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ABSTRACT

In this thesis, the modelling and experimental verification of
losses and radiation patterns of a bent multimode fiber taking into
account the modal power distribution are presented. It was found that
for all experimental cases, the simulation model over-predicts the
bending losses. A major contribution to the discrepancy was the
strain induced on the fiber by the bend which in turn changes the
refractive index of the fiber. With this induced strain, the effective
radius of curvature was determined to be approximately 1.28 the induced
radius of curvature. The introduction of R'“ reduces the simulation
results to valunc more comparable to the experimental results. With
the developed model, two prototypes to non-intrusively tap optical
power from a live fiber have been successfully implemented. Not only
do the prototypes provide a variable insertion loss feature, they are

easy to install and remove without any damage to the fiber.
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Chapter 1

Introduction

1.1 Introduction

There are many potential applications where only small amounts of
light need to be extracted from an optical fiber, such as broadcasting
to a large number of nodes, optical clock distribution in synchronous
optical local area networks, and CATV distribution. Conventional fiber
optic taps require one [l] or two [2] connectors in the optical fiber
bus necessitating the disruption of the system when a tap is removed or
connected. The tapping ratios of these taps are typically fixed and
cannot be adjusted to accommodate the change in th< power level in the
fiber or the change in desired tapping power. Furthermore, connector
losses of 0.2 dB to 2.0 dB inherent in these tap designs limit the
number of taps that can be connected in a fiber distribution system.

A new connectorless tap was proposed by Miller [3]. This type of
tap is attractive, as disruption of the signal to install or remove a
tap is eliminated. This tap 1s based on the idea of introducing power
into the jacket by inducing a bend in the fiber with a bent tube.
Power in the jacket is then optically coupled to the exterior by using
index matching fluid. The coupled power is then guided by the tube
onto a detector. However the tapping ratio is always fixed for a
particular tap unless a new tap with a different angle of bend is
applied. Furthermore, the overall tapping efficiency is only in the
10-30% range. A recent paper presented at OFC 1988 [4) proposed a
low-loss high-impedance integrated fiber-optic tap. This new tap not

only has t! advantage of being variable in terms of tapping ratio but



is also compact. This method is based on the idea of exciting cladding
modes with a microbender and the cladding modes are tapped via a
circular symmetric notch etched into the cladding. The tapped light {s
collected by an integrated photodetector which results in a highly
proficient device in terms of tapping efficifency. However, this tap
has its drawbacks too. Not only is it necessary to remove the jacket
of the fiber, but etching into the cladding is also required. Damage
to the fiter is inherent in this process.

In the above proposed taups, no rheoretical derivations on the
amount of bending losses are provided. All papers are purely
experimental. However, there are other published papers on theoretical
bending losses for multimode fibers [5]-[7] and single mode fibers
[8]-[11]. Surprisingly enough, no published papers on the comparison
between the published theories and exnerimental results have been found
except for a brief statement on th: major discrepancy between the two
(12]). Furthermore in the multimode fiber cases, no considera:ion is
given as to which modes are propagating and their individual power in
the derivation. The common case is to assume that a lambertian source

is used to excite the entire fiber.

1.2 Objective of the thesis

The primary objective of this thesis is to design a variable
optical fiber tap with tapping ratios in the range of 1-10%, high
collecting efficiency with easy installation and removal procedures
that do not damage the fiber or disrupt the system. The design of the
tap will be based on the idea of detecting the light radiated from the

fiber at an induced bend. The idea is similar to Ref. [3] however



attempts will be made to improve the collecting efficiency and make the
tapping ratios variable.

Prior to the development of a prototype, the properties of light
propagating in a bent fiber should be understood so that the variation
of the bending loss and radiation pattern can be predicted from a
knowledge of the bend radius and the material properties of the fiber.
Furthermore, in a multimode fiber, many modes propagate depending on
the launching conditions and the amount of power lost will vary from
mode to mode. Hence, the bending loss also depends on the power
distribution among the propagating modes (modal power distribution).
On the road to fulfilling the primary objective, the followins
secondary objectives must be met:

1. develop a simulation program to predict bending losses
for various modal power distributicun.

2. develop capabilities to measure the modal power
distribution in an actual fiber with arbitrary
launching conditions.

3. perform measurements of bending losses and radiation
patterns.

The major portion of the thesis deals with these secondary
objectives. The initial motivation is to use multimode fiber as it is
more commonly wused in applications that involve short distance
transmission like the local area network. However, testing with single

mode fiber on the final prototype will also be done.



1.3 Organization of the thesis

In Chapter 2, the ray theory in multimode fibers is presented. A
full theoretical analysis on ray propagation i{s provided taking into
account the various regions of a graded-index fiber and the effects on
the ray as it propagates from region to region.

In Cl :pter 3, the modal power distribution p-»i'lem i{s addressed. A
short survey of published papers on various methcus in obtaining the
modal power distribution is presented with an elab. -+’ fon on the chosen
method.

In Chapter 4, the structure and algorithm 1{in developing the
simulation program is discussed. Other software developed to observe
simulated radiation patterns is also described.

In Chapter 5, experimental and theoretical results on bending
losses and radiation patterns are presented. Discussions on the
discrepancies are also presented.

In Chapter 6, the designs and test results of the prototypes are
presented.

In Chapter 7, a summary of the entire research project with a
major emphasis on the comparison between theoretical and experimental
results are presented. The performances of the prototype are

recapitulated and suggestions of future research work are made.



Chapter 2

Ray Propagation in a Multimode Graded-Index Fiber

2.1 Introduction

Optical fibers for communication purposes are grouped into two
classes: multimode and single mode fibers. As the name suggests,
single mode fibers are capable of supporting only one mode, namely the
HE“ mode when the criterion of V' < 2.405 {is met. To meet the
criterion, the maximum size of the core is restiicted to approximately
10um. A pulse propagating in a single mode fiber broadens only very
slightly due to the dispersive properties of the fiber material and the
inherent dispersion of the waveguiding process [13]. Multimode fibers
on the other hand, have larger cores and are capable of supporting many
modes. When the power is initially launched in a short pulse, it {s
distributed among many modes, each of which travels with a slightly
different group velocity. The receiver at the other end thus receives
many different, overlapping pulses each carried by a different mode.
Thus a multimode fiber causes the pulse to broaden much more than in a
single mode fiber. Consequently, multimode fibers have a much more
limited information carrying capacity than single mode fibers for a
given distance.

In terms of channel capacity, multimode fibers cannot compete with
single mode fibers. However, there are attractive features of

multimode fibers. For example, the larger core uiameter, approximately

1/2
'v - §1a(ni-n:) is the normalized frequency parameter. For the
o
other variables, refer to eqn. (2.12).



50um, facilitates the splicing and handling of the fiber. Furthermore,
it is easier to couple light into a multimode fiber. Multimode fibers
are being used in applications which do not involve loug distance
transmission or where high channel capacity is not {mportant.

This chapter deals with 1light propagation in a multimode

graded-index optical tiber. e first section deals with the WKB
method. It is presented in a summarized form to provide some {insfpht
into the conditions that l1ead to various classification of modes It

is followed by the derivation of ray equations for a strafght fiber {n
section 2.3. Then in sections 2.4 and 2.5, the extension is made to a
bent fiber for two different index profiles, parabolic graded-index for
the core and step index for the cladding/jacket. The effects of a ray
passing through an interface are discussed in terms of refracting

angles and power transmission in sections 2.6 and 2.7 respectively.

2.2 VKB method

Unlike the case of a step-index fiber where a modil analysis based
on solving Maxwell's equations can be performed, any pgeneral analysis
to obtain solutions to the electromagnetic wave equations in a
graded-index fiber will soon become intractable. The most widely used
analysis of modes in a graded-index fiber is an approximation based on
the WKB method from quantum mechanics [14]. The general approach to
this method is to recognize the fact that the refractive index of the
core is slowly varying with the radius. In this section, the WKB
method will be very briefly summarized. The full mathematical
approximation and derivation can be obtained from numerous books

(13, 15, 16). The important result of the WKB method is the expression



for the modal propagation constant k' which {s undetermined by ray
theory.
The starting point of the WKB method is the wave equation in

cylindrical coordinates (r,¢,z)
VE + n’(r) K’ E =0, (2.1)
L]

where k = w/c is the free space propagation constant. Mode solution

of this form is sought

-ik
cos v¢ } e - (2.2)

E = F(r) { sin v¢

introducing the azimuthal mode number v, an integer, to ensure that E
remains single valued as a function of ¢. Substituting eqn. (2.2) into
eqn. (2.1)

2
dF , 1dF [ n2(o)k? - K -k ] F-0 (2.3}
o z ¢

dr2 r dr

where

k =

é (2.4)

RI<

In the attempt to solve eqn. (2.3), the following trial solution is
used

iS(r)

F(r) = A(r) e (2.5)

The exponent of the exponential function is found to be (under

zero-order WKB approximation)

r 1/ r
1 2 2 2 yz 2 1
S(r) = n (r)k° - k' ey dr = g(r) dr . (2.6)

r
r r
0 0

If g(r) is real, the exponent term in eqn. (2.5) is imaginary and the



solution is oscillatory between the two points r = r and r = r, that

are defined as solutions to

2

_ 2 2 v "
g(r) n (r)k0 k' ) 0. (2. N

r

In wave optics, the cylindrical surfaces of such radii are known as
caustics. For values of r greater than the outer caustic radfius,
r > rl, g(r) becomes imaginary and eqn. (2.5) {s real and assumes an
evanescent  behavior in that it decays exponentially A praphical
representation is shown in Fig. 2.1. As long as the solid curve,
nz(r)k: - k:, lies atove the dotted curve, vz/rz, oscillation cccurs
between the two points that the curves intersect.

Modes are guided as long as the outer caustic surface remains
within the radius of the core, r1 < a. Guided modes are divided into
two categories, bound and leaky modes. If nz(r)kz - ki remains
negative for r > a, then there 1is no possibility of a third
intersection and eqn. (2.5) will remain imaginary. The ruy is bounded.
Thus the condition for a bound ray can “e expresscd as

kz > nzko (2.8)
where n, is the refractive index for r > a. Consider the other
possibility of kz < nzk° where the solid curve remains positive
throughout as shown in Fig. 2.2. Here a third Iintersection occurs
between the two curves resulting in eqn. (2.5) being real again at
r > rz. Since the function in eqn. (2.5) oscillates whenever it s

real, the figure shows that the field will resume its oscillatory

behaviour outside the third intersection point. In this case, encrgy
can tunnel away from the core into the cladding. Modes with this
characteristic are known are leaky modes. The boundary dividing

bounded and leaky modes is given by



r
0

Fig. 2.1 Graphical representation of the WKB method solution.
The field is oscillatory between T and ¥
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Fig. 2.2 Existence of leaky modes.

Power can tunnel through r
and r



k =nk . (2.9)
The amount of energy lost due to this radiation depends on the length
of the tunnelling region. Obviously for large values of v, the region
between r and r, increases resulting in a infinitesimally small amount
of loss and vice versa.

Consider the third possibility when the solid curve remains above
the dotted curve for r > r, In this case, the outer caustic surface
does not exist as shown in Fig. 2.3. Modes in this category are termed
refracting modes. There is no ouiter confinament for the modes to
oscillate within thus these modes are not guided t+v the core. The

boundary that separat- leaky and refracting modes is expressed as

- n:k . X {2.10)

To form a guided mode in the graded-.. =« fiber, each wave
associated with this mode must interfere constructively with itself in
such a way as to form a standing-wave pattern {n the radial
cross-sectional direction. This imposes a requirement that the phase

function S(r) between r, and r be multiples of x, so that

1
g 2 2 2 v? /2
un - n(r) k - k - = dr (2.11)
o z 2
r
r
o
where u = 0,1,2..... is the radial mode number which counts the number
of half periods between caustic surfaces. Eqn. (2.11) is the famous

WKB expression for the propagation constant k of the guided modes.
z

The solution to the above equation for a parabolic graded-index

profile

10
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The outer caustic does not exist
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2

2
ni(r) - n: 1 - 2a —5——i31— (2.12)

a

where
2 2 2
r’=x"+y

nl = axis index of refraction

n - cladding index of refraction
a = radius of the core,

has been derived in Ref. [l16] and will not be repeated here. The

propagation constant for the modes in this case is

kz 2,2 Y 2a
a

=-=n k" - 2nk
YA 1 o 1

Qu + v + 1), (2.13)

(<]

The above equation is extremely useful and will be used extensively to
determined the allowed propagation constant for a certain mode which fis
specified by the radial and azimuthal mode number. All modes that have
the same propagation constant are grouped under the same principal mode
number given by

m=2u +v + 1. (2.14;
To obtain a more pictorial view of the boundary conditions for bound,
leaky and refracting modes in te:.s of the mode numbers, substitution
of eqns. (2.9) and (2.10) into eqn. (2.13) is performed. For the bound

and leaky mode boundary

p - 1 [ % nlkoa Y24 -v -1 ] (2.15)

2

and boundary between leaky and refracting modes

12



2
[nlkoa Yy 24 - 4J - 2n1k°a Yy 2 a
énlkoa Yy 2 A

(2.16)

B -

A typical mode space diagram (vp plane) is shown in Fig. 2.4. Each
mode of the fiber, belonging to a pair of mode numbers v and u, is
represented as a point in the mode space diagram. Each point
represents four modes, because each mode can have a azimuthal wmode
dependence cos v¢ and sin v¢ and can exist in two mutually orthogonal
polarizations. Modes of this kind are fourfold degenerate except when

v = 0, that are doubly degenerate because sin v¢ no longer exist.

2.3 Rays in a straight graded-index fiber

An alternate method for theoretically studying the propagation
characteristics of light in an optical fiber is the geometrical optics
or ray-tracing approach. This method provides a good approximation to
the guiding properties of optical fibers when the ratio e fiber
radius to the wavelength {is large. This is known as the small
wavelength limit. Although the ray approach is strictly valid only in
the zero wavelength limit, it is relatively accurate and extremely
valuable for non-zero wavelengths when the number of modes is large,
that is, for multimode fibers. The advantage of the ray approach is
that, compared to the exact electromagnetic wave analysis, it gives a
more direct physical interpretation of the 1light propagation
characteristics in an optical fiber.

It is known that there is a relation between the motion of wave
packets, or photons, and the motion of a particle as described by the

Hamiltonian mechanics [17]-(18]. The equation of motion of a partlicle

13
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Fig. 2.4 Mode space diagram
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1

is given Ny
dar 2>
d+ 2
E% - - V3 H(Y,p) (2.18)
r

where 2 is the position vector, 3 is the momentum
P~ AR (2.19)
201 A = h/2x (h i{s Planck'’s constant). The Hamiltonian, H(?,g) is the
energy of a photon,
H(Z.P) = h w(.8), (2.20)

where w(?,z) is the classical dispersion relation for the photons in

the medium. In glass, this is approximately given by

_)

w(®,?) - LKL (2.21)
n(r)
where 2 is the propagation vector. Using eqns. (2.17)-(2.21), the

following equations can be derived

d? c Q
a - S (2.22)
n(r)
_)
dk k ¢ >
& g 2. (2.23)

> 2 >
dr c” k
& T T2 (2.24)
n(r) w
and

_)

dk w 2>

I - 3 Vs> n(r). (2.25)

15



Eqns. (2.24) and (2.25) ave the two general ray equations which
describe the propagation of a ray in a medium with a refractive index
profile n(?). Differentiating eqn. (2.24) with respect to t and using
eqn. (2.25) to eliminate dﬁ/dt will result in the well-known
second-order equation for the trajectory of a ray in a slowly-varying
inhomogeneous medium (see for example eqn. (11.2-1) {n {13] and
eqn. (2.1.1) in (19)).

For a fiber core with a parabolic graded-index profile (see

eqn. (2.12)),
'@ - - 280 S —313 1. (2.26)
: a a
Defining a new time variable
2
dt = dr —9—§52— 2 27)
n

and substituting eqns. (2.12) and (2.26) into eqns. (2.24) and (2.25)

respectively,
> 2 9
| < k (2.28)
dr 2
n w
1
_)
dk 2A w A A
- ——;;—— [ XX+yy ] . (2.29)

Consider the direction of propagation, z. From eqn. (2.29)

dk

dr ~ 0

k = constant,
z

and from eqn. (2.28)

16



SE - T
dr 2
w
c2 kl
z - z r + C1 . (2.31)
n w

¢’k
dx x
- - (2.32)
w
1
dk
x 2 wA
= - - -———_82 - ox . (2.33)

Differentiating eqn. (2.32) and using eqn. (2.33) to eliminate dkx/dr,

the solution of the second-order differential equation is

v k
X = x cos (Qur) + —2% sin (Qvr) (2.34)
o w Q
and vice versa
Quwx

k = ko‘ cos (Qvr) - sin (Qvr) (2.35)

x

where

/ 24 (2.36)

C
V = H (2.37)

and X .Y, kox and K” are the initial conditions. Applying the same

procedure for the y direction

v k

y =y, cos Qvr) +-7;7531— sin (Qvr) (2.38)



Quy

ky - koy cos (Qvr) - sin (Qvr). (2.39)

Hence wusing eqns. (2.30) (2.31) and (2.34) through (2.39), the
propagation of a ray in a parabolic graded-index fiber can be fully
described. For non-parabolic profiles, the two general ray
eqns. (2.24) and (2.25) can be integrated numerically.

The projection of a ray path onto a fiber cross-section is shown
in Fig. 2.5. It is observed that the trajectory of a guided ray is
elliptical and confined to the region between r, and r, which are
analogous to the caustic surfaces in the wave optics. In ray optics,
the radii are known as turning points. They represent points at which
the ray trajectory has no radial component. Bound and leaky rays
exhibit the same oscillatory behaviour between the two turning points.
On the other hand, refracting rays impinging on the core-cladding
interface due to the absence of the outer turning point are refracted

out of the core (refer to Fig. 2.6).

2.4 Rays in a bent graded-index fiber

Consider a ray entering a bend of radius of curvature R on the y-z
plane as shown in Fig. 2.7. The derivation of the ray parameters as
shown in Appendix A are based on the rotating local coordinate system
[17]. In this coordinate system, the origin is situated on the axis of
the bent fiber core. It rotates along this axis as the ray propagates.
Hence, the x, y coordinates determined at any time will specify the
location of the ray with respect to the axis of the core while the

angle § determines the location of the ray with respect to the origin

18



Fig. 2.5 A refracting ray
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of the bend.

The approximate solutions for the ray propagation while in the

bend are
v k
X = x cos(Qvr) + —_2r sin(Qvr) (2.40)
] w Q
Qwx
k =k cos(Qur) - 2 sin(Quvr) (2.41)
ox v
k2 c2 Yy ¢
y = or + sin(Qvr + ¢) (2.42)
(n v QR nwQ
ky = vy cos(Qvr + ¢) (2.43)
where
kK ‘el 2 2 2k 2 y
v -2 + k +[Qyn1‘3] - or 2, (2.44)
(R nw Q)2 o etc R
and ¢ depends on the initial conditions. The on-axis distance
travelled by the ray can be estimated by
rc
z = . (2.45)

1

The equations describing the propagation of a ray in a bent multimode
graded-index fiber are identical to the ones in Ref. [5].

Note that eqns. (2.40) and (2.41) are identical to eqns. (2.34)
and (2.35). A bend in the y-z plane does not affect the x components
of a ray. However in the y direction as compared to a straight fiber,
the ray exhibits an oscillatory function offset from its equilibrium

position by

21



2
Ay = Kou © 1 (2.46
Y Tnoq R 46

The shift from i{ts equilibrium position may be sufficient enough to
cause the ray to leave the core, hence introducing bending losses.
Note that the shift is inversely proportional to the radius of the
bend. Fig 2.8 shows the trajectory of a ray onto a fiber

cross-section, starting off in a straight fiber prior to the bend.

2.5 Rays in a bent constant index fiber

Rays that leave the core due to un induced bend will enter the
cladding, a region that {s of constant refractive index (n). In this
section, the propagation of a ray in a bent constant index fiber will
be presented. It is not only applicable to the cladding region but as
well as to the jacket region as the latter is also of constant
refractive index material but of slightly higher value. The derivation
is compiled in Appendix B and is based on the same rotating coordinate
system as in the previous section. Only relevant equations will be

presented here.

The ray equations that describe the ray’s propagatioa are:

2

c'k
X = — °x t + C (2.47)
2 1
now
k = Constant = k (2.48)
x ox
vik ? , 52R
y - ——:‘—2 (t4C )" - ——o (2.49)
2Rn’k 2 2k
o (- 3
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Fig. 2.8 Shift in equilibrium position of a ray in a bend
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ko
k = —2% (t4C) (2.50)
y n2k2 R 2
[+]
where
, , 2k 2y
52 -k . _.o°t "o (2.51)
oy R

and C1 and C2 depend on the initial conditions. To complete the set of
equations, the estimated on-axis distance travelled around the bend

while in the cladding or jacket (zz-zl),

1/2
°ty 2 2 2
- = [ (x,-x )+ (y,-y)" + (2,-2) ] (2.52)
where t:1 is the amount of time the ray spends in that region. All

other variables with the subscript ‘1’ and '2’ denote the location of
the ray when entering and leaving the region. Note that eqn. (2.49)
does not indicate a linear relationship between position and time.

This is due to the rotating frame of reference that is used in deriving

the equations.

2.6 Reflection and refraction of a light ray

A light ray striking a plane surface between two media of
different refractive indexes will be reflected and refracted; sce
Fig. 2.9. It is well-known that the reflection angle equals the

incident angle and that the magnitude of the wave vectors is unchanged;

6 -39 (2.53)

(2.54)
On the other, the refracted angle will depend on the retractive indices

of the two media and the incident angle as stated by Snell’s law,
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Fig. 2.10 Converting to radial coordinates
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n sin § = n sin § . (2.595)
2 2 1 1

The magnitude of the refracted wave vector is [20]
(2.56)

In determining the refracted wave vector in terms of the individual
components (kx,k ,k:), it is easier to utilize the radial coordinate
y

system as wave vectors parallel to the interface remain unchanged,

Fig. 2.10, i.e.

k¢1 - kéz (2.57)

k =k _ . (2.58)

Expressing |k1| and |k2| in radial comp.nents and using eqns. (2.57)

and (2.58)
2 2 1/2
T 2 2 ",
k:z - ;: k:x + (k¢1 + kzl) E: -1 . (2.59)
Note that (lk | n_/n )2 > (k R 2) m hold otherwise total
1 2’1 zl é1
internal reflection occurs. This requirement is equivalent 01 being

less than the critical angle (se. %Section 2.7).

2.7 Power transmission and reflection at an interface

In the previous section, the effects of a ray propagating through
an interface are expressed in terms of angles and wave vectors. To
conclude, the power transmission and reflection coefficients depending
on the incident angle and refractive indices of the two media are
presented. The derivation can be found in numerous books and only the

final results are summarized here. The reflection coefficients

26



depending on the polarization are {15]

2
[ n cos 0 //n - sin2 01 ]

R - =& (2.60)

1 2
2 2 2
[ n cos § + /[nz - n sin” 8 ]

a - /n //nz - n? sin? ) 2
nzcos 1 nZ 1 2 1 1
Ry = 5 (2.61)
: 8 +n/n /n® - n® sin? g ’
nZCOS 1 nZ nl 2 1

while the transmission coefficients are

4n cos 01 //n: - n: sin2 01
T - ! (2.62)
L 2 2 2 2
[ n cos §_ + //n - n sin” @ ]
1 1 2 1 1

2 2, 2
4n cos @ //n -n° sin” ¢
1 1 2 1 1

(2.63)

T" ) 2 2 2 2
[ ncos § + n_/n //n -n_ sin” § ]
2 1 2’ 2 1 1

The angle 01 is the angle the ray trajectory (k.,ky,k ) makes with the
b § z
radial distance (x,y) at the interface

kxx ky

61 = cos”’ 2 2.1/2 : 2 2.1 : (2.64)
(x*+yH Y/ (k, + k. + k) /2
z

If this angle exceeds the critical angle defined as

n
§ = sin’’ [ 2 ] , (2.65)
[ l'\1

total internal reflection will occur. For commercially available

27



fibers, the refractive index of the cladding at 0.825 um is roughly
1.453 and they are coated with a primary and secondary jacket with
refractive indices a* around 1.54 and 1.53 respectively. Figs. 2.11
and 2.12 depict typical transmission and reflection coefficients for
both polarization of rays passing through the cladding/primary jacket
and secondary jacket/air interface respectively. In the latter figure,
for the rays with 01 > 0: (&0.80), total internal reflection will
occur. This case is not desirable as for optimum collection
efficiency, the power lost from the core should leave the fiber without
any attenuation. A majority of rays hitting this interface will exceed
the critical angle as kz is typically much larger than k‘ and k,'
Ideally, the exterior should be of the same or close to the refractive
index as the secondary jacket. Fig. 2.13 depicts the situation of an
external refractive index of 1.54. Note that in Figs. 2.11 and 2.13
the plots are very similar for either polarization. This is due to the
very small refractive index difference between the two corresponding

media. Hence, it is reasonable to use either equation for all rays.
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Fig. 2.11 Transmission and reflection coefficients for both
polarizations where n = 1.453 and n, - 1.54 .
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Fig. 2.12 Transmission and reflection coefficients for both
polarizations where n - 1.53 and n, - 1.0

29



Trensmission and reflection

o9

o8

o7

0.6

0.6

0.3

s 824

0.1

Fig.

T T T T 7 — i
(] <0 40 60 60
Angle(decerecs)

2 13 Transmission and reflection coefficients for both

pelarizations where n

- 1.593 and n
2

1.54

30



Chapter 3

Modal Power Distribution

3.1 Introduction

In multimode optical fiber systems, the modal power distribution
(MPD) which specifies the amount of power propagating in each of the
individual fiber mode affects the fiber bending losses. The MPD in
turn depends substantially on the manner in which the power is being
launched 1into the fiber. Different launching conditions (axial
offsets, beam width, etc.) have been shown to excite different modes in
a graded-index fiber [21)-[23]. Moreover, the MPD {i{s also distance
dependent. There are typically several hundred modes in a multimode
fiber, each propagating with different loss and velocity. The higher
order modes (modes of higher principal mode number) attenuate faster
than the lower order modes. Mode mixing also occurs causing power to
shift from mode to mode. Hence, experimental results will differ when
performed at different locations along the fiber due to the variations
in MPD.

A steady-state modal power distributior. (SMPD) is established when
the mechanisms of differential mode attenuation and mode coupling are
in equilibrium. This implies that MPD remains constant along the
fiber. Since the stable equilibrium state is a function of fiber
propagation mechanisms which in turn are strongly dependent on the
fiber parameters, the SMPD is independent of the launched power
distribution and a unique steady-state condition characteristic of all
fibers does not exist [24]). In modern low-loss fiber, SMPD is reached

only after several kilometers [25]). To avoid using long fibers,
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various other techniques have been proposed to approximate SMPD near
the fiber input:

- by using restricted numerical aperture and spot

size

- by means of mode filters

- by means of mode scramblers.
A comparative study of these techniques was done in Ref. [25]. When
performing experiments vto characterize the fiber parameters, {t f{s
imperative that the fiber has obtained its SMPD. However, in this case
ic isn't so as one of the objectives of this thesis is to estimate the
bending losses for an arbitrary MPD.

The relationship between the near-field pattern and the MPD {s
derived in the first section. Section 3.3 deals with the theoretical
and experimental aspects of using slits instead of the conventional pin
hole method in obtaining the near-field pattern. The chapter concludes

with the problem of assigning the number of rays for each mode and the

power per ray.

3.2 Relationship between MPD and near-field pattern (NFP)

In step-index fibers, the mode number corresponds approximately to
the propagation angle of the light. Hence, the MPD can be instantly
obtained by measuring the far-field pattern (FFP) [26]. However, this
simple relationship is not applicable to a multimode graded-index fiber
since a mode cannot generally be identified with its propagation angle
as it changes during the course of travel [27].

This led to the derivation of the relationship between the NFP and

MPD (27]. Further calculations followed which was extended to
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arbitrary refractive index profile functions [28). In Ref. [29], a new
method was proposed and implemented experimentally where the MPD was
obtained by numerically processing the measured Fraunhofer diffraction
patterns of the NFP. This method {s similar to Ref. [27] except for
the fact that the NFP was measured using circular slits. The
relationship between the NFP and MPD derived by the authors mentioned
above s based on the assumption that the MPD is not a function of the
azimuthal mode number v. This implies that the FFP and NFP are
azimuthally symmetric {30]. A derivation relating the NFP and FFP to
the MPD was later done [31] without the assumption of azimuthal
symmetry made by the previous authors. It was concluded that for a
given MPD, a unique NFP and FFP can be obtained. However, if the NFP
and FFP are determined, there are an infinite number of solutions for
the MPD. With the assumption of azimuthal symmetry, a unique MPD can
be obtained from a given NFP or FFP. So for practical applications,
the suggestion has been made to determine the MPD from both the NFP and
FFP with that assumption and compare the two distributions [31]. If
.both results coincide and the fiber is non-parabolic, the assumption is
verified, The assumption cannot be verified in the parabolic
graded-index fiber case because a direct relationship exists between
the NFP and FFP [31].

Despite the skepticism concerning the validity of the assumption,
the derived relationship between the NFP and MPD ([27] is widely
accepted by other authors [25, 28, 32]. Unless a new method is
proposed and implemented experimentally, one has to proceed with this
assumption.

The relationship between the NFP and MPD derived in this section
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is similar to Ref. [27] but simpler. The derivation is based on the
mode-continuum approximation that was first introduced in Ref. [33]

Recall eqn. (2.13)

4 i“ (2 + v + 1). (2.13)

K> = n’k* - 2nk
3 lo l o
Using eqn. (2.14) and rewriting eqn. (2.13)
2 2,2 m
k' - nlk° [ 1 - 24 v ] 3.n

where M is the maximum principal mode number for a guided mode

M- 1t ) (3.2)

For discrete values of m, the propagation constants of the discrete

modes are given by eqn. (3.1). The spacing between adjacent modes f{s

(19]

Y 24 )

z a

Ak

(3.3)

Fig. 3.1 depicts the longitudinal Fourier spectrum of the electric
field for the case where the source used to +xcite the fiber 1is purely
monochromatic [34]. However in a realistic situation , the source has
a finite 1linewidth resulting in a different 1longitudinal Fourier
spectrum of the electric field as shown in Fig. 3.2. If the linewidth
§) of the source is sufficiently large that the corresponding width
Sk: of each mode in the kl space exceeds the mode spacing Ak', the
modes within the fiber will constitute a continuum. The mode-continuum
approximation is valid if the source satisfies the following inequality

(34]
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Fig. 3.1 Longitudinal fourier spectrum of the electric field 'n
the fiber when the laser source is purely monochromatic

sk

Fig. 3.2 A more realistic longitudinal fourier spectrum



A ak N 3.4

where N1 is the material group index. For a typical fiber with
N1 « n - 1.467, a = 25 um, A & 0.00934, the linewidth of the source
must exceed O.4 nm and 1.0 nm for Ao - 0.825 ym and 1.3 um
respectively. This limit is exceeded by present-day sources with the
exclusion of single-mode lasers [34].

Referring to eqn. (2.13), there are many modes with the same
principal mode number, hence the same propagation constant. A mode
group with this property is called a degenerate mode group (DMG). Due
to their identical propaga’ n constants, strong power coupling occurs
among the modes in the ~o that the power distribution becomes
uniform during the propage. 1 of optical power along a fiber [27]
From now on, it is assumed that the power distribution within a DMG is
uniform. Hence, the power distribution is given as a function of m
only.

Manipulating eqn. (3.1)

2
2 m r 2
kl-[ﬁ-{;]]ku‘ (3.5)
where
K2 - k24 K (3.6)
1 x y
and
S 7 (3.7)
sax 1 o0

Eqn. (3.5) states the relationship between any ray’s position,

direction and principal mode number. Furthermore
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r 2 m
[_] <o (3.8)

must hold. For a given principal mode number m, eqn. (3.8) determines
the maximum radial distance a ray can exist. For modes from m to m+Am,

eqn. (3.5) is rewritten as

2 2
G () et e (= (5] ) oo

Assuming that all rays that satisfy the above criteria have equal power
Po, the NFP (power per unit area),
N(r) = P * k-space area. . )
o

The NFP for modes m to m+Am

N (r)am = P_ J 2k dk . (3.11)

For (r’/a®) < (m/M)
N (r)am -k SR p (3.12)

and (r’/a®) > (m/M)
N ()am - O. (3.13)

The NFP formed by modes, m to m+Am is shown in Fig. 3.3. For all

groups of m, assuming equal power for all modes (equal excitation)

M
N(r) = J N-(r) dm (3.14)

Mrz/a2

o

2
] (3.15)

- P xk? [ 1l - [
] @max
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This result is identical with the result derived in Ref. [15] for a
parabolic graded-index profile. The total power for modes m to m+Am is

just the integral of the near-field pattern

Yy m/M a

Q(m)Am = J ~—————— 2xr dr (3.16)

0

- P 4x’mAm | (3.17)
[e]

Q(m)Am is the power required to form the NFP given by eqn. (3.12).

Integrating for all possible modes will result in the NFP as in

eqn. (3.15). Hence, for an arbitrary power P(m)Am, the near-field
pattern

" N (r) P(m)

N(r) =  —  — dm (3.18)
Mr?/a2 Q(m)
kmz " P(m)
ax
anM J , — dm . (3.19)
Mrz/a

Differentiating the near-field pattern N(r)

P(m) = - 2™ [r M] (3.20)

kz dr

Dax

r = a/m/M

Eqn. (3.20) 1is the relationship between the NFP and the power per
principal mode group. A typical NFP is shown in Fig. 3.4 and the power
per prinzip-. ~ode numoer is shown in Fig. 3.5.

In the ucrivation, the absence of leaky modes in the fiber has

been ussumed. In reality, this assumption is not valid. It 1is

39



Relatve Intensity

Relalve ntensity

O fF— 171 1 s T T T T T T e T
o 4 o 12 16 20 24

Radial distance (um)

Fig. 3.4 A typical near-field pattern

0.9 T T T T T T T T 1 T T T T T ) Sl
| 3 S 7 9 " 13 15 Vv 19

PAmcipal mode number

Fig. 3.5 The modal power distribution for the above near-field
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impossible to excite only guided m:ues in a fiber without exciting
leaky modes. For leaky modes where m/M > 1, the relationship between

the NFP and MPD is still an unsolved problem [30].

3.3 Measurement of the NFP

The intensity on the surface of a radiating source such as the end
of a fiber is classified as near-field intensity. The emitting areas
are typically very small (core radius = 25 um). Hence, the near-field
pattern cannot be measured directly. Instead imaging techniques must
be applied to magnify the NFP to a size appropriate for measurements.

To avoid the effects of convolution, the magnified near-field cwn
be scanned by placing a photodiode masked by a pin hole and moving it
radially across the image. However, this nethod has two major
disadvantages, the first beirs the critical alignment required. To
obtain a near-field, the fiber has to be scanned across the axis of the
fiber as shown in Fig. 3.6 The second disadvantage is the possibility
of a difference in NFP when scanning across different axial directions
(scans 2 & 3 in Fig. 3.6). This error is avoi.~d provided the field is
radially symmetric.

To avoid the above problems, a method utilizing slits is
implemented. A large area detector masked by a slit is used to scan
the magnified near field as shown in Fig. 3.7. One has to ensure that
the magnified NFP falls within the large area detector. With this
method, the power as function of x, I(x) is measured, Fig. 3.8. The
intensity I(x) as a function of the radial distance, I(r) takes the

form of an Abel transform [35]
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r

o I(r) r dr
I(x) = 2 J (3.21)

2 2, 1/2
r - x
L ¢ )

if one assumes a cylindrical column. The inversion to obtain the power
as a function of the radial distance I(r) can be accomplished by taking

the inverse Abel transform [35]

1 o I’ (x) dx
I(r) = - = J > . (3.22)
r (x

For a particular slit position x, the average intensity in the y
direction is measured. This method will nrovide an average NFP without
having to depend on which direction the fiber‘'s NFP is scanned.

The experimental setup to perform the slit experiment is shown in
Fig. 3.9. A microscopic objective lens with a magnification of 40X was
used to magnify the NFP. The distance between the lens and the
magnified image (also the location of the slit) was set at 14.8 cm
[36). The fiber end is placed within the working distance of the lens
on a xyz positioner. Tne position of the fiber was adjusted until a
focused image 1is formed. The detnctor was masked with a slit of
approximately 10 um and both were placed on another xyz positioner.
Hence, the intensity across the magnified NFP through the slit can be
measured. Typical core radius 1is 25 pm and since a magnification

factor of 40X was used, only a scan of * 1 mm {s necessary.

3.4 Ray distribution
The numerical simulation of bending loss consists of following a
representative set of rays through the fiber be- What remains to be

determined is the selection of a set of rays for a principal mode
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number. The method used is based on eqn. (3.5) which when rearranged

is

(5 (30

Discrete r and kl variables r and li can be defined by

< 40 -]
®Ir

2 i 2
- = 3.24
r [ M ] a (3.24)
2 J 2
k“ [ M ] kmx (3.25)
where 1 and j have discrete values of % , 1% . 2% e M - %. Hence
the relationship between m, i and j is such that
m=-=1i+3 . (3.26)

Therefore, there will be m combinations of i and j that can selected to
satisfy the above criterion for a given principal mode number. From
eqns. (3.24) and (3.25) there will m rings in the r and kl space. To
evenly select x, Yy, kx and ky , let there be L angles for each ring in

either space such that

¢ - T (3.27)

where q = 1, 2, 3,....L. Hence, there will be L spatial positions for
each ring and L directions for each of the spatial positions.
An example to 1illustrate this procedure is in order. For

principal mode number 6 there are 6 combinations of i and j
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that satisfy eqn. (3.26). There are six rings Iin each of the r and k
spaces. For an arbitrary value of L, there will be L spatial positions

and direction vectors for each ring where

x, k =1r,k *sin (¢)
TR q

x
k = k * .
y, k =, k *cos (éq)

Figs. 3.10 and 3.11 depict typical position and wave vector parameters.
Note that the innermost ring in the r space corresponds to the
outermost ring in the k space and so forth. With L rays for each
(x, y) positions, there are L2 rays for each combination of { and j,
and mL? rays for principal mode number m. The value of L is arbitrary.
There is no rule as to how many rays are needed to represent a mode.
The greater the value is, the finer the grid is in selecting the x, vy,
kx. ky values. Presumably, increasing the number of rays will lead to
greater accuracy in the simulation results (see Section 5.4.1).

Recall from ~ction 3.2, it is assumed that all rays with the same
principal mode num r have equal power. Therefore, once the power and
number of rays representing the modes with principal mode number m are

determined, the power per ray is simply the ratio of the former over

the latter.
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Chapter 4

Computer Simulation

4.1 Introduction

The ray equations in a fiber are presented in Chapter 2 with the
emphasis on bent fibers. Ray propagation in different regimes of .he
fiber are taken into account. Chapter 3 deals with the modal power
distribution of the fiber and a proposed method to generate initial
parameters and assignment of power to each ray. The next stage to
undertake is to implement the theory into a simulation program
involving thousands of rays. The aim of this simulation program is to
predict the bending losses and characteristics of radiation for a
predetermined modal power distribution. Then t: nly parameters
within the designer’s control that affect ~he bendi:, iosses are

1. radius of bend

2. amount of bend induced onto the fiber (angle of bend).
Once the above two parameters are determined for a given required
performance level, the radiation pattern from the bend must be studied.
This will allow proper positioning of the detector to improve the
tapping efficiency. The tapping efficiency is defined as the fraction
of power lost in the bend that is collected by the detector.

The aim of this chapter is to present the algorithm utilized in
developing the simulation program. It starts off by describing the
task of the program and stating any assumptions made in developing the
software. Section 4.3 deals with the structure of the software
program, breaking them down nto different units and describing the

task of each individual unit. The chapter concludes with a description



of another software package that is to be utilized in assisting in the
pictorial representation of the radiating pattern from the bend. All
software is written in Turbo Pascal 4.0 for usage on IBM compatible

P.C.’s and all graphics require an EGA card.

4.2 Task of the simulation program

During its propagation, the ray will either leave the core or
remain in it throughout. In the latter case, there is still a
possibility of the ray leaving the core after tte bend as it may not
satisfy the conditions of a bound ray in a straight fiber. Such cases
are only common when the angle of the bend is small. A typical path of
the ray leaving the fiber is shown in Fig. 4.1. Only rays that leave
the core are of interest. Once it is determined that the re¢ is
leaving the core, it is tracked till the point it leaves the jacket.
Seven parameters are required in the characterization of a4 ray
X, y, z, kx, ky, kz (where z reprecents the on-axis length the .y
travelled around the bend) and power remaining after going through the
interfaces of different refractive indices. The parameters f the rays
that leave the fiber are to be stored in an e:iiernal file from where
they c¢an be processed by other software prog:ams.

A number of assumptions are made in the process of leveloping the
software simulation.

1. The effects of leaky rays are not considered.

2. The mechanism of tunnelling for the ray while . the bead

is ignored.
3. The only reflected rays considered are the o.:s from the

cladding/primary jacket interface.
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Fig. 4.1 Possible path of a refracting ray in a bent fiber
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With regard to the first assumption, it {is true that it {is
impossib. - to excite guided rays without exciting some leaky rays.
However, the task of relating the near-field pattern and lcaky modes is
still an unsolved problem (see Chapter 3). Hence, they are ignored.

The mechanisms of power loss for rays while in the bend are by
refracting and tunnelling [5S]. In Ref. [5], the transmission
coeftficient formula of tunneiling rays derived in Ref. [37] was used in
determining the tunnelling loss of rays in a bend. A typical plot of
power remaining in a bent fiber reconstructed from Fig. 8 of Ref. [5]
is shown in Fig. 4.2. It can be noted that there is an initial rapid
loss of power from the bent fiber and subsequently a more gradual loss.
Recall from Chapter 2, that the propagation of rays in a bent fiber is
periodic (for a typical value of A = 0.00934, the ray will repeat
itself every 1.2 mm). Hence, rays leaving the core will do so within
the first period or remain in the core throughout the bend. This
explains the initial rapid drop in power. The subsequent gradual drop
in power is due to the tunnelling of the rays that remain in the core.
The power loss from tunnelling is not very significant compared to the
loss by refraction.

Reflection is significant at interfaces with a pgreat refractive
index mismatch. If an external fluid with a refractive index close to
that of the secondary jacket is used, the only significant mismatch in
refractive index is at the cladding/primary jacket interface. The
other slight mismatches can be ignored due to the following reason. As
a ray passes through the cladding/primary jacket interface, its
pFropagation constant Iﬁl will increase by a factor of 1.54/1.453 (see

Chapter 2). Since kz remains unchanged through an interface, the

51



52

2100 3yl O SIX® 3yl PUNOI® PIINSEIW Z YIm ¥/2 aduelsip
pasjlewicu jo UOJIdUNy ® SE® gujriewax zamod [woy3Idloayl 7% ‘I1d

$000 = ¥/0 + (000 =¥/ O
o/z
(spuosnoyyl)
g0 90 0 zZ0 o

. 1 _ L L ! L L 9L

-+

- Sl —
b Cl—-

|9 St

T
f oi-

-+
-+
4+

(ap)d



values of k‘ and ky will increase accordingly. With that, it is
expected by the time the r:y hits the ncher two interfaces (primary
jacket/secondary jacket and secondary jacket, :oupling fluid), the angle
(see Chapter 2 for definition of angle) will be less than what is
required for a significant reflected power. To consider all mismatches
would be a monumental task as eact ray splits into two each time it
encounters an interface. Therefore, for each single ray leaving the
core would mean tracking hundreds of ravs. "0 consider one interface

is already a monumental task, see Fig. 4.4.

4.3 Structure of the simulation software

The simulation software consists of ten main units as shown in
Fig. 4.3. The simulation begins at the Generate Initial Data unit.
Rays are generated, passed onto the control unit and procesced one at a
time. At the start of each processing sequence, a global time clock is
initialized to :ero and the propagation of the ray is calculated by
stepping up in time. The functionality of each unit is described in

the following subsections.

A.}ll Generate Initial>pata

Input : ex‘«rnal file consisting of power per ray depending
on the principal mode number.
Output : kx, ky, k,' x, y, Power of the ray.
The task of this unit is to generate the initial parameters of the
ray and pass them onto the control unit. As mentioned before, only

guided rays are considered. For a given wavelength, the number of

rays, position and wave vector of each ray are set (see Section 3.4).

53



5h

we1go01d uoJIB[NWIS IYI JO IINIONIIS £°7 914

238391u]
ss33014 s
v
uTIg
1y &eng
NYO g
$599014 \ ILERIDY
t ARV
arejodiaug 9
ol
wsreng > td
1UBISU0D) 301§
$595014
4
[T puag 1 pusg 1Wa131320)
jueisuo) 1URISUOD) uotssiwsuslj
$592024 $593014 8

! €




However, the power per ray will depend on the modal power distribution
of the fiber. This task is to be determined externally. A file
consisting of power per ray depending on the principal mode number is
to created and will be a required input data file for this unit. Rays

are processed in order of ascending principal mode number.

é;}.Z Process GRIN Bend

Toput @ x, v k, k, k
OQutput : x, y, z, k, k, k‘ and condition of exit
This unit tracks the propagation of the ray in the parabolic

graded-index core as described by the formulas presented in Section
2.4. The val:es of x, y an? z are computed until either one of the two
exit conditions 1is met. The first condition is satisfied when
/f;} + y2 is greater than the radius of the core indicating a
retracting ray. Second . 1dition of exit occurs when the ray reaches
the end of the bend while remaining in the core. Since the propagation
of the ray is periodic, it 1s only necessarv to track the ray for one
whole period or until it leaves the core. 1f the ray does not leave
the core within the first period, the ray will remain in the cor
throughout the bend. The control unit is notified on the condition of
exit to enable it to enact the rnext appropriate action. The remaining
ray parameters are to be computed at the time of exit and returned to

the control unit.

ﬁ;}‘3 Process Constant Bend 1

Inmput : x, vy, z, k, k, k
y

Output : x, y, z, k, k,' k' and condition of exit

This unit tracks the propagation of the reflected ray in the
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cladding as described by the formulas presented n Section 2.5. There
are three conditions of exit. The first being the reflected ray
re-entering the core while the second condition is the reflected ray
re-entering the primary jacket. The third condition is the reflected
ray encountering the end of the bend, Here the equations are not
periodic, so the unit has to keep stepping up in time until f{t
satisfies either ona of the exit conditions. Again, the control unit
should be informed of the condition of exit. The remaining rays

parameters are computed at the time of exit and returned to the control

unit.

4.3.4 Process Constant Bend I1I

Input : x, y, z, k, k, k
Output : x, y, z, k:, ky, k: and condition of exit
This unit tracks the propagation of the ray in the cladding and
jackets as described by the formulas presented in Section 2.5. The
control unit should notify it by passing the correct refractive index
and radius of the region. There are two conditions of exit. The first
condition applies when / x + yz is greater the radius of the
region. The second condition of exit occurs when the ray encounters
the end of the bend while in that particular region. Again, the
concrol wunit should be informed of the condition of exit. The
remaining rays parameters are computed at the time of exit and returned
to the control unit. The differences between this unit and the

aforementioned unit are the exit conditions and that the latter is only

for rays reflected off the cladding/primary jacket interface.

4.3.5 Process GRIN Straight
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Input : x, vy, ,z, k, k, k

Qutput : x, vy, z, k, k, k
This unit deals with the propagation of the ray in a straight core
should the 1v “erain within it after the bend, see Section 2.3. This
unit {s necestary as rays that are guided while in the bend may not
itisfy the condition of a guided ray in the straight portion of the
ver after exiting the bend. Once the control unit determines that
the ray does not satisfy the guided condition of a ray, this unit is

called an' exits only when the ray hits the core/cladding interface.

4.3.6 Process Constant Straight

Input : x, y, z, k , ky, k
Output : x, vy, z, k, k, k
The purpose of this unit is to compute the propagation of the rays
in a straight constant index media. The formulas are derived in
Appendix B. It is called upon by the control unit when encountering
rays that remain in either the cladding or jacket after leaving the

bent portion of the fiber.

4.3.7 Interpolate
Input : tl, t, r, r, r3 (see below for details)
Output : ¢
The accuracy in the simulation results will depend heavily on the
step size used. Creater accuracy calls for smaller step size but the
time requir~d for a simulation of this magnitude will increase
significantly. However, it can be Jeduced that accuracy is only
critical in determining the :ue the ray crosses the interface betweer

two regions &t r = r,. Since the propagation of the ray is calculate.
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by stepping up in time, the tir ’tl) and radial distance (rl) at which
r1 < r, and the time (tz) and radial distance (rz) at which r, > r, are
known. Hence, the time (t) the ray crosses the interface (rJ) can be
interpolated. This unit is called by the five previously mentioned

units whenever it is determined that a ray is entering a new region.

4.3 38 Interface

Input : x, vy, k
Output : k, k, k
As mentioned before, the propagation vector of a ray changes once
it travels through two mediums of different refractive indices. This

unit implements the theory presented in Section 2.6.

4.3.9 Transmission Coefficient

Input : x, k k, k, n n
P Y x’ y z 1’ 2
Output : Transmission coefficient
The purpose of this wunit 1is to compute the trausmission

coefficient of a ray travelling from a medium of refractive index n o to

n . The theory is presented in section 2.7.

4.3.10 The Control Unit (CU)

The CU is the heart of the simulation program. Once the initial
ray parameters are passed onto this unit, it takes control of further
action to be pursued by the program. The algorithm of this CU is shown
in Fig. 4.4 which with a little description will be self-explanatory.
The call number corresponds to the number of the particular unic in
Fig. 4.3. The print in italics indicates ision is to be made for

a subsequen: action. The letters next to some calls (e.g. cladding,
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primary jacket) indicates to that particular unit as to which region
the ray is propagating in. Propagation in the cladding and jacket are
identical except for the refractive index and radius. Recall, that
this distinction is required by that unit. Besides making decisions,
the CU only computation is the amount of power radiated to the exterior
after passing through the two interfaces. This is done after the two
transmission coefficients are determined. The parameters of e lost
rays right at the exterior of the jacket together with i{ts remaining

power are written to an external file.

4.4 Software for observing radiation patterns

With the simulation program determining the parameters of all the
rays leaving the fiber, another software program was written to analyze
the data. The program plots the radiation pattern of a bent fiber. It
will not be discussed in terms of algorithm or structure but only of
functionality.

The program is used to observe the radiating pattern for a
specific radius of bend which utilizes the data generated from the
simulation program. The location (y and z coordinates) and r..lius of
the observation plane (see Fig. 4.5), which represents the detector
must be specified by the user. The x coordinate need not be specified
as the plane will be placed symmetrically on the x-axis. Furthermore,
the detector is always placed perpendicular to the z-axis. This came
about after viewing several simulated radiation patterns which were
found to exhibit some parallelism to the z-axis. Radiating plots in
the y-z and x-y planes can be observed simultaneously. A picture of

such a pattern is shown in Fig. 4.6. The green lines represents the
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fiber while the colour red represents the rays leaving the fiber to the

observation plane (in white). A histogram of the rays reaching the
detectors 1is drawn in yellow. It is useful in a sense that the
location of the greatest intensity can be easily identiffed. The

circle in white represents the detector looking at it on the xy plane.
The rays on yz plane can be drawn by either suppressing k‘ or selecting

rays with k - 0.
x
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Chapter 5

Comparison of Experiment and Theory

5.1 Introduction

Comparison of experimental results with the theoretical analysis
on bending losses and radiation patterns are presented in this chapter.
Two laser sources at 0.825 um and one source at 1.3 um were used in the
experiment. All three sources with fiber pigtails were butt-coupled to
the multimode fiber. The fiber has a numerical aperture1 (N.A.) of 0.2
with a 50/125/205/250 pm  core/cladding/primary/secondary jacket
diameter. Th: cladding of the fiber is made of pure silica and the
refractive indices of the primary and secondary jacket are 1.54 and
1.53 at 0.589 um respectively [38]. It must be noted that the
refractive index of pure silica changes with wavelength (eqn. (2.2.32)
of Ref. [19]). The refractive indices of the jackets (made from
acrylate) are not expected to change much with a change in wavelength
except for the thi ! and fourth deciral place [38]. Immersion fluid of
refractive indices 1.50 and 1.538 at 0.825 um were used as the external
fluid to couple light present in the jacket to the exterior. In
determining the radiation pattern, only the 0.825 um laser source was
used as the pin detector is made of silicon.

In the computer simulation, the value of L (see eqn. (3.27)) was
chosen to be 18 (an arbitrary value). Therefore, there are 61560 rays
iu total for A = 0.825 um (maximum principal mode number of 19) and

25272 rays in total for XA = 1.3 um (maximu: principal mode number of

1 . 2 2
Numerical aperture is defined as n o-n,
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12). The dependence of the simulation results on the value L will be
investigated. The step size used to increment the global .ime clock
was 0.' ps. This is approximately 1/60 the period of the ray.

The .hapter opens by pres.nting the theoretical and experimental
results of bending losses. In section 5.3, the radiation patterns will
be discussed. The chapter concludes with a discussion or auny

discrepancy that may exist between experimental and simulation results.

5.2 Bending losses
To theoretically predict the bending losses for a fiber with an
arbitrary modal power distribution (MPD), the following steps ure
performed:
1. Perform the slit experiment as discussed in Section 3.3
and curvefit the data to ease the procedure of
numerically integrating eyn. (3.22).
2. Perform the inverse Abel transform to obtain the
aear-field pattern (NFP) as discussed in Section 3.3.
3. Obtain the MPD from the NFP as discussed in Section 3.2.
4. Determine the power of each ray from the MPD as discussed
in Section 3.4 and feed results to the simulation
program,
For each source used in the experiment, the raw data from the slit
experiment and the best-fit curve, the near-field pattern, the modal
power distribution and bending losses are presented.
The experimental setup to measure the bending losses is shown in
Fig. 5.1. In measuring the loss, the fiber is bent around rods of

different radii ranging from 2 to 10 mm in radius (the radius of
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curvature of the bend is hereafter referred to as R). Thevefore the
actual R is the radius of the rod plus 125 pum (taking into account the

radius of the fiber). The power loss factor is defined as
p - 22 ___ 7 (5.1)

where Pu and Pwo is the throughput power with and without the induced
bend respec*ively. Due to the difficulty encountered in desipning a
device to measure bending losses as a function of angic of bend tor a
specific radius, all measurements were done for a 90° bend.

In the measuremen of loss, there are two sources cf uncertaiuc
instrument error and power level fluctuations. The instrument
uncertainty is given as 0.05% of the maximum scale reading, Pmax 1139].

Using eqn. (5.1), this gives a percentage relative uncertainty in Pl of

ap, (0.05%) (P -~ P )/(P )
P - o '2 max (‘)?)
L P (P /P )

For example, typical measured values are R = 7 mm, P /P - 0.364,
o max
and P /P - 0.154. Then AF_/“I = 10%. As the loss decreases, the
Y max .
instrument uncertainty iu.crecases even more. The power level

fluctuations are random ana ficult to measure. The combined effect

of these two sources of uncertainty can be estimated by repeating a set

measurements and comparing the results. When this was done, the
uncertainty in the loss over the whole range was found to he in the
range of 15%. Hence a relative experimental uncertainty of 15 fis

assumed in all the loss measurements.
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5.2.1 Laser I (0.825 um)

For this source, two cases were considered. The first case
involves just direct bending losses with no attempt to alter the MPD.
However, the second case involves wrapping the fiber 5 times around a
12 mm diameter mandrel. Since wrapping a fiber around a mandrel would

eliminate the higher order modes, one would expect a lower power

distributio. for the higher order mc :¢s and 'l.is less bending loss.
The 1.+ data from the slit experiment, the NFP and the MPD for the
first case are shown in Figs. 5.2 to 5.4. Since a coherent source was

used, the NFP did not resemble eqn. (3.15) indicating the fact that the
modes are not equally excited. This is further supported by the fact
that the peak power distribution occurred at m = 7 and decreases with
increasing principal mode number. The bending losses for different R
are shown in Fig. 5.5 The simulation res':lts are plotted on the same
figure and evidently there is a very sharp contrast in the two curves.
Fig. 5.6 shows an expanded comparison between the two curves fcrc larger
values of R. Discussions on what may cause the discrepancy between
experimental and theoreti-al results will be pursued after all the
experimental and simulation results for all sources are presented.

A sample of the simulation results for various R are tabulated in
Tables 5.1 to 5.4.  The last column is the ratio of power loss over
total power for a particuiar principal mode number. It must be noted
that the number of rays and number of rays lost are independent of the
MPD. This is because the trajectory ~f the ray in the fiber is
independent of its power. Furthermore, the power loss ratio is aiso
independent of the MPD and is roughly :qual to the ratio of rays lost

within the first period of oscillation over the number of rays
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Loss Factor

Loss Factor
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Fig.

5 5 Experimenta)
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4 6 ] 10

of bend (mm)

o Expenmentc + Theoretical

oretical bending losses for
ction in Fig. 5.4. Experimental
4 {in all loss measurements.

modal powe .
uncertainty

Rogius of bend (mm)

N Exg.cnmen'al + Theoretical

5.6 Exploded comparison from Fig. 5.5
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Table 5.1 Simulation result

for R

,
o LR | ot | R tont | oss | Recte
0| 324 1 o 0 0
2 648 1.782 0 0 0
S e 238 | o 0 0
« | 129 | 2.815 | o0 o | o |
5 | 1620 3106 | o0 0 0

6 1944 3.269 0 0 0
K 2268 3.325 0 v 0

8 2592 3.289 164 | 0.0453 0.014
9 2916 3.177 696 | ¢ 168 0.053
10 3240 3 007 1772 | 0.332 0.111
11 31564 2 791 | 2780 0.433 0.155
12 1888 2.547  4sse 0.576 ]
| w212 2.284 6060 0.635 Cos |
14 4536 2,013 7502 0.659 0.327

15| 4ss0 1.753 9452 0.705 0.400 |
16 5184 1.506 12020 0.709 0.471 B

17| ss08 1.255 14156 0.672 0.535

18| se3 1.051 17562 0.647 0.615

19| e1%e 0.995 23433 0.721 0.724

. . ]

) | e ,__-EJ_WGSOZ 0 7

= 7.125 X = 0.825 um



| Number of - Total Number of l Pown s T. Ratio |
Rays Power Rays lost loss |
v 1 324 B 1 0 0 o !ﬂ MO—*”
2 648 1 782 _ 0 0_7— ——i)_”
3 972 i —; 38¢C 1 0 ] 717) ) m;
e
L 4 1296 2.815 v L 0 0 |
I- 5 1620 3.106 0 0 0
I ~6 N 1944 3.269 0 0 7 0 ]
7 2268 3.325 0 - QA(‘A B i (T> o
8 2592 3 289 0 R O— o 7 —(;N )
9 2916 3.177 B 72 0.0172 GOSOSQ—‘
10 3240 3.007 i 644 0A1~36 : _:;1:;_
11 i1 2.791 1770 0.274 0.09&:~
12 38 2.547 30;52 0.376 0.1&87m 7
I 13—*#A 7?12 o 2.284 5124 0.494 _;).2176”“7
| 4 4536 2.013 081 0.555 _7(7)”..2—;6
15 4860 1.753 581;;-‘ 0.596 7 031:() 1
16 5184 1.506 11008 0.6177 | “0—.—1"1*0“‘-'*
17 5508 | 1.7A255 13908 ().76*1: 01:;6_
18 5832 1.051 17123 ‘ 6‘. 6037 0175‘7/‘ R
19 | sl1s6 0.995 22670 | 0.685 | 0.689
1— ;03.3&6 lo.Alo86 0‘*;.#1_014 B
Tatle 5.2 Simulation results for R = 8.125 A = 0.825 um

Y



. — .
o | Meberof | Toal ) hmberof Do | macio
I 520 1 0 o 0
| s | 1m 0 o 0
S 2380 0 0 o |
— ; 4 — ;
“ 1796 2.819 0 0 0
s | w20 T 3106 | o 0 o |
« | i9aa | 1.269 0 0 0 1
e8| 3.325 0 0 0
s | Y 3289 0 0 0
1 bquf o1s 3.177 0 0 0
Jl YR 3.007 147 0.0275 | 0.009
| 1 l_ et 2.791 860 0.129 0.046
RN 2.547 2174 0.260 0.102
1| w2 T 2.284 3570 0.355 0.155
- | ase " 2.013 6011 0.446 0.222
| 15 4360 1,753 8255 0.498 0.284
16 S184 1 106 10182 0.543 0.361 |
b ssos | 1285 13471 0.553 0.440
* 18 5832 1.051 16443 0.551 0 525
19 6156 0.995 | 23737 0.654 0.657
| | 43.346 4.018 0.993

Table 5.3 Simulation results for R = 9.125 A =

0.825 um
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Number of Total Number of Power o

a Rays Power Rays lost loss Ratto

1 324 1 0 0 o

2 648 "Tﬁl.782 0 0 o ]
I 972 ! 2.180 0 0 o |
[ o | 1296 1 o2ms | o o | o
I ;~~ 1620 3.106 1 0 0 (0] _

6 194&7 3.269 i 0 0 0

7 2268 3.325 0 0 0

8 2592 3.289 0 _—O_ﬂ n o

9 2916 3.177 0 » 0 ?)-

10 3240 3.007 0 O“_‘ B 0

11 3564 2.791 358 0.0465 0.01; |

12 3888 2.547 1356 0.149 0.058

13 4212 2.284 : 2720 0.252 0.111 1

14 4536 2.013 5059 0.361 0.179 )

15 4860 i.753 ~7071 0.426 0.24‘;

16 5184 1.506 999_8_ﬁ P-WOT;;_ 6;1—7——_ﬁ

17 5508 1.255 13371 0‘5107 “v(;—l:&:_-

18 5832 1.051 16800 0.520 0.494

19 6156 0 295 235;2_ 0.623‘ 0.625 o

43 .346 3A3_6—loﬁ~5‘0 077(;_M

"able 5.4 Simulation results for R = 10.125 mm A = 0 325 um

14



representing that particular principal mode numi,er. This is due to two
reasons. First, all rays belonging to tL. . ¢ principal mode number
have equal power. Secondly, rays reflected off the cladding/primary
jacket interface can be considered as losses too as it is very unlikely
for rays reentering the core to fulfill the conditions of a guided ray
in a bent fiber. It also can be noted that for increasing values of R,
the power logs comes from modes of higher principal numbers. Hence for
large values of R, the power in the higher order modes play a
significant role in deciding the bending loss.

For the second case of wrapping the fiber around the¢ mandrel,

experimental data are presented in Figs. 5 7 to 5.9. From Fig. 5.7,
the power measured through the slit i ower than the first case
indicat.ng that some power has been removed from - "ore. The NFP
drop: off at a slightly faster rate than the first ad diminish g
to zero at the edge of the core. Comparing the twu MPDs, the peak

distributior has sh.:.ted fromm = 7 to m = 6. and less power is present
in the higher order modes. Figs. 5.10 and 5.11 depict the bending
losses a:! as expected, they are lower than the previous case. Again,

sharp contrast is evident when compared to the simulation result..

5.2.2 lLaser 1.3 unm

The same two procedures were applied to the fiber when the 1.3 um
laser source was used to excite the fiber. The results for the first
case are shown in Fi1 . 5... .0 5.16. 7Tables 5.5 to 5.8 shows a sample
of the simulations r. :ults.

With the fiber wrapped around the mandrel, the experimental
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5.9 The modal power distribution derived from Fig. 5.8
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Arbltrary units

Abitrory units
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Fig. 5.13 The near-field pattern derived from Fig. 5.12
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Fig. 5.14 The modal power distribution derived from Fig. 5.13
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Fig. 5.15 Experimental and theoretical bending lo
modal power distribution in Fig. 5.4.
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a | "™rT | ewer | Raye lost | loss | Recto
1 324 1 0 0 0
2 648 1.371 0 0 0
3 972 1.408 0 0 0
I 1236 1.291 0 0 0
‘NS 1620 1.130 28 0.0042 . 004
6 1944 0.984 713 0.0742 .075
7 2268 0.881 1746 0.135 .153
8 2592 0.826 3438 0.209 0.253
9 2916 0.799 5056 0.270 0.337
10 3240 0.784 7072 0.350 .447
11 3564 0.699 9768 0.391 .559
12 3888 0.648 14156 0.460 .709
L 11.822 1.893 .160

Table 5.5 Simulation result for R = 7.125 mm,
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o Number of Total Number of Power Ratio
Rays Power Rays lost loss

1 324 1 0 0 0

2 648 1.371 0 0 0

3 972 1.408 0 0 0

4 1296 1.291 0 0 0

5 1620 1.130 0 0 0

6 1944 0.984 200 0.020 0.020

7 2268 0.881 1144 0.088 0.100

8 2592 0.826 2628 0.152 0.184

9 2916 0.799 4780 0.226 0.2483

10 3240 0.784 6644 0.305 0.389

11 3564 0.699 2366 0.354 0.506

12 3888 0.648 14324 0.345 0.671
11.822 1.580 0.134

Table 5.6 Simulation result for R = 8.125 mm,

A= 1.3 pm
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Number of Total Number of Power

" Rays Power Rays lost loss Ratio

1 324 1 0 0 0

2 648 1.371 0 0 0

3 972 1.408 0 0 0

4 1296 1.291 0 0 0

5 1620 1.130 0 0 0

) 6 1944 0.984 0 0 0
» 7 ;;gé 0.881 528 0.040 0.045
8 2592 0.826 1912 0.110 0.133
9 2916 i 0.79§ 4098 0.185 0.232
10 3240 0.784 6332 0.26% 0.242
11 3564 0.699 9440 0.328 0.469
12 "888 0.648 14995 0.416 0.641
11.822 1.346 0.114

Table 5.7 Simulation

result for R = 9.125 mm, A = 1.3 um
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Number of Total Number of Power 1
" Rays Power Rays lost loss Rativ
1 324 1 0 0 0
2 648 1.371 0 0 0
3 972 1.408 0 6 0
4 1296 1.291 0 0 0
5 1620 1.130 0 0 0
<p—kb 1944 0.984 0 0 0 B
7 2268 0.881 196 0.012 0.014
8 2592 0.826 1346 0.074 ‘ 0.089
9 2916 0.799 3299 0.149 0.187
10 3240 0.784 6018 0.227 0.289
11 3564 0.699 9359 0.305 0.&36“'ﬁr
12 3888 .——0.6&8 14766 0.394 0.607
11.822 1.160 1. 0.098

rable 5.8 Simulation result for R = 10.125 mm A =~ 1.3 um



results are shown in Figs. 5.17 to 5.21. As expected with the mandrel
wrap, the MPD indicates a lower concentration of power for higher order
modes. This resulted in lower bending losses for the fiber as shown in

Figs. 5.20 and 5.21.

5.2.3 Laser II 0.825 um

For the last laser source no attempts to alter the MPD were made.
The results ¢ - shown in Figs. 5.22 to 5.26. In this case, there is a
greater power concentratior in the higher order modes nunlike the
previous two sources With such a MPD, the bendir . « expected
to be greater than before for the same R and this is shcwu to be true

in Figs. 5.25 and 5.26.
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vig. 5.18 The near-field pattern derived from Fig. 5.17
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Fig. 5.19 The modal power distribution derived from Fig. 5.18
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Fig. 5.25 Experimental and theoretical bending losses for
modal power distribution in Fig. 5 4. Experimental
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5.2.4 Theoretical comparison with a lambertian source

In this section, the simulated bending losses for all 5 cases ave
compared to the case of a fiber excited with a larmbertian source. From
Chapter 3, it was shown that the near-field pattern of a multimode
parabolic graded-index fiber excited by a lambertian source has the
same profile as the refractive index. Therefore, the MPD increases
linearly with the principal mode number. Fig. 5.27 and 5.28 show the
comparison for the 0.825 um and 1.3 pum laser sources respectively. It
is beyond any doubt that in predicting the bending losses of a

rultimode mode, it is necessary to take into account the MPD.
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Fig. 5.10/

Radius of bend (mm)

Fig. 5.27 Theoretical comparison with a lambertian source (Q)
at 0.825 um

Rodius of bend (mm)

Fig. 5.28 Theoretical comparison with a lambertian source (0)
at 1.3 um



5.3 Radiation patterns

A- mentioned previously, only the radiation patterns from a bent
fiber excited with a 0.825 um laser source were measured. This is to
roughly determine the position of the peak intensity and compare {t
with theory. Only a one-dimensional radiation pattern measurement was
performed. The detoctor is placed symmetrically around the x axis and
parallel to the y axis (see Chapter 4 and coordinate system of

Fig. 4.5). Hence for a fixed value of z, the intensity as a function

of y can be mcasu-ed. A two-dimensional scan was not possible due to
the nature of the device. 1t was designed with a height (the
x-coordinate) equal to that of the detector. Ideally, the device

should have sufficient height to avoid having the diverging beam meet
the edges of the device prior to reaching the detector. Therefore, the
experimental and theoretical radiation patterns will not exactly
portray the same situation. The conventional hermetically-sealed
detector packages were not used due to their bulkiness. Instead,
unpackaged detectors in chip form were utilised. The detector was
mounted on a non-conducting block and wired using silver epoxy. The
block was attached to a xyz positioner to provide movement near the
bend. The detector was reversed biased at 10 volts with a 10 kil load
resistor (see appendix for data sheets). The experimental setup to
measure the radiation pattern is shown in Fig. 5.29. To avoid the
effects of convolution, the detector was masked with a pinhole of
approximately 0.8 mm in diameter. A slit was not used as a cylindrical
radiation pattern is not expected whereby the inverse Abel transform

is not applicable.

The radiation patterns measured as a function of y for
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R = 7.125 . .ud 10.125 mm were performed v *h z set at 8 mm and 11 mm
respectively. Figs. 5.30 and 5.31 depict radiation patterns for an
external fluid with a refractive index of 1.50. Both patterns exhibit
an initial peak and a few subsequent smaller peaks. The initial peak
is expected as the power of initial rays that leave the fiber are the
most intense. The subsequent smaller peaks are due to rays reflected
off the cladding/primary jacket interface that eventually find their
way to the exterior. The initial peak for the case of R = 7.125 mm is
roughly at z = 7.54 mm while for R = 10.125 mm, the peak occurs at
roughly z = 10.1 mm. The corresponding simulated radiation pattern are
shown in Figs. 5.32 and 5.33. Both figures exhibit somewhat similar
initial peaks followed by another peak or two. Peaks occur at
z=800mm and z = 11.5 mm for the R = 7.125 mm and R = 10.125 mm
respectively.

The experimental r1adiation patterns for an external fluid of 1.538
are shown in Figs. 5.34 and 5.35. Compared to the experimental case of
1.50 as the external fluid, the profiles are almost identical except
for a positive horizontal shift . As the refractive index of the fluid
increases, the angle the refracted ray makes with the radial vector
decreases (see Chapter 2), hence the shift. The peak occurs at
z=8.4mm and at z = 11.3 mm for R = 7.125 mm and R - 103.125 mm
respectively. The corresponding simulated radiation patterns are shown
in Fig. 5.36 and 5.37 with their respective peaks :t z = 8.8 mm and
z = 12.5 mm. The simulated radiation patterns, although not depicting
the experimental results exactly, are good approximations. Remember
that the resolution of the radiation pattern is limited by the size of

~he pinhole.
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Fig. 5.30 Power as a function of y for z = 8 mm (see coordinate
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Fig. 5.31 Power as a function of y for z = 11 mm (see coordinate
system Fig. 4.5) with R = 10.125 mm and N 1.50

13

98



99

s B ted ' ed 1 e

Pover los? . 00

Aatio o 1vie

Mit erwy hew tO mamsme cant iraes

Fig. 5.32 Simulated radiation pattern for same case as in Fig. 5.30

Radtiua 10 129

Detector 't {1 0O

Detector ‘y: 10 00

Power duter ted 0 M
Powns loet I

Astio 0 1164

Hit erwg how to sesma’ OBnt irese

Fig. 5.33 Simulated radiation pattern for same case as in Fig. 5.31



Relative Intensity

Relative intensity

11

10

100

=

T
7

y (mm)

-

n

Fig. 5.34 Power as a function of y for z = 3 mm with R = 7.125 mm

40

35

30

23

20

and n

flaid

1.538.

A\

\m

T
s

T
9

T

y (mm)

T 1 1 |

10

12

14

Fig. 5.35 Power as a function of y for z = 11 mm with R = 10.125 mm
and N oid
u

- 1.538.



101

Fig. 5.36 Simulated radiation pattern for same case as in Fig. 5.34
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5.4 Discrepancy between experimental and theoretical results

From the results presented in Sections 5.2 and 5.3, major
discrepancies between the experimental and simulated bending losses are
evident. In this section, the factors that may contribute to the
discrepancies are discussed.

Recall that three assumptions were made in developing the
simulation program (see Section 4.2). Since leaky rays and tunnelling
effects are not taken into consideration, the simulation program should
{deally predict a lower loss than experimental results. However, for

all cases, the simulation program over-predicts the bending losses.

S.4.1 Numerical accuracy of simulation
First possible explanation for the discrepancy of the bending
losses is the number of rays representing a mode may be inadequate.
Three methods of increasing the number of rays were investigated:
1. increase the value of L, see eqn. (3.27)
2. increase the number of combinations of i anld j, see
eqn. (3.26). *nstead of using a step size of 1,
a smaller step size of 0.25 was used
3. combination of 1 and 2.
In the first case, the value of L was increased to 30. This increases
the number of (x, y) and (kx, ky) values for each ring in both r and k
space. For the MPD shown in Fig. 5.4, the simulation results for
R - 10 mm is tabulated in Table 5.9. The corresponding simulation
result for L = 18 is tabulated in Table 5.4. Despite a significant
increase in the number of rays representing - mode, there is no

significant difference in the simulated bending losses (from 0.0776 to
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Number of Total Number of Power B
" Rays Power Rays lost loss Ratio
1 900 1 0 0] 0
2 1800 1.782 0 0 0
3 2700 2.380 0 0 0
4 3600 2 815 _0 0 0]
5 4500 3.106 0 0 AO
1 6 5400 3.269 0 0 0
7 6300 3.32;-d b o ‘“};*”’ 6
8 7200 3.289 0 0 0
9 8100 3.177 0 _6 0
10 9000 3.007 0 0 0
11 9900 2.791 1106 0.055 0.020
12 10800 2.547 4140 0.165 0.065
13 11700 2.284 8083 0.273 0.119 |
14 12600 2.013 13770 0.369 0.183
15 13500 1.753 20436 0.432 0.247
16 14400 1.506 27693 0.485 ) 0i322 |
17 15300 1.255 36890 0.509 0.405
18 16200 1.051 47328 0.524 0.499
19 17100 0.995 64814 0.625 0.628
43.346 l 3.434 0.079
Table 5.9 Effects on simulation result for ¢ = 30 compared to

Table 5.4 for ¢ = 18
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0.0793) . Using method 2, the number of combinations of 1 and j (see
eqn. (3.26)) for a principal mode number was changed to (4m-1) instead
of m. This can be accomplished by changing the minimum value of i or j
to 0.25 with increments of 0.25 instead of 1. A value of 18 was used
for the variable L This method increases the number of rings in both
the r and k space. For the same case in method 1, the bending loss as
shown in Table 5.10 was changed to 0.0782, another insignificant
difference. Method 3 which combines the above two methods resulted in
a bending loss of 0.0783, Table 5.11. All three methods of increasing
the number of rays did not result in a significant difference in
bending, loss. Furthermore, the ratio of power loss for each individual
principal mode number is relatively constant despite the increase in
number of rays. The number of rays that leave within the first period
of oscillation increases linearly with the increase in the number of
rays representing a mode. This can be justified by the fact that the
rays are selected at equal spacings from the r and k space.

The step size used in the simulation was 0. 1 which is roughly 1/60
the p riod of the ray. A reduced step size of 0.0l was investigated

and that changed the bending loss to 0.0795.

5.4.2 Possible existence of a doping barrier

The possibility that a barrier exists between the core and
cladding was investigated. This barrier used to be common in fibers
fabricated by the modified chemical vapour deposition method. The
existence of this barrier would alter the simulation results
significantly as rays that are refracted out of the core will now

encounter a region of lower refractive index that can be viewed as a
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Number of ﬁ&otal Number ;f Poworv i "““"“‘T
" Rays Power Rays lost loss Ratio
1 972 1 0 0 0
2 2268 1.782 0 0 0
3 3564 2.380 0 0 0
4 4860 2.815 0 0 0
5 6156 3.106 0 0 0
6 7452 3.269 0 0 0
7 8748 3.325 0 7 0_~ w“——a-
SN SR
8 10044 3.289 0 0 0
9 11340 3.177 0 0 1 0
10 12636 3.007 0 0 | 0
11 13932 2.791 1436 | 0.051 0.018
12 15228 2.547 5668 0.160 0.063
13 16524 2.284 11019 0.266 0 116
14 17820 2.013 19522 0.366 0.182
15 19116 1.753 27978 0.425 0.243
16 20412 1.506 38690 0.477 | 0.317
17 21708 1.255 52311 0.510 0.406
18 23004 1.051 64890 0.517 0.492
19 24300 0.995 92504 0.619 0.622
43.346 3.391 0.078

Table 5.10 Effects on simulation results for (4m-1) combinations

compared to Table 5.4 for m combinations
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Number of Total Number of Power
e Rays Power Rays lost loss Ratio
1 2700 1 0 0 0
2 6300 1.782 0 0 0
3 9900 2.380 0 0 0
4 13500 2.815 0 0 0
5 17100 3.106 0 0 0
6 20700 3 269 0 0 0
7 24300 3.325 o (4] 0
8 27900 3.289 0 0 0
9 31500 3.177 0 0 0
10 35100 3.007 0 0 0
11 38700 2.791 3866 0.049 0.017
12 42300 2.547 15700 0.158 0.062
13 45900 2.284 31308 0.270 0.118
14 49500 2.013 54381 0.365 0.181 7
15 53100 1.753 78607 U.424 0.242
16 56700 1.506 108982 0.481 0.319'"~
17 60300 1.255 144273 0.504 0.401
18 63900 1.051 184880 0.520 0.495
i 19 67500 0.995 258070 0.624 0.627
43.346 3.395 0.078

Table 5.11 Effects on simulation results for (4m-1) combinations

and ¢ = 30 compared to Table 5.4 for m combinations

and ¢ = 18
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potential barrier that a ray must now overcome to enter the ~ladding.
A two inch length of fiber was illuminated with white light and the
throughput was observed under a microscope. Since a short plece was
used, the entire cross-section of the fiber was {lluminated. If a
barrier exists, a dark ring between the core and cladding will be
present due to the lower refractive index [{40]. However no such ring

was observed.

5.4.3. Uncertainty of fiber parameters
A factor that may contribute to the discrepancy is the uncertainty
of the parameters of fiber. Recall from Chapter 2, that a ray

exhibits an offset from its equilibrium positic

k c 2
Ay = [ LA ] % i (2.46)

Using the fact that k = nlk , the above equation can be reduced to
oz o

a’[(N.A)Z+ ni ]

Ay 2 . (5.3)
(N.A.)" R

The offset value is dependent on two fiber parameters (n2 is constant
for a specific wavelength as it is made of pure silica). Only the
effects due to the variation of the numerical aperture on the
simulation results was studied. From the data sheets (see Appendix E),
the N.A. of the fiber has an error of * 0.015 from its ideal 0.2 value.
Consider the case of R = 2125 um and n, - 1.453 at 0.825 um, the off«ct
value has a span of 4.71 um from 13.725 um and 18.435 um. A span of
such magnitude which is roughly 19% of the radius of the core, has a

significant impact on the simulation results. The effect of the
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numerical aperture on the simulation results for both extremes of R are
tabulated in Table 5.12 for all 5 cases. However, for all cases the
experimental values do not fall within the uncertainty of the

simulation results.

Comparison R Experimental Theoretical

Figure (mm) 0.200 0.215 0.185
5.5 2.125 0.500 0.905 0.784 0.972
10.125 0.0240 0.0776 0.0537 0.0932

| 5.10 2.125 0.427 6.904 0.777 0.972
10.125 0.00112 0.0476 0.0339 0.0699

5.15 2.125 0.504 0.908 0.773 0.973
10.125 0.0981 0.0981 0.0522 0.118

5.20 2.125 0.374 0.905 0.756 0.974
10.125 0.00130 0.0462 0.0247 0.0602

5.25 2.125 0.675 0.911 0.803 0.970
10.125 0.0591 0.138 0.0987 0.151

Table 5.12 Comparison of experimental and theoretical results with
numerical apertures of 0.2, 0.215 and 0.185

5.4.4 Stress-optical effect

Another factor that may contribute to the discrepancy 1is the
stress-optical effect in a bent fiber. It has been reported (41]-[43]
that the stress in a bent fiber will modify its refractive index which
in turn alters the transmission characteristics. Consider the bent

fiber as shown in Fig. 5.38. The change in refractive index can be



109

12q73 leo73cdo 3u2aq B Ul ujeiss 30 s1sATPUV 8E 'S ‘214

o

w\




evaluated from the str.in, e, using the strain-optical coefficients,

KR
Py, (435

-

Anx n3 pxx pxy pxz Cx

- - = 5.4
Any 2 P Py Py €y ( )
An: pzx pzy pzz cz

where p - P, " P, " 0C and the cross terms are identical, B [44].
xx

The strain is related to the stress o by [45]

€ 1 -V -y g
x 1 x

€ - -v 1 -v g {5.5)
y E y

€ -V -v 1 g
z z

where E is Young’s Modulus and v is Poisson’s ratio (not to be confused

with the azimuthal mode number). For a simple estimate on the effects
of stress on the change of refractive index, the stre: in the
x-direction is ignored (¢ = 0). The stress in the z and ection
x
are [43]
-EZ
o, E R (5.6)
(y* - %)
o = E . (5.7)
y 2r?

It is obvious that the dominant of the two stresses is in the
z-direction since R » y. Therefore, the effect of the stress in the
y-direction can be neglected. Substituting eqns. (5.5) and (5.6) into

eqn. (5.4)
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An -av + B(1-v)

x nJ
ey - - 5% cav + B(1-v) ) (5.8)
An a - 28v

Eqn. (5.8) relates the change of refractive index to a dominant stress
in the z-direction. Therefore, the effective refractive index as seen

by a transverse electromagnetic wave travelling predominantly in the

z-direction is

3
n_ (£) = n(r) - ‘2‘% [ - av + B(1-v) ] (5.9)

The identical result is quoted in Ref. [46].
As shown in Appendix C, the introduction of the stress to the
equation does not change the ray propagation equations in a bent fiber.

It defines an effective R

2R

R -— (5.10)
"2 -t

where
0= - av + B(l-v). (5.11)

For fused silica, the values of a, B and v are [44]

a=0.121

g = 0.270

v = 0.170.
With these values, R.“ = 1.28R and 1.277R for Ao - 0.825 um and 1.3 un
respectively. Figs. 5.39 - 5.43 depict the new simulation results with

R'ft for all 5 cases. Without doubt, the introduction of R.tt reduced
[ ]
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the simulation results significantly and are more comparable to the

experimental results than before.

$5.4.5 Measurement of the modal power distribution

There is one more factor worth discussing that could explain any
remaining discrepancy and that i{s error in measuring the modal power
distribution (MPD). Two things can be noted from Figs. 5.39 - 5.43
First, the sharper contrast in comparison for cases where the mandrel
wrap was appli»d and secondly, the increasing difference in bending
losses for increasing values of R in all 5 cases. With the mandrel
wrap applied, the MPD at higher principal mode number region was found
to be reduced which resulted in a drop in simulated power loss.
However, this reduction was not significant enough to make the results
more comparable. For increasing values of R where the discrepancies
increase in all 5 cases, recall that the power loss comes from modes in
the higher principal mode number region. This could only mean that
errors are present in the MPD, especially in the higher principal mode
number region. The errors are not that significant for smaller R
because in this situation the bending losses are dominated by losses in
the lower principal mode number region which has more power than the
higher principal mode number region.

The source of error in the higher principal mode region may be due
to the fact that curve-fitting was performed prior to performing the
inverse Abel transform. Some critical information may have been lost
in the process. However, at the present time, the curve-fitting
procedure seems to be the _est alternative.

Another source of error may be due to the uncertainty in the
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magnification factor of the lens. Underestima~ing the nominal
magnification of 40 would result in too much power being assigned to
the higher order modes when eqn. (3.20) is used, and consequently the
loss would be overestimated. By using a gaussian approximation for the
near-f.eld pattern, each 1% error in the magnification has been
estimated to result in a 5% error in the loss. For example, if the
magnification is 41 instead of 40, the loss will be 12.5% too large.
Combined with the 15% experimental uncertainty in the measurement of
loss (see Section 5.2), the simulation and experiments are actually in

reasonable agreement.
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Chapter 6

Prototypes

6.1 . troduction

With the introduction of R“r, the simulation results as shown in
the previous chapter are in better agreement with the experimental
se.ults. Accuracy is not the key issue as the whole simulation model
is an appruximation. The simulation program and the other software
developed to observe the radiating patterns are simple tools to
reasonably model the radiation of light from a bent fiber. The design
of the prototypes would have involved much more guesswork without them.

This chapter deals with the design, implementation and testing of
variable tapping device taking into consideration the results obtained
theoretically and experimentally. The chapter opens by discussing the
design considerations taken into account in the development of the
prototype. In sections 6.3 and 6.4, the designs of the prototypes are

presented together with a summary of their performances.

6.2 Design considerations

As shown in the previous chapter, the bending los:ucs depend on the
modal power distribution (MPD) of the fiber. Therefore, it |1is
essentially impossible to design a prototype that will provide a
guaranteed range of tapping ratios as the MPD varies from system to
system. The goal is to implement a tapping device with the adjustable
but not guaranteed tapping ratio feature.

The insertion loss of the tap is defined as
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10 log —— (6.1)

where
P = throughput power without the tap

o

P = throughput power with the tap.
L]

The tapping efficiency is defined as
n-—--m (6.2)

where P: is the power detected by the detector chip. The main factor
that affects the tapping efficiency is the location of the detector.
From the radiating plots shown in the previous chapter, it |is
imperative that the detector chip be placed as close as possible to the
bend before the radiating beam diverges significantly. Considering the
size of the commercially available detector chips and the width of the
radiating beam, it would be impossible to obtain a 100% tapping
efficiency. The best alternative is to place the detector at the
position of maximum radiated intensity.

The two variables that affect the bending losses are the length
and the radius of the bend (hereafter referred to as R). To vary both
simultaneously would not be a practical situation as it would be
difficult to implement such a device with this feature. Furthermore,
minimizing the number of variables would lead to simpler designs and
fewer moving parts. The simpler alternative is to keep one of the two
variables fixed while the other is varied. Consider the first case of
fixing R and varying the length of the bend. Recall that propagation

of a ray in the core is periodic and if a ray does not leave the core
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within the first period, it will remain in the bend throughout. Since
a ray repeats itself at approximately every 1.2 mm (see Chapter 4), (it
ifs necessary to vary the length within this limit to obtain variable
bending losses. This is rather lmpractical. Furthermore, with this
method, it is essentially impossible to place the detector chip close
to the bend without intrusion from the fiber as the most intense
radiating beams are more or less parallel to the to z axis (see
Figs. 5.30 - 5.37). The other alternative is to keep the angle fixed
while varying R. Taking into account the size of the detector chip, it
was decided that the space provided by a 90° bend will be sufficient.
A perfect tapping efficiency cannot be achieved as the wide radiating
beam will not fall within the limits of the detector.

The remaining factor to be decided is the range of R. The range
of R is fairly arbitrary. As was shown in the previous chapter, the
bending losses vary for a specific R depending on the MPD. However,
there are two factors to remember. It is important not to bend the
fiber so tightly that stress cracking develops during the lifetime of
the fiber. Furthermore, insertion losses within 10% are desi-ed. With
those factors in mind, it was decided that R (not including the radius
of the fiber) should vary between 7 mm and 10 mm.

In designing the prot,types, the MPD shown in Fig. 5.4 was used.
As mentioned before, the most intense radiation occurs at the start of
the radiation range and it is independent of the MPD. Therefore, it is
only logical to place the detector at a location that will capture all
the initial radiated power f-tr optimum tapping efficiency. Obviously,
the location of optimum detection will vary for different R and that

requires repositioning each time the radius is changed. The simulated
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radiation patterns for R=7.125 - 10.125 mm are shown in
Fig.. 6.1 - 6.4. The refractive index of 1.50 was assumed | the
exterior. The positions of the detector were selected such that the
z-position is the same for all 4 cases wvhile optimizing the tapping
efficiency. For all cases, the tapping efficiencies were averaged

around 0.73 with the following positions:

Radius (mm) Z (mm) Y (mm) n
7.125 6.5 7 G.77 l
8:125 | 6.5 8 0.74
9.125 6.5 9 0.72
10.125 6.5 10 0.70

Table 6.1 Positions and simulated tapping efficiencies for
various radius of curvature

6.3 Prototype 1

The basic operating principal behind this prototype is to bend the
fiber around discs of different radii to vary the insertion loss.
However, to avoid the repositioning of the detector each time a
different disc is utilised, the discs are made with a fixed z-origin
and varying y-origin for all discs, see Fig. 6.5. Hence, the starting
points of the bend for different R relative to the detector are always
fixed. The prototype is made from acrylic and is shown in Fig. 6.6.
With the same experimental setup as in Fig. 5.29, the prototype was
tested using the second of the two 0.825 um laser source. The
performance of the device is tabulated in Table 6.2. A wide range of

insertion is obtainable from the prototype and the tapping efficiency
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Fig. 6.1 Simulated radiation pattern for R = 7.125 mm with the
detector at z = 6.5 mm and y = 7 mm

Rodim § 123

Detertor 1 & 30

Detector w § 00

Power dnted ted YK o
Powme om?t 4 04l
Rat 10 o 1438

Mit erge Sew ‘o aama Cunt Lrusm

Fig. 6.2 Simulated radiation pattern for R = 8.125 mm with the
detector at z — 6.5 mm and y = 8 mm
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Fig. 6.4 Simulated radiation pattern for R = 10.125 mm with the
detector at z = 6.5 mm and y = 10 mm
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ferent discs magnified 1.8X

Fig. 6.6 Prototype I with the dif



is fairly constant.

Disc radius (mm) ] Insertion loss (dB) Tapping efficiency
7 A 0.134 0.43
8 0.091 0.53
9 0.083 0.49
10 0.013 0.46

1s%le 6.2 Performance of prototype I

6.4 Prototype II

For the second prototype the inconvenience of changing discs {is
eliminated. Both ends of the fiber are fixed and it is bent around a
disc with a radius of 7 mm. The insertion loss is varied by moving the
upper portion of the fiber holder up or down, see Fig. 6.7. The
detector is positioned at the same location as the orevious prototype.
It is expected that the insertion loss will increase as more fiber is
fed into a fixed amount of space and bend the fiber more. The
predicted optimum position for the detector is : .t valid as the radiu-
of curvature is no longer constant. The prototype is also made of
acrylic and is shown in Fig. 6.8. The performance of the device is

tabulated in Table 6.3.

Insertion loss (db) Tapping efficiency
Minimum 0.129 0.325
Maximum 0.206 0.430

Table 6.3 Performance of prototype II
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Fig. 6.8 Prototype II magnified 1.8X



The secoud prototype was also tested with a fiber with a 5 um core

radius which i{s single mode at 0.825 um.

in Table 6.4.

The performance is tabulated

Insertion loss (db)

Tapping efficiency

Minimum

0.0621

0.61

Maximum

0.7370

0.34

Table 6.4 Performance of prototype II with 0.825 um single mode fiber

Without any doubt, non-intrusive tapping on single mode fibers is aiso

possible. However, the performance of this prototype with single mode

fiber cannot be explained as the theory has not been pursued.
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Chapter 7

Summary

This thesis is concerned with the modelling and experimental
verification of losses and radiation patterns of a bent multimode fiber
taking into account the modal power distribution. With that model, two
prototypes have been successfully implemented to non-intrusively tap
optical power from a live fiber.

In previously published literature on bending losses in multimode
fiber, the modal power distribution of the fiber was not taken into
account. The general approach was to assumed a lambertian source was
used to excite the fiber. However, in practical situations, it was
shown that not all modes are equally excited when the laser was the
source. Taking into account the modal power distribution, the
theoretical bending losses were still significantly different when
compared to the experimental results.

Three major factors that may contribute to the discrepancies were

discussed. 1t has been shown that the parameters of the fiber are
important in the simulation results. A change in the numerical
aperture affects the simulation results. Perhaps the most important

factor of the three is the change in refractive index of the fiber
caused by the induced strain when bending the fiber. This change in
refractive index could very well explain the discrepancy that was
mentioned by Ref. [12]. In previously published literature on
theor>tical bending losses, this effect was not taken into account
[5]-{11]. The final factor is the modal power distribution. Since the

bending losses for large radius of curvature are dominated by modes in
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the higher principal region, the near-field pattern towards the core
and cladding interface ‘- :ry critical. A better method of obtaining
th ar-tield pattern s.ould be investigated, perhaps projecting it
onto a vidicon of a measuring TV-system which digitizes the data [25].

The software to analyze the data generated from the simulation
propram provided some insight as to what sort of radiation pattern to
expect for a given radius of curvature and modal power distribution.
Although not describing the experimental situation exactly, it provided
a reasonable tool to aid in the designing of the prototypes.

Two prototypes have been designed and tested. Non-intrusive
optical fiber tapping is possible with multimode and single mode fiber.
They both provide a wide range of low insertion losses. It must be
noted that the following summary of their performances are not
guaianteed for all systems as the bending losses depend on the modal
power distribution. The summary was obtained under a particular test
condition. The insertion loss of the first prototype has a range of
0.013 to 0.134 db with tapping efficiencies varying from 0.43 to 0.53.
The second prototype has been tested to provide an insertion loss
varying from 0.129 to 0.206 db with tapping efficiencies of 0.325 and
0.430 for multimode fiber system. For single mode fiber, the insertion
loss varied from 0.0621 to 0.737 db with tapping efficiencies of 0.61
to 0.34. Both prototypes, other than being variable,are easy to
install and remove without any damage or disruption to the system.

Some suggestions for future research work are

1. explore other possibilities other than fluid to couple

light present in the jacket into the exterior.
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. use inter-digitated detectors for their larger area and

speed [47].

use better packaging with built-in circuitry and
suppression of external light.

pursue theory for bending loss in single mode fiber using

the propagating beam method.
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Appendix A
Ray Propagation in a Bent Parabolic Graded-Index Fiber
The formulas for the propagation of a ray in a bent graded-index
fiber as summarized in Chapter 2 are derived in this appendix. The
derivation is based on the local rotating coordinate system as shown in

Fig. 2.7. Recall from Section 2.3 the two general ray equations:

. 2 =
di c k
S T (A1)
dt nz(r) ©
e v '), (A.2)
2n“(x) °©
The position vector T is now defined as
T=xX+ (Rey) © (A.3)
and using the following transformation
t-4% (A.4)
£-9 (A.5)
8 -2 (A.6)
on eqn. (A.1)
%k
y x
X = ~—-—z——_.—'—- (A7)
n(r) w
cZk
: y
Y= —F= (A.8)
n(r) w
) ek
(R4y)f = ——=— (A.9)
2,
n(r) w

. JX
where x = gt and so on.

136



-
The wave vector k

K=k X+k $+x 2 (A.10)
x y 2
and using the transformations
A )
-6 (A.11)
d--4% (A.12)
on eqn (A.2)
2Aw N
K - - — L (A.13)
x nz(r) a2
28w n°
b kz ¢ = - 7 Y (A.14)
n (r) a
k +k 6= 0. (A.15)
z y
Defining the variables
ni dt
dr = P (_\ 1’)
n (r)
Q- 8. (A.17)
dlu
c
v - a (A.18)

and rewriting eqns. (A.7) to (A.9) and egns. (A.13) to (A.19) with 3}
replaced by ' (prime)

v k
. (A.19)
w
2
k' - - wa (A?O)
X
vzk
y - w’l (A.21)
K -k8 = -Quy (A.22)
b 4 z
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(R+y) 8’ - ~—— (A.23)

k +k 8 =0. (A.24)
y

Note that eqns. (A.19) and (A.20) are identical to eqns. (2.32) anrd

(2.33) in the straight fiber case indicating that the bend in the y-z

plane do. - not affect the propagation of the ray in the x-direction.
Hence
vk
X = x cos(Qvr) + —2%  sin(Qvr) (A.25)
o «Q
Qux
k =k cos(Qvr) - - sin(Qvr). (A.26)
x ox v

Substituting eqns. (A.21) and (A.23) into eqn. (A.24)

k’ ,

. Yy o

e + Rey 0 (A.27)
z

kz(R+y) = Constant (A.28)

k (R+y )

k - oz [+ (A 29)

z R+y ' )

Substituting eqns. (A.2v) and (A.23) into eg» (A.22)

2 2 2
koz v (R+y°)

K - - Qwy (A.30)
y © (R+y)3

and note that as R - =« (a straight fiber), eqn. (A.30) returns to
the same equation as eqn. (2.33) (with y replacing x).

Using eqn. (A.30) into eqn. (A.21)

v k z (R+y )2
~ ozx o
yr - —— - — - Qvy (A.31)

wz (R+y)3
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and rewriting the L.H.S of the above equation as

SR N
-5 ()

while the R.H.S as

vk (R+y )2 )
Qe oz o _ (va) )
y w? (R+y)2

| =
Q

Hence eqn. (A.31) can be rewritten as

4,2 2
) v koz(R+y°)

Y A
w? (Ry)? !

where

Manipulating the above two equations
2 v
y’ = ) { E+F +C }
w
where

E - k Z, (Qy n k )Z
oy o1lo

2 (R*yo)2
F=k 1 - —

oz (R+y)2

G = - (inkoy)z.

To approximate the solution, the term within brackets in eqn.

expanded to the first order

(Rty )*

2y, 2y
1 - —— =1-114%  —
(R+y)z R R

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.19)

(A.38) is
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2(y-y_)
- ° . (A.
Rewriting eqn. (A.38)
F = - Zk;‘y° + 2k;‘y . (A.

Completing the square on eqn. (A.36)

v? 2 2.2 k. ’
oz
Pl e YV Ly s e (A.
n k Rn"k™Q
1 o 1 o
where
&
2 k 2 2 2koz yo
oz
v - = 4 kT o+ [Qy“k] - (A.
Rznzkzqz oy 1 o R
1l o
The solution to eqn. (A.41) is
k ? ¥
y = 2°:2— + ——— sin( Qur + ¢ ) (A.
nk'Q” R n k Q
1 o 1 o
where ¢ depends on the initial conditions.
Recall eqn. (A.21) where
k - L% (A
y VZ

and since the solution for y has been presented, the wave vector in

y-direction can be determined, using eqn. (A.43) in eqn. (A.21)

ky = ycos( Qur + ¢ ) . (A.

To complete the set of equatiors, the propagation constant in

z-direction can be determined by

40)

38)

41)

42)

43)

.21)

the

44)

the
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1/2
(A.45)

2 2 2
k-[(knl) 1-2A—"——*—2Y— - K kj

a

and the distance travelled around the bend can be estimated by

r C
6 = n1R . (A.46)

Thus by using eqns. (A.25),(A.26),(A.43),(A.44),(A.45) and (A.46) the

propagation of a ray in a bent parabolic graded-index fiber can be

determined.
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Appendix B
Ray Propagation in a Bent Constant Index Media

Recall from Section 2.3, the two general ray equations:

QE - __~Eig___ (B
dt nz(;) °
e L (B,
n“(r) °

The derivation is similar te the derivation in Appendix A for

parabolic graded-index media, however in this case

v+ ni(r) = 0. (B.

Following the same procedure as before, six equations similar

eqns. (A.19) to (A.24) is derived,

¢’k
, - x
X 5 (B.
n w
k =0 (B.
b ¢
czk
, y
y — (B.
now
K -k =0 (B
Yy z
czk
(R+y)8’ = ———;—5——— (B.
nw
kX + 8k =20 (B.
z Y
where n is the refractive index of the media and x’ = g% .
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From eqns. (B.4) and (B.5),

k = Constant = k (B.10)
x ox
czk
oX
X = — t + C1 (B.11)
nw
wvhere C1 is the integration constant.
Using eqns. (B.6) and (B.8) into eqn. (B.9)
. Y
o + ®+y) - 0 (B.12)
z
kO z (R+y0)
k! - __?§:§7__ . (B.13)

Differentiating eqn. (B.6) again and using eqns. (B.7), (B.8) and

(B.13) results in a second order differential equation,

v' (R+y )2 K 2

yr - for . (B.14)
w” (Rty)

Applying the same procedure as in the derivation of eqns. (A.32) to

(A.40) in Appendix A,

5 vz 62 2v2k2
oz
yt - v = y (B.15)
n k n ko R
where
) 2 2k y
P -k =222 (B.16)
oy R
Solving eqn. (B.15)
2, 2 2
vk 2 §°R
y = :zz (t+C2) - (B.1/)
2Rn 'k 2k
[+] oz
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where Czdepends on the initial condition. Substituting the solution

for y into eqn. (B.6)

2
k w
oz

k = —— (t+C) . (B.18)
y nzk2 R 2

To complete the set of equations, the wave vector in the z-direction

can be determined by

2 2 2 1/2
k = | (kn) [1 DYt S35 AR U YL k"y (B.19)
z o - b ¢
a

and the distance travelled around the bend can be estimated (as R >> a)

by using the straight line approximation

- — (B.20)

n

) 2 2 . ] /2 ct,
[ (x,-x)" + (y,7y)) + (2,°2)) ]
where variables with subscripts ‘1’ and '2' denote initial positioi and
final position of the ray and t represents the time the ray spends in
that media. Thus using eqns. (B.10), (B.11), (B.17) to (B.20), the ray
propagation in a curved constant index media can be determined.

It can be shown that as R - » (straight fiber case), eqns. (B.17)

and (B.18) will become

c k°
y
y = — t+y, (B.21)
nw
k = Constant = k (B.22)
y oy

which is the basic ray equation in a medium of refractive index n.
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Appendix C
Effect of Stress on the Ray Propagation in a Bent Fiber

From eqn. (5.9), the effective refractive index due to a dominant

stress factor in the z-direction is

k}
n  (r) = n(r) - ; % [ - a8 + B(1-v) | . (5.9)

To obtain an analytical solution, eqn. (5.9) can be rewritten as

titr(r) = nz(r) - nzﬁ %

where

0= - aff + p(1l-v). (C.2)
Following the same procedure as in Appendix A, a similar equation to

eqn. (A.30) can be derived

k 2 v2 (R+y )2 2 wniﬂ
k' - °; °3 - QPuy - —— . (C.3)
4 (R+y) 2R
Proceeding with the new equation for k' the ~ equations as in
y

eqn. (A.36), (A.37) and (A.39) can be derived. The only modificatio

i to eqn. (A.28) which with the approximation (eqn. (A.40)) can be

rewritten as

SR n‘k’e 2K’y n‘k’6
Feo —2—2 01 —2—| + —p— |1~ ) (.4
2k 2k
o oz
Introducing the variable
R, = ____35_;_ , (€.5)
* 2 - nlﬁ

eqn. (C.4) can be rewritten as
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b 4
2. 22 ) (C.6)
off off

Eqn. (C.6) 1Is 1identical to eqn. (A.38) with Rtt instead of R.
L]
Therefore, the ray propagation equations for a bent fiber are identical

with the introduction of the stress. However, the stress introduces an

effective radius of curvature.



Appendix D

Detector Data Sheets

“ﬂ ElectroOptics Photodiode

and Devices Develogmental Types

C30807, C30808, C30809,
C30810, C30822, C30831

N-Type Silicon p-i-n Photodetectors

@ & Broad Rangs of Photosenutne
. Surtace Areas -
. 0.2 men? 10 100 mem?
l \ ® Low Operating Voltage —
. vp= &V
e

o Anti-Reflection Costed 1o Enhance

' I <0810 Rewpentivity ot 900 am
o e @ Hermeticalty Sesied Pack sges
C30807, C30809,
Cc30831 c30822 o Sgectral Rewponse Range —
(10% Paintsl
400 10 1100 am
This family of N-type sitic. 0 p-i-n photodiodes is designed Mechanical Characteristics
for use in a wide variety of broad band tow light level Photosensitive Surface:
applications covering the spectral range fcom below 400 Shape —
to over 1100 nanometers. Altypes ... ... - .- e . Cascilan
The different types making up this series provide a broad Ares - 2
choice in photosensitive areas and in time response :"' C083IT . - 02 "'"7
characteristics. Each of the types is anti-reflection coated r"" (0807 ... ... : o8 ""'7
to enhance responsivity at 900 nanometers. vpe C30806 .. ... - ' o me
Type C30822 . 20 mm?
These characteristics make the devices highly useful in Type C30809 n "0 men?
HeNe and GaAs laser detection systems and in optical Type CI0810 . . . 100 mm?
demodulation, data transmission, ranging, and high-speed
switching applications. Optical Characteristics
Feeld of View ®
See Figwe S

Maximum Ratings, Absolute-Maximum Values {All Types! Agpron Full
OC Reverse Operating Volusge, Vg . . - . - - ... 100 max. V Angle For — Voully Humenasted Pactially (Humunsted
Photocurrent Density, ip. &t 22°C: Photosansitive Surface Phototenutive Surloms

Aversge value, CONLINUOUS OPErALON . . . 5 mA/mm2 Type CI0831. : 70 84 dey

Peak vaue ... ... ... . .- L 20 mA/mm2 Type C30807 . 62 90 dey
Forward Curcent, Ig: Type C30808 7 V20 oy

Averane value, CONTINUOUS NOLTATION . . 10 max mA Yvpe C30822. . 104 144 d~

Peak value .. .. .. - 100 max mA Type CI0B07 . ... 14 148 g
Ambient Temperature: Type (30810 14 140 dny

Sworage, Tyg . . -60 10 4100 oC

Oper. T . -40 80 oC

“_m" A o 8 The values speciied Tor feeld of veew are sOPronumate nd we
Soldering: conrcally dependent on the dimenianal toler ances of 1he
Foc S seconds ... . . 200 oC PICE PR COMPONENT DI IL
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€30807, C30808, C308G

C30810, C30822, C30831

. R [ e —— —
f lectrical Characterntics Al 8 OC Reverse Opuratin, Voltage (V) = 45 Voiu®. P gain
atTp=220C Unless Otherwise Specifed

Type C30810 Vype C30822 Type C3IN831
Min. Typ. Max. Min. Typ. Max Min. Tye Max.
Greshdown Voltage, Vgn 100 - - 100 - - 100 - - v
Hewporvawity
A1 900 e 0> 06 0s 06 [+ ) 0.6 - AM
At 1060 nm [+ 015 o1 015 - o1 0.15 - AN A
Luminous Responsavity
(2856 ) 85 - = 895 - - 85 - mAAm
Quantum Effciency:
At 900 nm 10 83 - - 83 - - s} - %
At 1060 Am 12 17 - - 7 - - 17 - %
Dark Cusront, i4°
AV =10V - 8x108  axt07 - w08 sx108 - 1x109 5x109 | A
ALVR =45V .. - 3x107 15x106 - sa08  25x107 -~ 1x108 5x108 | A
See Fogure 2
Noite Current, i’
¢« 1000 Hr,
At=10H7 . -~ 3x1013 211012 - 130’3 gaotd - ex10% 4201013 | A2
See Figure 3
Noise Equivalent Power
{NEP):
1= 1000 Mz,
Ot =10 H:
A1 900 am _asx1013 36x1012 —  2a013 isxt0V2 - xiol3 8x10°13 | w12
At 1060 am . -~ 2x10'2 16xt0MY - gao'3 o2 - axi013 3201012 | wauti2
Capascitance, Cy - 70 90 - 1?7 20 - 2 2S 13
See Fougure 4
Rese Tome,
/- 50 S1.
A = 900 nm,
10% 10 90% points — 72 17 - 7 12 - 3 5 "~
£ oll Turmve
"y =50 S2
)\ = 900 nem.
90% 10 10% ponts - 20 30 10 15 - 6 10 ns
T i v v ] T 1 ] 1000 —
dracamc RN . e S
B 9 | - — —
~ ’ - — B — 44 - - v
T -~ 3
: w ol 1. I=] . 4
Y B ] Tt 1'” 3
: 5
: ’ 2‘
> -
M -
- 3
Zw o ]
¢ S
. 1
. : : 1
. . ! , i
’ . I . % i PO
. L4 4.1 l Bl L
- v . . o W’ . e ’ . . I|’.
TR RM LY T ML VNS OPLHANNG VOLTAGT vl - YOLTS
Wy eevrun Ny wwen
Fugure 4 — Typical Photodiode Capacitance
Figure 3 - Typical Noue Current vs Frequency vs Operating Voltage
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C.0807, C30808, C30809,
€30810, C30822, C30831

Elec cal Characteristics
a1 =220C

At a OC Reversc Opcrating Voltage (V) = 45 Volub,

Unless Otherwise Specifsed

Beeskdown Vollage, VgRr
Rewponsivity :
At 900 nemv . L
At 1060 m .. .. ... .

Luminous Responsivity
12856 K)

CGuantum Etlciency :
At900 am ... ...
Dark Cusrrent, ly:
AtVp= 10V
AtV =4SV
See Figuee 2
Noise Current, iy:
{ = 1000 Hz,
oAt =10 He
See Figure 3

Noise Equivalent Power
(NEP):

1 = 1000 He,
At =10 H:

A1 900 nem . .
At 1060 am _ .. ...

Capacitance . Cy . . . . . --
See Fogure 4

Rae Teme, ¢

RL‘SOQ,

A = 900 nm,

10% 10 90% ponts .
Fait Tame

R =500

A = 900 nm,

90% to 10% posnts

Yype C30807
M. Typ. Max.
100 - —
05 06 -
0.1 0.15 -
- 8s
70 83 -
12 17 -
- 209 1x108
- w08 sxi08

- 6x10''4 a2x10'%3

- w013 gxi013
- ax0'3 32x10V2
- 25 3
- 3 5
- 6 10

10
12

D The recommended range of reverse aper sting voltage Vi st TA=22°Cn 0 10 50 voits
photovoltax made. t € .3t Vi = 0 volts, some of the etec tewat characterntcs will d

e —
o) — - -
-
< .
]
£ ol -
-
<
.
by
4 [}
<
.
»
<
5 e JESUENS SR
@ 4
¢ .
14 .
¢
H ’
P ‘ ; .
4 ‘ *
<
.
4 ’ —
[ X1} B
o am L] L] e "rn

WavELinGlos Nars el TE0T

Sy eswas

Fgure | — Typecal Spectral Responsivity Chacactenistic

—

“oee

DASA CLAMEN" - avOLALY
»eee

¥ ype C308
Max, Min Typ
- 100
06 05 06
015 01 AT
85 8
83 - 70 83
7 - 12 %}
§x109  25Sa108 - 2s5x108
3x108  1sx107 - 108
1x1043 LA 1501013
192103 1 2:m0 12 %1013
65x1013  s2a1012 110 12
6 10 - 35
5 8 0
8 13 A

R
35xt0/

1iat0V?

16x1012
guto V2

20

ASRTI T Toaotmalont itar

LVIITRY

A
A

mASIn

ANt

wivt?
wireti?

ot

Howewer . when the devuces 8¢ 00T Sted i 1he
dter from thove shown

. e o et St

—

o same

Typwcal Dark Current vy Ambeent {emprratuee
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Appendix E

Corning Fiber D..ta Sheets

CORNING B o o Corguide Optical Fiber
%060 fgmﬁk 14831, USA .
Tetex 90498 Product Information
”
50125 um
LDF™ CPC3
Multimode Optical Fiber

Supersedes 987

10 Gencral

Corguide® LU i ong Distance Fiber is a graded index multimode fiber with a 50/125 um core/
cladding diameter. LOF fiber 1s specihied for operation atthe 850 nm and 1300 nm wavelengths.

CPC3 1s a mechanically strippable acrylate coating with a 250 um nominal outside diameter. ttis
primarily used in loose lube and siotted core cable designs, or overcoated for use in tight butfer
cable designs.

Typical apphcations are telephony, distribution and local networks, carrying data. vosce and/or wdeo
serwices. This product offers both the tighest bandwidth and the lowest aftenuation of any multimode
fiber type available.

20 Optical Specifications

Alten.ation:

Star gard Aaenuavon Cells:

Attenuation Cells [d8/km]
850 nm 1300 nm
s24- <30 | s06- =12
Special attenuation cells avalable upon request

Attenuation Uniformity.
No posnt discontinuity greater than 0 2 dB at ether 850 nm or 1300 nm

Attenuation Difference.

The attenuation at 1380 nm does not exceed the attenuation at 1300 nm by more than
3 0dB/km
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Bandwidth:

Standard Bandw:dth Cells:

Bandwidth Cells (MHz-km)

850 nm 1300 nm
>400 — >=1000| =400 - =1500
Special bandwidth cells availlable upon request

Core Diameter: 5S¢0 ¢+ 30 um
Numerncal Aperture 0200 ¢+ 0015

3.0 Environmental Specifications

Induced N
Environmental Test Method b—:\tjenuatlon (dB/km]
850 nm 1300 nm
Temperature Dependernce -
~60°C to +85°C =02 s02
Temperature-Humidity Cycling
-10°Cto +65°C <98% =02 <02
Reiative Humidity
Operating Temperature Range: -60°Cto +85°C
40 Dimensional Specifications
Standard Lengths: 1,100, 1.700, and 2.200 m
Special lengths availlable upon request.
Glass Geometry:
Cladding Diameter: 1250 ¢+ 30um
Core to Cladding Offset: <30pum
Cladding Non-Circulanty: <2%

) Min Cladding Diameter
Defined as: | 1 - 5, Cladding D'amelef] x 100

Core Non-Ciurculanty <6%

Min Core Diameter « 100
Max Core Drameter

Defined as: [1 -



