473 0.5983 0.5346 0.6686 

Recall 0.8911 0.7647 0.8242 0.6796 0.9206 0.8160 

F1 score 0.8867 0.6599 0.7839 0.6364 0.6764 0.7287 

1. RF: the random forest classifier that was the best algorithm selected from 4 different machine learning 

algorithms. Hyper-parameters of RF had been optimized and were the same as in Table 4-3. Each time, four 

birds were used as training samples and the rest one was used as testing samples.  

2. In the Z-scores method, Z-scores of +3 and -3 were used and anomalies were detected in each day of each 

bird. 
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3. IQR: interquartile range. In the IQR method, anomalies were detected in each day of each bird. 

4. LOF: local outlier factor. Hyper-parameters were optimized as follows: “n_neighbors”=50 and 

“contamination”=0.12. Other hyper-parameters were all default value. Anomalies were detected in each bird 

from day 15 to day 306 using the same hyper-parameters. 

5. DBSCAN: density-based spatial clustering of applications with noise. Hyper-parameters were optimized 

as follows: “eps”=15 and “min_samples”=20. Other hyper-parameters were all default value. Anomalies were 

detected in each bird from day 15 to day 306 using the same hyper-parameters. 

6. TP: true positive. It meant actual anomalies and the model predicts them as anomalies. 

7. FP: false positive. It meant actual normal observations but the model predicts them as anomalies. 

8. FN: false negative. It meant actual anomalies but the model predicts them as normal observations. 

9. TN: true negative. It meant actual normal observations and the model predicts them as normal observations. 

10. Precision = TP / (TP + FP). 

11. Recall = TP / (TP + FN). 

12. F1 score = 2 x Precision x Recall/ (Precision + Recall). 

13. Average: the arithmetic mean of 5 birds. 
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4.10. Figures 
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Figure 4-1. An example of real-time BW of a broiler breeder (ID=1989) recorded by the precision feeding 

system over the period of the trial (day 15 to day 306). To show the daily recorded real-time BW, day 82 to 

day 97 of the breeder were presented. 
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Figure 4-2. Flow chart of the current study. KNN: k-nearest neighbor; RF: random forest classifier; ANN: 

artificial neural network; SVM: support vector machine; LOF: local outlier factor; IQR: interquartile range 

method; DBSCAN: Density-based spatial clustering of applications with noise. 
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Figure 4-3. Section view of a precision feeding station.  
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Figure 4-4. Precision-recall curve performance of different machine learning algorithms. AUCPR: area 

under precision-recall curve; KNN: k-nearest neighbor; RF: random forest classifier; SVM: support vector 

machine; ANN: artificial neural network.  
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Figure 4-5. An example (ID = 1811) of comparison of the method proposed in the current study with other 

common anomaly detection methods. Blue points indicate normal observations and red points indicate 

anomalies.  
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5. Chapter 5. Using an artificial neural network to predict the probability of daily 

oviposition events occurring of precision-fed broiler breeders  

5.1. Abstract 

Identifying daily oviposition events for individual broiler breeders is important for 

bird management. Knowing non-laying individual birds in a flock that might be caused by 

improper nutrition or diseases can be helpful to manage these birds by changing the diets 

or treating the diseases for these birds. Oviposition depends on follicle maturation and egg 

formation, and follicle maturation can be variable. As such, the day and time of oviposition 

events of individual birds in a free-run flock can be hard to predict. Based on a precision 

feeding (PF) system that can record the feeding activity of individual birds, a recent study 

reported a machine learning model to predict daily egg-laying events of broiler breeders. 

However, there were two limitations in that study: i) It could only be used to identify daily 

egg-laying events on a subsequent day; ii) The prediction outputs that were binary labels 

were unable to indicate more details among the outputs with the same label. To improve 

the previous approach, the current study aimed to predict and output the probability of daily 

oviposition events occurring using a specific time point in one day. In the current study, 

706 egg-laying events recorded by nest boxes with radio frequency identification of hens 

and 706 randomly selected no egg-laying events were used. The anchor point was newly 

defined in the current study as a specific time point in one day, and 26 features around the 

anchor point were created for all events (706 egg-laying events and 706 no egg-laying 

events). A feed-forward artificial neural network (ANN) model was built for prediction. 

The area under the receiver operating characteristic (ROC) curve was 0.9409, indicating 

that the model had an outstanding classification performance. The ANN model could 
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predict oviposition events on the current day, and the output was a probability that could be 

informative to indicate how likely oviposition of an individual breeder occurred in the day. 

In situations where total egg production was known for a group, the ANN model could 

predict the probability of daily oviposition events occurring for all individual birds and then 

rank them to choose those most likely to have laid an egg.  

Key words: oviposition; probability; feature; neural network. 

5.2. Introduction 

 Identifying daily oviposition events for individual broiler breeders is important to 

improve bird management. In the laying period, individual breeders in a flock might stop 

laying due to the reasons like improper nutrition or diseases. Knowing which breeders laid 

an egg in a flock is helpful to manage the non-laying individual birds by changing the diets 

or treating the diseases. Oviposition occurs in sequences of one or more eggs, separated by 

one or more non-laying days called a pause (Robinson et al., 1991). Sequences and pauses 

are determined by follicle maturation and egg formation, and follicle maturation can be 

variable due to hormone and the environmental factors (van der Klein et al., 2020). As a 

result, there is a lot of uncertainty in the day and time of oviposition of an individual hen. 

The oviposition of individually caged birds can be easily noticed. For free-run birds, it is 

challenging to determine oviposition events of individual hens without a trap nest system.  

A recent study (You et al., 2020) reported predicting daily oviposition events of 

individual broiler breeders using a random forest classifier. It was the first study to identify 

daily oviposition events at individual-level, by using a precision feeding (PF) system 

(Zuidhof et al., 2019) that can automatically feed individual birds and record vast amounts 

of data regarding the feeding activity of the birds. This study built a relationship between 
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daily oviposition events of individual breeders and the feeding activity and body weight 

(BW) change of individual breeders recorded by the PF system. However, there were 2 

limitations in the study: 

i) It was based on the feeding activity and BW change of breeders in the whole day 

(from 00:00 to 23:59) to predict the egg-laying events. As a result, identifying egg-laying 

events for a day by the model could only be applied on the subsequent day. 

ii) The prediction outputs were binary labels including 1 representing egg-laying 

and 0 representing no egg-laying. However, for predicted outputs with the same label, it is 

difficult to indicate which one is more likely to occur than others.  

Improving on the previous approach, the current study aimed to develop an artificial 

neural network (ANN) model to predict the probability of daily oviposition events 

occurring using a specific time point in one day. It was hypothesized that the probability 

for the time point in one day predicted by the ANN model would be used for representing 

how likely egg-laying events occur in the day. 

5.3. Materials and Methods 

The animal protocol for the study was approved by the University of Alberta Animal 

Care and Use Committee for Livestock and followed principles established by the Canadian 

Council on Animal Care Guidelines and Policies (CCAC, 2009). 

5.3.1. Experimental Design 

In the current study, data were obtained from a flock of broiler breeders (n = 95) 

raised in 2 environmentally controlled chambers. Each chamber was equipped with 2 PF 

stations. There were 76 hens in total. All birds were trained to use the PF station from 0 to 

14 d of age, which was described by Zukiwsky et al., (2020). From 15 d to the end of the 
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trial (306 d), breeders were fed by the PF system that could identify individual birds by 

reading a unique radio frequency identification (RFID) tag on their right wing. The PF 

system determined whether a bird would receive a meal by comparing its real-time BW 

with a pre-assigned target BW. If the real-time BW was greater than or equal to the target 

BW of that bird, it would not be fed and was gently ejected. If the real-time BW was less 

than the target BW, the bird would have a meal in a feeding bout of up to 60 seconds in the 

station and then be gently ejected. Throughout the trial, water was provided ad libitum. The 

RFID, time, date, real-time BW, target BW, and feed intake (FI) for each visit were 

recorded by the PF system. 

5.3.2. Data Collection 

After photo-stimulation at 22 wk of age, the egg production of individual hens was 

recorded on a daily basis. In the current study, if a hen laid an egg in one day, it was 

considered as an egg-laying event; if a hen did not lay an egg in one day, it was considered 

as a no egg-laying event. A traditional trap nest box with 8 nesting sites was placed in each 

pen, and it was checked every hour from 07:30 to 17:30 every day. After an egg was laid 

in the trap nest box, the bird inside the box would be set free by researchers. The exact time 

of egg-laying events that occurred in the trap nest box was not recorded. In addition to the 

traditional trap nest box, an RFID nest box with 8 nesting sites was also used to determine 

the exact time of each egg-laying event for individual hens. When a breeder entered an 

RFID nesting site, its RFID was read. Inside the nesting site, the floor was sloped. Once a 

breeder laid an egg, the egg would roll down through a channel into an egg-collection box 

beneath the nesting site. When the egg-collection box received an egg, the time of receiving 

the egg would be recorded. Since an egg would be received immediately once being laid, 
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the time of receiving the egg could be considered the time of oviposition. During the study, 

706 egg-laying events occurred in the RFID nest box, while the remaining egg-laying 

events occurred in the trap nest box. The total number of no egg-laying events was 3,559. 

5.3.3. Data preprocessing 

 The current study used Python 3.7.0 to facilitate data preprocessing, feature 

engineering, and model construction. All 706 egg-laying events recorded by the RFID nest 

box from 171 to 306 d were used. The number of egg-laying events during each hour was 

counted, and the distribution of egg-laying events during each hour is shown in Figure 5-1. 

All egg-laying events occurred between 05:00 and 18:00. The same number (n = 706) of 

no egg-laying events was randomly selected from all recorded no egg-laying events. No 

egg-laying events during each hour were randomly selected from 706 no egg-laying events, 

based on the number of egg-laying events during the corresponding hour. As a result, the 

distribution of egg-laying events during each hour was identical to that of no egg-laying 

events during each hour. In the current study, the anchor point was newly defined as a 

specific time point in one day for predicting egg-laying events, and features around the 

anchor point were created. For 706 egg-laying events, the anchor point referred to the time 

of oviposition recorded by the RFID nest box. For 706 no egg-laying events, the anchor 

point was randomly selected in the assigned hour. For example, for a no egg-laying event 

during 7 h, the anchor point was randomly selected between 07:00 and 08:00, such as 07:07, 

07:19, or 07:36.  

Features were created to describe each observation (egg-laying event or no egg-

laying event). Three periods, including 24 h before the anchor point (ended at the anchor 

point), 6 h before the anchor point (ended at the anchor point), and 6 h after the anchor point 
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(started at anchor point), were used to create features. Since all breeders were fed by the PF 

system, BW gain (BWG) for a period of time could be calculated by the equation below: 

BWG =  BW𝑛 – BW1                                                       (1) 

where BWn represented the nth real-time BW in the period recorded by the PF system, and 

BW1 represented the first real-time BW in the period recorded by the PF system. The 

equation could be expanded to: 

= (BW𝑛 – BW𝑛−1) + (BW𝑛−1 – BW𝑛−2) + ⋯ + (BW2 – BW1)               (2) 

 = ΔBW𝑛−(𝑛−1) + ΔBW(𝑛−1)−(𝑛−2) + ⋯ + ΔBW2−1                                 (3) 

where BWn represented the nth real-time BW in the period recorded by the PF system. 

ΔBWn-(n-1) represented the BW change between two consecutive (nth and n-1th) real-time 

BW in the period recorded by the PF system. These BW changes could be classified into 

two groups: BW increase and BW decrease, so the equation could be transformed to: 

BWG =  ∑ BW increase + ∑ BW decrease                              (4) 

Generally, any BW change between two consecutive real-time BW could be caused by 4 

activities, including FI, water intake (WI), excretion and metabolic loss (EM), and 

oviposition. Oviposition occurred at the anchor point that was not included in these three 

periods (24 h before the anchor time, 6 h before the anchor time, and 6 h after the anchor 

time). Thus, only FI, WI, and EM contributed to BW change. FI and WI could result in BW 

increase, and EM could result in BW decrease. The equation for these three periods could 

be transformed to: 

BWG =  FI + WI + EM                                                 (5) 

FI referred to the total amount of feed eaten by an individual for each period. According to 

the equations above, WI could be estimated by subtracting FI from the sum of BW increases, 
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and EM could be estimated by the sum of BW decreases. There were 8 features for each 

period. BWG, FI, the estimated WI, and the estimated EM were 4 features for each period. 

For each period, the mean and standard deviation of the difference between target BW and 

real-time BW were used as two features. The number of meals and the number of no-meal 

visits were used as two features. Thus, there were 24 features for these 3 periods. In addition 

to the 24 features, another 2 features regarding the anchor point were created: the period 

between two consecutive visits over the anchor point and the BW change of two 

consecutive visits over the anchor point. All 26 features are shown in Table 5-1. 

5.3.4. Algorithm 

 The ANN model was implemented by the deep learning framework Keras package 

in Python (Kumar and Manjula, 2019). The ANN structure was based on a feed-forward 

network shown in Figure 5-2, and a multi-layer perceptron including 1 input layer, 1 hidden 

layer, and 1 output layer was constructed. Each layer could contain several neurons that 

were computational units. A dropout layer that randomly ignores neurons connected to the 

prior layer was added between the hidden layer and the output layer to prevent overfitting. 

Hyper-parameters of ANN were optimized by the grid search method with 

sklearn.model_selection.GridSearchCV function (Buitinck et al., 2013). The overall 

accuracy was used as the metric to evaluate the prediction, and a 5-fold cross-validation 

approach was used for optimization. The optimized hyper-parameters were used to build 

the final ANN model. The processed data were randomly split into 3 parts: 60% (846 

observations) for training, 20% (283 observations) for validation, and 20% (283 

observations) for testing. 
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5.3.5. Model Evaluation 

The ANN model was evaluated by the receiver operating characteristic (ROC) 

curve and the area under the ROC curve (AUC). The ROC curve was able to show the 

trade-off between the recall (Y-axis) and false positive rate (FPR; X-axis) across a variety 

of thresholds (Hajian-Tilaki, 2013). The recall and FPR were calculated by the equations 

below: 

Recall =  
TP

TP+FN
                                                           (6) 

FPR =  
FP

FP+TN
                                                           (7) 

where TP (true positive) represented predicted egg-laying events for actual egg-laying 

events; FP (false positive) represented predicted egg-laying events for actual no egg-laying 

events; FN (false negative) represented predicted no egg-laying events for actual egg-laying 

events; TN (true negative) represented predicted no egg-laying events for actual no egg-

laying events. The upper left corner (coordinate [x = 0, y = 1]) where the FPR and recall 

were 0% and 100%, respectively, represented a perfect classification performance. AUC 

that summarized the information of the ROC curve was a measure of the discriminatory 

capacity of a diagnostic test (Kumar and Indrayan, 2011). The maximum value of AUC was 

1, which indicated a perfect test. If the AUC value was 0.5, it indicated no discriminative 

test. As a result, a higher AUC value represented a larger area beneath the ROC curve, 

which meant a better classification performance. Eventually, the probability of all testing 

samples was predicted by the ANN model. 

5.4. Results and Discussion 

 The optimized hyper-parameters are shown in Table 5-2. With these hyper-

parameters, the loss of the model on both the training dataset and the validation dataset 
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decreased to about 0.2 with 80 epochs (the number of epochs meant the times that the ANN 

model worked through the entire training dataset), and the accuracy of both concurrently 

increased to about 0.9 (Figure 5-3). Figure 5-4 shows the ROC curve and the AUC of the 

model. The ROC curve was far away from the diagonal line extending from the lower left 

corner to the upper right corner, and it was close to the upper left corner where the recall 

was 100% and the FPR was 0%, indicating an almost perfect test result. The closer the ROC 

curve approached to the upper left corner, the better the test result was (Marzban, 2004). 

AUC was 0.9409, which meant a 94.09% chance to correctly distinguish an egg-laying 

event from a no egg-laying event. If the AUC value was greater than 0.9, it indicated an 

outstanding test (Mandrekar, 2010). Thus, the classification performance of the ANN model 

was outstanding. 

Although previous machine learning approaches to predict egg production at flock-

level have been reported (Ahmad, 2011; Felipe et al., 2015), few studies focused on the 

prediction at individual-level. To date, one other published study has reported predicting 

daily egg-laying events of individual birds by a random forest classifier (You et al., 2020). 

In the study, features regarding the feeding activity and BW change of individual birds were 

extracted from a dataset collected by a PF system. However, a limitation in the study was 

that prediction outputs could just be known on the subsequent day because the features in 

the 24 h (from 00:00 to 23:59) were needed as input variables for the prediction model.  

The current study aimed to build a prediction model that could be applied on the 

current day. In the current study, features were also created based on the feeding activity 

and BW change recorded by a PF system. However, features were created from different 

periods unlike the previous study. Three periods around a specific time point (anchor point) 
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in the day were used to create features, including 24 h before the anchor point, 6 h before 

the anchor point, and 6 h after the anchor point. Since it took about 24 h to form an egg, the 

feeding activity and BW change in the period of 24 h before the anchor point of egg-laying 

events might be different from that of no egg-laying events. A target BW was pre-assigned 

in the PF system, and a breeder could have a meal if its real-time BW was lower than its 

target BW. In the period of 6 h before the oviposition, a breeder that would lay an egg might 

be less likely to access to the feeder in the PF station than a breeder that would not lay due 

to heavier BW resulted from forming an egg. In contrast, in the period of 6 h after the 

oviposition, a breeder that laid an egg might be more likely to access to the feeder in the PF 

station than a breeder that did not lay due to lighter BW resulted from dropping an egg. 

Thus, these three periods were important to create features. There were 8 features in each 

of the 3 periods. In each period, BWG over the period consisted of several BW changes 

between two consecutive real-time BW. BWG could be partitioned into 2 parts: the sum of 

BW changes greater than 0 and the sum of BW changes less than 0. The sum of BW changes 

greater than 0 could be caused by FI and WI, and the sum of BW changes less than 0 could 

just be caused by EM as oviposition did not occur in the period. Since the FI was recorded 

by the PF system, WI could be estimated by subtracting FI from the sum of BW changes 

greater than 0. The sum of BW changes less than 0 could be considered as the estimated 

EM. Since BWG, FI, estimated WI, and estimated EM over the period might be associated 

with oviposition, they were used as 4 features. The more frequently hens visited the PF 

station, the more accurate estimated WI and estimated EM would be. Thus, the number of 

meals and the number of no-meal visits were used as 2 features. Considering the birds were 

fed according to the target BW curves, the difference between real-time BW and target BW 
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could indicate the change of BW and substantial BW changes might be associated with 

oviposition. Thus, the mean and the standard deviation of the difference were used as 2 

features. In addition to the 24 features, another 2 features regarding the anchor point were 

created. The time interval between two consecutive visits across the anchor point was 

created because a long time interval might occur if a breeder laid an egg between the two 

visits. Similarly, the BW change between two consecutive visits across the anchor point 

was created because a substantial BW change might occur if a breeder laid an egg between 

the two visits. Since all features were around the anchor point in one day, prediction outputs 

could be achieved in advance before the day was over. 

For binary classification, machine learning algorithms could generate a probability 

between 0 and 1, and then a default decision threshold (0.5) for the probability was used to 

further generate a label as an output (Freeman and Moisen, 2008). If the probability was 

higher than or equal to 0.5, it was recognized as 1 representing egg-laying. Otherwise, it 

was 0 representing no egg-laying. The ANN model was used in the current study, and 

prediction outputs were a probability between 0 and 1, rather than a binary label. ANN was 

a nonlinear model that provided a direct estimation of the posterior probabilities for 

classification problems without prior probabilities and other underlying assumptions 

(Zhang, 2000). Input variables were received by the input layer, and then computation on 

these input variables was performed by the hidden layer. A single hidden layer was used in 

the ANN model in the current study since the dataset was relatively small. The sigmoid 

function that was a smooth nonlinear function was used as the activation function in the 

output layer. Since the output of the sigmoid function was between 0 and 1, the ANN model 

finally generated a value between 0 and 1 as the probability of daily oviposition events 
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occurring. You et al., (2020) used a random forest classifier that was a highly robust and 

accurate machine learning approach for binary classification. However, the random forest 

classifier was not a good choice for generating the probability of classes. Since the 

probability estimated by the random forest classifier was the average proportion of a class 

of observations in the leaf nodes of all the trees (Khan et al., 2016), abnormal probability 

might be estimated when the growth of trees was not limited so that there was only one 

class in the leaf nodes. The probability could indicate confidence in classification and 

evaluate the possibility of misclassification (Li et al., 2017). In the current study, the 

probability of daily oviposition events occurring was predicted by the ANN model. 

Compared with binary labels used in the previous study, the probability of daily oviposition 

events occurring would be informative because it could indicate how likely oviposition of 

an individual breeder occurred in the day. A higher probability value indicated that 

oviposition was more likely to occur. The distribution of the probability of all 283 testing 

samples showed two heavy tails in Figure 5-5. For most samples, the probability of daily 

oviposition events occurring was in the range from 0.0 to 0.1 or in the range from 0.9 to 

1.0, which indicated that the ANN model could distinguish the events that oviposition was 

more likely to occur from the events that oviposition was less likely to occur. 

A possible application scenario of using the ANN model was to identify the breeders 

that have laid an egg in the pen. If the number of collected eggs was n, there were n breeders 

that have laid an egg in the pen. All breeders in the pen could be ranked by the predicted 

probability of oviposition events occurring from high to low and then the top n breeders in 

the rank could be considered as the breeders that have laid an egg. To apply the ANN model, 
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anchor points should be randomly selected between 05:00 and 18:00 because the ANN 

model was built based on the dataset in which anchor points were between 05:00 and 18:00. 

5.5. Conclusion 

 The current study aimed to improve a previous approach that could only be used to 

identify daily oviposition events on the subsequent day and the prediction outputs were 

binary labels. An ANN model was proposed to predict the probability of daily oviposition 

events occurring in one day based on 26 features around a specific time in the day (anchor 

time). The AUC value of the ANN model was 0.9409 indicating the ANN model had an 

outstanding classification performance. The ANN model could be used to predict 

oviposition events that occurred on the current day, and the prediction outputs were the 

probability that could be informative to indicate how likely oviposition of an individual 

breeder occurred in the day. In the situations where the total egg production for a flock of 

breeders in one day was known, the probability of daily oviposition events occurring of all 

individual birds could be predicted and then ranked to choose those most likely to have laid 

an egg. 
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5.8. Tables 

Table 5-1. Features created for each event (egg-laying event or no egg-laying event). 

No. Feature  Description 

1 FI_24 
Feed intake recorded by the precision feeding system in the 24 h 

before the anchor point 1. 

2 WI_24 Estimated water intake2 in the 24 h before the anchor point 

3 EM_24 
Estimated excretion and metabolic loss3 in the 24 h before the anchor 

point. 

4 ΔBW_Mean_24 
Mean of differences of DecisionBW4 and TargetBW in the 24 h before 

the anchor point. 

5 ΔBW_STD_24 
Standard deviation of differences of DecisionBW and TargetBW in 

the 24 h before the anchor point. 

6 BWG_24 
Difference of the last DecisionBW and the first DecisionBW in the 24 

h before the anchor point. 

7 Meals_24 The number of meals in the 24 h before the anchor point. 

8 No_meals_24 The number of no-meal visits in the 24 h before the anchor point. 

9 FI_Pre_6 
Feed intake recorded by the precision feeding system in the 6 h before 

the anchor point. 

10 WI_Pre_6 Estimated water intake in the 6 h before the anchor point. 

11 EM_Pre_6 
Estimated excretion and metabolic loss in the 6 h before the anchor 

point. 

12 ΔBW_Mean_Pre_6 
Mean of differences of DecisionBW and TargetBW in the 6 h before 

the anchor point. 

13 ΔBW_STD_Pre_6 
Standard deviation of differences of DecisionBW and TargetBW in 

the 6 h before the anchor point. 

14 BWG_Pre_6 
Difference of the last DecisionBW and the first DecisionBW in the 6 h 

before the anchor point. 

15 Meals_Pre_6 The number of meals in the 6 h before the anchor point. 

16 No_meals_Pre_6 The number of no-meal visits in the 6 h before the anchor point. 

17 FI_Post_6 
Feed intake recorded by the precision feeding system in the 6 h after 

egg-laying. 

18 WI_Post_6 Estimated water intake in the 6 h after the anchor point. 

19 EM_Post_6 
Estimated excretion and metabolic loss in the 6 h after the anchor 

point. 

20 ΔBW_Mean_Post_6 
Mean of differences of DecisionBW and TargetBW in the 6 h after the 

anchor point. 

21 ΔBW_STD_Post_6 
Standard deviation of differences of DecisionBW and TargetBW in 

the 6 h after the anchor point. 

22 BWG_Post_6 
Difference of the last DecisionBW and the first DecisionBW in the 6 h 

after the anchor point. 

23 Meals_Post_6 The number of meals in the 6 h after the anchor point. 
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24 No_meals_Post_6 The number of no-meal visits in the 6 h after the anchor point. 

25 Time_gap The period of two consecutive visits over the anchor point. 

26 BW_drop The BW change of two consecutive visits over the anchor point. 

1. Anchor point was newly defined as a specific time point in one day for predicting oviposition events, and 

features around the anchor point were created. For 706 egg-laying events, the anchor point referred to the 

time of oviposition recorded by the RFID nest box. For 706 no egg-laying events, the anchor point was 

randomly selected in the assigned hour. 

2. Estimated water intake in a period was calculated by subtracting the feed intake from the sum of all BW 

increases between two consecutive visits in the period. 

3. Estimated excretion and metabolic loss in a period was the sum of all BW decreases between two 

consecutive visits in the period. 

4. DecisionBW: the real-time BW recorded by the precision feeding system for making decisions on 

whether birds would be fed. 
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Table 5-2. The optimized hyper-parameters for ANN. 

Hyper-parameter Value 

Number of neurons in the input layer 64 

Activation function in the input layer “relu”2 

Number of neurons in the hidden layer 32 

Activation function in the hidden layer “relu” 

Dropout rate 0.25 

Optimizer “Adam”3 

Learning rate of optimizer 0.0001 

Batch size 50 

Epoch 80 

Loss function “binary_crossentropy”4 

1. ANN: artificial neural network implemented by the deep learning framework Keras package in Python, 

and hyper-parameters of ANN were optimized by the grid search method with 

sklearn.model_selection.GridSearchCV function. 

2. “relu”: rectified linear unit that was one of the most commonly used activation functions in artificial 

neural network. 

3. “Adam”: adaptive moment estimation that was a method for efficient stochastic optimization. 

4. “binary_crossentrophy”: the loss function for binary classification problems. 
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5.9. Figures 

 

Figure 5-1. The distribution of egg-laying events during each hour over a 24 h period. The total number of 

egg-laying events from 171 to 306 d was 706. 
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Figure 5-2. The structure of the feed-forward neural network in the current study. Ovals represented 

neurons. Arrows represented connections. Rounded rectangles represented layers. The neural network 

consisted of a group of neurons at each layer. Each neuron was fully connected to all neurons in the next 

layer. Neurons could forward pass the information to the neuron along the arrow. There were 3 layers in the 

neural network: an input layer, a hidden layer, and an output layer. The input layer accepted input data. The 

hidden layer processed input data. The output layer generated output results.  
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Figure 5-3. Loss (a) and accuracy (b) of the trained artificial neural netwrok (ANN) model with 80 epochs in 

the current study. The loss function for the ANN model was binary_cross_entropy that was for binary 

classification problems. Accuracy was calculated according to the equation: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 +

𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁), where TP, TN, FP, and FN meant true positive, true negative, false positive, and false 

negative, respectively. 
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Figure 5-4. ROC curve and the area under the ROC curve of the artificial neural network model. In the 

figure, the recall was calculated by the equation: 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), where TP meant true positive 

and FN meant false negative. False positive rate (FPR) in the figure was calculated by the equation: 𝐹𝑃𝑅 =

𝐹𝑃/(𝐹𝑃 + 𝑇𝑁), where FP meant false positive and TN meant true negative.
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Figure 5-5. The distribution of predicted probability for testing samples by the artificial neural network 

model. The total number of testing samples was 283.  
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6. Chapter 6. Synthesis 

6.1. General discussion 

6.1.1. Background 

 Information and computer technologies have been applied in animal production to 

monitor animal behaviours and environment and manage animal production. A great 

example of applying these technologies in poultry nutrition and management was a 

precision feeding (PF) system that aimed to increase body weight (BW) uniformity of 

broiler breeders (Zuidhof et al., 2019). The PF system can automatically feed individual 

breeders and record real-time data regarding the feeding activity of the individual breeders. 

As a result, vast amounts of data can be collected by the PF system, which provides a 

valuable source of big data. However, it is challenging to extract meaningful information 

from data recorded by the PF system and make predictions based on the information. 

Machine learning (ML) is an appropriate tool for big data analytics, which is effective to 

reveal hidden patterns and correlations in big data. Thus, ML would be helpful in dealing 

with the data recorded by the PF system. 

6.1.2. Objectives 

The current thesis aimed to make predictions based on the real-time data recorded 

by a PF system, using ML approaches. There were three sub-projects in the current thesis, 

which focused on two subjects: predicting daily oviposition events of individual birds and 

detecting anomalous real-time BW data.  

Chapter 3 and Chapter 5 aimed to predict daily egg-laying events of individual birds. 

The daily egg-laying events referred to whether oviposition of an individual bird occurred 

in one day or not. The day and time of oviposition during the laying period are highly 

variable, due to variability in follicle maturation modulated by hormone and environmental 
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factors (van der Klein et al., 2020). Individual birds in a flock might stop laying because 

of improper nutrition or diseases, and identifying those non-laying birds would be helpful 

to improve bird management such as changing the diets or treating the diseases. In Chapter 

3 and Chapter 5, ML models were built to predict whether an individual bird laid an egg in 

one day. Chapter 3 aimed to generate binary labels (1: laid an egg; 0: no egg was laid) for 

individual birds in a flock, and Chapter 5 aimed to generate a probability of daily 

oviposition events occurring for individual birds in a flock. Compared with Chapter 3, the 

model in Chapter 5 would be more useful in production for two reasons: 1) It could be used 

to predict oviposition events that occurred on the current day; 2) The prediction outputs 

were the probability that could be informative to indicate how likely oviposition of an 

individual breeder occurred in the day. 

Chapter 4 aimed to detect anomalous real-time BW data recorded by a PF system. 

When feeding individual broiler breeders, the PF system can record real-time BW data of 

individual breeders. However, anomalous real-time BW data are sometimes recorded by 

the PF system. These anomalous observations should be cleaned because they would cause 

incorrect estimations of daily BW and BW gain. For example, several features regarding 

BW change were created for building ML models in Chapter 3 and Chapter 5. Anomalous 

real-time BW data would have negative impacts on these features, resulting in poor 

predictive performance of ML models. Although statistical methods and unsupervised 

machine learning methods can be used, they are effective in detecting anomalies to some 

extent because they just check data distribution. Manually labeling anomalies is accurate 

but time-consuming and labor-intensive. In Chapter 4, ML models were built to detect 

anomalous real-time BW data of individual broiler breeders, considering the statistical 

distribution of data and features regarding the feeding activity recorded by the PF system.  
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6.1.3. Other investigations attempted but not shown in thesis 

For Chapter 3, egg-laying events in the previous day were used as an input feature 

for the RF model. When using the 29 features (28 selected features + 1 new feature) to 

train the RF model, overall accuracy of the model increased to around 88%. It indicated 

egg-laying events in the previous day would make a contribution to prediction. Although 

this feature could improve prediction, it was not included in the final model. Compared 

with feeding activity data recorded by a PF system, recording oviposition events for 

individual birds in a flock is labor-intensive and time-consuming. If this feature was not 

included in the RF model, only feeding activity data recorded by a PF system was needed. 

Otherwise, more work was needed for prediction. In addition, I tried logistic regression, 

which is the most commonly used ML classification algorithm. Overall accuracy of 

logistic regression was only around 78%, which was lower than the RF model (about 85%). 

Logistic regression was a linear classification algorithm whereas RF was a non-linear 

classification algorithm. The non-linear classification algorithm was a better choice for the 

data in Chapter 3. 

In Chapter 4, Z-scores of ±3 were used as one of common anomaly detection 

methods, which referred to a range of the mean of real-time BW ± 3 standard deviations 

of real-time BW within each day. A point was recognized as an anomaly if it was not 

within this range. In fact, different Z-scores including ±2, ±2.5, and ±3 were tried. 

Eventually, Z-scores of ±3 were used in Chapter 4 because less normal observations were 

identified as anomalous observations. 

In Chapter 5, anchor points that referred to a specific time point in one day were 

used. Features were created around the anchor point. When the anchor point was an input 

feature added to the 26 features (there were 27 features in total), the AUC value of the 
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ANN model was around 0.94. When the anchor point was not included (there were 26 

features in total), the AUC value of the ANN model was still around 0.94. As a result, the 

anchor point was excluded in the final model because it made little contribution to 

prediction performance. In addition, the ANN model was compared with the RF model in 

Chapter 3. The RF model predicted binary labels whereas the ANN model predicted 

probabilities. A probability threshold of 0.5 was used to generate binary labels for the 

results predicted by the ANN model. Overall accuracy of the ANN model was about 90%, 

which was higher than the RF model (about 85%). 

6.1.4. Application of the models 

The ML models that were developed in Chapters 3, 4, and 5 could be applied as 

follows: 

Figure 6-1 shows a workflow diagram of applying the RF model to identify daily 

oviposition events in Chapter 3. To know which breeders in a pen laid in one day, data 

regarding feeding activity for each bird recorded by a PF system for the day are needed. 

The data need to be cleaned to remove anomalous real-time BW observations, based on 

the anomaly detection approach that was developed in Chapter 4. Then the 28 features as 

shown in Chapter 3 need to be created from the cleaned data. Based on 28 features (input), 

the RF model that was built in Chapter 3 can be used to predict a label (output) for the bird 

for the day: 1 representing that a bird laid an egg in the day or 0 representing that a bird 

did not lay an egg in the day. The predicted results can be included as a new variable in 

the dataset generated by the PF system. A built-in function can be developed in the PF 

system to monitor this variable for each bird in a flock. For an individual breeder during 

the laying period, if several no egg-laying events consecutively occur, the PF system can 
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trap the bird when it goes into the station and report to researchers or farmers for further 

management. 

Figure 6-2 shows a workflow diagram of applying the RF model to detect 

anomalies in Chapter 4. To detect anomalies in real-time BW observations, the 12 features 

as shown in Chapter 4 for each observation need to be created from a dataset of individual 

broiler breeders recorded by a PF system. Based on 12 features (input), the RF model that 

was built in Chapter 4 can be used to predict a label (output) for each real-time BW 

observation: 1 representing an anomalous observation or 0 representing a normal 

observation. The predicted results can be included as a new variable in the dataset 

generated by the PF system. When researchers process data, the real-time observations that 

are identified as anomalies can be excluded to form a cleaned dataset. 

Figure 6-3 shows a workflow diagram of applying the ANN model to generate a 

probability of daily oviposition events occurring in Chapter 5. To apply the model for 

generating a probability of oviposition events occurring for a breeder for a day, data 

regarding feeding activity for the bird recorded by a PF system for the day are needed. The 

data need to be cleaned to remove anomalous real-time BW observations, based on the 

anomaly detection approach that was developed in Chapter 4. A specific time point called 

an anchor point needs to be selected between 05:00 and 18:00, and then the 26 features as 

shown in Chapter 5 need to be created around the anchor point from the cleaned data. 

Based on 26 features (input), the ANN model that was built in Chapter 5 can be used to 

generate a probability of oviposition event occurring (output) for the bird for the day. The 

predicted results can be included as a new variable in the dataset generated by the PF 

system. As shown in Chapter 5, a higher probability value indicated that oviposition was 

more likely to occur. As a result, a built-in function can be developed to monitor the 
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maximum probability for each bird in a flock and to rank all birds based on the maximum 

probability. The rank that can be updated every a few minutes can present those most likely 

to have laid an egg. 

6.2. Novelty of research 

 This thesis was the first investigation into the application of ML in dealing with 

real-time data of individual broiler breeders collected by a PF system. There were three 

sub-projects in this thesis, and the objective of these sub-projects was to extract information 

from the data recorded by a PF system and make predictions based on the information. 

Chapter 3 and Chapter 5 focused on predicting individual oviposition events using ML 

approaches, which was the first study to predict daily oviposition events at individual-level. 

Previous studies reported using ML for prediction at flock-level (Ahmad, 2011; Felipe et 

al., 2015). Compared with these previous studies, Chapter 3 and Chapter 5 were able to 

explore individual egg-laying events because the PF system can monitor and record a lot 

of information regarding the feeding activity of individuals in a flock. Chapter 4 was a 

study of developing a supervised learning approach to detect anomalous real-time BW data 

of individual broiler breeders recorded by a PF system. Statistical methods and 

unsupervised learning methods might be only somewhat effective for detecting anomalies 

because they just checked data distribution. The most effective approach was manually 

labeling anomalies, but it was time-consuming and labour-intensive, which was not 

suitable for vast amounts of data. In Chapter 4, a supervised learning approach was 

developed considering data distribution and features regarding the feeding activity of 

individual birds recorded by the PF system. 
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6.3. Study limitation 

 In the current thesis, ML approaches were used to analyze the data collected by a 

PF system in two previous trials: the data for Chapter 3 were from one trial, and the data 

for Chapter 4 and Chapter 5 were from another trial. For the data of Chapter 4 and Chapter 

5, I partially participated in the trial conducted in 2019. For the data of Chapter 3, however, 

I was not able to participate in the trial because it was conducted in 2017. Thus, in Chapter 

3, there might be some details in the trial that I did not know. For example, some birds 

might experience diseases for a few days during the trial, which could affect egg production. 

In addition, there were some other limitations for Chapters 3, 4, and 5. 

 In Chapter 3, the original dataset that recorded feed intake, BW, time, and the like 

for each visit was processed to create input variables that might be associated with egg-

laying events. As a result, 34 features were extracted in relation to the feeding activity and 

BW change of individual birds. There might be some other features that could contribute 

to the prediction. Another limitation was the RF classifier used all default hyper-parameters 

except the number of trees. The performance of the RF classifier can be manipulated by 

several hyper-parameters such as the maximum depth of the tree, the minimum number of 

samples required to split an internal node, and the minimum number of samples required 

to be at a leaf node. A better overall accuracy, precision, and recall might be achieved if 

these hyper-parameters were optimized. In Chapter 3, the hyper-parameters were not 

optimized because it required high computational costs and no high performance 

computers were available at that time. In addition to RF classifier (non-linear ML 

classification algorithm), logistic regression that was a linear ML classification was tried 

but not reported in Chapter 3 due to lower overall accuracy. There could be a comparison 

of RF classifier with other non-linear ML classification algorithms like ANN and SVM. 



124 
 

These non-linear classification algorithms might have a better performance than the RF 

model. Another limitation was the RF model was not tested by a dataset from another trial. 

The dataset for Chapter 5 could be used as another testing set for the RF model. 

In Chapter 4, supervised learning models were developed to detect anomalous real-

time BW data points. The data for building the models were 5 breeders that were randomly 

selected from all breeders fed by a PF system from day 15 to day 306. Since supervised 

learning algorithms investigated relationship between input data and output data, manually 

labelled anomalies were important because they were used as output for building 

supervised learning models. There were 60,150 observations in the dataset in total, and I 

manually labelled 580 observations in 60,150 observations as anomalies. However, 

manually labelled results might be different among people. Thus, it would be better to 

manually label the data by a few people and then combine the different manually labelled 

results as the output for building the models. It would also be valuable to investigate 

quantitative criteria to systematically label anomalous real-time BW observations. In 

addition, when building supervised learning models, training set and testing set were both 

from the data of 5 breeders. Another breeder could be randomly selected and then all 

observations of the bird could be manually labelled as a new testing set to evaluate the 

models. 

 In Chapter 5, the training, validation, and testing sets for building an ANN model 

were relatively small because of the limited number of samples. Although a large number 

of egg-laying events and no egg-laying events occurred in the trial, only 706 egg-laying 

events could be used because they were recorded by RFID nest boxes that can record the 

exact time of egg-laying events. As a result, there were only 1,412 samples in total. It would 

be better to build the ANN model from a larger dataset. In addition, the ANN model was 
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not tested by a dataset from another trial. The dataset for Chapter 3 could be used as another 

testing set for the ANN model. 

6.4. Future research 

Future research for the current thesis should focus on three objectives:  

1. To improve performance of the models. Future research should explore new 

features and different ML algorithms to improve the prediction performance. For Chapter 

3, future research should investigate using other ML algorithms. For example, feed intake 

during each hour in one day were used as 24 features, which could be considered a sequence 

in time order. Thus, it might be helpful to use recurrent neural network that was well-suited 

to time series data. Since different supervised learning algorithms were compared in 

Chapter 4, future research for Chapter 4 should investigate creating new features. There 

might be some other features that would be helpful for anomaly detection. For example, 

real-time BW observations of a bird in a few consecutive days (e.g. 3 days) could fit a 

linear model, due to growth of the bird. How far an observation deviated from the line 

might be helpful to detect anomalous observations. As a result, the distance from the 

observation to the line and the slope and intercept of the linear model might be used as 

features. In Chapter 5, features were mainly from 24 hours before the anchor point, 6 hours 

before the anchor point, and 6 hours after anchor point. Real-time data for a period of 30 

hours (24 hours before the anchor point and 6 hours after anchor points) were needed to 

build the ANN model. To use less real-time data from a shorter period, other periods could 

be investigated to create features like 18 hours before the anchor point, 2 hours before the 

anchor point, and 2 hours after the anchor point. In addition, other ML algorithms such as 

SVM and RF should also be further investigated for Chapter 5. 
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2. To generalize the models. Generalization refers to the ability of models to adapt 

well to new data. In the current thesis, the model in each chapter was built based on one 

dataset. The RF model in Chapter 3 was built based on the dataset of a trial conducted in 

2017. The RF model in Chapter 4 and the ANN model in Chapter 5 were built based on the 

dataset of a trial conducted in 2019. The dataset was randomly split into a training set and 

a testing set, and the model was trained and tested by the subsets from the same dataset. 

However, new datasets were not used to evaluate these models. The prediction performance 

of these models on other datasets from different trials might not be as good as in the current 

thesis. Thus, these models should be tested by a new dataset about whether these models 

are general. To further generalize these models, future research for Chapter 3 and Chapter 

5 should collect data from different trials to build models. For Chapter 4, future research 

should generalize the RF model by using data from more birds with a longer period from 

different trials, and anomalous observations should be manually labelled by different 

people. 

3. To validate and use the models on commercial farms. Future research should 

investigate validating and using the models developed in the current thesis on commercial 

farms. These models were developed based on data from the trials that were conducted in 

environmental chambers in Poultry Research Center at the University of Alberta. These 

models need to be validated by data from commercial farms before using them on the farms. 

To validate the models in Chapter 3 and Chapter 5, a few birds can be randomly selected 

in a flock on a farm, and then they can be labelled. Each of labelled birds should be palpated 

every morning to know if it is going to lay in the day, which can be used as the actual 

oviposition events. The models can predict oviposition events for each labelled bird, based 

on its feeding activity data recorded by a PF system. Based on the actual oviposition events 
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and the predicted oviposition events, overall accuracy of the models can be calculated. If 

overall accuracy of the models on the validation data is as good as that on the testing data 

(shown in Chapter 3 and Chapter 5), it indicates the models can predict oviposition events 

of birds on the farm very well and the models can be further used to predict oviposition 

events of other birds on the farm. Similarly, data from the randomly selected birds can be 

manually labelled to validate the model in Chapter 4. If the performance of the model on 

the validation data is as good as that on the testing data, the model can be further used to 

detect anomalous real-time BW data of other birds on the farm. 

6.5. Overall implications 

The PF system was capable of recording vast amounts of real-time data regarding 

the feeding activity of birds. To analyze the data, ML was used in the current thesis because 

it can deal with hidden patterns and correlations in data for making better data-based 

decisions, predictions, and strategies. 

In Chapter 3 and Chapter 5, daily oviposition events of individual broiler breeders 

were predicted by ML classification models, based on the feeding activity and BW change 

recorded by a PF system. The models both had outstanding binary classification 

performance: Chapter 3 showed that the overall accuracy and Kappa coefficient were 

0.8482 and 0.6931, respectively, and Chapter 5 showed that the AUC value was 0.9409. 

This was the first time ML models were built to identify daily oviposition events of 

individual broiler breeders. The approach in Chapter 3 could be used to generate binary 

labels of oviposition events for breeders, which helped to directly distinguish the breeders 

that laid an egg from the breeders that did not lay an egg in a flock. The approach in Chapter 

5 could be used to generate a probability of daily oviposition events occurring of individual 

birds in a flock, and these probabilities could be ranked to choose those most likely to have 
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laid an egg. For these two models, research is required to improve prediction performance 

by exploring new features and using other ML algorithms. Research is also required to 

generalize the models and apply the models to commercial farms. 

In Chapter 4, a supervised learning classification model was developed to detect 

anomalous real-time BW data of individual broiler breeders. Compared with common 

anomaly detection methods that just checked data distribution, a supervised learning 

approach was developed for anomaly detection based on data distribution and features 

regarding the feeding activity of individual birds recorded by the PF system. The RF model 

selected from 4 different supervised learning models had a higher average F1 score (0.9448) 

than other common anomaly detection approaches, indicating that the RF model was an 

effective solution to clean anomalous observations for this type of data. This approach 

could be used to clean anomalous real-time BW data recorded by the PF system, which 

could help to correctly record real-time BW of individual birds and provide correct 

estimations of BW such as daily BW and BW gain in one day. However, research is 

required to improve model performance by investigating new features and generalize the 

model by collecting more data and using anomalies labelled by different people. 

6.6. Conclusion 

In the current thesis, ML approaches were applied to make predictions based on big 

data recorded by a PF system. The PF system not only feeds birds automatically but also 

records vast amounts of real-time data regarding the feeding activity of individual birds. 

ML approaches can be helpful in revealing hidden patterns and correlations and make 

predictions based on the data. In the current thesis, the recorded data were analyzed by ML 

approaches to predict daily oviposition events of individual breeders (Chapter 3 and 

Chapter 5), and an innovative ML approach was developed to detect anomalies in real-time 
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BW data of individual breeders (Chapter 4). The current thesis indicated that ML 

approaches had a lot of potential to deal with the data recorded by the PF system. 
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6.8. Figures 

 

Figure 6-1. Workflow diagram of applying the random forest model to identify daily oviposition events in 

Chapter 3. In the step of data cleaning, anomalous real-time body weight observations were cleaned by the 

approach in Chapter 4. In the step of feature engineering, 28 features referred to the selected 28 features in 

Chapter 3. In the step of prediction, the trained random forest classification model referred the random forest 

model in Chapter 3. 
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Figure 6-2. Workflow diagram of applying the random forest model to detect anomalies in Chapter 4. In the 

step of feature engineering, 12 features referred to the 12 features created in Chapter 4. In the step of 

prediction, the trained random forest classification model referred the random forest model in Chapter 4. 
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Figure 6-3. Workflow diagram of applying the artificial neural network to generate a probability of daily 

oviposition events occurring in Chapter 5. In the step of data cleaning, anomalous real-time body weight 

observations were cleaned by the approach in Chapter 4. In the step of feature engineering, 26 features 

referred to the 26 features created in Chapter 5. In the step of prediction, the trained artificial neural network 

classification model referred the artificial neural network model in Chapter 5. 
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