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Abstract

This report presents the results of tests on a full-scale two-span flat plate
supported by one interior and two edge columns with rotational restraint provided at the
plate boundaries. The test was designed to examine how well the Bond Model, as
proposed by Alexander and Simmonds, describes the mechanics of shear transfer in flat
plates. It also examines the validity of North American Standards and the Bond Model in
predicting the behavior of edge connections. Internal vertical shears were calculated from
strain measurements on the flexural reinforcing bars.

The Bond Model describes a connection as radial strips attached to the column.
The mechanism of shear transfer described by this model results in a lower bound
solution for the capacity of a single radial strip, referred to as nominal capacity. The
capacity of the connection is assumed equal to the sum of the capacity of its radial strips.

Test results strongly support the mechanics of shear transfer described by the
Bond Model. However, at failure, not all radial strips were loaded to their nominal
capacities. Such behavior in which some radial strips do not reach their nominal
capacities is called non-proportional behavior. Non-proportional behavior is prevalent in
edge connections and eccentrically loaded interior connections, and may occur in
concentrically loaded interior connections as a result of, for example, column or panel
rectangularity.

On the basis of these tests and the extensive test results available in the literature,
a model, called Strip Model, is proposed to describe the behaviour of both interior and
edge connections. The Strip Model addresses the non-proportional behavior and provides
a reliable estimate of the ultimate capacity of flat plate-column connections.

Moment-shear interaction diagrams for the capacity of edge and eccentrically
loaded interior connections are developed. The Strip Model and the North American
Standards are compared to 40 tests on the edge connections and 43 tests on the
eccentrically loaded interior connections reported in the literature. Both approaches
provide a safe prediction of the ultimate capacity. However, the Strip Model is
considerably more reliable. The behavior of the two tested edge connections was
consistent with the Strip Model and not with the code prediction.
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1. Introduction

1.1 The Goal

Reinforced concrete flat plate slabs are a common economical form of high rise
construction. The absence of capitals, drop panels, or projecting beams simplifies
formwork, and allows the application of interior finishes directly to the soffit of the slab.
The ultimate strength of such structures is governed by the ultimate capacity of their
connections. Failure of the column-plate connection is called punching failure.

The goal of the study is to develop a general mechanical model capable of
explaining the ultimate behavior of slab-column connections over a wide range of relevant
parameters such as geometry (including plate perforations), flexural reinforcement,
concrete properties, and load combinations. Such model should lead to a simple design
procedure without significant loss of accuracy in its ability to predict the ultimate load.
The assessment of existing structures requires an accurate model as the decision to
strengthen or not carries a significant cost. '

Building code procedures for evaluating the punching capacity of plate-column
connections are empirically based. Defined critical sections, allowable shear stresses, and
the effect of reinforcement differ from one standard to another. Although these procedures
lead to safe designs, they do not predict failure loads, especially for cases with unbalanced
moments, with any consistency.

The Bond Model, as proposed by Alexander and Simmonds (1991) is an attempt
to develop such a model. It describes the transfer of shear between the plate and the
column in terms of the available mechanisms of moment gradient. The model combines
strut and tie behavior with the concept of a limiting one way shear stress, and provides a
reliable lower bound prediction of the ultimate capacity of a single radial strip (a strip of
the plate attached to the column). In the Bond Model, the shear capacity of a plate-column
connection is assumed to be equal to the sum of the capacities of all of its radial strips.

The Bond Model, originally developed for the interior column-plate connections,
has the potential of providing a general solution to the problem of estimating the strength
of any type of flat plate-column connections under any combination of loads. However, it
has been compared only to tests on the concentrically loaded interior column-plate
connections reported in the literature (Alexander, 1996).

The combination of shear and unbalanced moment is inevitable at edge
column-plate connections, and may occur at interior column-plate connections as the
result of unequal spans, unequal loads on adjacent panels, or as a result of lateral loads.
Extending the Bond Model to these issues is the problem addressed in this study.

1.2 Objectives and Scope

The primary objective of this study is to examine how well the Bond Model
explains the behavior of the flat plates, especially in cases with unbalanced moment, and to
make modifications to the model, where necessary. Of particular interest is to see whether
at failure all radial strips can be loaded to their shear capacity. Secondary objective is the
comparison of failure loads predicted by the modified bond model (called Strip Model),
and ACI 318 and A23.3 (referred to as North American Standards) with the test results on
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both the edge column-plate connections and the eccentrically loaded interior column-plate
connections reported in the literature.

Certain column-plate connections that would be deemed unsatisfactory to resist a
given shear-moment loading using North American Standards may be deemed satisfactory
using the Bond Model. Not surprisingly, no tests could be found in literature that were
designed specifically to examine this contradiction. To provide such data, a test on one
full-scale two span specimen consisting of two edge column-plate connections and one
interior column-plate connection was undertaken. Slab continuity was modeled with
rotational restraints on the boundary of the test specimen. The specimen was loaded
monitonically to failure with 32 point loads stimulating uniform load on the slab. The
flexural reinforcement of the plate was designed and detailed in compliance with
A23.3-M84. A total of 116 strain gauges were installed on the flexural reinforcement to
provide data to verify the Bond Model.

The gross geometry and the effective depth of the two edge connections were the
same. However, the design moments and hence the reinforcement ratios were different.
This results in a contradiction between the Bond Model and the North American
Standards, and permits the study of the effect of the reinforcement on the punching
capacity of the edge connections. Among other objectives of the experimental work were
the study of the performance at the service load, and also yielding of bars perpendicular to
the free edge.

This study is limited to interior and edge column-plate connections and does not
include corner column-plate connections. Only plates orthogonally reinforced for flexure
are considered. The behavior of the plates with shear reinforcement is also outside the
scope of this study.

1.3 Outline

Mechanics of shear transfer in flat plates as described by the Bond Model, and how
to determine the internal vertical shears based on the strain measurements of the flexural
reinforcement are presented in chapter two.

In chapter three, the experimental program is described. Details of the specimen,
the apparatus, and the ancillary tests are explained. Finally, predictions of the ultimate
capacity of the specimen by the Bond Model and by the North American Standards are
determined.

Test results and observed behavior are presented in two chapters. Test procedure,
flexural results, yielding of steel perpendicular to the free edges, and serviceability
considerations are explained in chapter four. Internal shears and torsional moments are
determined in chapter five.

Measurement of internal shear shows that even for the interior connection, not all
of the radial strips were loaded to their maximum capacity. Test results also revealed new
facts about the distribution of the torsional moments in flat plates. These observations
resulted in the discovery of a substantial difference between the tests in which loads are
applied through a load distributing system and tests with enforced deformation.

In chapter six, a non-linear finite element analysis is used to verify some of the test
outcomes based on the strain measurements. On the basis of the test results and the finite



element analysis, behavior of the radial strips and the distribution of shear and torsional
moments along their side faces are discussed in detail.

In chapter seven, a modification of the Bond Model, called Strip Model, is
proposed. First, a general lower bound solution for the capacity of the concentrically
loaded interior connections is derived. Then, moment-shear interaction diagram for the
capacity of both the edge and the interior column-plate connections are derived. Also,
other considerations regarding the evaluation of the flexural capacity of the radial strips
are presented.

Finally, in chapter eight, predictions based on the Strip Model and the North
American Standards are compared to the tests on the edge and interior connections
reported in the literature.



2. Background
2.1 Mechanics of Shear Transfer
2.1.1 Shear Transfer in One-way Flexural Systems
In a reinforced concrete flexural member, neglecting the tensile force of the
concrete, bending moment is expressed as the product of the steel force, T, and an
effective moment arm, jd. One-way shear is the gradient of bending moment along the
length of the member, and consists of two components (Equation 2.1).

= _ALID g dL 7, LD [2.1]

Shear resulting from a gradient in tensile force acting on a constant moment arm is
referred to as beam action. It requires bond force between steel and concrete, and is
reasonably modeled by a critical nominal shear stress. Beam action is characteristic of
slender flexural members (B-regions).

Shear resulting from a constant tensile force acting on a varying moment arm is
called arching action. It requires only remote anchorage of the reinforcement and, unlike
beam action, the transfer of shear flow will not be prevented by the inclined cracks. Shear
transfer by means of arching action is usually associated with deep beams and regions
adjacent to discontinuities or disturbances in either the loading or the geometry of the
member (D-regions).

2.1.2 Shear Transfer in Flat Plates

In a two-way flexural system, shear is transferred by two mechanisms, namely
bending shear and torsional shear. Bending shear, produced by gradient in the bending
moment, is directly analogous to shear in a one-way flexural member, and plate-column
connections have the characteristics of both D and B regions. Torsional shear, produced
by gradient in the torsional moment, is unique to two-way flexural systems. Alexander et.
al. (1995), studying the behavior of flat plate-column connections, emphasize the
importance of the torsional moments on the redistribution of shear in the vicinity of a
plate-column connection.

It is generally agreed that arching is the dominant mechanism of shear transfer in
the radial direction. At the column face, a D-region, the nominal shear intensity by far
exceeds the critical stress that would be consistent with slender behavior. Measuring
compressive strains of concrete, Kinnunen and Nylander (1960) conclude that any model
of a slab column connection must have an equivalent of arching action in the radial
direction in order to be consistent with concrete strain measurements. Strain
measurements by Shehata, reported by Regan and Braestrup (1985), also suggest arching
action in the radial direction. In tests conducted at the University of Alberta, strain
measurements of reinforcement passing through the column are consistent with a curved
compression strut rather than a straight line (Alexander and Simmonds, 1992).

In the circumferential direction, the distribution of strain measured by Shehata was
linear, and consistent with the strains in a slender beam, B-region. It is believed that
shearing forces are transferred mostly by beam action in the circumferential direction.



2.2 Observed Behavior

Based on the observations of the other investigators (Masterson and Long (1974),
Regan (1984), and Broms (1990)), the following stages in the punching failure of a
plate-column connection are identified:
(1) Vertical flexural cracks open at the face of the column in the early stages of loading.
(2) Tension reinforcement close to the column yields.
(3) The vertical flexural cracks spread out to a relatively large area around the column.
(4) Diagonal cracks form at a load of about 50-70 percent of the ultimate load.
(5) Eventually, the slab splits apart at these previously formed diagonal cracks.

2.2.1 Description of Punching Failure

Localized failure of a reinforced concrete flat plate-column connection is described
by the term punching failure. It is associated with a particular collapse mechanism in which
the column together with an attached portion of plate push through the surrounding plate.
Failure of the connection may occur in a brittle manner before a complete yield line
mechanism, or it may progress gradually after a considerable amount of deformation and
extensive yielding of all the reinforcement.

Whether or not a folding mechanism has developed, all failure surfaces look about
the same. For concentric loading, the failure surface is usually a truncated cone or pyramid
with the fracture surface inclined at an angle of about 25 to 35 degrees with a horizontal
plane. Figure 2.1 shows a section sawn through a typical punching failure of an interior
connection.

Figure 2.2 shows a typical punching failure of an edge connection. There is a
striking similarity between the failure of an interior connection under combined shear and
unbalanced moment, and that of an edge connection as illustrated in Figure 2.3. The two
adjacent side regions show extensive torsional cracking. In an interior connection, the
punched region is confined to the area near the more heavily loaded face of the column,
and the area near the opposite face may show little or no distress.

2.2.2 Types of Failure

For two-way plates, flexural capacities are based on a yield-line analysis. Test
results on simply supported plates routinely exceed these upper bound estimates by as
much as 30 percent due to membrane forces, boundary restraints and second order effects
which allow the slab to act as a folded plate.

Punching failure may occur before or after the formation of the yield lines, and
almost all flat plate-column connections appear to fail by punching. Clyde and Carmichael
(1974) suggest that the terms "punching failure" and "shear failure" are synonymous, while
Gesund (1975) states that many tests, reported in the literature as punching failures, were
actually local flexural failures. Criswell (1974) discusses a gradual transition between
flexural and shear failures of slab-column connections. He tries to separate shear and
flexural failures on the basis of how much ductility is evident prior to fracture and whether
or not the flexural capacity of the plate is reached.

Alexander and Simmonds (1991) state that the question of whether a specimen
fails in flexure or shear should be replaced with the question of whether the failure was
concerned with the mechanism of moment capacity or moment gradient. In a reinforced
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concrete flexural member, shear is the resultant of gradient in bending moments and can be
achieved either by beam action, which requires a force gradient in the reinforcement, or by
arching action, which requires a changing internal flexural moment arm.

Force gradient in the reinforcement may be controlled by the bond strength at the
reinforcement to concrete interface, or by extensive yielding of the reinforcing bars. Bond
failure would introduce brittle quality to the failure mechanism.

Figure 2.4 shows a typical load-deflection curve for a reinforced concrete flat
plate. The shear and flexural capacities of the connection are referred to as P, and P,
respectively. Where P, is less than P, loss of bond between the reinforcement and its
surrounding concrete causes a brittle punching failure. Where P, is greater than P, the
spread of yielding away from the column reduces the force gradient in the reinforcement
and hence, the shear capacity of the connection. As shown in Figure 2.4, failure is reached
when the declining shear strength becomes less than the available flexural strength.

Alexander and Simmonds (1991) then conclude that punching failure may always
be explained in terms of shear failure (loss of force gradient in reinforcement). Those
reported in the literature as flexural failures are interpreted as ductile shear failures in
which the loss of force gradient is brought about by the spread of yielding. Those that
were considered "proper" are categorized as either shear failures due to the loss of bond,
or over-reinforced flexural failures. This explanation is consistent with the observation that
almost all flat plate connections fail by punching and that the failure surfaces look about
the same.

2.2.3 Effect of Reinforcement

The importance of top reinforcement in increasing the shear capacity of both edge
and interior connections is well established in the literature. In virtually all realistically
reinforced connections, steel through the column yields prior to punching. Steel strains are
highest in bars which pass through the column, although there may be sufficient strains to
yield the bars outside the column. In edge connections, bars normal to the free edge and
outside the column face may not yield unless they are anchored and their correspondent
bending moment is less than the torsional capacity of plate at column side-faces.

Bottom reinforcement also improves both the ultimate capacity and the ductility of
a connection. Clyde and Carmichael (1974) showed that the ultimate deflection doubled
and the ultimate load increased by 25 percent as bottom steel content went from 0 to 100
percent of the top mat. The reinforcement ratio of the top mat was set at 0.84 percent in
all their tests.

2.3 Methods of Estimating Punching Capacities

Analytical models may be categorized in four groups based on their failure
criterion; concrete rupture models (including most code procedures and plasticity
approaches), flexural models, the Truss Model, and the Bond Model.

Concrete rupture models assume that something similar to diagonal tension failure
in beams governs punching failure in plates. Due to the appearance of punching failures,
diagonal tension may seem to be important in limiting shear strength. However, these
cracks typically form at loads less than 70 percent of the ultimate loads (Broms, 1990) and
the connection is stable in this crack condition and may be repeatedly loaded and unloaded
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(Regan and Braestrup, 1985). These observations are supported by tests by Kinnunen and
Nylander (1960). Test specimens that were fabricated with pre-formed conical punching
surfaces completely surrounding the column showed at most only about 25 percent
reduction in capacity.

In upper bound plasticity approaches, concrete fracture is described by some yield
criterion for concrete. The plasticity approach assumes a fracture surface of a particular
form and derives an energy expression that describes rupture along this surface. This
expression is then minimized by employing variational calculus. Regan and Braestrup
(1985) note that the plasticity approach predicts that a critical vertical shear stress on a
critical section should be a good parameter for describing punching failure.

The position of this critical section and the value of critical shear stress vary from
one code to another. It is not clear how concrete rupture models can be reconciled with
the test observation that diagonal cracking does not lead to punching. However, the fact
that code procedures work is evidence that something like beam action is at work within
the plate. The concept of a critical, nominal shear stress is easily justified if the ultimate
load is governed by the horizontal shear stresses resulting from bond.

Flexural punching models for plate-column connections assume a fan-like
mechanism of wedge-shaped sections of slab. The failure criterion may be based on a
yield-line analysis, as in Gesund (1975) or it may be based on a critical condition in the
concrete compressive block, as in Kinnunen and Nylander. The yield line approach is
criticized by Long (1975) as not being consistent with the observed behavior of
plate-column connections. The limiting strains proposed by Kinnunen and Nylander have
been criticized as not being realistic. In addressing some of these concerns, Broms (1990)
uses a variation of the Kinnunen and Nylander model incorporating failure criteria for the
concrete that are more justifiable. The model, however, remains essentially a flexural
mechanism that is controlled by rupture of the compressive block near the face of column.
Very little attention has been given to the location where the failure surface intercepts the
tension reinforcement of the plate (Alexander and Simmonds, 1991).

The Truss Model (Alexander and Simmonds, 1986) assumes that a slab column
connection can be idealized as a space truss composed of steel tension ties and
straight-line inclined concrete compressive struts. The Truss Model is most like a flexural
model, except that it assumes failure to be governed by conditions where a concrete strut
meets its steel tie and not where the strut meets the column. The rationale behind this
model is that punching failure results from the failure of the plate to confine the
out-of-plate component of a compression fan. In principle, the Truss Model can handle a
wide variety of problems, including the shear-moment interaction of edge column-slab
connections. However, estimates based on this model rely on an empirical prediction of
the angle of the compression strut. To remove the empiricism from the estimate of the
angle of the compression strut, Alexander and Simmonds (1991) reexamined the Truss
Model approach. Test results showed that the geometry of the compression strut was a
curved arch rather than a straight line. This led to the development of a new mechanical
model called the Bond Model that retains the desirable characteristics of the Truss Model,
and is consistent with the experimental measurements of strain.



2.4 The Bond Model

2.4.1 Description of the Model

Bond Model describes the transfer of load between the plate and the column in
terms of the two fundamental mechanisms of shear transfer, beam action, and arching
action. For convenience, as defined in Figure 2.5, the plate is divided into radial strips and
quadrants. In the quadrant, consistent with the test observations, shear transfer is
governed by beam action as illustrated in Figure 2.6. Inside the radial strips, shear is
carried by a compression arch, and varies from a maximum at the face of the column
where the slope of the arch is large to a minimum, perhaps zero, at the intersection of the
arch and the reinforcing steel where the slope is small. The shear that was carried by the
arch at the face of column must be dissipated in a direction perpendicular to the arch at
some distance away from the column. The rate at which shear can be dissipated
determines the curvature of the arch.

The capacity of a radial strip is limited by two independent quantities, namely the
flexural capacity of the radial strip and the ability of the plate to generate bar force
gradient by which the strip is loaded. Anything that reduces or limits either of these
quantities will affect the capacity of the radial strip.

Since beam action requires a force gradient in the reinforcement, failure may occur
if the force gradient exceeds its limitation. The term Bond Model is used because bond
strength is the most important limitation on force gradient for those connections that fail
prior to widespread yielding. However, the model describes a complete load path, and
does not preclude other possible failure modes such as loss of bond due to extensive
yielding of reinforcement, failure of concrete compression strut at the face of the column,
or the anchorage failure of the tensile tie of the arch.

Shear capacity of a connection is assumed to be equal to the sum of the shear
capacities of its radial strips. The ultimate capacity of the connection is governed by the
lesser of the two independent capacities; the yield line mechanism load, P, and the shear
capacity of the connection, P, , as shown in Figure 2.4.

> Ly

2.4.2 Shear Capacity of Radial Strips

The most important distinction between the Bond Model and most other models is
that the Bond Model provides a lower bound estimate for the capacity of a radial strip.
There are three requirements for a lower bound solution: (1) equilibrium must be satisfied
at every point, (2) no element may be loaded beyond its relevant capacity and (3) there
must be sufficient ductility to allow redistribution of load.

2.4.2.1 Equilibrium of a Radial Strip

Figure 2.7 presents the free body diagram of a radial strip in an interior connection.
It is convenient to define the total strip moment, M,, as the sum of the M, and M’ the
bending moments at column end and remote end, respectively. The total load transferred
by the radial strip to the column is P,. Side face of the strip, forming the boundary between
the strip and the adjacent quadrant of the two way plate, is loaded by bending moment,
m,, torsional moment, m,, and shear, v. These are related by the equations of equilibrium
of a two-way flexural system ;




The quantities v, and v, are the bending and torsional shear, respectively. The
vertical and rotational equilibrium of the strip result in the following equations.

Po=2[ v +vydr=2[ vy dr+2ml [22]
Ms+2r(; m,dr=2'|.§(vl7 +v,)rdr=2ﬁ vp rdr+2[m xr]ﬁ—ZII;m, dr

. 'L .
In the latter, the torsional shear component is integrated by parts, and .[o m, dr is the net
torsion, M,, along each side face of the radial strip. Therefore,

Mo +aM, =2 [} vy rdr-+2 Im x 11 [2.3]

The actual distribution of shear forces and torsional moments on the side faces of
radial strips are not known. Bending shear always adds to the loads on the strip. However,
torsional shear removes the load from middle parts of the strip and applies it directly to the
radial compressive arch.

2.4.2.2 Simplified Model

It is convenient to consider the load, q, directly on the radial strip as part of the
load, v, on the side faces of the radial strip as shown in Figure 2.8a. In a simplified model,
Figures 2.8b and 2.8c respectively show the free body diagrams of an interior radial strip
and a spandrel strip. The direct effect of torsional moments in rotational equilibrium of the
radial strip is neglected. However, part of the effect of torsional shear is being considered
in the assumption of uniformly distributed load acting on the arch. Shear capacity in this
simplified model is referred to as nominal capacity of the radial strip. Solving the equations
of equilibrium, the loaded length, /, and the shear capacity of each radial strip, P, are as
following:

I= fm (Interior Radial Strips) [2.4]
Ps=2x m (Interior Radial Strips) [2.5]
I= m (Spandrel Strips) [2.6]
P, = m (Spandrel Strips) [2.7]

Where M, is the flexural capacity of the radial strip and w is one way shear acting on each
side face of the radial strip. Results of 115 tests on interior connections in the literature



show that limiting w to the one-way critical shear of ACI 318 (Equation 2.8) gives the
least scattered results (Alexander and Simmonds 1991).

w=0.167 x \/f_; X ( SI units ) [2.8]

2.4.3 Comparison of A23.3 and ACI 318 Values of One-way Critical Shear

The factored shear resistance currently used in Canadian Standard, A23.3, is about
85 percent of that of American code, ACI 318 (compare Equations 2.9 and 2.10). This
leads to almost equal central factors of safety (ratio of load factor to the resistance factor),
since the average load factor in A23.3 is about 89 percent of that in ACI code.

Vo= @ x 04X Jf. =0.6x04x |f. =024x 1. (CAN-A233) [2.9]

Ve=®x0333 x f, =0.85x0.333 x yf, =0.283 x Jf— (ACI318) [2.10]

In the design of flat plate-column connections by the Bond Model, using the
resistance factors of the Canadian Standard results in a shear capacity which is about 84
percent of the shear capacity using the ACI shear resistance factors (compare Equations
2.11 and 2.12). This also results in an almost equal central factor of safety.

Pscan =2 % (@5 x M) x (@ x W)

=2 x J(0.85M,) x (0.6w) =1.428 x JM, xw (CAN-A23.3) [2.11]
Poacr=2xdx ,/Ms X W
=2x0.85x JM;xw =1.7x JM;xw (ACI318) [2.12]

Observing that the ratio of P, ., to P, ., equals to the ratio of v ., to v_,., the
same one way critical shear may be used in the Bond Model, regardless of the governing
code. Hence, Equation 2.8 will be used as the critical one-way shear throughout this
study.

2.4.4 Bond Model and Building Code Procedures

Building codes and the Bond Model share the concept of a limiting shear acting on
a critical section. What distinguishes them in part is the shape, position, and size of the
critical section.

The code critical sections surround the column at a fixed distance from the column
faces. This distance differs from one code to another (Figure 2.9). The Bond Model,
however, defines shear arms that cantilever from the column, resulting in a critical section
with a cruciform shape (Figure 2.10). Where as the size of the critical sections defined by
codes are fixed, the size of the critical section used by the Bond Model is variable, being a
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function of both the flexural reinforcement of the radial strip and the ability of slab to carry
one way shear (Equations 2.4 and 2.6).

The effect of reinforcement ratio on shear capacity of the plate-column connection
is ignored by the North American Standards. British code, BS 8110, accounts for the
effect of reinforcement ratio by changing its allowable shear stress with the ratio of top
reinforcement. The Bond Model, however, accounts for the effect of both top and bottom
reinforcement since loaded length of radial strip is a function of flexural capacity of the
radial strip. To compare test results to the Bond Model and code procedures, Alexander
and Simmonds (1991) plotted the test to predicted values for 115 tests on concentrically
loaded interior connections in the literature (Figures 2.11 to 2.13).

In the presence of unbalanced moment, North American Standards assume that a
certain fraction of the unbalanced moment is carried by a linear distribution of vertical
shear stresses around the critical section. The combined effect of vertical shear and
moment is estimated as follows:

Ve , YvxM,xc
= +
Vmax pxd: 7 [2.13]

where v,q is critical stress for concrete in shear, V, is shear force transferred between
slab and column, M, is unbalanced moment, d is effective depth of reinforcement, p is
perimeter of the critical section, ¢ is the distance from the centroid to extreme points on
the critical section, and J is the polar moment of inertia of the critical section.

Consider two edge connections with the same gross geometry and effective depth,
but with different design moments. Parameters p, d, yv, ¢ and J are functions of geometry
only, and therefore are the same for both connections. According to the North American
Standards, the connection designed for the larger moment requires more flexural
reinforcement. However, based on Equation 2.13, its shear capacity is assumed to be
smaller. This contradicts the Bond Model which predicts that the more heavily reinforced
connection can be designed in a way that it also transfers more shear.

2.5 Methods of Testing

In this section, test setups reported in the literature are briefly described and
evaluated with respect to how the setup effects the observed results. Three independent
features of testing are considered; (a) whether positive moments can be generated, (b)
how loads are applied to the specimen, and (c) how realistic is the amount of
reinforcement.

By far the greatest number of tests have been performed on isolated column-slabs.
The edges of the plate may or may not be rotationally restrained. The size of the
rotationally restrained test specimens is determined by the position of maximum positive
moment (or zero shear line) of a prototype structure. The size of rotationally unrestrained
plates, however, is determined by the approximate position of radial contra-flexure of a
prototype structure.

Isolated column tests with rotationally unrestrained edges fail to model such
features as moment redistribution. They also do not consider the effect of the positive
reinforcement on the punching capacity of the flat plate-column connections.
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Based on the method of the load application, there are two types of the isolated
column tests. With the first type, the load is applied through the column and the slab is
supported at fixed positions. In effect, the supports control the displacement of the slab
relative to the column. With the second type, the magnitude of the individual loads applied
to the slab are controlled directly.

Tests with controlled load on the plate are not equivalent to enforced deformation
tests, in which load is applied through the column and displacements on the plate are
controlled. Assume two identical plates for which the flexural capacity in one direction is
smaller. Plate A is loaded uniformly along all the edges, and fails at the load related to the
smaller flexural capacity. Plate B, however, is loaded through the column and is supported
by line supports along all the edges. Flexural failure of this plate occurs at a larger load
than that of plate A, simply because of the redistribution of the forces along the edges.

Enforced deformation tests allow the slab a freedom in determining its own
internal force distribution that is not available to the prototype structures. The distribution
of forces along the boundary is statically indeterminate, and may be unrealistic, especially
for eccentrically loaded specimens. Yet, in most cases, these forces are not measured.

It is concluded that controlling the load distribution rather than the displacements
is always a better representative of the prototype slab. This is especially true in cases
where one expects different behavior in the two directions, as with the rectangular column
or panels.

Load in multi-column tests is always applied on the slab. Hence, similar to the
prototype structures, their flexural capacity is governed by the smaller capacity in the two
directions. Also, in multi-column tests, positive moments are generated in at least one
direction. This permits the study of the effect of positive reinforcement and redistribution
of moments on the capacity of the plate-column connections.

It has been observed that some investigators provide an excessive amount of
reinforcement in their test specimen to avoid flexural failure and to ensure that punching
failure occurs first. In these specimens, the steel might not even yield. However, in almost
all buildings, only the flexural reinforcement necessary to.provide the required flexural
capacity is provided. Therefore, to reflect real life structures, it is very important to keep
the reinforcement ratio in a reasonable range. Ideally, the test specimens should be
flexurally designed so that no reinforcement in excess of that required for flexural
equilibrium is provided.

2.6 Measuring the Distribution of Internal Shears

2.6.1 General

The first attempt to measure the internal shear forces in a flat plate structure was
based on the mechanism of shear transfer described in the Bond Model. Alexander, Lu,
and Simmonds (1995) estimated the internal shear distribution in two tests using strain
gauges on the reinforcement. The total internal shear was in excellent agreement with the
measured external load. The results provided strong support for the mechanics of shear
transfer in an interior column-plate connection, and led to a unique insight into the
importance of the contribution of torsion in shear transfer at a plate-column connection.

It is assumed that the magnitude of the torsional moment is zero at both remote
and column ends. This assumption is discussed in Section 2.6.2. As a result, sum of the
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torsional shear over the full length of each face of the radial strip becomes zero, and
Equations 2.2 and 2.3 reduce to Equations 2.14 and 2.15, respectively.

P.=2f v, dr [2.14]

M, +4M, =2 vyrdr [2.15]

The location of the radial strip is such that v, is dominated by beam action.
Therefore, estimates of integrals on the right hand side of Equations 2.14 and 2.15 can be
made based on strain measurements of the reinforcement perpendicular to the radial strip.

In cases where shear is transferred by beam action only (i.e. constant jd throughout
the interval), bending shear can be measured from readings of only two strain gauges,
using Equation 2.16, in which s is the distance between the gauges, and T is the force in
the bar. Subscripts 1 and 2 reflect the position of the gauge from the center line of the
column.

Vbar =

Li-taja, [2.16]

However, some limited arching action might exist in the first interval. In this case,
a third strain gauge is required. It is assumed that all shear in the second interval is carried
by beam action, and that the shear in the first and second intervals are equal. This results
in Equation 2.17;

MM, Tixj di-Taxjds First Interval

Vbar =

s S
Viar = I, ; Ts xj d Second Interval
Lixjdi T - T Basic Equation [2.17]

Viar =
G ¥ P

All strain gauges must lie at fully cracked sections so that T xjd will be an accurate
representation of the bending moment. Otherwise (e.g. in early stages of loading), part of
the tensile force is carried by adjacent concrete, and the forces measured based on the
gauge readings are smaller than the actual tensile forces.

2.6.2 Comments

2.6.2.1 Validity of Assumptions in Equations 2.14 and 2.15

In the derivation of Equations 2.14 and 2.15, two basic assumptions were made;
first, torsional moment on the side face of a radial strip at the remote end equals zero, and
second, the torsional moment at the column end equals zero. The first assumption is
always valid because both shear and torsion are zero on any axis of symmetry. However,
the second assumption is not necessarily true, and m, may have non-zero value at column

13



corners. This has no effect on Equation 2.15, since (m, x r) is always zero at r = 0.
However, a term of -2 m,(0) should be added to the right side of Equation 2.14.

It will be discussed in chapter 6 that at the ultimate capacity of a radial strip, the
torsional moment at the corner of a column is most likely about zero. It is worth
mentioning that it is not clear how to measure this torsional moment experimentally nor
how to predict it analytically.

2.6.2.2 Alternative Solution for Equation 2.16

Where the gauges are spaced closely, the concrete might not crack right at the
position of the second gauge. This would result in a smaller value of T,, and leads to an
unrealistically high estimate of the bar shear when using Equation 2.16.

As an alternative solution, in cases where readings of three strain gauges on one
reinforcing bar are available, Equation 2.18 which is based on the readings of the first and
the third gauges may be used.

Vear = T;;ZS Xj d [218]

Equation 2.18, in turn, may overestimate the shear if the concrete is not cracked at
the position of the third gauge. To avoid overestimation of the shear, the smaller value
from Equations 2.16 and 2.18 should be used as the bar shear.

2.6.2.3 Alternative Approach for the Derivation of Equation 2.17

Figure 2.14a shows the definition of a bar strip (a strip of plate attributed to the
bar for which shear is being measured), and Figure 2.14b shows the free body diagram of
this strip. In deriving Equation 2.17, it was assumed that the torsional moments on the
side faces of a bar strip are equal, and therefore the only mechanisms of shear transfer are
the beam action and limited arching action. In general, torsional moments on opposite side
faces of bar strip are not equal, resulting in AM; as obtained from Equation 2.19.

AM, = Ll(m, +Am;ydA - L2 mydA = IA. Am,dA [2.19]

In this part it is assumed that the only mechanisms of shear transfer are the beam
action and the gradient in torsional moments. The moment arm becomes almost constant
in the bar strip since no arching action exists. As shown in Figure 2.14c, the tensile stress
in reinforcement at critical section A is about yield stress, and is needed to satisfy the
bending requirement for the equilibrium of the plate. Tensile force at a distance "x" from
section "A" is equal to T(x). Part of this force, aT(x), is generated due to AM,, in which a
is a coefficient between zero and one, and is assumed to be constant along each bar.

Considering the free body diagrams in Figures 2.14d and 2.14e, rotational
equations of equilibrium result in Equations 2.20 and 2.21, respectively.

VbarXS=(T1—T2)de1+(1T2del [2.20]
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2X Vigr xs=(T1 - T3)xjdy +aT3 xjd [2.21]

Combining Equations 2.20 and 2.21 and eliminating o results in V,, as in Equation
2.22. This equation is exactly the same as Equation 2.17, although the assumptions made
are different. It is concluded that in the circumferential direction, where the dominant
mechanism of shear transfer is beam action, Equation 2.17 results in good estimates of V.
in the existence of gradient in torsional moments, as well as in the presence of limited
arching action.

id
s

« Ty x 22=Ts [2.22]

Vbar = 1 2 T2 — T3
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Figure 2.2 Typical punching failure of an edge connection

16




Figure 2.3 Typical punching failure of plate-column connections
with unbalanced moments
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Figure 2.4 Brittle and Ductile Punching Failures
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Figure 2.5 Layout of Radial Strips
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Figure 2.6 Shear transfer in flat plate-column connections
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3. Prototype, Specimen, Apparatus, Fabrication Procedure, and Ancillary Tests
Figure 3.1 illustrates the prototype and the region modeled by the test specimen.
The prototype is assumed to be a flat plate structure with two spans in one direction and
at least four spans in the other direction. A span length of 4877 mm (16') was selected in
both directions. Two geometrically similar edge column-plate connections and one interior
column-plate connection will be examined.

3.1 Objectives of Experimental Program

There are two main objectives for the test program. The first is to create the data
so that the distribution of the internal shear and torsional moments in both edge and
interior connections can be determined. Subsequently, this data is used for verification
and/or improvement of the Bond Model. The second is to examine how well the Bond
Model and the North American Standards predict the behavior of edge connections with
different design moments.

By determining the distribution of internal shears, two main assumptions of the
Bond Model can be verified, namely, that w can be treated as a uniformly distributed
one-way shear, and that at failure, all radial strips reach their ultimate capacity. Also, of
interest is the contribution of the torsional moments to the flexural capacity of the radial
strips.

Negative moment transferred to the edge column is one of the variables to be
investigated. Two edge connections with the same geometry, the same effective depth of
reinforcement and the same concrete properties, but with different design moments, will
have different flexural reinforcement. For properly detailed connections, the Bond Model
predicts an increase in both vertical shear and moment transfer with the increased
reinforcement. North American Standards, however, suggest that the ability of the
connection to transfer shear would diminish as the connection transfers larger moments.

One of the edge connections was designed for 30 percent of the panel moment.
Most designers prefer to reduce the amount of moment transferred through the edge
connections because it results in a considerable reduction in the size of the edge columns.
The other connection was designed for only 10 percent of the panel moment. Of interest is
the comparison, at service load, of these edge connections with the two extreme values of
negative design moment.

The flexural capacity of the connection is directly related to the yielding of the bars
perpendicular to the free edge, including those not passing through the column.
A23.3-M84 required that a fraction, 1- y,, of the total reinforcement be placed within c,+
3 h. This requirement has been revised in A23.3-94 so that currently all reinforcement
required for the flexural resistance must be placed within this distance. Among the
objectives of the test is to examine how effective is the top steel outside of the column.

3.2 Design Considerations of Specimen

The amount and the distribution of the flexural reinforcement was selected so that
the yield-line mechanisms would almost occur simultaneously in both directions. The test
specimen satisfied all the flexural requirements of A23.3-M84 regarding the details of
reinforcement such as cut off points, splices, hook development length, integrity steel, and
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minimum reinforcement. Comments are given where relevant provisions have been
changed in A23.3-1994 (not available at the time of specimen fabrication).

The shear requirements of the Standard, however, are not satisfied. All column
dimensions were selected so that, according to the North American Standards, the
factored shears would exceed the capacities of the connections. Spacing of the
reinforcement was selected so that according to the Bond Model, a complete yield line
mechanism would form prior to the punching failure.

To model the true behavior of a flat plate-column connection, it is important to
test a full scale specimen with accurate boundary conditions. An accurate boundary
condition is the one in which deformations and forces are measured and, their distributions
are reasonably close to that in the prototype building. Tests in which loads are distributed
over a large number of points are preferred to tests with enforced deformation. Rotational
restraints should be provided at the continuous edges to consider the effect of the bottom
reinforcement.

The testing facility introduced some limitations or certain preferences on the size of
the specimen. To facilitate setting up the test apparatus, especially those of the loading
system, span length of specimen was chosen to be modular with laboratory strong floor .

3.3 Test Specimen

3.3.1 Geometry of the Specimen

The test specimen consisted of a two panel flat plate, 4270 mm wide and 10008
mm long, supported by three concrete columns as shown in Figure 3.2. Interior column
had a 305 mm square cross section. Cross sectional dimensions of the edge columns were
305 and 255 mm with the shorter side perpendicular to the free edge. Pictures of the test
specimen and the test setup are presented in Appendix A.

So that deflection computations are not required, a slab thickness of 152 mm (6")
was selected to satisfy the requirements of clause 9.5.3 of CSA A23.3-M84. This
minimum thickness has been increased in A23.3-94 to 170 mm, a 13 percent increase.

Nominal values of f!=30 MPa for the specified compressive strength of concrete
and f =400 MPa for the yield strength of the reinforcing bars have been used in the design
of the plate. The average height of stories has been assumed to be 3.2 m.

3.3.2 Design Load and Flexural Design of Specimen

3.3.2.1 Target Design Moments

Target design moments are presented in Figure 3.3. These moments are similar to
those required by Direct Design Method, but were modified to demand increased ductility
especially in the interior connection.

Negative yield lines are the first ones to occur. According to the Bond Model, due
to the extensive yielding of bars in the vicinity of the column, the shear capacity of the
connection declines. An important issue is to observe whether the interior connection is
ductile enough to maintain its shear capacity while moments are redistributed (i.e. until all
positive yield lines form).

In an edge panel with at least three spans, the negative moment at the interior
connection is frequently taken to be 70 percent of the panel moment. The magnitude of
the negative moment at the interior column might be even 25 percent more than this value,
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if there are only two spans (Mulenga and Simmonds, 1993). However, in the N-S
direction, the interior connection is designed for only 65 percent of the panel moment,
M_ . This demands an extremely high ductility at the interior plate-column connection.

As described in Section 3.1, the negative design moments at the north and the
south edge columns were selected as 10 and 30 percent of the panel moment, M,
respectively. To satisfy equation of equilibrium, the positive moments at north and south
panels should be about 68.5 and 56.6 percent of the panel moment, respectively. The
effect of jack loads being concentrated loads rather than uniformly distributed loads has
been accounted for. Actual moment capacity provided was determined by the selection of
reinforcement as described later and are shown in Figure 3.4.

3.3.2.2 Minimum Reinforcement and Integrity Steel
Minimum flexural reinforcement is established by one of two criteria. First, steel

area of 0.002 A, is required to satisfy minimum requirements in A23.3 for shnnkage and
temperature remforcement For a 152 mm slab, this corresponds to 304 mm’ of
reinforcement per meter width of the slab.

Second, the maximum allowable spacing of reinforcing bars given by A23.3-M84
is twice the thickness of the plate or 305 mm. Placing 10M bars (A, = 100 mm’) at the
maximum spacing provides reinforcement of 328 mm’ / m, which is greater than that
obtained from shrinkage and temperature considerations. Therefore, the maximum spacing
of bottom steel will be 305 mm (12"). Note that A23.3-94 allows a maximum spacing of
three times the plate thickness for bottom bars.

To satisfy provisions for the integrity steel in the direction with two spans, two
15M reinforcing bars are provided. These bars pass through interior column and have
standard end hooks at the edge columns. In the transverse direction, two 15M and two
10M reinforcing bars pass through the interior column and each edge column,
respectively.

As shown in Figure 3.3, the positive moment in the E-W direction (0.4 M, ) is the
smallest positive design moment of the plate. Hence, the minimum reinforcement is placed
in this direction. Area of the bottom reinforcement, including the integrity steel, is
presented in Figure 3.4.

3.3.2.3 Position of Reinforcement in Cross-Section of the Plate

As shown in Figure 3.5, top and bottom reinforcing bars running in the N-S
direction were placed in outer layers to give the maximum effective depth in this direction.
The decision was based on two factors. First, as shown in Figure 3.3, the positive
moments in this direction were higher. Second, at the edge connections, a smaller number
of top reinforcing bars running perpendicular to the free edge is desired as these bars must
be fully anchored. A minimum clear cover of 20 mm is used for both top and bottom steel.

3.3.2.4 Service and Factored Loads

The factored load is calculated under the assumption that all bottom reinforcement
will yield at ultimate. The corresponding flexural resistance, M",, is calculated using
Equation 3.1.
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@, x A,
M,=(I)s><Asxfy><d—[ a Xny [3.1]
17x @, xf,x b

For d = 110 mm, £ = 400 MPa, f'=30 MPa, ¢,=0.85, and ¢,= 0.6, M’ becomes equal
to 71.8 kNm for each panel. The corresponding factored moment is as following:

M}f=04M,=04x0125xq; lLixl,y?= 5.107 x qr

where 1, = 4877 mm and 1, = 4575 mm. Equating M"_ and M/, the value of factored
distributed load, q;, equals 14.0 kKN/m’.

The service load is estimated to be 10.1 kPa, which corresponds to 3.6, 1.0, and
5.5 kPa for the self-weight, superimposed dead load, and live load, respectively. Dead and
live load factors are, respectively, 1.25 and 1.5 in the Canadian Standards.

3.3.2.5 Area and Detailing of Reinforcement
For the factored load of 14.0 kN/m’ the span moments required to satisfy the
flexural equilibrium are determined;

Mox = 0.125 X qfx lnx 2 X ly = 180.7 kNm
M,y =0125 xqrxly 2 x 1,=1787  kNm

Where 1, = I, = 4877 mm, 1, = 4600 mm, and |, = 4575 mm. The area of reinforcement
was based on the share of the panel moment assigned to the different critical sections. A
summary of the steel areas provided and the corresponding share of panel moments at
different critical sections of the plate is shown in Figure 3.4. Details of the reinforcement
are presented in Figures 3.5 through 3.11.

A23.3-M84 requires a fraction of the unbalanced moment to be transferred by
flexure over an effective slab width of c, + 3 h, where A23.3-94 requires that all the
reinforcing steel be placed within this width. For both edge connections, the reinforcement
was placed within this defined width.

To facilitate construction, a few straight bars perpendicular to the free edge were
added to the top mat of the edge connections outside the region of ¢, + 3 h. Since these
bars were not hooked at the free edge, they could generate limited negative moment and
were ignored in the calculations.

In an edge connection, top bars perpendicular to the free edge but not passing
through the column must be adequately anchored to the column through a study of their
mechanism (Alexander and Simmonds, 1987). To accomplish this, two 15M bars parallel
to the free edge (anchorage bars) were added to the top mat of the south edge connection
(Figure 3.7).

Top bars at the interior and the south edge connections are labeled as shown in
Figures 3.18 and 3.19, respectively. Each label is given as a fraction, with the numerator
equal to the number of the bar counted from the center line of the column, and the
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denominator equal to one-half of the total number of the bars in that direction (e.g. at the
interior connection, 8 bars running N-S and 9 bars running E-W).

3.3.3 Assessing the Specimen for Shear

3.3.3.1 Factored Shear at the Connections

For a load of 14 kN/m? the total load on each span, W, equals q, xI, x1 =333.4
KN. Because of unequal negative moments at edge and interior connections, the reaction
at the edge columns is less than W/2, while the load transferred from each panel to the

interior column is more than W/2. The change in column reaction, Ay, due to unequal
negative moments is calculated as follows:

_(064-012) Mo

Lnx

AVx =204 kN (North Panel)

_ (0.64-030) My,

7 =13.7 kN (South Panel)

AVa

The factored shears at north edge connection, V,, at interior connection, V,, and at south
edge connection, V,, are as followings:

Va=W/[2-AVay=1463 kN (North Edge Connection)
Va=W+AVay +AVp =367.1 kN (Interior Connection)
Va=WI/2-AVp=153.4 kN (South Edge Connection)

3.3.3.2 Shear Calculation According to the Canadian Standard

In a flat plate-column connection with no shear reinforcement the factored shear
stress at the critical section must be smaller than the allowable shear resistance of
concrete, v,, given by Equation 3.2. For ¢, = 0.6, and f;' = 30 MPa, the factored shear
resistance is 1.31 MPa.

Vo= Do x04x {fo [3.2]

In the interior connection, the average shear stress at the critical section defined by
the standard (at a distance of d/2 from column) is calculated as follows:

Vo

P xdog [3.3]

Vn =

Where d,,, =116 mm and P=2 (c, +¢,+2d) =1684 mm. The average calculated shearing
stress is 1 88 MPa, approximately 43 percent more than the allowable shear specified in
A233.
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Substituting p = 1047 mm, d,_ = 116 mm, y, = 0.365, ¢ =93.6 mm, and J=1.389

3 Mavg

(10°) mm* into Equation 2.13 gives the factored shear stress for either edge connections.

VM

Vr=121.0 T 20.66 [3.4]

Where ¥, and M, are in kN and kNm, respectively. At the north edge connection, V, =146
kN and M, = 21.68 kNm. The factored shearing stress, Vo becomes 1.74 MPa, about 33
percent more than the factored shearing resistance of concrete.

At the south edge connection, ¥, = 153 kN and M, = 54.2 kNm. The factored
shear stress, Vs is 2.60 MPa, about twice the factored resistance of concrete.

3.3.3.3 Shear Capacity According to the Bond Model

According to the Bond Model, the shear capacity of a flat plate-column connection
is assumed to be equal to the sum of the shear capacity of the radial strips attached to the
column. The shear capacity of each radial strip is a function of its flexural capacity, M,,
and the ability of the slab to transfer one way shear, w, and is calculated from Equations
2.5, 2.7, and 2.86. Shear calculations according to the Bond Model are summarized in
Table 3.1.

The factored shear resistance of the north and south edge connections are 185 kN
and 198 kN respectively, which are greater than the calculated factored shears (¥, = 146
kN and ¥, = 153 kN). The factored shear resistance of interior connection is 352 kN
which is slightly less than the factored shear /, = 367 kN.

3.3.4 Other Detailing

The loading system required a total of 12 holes in the test specimen as shown in
Figure 3.2. A row of four 90 mm diameter holes along the center line of the columns
allowed long rods to pass through the slab. The function of these rods is explained in
Section 3.4.3. No additional reinforcement was required around these holes.

The remaining eight holes had a diameter of 75 mm, and were located in two rows
1220 mm on either side of the center line of the specimen. These holes accommodated
load rods that were used to support the slab after punching of its connections. Two 15M
reinforcing bars per hole were placed in the top layer and in each direction to provide the
required negative moment resistance.

Figure 3.14 shows the details of the rotational restraint provided to the continuous
edge. Reinforcing bars of the bottom mat aligned in the E-W direction were extended 400
mm (16") beyond the concrete edge of the specimen so that the edge restraining system
could be mounted. To prevent crushing of concrete, 45 by 30 mm angles anchored with #3
US bars were embedded at concrete along the continuous edges. To avoid acting as
reinforcement in negative moment region, these angles were discontinuous in the middle
of the plate. Also, to avoid stiffening the slab, the vertical legs of the angles were cut in 1
m intervals.
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3.4 Test Apparatus

3.4.1 Supports

The lower end of the columns, representing mid-height of the columns of the
prototype were designed to act as hinges. This was accomplished by a series of knife
edges, load cells, and rollers as illustrated in Figure 3.12. These rollers were used so that
horizontal load cells would measure the full horizontal reaction of the columns.

While horizontal compressive load cells were used in the lower end of all three
columns, horizontal tensile load cells were used in the top ends of the two edge columns.
To minimize the second order effects in the measurement of the vertical loads, the
compression load cells at the base had spherical heads, and each tensile load cell was
connected to its concrete column and to the steel frame by a relatively long pin-end
member.

Lateral stability was provided by bracing the lower half of the edge columns with a
Watts mechanism located at 550 mm below the mid-height of the slab.

3.4.2 Edge Restraining System

3.4.2.1 Design Considerations

The continuous edge of the specimen, representing mid-span of the prototype,
must be rotationally restrained, ideally to provide the angle of rotation of zero. The edge
restraint system was designed so that its capacity would be at least 1.5 times the bending
capacity of the continuous edge.

The edge restraint system consisted of two main parts; extension arms and
transverse ties. These are shown in Figures 3.13 and 3.14. This restraint system will work
for any combination of loads where the positive moments along opposite restrained edges
are equal. :

So that the specimen would not be flexurally stiffened by the edge restraining
system in the direction parallel to the continuous edge, extension arms were connected to
the transverse ties by relatively long threaded rods.

3.4.2.2 Extension Arms

Extension arms consisted of C 150 x 12 sections mounted on either a pair of 10M
bars or on one 15M integrity bar as shown in Figure 3.14. An angle (L 125 x 125 x 8) was
welded to the channel to work as the compressive support. A hollow section (HSS 102 x
51 x 4.8) was used to transfer the tensile force in the reinforcing bars to the channel.
Reinforcing bars were passed through holes in the hollow section and were welded to a
plate bearing on the hollow section. Tests on the weld detail were conducted to ensure
that the reinforcing bar could reach its ultimate strength before weld failure.

To transfer the weight of the extension arm directly to the slab, the angle was spot
welded to an embedded angle (L 35 x 30 x 4) at the edge of the specimen. The extension
arms were connected by transverse ties to the corresponding ones along the opposite edge
at a level of 810 mm (32") above the top surface of the slab.
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3.4.2.3 Transverse Ties

Transverse ties included tensile load cells to measure the force in the ties to
determine the positive moment along the continuous edges, and a method for adjusting the
force in the ties to maintain zero rotation along the continuous edges. The corresponding
positive moment could be calculated from the measured force.

Each transverse tie consisted of a round hollow section (HSS 48 x 2.8) in series
with a load cell and a 560 x 50 x 6.3 plate, illustrated schematically in Figure 3.13. The ties
connected opposing groups of two or three extension arms, linked together by HSS 127 x
51 x 4.8 sections as shown in Figure 3.13. Wooden chairs supported the self-weight of the
ties. Forces in the ties could be controlled by adjusting threaded rods that connected the
extension arms to the HSS 127 x 51 x 4.8 sections.

3.4.3 Loading System

Figure 3.16 shows a schematic plan of the loading system. Load was applied by
means of four 900 kN actuators each in series with a compressive load cell supported by a
steel frame, as shown in Figure 3.17. Each jack applied load to a distributing beam
(member A in Figure 3.16). The distributing beam could be tied to the strong floor by
means of long threaded rods, permitting repair or adjustment of a jack while maintaining
the same level of deflections of the specimen. The compression load cells were prestressed
with a force of 50 kN so that a tensile load up to 50 kN could also be measured.

A statically determinate system was used to distribute the load of each jack equally
to eight load points. Figure 3.15 shows the details of the connections, and Figure 3.16
shows the position of the load points. Since all connections are hinged, the load
distributing system can adapt to differential displacements in the slab over the loaded area.
For any vertical displacements, the horizontal distance between the points on the slab will
change. Rubber pads and ball bearings were used at the load points to allow for this
relatively small horizontal movement of the plate between the load points.

3.5 Instrumentation

3.5.1 Strain Measurements

Figures 3.18 to 3.21 show the layout of the strain gauges. Gauges placed on the
top bars at the interior and the south edge connections are labeled in Figures 3.18 and
3.19. One hundred and sixteen electrical resistance foil strain gauges with a nominal
resistance of 120 ohms and a gauge length of 5 mm were used. At each gauge location,
the deformations of the reinforcement were ground smooth. Grinding was restricted to the
smallest area that would permit placement of the gauge. All gauges on the top mat were
attached with an epoxy adhesive prior to tying the reinforcement and placing it in the
forms. Gauges on the bottom mat, however, were installed after tying the bottom steel in
the form. This avoided damage the strain gauges while handling the long bottom bars.
M-Bond 200, a fast hardening glue containing methyl-2-cyanoacrylate, was used for these
gauges.

After soldering of lead wires, all gauges were covered with a layer of flowable
silicon to provide electrical insulation. This was followed by a thick patch of conventional
silicon sealant being confined to the immediate area of the gauge in order to lessen the
effect on the steel-concrete bond.
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3.5.2 Load Measurements

All vertical loads and reactions were measured, thereby allowing an overall
equilibrium check. A total of seven load cells were used for vertical loads. Five more load
cells were used to measure horizontal reactions of the columns. In addition to the above
commercial load cells, eight load cells were fabricated for use in the transverse ties of the
edge restraining system. These fabricated load cells each consisted of a full bridge
arrangement of strain gauges installed on coupon shaped steel plate.

3.5.3 Deflection Measurements

Twenty-six vertical and sixteen horizontal Linear Variable Differential
Transformers (LVDTs were used to measure the deformations of the specimen. Figure
3.22 illustrates the location of these LVDTs.

Vertical LVDTs were used to measure the deflection of the slab. These LVDTs
were placed on the laboratory floor. Wires were strung to the bottom surface of the plate.

Horizontal LVDTs were used to monitor the rotation and the overall expansion of
the plate. These LVDTSs were mounted on eight wooden extension arms hanging down
from the west edge of the plate and were located at two levels; 152 and 456 mm from the
bottom surface of the plate. Wires were strung across to the corresponding positions on
the extension arms of the east edge of the plate.

All LVDTs were installed after stripping the bottom forms and the removal of the
scaffolding. Therefore, they measured only the deformations due to jack loads. The
rotation at the continuous edges and the overall expansion of the plate under the
self-weight and the superimposed dead loads were not measured. However, the vertical
deflections of the plate under the dead loads were determined by surveying 57 points on
the slab. These points were different from LVDT points because of the interference of the
bench marks with the location of the loading system. Results of the survey were
interpolated to establish the initial deflections at the location of the LVDTs.

3.5.4 Recording and Monitoring Data and Loads

Two Fluke 2400B data acquisition units, each connected to a personal computer,
were used to record the readings of strain gauges, load cells, and LVDTs. A third
computer was used to monitor the jack loads graphically. Jack loads were also monitored
by four separate gauges responding to the oil pressure.

3.6 Fabrication Procedure

The bottom portions of the columns were cast up to the level of the plate soffit.
These were then placed on top of the supports, and were braced against steel columns
connected to the strong floor. The slab formwork was erected and supported by
scaffolding, which consisted of steel frames with adjustable legs and heads, aluminum
joists, and aluminum beams. Forming plywood was used for both side and bottom forms.
Holes were drilled in bottom form to pass the strain gauge wires through, and in the side
forms to let the bars pass through.

A professional crew was hired to place and finish the concrete for the slab to
ensure uniformity of the slab thickness. Extra care was taken to make sure that the top and
bottom mats were tightly fixed in position and that the strain gauges were well protected
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prior to concreting. After finishing, the test specimen was sprayed with a curing
compound.

The upper portion of the columns were cast, the load distributing beams were
assembled and placed on top of the slab, the edge restraining system was installed, and
horizontal column supports were assembled.

Just prior to the removal of the scaffolds, the load cells and strain gauges were
connected to the data acquisition system. An initial set of readings was taken to establish
reference zero values for strain and load. At this point, the entire test specimen rested
solely on the scaffolds, and the three columns were not bearing on their supports. Using a
level, a survey of the slab established the undeflected shape. The strain gauges were then
disconnected and the form was stripped.

Forms were removed at 28 days from casting. After stripping, the strain gauges
were reconnected to the data acquisition system and a set of readings was taken. A second
survey of the slab established dead load deflections.

The steel loading frame was built over the specimen. Jacks and related load cells
were installed and the hydraulic system was connected. The LVDTs were positioned and
connected to the data acquisition system. A third survey of the slab established reference
deflections for the LVDTs.

3.7 Ancillary tests

3.7.1 Reinforcement

The plate was reinforced with 10M and 15M deformed reinforcing bars with
nominal area of 100 and 200 mm?’, respectively. All steel was cut and bent from 12 m long
bars of one heat so that the material properties for all bars of the same size were the same.
Tension tests were performed on two sample coupons for each size. As presented in Table
3.2, on the basis of nominal area, 10M and 15M bars had static yield stress of 423 and 426
MPa and ultimate strength of 614 and 624 MPa, respectively. For convenience, a yield
stress of 420 MPa will be used. The modulus of elasticity was 194000 MPa for 10M and
187500 MPa for 15M bars. Typical load-strain plot of the coupon tests is shown in Figure
3.23.

Columns were reinforced with 20M reinforcing bars with nominal area of 300 mm’
and the nominal yield stress of 400 MPa. Stirrups were made from #3 US deformed bar
with nominal area of 70 mm?. No testing was required on column reinforcement.

3.7.2 Concrete

Normal density concrete with a specified slump of 70 mm and a specified design
strength, !, of 30 MPa was obtained from a local supplier. Results of the compression and
split cylinder tests at different ages of the concrete are shown in Table 3.3. Cylinders were
nominally 150 mm in diameter and 300 mm in length.

Concrete for the columns was mixed at the laboratory and had a nominal 28 day
compressive strength of 30 MPa.

33



3.7.3 Tests on Reinforced Concrete

To predict the bending moments at different cross sections of the plate based on
the strain gauge readings, four narrow beams with the same concrete thickness and
reinforcement ratio as the test specimen were tested with the load configuration shown in
Figure 3.24. Details of the arrangement of the steel in each beam are also illustrated in this
figure.

For each beam, two strain gauges were mounted on each bottom reinforcement.
These gauges were located at two cross sections in the constant moment region.
Transverse bars were placed at these sections as crack initiators.

All beams were tested at 56 or 57 days from casting, before the start of the main
test. Moment-strain diagrams for these beams are illustrated in Figures 3.25 to 3.28. The
moment-strain relationship for each beam is modeled with a bilinear or trilinear curve.

For each beam, the yield moment was calculated based on the yield strain
determined in the tension tests on the reinforcing bars, and is plotted on the moment-strain
diagram. These points are in close agreement with the beam test results, except in the case
of beam 3, the shortest and the widest of all, which shows much higher yield moment than
the predicted value. The second relationship in Equation 3.7 is revised in accordance with
the calculated yield moment.

Beam 1 (2M15, s =150 mm, outer layer): [3.5]
strain < 2154 M = 0.00936 x (strain) (kNm)

strain > 2154 M = 0.00046 x (strain) + 19.17 < 25.49

Beam 2 (2M15, s =150 mm, inner layer): [3.6]
strain < 1998 M = 0.00883 x (strain) (kNm)

strain > 1998 M = 0.00053 x (strain) + 16.59 <22.73

Beam 3 (2M15, s = 200 mm, outer layer): [3.7]
strain < 1933 M = 0.01043 x (strain) (kNm)

1993 < strain < 4838 M=19.6 (kNm)

strain > 4838 M = 0.00053 x (strain) + 17.04 <26.65

Beam 4 (2M15, s = 100 mm, outer layer): [3.8]
strain < 2045 M = 0.00885 x (strain) (kNm)

2045 < strain < 8791 M = 0.00044 x (strain) + 17.19
8791 <strain < 15300 M = -0.00021 x (strain) + 22.9
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3.8 Predicted Capacity of Specimen Based on Tested Material Properties

Based on the measured material properties and with resistance factors equal to
one, the shear capacities calculated by the Bond Model and by ACI 318 are compared to
the shears corresponding to the yield line mechanism loads.

3.8.1 Predicted Shear Capacity of Specimen Based on the Bond Model

The shear capacities of the connections of the specimen based on the Bond Model
are summarized in Table 3.4. Because of 15M integrity steel, passing through the columns,
the bottom mesh of reinforcement was not uniform. Determination of M,", hence, requires
an appropriate estimate of the average spacing of the reinforcement involved in the
positive moment of the radial strips. The area of steel used in Table 3.4 is based on the
average ratio of steel within the column width plus 1.5 h on each side of the column.

3.8.2 Predicted Yield Line Capacity of Specimen and Related Shear Forces

The yield line capacity of the specimen is calculated based on three independent
flexural capacities: (a) of both panels in the y direction, 2M, , (b) of the north panel in the
x direction, M, , and (c) of the south panel in the x direction, M,,,. Table 3.5 summarizes

these calculations. The predicted yield line load, q, is the smallest load calculated based on
these three flexural capacities, 18.8 kPa. The corresponding shear at each connection is;

V,=196.8 kN (North Edge Connection)
V,=4922 kN (Interior Connection)
V,=206.5 kN (South Edge Connection)

3.8.3 Predicted Shear Capacity by North American Standards

The shear capacity of the interior connection based on the ACI model is 384 kN.
For the north edge connection, the shear and the moment at the yield line mechanism are
equal to 196.8 kN and 29.5 kNm, respectively. Hence, the eccentricity, e, is equal to 0.15
m, and M in Equation 3.7 may be replaced with 0.15 V. This results in a shear capacity for
north connection, V,, equal to 164 kN. Similarly, for the south connection ¢ = 73.9 /
206.5 = 0.358 m, resulting in a shear capacity of 115 kN.
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Table 3.5 Yield Line Capacities of the Specimen; f.' = 34.8 MPa, f = 420 MPa

Position of | Area of | Width | effective | Moment®| Panel Load
Reinforcement | Steel b depth (kNm) | Moment q
(mm) | (mm) | (mm) (KNm) | (kPa)
Both Top 7200 6249 108 301.9 2 Moy q,
Panels
Y Bottom | 4000 | 10000 | 110 180 | 4819 | 1887
Direction
North 600 124 610 29.5
North Connection
Panel |™"\iq-pan | 3200 | 122 | 4270 | 1568 | Mon %
X
Direction 248.6 19.26
Interior 3200 124 2438 154.1
Connection
: Interior 3200 124 2438 154.1
South Connection
Panel |“Npqcoan | 2600 | 122 | 4270 | 1285 | Mee %o
X
Direction 242.5 18.78|
South 1600 124 812 73.9
Connection

*  Resistance factors equal to 1.0

Table 3.6 Shear Capacity of the Specimen in kN; {' = 34.8 MPa, f = 420 MPa

Yield line Mechanism | North American The Bond Model
q=18.8 kPa Standards
North Connection 197 164 256
Interior Connection 492 384 489
South Connection 206.5 115 276
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4. Observations and Test Results
4.1 Test Procedure
The test specimen was loaded in five stages: (1) self-weight and super imposed
loads, (2) preliminary loading, (3) loading up to the service load, (4) loading up to the
failure of the interior column-plate connection, and (5) retest to failure of the edge
column-plate connections.

4.1.1 Self-weight and Super Imposed Loads

Figures 4.1a and 4.1b show the equivalent uniformly distributed load versus the
deflection of the specimen measured by LVDT at point F (Figure 3.22). Point 1 on these
diagrams relates to the dead load (3.48 kPa) at 28 days from casting. Deflections at this
point were measured by surveying the slab. Deflections at point 2, correspond to the
self-weight of the slab plus the weight of all the apparatus (4.32 kPa) and were measured
at day 65. Therefore, a part of the deflection between points 1 and 2 is due to the creep.
Deflections at point 2 established the reference values for the LVDTs.

4.1.2 Preliminary Loading
The purpose of the preliminary loading was to make sure that all the apparatus and

instrumentation were working. Preliminary loading started at day 65, with load increments
of about 11.9 kN per jack, equivalent to a distributed load of 1 kPa. Shortly after reaching
an average jack load of 22 kN (point 4, 6.17 kPa), the load suddenly dropped to 20 kN
(point 5, 6.0 kPa). The load was then increased to 24 kN per jack (point 6, 6.3 kPa). At
this load, all jack loads suddenly dropped to 21 kN (point 7, 6.08 kPa), and a long
continuous crack in the north-south direction was observed on the top surface. This crack
was close to the west side face of the columns, resulting in more deflection in the west
part of the plate. No crack was visible on the bottom surface. Load was then increased to
24 kN per jack (point 8, 6.32 kPa). After an hour, no further load drop was observed. The
slab was then tied down to the strong floor to make sure that the displaced configuration
would remain constant until the test resumed after the weekend.

At day 68, ties to the strong floor were released, and as anticipated, the load was
decreased (point 9) due to the creep of the specimen. The load was then brought back to
24 kN per jack (point 10, 6.32 kPa). Because cracking in the N-S direction was more
extensive than that in the E-W direction, it was felt that the specimen was not behaving as
planned. Since reinforcement strains were well below yield, the specimen was unloaded
(point 11) to take the corrective action.

Further investigation showed that the N-S crack was accompanied by considerable
rotation and deflection at the continuous edges. Also, positive moment at the continuous
edge did not increase as much as expected, showing that the edge restraint system was not
stiff enough (positive moment was only about 13 percent of the panel moment). A
decision was made to adjust the edge restraint manually.

At day 69, the edge restraint was adjusted to generate a positive moment of about
46 percent of the panel moment (point 13). The specimen was then loaded to 28 kN per
jack (point 14, 6.67 kPa). The ratio of positive to panel moment reduced to 36 percent.
To maintain the desired ratio of the positive to panel moment, the edge restraint would
have to be adjusted manually prior to each load step. By reducing the jack loads to zero
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(point 15), the prestressing force remained in the edge restraint system, and the specimen
was ready for the third stage of loading.

4.1.3 Loading to Service Load

At day 70, the specimen was loaded to its full service load. Prior to each load step,
edge restraint was adjusted so that the positive moment at the continuous edge was about
40 to 45 percent of the panel moment.

First, load was increased to 27 kN per jack (point 17, 6.58 kPa). Then loads were
applied in increments of about 6 kN per jack (0.5 kPa). At an average jack load of 50 kN
(point 18, 8.5 kPa), cracks at the top surface extended from center to the edge, on both
sides of the interior column.

The last adjustment of the edge restraint was made at point 20 to give a positive
moment of 40 percent of the panel moment at the service load level (point 21). Due to
bending of the reinforcing bars extending out of the edge of the concrete, further
adjustment of the edge restraint was not practical.

At service load (68 kN per jack, 10.1 kPa), the main cracks were measured
(presented in Section 4.6.2). The first flexural cracks on the bottom surface of the plate
were observed. The load was increased to 73 kN per jack (point 22, 10.47 kPa), and the
load system was tied down to the strong floor.

4.1.4 Loading to Failure of the Interior Connection

Loading the specimen continued on day 71. At a jack load of 104 kN (point 24,
13.06 kPa, 70 percent of the predicted yield line mechanism load), the width of the main
cracks was measured (presented in Section 4.6.2).

At an average jack load of 152 kN (point 25, 17.1 kPa), spalling of flakes of
concrete on the top surface of the slab and about 500 mm from the interior face of the
north column was observed, indicating that the north connection was near failure. The
corresponding shear and moment at the center of the north column were 176 kN, and 51.1
kNm, respectively (Section 4.3.1). At this load no spalling of concrete was observed in the
south edge connection, and shear and moment at the center of the south column were
181.5 kN and 81.0 kNm, respectively.

With a small increase in load, however, it was the interior connection that failed in
punching without any warning. Immediately after the failure of the interior connection, a
set of readings was taken (point 26 in Figures 4.2 and 4.3). At this point, what was to
become the punching failure intercepted the top surface of the slab 500 mm from the
interior face of the north column.

4.1.5 Retest of the Edge Connections

To continue testing on the exterior connections, the middle connection was
supported by the two interior jacks and a set of reading was taken (point 27). First, the
north edge connection was loaded. The load in jack #1 was gradually increased up to the
load of 185 kN, at which the north connection failed (shear of 181 kN, and a moment of
46.5 kNm). The shape of failure was almost symmetric in this connection (Figures 4.38
and 4.41).

65



The same day, the south edge connection was loaded to failure. The load in jack
#4 was gradually increased up to 248 kN, at which the south edge connection failed (shear
of 220 kN, and a moment of 88.0 kNm). Unlike the north connection, the shape of failure
of this connection was not symmetric (Figures 4.40 and 4.42).

4.2 Flexural Behavior

Based on the slope of the load-deflection curves, three stages of behavior can be
distinguished for the specimen. These stages of behavior are shown in Figure 4.1 where
total uniform load, including the self weight of slab, is plotted versus the deflection of the
slab. Throughout stage (1), the slab was generally uncracked, although there may have
been a few undetected shrinkage cracks. Part of the deflection at this stage was due to the
creep under the self-weight of slab and the weight of the load distributing system during
the period from 28 to 66 days.

Stage (2) begins with cracking around the column perimeters at the top surface. At
the beginning of this stage, the load-deflection behavior is linear and the specimen may be
described as a cracked elastic slab.

Longitudinal crack along the column line running in the N-S direction occurred
earlier than expected (point 4), causing a considerable deflection without substantial
change in load (point 10). Between steps 4 and 10, the edge restraint was not adjusted.
The ratio, o, of the negative moment to the panel moment in the E-W direction was 0.87,
considerably greater than expected (0.6 to 0.7).

Based on the load cell measurements of the negative moment in the E-W direction,
theoretical panel moments corresponding to given values of a (i.e. 0.6, 0.65, and 0.7) are
calculated. Their associated loads, called load in a specimen with ideal edge restraint,
together with the test results are plotted in Figure 4.4.

As illustrated in this figure, at the stage 2, by adjusting the edge restraint system
and therefore applying positive moment to the continuous edge manually, the specimen
was brought back to its expected range of behavior.

The plastic behavior between points 4 and 10 caused a residual displacement,
between points 16 and 2 in Figure 4.1b. The gradual adjustment of the positive moment
from point 16 and 18, recovered almost all of this residual displacement. The
load-deflection behavior became non-linear after point 18 for two reasons; (1) transverse
cracks running E-W extended to the edges, and (2) the adjustment of the edge restraint
system was stopped.

Stage (3) of the flexural behavior started with the initiation of the cracks in the
positive moment region on the bottom surface. At the beginning of this stage, the
load-deflection behavior was linear. With the development of these cracks, the slope of the
load-deflection curve decreased. This stage ended with the punching of the interior
column-plate connection at 17.1 kPa, 91 percent of the predicted yield line mechanism
load.

Figure 4.5 shows the actual load in different jacks versus the deflection of the
specimen at point F due to the jack loads. In part of the test, a plotter was connected to
the jack #1. The malfunction of this plotter caused an error in monitoring the load in this
jack. As a result, the load in jack #1 was slightly greater than that in the other jacks. To
correct the data, loading system #1 was tied down to the strong floor so that the actual
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load on the slab never decreased. With the decrease of the load in jack #1, at different load
levels, loads were measured once with the plotter connected and once without it. The
reported data are the corrected data so obtained. After the removal of the plotter, first the
load in jack #2, and then the load in the other jacks were increased to the level of the load
in jack #1. Loads in all jacks were at the same level, until the failure of the interior
column-plate connection (point 25).

As illustrated in Figures 4.2 and 4.3, right after the failure of the interior
connection (point 26), the load in the exterior jacks increased. This load (point 27) was
decreased because of seating of the supports at the position of jacks 2 and 3. The increase
in the slope of the load-deflection curve at the retest is due to the change in boundary
conditions; Jacks 2 and 3 are no longer applying load, and are acting as a supports,
reducing the span length. Compared to the north connection, the south connection
sustained considerable deflection and load capacity after the failure of the interior
connection as would be anticipated as it had heavier reinforcement.

4.3 Stress Resultants and M-V Diagrams

4.3.1 External Measurement of Stress Resultants, and M-V Diagrams

Based on load cell measurements, moments and shears at critical sections are
calculated. Selected data is presented in Tables 4.1 through 4.3. Figure 4.6 defines the
terms used, and Figure 4.7 shows free body diagrams of the specimen.

The value of the shear at each connection is equal to the column reaction minus the
weight of the column and the knife edge, about 5.0 and 7.0 kN for exterior and middle
columns, respectively.

Negative moments at the edge connections are calculated using the horizontal load
cells at the top and bottom of the exterior columns (shown in Figure 3.12);

M7, =176 xF,,,+15xF (North connection) [4.1]

1,top

M7, =176 xF,,,+1.5xF (South connection) [4.2]

3,top

As expected, the horizontal load cell at the bottom of the interior connection
showed a negligible value throughout the test. Based on the free body diagram in Figure
4.7a, the negative moment at the interior connection was obtained from Equation 4.3,
where q is the equivalent uniformly distributed load for the self-weight of the plate and the
superimposed dead loads.

- _ M+ M, V2XL_qXL_(J1+J4)_3X(J2+J3
My ==""3"—""+73 3 16 16 [43]

The negative moment at the face of the columns, shown in Figures 4.7c and 4.7d,
can be calculated for both exterior and interior column-plate connections according to
Equations 4.4 to 4.6.

M, o= M, -Vyxc /2-qxc?/2 (North connection) [4.4]
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M, e = M7, -V, xc/4-qxc*/8 (Interior connection) [4.5]
M, e = M7 - Vixce, /2-qxc?/2 (South connection) [4.6]

Figures 4.8 to 4.10 show the moment at the center of the column and the moment
at the column face versus the shear. The shear V, in these figures and in Equation 4.5 is
one-half of the total column shear.

The maximum span moment can be approximated by the positive moment at the
position shown in Figure 4.7a (Equations 4.7 and 4.8).

M* =3xLxV,/8-M" -LxJ/16-qxL}>/2 (North panel) [4.7]
M*, =3xLxV,/8-M, -LxJ,/16-qxL>/2 (South panel) [4.8]

In the other direction, positive moment M, (at the continuous edge) is equal to the
force in cross ties multiplied by the distance from tensile load cell to the center of the slab,
0.90 m. Then the negative moment at the face of the column, as shown in Figure 4.7b, is
calculated by Equation 4.9.

M, ;.. =M",-qxb2/2-Txb,/2 [4.9]

Equation 4.9 is valid until the failure of the interior connection. After punching of
the interior connection, middle jacks are used as supports. Hence, the free body diagram
shown in Figure 4.7b changes, and it is impossible to calculate M, ;, , based on the load cell
readings.

Moments at the critical sections are plotted versus the deflections measured by the
LVDTs in Figures 4.11 through 4.19. For the edge connections and for the mid-span
moments, the deflection at the position of the exterior jacks is used, while for the interior
connection and the continuous edge, the deflection at point F (Figure 3.22) is used.

4.3.2 Moment at Critical Sections Based on Strain Gauge Measurements

Moments at different critical sections of the slab were calculated using the strain
gauge readings and the moment-strain equations developed from the beam tests described
in Section 3.7.3. Moment-strain equations used for different locations of the specimen are
listed in Table 4.4. Moments based on strain measurements are listed with those based on
the load cell measurements for selected load levels in Tables 4.2 and 4.3, and are
illustrated in Figures 4.8 through 4.18.

4.3.2.1 Negative Bending Moments at the South Connection

The negative moment at the column face, M, ..., was extrapolated from moments
calculated from the measured strains of the second and the third row of gauges using the
beam 4 moment-strain relationship expressed by Equation 3.8. These moments are plotted
in Figures 4.9 and 4.13 versus the shear and the deflection under jack 4, respectively.

Figure 4.17 shows the negative moment in the y direction at the face of the south
column, M, . . This moment was estimated using the strain-moment relationship of beam

y.face*
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2, adjusted to account for the change in bar spacing from 150 mm to 200 mm. Beam 2
was used for the negative moment in the y direction, as it was the only beam with tension
reinforcement in the inner layer.

4.3.2.2 Negative Bending Moments at the North Connection

Bars perpendicular to the free edge were M10 @ 100 mm, providing the same
reinforcement ratio as M15 @ 200 mm. Therefore, Equation 3.7 was used to find the
negative moment at the column face. The only available strain gauges were located 25 mm
inside the column face, where the E-W bars would initiate the cracks (Figure 3.19).
Bending moment using these gauges is referred to as negative moment at the column face,
M,, o..» although it is slightly different. This moment is plotted in Figures 4.8 and 4.12
versus the shear and the deflection under jack 1, respectively. In the other direction, like
the south connection, Equation 3.6, with a minor adjustment for spacing was used for

M, ... (Figure 4.16).

4.3.2.3 Bending Moments at the Interior Connection

Second row of gauges, 75 mm outside the column face (refer to Figure 3.18), was
used to calculate the negative moment at the face of the interior column, M, ., .. Since the
amount of shear, V,, is known by the vertical load cell, the amount of negative moment at
the column face can be calculated by Equation 4.10.

M2,face = Mlnd set of gauges + V xXe [4 10]

Where e is the distance between the two sections. Equations 3.5 and 3.6 were used to
calculate moment in the x and y directions, respectively.

4.3.2.4 Positive Moments in_the x Direction

The spacing of the reinforcing bars in the bottom mat in the x direction varied in
column and middle strips (Figures 3.20 to 3.21). To calculate the positive moments in the
north panel, M", , and in the south panel, M",, both Equations 3.7 and 3.8 were used.
Note that Equation 3.8 is valid for 15M bars at 100 mm (e.g. integrity steel), and Equation
3.7 is good for 15M bars at 200 mm, or 10M bars at 100 mm. Equation 3.7 is also good
for larger spacing of the reinforcement because of the small size of the compression block
and hence insignificant change of the internal moment arm. Positive moments at the north
and the south panels are presented in Figures 4.14 and 4.15, respectively.

4.3.3 Validity of Gauge Readings

Accuracy of the moment calculations based on the strain measurement of
reinforcement is directly affected if the gauge is located at an uncracked section. In such
sections, since part of the tensile force of the internal force couple is transferred by the
concrete, the tensile force and hence the bending moment is underestimated. At low load
levels, cracking has not spread to a large area, and many gauges lie at uncracked sections.
With increase in load, the cracked region expands to include a larger number of the
gauges, and calculated moments become more realistic.
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All strain gauges were functional during the course of the test. Validity of the
moments calculated based on the strain measurements can be determined by comparison
to the load cell measurements. Comparisons of internal measurement of bending moments
with their corresponding external measurement at selected loads are listed in Tables 4.2
and 4.3. Figures 4.20, 4.21, and 4.22 illustrate the ratio of moments calculated from strain
gauge readings to the moments measured by load cells for the north, the south, and the
interior connections, respectively. _

As anticipated, after sufficient cracking, this ratio was less than one with the
exceptions of the negative moments in the x direction at the face of the north column,
where this moment was calculated from strain gauges that were 25 mm inside the column
face, and at the face of the south column where this moment was extrapolated from the
results of the second and the third row of the gauges.

Near the end of the test, or more accurately speaking, near the formation of a yield
line mechanism, the ratio of internal measurement to the external measurement of
moments becomes very close to one. The only case that this ratio is more than one is the
moment at the column face of the north connection, M,, ... This is due mainly to the
position of the gauges in this connection (25 mm inside the column face).

Near or at failure of any given connection, moments based on the internal
measurements were in excellent agreement with those based on load cell measurements as
listed in Tables 4.2 and 4.3. At the sections where yield line mechanism formed, these
moments are very close to the predicted yield line moments based on the tested material
properties.

4.4 Deformations along Continuous Edges

Deformations along the continuous edges were measured to define the boundary
condition and to examine how well the edges of the specimen represent the midspan of the
prototype building, especially at the service load level.

The overall expansion of the plate and the end rotation was calculated at eight
points along the continuous edge (Figure 3.22) from the readings of 16 LVDTs.
Deformations calculated this way are due only to the jack loads, because these LVDTs
were installed after stripping the forms.

The top row of the LVDTs was located 229 mm (9") below mid-height of the
plate, and the bottom row was 305 mm (12") below the top row. As a result, overall
expansion at the mid-height of slab is calculated by the following equation;

Mid-height overall Expansion = 1.75 x Top LVDT - 0.75 x Bottom LVDT

Average of the overall expansions along the edge is plotted in Figure 4.23 versus
the vertical deflection. A negative sign means that the distance between two
corresponding points on the continuous edges decreased during the test.

The difference between readings of the top and the bottom LVDTs divided by the
distance between them (305 mm) gives the sum of the rotation of both edges in radians.
This total rotation is averaged along the continuous edge, and is plotted in Figure 4.24
versus the deflection of the specimen. Also, in Figure 4.25 the average jack load is plotted
versus the average total rotation along the continuous edge. .
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4.5 Yielding of Steel Perpendicular to the Free Edges

As shown in Table 4.3, the maximum negative moment (load step 25) at the
interior face of the north edge column reaches the predicted yield moment. At the south
edge connection, the maximum moment (load step 30) was 60.6 kNm, only 82 percent of
the predicted yield moment.

In Figure 4.26, the distributions of strain and stress of the steel perpendicular to
the free edge of the south edge connection are plotted for selected stages of loading, at a
section 25 mm inside the column (first row of gauges). At service load levels, the
reinforcement was not yielded. Ultimately, all reinforcing bars inside the column width
yielded, while those outside the column width did not yield. Based on the strain gauge
readings, the maximum moment associated with bars on each side of the column was 14.7
kNm. Similar results, illustrated in Figure 4.27, were observed at the north edge
connection. The maximum moment associated with the reinforcing bars on each side of
the column was 11.7 kNm. This value is slightly smaller than that of the south connection,
as two 15M bars were provided in the south connection as anchorage bars.

The area of anchored steel placed outside of the column perpendicular to the free
edge was four times greater in the south connection than in the north connection. The fact
that the maximum moments generated by these bars were more or less the same in both
connections and were really limited by the torsional capacity of the plate at the side face of
the column, suggests that the moment capacity of an edge connection might be
independent of the area of the steel provided outside the column width. This is not
considered in the North American Standards.

Another observation in the north column-plate connection is the large strains,
approximately 14500 microstrain at ultimate, in the two bars within the column width.
This strain was large even before punching of the interior connection (approximately,
13000 microstrain). The strains shown in Figure 4.27 increased slightly after the failure of
the interior connection (load step 26), and then decreased significantly (load steps 27 and
28). This decrease in strains required a complete unloading of the two bars within the
column width.

4.6 Serviceability Considerations

4.6.1 Deflections

In general, two deflections must be considered; (a) immediate deflection due to
specified live load, and (b) deflections due to sustained load and live load. The latter,
however, can not be considered in this study.

The maximum deflection of the specimen due to loads between the stages 16 (the
self-weight and other superimposed dead loads) and 21 (specified service live load), given
in Table 4.1, is equal to (16.9 - 6.1) = 10.8 mm for the north panel and (14.4 - 6.1) = 8.3
mm for the south panel. The maximum deflection can be expressed as L / 450, and is less
than the requirement given in A23.3 of L / 360, where L = 4880 mm is the span length.
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4.6.2 Crack Widths

According to the commentary to the Canadian Standard, at service loads and for
interior exposure, crack widths should be less than 0.4 mm. -

Crack widths on the top surface of the slab measured at the service load of q=10.1
kPa, and at a load of 13.06 kPa are shown in Figures 4.28 and 4.29, respectively. As
shown in Figure 4.28, at service loads, the maximum crack width in regions with top
reinforcement was about 0.4 mm for the north and the interior connections, and 0.25 mm
for the south connection. These cracks are considered satisfactory according to the
Standard.

In regions of negative curvature but without top reinforcement, the crack widths
were as high as 1.0 mm. To avoid such wide cracks, it is recommended that, in addition to
the flexural reinforcement, some minimum top steel be placed in these regions. Whether
this additional steel is effective in resisting bending moments is not clear and requires
further investigation.

In Figures 4.30 and 4.31, crack patterns at the bottom surface of the slab are
shown at service load (10.1 kPa) and at 13.06 kPa load, respectively. The width of these
cracks was less than 0.1 mm.

4.7 Disposal of the Specimen

After failure of all three connections, the instrumentation underneath the slab was
removed. Scaffolding was placed under the slab. The lateral supports were removed. The
edge restraining system was dismantled. Using the loading system with jacks pulling the
slab slightly upward, the knife edge assembly, load cell, and roller underneath each column
was removed and replaced with steel.

The load system, and the steel frames were dismantled, leaving the specimen
resting on the scaffolding. The slab was then cut into four parts by a local contractor,
because it was too heavy for the existing 10 ton crane and too large for a truck load. This
also allowed observing the crack pattern at different cross sections of the punched area.
Figure 4.34 shows the position of the cut lines.
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day 65 Self-weight plus superimposed dead load
day 65 Longitudinal crack running N-S formed.
day 69 Adjusting the edge restraining system started
day 70 Transverse crack running E-W formed.
day 70 Last adjustment of the edge restraint
day 70 service load; Positive cracks formed.
day 71 Failure of interior connection

* Deflections are at point F in figure 3.22.
** Effects of self-weight of specimen and superimposed dead loads are

included in both

axcs.
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Figure 4.1a Load-deflection diagram - full loading history
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Preliminary loading afterdjusting the edge restraint
Loading to about service load

Loading up to failure of interior connection

* All dates are after casting the specimen

Figure 4.1b Load-deflection diagram - enlarged portion
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Figure 4.2 Load in jack #1 versus the deflection of the specimen
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Figure 4.3 Load in jack #4 versus the deflection of the specimen
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Figure 4.4 Load-Deflection Diagram - Ideal Edge Restraint
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Figure 4.5 Load in jacks versus deflection of specimen
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Figure 4.6 Definition and position of loads and moments
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Figure 4.7 Free Body Diagrams
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Figure 4.8 Moment -shear diagrams of the north connection
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Figure 4.9 Moment -shear diagrams of the south connection
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Figure 4.10 Moment-shear diagrams of the interior connection
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Figure 4.11 Negative moment in the x direction at the face of the

interior column versus deflection of the specimen
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Figure 4.12 Negative moment in the x direction at the face of the
north column versus the deflection of the specimen
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Figure 4.13 Negative moment in the x direction at the face of the
south column versus the deflection of the specimen
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Figure 4.15 Positive moment in x direction, south panel
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Figure 4.16 Negative moment in the y direction at the face of the
north column versus the deflection of the specimen
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Figure 4.17 Negative moment in the y direction at the face of the
south column versus the deflection of the specimen
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Figure 4.19 Positive moment in the y direction at the continuous

edges versus the deflection of the specimen
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Figure 4.20 Comparison of the external measurements with the
internal measurements in the north connection
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Figure 4.21 Comparison of the external measurements with the
internal measurements in the south connection
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Figure 4.22 Comparison of the external measurements with the
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Figure 4.23 Overall expansion at mid-height of the continuous edge
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Figure 4.25 Average load in jacks versus the rotation of the continuous edge
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South Edge Connection

Strain (Microstrain)
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=]

i

loading: e —-. straight bars
(2 ) Dead load, 4.32 kPa bars with end hook
(21) Service load, 10.1 kPa
(25) Before punching of interior connection, 17.1 kPa
(26) Right after punching of interior connection
(31) Punching of exterior connection

Figure 4.26 Stress and strain distribution for bars normal to the
free edge - south edge connection
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Figure 4.27 Stress and strain distribution for bars normal to the
free edge - north edge connection

93




Free Edge North

i
0.40 T
025
0.25
O @)
0.40
1.00
1.00
1.00

100 | Region with top
075 | reinforcement

q 075 /—O—

0.25
0.25 0.25
o 010 2
— (=]
= ? o s o ol =79 7,—6/:
8 33 33 Soa 5 333
0.10
0.40 .
. ' p Continuous Edge
O @) O g
0.50
0.60 /
0.90
0.75
0.50
O 025 [O O
0.10
0.25
0.10

Figure 4.28 Crack widths in mm at service load, q = 10.1 kPa, top surface
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Figure 4.29 Crack widths in mm at the load of 13.06 kPa, top surface
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Figure 4.30 Crack pattern underneath the slab at service load, g =10.1 kPa
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Figure 4.31 Crack pattern underneath the slab at the load of 13.06 kPa
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Figure 4.33 Deflection of specimen
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Figure 4.34 Cutting specimen into pieces
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Figure 4.35 Crack pattern around interior column, load stage 2 in
table 4.1 ( crack widths less than 0.1 mm)

Figure 4.36 Punching of interior connection
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Figure 4.37 Crack pattern around north edge column, load stage 2
in table 4.1 ( crack widths less than 0.1 mm)

Figure 4.38 Punching of north connection
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03

Figure 4.39 Crack pattern around south edge column, load stage 2
in table 4.1 ( crack widths less than 0.1 mm)

Figure 4.40 Punching of south connection
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Figure 4.42 Side view of punching of south connection
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5. Internal Shear Forces and Torsional Moments

In this chapter, strain gauge measurements are used to calculate internal shears and
torsional moments. Results of tension tests on reinforcement given in Section 3.7.1 are
used to calculate the force gradient in the reinforcement. Results of the reinforced
concrete beam tests given in Section 3.7.3 are used to determine the bending shear
associated with each reinforcing bar, called bar shears, and to provide a detailed analysis
of the mechanisms of load transfer in the interior and the south column-plate connections.

Internal shears so obtained are compared with the shears measured by the load
cells and reported in chapter 4. Test results are then discussed, and the shear transfer in
the test specimen is explained. In this regard, an important distinction between different
types of testing is addressed.

5.1 Test Results

5.1.1 Force Gradient in Reinforcement

Force gradients are used to assess the average bond between the reinforcement and
its surrounding concrete. According to clause 12.2.2 of A23.3-94, the minimum
development length for 15M deformed bars in tension are 468 mm and 328 mm,
respectively for bars in the outer (N-S) and inner (E-W) layers where the clear cover was
20 mm, £, = 420 MPa, and f' = 34.8 MPa. These correspond to average force gradients of
180 and 256 N/mm? respectively. In the negative moment region, top bars in both
directions are in tension. As a result of this biaxial tension, the critical average bond (or
force gradient) of plates is expected to be smaller than the above values. T

1—13
2xs ’

was calculated for reinforcing bars at the interior and at the south column-plate
connections. T is the tensile force in the reinforcing bar, and its subscript refers to the
position of the gauges as shown in Figures 3.18 and 3.19. The results are plotted in
Figures 5.1 through 5.4 versus the deflection of the specimen (refer to Section 3.3.3.5 for
the bar designations).

At the interior connection, comparing Figures 5.1 and 5.2, the force gradient of
bars running in the N-S direction were greater than those of the bars running in the E-W
direction, and were near their critical values as given by A23.3-94. At the south
connection, the force gradient of bars running E-W were greater than those of the bars in
the N-S direction.

Force gradients over the first and second intervals are plotted in Appendix B.
These Figures are not used in this investigation. However, they might be useful in future
studies, and are presented for completeness.

The average force gradient based on the first and the third row of gauges,

5.1.2 Internal Shear Forces, and Torsional Moments - General

5.1.2.1 Equations to Calculate Bar Shears

Bar shear can be calculated using Equations 2.16 through 2.18. These equations
require an estimate of the internal moment arm, jd. As an alternative these equations are
rewritten in terms of moment as Equations 5.1 through 5.3. Values of moments are
estimated using strain gauge readings and the strain-moment relationships developed from
the beam tests (Section 3.7.3).
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Vbar Ml st [5.1]
M MM
M -M;
Vbar = 2% s [53]

Equations 5.1, 5.2, and 5.3 are each valid over a limited range. Equations 5.1 and
5.3 are correct if beam action dominates. Equation 5.2, however, accounts for some
additional shear carried by arching action between sections 1 and 2 or by gradient in
torsional moments.

To be valid, all equations require that the slab be cracked. These equations will
underestimate the bar shears prior to cracking at section 1. Equations 5.1 and 5.3 require
cracking at sections 2 and 3, respectively, and will overestimate bar shears if this is not
satisfied.

For example, compare these equations for a given M, = 0.5 M, . The values of
(V,.xs) / M, are plotted versus the ratio of M, over M, in Figure 5.5. With the yielding of
a bar at section 1, M, becomes almost constant, and the x and y axes in Figure 5.5 become
non-dimensional indicators of M, and V,, respectively.

It can be seen that the three equations coincide at point B, where gauge readings
are consistent with shear transfer by beam action [M, = 0.5 (M, + M,)]. Where M, is
greater than the average of M, and M,, Equation 5.2 (BC) accounts for the extra shear
carried either by arching action or by the gradient in torsion.

In cases where gauge 2 does not lie at a fully cracked section, values of M2 are
underestimated and Equation 5.1 overestimates the shear (segment FB in Figure 5.5). In
this range, Equation 5.2 also results in an unrealistic estimate of shear (segments FG and
HB in Figure 5.5). Hence, where M, is smaller than the average of M, and M,, Equation
5.3 is used. The following equations describe the governing segment ABC that is used to
process the test results in this thesis.

M1 M2 M3 M +M;
> ———
Vier = ML=M3 Otherwise [5.5]
2xs

For different values of M, /M,, Figure 5.6 graphically describes the Equations 5.4
and 5.5. In cases where gauge 3 does not lie at a fully cracked section, M, is
underestimated, and hence V,_ is overestimated. This overestimation is not a problem at
the ultimate as the strains become large enough to crack section 3.

5.1.2.2 Equations for Internal Shears and torsions
The shear transferred through a radial strip is calculated by adding the shears
associated with all the bars perpendicular to this strip. An internal measurement of the
shear transferred by a connection is obtained by summing shears of all of its associated
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radial strips. This sum is compared to the shear measured by the load cells, an external
measurement of the shear.

The net torsion along side faces of a radial strip is calculated using rotational
equation of equilibrium of the radial strip. Rewriting Equations 2.14 and 2.15 in terms of
individual bar shears, total shear of each radial strip and the torsional moment on each side
face of the radial strip can be calculated using Equations 5.6 through 5.8. In these
equations, r; is the distance of bar i from the column face.

Py=2 21 Veariy [5.6]

M, = % 12 Viargy X Py~ M; for interior radial strips [5.7]
i=1
n

M, = % [2 3 Viariy % 7y — My for spandrel strips [5.8]
=1

5.1.3 Internal Shear Forces, and Torsional Moments - Interior Connection

In Figures 5.7 and 5.8, calculated bar shears ( V,, ) of the interior connection are
plotted versus the deflection of the slab at point F, illustrated in Figure 3.22. This
deflection is due to jack loads only and does not include the deflection under self-weight
and super imposed loads. The strain gauge data, however, do include the effect of the
dead loads.

The top mat at the center column, as shown in Figure 3.18, consists of sixteen
15M bars in the outer layer running N-S, and eighteen 15M bars in the inner layer running
E-W. Bar 1, the first bar from the column center in each direction, passes through the
column, and is assumed to contribute only to the flexural capacity, M,, of the radial strip.
It is assumed that the remaining bars in each direction transfer all the load from the
quadrant to the radial strips. Of these, the outermost bars, 8 and 9, were not expected to
contribute significantly to the shear transfer and were therefore not gauged.

Shear transferred through the N-S radial strips is calculated by adding the shear
attributed to bars running E-W. Similarly, shear transferred through the E-W radial strips
is calculated by adding the shears of bars running N-S. Assuming that the contribution of
bars 8 and 9 is negligible, the sum of these shears should be equal to the total load
transferred through the connection. The internal shear so obtained together with the
external shear are plotted in Figure 5.9 versus the deflection of the plate.

It is observed in Figure 5.9 that at a deflection of about 9 mm, the external
measurement of shear was in excellent agreement with the internal measurement of shear.
The ratio of the internal to the external shear varies between 0.875 and 1.11, having an
average of 1.013. This ratio is plotted versus the deflection in Figure 5.15.

Figure 5.9 shows that the N-S radial strips transferred a smaller load than did the
E-W radial strips, although their shear capacity according to the Bond Model was
essentially equal. At a deflection of about 9 mm, the N-S radial strip carried only about 35
percent of the total load. Towards the end of the test, this ratio dropped to about 25
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percent. This means that E-W radial strip transferred three times more load than did the
N-S radial strip.

Based on the calculated bar shears, the total torsional moment, M,, on the side
faces of the radial strips was determined using Equation 5.7. Defining positive torsion as
that which adds to the bending capacity of the radial strip, M, is plotted in Figure 5.10
versus the deflection at point F. It can be seen that while torsional moment on the side
faces of the E-W radial strip increases the shear capacity of the strip, the torsional moment
on the side faces of the N-S radial strip decreases the shear capacity of this strip
(Approximately, three quarters of one 15M bar capacity within the N-S radial strip was
used to carry negative torsion on the two side faces of this strip).

5.1.4 Internal Shear Forces, and Torsional Moments -South Edge Connection

As shown in Figure 3.19, the south connection was reinforced with four 15M bars
perpendicular to the free edge on either side of the column center line. These bars were in
the outer layer (running N-S) and were spaced 100 mm apart. Bar number 1 passes
through the column and was totally used in providing flexural support to the interior radial
strip. Bar 2 was placed exactly on the boundary of column and slab. It is assumed that half
of this bar participated in transferring shear to the radial strip and the other half added to
the bending capacity, M,, of the interior radial strip. Bars three and four were responsible
for transferring part of the shear to the spandrel strip.

Referring to the E-W reinforcing bars, four 15M bars participated in equilibrium of
spandrel strip: two as main reinforcement; and two anchorage bars as illustrated in Figure
3.7. The next six bars (bars 3/9 through 8/9) were gauged so that bar shears could be
calculated. It is assumed that the shear contribution of the last bar, 9/9, was negligible. In
Figures 5.11 and 5.12, shears for individual bars, V,_, are plotted against the deflection of
the slab at point B in Figure 3.22.

In Figure 5.13, the amount of shear transferred through each spandrel strip is
compared to the shear passing through the interior radial strip. The total internal shear
(two spandrel strips plus the interior radial strip) can be compared with the external shear
measured by the vertical load cell located under the south column. The shear transferred
by each spandrel strip was only about 10 percent of the total shear throughout the test.

The ratio of the internal shear to the external shear is plotted in Figure 5.16. It can
be seen that after a deflection of only 1.7 mm, corresponding to a distributed load of 5.5
kPa (including self weight of slab), the two measurements are in excellent agreement. For
deflections in excess of 1.7 mm, the ratio of internal to external measurement of shear
varies between 0.882 and 1.219 and has an average of 1.00.

Net torsion along the side faces of the radial strips are calculated using Equation
5.7 for the interior radial strip and Equation 5.8 for the spandrel strip. The fact that
spandrel strips were transferring a small portion of the load suggests that, as shown in
Figure 5.14, very high negative torsional moments are applied to their interior side face,
and implies that a considerable part of the bending capacity of the spandrel strip is used up
by these torsional moments.
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5.2 Discussion

It is shown in Sections 5.1.3 and 5.1.4 that the shear estimate entirely based on
strain gauge readings consistently and accurately matches the total load measured by load
cells. Agreement of internal measurements with the external measurements strongly
suggests that the assumed mechanism of shear transfer is fundamentally correct in both the
interior and the edge connections. However, the fact that one strip carried more shear than
the other one, especially in the edge connection, indicates that the capacity of the
connection can not be determined simply by adding the independently calculated shear
capacity of each strip. Torsional moments become very important in estimating the shear
capacity of each strip, and may reduce the bending capacity of the radial strip, even in an
interior connection. This has implications for different testing techniques which will be
discussed in the next section.

5.2.1 General

5.2.1.1 Comparison of Different Test Methods

The fact that, at ultimate, the radial strips might not necessarily be loaded to their
nominal capacities (Equations 2.5 or 2.7) is closely related to the nature of the test. In the
current test, the load distributing system maintained nearly equal loads at eight load points
per jack. More importantly, the deflected shape of the slab was not constrained by the
loading system. Therefore, more possible mechanisms of failure could form in the
specimen.

In enforced deformation tests, however, the loading system dictates a certain
pattern for the deformation of the specimen. As a result, the loads at different load points
are not necessarily equal, and provided that the load carrying mechanisms are sufficiently
ductile, all radial strips meet their maximum capacity.

For example, consider the interior connection shown in Figure 5.17a. If equal
deformations are imposed at the load points, the only kinematically admissible yield line
mechanisms are those shown if Figures 5.17b and 5.17c (or their combination). In these
mechanisms, each radial strip may be considered as a separate test, and will be loaded to
its maximum capacity. However, in a test with equal applied loads, in addition to the
mechanisms 1 and 2, the yield line mechanism shown in Figure 5.17d may form. In this
case, a single negative yield line, in the direction with smaller capacity, forms the
mechanism. Note that the first two mechanisms are the upper bound solutions of the latter,
and therefore, similar to the prototype plate, the third mechanism is the governing one.

In the particular case where conditions in both directions are identical, the loads in
an enforced deformation test might be relatively equal in all load points, and the test
realistically models the prototype. However, it is difficult to ensure equal strength and
stiffness in both directions, and inevitably, slab is stiffer in one direction than in the other.
As a result, mechanism 3 is more typical of a structure with uniformly applied loads.

5.2.1.2 Shear Transfer in Plates with Different Stiffness in the Two Directions

Figure 5.18 examines mechanism 3 in more detail. Both the loading and the gross
geometry of the specimen are symmetric about a diagonal axis. However, if the slab is
stiffer in the N-S direction, the deflections will not be symmetric about a diagonal axis. In
particular, the deflection at D will be greater than that at A. Since the slab must satisfy
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equilibrium in both the N-S and the E-W directions, lack of symmetry about a diagonal
axis implies that the shear transfer mechanisms in the N-S direction are not the same as in
the E-W direction. Within each quadrant, more shear is transferred by beam action in the
stiffer N-S direction than in the E-W direction. As a result, load in strip 1 exceeds its
nominal capacity while strip 2 is not loaded to its nominal capacity.

The flexural strength of the strip 1 is augmented by reinforcement outside this strip
because they have not been fully used for shear transfer to strip 2. This contribution of
bars outside the column, as shown in Figure 5.18b, may be interpreted in two ways: (a) by
assuming a larger width for the strip 1, and hence increasing the flexural capacity, M,, of
the radial strip, or (b) by considering the torsional moments along the side faces of the
radial strips in the rotational equilibrium. While the second method leads to a more
convenient way of describing the behavior, the first method results in a practical approach
for estimating the shear capacity of the connection. The magnitude of the torsional
moment is equal to the flexural capacity of the contributing bars outside the column.

In summary, beam action is a stiffer mechanism of shear transfer than arching
action. In a stiff direction, that is, one in which curvatures are relatively small, the
dominant mechanism of shear transfer is beam action. In a flexible direction, the dominant
mechanism of shear transfer is arching action.

5.2.2 Interior Connection

5.2.2.1 Different Behavior of the Radial Strips

Internal measurement of shear revealed that the N-S radial strip behaved differently
from the E-W radial strip and from what was expected. It was loaded less by its adjacent
quadrant, and the overall torsional moment on the side faces of the radial strips was in the
opposite direction of the bending moments.

From Figures 4.32 and 4.33, it can be seen that the midspan deflections along the
column lines were not the same in the two directions. The experimental evidence suggests
that the zero rotation requirement at the edge was not enforced. Larger deflection at point
D, non-zero rotation at the continuous edge, and also the early formation of the N-S crack
suggests that the plate was much stiffer in the N-S direction. As a result, as described in
Section 5.2.1.2, a large portion of the load was transferred in the N-S direction to the
E-W radial strips.

Different behavior of the radial strips in the two directions, was a direct result of
the inadequate stiffness of the edge restraining system. In practice, the behavior of the
radial strips may be different as the structure may have: (1) unequal spans, (2) large
openings, (3) rectangular column, (4) unequal capacity of the radial strips, (5) difference in
the arrangement of the reinforcement in the two directions, (6) concentrated loads, and (7)
line loads (e.g. walls or partitions).

Specimens with any of these features should not be subjected to enforced
deformation tests because the capacity of the connection in these tests might be larger than
that of the prototype building.

The Bond Model solution, with its assumption of adding the capacity of the
individual radial strips, is a lower bound solution for enforced deformation tests only.
Another solution using bond model will be introduced in chapter 7. This method will
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provide a lower bound solution for a real structure, even where the behavior of the radial
strips are different in the two directions.

5.2.2.2 Interaction of a Radial Strip and its Adjacent Quadrant

The direction of the torsional moments along the side face of the radial strips is
consistent with the explained shear transfer in the specimen. Assume that the radial strips
are isolated from their adjacent quadrant, and consider the E-W direction first. The radial
strips in this direction were heavily loaded, and hence their associated curvature should be
very large. On the other hand, inside the quadrant, a small portion of the load was carried
in the flexible E-W direction. Therefore, the curvature of the quadrant in the E-W
direction should not be very large. Since the deformation of the radial strip and its adjacent
quadrant must be compatible, relatively high torsional moments are required along the side
faces of the E-W radial strips. The net effect of these torsional moments augments both
the bending and the shear capacities of the E-W radial strips. The stiffer quadrant helped
the radial strip to carry more load, through the torsion along the side faces.

In contrast, the quadrant deforms more than the radial strip in the N-S direction,
and negative torsion on the side face of the N-S radial strips is required to satisfy the
compatibility of deformations. This torsion decreases the bending capacity and hence the
shear capacity of the N-S radial strip.

5.2.2.3 Ductility of the Interior Connection

In the Bond Model procedure, two basic assumptions are made which require
some ductility at the connection. First, it is assumed that the distribution of shear on the
side faces of the radial strips is uniform. Since the E-W radial strip transferred 175 kN,
about 45 percent more than the predicted capacity, it is believed that the connection was
ductile enough to allow the uniform distribution of shears. Second, it is assumed that all
radial strips reach their shear capacity at the time of failure of the connection. If strips are
not loaded in proportion to their nominal capacities, the second assumption requires two
conditions to be satisfied; (a) quadrant should have the ability to load its adjacent radial
strips independently; and (b) the strip that reaches its maximum capacity first, should have
enough ductility to deform without substantial loss of capacity while the other strip carries
the additional load.

At the time of failure of the interior connection, the N-S radial strips could still
transfer more load, and the positive moments in both directions were less than the yield
moments. As a result, the specimen neither reached the full yield line load, nor the capacity
of all of its radial strips. It is believed that the connection was not able to satisfy the first
condition and that part of the additional load increment had to be transferred by the E-W
radial strip, which was at its maximum capacity. The connection failed due to the failure of
this radial strip as exemplified by Figure 5.9.

5.2.3 Edge Connection

For reinforcement parallel to the free edge, the behavior at an edge connection is
basically the same as at an interior connection. This is not the case for reinforcement
perpendicular to the free edge. Perpendicular to the free edge, the bending capacity of the
edge connection depends on the stiffness of the edge column and is limited to its bending
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capacity. For a concentrically loaded interior connection, the bending capacity of the slab
is neither related to the column stiffness nor to its bending capacity.

Yielding of bars perpendicular to the free edge and passing outside the column is
affected by rotation of the spandrel strip and, hence, their proximity to the column. The
corresponding moment is limited to the torsional capacity of the spandrel strip. In
concentrically loaded interior connections, yielding of bars are neither effectively related to
the distance of the bars from the column nor to the torsional capacity of the radial strip.

Since the shear force applied to each radial strip is actually the gradient in bending
moment, and the flexural behavior of an edge connection itself is different in the two
directions, it is not surprising that the spandrel strip should behave differently in shear than
the interior strip. As illustrated in Figure 5.13, each spandrel strip only transferred about
10 percent of the total load. Therefore, the intensity of the shear at the column end of the
spandrel strip was not large, and was approximately equal to the intensity of shear on the
side faces of the interior radial strip. This means that all the load in the edge quadrant was
carried in the direction parallel to the free edge by beam action into the interior radial strip
and side faces of the column. The load inside the interior radial strip was then transferred
to the column by arching action.
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Figure 5.1 Force gradient in bars running N-S, interior connection, (T1 - T3)/2s
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Figure 5.2 Force gradient in bars running E-W, interior connection, (T1 - T3)/2s
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Figure 5.7 Shear attributed to individual bars running N-S, interior connection
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Figure 5.9 Measured shear at interior connection by load cell and strain gauges
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Figure 5.12 Shear attributed to individual bars running E-W, south connection
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6. Behavior of Radial Strips in Flat Plate Structures

The Bond Model is based on certain assumptions regarding the distribution of
shear forces as well as torsional moments along side faces of the radial strips. Although
test results support the mechanics of this model, analytical analysis would be useful to
verify these assumptions.

The available finite element programs can, to some extent, account for the flexural
cracking and are therefore able to predict the overall behavior of reinforced concrete
plates. However, when it comes to dealing with shear or torsional cracks in flat plates, the
accuracy of the results in areas close to columns becomes doubtful. Moreover, the
interaction between cracked concrete and single bars is not accurately modeled. As a
result, these analyses can not reliably predict bond failure and/or punching failure.
Nevertheless, far from the column and prior to the formation of the inclined cracks, these
programs can be expected to provide a reasonable description of the behavior.

This study focuses on the distribution of shear and torsion along the side faces of
the radial strips in interior and exterior connections. Also, of interest are the factors that
may induce different behavior of the radial strips in the two directions.

In this chapter, the finite element program NISA 90, with a Paramono and
Willam's concrete material model modified by Xie et al. (1994), will be used to
qualitatively study the behavior of the flat plate structures. Difficulties and concerns
regarding finite element modeling of three dimensional reinforced concrete structures are
briefly discussed to give an overview of the range of appropriate application of this
technique.

The results of the test and finite element studies will be combined to explain the
behavior of the radial strips in flat plate structures. The distribution of shear, torsional
moment, and shear resulting from these torsional moments along the side faces of
different types of radial strips are discussed for both concentrically loaded interior and
edge connections.

6.1 Finite Elements, Background

6.1.1 General

Behavior of a flat plate structure is fundamentally three dimensional. In addition
to bending moments in two perpendicular directions, torsional moments are generated.
Out of plane forces are more significant than membrane forces. Concrete cracks in the
early stages of loading, especially near columns, as a result of shrinkage and the
self-weight of the slab. These cracks will propagate as the load increases. Moreover, in
the vicinity of the columns, where transverse shear and torsion are high, inclined cracks
develop and usually dominate the response of the reinforced concrete in this region. A
perfect finite element program should include the effects of all these cracks.

Two different approaches exist for modeling a crack, namely a "discrete crack" or
a "smeared crack". In the discrete crack approach, each single crack introduces
discontinuity in the continuum and causes a change in geometry of the structure.
Modeling each potential crack as an individual discrete crack is very difficult and in most
cases not practical, especially for large structures in which the number of cracks is large.
The nature of the inclined cracks in zones of high shear also adds tremendously to the
complexity involved in the change of geometry of the structure.
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In the smeared crack approximation, the geometry is left unchanged and cracks
are modeled by a distributed softening effect. This approach is suitable until the
development of a localized failure zone in the structure. The use of the smeared crack
method seems to be the only practical approach for analysis of large concrete structures.

In addition to a crack formulation, the material model in an ideal finite element
analysis must represent the reinforcement and include the effect of tension stiffening of
concrete, as well as bond degradation between concrete and single bars. However,
interaction between concrete and reinforcement in the region of cracked concrete is
highly non-linear, and makes the modeling of reinforced concrete very complex. One
approximation is to represent reinforcement as sheets of uniform thickness, located at
certain relative depths and having only unidirectional properties. In this approach, the
. strains of reinforcement and its surrounding concrete are assumed to be compatible.

Among the existing major groups of concrete material models are the elastic
models and the plastic models. In general, elasticity based models are suitable for the
range of elastic to moderately non-linear behavior, before anisotropic behavior becomes
significant. Beyond this, plasticity based models are preferred because they are thought to
render more accuracy, generality and also convenience in formulation (Ziyaeifar, 1996).

6.1.2 Finite Element Program NISA 90

The program NISA was originally written by the Institut fur Baustatik, universitat
Stuttgart, Germany. The program performs static incremental nonlinear analysis of
structures, and includes three dimensional degenerated plate shell element (Ramm, 1976)
with five degrees of freedom per node; three translations and two rotations. Among the
options is the sixteen node bicubic element. Gaussian integration is carried out parallel to
the surface of the element, while Simpson's integration rule is adopted across the
thickness.

The program NISA 90 is a modified version of NISA 80 by A.E. Elwi (1993). A
number of concrete material models have been implemented, including Massicotte's
model (1990) and a modified Paramono and Willam's model by Xie (1994). Since the
latter requires an asymmetric equation solver, the program has been equipped with one
written by D. Chan at the university of Alberta. Reinforcement is still modeled as sheets
of uniform thickness. For solution strategy, the program permits use of one of (a) the
Modified Constant Arc Length Method (CALM) introduced by Ramm (1981), (b) a
displacement control procedure, or (c) the standard or a Modified Newton-Raphson
iteration procedure. It is also possible to switch from one procedure to another.

6.2 Finite Element Study

6.2.1 Scope

Because of the following major limitations, replicating the results of the test
specimen using finite elements is not intended, nor is it practical with the available
techniques.

1. Modeling a specimen of this size and with so many variations in reinforcement
would require a great number of elements and nodes. Because the reinforcement of the
north panel was different from the south panel, only one axis of symmetry can be used to
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reduce the number of elements. Even this would introduce some approximation since the
crack pattern in the specimen was actually asymmetric.

2. Modeling the interaction between bars and their adjacent concrete is very
complicated, especially in the zone of cracked concrete.

3. There were relatively wide and discrete cracks in both directions during the
test. Also, discrete inclined shear or torsional cracks initiated at early stages of loading in
the zone of high shear forces near columns. Modeling the discontinuity in the continium,
especially that caused by the inclined cracks, is very complicated and is out of the scope
of this study.

The objective of current finite element study is a qualitative description of certain
aspects of slab column connection behavior. In particular, the following questions are to
be examined: (1) Is the assumption of the uniformly distributed one-way shear over a
certain length along the side faces of the radial strips appropriate? (2) Is the torsion
calculated on the basis of strain gauge measurements realistic? (3) Can the net torsion
along the side faces of the radial strips be in the opposite direction to its flexural
capacity? (4) What are the important parameters that lead to the different behavior in the
two directions? (5) Does the steel perpendicular to the free edge and passing outside the
edge column yield?

Three interior and two edge connections are examined. INTO1, INT02, and
INTO3, respectively, address the aspects of the reinforcement layout, panel rectangularity,
and loading sequence in interior connections. EXT01 and EXT02 examine the shear
transfer in edge connections, as well as yielding of reinforcement perpendicular to the
free edge and placed outside the column width.

6.2.2 Plates under Study, General

Using symmetry to reduce the number of elements, each mesh consists of sixteen
plate elements with uniform thickness of 150 mm. The total number of nodes is 169.
Each node has five degrees of freedom; two rotational and three translational.
Newton-Raphson iteration with 1 kPa constant incremental load was selected as the
solution strategy because it converged faster. The maximum load obtained this way was
improved only by a fraction of one kPa when the strategy was changed to the constant arc
length method.

Geometry and material properties for the finite element plates were very close to
those of the test specimen. Figures 6.1 to 6.4 show the geometry of the slab and layout of
the elements, as well as the boundary conditions. Reinforcement ratios and the
arrangement of steel are presented in Tables 6.1 to 6.4. Material properties are as follows;

Compressive strength of concrete f'=34.8 MPa
Tensile strength of concrete f,=2.36 MPa
Modulus of elasticity of concrete E, =26500 MPa
Yield stress of steel f, =420 MPa
Modulus of elasticity of steel E =200000 MPa
Slope of strain hardening of steel E, =466 MPa
Maximum strain for reinforcements Emax = 0.125
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To model the interaction between column and plate, element #1 was assigned
different material properties. The tensile strength and the compressive strength were both
set to 35000 MPa to avoid material failure inside column, and modulus of elasticity was
increased by a factor of 10000 so that the deflection of element #1 would be almost zero.

Graphical presentation of the study is based on the data at the integration points.
At each load increment, and for each direction, shear forces along sections x = 17.5 mm
or y =17.5 mm (right at the integration points) were integrated and the results were
compared with the shear due to the applied loads. Due to the numerical problems near the
column faces, the vertical equilibrium was satisfied within 10 percent tolerance.
Alternatively, shear on the side faces of the two radial strips were integrated and
compared to the loads on the quadrant. With this check, vertical equilibrium was satisfied
within a 5 percent tolerance. As a result, a more accurate estimate of the average shear
along a column face is obtained by adding the load on the side faces of the corresponding
strip and the load directly applied to this strip. The finite element results in tables are
based on the average shear so obtained.

Around the column of a prototype building, diagonal cracks form due to very high
shear intensities. Since these cracks do not prevent shear transfer by arching action, the
plate is able to carry additional load. In the finite element analysis, however, high shear
intensities near the column is associated with numerical instability. As a result, it is
expected that the load in the simulated plates will not reach the design load.

6.2.3 Interior Connections

6.2.3.1 Interior Connection INTO01

This simulation examines the effect of a difference in the effective depth of the
steel layers, inevitable in flat plates. Figure 6.1 and Table 6.1 show the geometry and the
reinforcement of simulation INTO1. A square panel with a square column was selected.
The ratio of positive design moment to the total panel moment in both directions is 0.385.
Since negative moments are equal in the two directions, the required area of top steel in
the inner layer is slightly greater. Assuming the same bar size in the two layers, the steel
in the inner layer is over a wider band. Hence, element 11 is rectangular.

The maximum load program reached was 15 kPa, or about 80 percent of the yield
line mechanism load. At this load, distribution of shear intensity along two perpendicular
sections is plotted versus the distance from column corner in Figure 6.5. It can be seen
that 48 percent of the total load was transferred to the column through E-W radial strip, or
through east face of the column (element #2).

Distribution of torsional moment intensity is plotted in Figure 6.6 at the last load
step. Also in Figure 6.7, torsional moment along side face of radial strips is plotted versus
the load. A positive value means that this moment was in the same direction as bending
moments in the rotational equations of equilibrium of the radial strips.

6.2.3.2 Interior Connection INT02

Simulation INT02 examines the effect of panel rectangularity. As shown in Figure
6.2, N-S span is 200 mm larger than E-W span. This reflects the effect of shifting of zero
shear line toward the exterior column in an edge panel. The yield line mechanism load of
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this slab is equal to that of the INTO1. Negative moments in two directions are equal.
However, since span length are different, positive moments are not the same. Details of
reinforcement are presented in Table 6.2.

Maximum load program reached was 14 kPa, about 75 percent of the yield line
mechanism load. At this load, distribution of shear and torsion are plotted in Figures 6.8
and 6.9. The behavior of the slab in the two directions is almost the same. According to
Table 6.6 and Figure 6.20, about 48 percent of the load was transferred through the east
face of the column and 52 percent through the north face. As shown in Figure 6.7,
torsion along the side faces of all radial strips augments the bending capacity and hence
the shear capacity of these strips.

6.2.3.3 Interior Connection INT03

Slab INTO03 was designed to see if loading sequence would induce different
behavior in the two directions. The layout of elements and details of reinforcement of
slab INTO3 are the same as those of INT02, except for the east edge which is assumed to
be a free edge with positive moment applied uniformly on it. Up to a uniform load of 9
kPa, the applied moment was set to 10 percent of the panel moment at each load step. For
loads of 10 kPa or more, 40 percent of the panel moment was applied to this edge. The
sudden increase in the positive moment between 9 and 10 kPa load steps caused a sudden
upward movement of slab and a sudden decrease in the corresponding negative moment.

A direct comparison between the specimen and slab INTO3 is not appropriate,
because their loading history is different. The specimen was unloaded before applying the
first adjustment. Moreover, adding positive moments to the edges of the specimen was
done early in testing and caused an increase in jack loads, since they prevented the plate
from deflecting upward. In slab INT03, however, the sudden increase of the positive
moment was associate with an upward deflection of the plate and a sudden decrease in the
negative moments.

The maximum load for slab INT03 was 13 kPa. It can be seen from Table 6.8 that
at a load of 9 kPa, 50 percent of the load was transferred through the east face of the
column. This means that as long as flexural condition near column remains the same in
the two directions, according to the finite element analysis, each strip carries its own
share of the load, regardless of the condition of the mid-span. However, as presented in
Table 6.7, at a load of 13 kPa, only 38 percent of load was transferred through the east
face of the column. Further investigation showed that after redistribution of the moments,
or in other words, after unloading the negative moment about y axis, limited load was
carried by the E-W strip and most of the additional load was transferred through the N-S
strip (Figure 6.20).

Distribution of shear and torsion at the last load step are plotted in Figures 6.11
and 6.12. Torsional moments along the side face of the radial strips are plotted versus the
load in Figure 6.13. This torsion always added to the bending capacity of the radial strips,
and therefore increased the shear capacity of the strips.

6.2.4 Exterior Connections
6.2.4.1 Edge Connection EXTO1
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Reinforcement for this slab is designed for a load of 18 kPa, and is shown in
Table 6.3. Negative moment at the column face and about an axis parallel to the free
edge is assumed to be 30 percent of the panel moment. In the other direction, the ratio of
the negative design moment to the panel moment is 0.62.

The maximum load reached in the finite element analysis was only 10 kPa. At this
load, distribution of shear intensity is plotted in Figure 6.14. Shear behavior was different
in the two directions. Upward shear acted on east side face of the column, close to the
edge. This shear was the result of high torsional moments on the side faces of the column.
Figure 6.21 shows that the shear transferred by the spandrel strip was much less than the
shear transferred by the interior radial strip. According to Table 6.9, only 20 percent of
the load was transferred through the spandrel strip; about 10 percent was directly applied
to the spandrel strip, and 10 percent comes from the load on the quadrant.

Distribution of the torsion along the side face of the interior radial strip is shown
in Figure 6.15. Total torsion on the side face of the spandrel strip, as shown in Figure
6.16, was in the opposite direction of the bending moments. Therefore, by using up part
of the flexural capacity of the strip, this torsion reduced the shear capacity of the spandrel
strip.

6.2.4.2 Edge Connection EXT02

Case EXTO02 was analyzed to further examine the yielding of the reinforcement
perpendicular to the free edge. Therefore, dimensions, layout of elements, and total area
of the reinforcement were chosen exactly the same as the case EXT01, except that the top
reinforcement perpendicular to the free edge is uniformly distributed in a 1.15 m wide
band, rather than 0.4 m as in EXTO1.

Top steel perpendicular to the free edge and far from the column did not
contribute significantly to the bending moments. That is why at the load of 9 kPa, or 50
percent of the design load, negative moment at the column face was only about 27.8
percent of its design moment.

According to Table 6.10, at the load step of 9 kPa (Maximum load program
reached), about 72 percent of the total load is transferred through the interior radial strip.
In Figures 6.17 and 6.18, distribution of shear and torsion are shown. Total torsion along
the side face of the radial strips is plotted in Figure 6.19.

6.2.5 Discussion

Shear intensity diagrams based on the finite element analysis (i.e. Figure 6.5) are
pretty ragged because of the numerical problems at the integration points. However, the
average shear on the elements are reliable results (i.e. Table 6.5), and to some extent, may
be used to verify the Bond Model. According to the finite element results, shear on the
side face of the radial strips can be approximated by a rectangle in a region near the
column, and its maximum value is roughly 110 N/m, which is about the right value for
the critical one way shear (element #6 in Tables 6.5 through 6.10).

Knowing from symmetry that the torsion is zero along the center line of the
columns, it becomes very important to find out if the torsion calculated using the strain
gauge measurements at a very small distance from the center line of the columns are
realistic. In finite element study of the INTO3, a positive torsion of 4.5 kNm was obtained
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at the load of 13 kPa. At this load, the maximum torsion at the interior connection of the
specimen was about 5 kNm, which is consistent with the test results.

The results of the finite element study on the edge connections strongly support
the test results, and confirm that a negative torsion along the side face of a spandrel strip
is usual. At the load of 10 kPa, the maximum negative torsion (consuming rather than
augmenting the flexural capacity) was about 2.5 and 6.5 kNm, respectively in the finite
element analysis and the test specimen.

With finite element analysis, different behavior of the radial strips in the two
directions was observed for both interior and edge connections (see Figures 6.20 and
6.21). However, at the interior connection, this kind of behavior required a
non-symmetric loading history, while at the edge connections, it started right at the
beginning of the loading.

Finally, consistent with the test results, steel perpendicular to the free edge and
out side the column width did not contribute significantly to the flexural capacity of the
edge connections. This steel was not yielded and its contribution became smaller as it was
spread out in a wider band.

6.3 Distribution of Shear and Torsion along Side Faces of Radial Strips

For most tests on interior connections reported in the literature, the ratio of the test
load to that calculated according to the Bond Model is greater than one. These tests are
mostly enforced deformation tests, in which all radial strips are loaded to their maximum
capacity, torsional moments along side faces of the radial strips are in the same direction
as the flexural moments, and the behavior in the two directions is basically the same.
Such connections are referred to as case (a).

The current test, however, revealed that under certain conditions (Section 5.2.2.1),
the radial strips of an interior connection might not be loaded in proportion to their
nominal capacities. Such connections (case b) punch when the radial strips in one
direction reach their maximum capacity. Along side faces of these radial strips, the
torsional moments are in the same direction as the flexural moments. However, along
side faces of radial strips not loaded to their nominal capacity, the resultant of the
torsional moments is in the opposite direction of the flexural moments.

In an edge connection (case c), a large portion of the load is transferred through
the interior radial strip, and torsional moments along side faces of this strip are in the
same direction as the flexural moments. Also, high torsional moments are generated
along the side faces of the column. Spandrel strips of flat plates transfer a small portion of
the load compared to the interior radial strips. The resultant of the torsional moments is in
the opposite direction of the bending moments.

For these three cases, based on the results of the finite element analysis,
mechanics of the bond model, and the test results, typical shear intensity diagrams,
typical torsional moment intensity diagrams, and typical torsional shear diagrams are
plotted along the critical section (sections ABF and A'BF' in Figure 4.22; side face of
column, AB or A'B, and side face of radial strips 1 or 2, BF or BF'). The diagrams are
described in Figures 6.23 through 6.26, and are presented in Figures 6.27 to 6.30 for case
(a), Figures 6.31 to 6.34 for case (b), and Figures 6.35 to 6.38 for case (c). Note that the
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values shown on these diagrams are given as examples and do not represent any test or
analytical data.

6.3.1 General

6.3.1.1 Shear Intensity

Figure 6.23 shows a typical shear intensity diagram along side face of strip 1. The
area under shear intensity diagram between any two points equals to the total load
transferred in that region.

The shear intensity on the column face is very high because the column provides a
vertical support and allows for significant arching action in this region. Shear intensity
suddenly drops to a value controlled by the critical one way shear within a small distance
from column corner, since along the side faces of the radial strips, the dominant
mechanism of shear transfer is beam action.

This sudden change in the shear intensity is the main reason for the results of the
finite element analysis being rather ragged in this region. In other words, some kind of
numerical problem occurs in the integration points of the elements close to the column,
because of the so called discontinuity. However, the average shear intensity in these
elements are acceptable, especially since the size of these elements are relatively small.

6.3.1.2 Torsional Moments

Figure 6.24 shows a typical torsional moment intensity along the side face of the
radial strip 1. In concentrically loaded interior connections, the torsional moment must be
zero at the center line of the column (point A) and also at the remote end of the strip
(point F), because of symmetry. Along the side face of the interior radial strip of an edge
connection, the torsional moment must be zero at the remote end because of symmetry,
and is also zero at the corner of the column on the free edge. The results of finite element
analyses show that in all cases, torsional moment is also zero at another point (D) located
on the side face of the radial strip. This means that torsional moment is negative in one
part of the diagram (i.e. part AD), and positive in the other part (DF). Consistent with the
sign convention used in the finite element analyses, positive torsional moment on the side
face of the radial strip is in the same direction as the bending moments of the strip, and
helps increasing both shear and flexural capacity of the strip.

It is worth mentioning that the total torsion along the side face of the radial strip
(between column corner B and remote end F) equals the net area under the torsional
moment intensity diagram, and directly enters the rotational equations of equilibrium of
the radial strip 1.

6.3.1.3 Torsional Shear
Torsional shear on the side face of the radial strip is the result of the gradient in
the torsional moment in a direction parallel to the radial strip. Therefore, the value of the

129



torsional shear at any point equals the slope of the torsional moment diagram. As a result,
torsional shear diagram can be constructed based on the torsional moments.

In regions AC and EF of Figures 6.24 and 6.25, the slope of the torsional moment
diagram is negative, and so is the torsional shear. Note that with the chosen sign
convention for the torsional moments, negative shear represents an upward shear on the
face of the radial strips. At points C and E, slope of the torsional moment diagram equals
zero, and so does the torsional shear. At point F, the value of shear intensity is relatively
small and is assumed to be zero.

The area under the torsional shear intensity diagram between any two points
represents the amount of shear transferred by torsional moment gradient between these
points. This area is also equal to the difference between the torsional moments at these
points. Therefore, between any two points with zero torsional moment (for example, D
and F), the net shear transferred by the torsional moment becomes zero (V,+ V;=0,0r V,
equals V, but in opposite direction), and the torsional shear only cause a change in the
distribution of the vertical shear. Note that the net torsion between D and F equals V, x d,
and between A and D equals V, x d, .

6.3.1.4 Torsional Moment at the Corner of the Column

At failure, torsional moment at the corner of the column can not be determined by
the available analytical methods, nor can it be measured by the existing instrumentation.
However, in the early stages of loading, a finite element analysis may provide an estimate
of these moments. The purpose of this section is to describe, based on the equilibrium and
the mechanics of the shear transfer inside a radial strip, how these torsional moments
change with the increase of the applied loads.

Figure 6.26a shows the position of a small segment of the radial strip adjacent to
the column. A free body diagram of this element is shown in Figure 6.26b. Due to
symmetry, the torsional moment, M,;, at the center line of the column is zero. Torsional
moment, M,,, on the side face of the radial strip is determined using rotational equation of
equilibrium as follows;

M, = (T, jd, + V,As ) +w, As?/2-T, ijd, [6.1]

Term (w; As® / 2) is negligible compared to other terms if As is small enough.
Throughout a large range of loading, M, = T, jd, equals the yield moment and has a large
constant positive value. Internal moment arm jd,, as shown in Figure 6.26¢ and 6.26d,
depends on the geometry of the compression arch, and increases with the increase in the
loaded length, 1, (compare Figures 6.26b and 6.26¢).

In early stages of loading, in all of the finite element simulations, M,, had a
negative value. In cases where the load in the strip does not change significantly, such as
spandrel strips, all terms in Equation 6.1 remain almost unchanged. As a result, M,, is
expected to remain negative until failure.

In cases where radial strips reach or exceed their nominal capacity, such as those
in an enforced deformation test, or the interior radial strip of an edge connection, the
magnitude of ( T, jd, + V, As ) increases with increasing load, while (T, x jd,) remains
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almost constant. As a result, torsional moment at the column corner, initially negative,
increases towards zero. This means that with the increasing load, point D in Figure 6.24
moves towards the point B. For these strips, the torsional moment at the column corner is
assumed to be zero at the time of failure (points D and B become one point).

6.3.2 Interior Radial Strips Reaching or Exceeding Their Nominal Capacity

For radial strips that reach or exceed their nominal capacity, a typical shear
intensity diagram is plotted in Figure 6.27. According to the finite element analysis, at
about 75 percent of the failure load, shear intensity at the center line of the column is
smaller than the shear intensity at the corner of the column due to the torsional moments
and their related shears. The difference becomes smaller as the load is increased to the
failure load since due to the extensive yielding, torsional moments reduce to about zero.

Consistent with the test results, the finite element analysis (e.g. Figure 6.5)
suggests that the distribution of shear, as shown in Figure 6.27, can be approximated by a
rectangle. In Figure 6.28, based on the results of the finite element analyses, idealized
torsional moment intensity is plotted along the critical section 1. As discussed in Section
6.3.1.4, the torsional moment at the column corner is assumed to be zero. Torsional shear
intensity is plotted in Figure 6.29. Net torsion along the side face of the strip between B
and F (3.79 kNm) and also the couple due to its associated shear (4.59 x d1) augments the
flexural capacity, and hence the shear capacity of the radial strip.

6.3.3 Radial Strips Not Reaching Their Nominal Capacity

Figures 6.30a and 6.30b show typical shear intensity diagrams along the critical
sections A'BF' and ABF in a connection with behavior in the two directions. In Figure
6.30a, the dotted area (load transferred through radial strip 1) is considerably more than
the dashed area (load transferred through radial strip 2).

Shear intensity at ultimate is plotted so that the load transferred through radial
strip 2 remains more or less constant, while the load in the radial strip 1 increases
considerably. Also, from Figure 6.31 it can be seen that the total torsional moment along
the side face of the radial strip (between B and F') is in a direction that reduces the
flexural capacity of the strip (i.e. M;=5.36-3.14=2.22 kNm must be deducted from M,).

Bending shear is the difference between the total shear and the torsional shear.
Torsional shear intensity is plotted in Figure 6.36. This figure shows that a considerable
amount of load is removed from column region (A'B) and even part of the radial strip
(BC'") and is added to the radial strip in region C'D'. High values of torsional shear in
region C'D' suggest that the bending shears in this region are small, and might explain
why bar 3/9 of the test specimen transferred a considerably smaller shear than bar 2/9 and
even bars 4/9 and 5/9 (Figure 5.16).

6.3.4 Interior Radial Strips in an Edge Connection

Test results and finite element analysis agree that in the south edge connection,
spandrel strips carry a much smaller portion of the load than does the interior radial strip.
In Section 5.3.2, some of the similarities and differences between the behavior of the
edge connections and the behavior of the interior connections were briefly discussed. In
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chapter seven, another aspect which is the basis for constructing moment-shear
interaction diagram of an edge connection, will be discussed in detail. This aspect is
introduced here, and perhaps is the most important difference in the behavior of the radial
strips between concentrically loaded interior connections and the edge connections.

In a concentrically loaded interior connection, no matter which portion of the load
is transferred through each radial strip, the equations of equilibrium are satisfied because
of symmetry. In edge connections (and also interior connections with unbalanced
loading), the magnitude of the vertical load and the bending moment are known and
therefore the eccentricity of the vertical load can be specified. This introduces a relation
between the maximum load transferred through the interior radial strip and the maximum
load that can be transferred through the spandrel strip, since the resultant force must have
the same eccentricity as the applied loads. In practice, the majority of edge connections
are designed so that they have relatively large eccentricity. This means that a much larger
portion of the load must be transferred through the interior radial strip to satisfy the
equations of equilibrium. This is a situation similar to the test specimen and therefore the
shear intensity, torsional moment intensity, and torsional shear intensity diagrams
presented here represent the behavior of the radial strips in the majority of edge
connections.

Figure 6.33 illustrates a likely shear intensity diagram along the side face of a
spandrel strip. The amount of shear transferred through spandrel strip (shaded area) is
much smaller than the load transferred through the interior radial strip. In the spandrel
strip, unlike other radial strips, in the region where beam action dominates, the shear
intensity can not be approximated by a rectangle, simply because either no top
reinforcement is provided or the top reinforcement does not reach the yield stress. Note
that because of the large eccentricity of the forces, the curvature of the plate is such that
shear can not be transferred effectively by the force gradient in the bottom bars.

Figure 6.34 illustrates a typical shear intensity along the side face of an interior
radial strip of an edge connection. It can be seen that a large portion of the total load is
transferred by beam action to this strip. The shear intensity shown on the side face of the
column is only based on the results of the finite element analysis (note that program
stopped at a load considerably smaller than the failure load). According to this analysis
high torsional moments on the column face result in upward and downward shears along
the column face. Also, in a narrow band (dotted area), the load in the spandrel strip is
being transferred by arching action to the column.

In Figures 6.35 and 6.36 torsional moment and torsional shear intensities are
plotted along the side face of the spandrel strip. These diagrams are basically similar to
the diagrams for case b (Figures 6.29 and 6.30), except that the amount of torsion that
diminishes the flexural capacity of the spandrel strip is more (M,=6.0-2.23 =3.72 kNm).
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Table 6.1 Reinforcement of Simulation INT01

Effectiv| Total Element Number
Position [e Depth| Area
(mm) | (mm? Reinforcement Ratio (percent)
Top 106 1800 Element #| 2,3 5,6,7 9,10,11
(E-W) o) | 131 | 131 1.31
Top 12 1600 Element #| 5,9 2,6,10 3,7,11
N-5) p(%) | 114 1.14 1.14
Bottom 13 1000 Element#| 23,4 | 5,6,7.8 | 9,10,11,12 | 13,14,15,16
(E-W) p (%) 147 | 0.289 0.289 0.289
Bottom 15 900 Element #| 59,13 [2,6,10,14| 3,7,11,15 | 4,8,12,16
(N-5) p (%) 1.33 0.226 0.226 0.226
Table 6.2 Reinforcement of Simulations INT02 and INT03
Effectiv| Total Element Number
Position e Depth| Area
(mm) | (mm? Reinforcement Ratio (percent)
Top 106 1800 Element#| 2,3 5,6,7 9,10,11
(E-W) p(%) | 131 | 131 131
Top 12 1600 Element #| 5,9 2,6,10 3,7,11
(N-5) o (%) 1.14 1.14 1.14
Bottom 3 1230 Element #| 2,34 | 5,6,7,8 | 9,10,11,12 | 13,14,15,16
E-W
( ) p (%) 1.47 0.347 0.347 0.347
Bottom 195 1350 Element #| 59,13 |2,6,10,14| 3,7,11,15 4.8,12,16
-S
(N-5) p (%) 1.33 1.33 0.267 0.267
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Table 6.3 Reinforcement of Simulation EXT01

Effectiv| Total Element Number
Position (e Depth| Area
(mm) | (mm? Reinforcement Ratio (percent)
Top 106 1870 Element #| 2,3 5,6,7 9,10,11
(E-W) p(%) | 126 | 126 1.26
Top 122 200 Element #{ 5,9 2,6,10 3,7,11
N-5) p (%) 1.64 1.64 | -
Bottom 3 1000 Element #| 23,4 | 5,6,7,8 | 9,10,11,12 | 13,14,15,16
(E-W) p(%) | 0.885 | 0.289 0.289 0.289
Bottom 15 1600 Element #| 5,9,13 [2,6,10,14| 3,7,11,15 | 4,8,12,16
(N-5) p (%) 0.66 0.66 0.66 0.4
Table 6.4 Reinforcement of Simulation EXT02
Effectiv| Total Element Number
Position |e Depth| Area
(mm) | (mm? Reinforcement Ratio (percent)
Top 106 1870 Element#| 2,3 5,6,7 9,10,11
(E-W) p(%) | 126 | 126 1.26
Top 122 800 Element #| 5,9 2,6,10 3,7,11
(N-5) p(%) | 0.696 | 0.696 0.696
Bottom 3 1000 Element #| 23,4 | 5,6,7,8 | 9,10,11,12 | 13,14,15,16
E-W) p (%) 0.885 0.289 0.289 0.289
Bottom 125 1600 Element#| 59,13 |2,6,10,14| 3,7,11,15 4.8,12,16
(N-5) p(%) | 0.66 0.66 0.66 0.4
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Table 6.5 Average Out of Plane Shear Intensity in kN/m - INTO01 at 15 kPa

Side face of N-S radial strip
Element Number 2 6 10 14
Element Width (mm) 150 250 900 1150
Shear Intensity (kN/m) 289 101 13 4
Side face of E-W radial strip
Element Number 5 6 7 8
Element Width (mm) 150 250 750 1300
Shear Intensity (kN/m) 312 102 15 1
Table 6.6 Average Out of Plane Shear Intensity in kN/m - INT02 at 14 kPa
Side face of N-S radial strip
Element Number 2 6 10 14
Element Width (mm) 150 250 900 1350
Shear Intensity (kN/m) 287 109 17 0
Side face of E-W radial strip
Element Number 5 6 7 8
Element Width (mm) 150 250 750 1300
Shear Intensity (kN/m) 316 108 16 -1
Table 6.7 Average Out of Plane Shear Intensity in kN/m - INT03 at 13 kPa
Side face of N-S radial strip
Element Number 2 6 10 14
Element Width (mm) 150 250 900 1350
Shear Intensity (kN/m) 215 84 15 9
Side face of E-W radial strip
Element Number 5 6 7 8
Element Width (mm) 150 250 750 1300
Shear Intensity (kN/m) 344 94 16 -6

1
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Side face of N-S radial strip
Element Number 2 6 10 14
Element Width (mm) 150 250 900 1350
Shear Intensity (kN/m) 194 64 9 1
Side face of E-W radial strip
Element Number 5 6 7 8
Element Width (mm) 150 250 750 1300
Shear Intensity (kN/m) 194 69 10 1
Table 6.9 Average Out of Plane Shear Intensity in kN/m - EXTO01 at 10 kPa
Side face of N-S radial strip
Element Number 2 6 10 14
Element Width (mm) 250 250 900 1150
Shear Intensity (kN/m) 49 114 17 2
Side face of E-W radial strip
Element Number 5 6 7 8
Element Width (mm) 150 250 750 1300
Shear Intensity (kN/m) 330 46 -10 2
Table 6.10 Average Out of Plane Shear Intensity in kN/m - EXT02 at 9 kPa
Side face of N-S radial strip
Element Number 2 6 10 14
Element Width (mm) 250 250 900 1150
Shear Intensity (kN/m) 63 100 11 2
Side face of E-W radial strip
Element Number 5 6 7 8
Element Width (mm) 150 250 750 1300
Shear Intensity (kN/m) 269 48 -7 3
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Figure 6.5 Shear intensity at a load of 15 kPa, slab INTO1
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Figure 6.7 Torsional moment along each side face of radial strips, slab INTO1
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Figure 6.11 Shear intensity at a load of 13 kPa, slab INT03
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7. Strip Model for the Capacity of Interior and Edge Connections

Lower bound estimates of the punching capacity of concentrically loaded interior
column-plate connections are derived first. These estimates of the punching capacity are
applicable to connections where the radial strips are not loaded in proportion to their
nominal shear capacities. The results of the new model will be compared numerically to
that of the existing Bond Model.

Shear-moment interaction diagrams are useful to evaluate the capacity of existing
connections under unbalanced moment, and to assess the accuracy of a model by applying
it to the tests in the literature. The interaction diagram would also be useful in evaluating a
design procedure. Development of this design procedure is outside the scope of this work.

Based on the assumed mechanisms for transferring the load to the columns from
the radial strips, moment shear interaction diagrams for the capacity of both the exterior
connections and the interior connections under unbalanced moments can be constructed.

Finally, other considerations regarding the evaluation of the flexural capacity of the
radial strips such as defining M', when punching occurs before a complete yield line
mechanism, or how to estimate the flexural capacity of the radial strips in a plate with
non-uniform mesh, are discussed.

7.1 Shear Capacity of Concentrically Loaded Interior Connections

7.1.1 General

The Bond Model provides a lower bound estimate of the shear capacity of a single
radial strip, because the equilibrium and the boundary condition of the strip is satisfied,
and both the flexural capacity of the strip and the shear capacity of the adjacent quadrants
that load the strip are not exceeded at any point. However, it does not necessarily provide
a lower bound estimate of the capacity of a connection.

In a concentrically loaded interior connection, when the radial strips are loaded in
proportion to their shear capacities by their adjacent quadrants, as is the case in an
enforced deformation test, the punching capacity of the connection equals the sum of the
shear capacities of its radial strips. For this case, called proportional behavior, the shear
distribution along one face of the column in Figure 6.27 can be simplified as illustrated in
Figure 7.1a.

However, the results of the tested interior connection shows that it is possible to
have cases in which strips are not all loaded to their nominal capacities. In such cases,
called non-proportional behavior, the share of the load being applied to each strip can not
be determined solely by the equations of equilibrium. Compatibility of deformations must
also be considered. Radial strips in one direction, for example strip 1 in Figure 6.30b,
reach their ultimate capacity while those in the other direction are loaded to only a fraction
of their nominal capacity. The failure of the connection occurs when the load in strip 1
exceeds its ultimate capacity.

The minimum shear capacity of a connection occurs when the least loaded strips
develop minimum shear capacity. As illustrated in Figure 7.1b, this occurs when the shear
intensity along the side face of the column equals the maximum shear intensity along the
radial strip 1. In this extreme case, bars parallel to the strip 1 and close to the column (but
not passing through it) augment the flexural capacity of the strip. The effective width of
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the strip 1 becomes greater than the column width, and the flexural capacity of the strip
increases from M to M. In this extreme case, the shear capacity of the load carrying
strip is expected to be more than the shear capacity of the same strip were the behavior
proportional.

7.1.2 Derivation of a Lower Bound Estimate for the Shear Capacity of a
Concentrically Loaded Interior Connection

A free body diagram of one quarter of an interior connection in a simplified model
is shown in Figure 7.2. Three independent equations of equilibrium are used (Equations
7.1 to 7.3, respectively); (a) vertical equilibrium of forces, (b) rotational equilibrium of half
radial strip 1, and (c) rotational equilibrium of half radial strip 2.

P=4><(P1 +P2) [71]
l 2

A’é“ My = [7.2]
2

Mzﬂ Mg =2 b [7.3]

In these equations, w is the total shear intensity (torsional shear plus primary
shear) along the side face of the radial strip, P is the total load applied to the connection,
and P, =1, x w, and P, =, x w, are the loads transferred through half radial strips 1 and 2,
respectively. M, = M' + M| and M,, = M’ + M, are the flexural capacities of the
radial strips, and M,, and M,, are the integration of the torsional moment intensity along
the side face of the radial strip. Rearranging Equations 7.2 and 7.3 produces Equations 7.4
and 7.5.

(M51+2XMt1)XW1:(W1Xl])2:P1 [74]
Mo +2xMp)xwy =Wy x12)2=P, [7.5]

Note that with the assumption that the torsional moments on the side faces of the
radial strips are zero (M,, = M,, = 0), as in the Bond Model, the two equations reduce to

P = 1/M“ xwy and P, = 1/Mﬂ xwy . From Equation 7.1 the shear capacity of the
connection for a proportional behavior can be determined by Equation 7.6.

P=4xP1+Py)=4x 1/M,y] XW; +4x ,/Msz X Wo the Bond Model [7.6]

In general, however, Equations 7.4 and 7.5 can not be solved independently as the
torsional moments are not zero. In some cases, relatively large negative torsion occurs
along the side faces of the radial strips, and Equation 7.6 will not result in a safe estimate
of the capacity of the connection.

Adding Equations 7.4 and 7.5 results in a relationship between P, and P, .
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P12+P22=MS1 X Wi +M32 XW2+2X(M;1XW1 +Mpu xw, [77]

As shown in Figure 7.3a, Equation 7.7 can be interpreted graphically as a right
angle triangle with two sides equal to P, and P, and a hypotenuse equal to the square root
of the right hand side of the Equation 7.7.

Since w, almost equals w,, the term (M,, x w, + M,, x w, ) is simplified to w, X
(M,, +M,)). The overall effect of torsion is so that it always adds to the capacity of the
connection, and neglecting it (M,, + M,, = 0), results in a conservative estimate of the
capacity of the connection. Hence, Equation 7.7 is simplified as follows;

P24+Pl2E=Mgyxwi + Mg xw, [7.8]

To calculate P, and P, from Equation 7.8, one must consider the compatibility of
deformations throughout the slab to find out how load is distributed among the radial
strips. The solution so obtained is always a lower bound estimate of the shear capacity of
the connection.

For example, in enforced deformation tests, radial strips are loaded independently
and, as shown in Figure 7.3b, will reach their nominal shear capacity (P, = P, and P, =
P_,). This estimate is a lower bound solution in these tests, and is equal to the estimate by
the Bond Model (Equation 7.6).

In general, however, ratio of P, to P, is not known. To avoid complicated analysis
for finding this ratio, the maximum and the minimum capacities obtained by Equation 7.8
is calculated here and will be compared to the Bond Model solution in the next section.

The maximum capacity occurs when plate equally loads the radial strips, P, = P,
(Figure 7.3c), and can be expressed as Equation 7.9. In this case, P, is greater than P,
which means that torsion is helping the strip with smaller nominal capacity. However, P, is
smaller than P, suggesting that torsion along the side faces of the radial strip 1 is
decreasing its shear capacity.

Prax = 4J—2- X ‘/Msl X Wy +M Xxw,y [7.9]

The minimum of all the estimates of punching capacity is always a lower bound
solution. The smallest estimate occurs when either P, or P, has its minimum value (Figure
7.3d). Note that the minimum shear transferred through each face of the column is equal
to the one way shear times the width of the column (Figure 7.1b). Assuming that P, is
equal to (c, xw,/2), the magnitude of P, is determined by Equation 7.8 as expressed in
7.10. Substituting P, and P, into Equation 7.1, the smallest estimate of the punching
capacity of the connection, P_, , can be determined by Equation 7.11.

2 2
P, = JMSI xw1+Mg XWz—% [7.10]
c1 2xw; 2
Puin=2xcy xw; +4 MSIXW1+M.32XW2__4“"""" [7.11]
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7.1.3 Comparison of P, ., P __,and P_,

To facilitate a comparison of P, _, with P__ and P_. it is convenient to reformulate
the expression in a simple format using the non-dimensional constants K, and K,. Consider
an interior connection in which strip 1 has a larger nominal capacity than strip 2 (i.e. M, x
w, > M,, x w,), and define K, as Equation 7.12. A reasonable range for K, would be from
0.25 to 1.0 (ratio of P, to P, between 0.5 and 1.0). Equations 7.6 and 7.8 can be
manipulated into Equations 7.13 and 7.14, respectively.

_Msz X Wa _ .’iﬁ 2
ki S Maxwy Psl) [7.12]
Prona =4 x (K1 +1) x yMy xw) the Bond Model [7.13]
Poax =4 x J2x (1 +K1) x My xw, Strip Model [7.14]

Introducing K, (Equation 7.15) as the ratio of one way shear in strip 2 to the
nominal shear capacity of strip 1, Equation 7.11 can be rearranged as Equation 7.16. A
practical range for K, is between 1/5 and 1/2.

Ci XWq C1 XWp
K2: =
2x JMg xwy 2xPg

Prin =4x (K + {1 +K1 =K %) x My xw; Strip Model [7.16]

Equations 7.13, 7.14, and 7.16 are compared in Table 7.1. It can be seen that if the
capacity of both strips is almost the same (K, = 1), the Bond Model and the maximum
estimate in Strip Model are exactly equal. The difference between these two estimates can
be practically ignored for other values of K.

Most connections have a square column and uniformly spaced mesh (K, = 1.0).
Shear intensity at the column face is usually 2 to 3 times the one-way shear (K, = 1/2 to
1/3). Therefore, according to Table 7.1, P, is about 10 to 17 percent larger than P_, .

When columns are extremely small, to maintain the same punching capacity, a high
reinforcement ratio is required, and K, may be as small as 1/5. In such cases, when the
behavior is non-proportional (e.g. due to the panel rectangularity), the capacity of the
connection may be overestimated by the Bond Model by 25 percent.

When the strips in one direction are more heavily reinforced, or when rectangular
columns are used, both K, and K, are small. For K, equal to 1/5 and K, = 1/4 (e.g. for
column aspect ratio of 4), the maximum difference between P_, and P,_, becomes about
15 percent.

[7.15]
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7.2 Moment- Shear Interaction for the Capacity of the Edge Connections

7.2.1 General

Figure 7.4 shows the free body diagram of an edge connection. Subscripts x and y
are associated with the interior radial strip and the spandrel strips, respectively. Based on
the equations of equilibrium, the total load transferred through the connection, P, and the
moment at the center line of the column, M, can be determined from Equations 7.17 and
7.18, respectively. In these equations, M, is the torsional moment on each side face of the
column, P, and P, are the load transferred through the corresponding radial strips, and the
eccentricity of the load P_is C, /2. M, and M, are rotational capacity of the radial strips,
and each consists of three components: (1) negative moment at the column end of the
strips, M, or M'; (2) positive moment at the remote end of the strips, M",, or M"_; and
(3) torsion along side faces of the radial strips, M, or M,

P=Px+2xPy=4x My xwy +2x J2x Mg xw, [7.17]

M:M;x+2xMtc+Pxx02—y [7.18]

Based on the Equations 7.17 and 7.18, shear-moment interaction diagram for the
capacity of an edge connection is plotted in Figure 7.5. Five distinct points are recognized
in this figure, which will be discussed in detail. The interaction diagram is constructed by
simply linking these points by straight lines.

7.2.2 Point 4 on the Interaction Diagram

Point 4 represents cases like "twist off tests", for which P, = P, = 0. Therefore, P,
equals zero, and Equation 7.18 simplifies to Equation 7.19, by which moment in the
connection is calculated.

My =M, +2xMy, [7.19]

M,, in Equation 7.19 is the lesser of two values: torsional moment capacity of the
side faces of the column, M,; and the flexural capacity associated with the top
reinforcement placed perpendicular to the free edge outside the column. M,, may be
calculated according to any rational method. However, the amount of reinforcement
required for this torsion must be added to the amount of the reinforcement provided to
satisfy bending in the y direction. In this investigation, a method based on shear friction is
used to determine M, .

In this method, torsion is assumed to be the result of two equal and opposite
horizontal shearing forces. One of the forces, V, acts at the level of the top reinforcement
and its magnitude depends on the area of the top steel as well as the width of the column,
¢,- The equal and opposite force acts at the level of the center of the compression block.
The distance between the two forces can be approximated by the flexural depth of the
plate, jd. Therefore, the torsional moment along each side face of the column may be
determined using Equation 7.20.

160



Mtr=de>< Vt » [720]

The maximum value for the shearing forces, V,, is governed by the force at the
level of the top reinforcement. The width of the contributing area of the concrete is equal
to the column width, c,, and the depth of it is equal to 2d', where d' is the distance from
centroid of bars to the top surface. Therefore, the area of concrete, A, resisting the
shearing force equals 2d' x ¢, For this area, according to the Section 11.6.3 of the
Canadian  standard  A23.3-94, the maximum shear, V, equals to

0.6 x \/(AS X fy) x (4 xf:) , but should not exceed 0.25 A xf' nor 7 (MPa)x A,

7.2.3 Points 3a and 3b on the Interaction Diagram

Points 3a and 3b on the interaction diagram correspond to the maximum moment
that an edge connection can transfer. At Point 3b zero shear is carried by the spandrel
strips, while at point 3a some limited shear is transferred through the spandrel strips by
beam action. To get the maximum moment, according to Equation 7.18, torsion along side
faces of the column is at its maximum value, and the interior radial strip is loaded to its
maximum capacity.

At these points, the interior radial strip behaves very similarly to the load carrying
strip of an interior connection with non-proportional behavior (Section 7.1.1): bars normal
to the free edge and outside the column (a) augment the flexural capacity of the interior
radial strip and (b) do not transfer any shear by beam action to the spandrel strip. The first
effect is taken into account by term the M,, in Equation 7.21. A good estimate for M,
would be the negative flexural capacity of a strip of slab adjacent to the interior radial
strip. Consistent with A23.3-94, the width of this strip is chosen equal to 1.5 h. M,, should
not be more than M,, since the negative moment in this strip is limited to the torsional
moment capacity on the side face of the column, M,. The maximum moment this
connection is able to transfer, can be determined using Equation 7.22.

The second effect dictates that shear transfer inside the spandrel strips, if any, must
be by beam action, thereby limiting P, to w, x ¢, Torsion in the spandrel strip has its
maximum value at the column face and usually yields all the top bars. Unless additional
top steel is provided, M, equals zero. For most tests in the literature, M" is also zero.
With no gradient in bending moments, no shear can be transferred through the spandrel
strip (P, = 0). In these cases, points 3a and 3b coincide. In Equation 7.23, coefficient 3
(ranging from zero to one) accounts for this effect.

Py = Pr =2 % | (M + M +2 x M) xw, [7.21]
M3a :M3b =M4 +P3b X C?y [722]
P3a=P3p+2xBxcyxw [7.23]
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7.2.4 Point 2 on the Interaction Diagram

The maximum shear that can be transferred through the connection occurs when
all strips reach their nominal capacities. The Bond Model gives this load by Equation 7.24.
The associated bending moment, M,, can be determined using Equation 7.15, and by
setting M, = 0, since the top reinforcement is used for flexural equilibrium. This results in
Equation 7.25.

Py=2x |2 x My + M) x Wy +2 % | (M, + M) x Wi [7.24]
M; =M, +c, x ‘/( T ML) xwy [7.25]

7.2.5 Point 1 on the Interaction Diagram

Point 1 on the interaction diagram represents the case where moment is equal to
zero (M, = 0). Shear transfer in this case is similar to that of a simply supported beam.
Shear is transferred by beam action (gradient in positive bending moment) to the side faces
of spandrel strips, and from there by arching action to the column. The shear capacity of
the connection with zero eccentricity of load can be determined by the Bond Model using
Equation 7.26. In this equation a good estimate for M, is the flexural capacity associated
with the top reinforcement of a strip adjacent to the spandrel strips. Consistent with
A23.3, the width of this strip is chosen equal to 1.5 h.

Pi=coxwy+2x 2 x (My, + M, +My) xw, [7.26]

7.3 Moment-Shear Interaction Diagram for the Capacity of the Eccentrically
Loaded Interior Connections

Figure 7.6 describes the moment-shear interaction diagram for the capacity of an
interior column-plate connection in a flat plate structure. Point 1 in this figure corresponds
to cases under balanced loading. At failure, all strips are loaded to their maximum shear
capacity, and according to the Bond Model, the shear capacity of the connection can be
determined from Equation 7.27.

P =4x \/(M;y +MEY x Wy +4 x (M + M) x w, [7.27]

At point 2, both strips in the y direction and only one of the strips in the x direction
are loaded to their ultimate capacity. The other strip in the x direction is carrying no load.
The eccentric load P,, therefore, causes an unbalanced moment of P, x ¢, /2. This moment
is added to the negative moment of the loaded radial strip, M"_, and the positive moment
at the column face of unloaded radial strip, M", . The unbalanced moment and the shear

force at point 2 can be determined using Equations 7.28 and 7.29, respectively.

Ma = Mg, + My +cy x | (Mo +ME) xw, [7.28]
P2:4><‘/( 5 TMY) xw, +2><J( ot ME) xwy [7.29]
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Moving from point 2 to point 3 on the interaction diagram, the torsional moments
become significant. Torsion along side faces of the loaded radial strip in the x direction,
M, augments the flexural capacity of this strip. Also, torsional moment on the side faces
of the column (common with the strips in the y direction), M,, adds to the unbalanced
moment. Similar to the edge connections, shear transfer through strip y is limited by
one-way critical shear (P, = B x ¢, x w,). If additional top reinforcement is provided to
resist M, B is equal to one. However, when all top reinforcement is used up by M,, and
M’ can not be generated (as is the case for most tests in the literature), B equals zero.
Equations 7.31 and 7.30 are therefore used to predict the shear capacity of the connection
and the unbalanced moment at point 3.

My =My, + My +2 x Mg + ¢y X | (Mg, + M, +2 x M) x w, [7.30]
P3:2xBxcyxwx+2xJ( o F Mo +2 X My) xw, [7.31]

Point 4 on the interaction diagram represents a case with small or no net shear
force, but a large bending moment. The bending moment at this point is the maximum
unbalanced moment that can be applied to the connection. In this case, upward forces are
generated in one span and downward forces in the other one. In the radial strip in the x
direction, what counteracts the moment due to the upward forces are the flexural capacity
of the bottom bars at the column face, M"__ and the torsional moment on the side faces of

sup?

the radial strip, M,,. Based on the bond model procedure, the maximum upward force, P_,

is equal to 2 x J (M,p +2 x My) x w, . At point 4b, where net shear is equal to zero, this

upward force must be equal to the downward force in the other strip, P,,. The moment
associated with this couple equals to P, x c,. The maximum unbalanced moment,
therefore, can be estimated by Equation 7.32. Its associated load varies between zero
(point 4b) and the shear that can be transferred by beam action in the y direction (point
4a). The latter can be determined by Equation 7.33.

Mo =Mup = Mg + My, +2 x My +2 X ¢y X J( o +2 X M) X W, [7.32]
Paa=2xPxcyxw [7.33]

The boundary condition of all available tests on eccentrically loaded interior
connections reported in the literature are such that a positive moment can not be
generated. This means that the positive flexural capacities of the radial strips, M"_, and
M, are zero for these tests. Hence, according to the Strip Model (Equations 7.27 to
7.33), the moment-shear interaction diagram of these tests becomes similar to diagram B
in Figure 7.6. The accuracy of this diagram will be verified in the next chapter. However,
except for point 1 (balanced loading), there are no tests in the literature to evaluate the
accuracy of the Strip Model when considering the effect of the positive reinforcement on
the capacity of an eccentrically loaded interior connection (diagram A).
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7.4 Non-Proportional Behavior in the Presence of Unbalanced Moments

7.4.1 Edge Connections

Figure 7.7 illustrates shear transfer in an edge connection at different eccentricities
of load. Point 1 on the interaction diagram refers to zero eccentricity, and as shown in
Figure 7.7b, is the case of non-proportional behavior in which all the shear 1s transferred
by beam action in the direction normal to the free edge and by arching action parallel to
the free edge.

As illustrated in Figure 7.7c, point 2 associates with proportional behavior in an
edge connection where all radial strips are loaded to their nominal capacity.

At points 3a and 3b, torsional moments become significant, and as illustrated in
Figure 7.7d, shear transfer is solely by beam action parallel to the free edge and by arching
action normal to the free edge. This case of non-proportional behavior is the common case
in actual buildings. At point 4, no shear is transferred through the connection.

7.4.2 Interior Connections

Points 3 and 4a in Figure 7.6 are associated with large torsional moments and are
consistent with pure beam action in one direction and pure arching action in the other
direction. Hence, these points are extreme cases of non-proportional behavior.

Point 1 in Figure 7.6 refers to concentrically loaded interior connections, and is
based on the assumption that all radial strips are loaded to their nominal capacities.
Concentrically loaded interior connections, however, are subject to non-proportional
behavior, and as discussed in Section 7.1, their capacity varies between P__ and P_,
(Equations 7.9 and 7.11).

To account for the non-proportional behavior, moment-shear interaction diagram
for the capacity of interior connections is modified as in Figure 7.8. Since the effect of
non-proportional behavior at point 2 is not clear, the interaction diagram is constructed by
joining points 1, 3, 4a, and 4b.

7.5 Other Considerations Regarding Capacity of Plate-Column Connections

7.5.1 Non-uniform Distribution of Reinforcement

There are many cases both in practice and in the literature tests in which the top or
bottom reinforcement is not uniformly distributed around the column. For example, in the
test reported in this investigation, integrity steel passing through the columns causes a
concentration of steel in the column width. Also if the connection does not satisfy shear
requirements, according to the Bond Model, one way to improve the shear capacity is to
increase the area of steel passing through the column. In such cases, the designer must
consider two issues. The first issue is that if the ratio of steel is too high, failure might
occur locally due to the crushing of the compression block of the concrete, before yielding
of the tensile reinforcement.

The other issue is how to define the flexural capacity of the radial strip. All the
reinforcement inside the column width contribute to the tensile component of the bending
moment, however, their associated compression force is not necessarily confined to the
column width. Both flexural capacity of the radial strip and the arching action shear
depend on the compression force inside the radial strip.
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In these cases, assume that the compression block within c¢+3h (column width plus
1.5 time the thickness of the plate from each side of the column) is of uniform depth. Then
the average spacing of the bars, s, and the area of steel, A,, given by Equations 7.34a
and 7.34b can be used to calculations the flexural capacity of the radial strips. In these
equations, A, is the area of a single bar, and A_,_,, is the area of steel placed within c+3h.

Savg = Ay X (c+3h) [7.34a]
As,c+3h
__ ¢
As = c+3h XAs,c+3h [734b]

7.5.2 Considerations Regarding M,

Top bars passing through the column yield first, and therefore their yield moment
can always be used as the negative flexural capacity of the radial strip, M",. Bottom bars
within the radial strip do not always reach their yield stress. For example in cases where
the designer decides to add a few bars to the top or bottom mat in just one direction, it is
most likely that in this direction all top bars yield, and that the bottom bars will not yield.
It is essential that the actual moment, M, rather than the yield moment, M",, at the
positive critical section be used as the M", in the bond model formulation. This is achieved
using Equation 7.35, in which A”, is the area of the bottom steel within the radial strip,
that is calculated from Equation 7.34. A", is the total area of the positive reinforcement,
and M" is calculated based on equations of equilibrium with the assumption that all top
reinforcement yields.

A+
My =M* x —— [7.35]

s,total

7.5.3 Cases Where Shear Capacity of the Connection is Smaller Than the
Yield Line Mechanism Load

The bond model procedures predict the punching capacity of a flat plate-column
connection as the lesser of the two capacities; shear capacity of the connection, and the
yield line mechanism load. The shear capacity of the connection is determined based on
the assumption that both top and bottom reinforcement within radial strips are yielded. If
the load obtained based on this assumption, q,, is smaller than the yield line mechanism
load, q,, the punching failure occurs prior to the formation of the positive yield line, and
the positive moment in the radial strip, M", will be smaller than the assumed yield
moment. Determination of the positive moment, and hence the shear capacity of the
connection requires an iterative procedure. The distributed load obtained from Equation
7.36 is recommended for the first iteration, since it is very close to the actual punching
load.

[7.36]
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Table 7.1 Comparison of P, ., P . ,and P, (Equations 7.13, 7.14 and 7.16)

Ratio K, K =1 K, =12 | K, =13 | K, =1/4
| S S any value 1 1.02 1.04 1.05
12 1.1 1.05 1.02 1
Pooa / Prsin 1/3 1.17 1.13 1.1 1.07
1/4 1.22 1.18 1.15 1.12
1/5 1.25 1.21 1.18 1.15
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Figure 7.1 Distribution of shear in simplified models
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Figure 7.3 Relation between loads transferred through each half radial strip
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Figure 7.5 Moment-shear diagram for the capacity of edge connections
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Figure 7.6 Moment-shear diagram for the capacity of interior connections
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8. Strip Model, North American Standards, and Tests in Literature

8.1 General

The Bond Model has been applied to 145 tests on the concentrically loaded
interior connections by Alexander (1996). All test specimens had either square or circular
columns and uniformly spaced flexural reinforcement. An average test to predicted ratio of
1.3 with a coefficient of variation of 12.2 percent is reported. Also, the average test to
predicted ratio, using the ACI code method, is reported as 1.56 with a coefficient of
variation of 26.2 percent.

Eighty-three individual slab-column connections are considered here (Section 8.2)
to evaluate the moment-shear interaction diagrams suggested by the Strip Model. These
include forty edge connections from nine separate investigators and forty-three
eccentrically loaded interior connections from four separate researchers. A brief
description of each test, geometry, and analytical results are provided in appendices C and
D for the edge and interior connections, respectively.

In Section 8.3, shear-moment interaction diagrams based on the North American
building codes are briefly explained. These diagrams are applied to the edge and interior
connections reported in the literature. The results of the study are then compared to the
results based on the Strip Model in Section 8.4, with the focus on the two edge
connections tested and reported in this thesis.

8.2 Applying the Strip Model to Tests in the Literature

8.2.1 Strip Model and Tests on Edge Connections

Test to calculated ratio of forty edge connections reported in the literature are
presented in Figure 8.1. The geometry and boundary conditions of the test specimens were
variable. The moment to shear ratio, e, ranged from 0 to . The column size varied from
75 to 355 mm and the thickness of the plate ranged from 48 to 152 mm. The sampling,
therefore, provides a diverse set of data with which to test the proposed model.

The test to calculated ratio varies between 1.08 and 1.60, and has an average of
1.32. The related coefficient of variation is only 12.3 percent. These data indicate that the
Strip Model provides an accurate lower bound estimate of the capacity of the edge
connections.

In Figure 8.1, a perfect correlation between tested and predicted capacities would
produce a quarter of a circle with a radius of one. In this figure, any radial line
corresponds to a constant value of h/e. In practice, design assumption for most edge
connections results in a value of e of about 2.0 to 2.5 times the thickness of the plate. The
corresponding lines are also presented in Figure 8.1. Any point on the horizontal axis
represents a test in which no shear is transferred through the connection. Points on the
vertical axis, however, correspond to tests in which no bending moment is transferred.

The test to calculated ratios are also plotted in Figures 8.2 and 8.3 as functions of,
respectively, the reinforcement ratio of the top bars in the interior radial strip, and the
compressive strength of the concrete, .
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8.2.2 Strip Model and eccentrically loaded interior connections

Test to calculated ratio of forty three interior connections reported in the literature
are presented in Figure 8.4. The average ratio of test to calculated load is 1.39. Test to
calculated ratios vary between 0.97 and 1.83 with the coefficient of variation of 16.2
percent.

Except for the two tests of Regan et. al., all tests were isolated single column tests.
The moment to shear ratio ranged from 0 to oo. Plate thickness varied from 65 to 152 mm.
Column dimension ranged from 76 to 305 mm. The sampling provides a diverse set of
data with which to test the proposed model. Since in all tests, value of M"_ is zero, only
diagram B in Figure 7.5 is being examined.

In most interior connections in practice, the ratio of the unbalanced moment to the
shear, e, varies between O and a value of about 2.5 times the thickness of the slab. This
corresponds to a region between the vertical axis (e=0) and the line e=2.5 h. Tests falling
in this region realistically model the condition in flat plate structures.

The test to calculated ratios are also plotted in Figure 8.5 versus the reinforcement
ratio, and in Figure 8.6 versus the compressive strength of the concrete, f'_.

8.3 North American Standards in the Presence of the Unbalanced Moments

8.3.1 Strength of a Connection

In the presence of unbalanced moments, North American Standards use design
moments at three different sections of a flat plate-column connection; (a) moment at the
face of the column, used in determining the overall flexural capacity (or yield line
mechanism load), P, (b) moment about the centroid of the column, M, obtained from
analysis of the whole structure and used to design the column, and (c) unbalanced moment
about the centroid of the critical section for shear, M.

A fraction of the unbalanced moment, y, x M,, is assumed to be transferred by
eccentric shear stresses. The distribution of the vertical shear stresses around the critical
section is assumed to be linear (Equation 8.1). This provides a relation between shear and
unbalanced moment, by which the shear capacity of the connection at a certain
eccentricity, P, can be determined. It is worth mentioning that the critical section
property, J, includes terms that accounts for horizontal shear stress, although the
contribution of this term is minor.

V. +yv><Mu><c
pxd J

(same as Equation 2.11) [8.1]

Vmax =

The fraction of unbalanced moment not transferred by the shear, (1- v,) x M, is
assumed to be transferred by flexure over an effective slab width of ¢ _+ 3 h. This
introduces a completely independent limitation on the connection strength, P,.

The capacity of the flat plate structure is therefore equal to the smallest value of
the yield line mechanism load, P, shear capacity of the connection, P, and the flexural
limitation of the connection, P,.
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8.3.2 Moment-Shear Interaction Diagrams

Moment-shear interaction diagram for an interior connection is plotted in Figure
8.7. In the interior connections, the centroid of the critical section in shear coincides with
the centroid of the column (M, = M). The shear due to the applied load and the shear due
to the unbalanced moment are always additive. As a result, Equation 8.1 predicts a simple
linear interaction (line ab). Shear at point a, V,, and moment at point b, M,, are determined
by Equations 8.2 and 8.3, respectively.

Va=p X dXVmax (Interior Connections) [8.2]
2 X Viax X J . .

My =—"7T22"+ Interior Connections [8.3]
Yy X (¢y +d) ( )

Figure 8.8 shows the shear-moment interaction diagram for an edge connection.
The different shape of the interaction diagram for the edge column-plate connection is due
to the asymmetry of the critical section. Figure 8.9 describes the shear distribution along
the critical section for points a through d on the interaction diagram, as well as the relation
between the moment about the centroid of the critical section and the moment about the
centroid of the column (Equation 8.4).

M=M,+V,xc, [8.4]

Along segment ab of the interaction diagram, failure is governed by the stress
condition near the free edge. Along segment bc, the critically stressed region is the interior
side of the critical section. Along segment cd, failure is again governed by the stress
condition at the free edge. However, unlike other segments, the shear component due to
the applied load is of opposite sign to the shear component due to the unbalanced
moment. For convenience, Equation 8.1 is manipulated to Equations 8.5 through 8.8, by
which shears and moments related to points a through d can be directly determined.

Va= lv—;nixcﬂc—a (Edge Connections) [8.5]
pxd J
Vi = Vmax X p X (Edge Connections) [8.6a]
My, =V xcs3 (Edge Connections) [8.6b]
2xcy .
Ve=Vmaxxpxdx(l- y (Edge Connections) [8.7a]
Cy+ 2
2 X J X Vimax )
M;=—"—""+c3xV, (Edge Connections) [8.7b]
Yo X (€y+3)
My = Y XJ Edge C i 8.8
4=y e, (Edge Connections) [8.8]
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8.3.3 Comparison with the Tests in the Literature

Test to calculated ratios, based on the North American Standards, are presented in
Tables C5 and DS, respectively for the edge and interior connections reported in the
literature.

For the edge connections, the test to calculated ratios range between 1.08 and
2.52, and have an average of 1.59 with the coefficient of variation of 23.7 percent. These
ratios are presented graphically in Figure 8.10 based on the eccentricity of the load,
non-dimensionalized by the thickness of the specimens. Also, in Figures 8.11 and 8.12,
test to calculated ratios are plotted versus the reinforcement ratio and the concrete
compressive strength.

For interior connections under unbalanced loading, the test to calculated ratios
vary from 1.03 to 2.7, having an average of 1.61 and a coefficient of variation of 24.3
percent. These test to calculated ratios are presented graphically in Figures 8.13 to 8.15.

8.4 Comparison of Strip Model, North American Standards, the Test Results

Any analytical model should be able to predict the behavior of a specimen under a
wide range of conditions, provide an understanding of the load carrying mechanisms, and
result in a safe prediction of the ultimate capacity of the specimen without significant loss
of accuracy. A usual measure to evaluate an analytical model is the ratio of test to
predicted result. Table 8.1 summarizes the statistics on the test to calculated predictions
based on the Strip Model and the North American Standards.

Both models result in a safe prediction of the capacity of the plate-column
connections, when the reinforcement ratio is within a reasonable range. However, for
extremely lightly reinforced interior connections under balanced loading , the code
predictions might be unsafe.

The coefficients of variation of the test to calculated predictions by the Bond
Model the Strip Model are considerably smaller than those by the North American
Standards. This indicates that the bond model approach is more reliable than the North
American codes in predicting the punching capacity of the column-plate connections.

The two edge connections reported in this thesis provide a good opportunity to
examine which model predicts the behavior of the plate-column connections more
accurately. In these tests, the geometry of the connections are identical and the same
concrete is used. Also, the capacity of the connections is not governed by the yield line
mechanism load, and the reinforcement provided satisfies the flexural limitations of the
code (with the exemption that one connection is designed for less moment). The only
variable is the area of the reinforcement normal to the free edge.

In Figures 8.16 and 8.17 the test results are plotted against the moment-shear
interaction diagrams based on the Strip Model and on the North American codes for the
north and the south edge connections, respectively. Since the interaction diagram of the
code is independent of the reinforcement ratio, this diagram is the same for both
connections. For both connections, the governing region on the code interaction diagram
is line be, which has a negative slope. The eccentricity of load in the south connection is
more, since this connection is more heavily reinforced. Therefore, according to the code, it
should transfer less load.
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The effect of increasing the area of the top reinforcement normal to the free edge,
however, is considered by the Strip Model. Comparing Figures 8.16 and 8.17, the
moment-shear interaction diagram is stretched to the right side and slightly to the top, as
the reinforcement ratio increases. Therefore, the model predicts that the south connection
should transfer more load and larger moment, compared to the north connection.

Test results show that the south connection has carried more shear while
transferring a considerably larger moment. This observation is consistent with the Strip
Model prediction of the behavior and not with the code interpretation of the behavior. The
capacities predicted by the Strip Model are more reliable but still conservative.

Table 8.1 Comparison of the Strip Model, North American Standards, and Test Results

. . * . . .
Test to Interior connections Interior connections Edge connections

calculated | Concentrically loaded unbalanced moment

ratio Bond Model| Codes | Strip Model | Codes | Strip Model | Codes

No. of tests 145 145 43 43 40 39
Average 13 1.56 1.39 1.61 132 1.59

f,;’fli‘f;fln(ﬁ;:)f 12.2 26.2 16.2 243 12.3 237
Minimum 0.86 0.7 0.97 1.03 1.08 1.08
Maximum 1.66 277 1.83 27 1.6 2.52

* After Alexander (1996)
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Figure 8.1 Test to calculated ratio for the edge connections
reported in the literature - Strip Model
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Figure 8.4 Test to calculated ratio for the interior connections
reported in the literature - Strip Model
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reported in the literature versus the reinforcement ratio
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Figure 8.11 Test to calculated ratios of the edge connections reported in the
literature versus the reinforcement ratio of the top bars in the interior radial strip
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Figure 8.14 Test to calculated ratios of eccentrically loaded interior connections
reported in the literature versus the reinforcement ratio

Interior Connections

North American Standards

3
o 25
g 2 -
& "
3 2 : . .
® 7 B g =
B . . . "
% 1.5 . s A ". e § -
@) - "
8 1 - -] ] ||
= 0.5

O | L | ' | ' | i |

20 30 40 50 60

Compressive Strength of Concrete (MPa)

Figure 8.15 Test to calculated ratios of eccentrically loaded interior connections
reported in the literature versus the compressive strength of the concrete, f'c

188




Load (kN)

North Edge Connection

400

300 |~

200 F=-- A

100 -

b 2 / Yield Line

:_.-"' Mechanism Load
3a { /
Possible Flexural Limit
3b
c

Failure at Interior Connection,
Partial Punching at North Connection

L | I | | 1 |

20

40 60 80 100 120

Moment at the center line of column, M (kNm)

Test Results

Strip Model North American Standards
—_—— —_——

Figure 8.16 Comparison of North American standards, Strip Model, and the
test results of the north edge connection in the current study
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Figure 8.17 Comparison of North American standards, Strip Model, and the
test results of the south edge connection in the current study
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9. Summary and Conclusions

9.1 Summary

An analytical model, referred to as the Strip Model, is proposed that explains the
physical mechanisms of transfer of vertical shear and bending moment from orthogonally
reinforced concrete slabs to columns. The Strip Model is a generalization of the Bond
Model which is limited to the behavior of interior slab-column connections under
concentric load, that is, where only vertical shear is transferred to the columns.

The Strip Model uses the same vertical load transfer mechanism of arching action
and beam action as the Bond Model. Hence, both models describe the transfer of the
vertical shear between the plate and the column in terms of the available mechanisms of
moment gradient. The connection is modeled with strips of slab, called radial strips, that
are parallel to the reinforcement and cantilever from the column. Load is transferred to a
radial strip from adjacent quadrants of the two-way slab by slender flexural behavior. A
radial strip then transfers this load to the column primarily by arching action. The
interaction of the flexural strength of the radial strip and the shear strength of the slender
two-way slab defines the capacity of a radial strip. An important advantage of this model
of shear transfer is that it provides a basis for calculating internal distribution of shear from
measured strains in the flexural reinforcement of the slab.

Since the Bond Model was developed to predict the capacity of concentrically
loaded interior slab-column connections, the width of a radial strip was selected to
encompass those bars passing either through or immediately adjacent to the column. The
resulting capacity is referred to as the nominal capacity of that strip. The capacity of the
connection was taken to be the sum of the nominal capacities of the four radial strips. The
Bond Model successfully predicted the results of 144 tests of concentrically loaded
interior slab-column connections reported in the literature. However, most of the test
specimens were of the enforced deformation type, that is, the specimens were supported
and loaded so that each radial strip would undergo the same deformation. The reaction
around the support need not be uniform and the connection can not fail until all radial
strips fail. In practice, slabs are generally designed for a uniformly distributed load and the
share of the load on each radial strip depends on the geometry of the slab. The possibility
therefore exists in a 'real life' slab that all strips may not reach their nominal capacity.

For an edge connection, where some unbalanced moment is transferred to the
column, the described mechanism of shear transfer results in a contradiction between the
Bond Model and the North American design codes. Consider two edge connections with
identical gross concrete dimensions but different design moments resulting in different
flexural reinforcement. Based on the concepts of the Bond Model, the connection with the
larger moment and correspondingly greater flexural reinforcement can be designed to.
carry more vertical shear. This is in direct contrast with the North American design codes
which consider the connection with larger moment to have smaller shear capacity.
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To resolve this contradiction and to determine whether at an interior column all
radial strips reach their nominal capacity, a full scale slab specimen was tested. The test
slab consisted of two equal spans to provide one interior and two edge columns and was
rotationally restrained along two opposite edges to simulate an interior strip in a
continuous slab. The test specimen was realistically reinforced for a uniformly distributed
load which was simulated using 32 equal point loads. The slab design followed North
American design procedures except that the column dimensions were selected to be
critical in shear by these codes but not by the Bond Model. The two edge connections had
the same concrete geometry. However, one connection was reinforced for 30 percent of
the panel static moment and the other one for 10 percent with appropriate modifications to
the positive reinforcement in the span. Strain gauges were installed on the flexural
reinforcement to permit calculation of the internal vertical shears. Deflections and crack
patterns were recorded until failure and crack widths were measured at service load.

The specimen was loaded monolithically to failure. Provision was made so that as
the first connection failed, the load could be increased to fail the remaining connections.
Evaluation of the internal shears from the strain gauge measurements matched closely with
the reaction load cell measurements, and indicated that not all radial strips were at their
nominal shear capacity at the failure of the connection. Observations and data analysis of
this test led to the development of the Strip Model. The test findings were supported with
a series of non-linear finite element analyses.

The condition where radial strips do not transfer shear in proportion to their
nominal capacities is referred to as non-proportional behavior. Such behavior occurs in a
connection transferring unbalanced moments since the effect of the moment is to load one
radial strip more than the others. Non-proportional behavior may also occur in
concentrically loaded interior connections as a result of, for example, column or panel
rectangularity. Torsional moments increase the capacity of radial strips in one direction
and reduce the capacity of the radial strips in the other direction. This leads to the concept
of super radial strips where the shear capacity is greater than the nominal capacity
assumed by the Bond Model as the effective width of the super radial strip is greater. The
Strip Model permits computing a lower bound estimate of the vertical shear capacity of an
interior or edge connection based on the column dimensions and the flexural capacity of
the orthogonal radial strips.

The Strip Model can be used to construct the interaction diagrams for the capacity
of edge and interior connections. The failure capacity of 40 tests on edge connections and
43 tests on eccentrically loaded interior connections reported in the literature were
predicted by the Strip Model and the North American codes using resistance factors of
one. While both models result in a safe prediction of the capacity, the predictions by the
Strip Model were closer and had considerably less scatter, making the Strip Model a more
reliable predictor of the connection capacity.
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9.2 Conclusion

(1) The mechanism of shear transfer used as the basis of the Strip Model is
essentially correct. Internal shears calculated from strain gauge measurements were in
excellent agreement with external measurements of shear using load cells. The distribution
of the torsional moments assumed in the derivation of the Strip Model are consistent with -
those obtained with non-linear finite element analysis.

(2) In the general case (non-proportional behavior) connection failure may be
initiated by the failure of one radial strip while the remaining radial strips are loaded to less
than their nominal capacities. For an interior connection under concentric load, the
consequence of the non-proportional behavior is that there is not a unique failure capacity.
The Strip Model gives a lower bound prediction of the capacity of a concentrically loaded
interior connection.

(3) The Strip Model is a reliable predictor of the strength of edge and interior
column connections under combined shear and moment.

(4) The Strip Model closely predicted the capacity of the two edge connections
with different amounts of flexural reinforcement reported in this investigation whereas the
North American codes were unable to distinguish between the connections even though
their behavior was significantly different.

(5) At an edge connection, bars perpendicular to the free edge and not passing
through the column may not yield even if placed within 1.5 times the thickness of the slab
from the column. The moment that may be transferred to the column from the slab by bars
outside the column width is limited by the torsional capacity at the side face of the column.
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Appendix A - Pictures of the Test Specimen
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Figure A4 - Loading System
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Appendix B - Force Gradient in Bars
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Exterior connection - 1st interval
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Appendix C Tests in Literature - Edge Connections

Information regarding tests used in this appendix is summarized in five tables.
Table C1 provides a summary of test results, geometry of the connections, and the
material properties. In many tests, cube strength of concrete, £, , is measured and reported.
The equivalent cylinder strength of concrete, f, is assumed to be 80 percent of the cube
strength.

In Table C2, the required information regarding the reinforcement of the
specimens are summarized. Where bars are not uniformly spaced, the average spacing of
bars is calculated based on the method suggested in Section 7.4.1 from Equation 7.34a.
For uniformly spaced bars, the average spacing of bars equals the actual spacing.

Table C3 shows the calculated parameters required for constructing the moment
shear interaction diagrams based on the Strip Model. The flexural capacity of the radial
strips are calculated based on the average spacing of the bars reported in Table C2. Zero
values for positive moments, M"_ and M",, indicate that either no bottom reinforcement
has been provided, or no means has been provided to generate such moments.

In Table C4, analytical results required to construct the moment-shear interaction
diagrams according to the Strip Model are presented, as well as the region in which the
test specimen failed. The Strip Model estimates the punching capacity of the
plate-column connection as the lesser of the shear capacity, P,, and the bending capacity,
P, of the connection. These values are also reported in Table C4, together with the test to
calculated ratio and the governing mode of failure. The bending capacity reported in this
table is the lesser of the flexural capacities in the two directions.

Finally, in Table C5, analytical results required to construct the interaction
diagrams using the North American codes are presented, as well as the test to calculated
ratios and the predicted governing mode of failure.

C1 - Stamenkovic and Chapman

Stamenkovic and Chapman (1974) conducted six tests of edge connections under
a variety of loading condition. The moment to shear ratio varied from 0 to o in these
tests. The geometric similarity of the specimens allows some assessment of how well the
Strip Model predicts the shape of the shear-moment interaction diagram. In Figure 8.1, it
can be seen that how well the results lie on a circle with a radius of about 1.57 (average
test to calculated ratio of these tests is reported in Table C4). The coefficient of variation
of these six tests was as low as 2 percent.

In all tests, the slab was 76 mm thick and 914 mm square, attached to a single 127
mm square column. The load was applied to the column and was distributed by the slab
to its boundaries. The boundary condition was not well defined. The slab was clamped by
sixteen 38.1 mm rods by means of nuts. These rods were 914 mm long. It is not clear how
much rotational and lateral restraint they provided. Also, the magnitude of the load in the
individual rods is not known. Therefore, the flexural failure load of these tests, P in
Table C4, can not be calculated.

These tests had the highest test to calculated ratio among those tests considered
here. The supporting rods provided line supports allowing the slab to generate very high
torsional moments. Also, since rods were clamped to the slab, they could generate a
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limited positive moment along the edges of the specimens, which is very difficult to
assess. These factors would increase the capacity of the connection.

C2 - Zaghlool

Zaghlool (1971) conducted eight tests on edge connections. Four of them were
geometrically similar specimens with different moment to shear ratios [Z-V (1,4,5, and
6)]. In the remaining specimens, slab reinforcement and column size were the varying
parameters. All slabs were 965 x 1830 x 152 mm with the larger size parallel to the free
edge. All tests were single column tests with the load applied to the column. The
boundaries were simply supported, and unlike the tests of Stamenkovic and Chapman,
uplift was permitted. The average test to calculated ratio for these tests is 1.33 with a
coefficient of variation of 11.6 percent.

C3 - Kane, Hanson and Hanson

Kane (1978) conducted four tests and Hanson and Hanson (1968) conducted one
test on edge connections. These tests were single column tests with loads applied directly
to the plate at a certain eccentricity to the center line of the column. Edges of the plate
were all free.

Kane's slabs were approximately 700 x 400 x 50 mm with the larger side parallel
to the spandrel strip. Forty percent of the load was directly applied on the center line of
the spandrel strip and the remaining was applied at a fix distance from column center line.
The principal variable was the distribution of the reinforcement. The shear capacity of the
connections are close to the bending capacity of the specimens, and in all tests, the
applied loads exceeded both of these calculated values. The average test to calculated
value is 1.31 with a coefficient of variation of 1.8 percent.

Hansons' slab was 1220 x 1140 x 76 mm. A single line load was applied to the
specimen by means of a steel beam bearing on the slab. The effect of the stiffness of the
steel section is not clear.

C4 - Current Study

Two edge connections with the same geometry and the same material properties
has been tested and documented in this study. The design moment, and therefore the
detail of the reinforcement, were different for the two connections. Details of the
specimen has been completely described in chapter 3.

In Table C4, P, is the shear associated with the yield line mechanism. The value of
P, for each connection has been calculated in Section 3.3.7.1, and is presented in Table
3.6 as well. It can be seen that the specimen has punched before a complete yield line
mechanism. In such cases, as described in Section 7.4.3, the positive moment in the radial
strips is less than the yield moment. To estimate the value of these moments, an iterative
procedure is required. However, the magnitude of these moments at failure has been
measured. The values presented in Table C3 for M* and M",, are the measured values at
failure, and therefore there is no need for such iteration.
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CS - Scavuzzo / Gosselin / Lamb

Scavuzzo (1978), Gosselin (1984), and Lamb (1984) each tested four specimen
with essentially identical loading and support condition. Each specimen consisted of one
edge connection and one interior connection. The edges representing the mid span of the
prototype were rotationally restrained by means of HSS profiles clamped to the slab, and
compression struts connecting the corresponding HSS profiles. Specimens were subjected
to cycles of both gravity and lateral loads prior to being failed under gravity load only.
The gravity load was modeled by uniformly distributed load points applied to the slab.
All slabs were 63 mm thick, however, Gosselin's specimen had drop panels.

The main objective of these three investigations was to examine the frame
behavior of a slab-column system. Ultimate capacities were of secondary importance. As
a result, the actual failure loads of some specimens were not recorded. For these cases
(Gosselin and Lamb tests), the last reported shear and moment values are presented in
Table C1 as P, and M. The shear due to dead load is assumed to be 3.5 kN, and is
accounted for, in the P,_,.

In this table, the value of the maximum positive moment, M"__, is also reported
for these tests. This value is calculated based on equations of equilibrium, knowing the
shear, the moment at the center line of the column, and the applied loads. The value of
M’ if smaller than the positive yield moment, is used to calculate the positive moment
in the radial strip at failure, M",,. The positive moment in the spandrel strip, M", , is
estimated in a similar way. Values of M",, and M"_ are presented in Table C3.

test®

C5.1 Scavuzzo; Three of the tests by Scavuzzo had some type of shear
reinforcement. Only test S-1 which was described as having a punching failure is studied
in this research.

C5.2 Gosselin; Two of the specimens of Gosselin failed by punching at the
interior column. Since there was no indication that edge connections were near ultimate,
these two tests have been excluded from this investigation.

Specimen G-1 had a punching failure at the edge column, accompanied by
considerable cracking of concrete and yielding of steel. Specimen G-2 was described as
having a rotational failure.

Specimens G-1 and G-2 had respectively 16 mm and 33 mm thick drop panels.
The size of drop panels in both tests was 600 x 600 mm. The loaded length of the radial
strips, as bond model predicts, is smaller than the dimensions of the drop panels.
Therefore, the overall thickness of slab and drop panel is used to determine w, and W,
Negative flexural capacities of the radial strips are also calculated based on the overall
thickness of the slab and drop panel. However, when determining the positive flexural
capacities of the radial strips, the thickness of the slab has been used.

Torsion along side faces of the column, M, is estimated ignoring the thickness of -
the drop panel mainly because of the level of the bottom bars. Torsional moment along .
side faces of the interior radial strip, M, , is estimated by the negative flexural capacity of
the adjacent radial strip. The width of this strip (1.5 h) and its flexural depth are
calculated based on the overall thickness including the thickness of the drop panel.
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C5.3 Lamb ; Two of the Lamb's tests had edge beams and are excluded from this
study. Specimens L-1 and L-2 had the same extremely light reinforcement lay out.
Specimen L-1 was described as having a punching failure at the edge column, proceeding
extensive cracking in the slab. Specimen L-2 failed by punching at the interior column
but the condition at the edge connection was near failure.

C6 - Regan, Walker, and Zakaria

Regan et al. (1979) conducted an extensive test program which included interior,
edge, and corner connections plus wall supported slabs. Fourteen tests on edge
connections are considered here. Specimens SE3 and SE18 are excluded from this study
due to the presence of shear reinforcement. Specimens SE16 and SE17 are excluded from -
this study due to non-orthogonal reinforcement. All tests were double column tests with
load applying on the slab. A unique feature of tests SE1 through SE11 was the absence of
any bottom reinforcement parallel to the free edge. All edges of the specimens were free
to rotate, and no edge restraining system was provided. Therefore, M",, in all tests is
equal to zero.

At failure, knowing the values of column reaction, applied point load, and the
negative moment at column center, positive moment at the mid span, M",__, is calculated
using equations of equilibrium. The positive moment at the interior radial strips, M"_, is
calculated based on the smaller value of the positive yield moment and the M",__,.

The yield stress or 0.2 percent proof stress of the reinforcement used was a
variable of bar size; 480 MPa for 8 and 12 mm bars, 500 MPa for 10 mm bars, 595 MPa
for 6 mm hot-rolled bars, and 800 MPa for 6 mm cold-worked steel.

The average test to calculated value for Regan's tests is 1.27 with a coefficient of
variation of 10.4 percent. The specimens were grouped in three series;

C6.1 Series SE1 through SE8; Specimens SE1 through SE8 were all 125 mm
thick, 1.3 m wide, and 3.05 m long, with 8 loading points. The variables in this group
were column dimensions and the amount and detailing of the slab reinforcement.

C6.2 Series SE9 through SE11; The slab thickness of 125 mm was retained for
these specimens but the plan dimensions were increased to 2.08 8 3.91 m. The number of
load points was increased from 8 to 10 loading points. Details of reinforcement were also
the same for SE9 through SE11. The only parameter varied was the degree of restraint
provided at the plate-column connection.

C6.3 Series SE12 through SE15; All tests in this group were 80 mm thick, with
four point loads. The width and the clear span of all specimens were respectively 1.22 m
and 1.83 m. In slab SE 14, like slabs SE1 through SE 11, the slab edges were flushed with
the outer face of the column.

In test SE15, the slab edge was at the inner face of the column. The absence of
spandrel strips in this test, makes it an interesting case since it directly examines the
mechanics of shear transfer in an interior radial strip.

Slabs SE12 and SE13 had respectively 370 and 160 mm overhangs beyond the
outer face of the columns. Since no Jack load is applied to the overhangs, these tests have
been treated like tests on edge connections with two spandrel strips and one interior radial
strip.
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Table C1 Summary of Test Results, Geometry, and Material Properties of

Edge Connections Reported in the Literature

Mark h c, c, £, £ f, Peo | M | M e
mm | mm | mm | MPa | MPa | MPa | kN | kNm | kNm | mm
Stamenkovic and Chapman
V/E/l1 | 176 127 | 127 | 358 | 28.6 | 495 | 74.7 0 0 0
C/E/l1| 76 127 | 127 | 384 | 30.7 | 448 | 73.1 | 5.59 0 76.47
C/E2 | 76 127 | 127 | 324 | 259 | 495 | 54.7 | 9.17 0 167.6
C/E/3 | 76 127 | 127 34 | 272 | 495 | 249 | 10.05 0 403.6
C/E/4 | 76 127 | 127 | 343 | 274 | 495 | 109 | 8.83 0 810.1
M/ER2 | 76 127 | 127 | 33.1 | 26.5 | 495 0 8.35 0 INF
Kane / Hanson & Hanson
K1 51 68 100 | 38.5 | 30.8 | 480 24 2.38 0 99.17
K2 48 75 114 45 36 480 | 20.9 | 2.07 0 99.04
K3 48 75 114 51 40.8 | 480 | 25.1 | 2.48 0 98.8
K4 48 75 114 | 353 | 2824 | 480 | 182 | 1.8 0 98.9
D-15 | 762 | 152 | 152 31.06 | 365.1 | 12.03 | 10.51 0 |8734
Afhami
North | 152 | 305 | 254 348 | 420 | 176.1 | 51.1 | 134 |290.2
South | 152 | 305 | 254 348 | 420 | 222 88 138 | 396
Scavuzo / Gosselin / lamb
S-1 63 102 152 38.09 | 379 | 356 | 466 | 6.46 | 130.8
G-1 63 150 | 225 38.09| 375 | 415 | 7.23 | 5.03 [ 174.2
G-2 63 150 | 225 39 375 | 47.1 | 11.16 | 3.65 | 236.9
L-1 63 150 | 225 347 | 395 | 31.1 | 349 | 739 | 1122
L-2 63 150 | 225 438 | 395 | 342 | 5.12 | 6.41 | 149.7
Zaghlool
ZIvV(1)| 152 | 178 178 27.31 | 4753 | 122.1 | 44.96 0 368.2
Z-V(1)| 152 | 267 | 267 343 | 473.2 12149 | 84.5 0 (3932
Z-V(2)| 152 | 267 | 267 40.43 | 473.2 | 246.4 | 93.44 0 379.2
Z-V(33)| 152 | 267 | 267 38.71 | 474.6 | 267.7 | 103.5 0 386.4
Z-V4)| 152 | 267 | 267 34.78 | 436.7 0 81.25 0 INF
Z-V(5)| 152 | 267 | 267 35.13 | 475.3 | 278.8 0 0 0
Z-V(6)| 152 | 267 | 267 3127 | 476 | 116.8 | 88.02 0 753.8
Z-VI(1)| 152 | 356 | 356 25.97 | 475.3 | 264.6 | 106.7 0 403.3
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Table C1 Continued

Mark h C, c, £, £ f, P | Moy | M e
mm | mm | mm | MPa | MPa | MPa | kN | kNm | kNm | mm
Regan, Walker, Zakaria (1979)
SE1 125 | 200 | 300 | 44.6 | 3568 | 480 | 198 | 39.5 | 51.58 | 199.5
SE2 | 125 | 200 | 300 | 54.6 | 43.68 | 480 | 192 34 | 5432|1771
SE4 | 125 | 300 | 200 | 343 |27.44 | 480 | 152 | 30.5 |47.02 | 200.7
SES | 125 | 300 | 200 | 552 [44.16 | 480 | 164 | 38.5 | 45.14 | 234.8
SE6 | 125 | 300 | 200 40 32 500 | 149 | 27.5 | 48.49 | 184.6
SE7 | 125 | 300 | 200 | 49.5 | 39.6 | 500 | 129 | 31.7 | 34.09 | 245.8
SE8 | 125 100 | 300 52 | 41.6 | 480 | 136 | 33.7 |28.86 | 247.8
SE9 | 125 | 250 | 250 | 51.8 [ 41.44 | 480 | 123 | 35.7 | 54.34 | 290.2
SE10 | 125 | 250 | 250 | 50.9 [40.72 | 480 | 114 36 | 47453158
SE11 | 125 | 250 | 250 | 62.5 50 480 | 138 | 39.5 | 61.52|286.2
SE12 | 80 160 | 160 | 63.1 | 50.48 | 480 69 17.9 | 13.63 | 259.4
SE13 | 80 160 | 160 | 51.8 | 41.44 | 480 60 14.7 | 12.72 | 245
SE14 | 80 160 | 160 | 55.6 | 44.48 | 480 46 12.2 | 8.82 | 2652
SE15 | 80 160 | 160 | 53.2 | 42.56 | 480 48 74 | 1454|1542
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Table C2 Information Regarding Reinforcement of Tests on the Egde Connection

Bars normal to the free edge Bars parallel to the free edge

Mark Top Bottom Top Bottom

¢ Savg d ¢ Savg d ¢ Savg d ¢ Savg d

Stamenkovic and Chapman

V/E/1 |794| 76 | 60 |794| 76 | 60 [794} 76 | 52 | 794 76 | 52

C/E/N1[794| 76 | 60 [794| 76 | 60 |794| 76 | 52 |794| 76 | 52

CE2|794| 76 | 60 [794| 76 | 60 |[794| 76 | 52 |794| 76 | 52

C/E/3 (794 | 76 | 60 [794| 76 | 60 |794| 76 | 52 (794 ] 76 | 52

C/E/4 794 | 76 | 60 [794| 76 | 60 |794| 76 | 52 794 | 76 | 52

M/E/2|1794| 76 | 60 {794 | 76 | 60 |794| 76 | 52 |794| 76 | 52

Kane / Hanson & Hanson

K1 6 67 | 44 6 67 | 44 6 60 | 38 6 60 | 38
K2 6 92 | 41 6 92 | 41 6 85 | 35 6 85 | 35
K3 6 67 | 41 6 67 | 41 6 62 | 35 6 62 | 35
K4 6 | 131 ] 41 6 | 131 | 41 6 | 109 | 35 6 | 109 | 35
D-15 19.53 | 76 |62.15/9.53 | 76 |62.15/9.53| 76 |522|9.53| 76 |52.2

Afhami

North | 11.3 | 102 | 126 | See Figure 3.9 16 | 175 | 110 | See Figure 3.9

South | 16 | 102 | 124 | See Figure 3.10 16 | 175 | 108 | See Figure 3.10

Scavuzo / Gosselin / lamb

S-1 [5.74| 66 |525|574| 66 |52.5|574|63.5|46.5|574| 125 | 46.5

G-1 {574 100 | 68 |574| 125 | 52 |5.74| 75 | 62 | 574|100 | 46

G-2 (574|100 | 84 (574|125 | 52 |574| 75 | 78 [5.74| 100 | 46

L-1 [5.74 | 125 | 52 |5.74| 125 | 52 | 574|100 | 46 |5.74 | 165 | 46

L-2 | 574|125 | 52 | 574|125 | 52 [5.74| 100 | 46 |5.74 | 165 | 46

Zaghlool

Z-IV(1)| 12.7 | 76.2 | 127 | 12,7 | 762 | 127 | 12.7 | 58.2| 114 | 12.7 | 58.2 | 114

Z-V(1)| 12,7 | 63.5 | 127 | 12.7 | 63.5 | 127 [ 12.7 [ 69.9 | 114 | 12.7 | 69.9 | 114

Z-V(2)|12.7 1592 127 | 12,7 | 59.2 | 127 | 12.7 | 584 | 114 | 12.7 | 584 | 114

Z-V(3)| 12,7 | 59.2 | 127 | 12.7 | 59.2 | 127 | 12.7 | 59.2 | 114 | 12.7 [ 59.2 | 114

Z-V(4)| 127 159.2 | 127 | 127 | 59.2 | 127 | 1271699 | 114 | 12.7 | 69.9 | 114

Z-V(5) | 12.7 | 63.5 | 127 | 12.7 | 63.5 | 127 [ 12.7 [ 69.9 | 114 | 12.7 | 69.9 | 114

Z-V(6)| 12.7 | 63.5 | 127 | 12.7 | 63.5 | 127 | 12.7 [ 69.9 | 114 | 12.7| 699 | 114

Z-VK(1)| 12.7 | 87.6 | 127 | 12.7 | 87.6 | 127 | 12.7 | 82.6 | 114 | 12.7 | 82.6 | 114
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Table C2 Continued

Bars normal to the free edge Bars parallel to the free edge

Mark Top Bottom Top Bottom
0 | swg | 4| 0 s ] d | 0 [sm] d ] ¢ [sg]d

Regan, Walker, Zakaria (1979)

SE1 12 {100 | 104 | 12 | 90 | 104 | 12 | 125 | 92 0 0 0
SE2 8 [200] 105 12 | 90 (105 | 12 | 125 | 95 0 0 0
SE4 | 12 | 100 | 104 | 12 | 175 | 104 | 12 | 125 | 92 0 0 0
SES | 12 | 120 | 104 | 12 | 210 | 104 | 12 | 125 | 92 0 0 0
SE6 | 10 | 150 | 104 | 12 | 140 | 104 | 12 | 125 | 93 0 0 0
SE7 | 10 | 100 | 104 | 10 [ 250 | 104 | 12 | 125 | 93 0 0 0
SE8 | 12 | 120 | 104 | 12 | 210 | 104 | 12 | 125 | 92 0 0 0
SE9 | 12 | 200 | 104 | 12 | 290 | 104 | 12 | 125 | 92 0 0 0
SE10 | 12 [ 200 | 104 | 12 | 290 | 104 | 12 | 125 | 92 0 0 0
SEI11 | 12 {200 | 104 | 12 [ 290 | 104 | 12 | 125 | 92 0 0 0
SE12 | 8 75 | 66 8 | 140 | 66 8 | 100 | 58 0 0 0
SE13 | 8 75 | 66 8 | 140 | 66 8 [ 100 58 0 0 0
SE14 | 8 75 | 66 8 | 140 | 66 8 | 100 | 58 0 0 0
SE15 | 8 75 | 66 8 | 140 | 66 8 | 100 | 58 0 0 0
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Table C3 Parameters Required for Constructing Interaction Diagram of the Edge

Connections Reported in Literature

Mark W, W, M M M’ M* M, M,

X y 153 sy 5 sy

kKN/m | kN/m kNm kNm kNm kNm kNm kNm

Stamenkovic and Chapman

V/E/1 46.2 533 2.19 1.86 0 0 1.64 1.64
C/E/1 | 47.84 55.2 2.02 1.72 0 0 1.66 1.66
C/E/2 | 4395 | 50.71 2.16 1.83 0 0 1.52 1.52
C/E/3 | 45.02 | 5195 2.17 1.84 0 0 1.59 1.59
C/E/4 | 4522 | 52.17 2.17 1.85 0 0 1.61 1.61
M/E/2 | 4442 | 51.25 2.16 1.84 0 0 1.55 1.55
Kane / Hanson & Hanson
K1 35.01 | 40.54 0.55 0.76 0 0 0.49 0.49
K2 34.86 | 40.84 0.43 0.59 0 0 0.52 0.41
K3 37.11 | 4347 0.58 0.79 0 0 0.53 0.53
K4 30.88 | 36.17 0.3 0.46 0 0 0.51 0.29
D-15 48.25 57.5 2.9 2.38 0 0 1.91 1.91

Afhami

North | 107.72 | 123.39 | 15.01 12.5 9.57 5.92 7.5 7.5

South | 105.76 | 121.43 | 27.86 12.2 9.86 6.34 12.74 | 12.74

Scavuzo / Gosselin / lamb

S-1 47.67 | 53.82 0.76 1.04 0.45 0.39 1.25 0.7

G-1 63.52 | 69.67 0.97 1.75 0.4 0.44 1.9 0.76

G-2 80.86 | 87.08 1.2 221 0.29 0.44 1.9 1.14

L-1 4498 | 50.85 0.62 1.02 0.59 0.63 1.82 0.39

L-2 50.54 | 57.13 0.62 1.03 0.51 0.63 1.91 0.39

Zaghlool

Z-V(1) | 99.16 | 110.17 | 1544 | 16.93 0 0 8 8

Z-V(1) | 111.13 | 123.47 | 27.89 | 22.78 0 0 12.5 12.5
Z-V(2) | 120.65 | 134.05 | 30.31 | 27.18 0 0 12.63 | 12.63
Z-V(3) | 118.05 | 131.17 | 30.21 | 26.77 0 0 12.6 12.6
Z-V(4) | 111.9 | 12434 | 27.71 21.3 0 0 12.51 12.51
Z-V(5) | 112.46 | 124.95 | 28.09 | 22.95 0 0 12.52 | 12.52
Z-V(6) | 106.1 | 117.89 | 27.63 | 22.57 0 0 12.41 12.41
Z-VI(1) | 96.69 | 107.43 | 27.21 | 25.35 0 0 15.21 15.21
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Table C3 Continued

Mark W, w, M, M, M’ M’ M, M,,
kKN/m | kN/m | kNm kNm kNm kNm kNm kNm
Regan
SE1 91.22 | 103.12 | 1032 | 11.05 7.64 0 9.73 9.67
SE2 104.23 | 115.2 2.49 11.61 8.05 0 7.47 2.34
SE4 80 90.43 15.04 7.18 5.37 0 6.23 6.23
SES 101.49 | 114.72 | 13.29 7.48 7.79 0 6.57 6.57
SE6 87.33 | 97.66 7.79 7.38 10.39 0 6.39 4.87
SE7 97.15 | 108.64 | 11.56 7.51 4.79 0 6.49 6.49
SES8 98.5 | 11135 | 441 11.18 1.96 0 9.83 8.28
SE9 98.31 | 111.14 | 6.79 9.32 4.74 0 8.19 5.09
SE10 | 9745 | 110.17 | 6.79 9.3 4.74 0 8.18 5.09
SE11 | 107.99 | 122.07 | 6.84 9.43 4.76 0 8.27 5.13
SE12 | 68.41 | 77.84 3.2 2.13 1.76 0 222 222
SE13 | 61.98 | 70.53 3.16 2.11 1.75 0 2.19 2.19
SE14 | 64.21 | 73.07 3.18 2.11 1.26 0 2.2 2.2
SE15 | 62.81 0 3.17 0 1.75 0 0 0
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Appendix D Tests in Literature - Eccentrically Loaded Interior Connections

Similar to appendix C, information regarding tests used in this appendix is
summarized in five tables. Table D1 provides a summary of test results, geometry of the
connections, and the material properties. In Table D2, the required information regarding .
the reinforcement of the specimens are summarized. Table D3 shows the calculated
parameters required for constructing the moment shear interaction diagrams. In Table D4,
analytical results required to construct the moment-shear interaction diagrams according
to the Strip Model are presented, as well as the region in which the test specimen failed.
Finally, in Table D5, analytical results required to construct the interaction diagrams
using the North American codes are presented, as well as the test to calculated ratios and
the predicted governing mode of failure.

D1 - Regan, Walker, and Zakaria

Regan et al. (1979) conducted fourteen tests on interior connections under
unbalanced moments, all considered here. Three different test setups were used.

D1.1 SM Series ; Eleven tests belong to SM series. All slabs in this series were
2.0 m square and 80 mm thick. The slabs were simply supported only in the downward
direction by lines of tie bars positioned at all four edges. The load was applied to the
column at a fixed eccentricity.

The main top reinforcement was the same in all specimens. Specimen SM 10 was
the only specimen with bottom reinforcement. Extra steel passing through column was
placed in top mat of specimens SM 11 and SM12.

In addition to the details of reinforcement, size and shape of the column, load
eccentricity, and in one instance the arrangement of the supports were the variables of
series SM tests.

D1.2 Slab SRI ; One test on a 2.05 m square and 65 mm thick slab is reported.
Vertical load was applied on the slab at 16 equally spaced point loads. Two horizontal
loads were applied to the column to generate the unbalanced moment. The slab was
heavily reinforced with 6 mm cold-worked deformed bars with a 0.2 % proof stress of
800 MPa.

D1.3 SI1 and SI2 ; Two 2 mm wide and 125 mm thick strips with simple supports
across their ends and an interior column dividing the length into two spans were loaded at
12 load points simulating a uniform loading.

The layout of the reinforcement were the same for both slabs but specimen SI1
had larger bars. Both slabs developed considerable yielding before failure. The punching
of slab SI2 is regarded as somewhat secondary.

D2 - Stamenkovic and Chapman

Stamenkovic and Chapman (1974) conducted 12 tests on interior connections.
Based on the size and the shape of the column, specimens are divided into two groups; 6
slabs with 127 mm square column in group I, and 6 slabs with 76 x 152 mm rectangular
columns in group Ir.

The moment to shear ratio ranged from 0 to o in each group. The slabs were quite
small; 914 mm square and 76 mm thick. All edges were supported by 38.1 mm rods, in

220



the same way as described for the edge connections. Vertical load was applied to the
column end and distributed by the slab to the edges. Unbalanced moment was caused by
two horizontal forces applied to the column.

The average test to calculated ratio is 1.628 with a coefficient of variation of 8.7
percent. The high test to calculated ratios are related to the high. torsional moments
generated in the plate due to line support at edges, and also to the positive bending
moments generated because of the supporting rods being clamped to the slab.

D3 - Hanson and Hanson

Hanson and Hanson (1968) conducted 16 tests on interior connections under
unbalanced loading. Only 7 tests are considered here, since others had some kind of
perforations right at the column face. The average test to calculated ratio for these 7 tests
is 1.42 with a coefficient of variation of 7.5 percent.

All slabs were 1220 x 2135 mm and 76 mm thick with free edges. Type A had 152
mm square columns. Type B and C both had 152 x 305 mm rectangular columns. Unlike
type C, longer size of the column in type B slabs was in the direction of the eccentricity.

Two line loads were applied to the slab by means of a steel beam bearing on the
slab one on each side of the column. In slabs Al, A2, B7, and C8, both loads were
downward. In these slabs, the eccentricity was caused by the difference in the magnitude
of the loads. In slabs A12, B16, and C17, however, one load was upward and the other
one downward, causing very large eccentricities.

D4 - Moe

Moe (1961) conducted 12 tests on interior connections with unbalanced loading.
Slabs M4 and M5 did not have top reinforcement and were under large eccentricities.
They failed in bending before plate-column connection reached its capacity, and therefore
are excluded from this study. All other specimens failed in punching at the plate-column
connection.

All slabs were 1830 mm square with an overall thickness of 152 mm. Slabs were
simply supported along all four edges with the corners free to lift. Load was applied to the
column at a fixed eccentricity. Specimens M8 and M10 were the only specimens with two
layer of steel in each direction. Therefore, for other slabs, the value of M’ equals to
zero. Slabs M1A through M3 had 305 mm square columns, and slabs M6 through M10
had 252 mm square columns.

Eccentricity in applied load, column size, and steel strength were the main
variables. Average test to calculated ratio for these tests is 1.17 with a coefficient of
variation of 10.3 percent.
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Table D1 Summary of Test Results, Geometry, and Material Properties of Interior

Connections Reported in the Literature

Mark h c, c, £, £ £, P M, e
mm mm mm MPa | MPa | MPa kN kKNm | mm
Moe
MI1A | 1524 | 304.8 | 304.8 20.8 | 480.3 | 432.01 0 0
M2A | 152.4 | 304.8 | 304.8 15.5 | 480.3 |212.23 | 39.44 | 185.8
M3A | 1524 | 304.8 | 304.8 17.63 | 480.3 | 143.41 | 62.49 | 435.7
M2 152.4 | 304.8 | 304.8 25.69 | 480.3 [ 291.71 | 57.18 | 196
M3 152.4 | 304.8 | 304.8 22.7 | 480.3 | 206.9 | 70.17 | 339.2
M6 1524 | 254 254 26.45 | 327.18 | 238.87 | 40.23 | 1684
M7 1524 | 254 254 2493 | 327.18 | 310.8 | 1898 | 61.1
M8 1524 | 254 254 24.59 | 327.18 | 149.18 | 65.31 | 437.8
M9 1524 | 254 254 23.21 | 327.18| 2664 | 339 | 1273
M10 | 1524 | 254 254 21.08 | 327.18 | 177.6 | 54.81 | 308.6
Stamenkovic and Chapman
V12 | 762 127 127 | 3237 | 27.52 | 433.94|117.22 0 0

Cmn | 76.2 127 127 | 44.98 | 38.23 | 433.94 | 84.36 | 7.32 86.7

Cn2 | 76.2 127 127 | 37.06 | 31.5 |433.94| 62.16 | 10.48 | 168.6

Cln/3 | 76.2 127 127 | 31.89 | 27.11 | 433.94 | 33.74 | 13.64 | 404.3

Cl/4 | 76.2 127 127 | 31.34 | 26.64 | 433.94 | 20.87 | 16.66 | 798.2

MT/1 | 762 127 127 | 35.13 | 29.86 |433.94 0 18.37 | INF

VM2 | 762 | 762 | 152.4 | 31.41 | 26.7 |413.28 | 108.42 0 0

Clr/t | 762 | 762 | 152.4 | 28.24 24 | 413.28 | 85.51 | 7.31 85.5

ClMr/2 | 762 | 762 | 152.4 | 36.51 | 31.03 |413.28 | 67.13 | 10.87 | 161.9

C/3 | 762 | 762 | 152.4 | 35.68 | 30.33 | 413.28 | 39.78 | 15.72 | 395.1

C/r/4 | 76.2 76.2 | 1524 | 332 | 2822 |413.28 | 21.58 | 16.8 | 778.7

M/Ir/1 | 76.2 76.2 | 152.4 | 32.51 | 27.63 | 413.28 0 18.61 | INF

Hanson & Hanson

Al 762 | 1524 | 152.4 30.24 1365.06 | 5.73 | 22.33 | 3898
A2 76.2 | 152.4 | 1524 31.27 | 3754 | 4.8 24.3 | 5067
B7 76.2 | 152.4 | 304.8 3292 (354.04| 4.88 | 3571 | 7311
C8 76.2 | 304.8 | 1524 32779 (41052 | 5.59 | 31.4 | 5613
Al2 762 | 1524 | 1524 332 37195 26.82 | 20.5 | 764.4
B16 762 | 152.4 | 304.8 30.38 | 340.27 | 34.32 | 27.35 | 796.8
C17 762 | 304.8 | 152.4 35.96 |340.96 | 31.44 | 2471 | 786.2
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Table D1 Continued

Mark h C, c, £, f fy P.. M, €
mm mm mm MPa | MPa | MPa kN kNm mm
Regan, Walker, Zakaria (1979)
SM1 80 240 240 30.2 | 24.16 | 480 122 0 0
SM3 80 240 240 41.6 | 3328 | 480 95 20.9 220
SM4 80 120 240 329 | 2632 | 480 101 0 0
SM5 80 120 240 40 32 480 72 15.84 | 220
SM6 80 120 240 372 | 29.76 | 480 67 14.74 | 220
SM7 80 120 120 35.7 | 28.56 | 480 105 0 0
SMS8 80 120 120 324 | 2592 | 480 49 10.78 | 220
SM9 80 120 240 47.1 | 37.68 | 480 97 10.67 110
SM10 80 120 240 47.1 | 37.68 | 480 88 1936 | 220
SM11 80 240 240 46.1 | 36.88 | 480 91 20.02 | 220
SM12 80 240 240 39.9 | 31.92 | 480 88 1936 | 220
SR1 65 130 130 ? 40 800 95 8.46 89
SI1 125 200 300 574 | 4592 | 480 187 36.5 | 195.2
SI2 125 200 300 773 | 61.84 | 500 142 28.7 | 202.1
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Table D2 Information Regarding Reinforcement -Tests on the Interior Connections

Mark | Top bars; strip x | Bottom bars; strip | Top bars; stripy | Bottom bars; strip

¢ Savg d ¢ Savg d ¢ Savg d ¢ Savg d

Moe
M1A|19.05[152.41123.8| O 0 0 [19.05]177.8|104.8| O 0 0
M2A |19.05{152.4|123.8] O 0 0 [19.05(177.8|104.8] O 0 0
M3A|19.05(152.4|123.8| O 0 0 [19.05(177.8|104.8| 0 0 0
M2 |19.05{152.4(123.8| O 0 0 [19.05(177.8{104.8| O 0 0
M3 |19.05[152.4{123.8| O 0 0 [19.05(177.8|104.8] O 0 0
M6 |15.88(120.6(123.8| 0 0 0 |15.88{139.71 104 | O 0 0
M7 [15.88]120.6|123.8| O 0 0 [15.88(139.7|104.8] O 0 0
M8 |15.88120.6{123.8|15.88|304.8{123.8/15.88{139.7{104.8|15.88[304.8|104.8

M9 |15.88/120.6/123.8| 0 0 0 |15.88[139.7|/104.8| 0 0 0

M10 (15.88{120.6(123.8|15.88(304.8/123.815.88{139.7{104.8|15.88|304.8|104.8
Stamenkovic and Chapman
V2| 794 | 762 {59.53| 7.94 | 76.2 {59.53| 7.94 | 76.2 |51.59| 7.94 | 76.2 {51.59
C//1|794|76.2|59.53|7.94 | 76.2 (59.53| 7.94 | 76.2 [51.59| 7.94 | 76.2 |51.59
C/l/2| 794|762 (59.53|7.94 | 76.2 {59.53| 7.94 | 76.2 [51.59| 7.94 | 76.2 |51.59
C/N/3|794|76.2 [59.53| 7.94 | 76.2 |59.53| 7.94 | 76.2 |51.59| 7.94 | 76.2 |51.59
Stamenkovic and Chapman (continued)
C/1/4| 794 |76.2 [59.53| 7.94 | 76.2 [59.53| 7.94 | 76.2 |51.59| 7.94 | 76.2 |51.59
M//1|7.94 | 76.2 [59.53| 7.94 | 76.2 |59.53| 7.94 | 76.2 |51.59| 7.94 | 76.2 |51.59
V/Ir/21 794 | 76.2 |59.53]| 7.94 | 76.2 [59.53| 7.94 | 76.2 |51.59| 7.94 | 76.2 |51.59
C/r/1|7.94 1762 [59.53|7.94 | 76.2 [59.53| 7.94 | 76.2 |51.59| 7.94 | 76.2 {51.59
CMr/2| 7.94 | 76.2 |159.53| 7.94 | 76.2 [59.53| 7.94 | 76.2 |51.59| 7.94 | 76.2 |51.59
Cr/3| 7.94 | 76.2 |59.53| 7.94 | 76.2 {59.53| 7.94 | 76.2 {51.59| 7.94 | 76.2 |51.59
C/Nr/4| 7.94 | 76.2 |59.53| 7.94 | 76.2 |59.53| 7.94 | 76.2 |51.59| 7.94 | 76.2 |51.59
M//1| 794 | 76.2 [59.53| 7.94 | 76.2 159.53| 7.94 | 76.2 {51.59| 7.94 | 76.2 |51.59
Hanson & Hanson
Al (953 ]76.2(61.91|9.53|76.2 (61.91]9.53 | 76.2 |52.39| 9.53 | 76.2 |52.39
A2 1953762 (61.91|9.53|76.2 |61.91]9.53 | 76.2 |52.39| 9.53 | 76.2 |52.39
B7 [9.53|76.2(61.91]9.53|76.2{61.91]9.53|76.2152.39| 9.53 | 76.2 [52.39
C8 953|762 (61.91|9.53|76.2|61.91|9.53 | 76.2|52.39| 9.53 | 76.2 [52.39
Al1219.53 1762 |61.91|9.53 | 76.2 |61.91| 9.53 | 76.2 |52.39| 9.53 | 76.2 |52.39
B16 | 9.53 | 76.2 |61.91| 9.53 | 76.2 {61.91| 9.53 | 76.2 |52.39| 9.53 | 76.2 |52.39
C17 |1 9.53 | 76.2 |61.91{ 9.53 | 76.2 {61.91| 9.53 | 76.2 {52.39| 9.53 | 76.2 {52.39
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Table D2 Continued

Mark | Top bars; stripx | Bottom bars; stripx | Top bars; stripy | Bottom bars; strip y
O | Spe | d O | Sy | d O | S | d ¢ | Sy | d
Regan, Walker, Zakaria (1979)
SM1| 8 80 | 64 0 0 0 8 80 56 0 0 0
SM3| 8 80 | 64 0 0 0 8 80 56 0 0 0
SM4 | 8 80 | 64 0 0 0 8 80 56 0 0 0
SM5| 8 80 | 64 0 0 0 8 80 56 0 0 0
SM6| 8 80 | 64 0 0 0 8 80 56 0 0 0
SM7| 8 80 | 64 0 0 0 8 80 56 0 0 0
SM8| 8 80 | 64 0 0 0 8 80 56 0 0 0
SM9| 8 80 | 64 0 0 0 8 80 56 0 0 0
SM10| 8 80 | 64 6 80 | 64 8 80 56 6 80 56
SM11| 8 45 64 0 0 0 8 80 56 0 0 0
SMi12| 8 80 | 64 0 0 0 8 45 56 0 0 0
SR1|{ 6 43 54 6 85 54 6 43 48 6 85 48
SI1 | 12 | 100 | 107 | 12 [ 190 | 107 | 12 | 200 | 95 0 0 0
SI2 | 10 [ 100 | 108 | 10 | 190 | 108 | 10 | 200 | 98 0 0 0
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Table D3 Parameters Required for Constructing Interaction Diagram of the

Interior Connections Reported in Literature

Mark W, w, M M, M, M, M,
kN/m kN/m kNm kNm kNm kNm kNm
Moe
MI1A 79.33 93.75 26.94 19.47 0 11.3 20.2
M2A 68.47 80.92 24.56 17.72 0 8.42 18.42
M3A 73.04 86.31 25.69 18.55 0 9.58 19.27
M2 88.16 104.19 28.26 20.44 0 13.96 21.2
M3 82.86 97.92 27.52 19.9 0 12.33 20.64
M6 89.45 105.71 15.25 11.12 0 11.98 13.72
M7 86.85 102.64 15.15 11.04 0 11.29 13.63
M8 86.25 101.93 15.12 11.03 6.4 11.13 13.61
M9 83.8 99.03 15.02 10.95 0 10.51 13.52
M10 79.85 94.37 14.83 10.81 6.36 9.54 13.35
Stamenkovic and Chapman
V/1/2 44.93 51.84 1.91 1.63 1.91 1.64 1.72
cm 52.96 61.1 1.97 1.69 1.97 1.73 1.78
Cnr2 48.07 55.46 1.94 1.66 1.94 1.7 1.75
C/n/3 44.59 51.45 1.91 1.63 1.91 1.62 1.72
C/1/4 44.2 51.01 1.91 1.62 1.91 1.59 1.72
M/I/1 46.8 54 1.93 1.65 1.93 1.68 1.74
V/r/2 4425 51.06 1.1 1.87 1.1 1.91 1.64
C/r/1 41.96 48.42 1.08 1.84 1.08 1.72 1.62
C/r/2 47.71 55.05 1.11 1.9 1.11 2.03 1.67
C/x/3 47.17 54.42 1.11 1.9 1.11 2.03 1.67
C/r/4 45.5 52.5 1.1 1.88 1.1 2.01 1.65
M/Ir/1 45.02 51.95 1.1 1.88 1.1 1.98 1.65
Hanson & Hanson

Al 47.82 56.52 2.87 2.38 2.87 1.92 2.16
A2 48.63 57.47 2.96 245 2.96 1.93 2.22
B7 49.9 58.97 2.82 4.69 2.82 3.87 2.12
C8 49.8 58.85 6.44 2.66 6.44 1.93 241
Al2 50.11 59.22 2.95 2.45 2.95 1.94 2.22
B16 47.93 56.64 2.7 4.48 2.7 3.84 2.03
C17 52.15 61.63 5.51 2.29 5.51 1.95 2.07

226




Table D3 Continued

Mark W, w, M, M, M, M, M,
kN/m kN/m kNm kNm kNm kNm kNm
Regan, Walker, Zakaria (1979)

SM1 45.69 52.22 4.1 3.52 0 291 2.05
SM3 53.63 61.29 4.24 3.67 0 3.43 2.12
SM4 47.69 54.5 2.07 3.56 0 3.17 2.07
SMS5 52.59 60.1 2.11 3.65 0 3.42 2.11

SM6 50.71 57.96 2.1 3.62 0 3.39 2.1
SM7 49.68 56.78 2.09 1.8 0 1.69 2.09
SM8 47.33 54.09 2.07 1.78 0 1.56 2.07
SM9 57.06 65.21 2.14 3.71 0 3.47 2.14
SM10 57.06 65.21 2.14 3.71 1.53 3.47 2.14
SM11 56.45 64.52 7.13 3.7 0 3.46 3.57
SM12 52.52 60.02 4.23 5.93 0 3.42 2.11
SR1 50.39 56.69 3.16 2.75 1.73 1.15 2.37
SI1 106.86 | 120.36 10.86 7.45 0 9.14 10.18
SI2 127.93 140.98 8.18 5.66 0 8.78 7.67
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Table D4 Analytical Results (Points on Interaction Diagram, Failure Load, and Test
to Calculated Ratio) for Interior Connection Tests - Strip Model

Mark| P, | P, | P, | M, e e, | ¢ |[Reg| P | P | P, | Test/

ion Calculated

kKN | kN | kN |kKNm| mm | mm | mm kKN | kN | kN
Moe
MI1A (355.8{263.4|146.2|184.1 | 0 | 156|491 | 1 [355.8 432 |1.21| P
M2A |315.5|233.5(129.7| 72 | 186 | 159 | 472 | 23 |218.4 212.2|1097| P
M3A (333.3|1246.7| 137 | 77.2 | 436 | 158 | 480 | 23 [145.9 143.4{0.98| P
M2 1384.3|284.4/157.8/93.4 | 196 | 153 | 508 | 23 {259.2 291.7/1.13| P
M3 |367.6(272.1| 151 | 87.8 | 339 | 155 | 498 | 23 [190.1 206.9/1.09| P
M6 [284.9| 211 {123.6|/64.4 | 168 | 117 | 444 | 23 [189.8 238.9(1.26| P
M7 |279.8(207.2|121.4| 62.4 | 61.1 | 118 | 438 | 12 [236.7 310.8{1.31| P
M8 |278.6({206.3(120.9| 71.2 | 438 | 149 | 489 | 23 | 129 149.2|1.16| P
M9 [273.6{202.7|118.7| 60.2 | 127 | 119 | 431 | 23 |198.8 266.4/1.34| P
M10 (265.4/196.6|115.2| 66.4 | 309 | 152 | 477 | 23 [146.6 177.6{1.21| P
Stamenkovic and Chapman
V/1/2|73.86{55.32|31.03| 11.1 | 0 [90.5|293 | 1 |73.86 117.2{1.59| P
C/1/1 {81.56| 61.1 |34.22| 11.8 | 86.7 | 85.9 | 280 | 23 | 60.9 84.36(1.39| P
C/1/2|76.99(57.67)32.33| 11.4 | 169 | 88.6 | 288 | 23 | 43.9 62.16/1.42| P
C/l/373.52|55.06/30.89| 11 | 404 [90.7 | 292 | 34 (23.47 33.74{1.44| P
C/l/4173.12|54.76|30.73| 10.9 | 798 | 90.9 | 291 | 34 [12.64 20.87|1.65] P
M/I/1 11.3 | INF 4 M., =1837| 0 |[1.63
V/I/2166.92(152.99(27.86/ 103 | 0 |61.4[292 | 1 [66.92 108.4(1.62| P
C/Mr/1164.72|51.24(26.96| 9.71 | 85.5 | 62.3 | 284 | 23 |46.82 85.51(1.83| P
C/r/2|70.07| 55.5 {29.151 10.7 | 162 | 60.1 | 292 | 23 [39.72 67.13/1.69| P
C/r/3(69.59(55.11(28.95| 10.7 | 395 | 60.3 | 292 | 34 |22.67 39.78(1.76| P
C/1r/4(68.07(53.91(28.33| 10.5 | 779 [ 60.9 | 296 | 34 [12.32 21.58{1.75| P
M/Ir/1 10.4 | INF 4 M, =18.61| 0 |[1.78
Hanson & Hanson

Al (93.28(69.83|37.07| 15.2 | 3898 | 108 | 335 | 34 | 3.83 573|149 P
A2 195.42171.43|137.93| 15.5 | 5066 | 108 | 334 | 34 | 3.02 4.8 [1.59| P
B7 | 114 [90.25{37.54| 24.8 | 7311 | 103 | 509 | 34 | 3.33 488 |1.47| P
C8 [121.7|85.86]/47.36| 24 [5613| 182 | 430 | 34 | 4.21 559|133 P
Al2 |96.84| 72.5 |38.47| 15.6 | 764 | 107 | 331 | 34 [18.61 26.82{144| P
B16 (109.3186.49(35.99|24.1 | 797 | 103 | 516 | 34 |25.34 3432|1.35| P
C17 [115.3(81.42|144.84| 21.8 | 786 | 167 | 409 | 34 |25.22 31.44|1.25| P
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Table D4 Continued

Mark| P, | P, | P, | M, e e, | € |Reg| P, | P, | Py | Test/

ion Calculated

kKN | kN | kN [kNm| mm | mm | mm kKN | kKN | kN
Regan, Walker, Zakaria (1979)

SM1 | 109 |81.61|38.71|16.48 0 905|376 | 1 | 109 122 (112 P
SM3 (120.3|90.13|42.67|18.35| 220 | 87.3 | 380 | 23 [59.93 95 [1.59| P
SM4 (95.51|75.63|34.43|15.15] 0 [58.9|364 | 1 |95.51 101 |1.06f P
SM5 (101.4/80.34|36.53] 16.1 | 220 | 57.8 | 365 | 23 (49.19 72 |146| P
SM6 (99.21|78.58|35.74|15.89| 220 | 58.2 | 368 | 23 (48.36 67 |1.39]| P
SM7(81.21/60.83| 3531893 | 0 [545(215| 1 (81.21 105 [1.29| P
SM8 | 78.8 |59.01{34.27| 8.54 | 220 | 55.2| 211 | 34 |33.11 49 (148 P
SM9 (106.5|84.35|38.321 16.6 | 110 | 56.9 | 357 | 23 (69.57 97 |1.39| P
SM101106.5(84.35|38.32| 19.4 | 220 | 75.1 | 397 | 23 |54.75 88 [1.61| P
SM11|142.1| 102 |56.75| 23.7 | 220 | 117 | 368 | 23 |76.84 91 |1.18| P
SM12(135.1{105.3{42.15| 18.2 | 220 | 74.1 | 382 | 23 |61.62 88 (143| P
SR1 |100.5|75.21]139.92| 11.9| 89 |[86.9 | 245 | 23 |74.34 95 |1.28| P
SI1 | 256 |187.9{115.5|57.1 | 195 | 112 | 402 | 23 [159.3| 182 | 187 [1.17|P&B
SI2 |242.3|177.7/109.7| 52.3 | 202 | 101 | 385 | 23 [145.5| 137 | 142 |[1.04| B
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Table DS Analytical Results (Points on Interaction Diagram, Failure Load, and Test
to Calculated Ratio) for Interior Connection Tests - North American Standards

Mark | P, M, M; e P, P, P, P.. | Test/ |Failure
N | kNm | kNm | mm | kN N KN N Calcul.| mode
Moe
MI1A [291.02{103.53(112.24| 0 |291.02 432.01| 1.48 P
M2A (251.19| 89.36 [102.33(185.82| 165 550.71(212.23] 1.29 P
M3A (267.94] 95.32 [107.04|435.73|120.43 245.65(143.41| 1.19 P
M2 [323.42(115.06(117.75[196.01|208.53 600.73{291.71| 1.4 P
M3 |303.98(108.14(114.66|339.16|155.62 338.06| 206.9 | 1.33 P
M6 |288.38| 90.64 | 71.15 |168.41|187.77 422.51238.87| 1.27 P
M7 | 280 88 | 70.69 | 61.08 |234.44 1157 | 310.8 | 1.33 P
M8 |278.06 87.39 | 70.58 |437.81| 116.2 161.21(149.18| 1.28 P
M9 (270.16] 84.91 | 70.1 [127.25]| 192.3 550.851 266.4 | 1.39 P
M10 {257.43| 80.91 | 69.22 |308.59| 129.9 224321 177.6 | 1.37 P
Stamenkovic and Chapman
V/1/2 |1 70.88 | 11.03 | 8.93 0 70.88 117.22] 1.65 P
C/V/1 | 83.54| 13 9.21 | 86.72 | 53.65 106.25| 84.36 | 1.57 P
C/lM/2 | 7583 | 11.8 | 9.06 |168.59| 36.4 53.74 | 62.16 | 1.71 | P&F
C/I/3 | 70.35 | 10.95 | 8.92 (404.33| 19.55 22.0533.74 | 1.73 | P&F
C/1/4 |1 69.74 | 10.86 | 89 |798.17| 11.38 11.15 | 20.87 | 1.87 | F&P
M/I/1 | 73.83 | 11.49 | 9.01 | INF M, = 18.37 0 2.04
V/r/2| 64.96 | 8.99 | 8.06 0 64.96 108.42| 1.67 P
C/It/1 | 61.59 | 8.52 | 7.96 | 85.52 | 38.06 93.03 | 85.51 | 2.25 P
C/Mr/2 | 70.03 | 9.69 | 8.18 |161.93| 32.27 50.52 | 67.13 | 2.08 | P&F
C/Mr/3169.23 | 9.58 | 8.16 |395.11| 17.96 20.66 | 39.78 | 2.22 | P&F
C/lt/4 | 66.78 | 924 | 8.1 | 778.7 | 10.08 10.41 | 21.58 | 2.14 | P&F
M/Ir/1| 66.09 | 9.14 | 8.09 | INF M, = 18.61 0 2.3
Hanson & Hanson
Al |87.72| 15.6 | 11.98 | 3899 | 3.83 3.07 | 5.73 | 1.86 | F&P
A2 | 892 | 15.87 | 1232 | 5067 | 3.03 243 | 438 1.97 | F&P
B7 (124.82| 282 |13.25| 7311 | 3.74 1.81 | 488 | 2.7 | F&P
C8 [124.55|29.65 | 16.98 | 5613 | 5.07 302 | 559 | 1.85 | F&P
Al2 19191 | 16.35 | 12.31 | 764.4 | 17.35 16.1 | 26.82 | 1.67 | F&P
B16 |119.89| 27.09 | 12.67 | 796.8 | 26.49 1591 | 3432 | 2.16 | F&P
C17 [130.43| 31.05 | 14.53 | 786.2 | 30.32 18.48 | 3144 | 1.7 | F&P
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Table DS Continued

Mark | P, M, M; e P, P, P, P.. Test/
KN | kKNm | KNm | mm | &N | &N | N | v | et
Regan, Walker, Zakaria (1979)
SM1 |117.85|29.76 | 1366 0 (117.85 122 | 1.04 P
SM3 |138.31]34.92 | 14.15 | 220 | 73.91 6431 95 1.48 | F&P
SM4 | 984 | 1888 | 11.56| O 98.4 101 | 1.03 P
SM5 | 108.5 | 20.82 | 11.8 | 220 | 50.55 5365 72 1.42 | P&F
SM6 (104.64| 20.08 | 11.72 | 220 | 48.74 5327 | 67 1.37 | P&F
SM7 | 76.88 | 11.85 | 10.45 0 |76.88 105 | 1.37 P
SM8 | 73.24 | 11.29 | 10.34 | 220 | 30.18 46.99 | 49 1.62 | P&F
SM9 1117.74} 22.59 | 11.97 | 110 | 74.84 108.84| 97 1.3 P
SM10 |117.74| 22.59 | 11.97 | 220 | 54.85 5442 | 88 1.62 | F&P
SMI1 | 145.6 | 36.76 | 23.77 | 220 | 77.81 108.06| 91 1.17 P
SMI12 (135.46| 34.2 | 14.09 | 220 | 72.39 64.06 | 88 1.37 | F&P
SR1 | 77.76 | 11.96 | 13.18 | 89 | 49.26 148.05| 95 1.93 P
SI1 |319.99| 93.13 | 55.23 [195.19(191.54| 182 |282.98| 187 | 1.03 B
SI2 {380.85|111.56| 41.62 {202.11{225.36| 137 |205.94| 142 | 1.04 B
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