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Abstract

Over the past 15 years, bioinformatics has played an increasingly important role in
pharmaceutical research. This dissertation presents two bioinformatics applications
that may have particular relevance to drug discovery or development. The first
application (Chapter 2) describes the development of two new algorithms (called
GRPL and GRPL+) to improve the accuracy of gene prediction in eukaryotic DNA.
Specifically, this set of computer program combines reference point logistic (RPL)
methods with “smart” sequence alignment methods to provide substantially improved
accuracy in gene identification. As part of the evaluation of the GRPL program, we
show how the quality of gene predictions can be improved with increasing database
size. This technique has important implications for identifying known and unknown
disease genes in the draft human genome sequence. Chapter 3 describes the
development of self-updating, self-correcting databases containing biological or
chemical information. Self-updating databases use data-mining and data-validation
methods to automatically extract and deposit “corrected” electronic information into a
database or archive. With the rapid increase in both the size and number of biological,
chemical and pharmaceutical databases, there is a growing need to create automated
methods to consolidate, update, validate and correct the data in these databases. In
this thesis, [ illustrate the development of such a self-updating, self-correcting
database with a specific example called RefDB. RefDB is a database used by NMR

spectroscopists to archive, access and analyze NMR chemical shift data.
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Chapter 1

Introduction

1.1 Bioinformatics

What is Bioinformatics?

The field of Bioinformatics first emerged in the 1980s in response to the growing
demand for computational techniques and computer resources to handle the explosion of
molecular sequence data (Figure 1.1). Because of its growing importance, the term
“bioinformatics " has been commandeered by several different disciplines to mean rather
different things. Strictly speaking, it is a field of information technology that endeavors to
improve the storage, management and analysis of biological information. Practically
speaking, it is concerned with the handling and analysis of DNA and protein sequence
data. Although the term bioinformatics was first coined in the 1980s (http://www.d-
trends.com/webs/bio_1.html), the idea of using computers to store and manage biological
data was actually initiated by X-ray protein crystallographers in the 1960°’s (Levinthal,
1966). Their early work led to the establishment of the first bioinformatics database in
1971 - Brookhaven National Laboratory’s Protein DataBank (PDB), a database of 3D

protein structures (Bemnstein et al., 1977).

However, the advent of what we call bioinformatics today was mainly driven not
by X-ray crystallography but by the development of improved DNA sequencing

technology (Maxam and Gilbert, 1977; Sanger et al., 1977).  Prior to these Nobel-prize
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winning developments, it would take a laboratory at least two months to sequence
just 150 nucleotides (Moukheiber, 1998). By the late 1970s — courtesy of Gilbert and
Sanger - it was possible to sequence ~200 bases per day. With the development of
fluorescence labeling technology (Wilson et al., 1990) and the introduction of
multiplexed capillary electrophoresis (Cohen et al., 1990; Luckey et al., 1990; Swerdlow
and Gesteland, 1990), fully automated DNA sequencers soon appeared. Now with
instruments such as the ABI 3700 or the Pharmacia Megabace 500, it is possible to
sequence 500,000 bases per day on a single machine! Today, companies such as Celera,

Incyte, Monsanto and others are capable of sequencing up to 100 million bases a day.

Because of this new technology, DNA sequencing activities became heavily
dependent on computer software for assembling, storing, and managing DNA sequence
data. The rapid accumulation of DNA sequence data also stimulated much interest in the
development of statistical methods and computer programs for analyzing DNA and
protein sequence data. The need for computational tools was especially amplified with
the launch of the Human Genome Project in 1990 (Deloukas et al., 1998). Beginning as a
15-year effort coordinated by the U.S. Department of Energy and the National Institutes
of Health, its ultimate goal is to map, sequence and identify all 30,000+ genes in the
human genome. The first draft of human genome was completed on June 25, 2000
(http://www.oml.gov/hgmis/project/clintonl.html) and released publicly on Feb 15, 2001
(McPherson et al., 2001; Venter et al., 2001). It is expected that a “finished” version of
human genome will be released in 2003. By then it is also expected that the genomes of

more than 500 other organisms will have been sequenced. Not only has bioinformatics



played a key role in handling, sorting and storing this genomic information, it is also
expected to help with the new challenges ahead in inferring gene and protein
functionality. It is this latter application which will be critical in identifying potential

medical applications or pharmaceutical targets.

The second reason for the rapid emergence of the bioinformatics as a major force
in biology can be attributed to the spectacular growth in computing technology. As
uncannily predicted by Gordon Moore in 1965: “The processing speed of a microchip
will double about every 18 months™. Today, this trend still holds true and it is known as
Moore’s Law. Such a rapid rate of computer hardware development has led to the
creation of a thriving computer industry that delivers very high performance machines
that are relatively inexpensive. This, in turn, has led to the ubiquitous distribution of
desktop computers, allowing easy access to computational tools among biologists and

genome resear chers.

Another very significant reason for the rapid growth in computer use among
genome researchers has been the appearance of the "Information Superhighway" (i.e. the
Internet). Originally developed in 1969 by the U.S. Department of Defense for research
into communication networking, ARPANET (as it was called then) grew from text-only
messaging system to a graphics-rich, interactive communication medium, enabling rapid
information exchange. By 1993, Internet uses exploded with the introduction of browsers
such as Mosaic and Netscape. These web browsers and their special communication

language called HTML greatly facilitated access and communication between



individuals, research labs, universities and other large research organizations. Dedicated
bioinformatics web servers such as EXPASY (http://www.expasy.ch) (Appel et al., 1994)
and the National Center for Biotechnology Information (NCBI) web site
(http://www.ncbi.nlm.nih.org) (Jenuth, 2000) heralded the establishment of the Internet
as the primary means of communication among genome researchers, causing the field of

bioinformatics to truly take off.

Current Status of Bioinformatics

Bioinformatics is now being practiced worldwide by thousands of individual
researchers, academic groups, companies, national and intermnational research consortia.
With the technology of DNA sequencing well in hand, and with nearly 100 genomes
deposited in various databanks around the world, recent studies suggest that the most
pressing tasks in bioinformatics now invoive genome annotation and functional
identification (Stevens et al., 2001). Consequently much of the bioinformatics research of

today focuses on the following areas:

® Finding or identifying genes in the DNA sequences of prokaryotic and eukaryotic
organisms. (e.g. GENSCAN (Burge and Karlin, 1997), GENMARK (Borodovsky, 1993),
GRPL (Hooper et al., 2000))

® Developing methods to predict the structure and/or function of newly discovered

proteins. (e.g. sequence alignment tools, such as PSI-BLAST (Altschul et al., 1997) and
BLAST (Zhang and Madden, 1997))

e Clustering protein sequences into families of related sequences. (e.g. PROSITE
(Bairoch, 1997), PFAM (Bateman et al., 2000), BLOCKS (Henikoff et al., 1999), DOMO
(Gracy and Argos, 1998), PRINTS (Attwood et al., 1998))

e Aligning similar proteins and generating phylogenetic trees to examine evolutionary
relationships. (e.g. PHYLIP (Retief, 2000))



® Predicting secondary and tertiary structures from protein sequences. (e.g. PHD (Rost,
1996))

Various bioinformatics tools have been developed to meet these requirements,
and many of them are freely available over the Internet. In fact, according to the
European Bioinformatics Institute’s (EBI, Cambridge, UK), there are more than 600 of

these tools (http://www.embl-ebi.ac.uk/biocat), and their number is growing rapidly.

Bioinformatics is now recognized as an essential tool for dealing with complete
genome sequences, for extracting gene coding sequences, for identifying their
corresponding protein sequences, for performing multi-sequence comparisons across
species, and for predicting or modeling three-dimensional protein structures. It is
believed, however, the real long-term value of bioinformatics lies not so much in the
creation of analytical tools, but in the conversion of the knowledge that bioinformatics
delivers into safer foods, better drugs, improved therapeutics, and uiltimately an improved

quality of life.

The Future of Bioinformatics

The ultimate goal of the Human Genome Project is to understand the functioning
of living organisms at the molecular, cellular and supracellular level. Such an
understanding holds enormous promise for the early detection and treatment of disease.
As has already been mentioned, the first objective in the Human Genome Project was to
sequence the DNA of humans as well as a variety of related organisms. Now that the first

draft of human genome has been completed, we have entered the second phase — a phase



that some have called *“the post-genomic era”. The focus of this second phase of
genomics will be to identify each gene, to ascertain its function, to determine its structure
and identify its interacting partners. As a result, a new field within bioinformatics, called

functional bioinformatics. has emerged.

In this new post-genomic era, we can expect that DNA microarrays and
proteomics will likely play an increasingly important role. Both of these high throughput
techniques depend criticaily on basic bioinformatics to manage the resulting data.
Interestingly, these same bioinformatics tools are being combined with results from
clinical tnals. statistics, and population genetics to help in drug discovery and drug
testing. Another major application of bioinformatics will be the modeling of genetic
circuits and metabolic networks (Persidis, 1999). There are a number of interesting
computational developments in cellular and subcellular simulation (Normile, 1999;
Akutsu et al., 2000), which promise, one day, to deliver accurate, in silico models of

biological function.

1.2 Bioinformatics in Pharmaceutical Research

Target discovery constitutes one of the main components of today’s early stage
pharmaceutical research. The aim of target discovery is to identify and validate suitable
drug targets (i.e. proteins or genes) for therapeutic intervention. However, only a small
fraction of human proteins are actually targeted by today’s drugs. Indeed, reports
published in 1997 estimate that current therapies for most genetic diseases target fewer

than 500 of the 30,000+ different proteins in the human genome (Drews and Ryser, 1997).



The majority of these targets are receptors such as G-protein-coupled receptors (GPCRs),
which account for 45% of all targets; metabolic enzymes account for 28% of the
remainder. Some target classes are, therefore, more ‘successful’ or exhibit better
tractability in the drug discovery process. In eddition to identifying proteins amenable to
small molecule targeting, therapeutic proteins or protein drugs (such as cytokines, growth
factors and monoclonal antibodies) must also be considered when identifying novel
targets in the human genome. The total number of tractable targets remains difficult to
establish given the uncertainty surrounding the total number of human genes. However, it
has been estimated that the number of drug targets is probably 5.000-10,000 (Drews,
2000). This number is 10 ~ 20 times greater than the current repertoire of drug targets.
Clearly the fruits of the Human Genome Project will undoubtedly change how and where

we look for new drugs and how we assess drug targets.

The Human Genome Project is also creating a similar revolution in the way
scientists think about drug discovery for infectious diseases. Now it is increasingly
possible to identify particular genes responsible for (or involved in) many infectious
diseases (caused by bacteria, viruses or parasites) that cannot be treated with
conventional antibiotics. By assisting with the identification of these genes that are key to
viral replication or bacterial metabolism, bioinformatics allows scientists to start thinking
about how to design drugs, which can turn the responsible genes (or proteins) *“on” or
“off”. By predicting something about the structure, activity or location of a particular
protein, bioinformatics software allows pharmaceutical scientists to narrow the search for

appropriate lead compounds. This has been particularly true for researchers trying to find



drugs to combat several important viral diseases, including AIDS, hepatitis C and viral
meningitis. Since 1990, there have been several successful examples of drugs that have
been rationally identified and designed with the help of bioinformatics, including HIV
protease inhibitors (DesJarlais et al., 1990; Olson and Goodsell, 1998), hepatitis C
inhibitors (Sintchak and Nimmesgemn, 2000), therapeutics for viral meningitis (Buttery
and Moxon, 2000) and antitumor agents such as capecitabine (Verweij, 1999). The
success that bioinformatics has had in identifying important disease causing genes and
pointing the way to new lead compounds for drug design has encouraged many
pharmaceutical companies to invest heavily into the areas of bioinformatics, proteomics

and genomics to assist with their drug discovery program (Persidis, 1998).

In the next 10 years it is expected that many more genes responsible for
debilitating human diseases will be uncovered using the search engines and the powerful
analytical techniques developed by bioinformatics software and database specialists. The
fact that bioinformatics is proving so useful in the identification of potential drug targets
(and even potential drugs) has led some to suggest that by the year 2005, more biology
and drug discovery will be done *in silico” than “in vivo™ and that many “‘wet” labs will
actually become “digital” labs which will conduct their experiments on computers rather

that on rats (Sanseau, 2001).

1.3 Outline of Dissertation

As can be seen by the brief review, bioinformatics is a field that is expanding

rapidly to meet the growing demands of both genomics technologies and genomics



researchers. As such, it is almost impossible to conduct research in all areas of
bioinformatics. In light of the limitation, I have chosen to focus this thesis on a relatively
narrow topic: That is, the novel application of sequence comparisons and the
development of novel databases. In particular, I will describe serveral innovative
bioinformatics programs which make use of protein sequence alignment to produce: 1)
more accurate and precise gene structure prediction; and 2) a set of bioinformatic
databases and sequence alignment programs to facilitate NMR spectroscopy of peptides
and proteins.

Specifically, the working hypothesis for chapter 2 is that the reference point
logistic regression combined with protein sequence alignment, dynamic programming
and general hidden markov models can be more accurate than other techniques in
predicting eukaryotic gene structure. In chapter 3, the working hypothesis is that protein
chemical shifts can be calculated with sufficient accuracy such that chemical shift

referencing and/or assignment errors can be detected and corrected.

Since each chapter has its own detailed introduction, the following discussion will

be limited to some basic background information not covered in subsequent chapters.

1.4 Protein Sequence Searching

Protein Sequence Databases
The first step in analyzing sequence information is to assemble it into central,
shareable resource, i.e. a database. Databases are, effectively, electronic filing cabinets, -

a convenient and efficient method of storing vast amounts of information. Bioinformatics
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databases are essential tools for comparative analysis and data-mining. Historically,
protein sequence databases preceded the appearance of nucleotide sequence databases. In
the early 1960s, Dayhoff and colleagues collected all known peptide and protein
sequences and compiled them into the Atlas of Protein Sequence and Structure (Dayhoff,
1965). This early protein database eventually led to the establishment of the PIR database

(Barker et al., 2001).

By the early 1980s, sequence information started to become so abundant that it
was impossible to archive it in catalogs, in books or in journals. Realizing this, several
laboratories saw that there might be advantages to harvesting and storing these sequences
in central computer repositories. The first of these electronic databases was GenBank, a
DNA sequence databank established in 1982 (Benson et al., 2000). There are now many
different types of electronic bioinformatic databases, depending both on the nature of the
information being stored (e.g., sequences, structures, 2D gel images, etc.) and on the
manner of the data storage. Here we concemed only with the different types of biological
data, rather than on particular storage or management mechanisms. In the context of
protein sequence analysis, there are two types of databases: primary and composite
databases. We shall discuss primary databases first. Primary sequence databases contain
amino acid sequences, stored as linear character strings (using the [IUPAC single letter
mode) denoting the constituent residues. The major protein primary databases include the
Protein Information Resource (PIR) (Barker et al., 2001), SWISS-PROT (Bairoch and
Apweiler, 2000) and TrEMBL. A brief summary of each of these primary databases is

given below:
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The PIR Database

The Protein Information Resource (PIR) was established in 1984 by the National
Biomedical Research Foundation (NBRF) as a resource to assist researchers in the
identification and interpretation of protein sequence information. In its current form, the
database is split into four distinct sections (designated PIR1, PIR2, PIR3 and PIR4)
which differ in terms of the quality of data and level of annotation provided. Since 1988,
the PIR database has been maintained collaboratively by PIR-International (Barker et al.,
2001). This is an association of macromolecular sequence data collection centers
including the Protein Information Resource (PIR) at the NBRF, the International Protein
Information Database of Japan (JIPID), and the Martinsried Institute for Protein

Sequences (MIPS).

The SWISS-PROT Database

In 1986, SWISS-PROT (Bairoch and Apweiler, 2000) was produced
collaboratively by the Department of Medical Biochemistry at the University of Geneva
and the European Molecular Biology Laboratory (EMBL). The SWISS-PROT database
endeavors to provide high-level annotations, including descriptions of the function, 3D
structure, domain structure, post-translational modifications, variants, and extensive
references. SWISS-PROT aims to be minimally redundant and is interlinked to many
other bioinformatics resources. Currently, the database is maintained collaboratively by
the Swiss Institute of Bioinformatics (SIB), the European Bioinformatics Institute (EBI)

and EMBL.

12



The TrEMBL Database

In 1996, a computer-annotated supplement to SWISS-PROT was created, termed
Translated EMBL (TrEMBL) (Bairoch and Apweiler, 2000). This protein sequence
database is in the same format as SWISS-PROT and contains translations of all coding
sequences (CDS) contained in the EMBL gene sequence database (the European mirror
of GenBank). TTEMBL was designed to address the need for a well-structured SWISS-
PROT-like resource that would like to allow very rapid access to protein sequence data
from genome projects, without having to compromise the quality of SWISS-PROT itself

by incorporating sequences with insufficient analysis and annotation.

There are now more than 100 primary protein sequence databases available
(Discala et al., 2000), so it is becoming increasing difficult to know which database to use
and when. One solution to this problem is to compile a composite database, which
amalgamates a variety of different primary sources. Different strategies can be used to
create composite resources. The final product depends on the chosen data sources and the
criteria used to merge them. The choice of different sources and the application of
different redundancy criteria have led to the emergence of a number of different
composite databases, each of which has its own particular format. The two composite

protein databases of interest are NRDB and OWL.

The Non-Redundant Database

NRDB (Non — Redundant Database) (Jenuth, 2000) is built locally each night at

the National Center for Biotechnology Information (NCBI). The database is a composite

13



of GenPept (derived from automatic GenBank CDS translations), PDB sequences,
SWISS-PROT, spupdate (the weekly updates of SWISS-PROT), PIR and GenPeptupdate
(the daily update of GenPept). This database is thus comprehensive and contains up-to-
date protein sequence information. However, strictly speaking, NRDB is not a non-
redundant database - only non-identical. This is because NRDB uses a rather simplistic
approach to merging the primary databases. This leads to a number of problems: multiple
copies of the same protein are retained in the database as a result of polymorphisms
and/or minor sequence errors; incorrect sequences that have been amended in SWISS-
PROT are reintroduced when retranslated from raw DNA sequences, etc. As a result, the

contents of NRDB are both error-prone and, in spite of the name, redundant.

The OWL Database

OWL is a non-redundant protein sequence database built at the University of
Leeds in collaboration with the DaresBury Laboratory in Warrington (Bleasby et al.,
1994). The database is a composite of four major primary sources: SWISS-PROT, PIR1-
4, GenBank (CDS translation) and NRL-3D. During the amalgamation procedure, both
identical copies of sequences and those containing single amino acid differences are
eliminated, thus leading to a compact and efficient resource for sequence comparisons.

The OWL database can be downloaded from the NCBI ftp server.

Sequence Comparison
Over the past 20 years, sequence comparison has evolved from an obscure pursuit

of few evolutionary biologists to a routine event that is performed 100,000’s times a day

14



by more than 10.000 different scientists in 100 different countries. This is because
sequence comparison is the simplest. quickest and most inexpensive way of determining
whether a new gene or protein might do something interesting. By comparing a sequence
to others that have already been painstakingly characterized. it is possible to suggest not
only functional and structural similarity, but also detailed phylogenetic relationships —

simply on the basis of sequence similarity alone.

Algorithms for Sequence Comparison

One of the most common methods for performing sequence alignment involves a
technique called dynamic programming (Sankoff. 1983: Waterman. 1984: Pearson and
Lipman. 1988). Dynamic programming is an efficient mathematical technique that can be
used to find optimal “paths™ or routes to multiple destinations. Dynamic programming is
also useful in locating paths that could be combined to achieve some maximum score.
The application of dvnamic programming to sequence alignment was first illustrated by
Needleman and Wunsch in 1970. In this now classic paper (Needleman and Wunsch.
1970). these authors demonstrated how dynamic programming actually permits a
quantitative assessment of sequence similarity. while at the same time showing how two
sequences can be globally aligned (Figure 1.2). The recursive function that is used in

scoring is written as follows:

Sic1 441 or
Si;=Sij*max< Max Siy,.1+Wy (2<x<i) or (1.1)
Max S J-}-'?‘Wy-[ (y<2<i)

Si; 1s the score for the alignment ending at i in sequence 1 and j in sequence 2
W, is the score for making a x long gap in sequence 1
W, is the score for making a y long gap in sequence 2
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[ [ I P ! - b
AV VD A-VVD AV -VD

Figure 1.2 [llustration of how dynamic programming can be used to calculate a simple
sequence alignment. In this calculation identical matches receive a score of 1,
mismatches receive a score of 0 and no penalty is applied for gaps. The recursive
function shown in Equation 1.1 is used to fill out the alignment matrix.

A. After calculating the first row and the first column of the score matrix.

B. After calculating the second row and the first column of the score matrix.

C. After calculation of the last position S4.5 in the score matrix and completed path graph.
D. The path graph is shown as arrows indicating the best alignments.
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Dynamic programming is mathematically the most ngorous method for
determining a pairwise sequence alignment. However, it is inherently slow. Dynamic
programming is known in the computer world as an O(N?) algorithm, meaning that every
time you double the length of the two sequences you are comparing, the time to analyze
them will increase by a factor of four. If one wished to perform 800,000+ comparisons
using this approach (the size of a typical database search these days), it could easily take
several hours on a fast (1.4GHz) computer. Given that most people do not want to tie up
a computer for that long or wait hours for an answer, there has been a great deal of effort
directed at developing methods to improve search speeds so that database comparisons
could be done more quickly. However, improvements in speed usually end up sacrificing
accuracy or precision. Nevertheless, the advent of such fast “N-type™(calculation is linear
with N, the size of the database) algorithms as FASTA and BLAST has revolutionized

the process and frequency of sequence comparison and database searching.

The FASTA algorithm, first described by Lipman and Pearson (1985), is based
around the idea of identifying short words, or k-tuples, common to both sequences under
comparison. K-tuple sizes of 1 or 2 residues are typically used in protein searches, while
larger k-tuples (up to 6 bases) are used in DNA searches. Comparison of k-tuples, and
their relative offsets between the two sequences, can be viewed as focusing on diagonal
matches in a dynamic programming matrix. FASTA uses a heuristic approach to join k-
tuples that lie close together on the same diagonal. The regions formed in this way
contain mismatches lying between matching k-tuples. If a significant number of matches

are found, FASTA uses a dynamic programming algorithm to compute gapped
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1) For the query sequence of length L. find the list of high scoring words of length w.

GSVEDTTGSQSLAALLNKCKTFQYQRLVNQWIKQPLMDRNRIEERLNLVEA

L}

- “Query sequence of Length L
[ |
i - Maximum of L-w+1 words (typically
w=3 for proteins)
> TQY 18
> FEY 15
—> FRY 13 For each word from the query sequence, find the list of
- ™Y 13 words that will score at least T when scored using a
Threshoid for 2 standard scoring matrix (e.g. PAM 250).

STACDAASDILFQYRNKLSPGWQFQ

/ MTSASTILMNSSPPGRTISQWEIKLLSAAKM
FQY 18

7 13

¢ 14

STACCAASDIXLSEGWQPQAWERTTAW

TLASVLOCTVTFMYSRMLERWLEMPVRDTRVLLERQQTIGA
FMY

Exact matches of words from word list

3) For each word match. extend alignment in both directions to find alignments that score
greater than the threshold score S.

]

Query: SLAALLNKCKTFQYQRLVNQWIXQPLMDENEIEERLNLVEA
~LA+=+*L+ TF ¥ A= +W+ P+ D + ER =+ &

Sbjct: TLASVLDCTVIEMYSEMLERWLEMPVRDTRVLLERQQTIGA

High-scoring Segment Pair (HSP)

Figure 1.3 The BLAST searching algorithm
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alignments that incorporate the ungapped regions.

In 1990, a second ‘fast’ algorithm for database comparison was introduced -
called BLAST. BLAST is short for Basic Local Alignment Search Tool. The BLAST
algorithm (illustrated in Figure 1.3) also relies on the identification of short subsequences
(k-tuples), which serve as the core of an alignment. Multiple k-tuples can be combined
and extended to serve as “‘seeds” for a more extended alignment, allowing for some
number of insertions, deletions, or changes between the two sequences. BLAST pre-
calculates what are called High Scoring Pairs (HSP) clusters at k-tuples deemed to be
statistically significant to initiate an alignment between two sequences. Once it finds
these HSPs, it looks for matching words of any length that score above a pre-set
threshold. The use of statistics, larger word sizes and more sophisticated programming
techniques has made BLAST even faster that FASTA. Versions of both FASTA and

BLAST programs exist for comparing either a nucleic acid or protein query sequence to a

database of one or the other kind of sequence.

Relative to dynamic programming methods, FASTA was shown to accelerate
database searching process by a factor of 10 or more. The BLAST algorithm further
accelerated database searching by a factor of 2-3. In Chapter 2, we use a hybrid
FASTA/BLAST approach called FAST_ALIGN, described by Wishart et al. (1994a), to
perform protein sequence alignment as part of a generalized eukaryotic for the gene

prediction method.
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1.5 Sequence Analysis - Exon Prediction

Every living cell contains one or more large DNA molecules called chromosomes.
Each chromosome contains many genes - the basic physical and functional units of
heredity. In eukaryotes, each gene is composed of at least one exon and/no introns. An
exon is a specific region of DNA sequence whose sequences are translated into proteins,
which provide the structural components of cells and tissues as well as the enzymes for
essential biochemical reactions. The regions between exons are called introns, which
have no coding function. A picture of eukaryotic gene structure is shown in Figure 1.4.
[dentifying coding regions is essential to identifying and understanding the functions of
their encoded proteins. Given the incredibly fast rate of DNA sequence generation that is
occurring today, most researchers agree that faster, better and, more accurate ways of
annotating genomic sequence data must be developed. As a consequence Computational

gene finding is becoming a very active area of bioinformatics research.

Gene finding systems come in two major types: eukaryotic and prokaryotic.
Prokaryotic gene finding is relatively easy, since prokaryotic genomes are very small,
gene rich (85-90% coding sequence) and they typically have no introns. One can be fairly
successful in finding genes simply by identifying long open reading frames (ORFs).
There are currently two main systems for prokaryotic gene finding, both of which are
more than 95% accurate: GeneMark (Borodovsky and Mclninch, 1993) and Glimmmer

(Salzberg, 1997).
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Figure 1.4 The structure of eukaryotic genes with some of the important transcriptional
signals shown.



Eukaryotic gene finding is usually harder, since eukaryotic genomes are larger
and more complex than prokaryotic genomes. Large-scale sequencing projects have
motivated the need for a new generation of algorithms for eukaryotic gene recognition.
There have been two different approaches to eukaryotic gene prediction, one is

statistically based and the other is similarity based.

Statistically based methods rely on identifying signals or sequence patterns or
probability profiles. The simplest statistical approach involves identifying several signals
including: a) the start codon; b) a donor site (GT - the beginning of each intron); c¢) an
acceptor site (AG - the end of each intron); and d) the stop codon. However, these simple
signals and patterns are not usually enough. Codon usage, amino acid usage, periodicities
in codon usage and other statistical parameters must also be used to find genes (Gelfand,
1993). For example, codon usage differs between coding and non-coding regions, thus
enabling one to use this measure to frequently identify genes (Fickett, 1982; Staden and
McLachlan, 1982). Gribskov et al. (1984) use a likelihood ratio approach to compute
conditional probabilities, while others use hidden Markov models, decision trees, or
neural networks. For example. GRAIL is a neural-net based system; HMMGene (Krogh,
1997) and GENSCAN (Burge and Karlin, 1997) are based on different types of hidden
Markov models, while MORGAN (Salzberg et al., 1998) is a system based on decision

trees.

Similarity-based approaches to gene prediction rely on the simple fact that a

newly sequenced gene has a good chance of having an already known relative in the

N
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database (Bork and Gibson, 1996). The idea is based on the fact that cDNA, EST
(expressed sequence tags) or protein sequences are all composed of “pure” exons.
Therefore, given a genomic sequence, one can usually find a set of candidate sequence
blocks that contain all true exons by performing a sequence similarity search of the
cDNA, EST or protein databases. Given the fact that these sequence databases are
growing exponentially, it suggests that the odds of finding a matching candidate will
grow exponentially too. As a result, the trend in gene prediction in the late 1990s shifted

from statistically-based approaches towards similarity-based and EST-based algorithms.

Most eukaryotic gene prediction programs today can correctly identify genes with
an accuracy of 65~80% at the nucleotide level. While much better than early methods
described in the late 1980’s, this performance is still unsatisfactory. Chapter 2 describes a
new gene identification program - GRPL+, which correctly predicts genes with an
accuracy of 97%. This new approach uses a statistical method — reference point logistic
classification developed by Peter Hooper (1999), in combination with sequence similarity

searches to greatly improve the overall performance.

1.6 Bioinformatics Applications in NMR

Nuclear magnetic resonance (NMR) is the phenomenon that occurs when the
nuclei of certain atoms are immersed in a static magnetic field and exposed to a second
oscillating magnetic field. Some nuclei experience this phenomenon, and others do not,
dependent upon whether they possess a property called spin. Spin is a fundamental

property of nature like electrical charge or mass. The nucleus with non - zero spin are



observable by NMR. Although almost every element in the periodic table has an isotope
with a non - zero nuclear spin, NMR can only be performed on isotopes whose natural
abundance is high enough to be detected and who have an odd number of protons and/or
neutrons. For instance. '*C (the most common isotope of carbon) produces no NMR
signal while *C (which is 1% abundant) produces an easily detectable NMR signal. The
nuclei routinely used in NMR are 'H. ¢, ®N. “F and *'P. Nuclear magnetic resonance
spectroscopy makes use of the NMR phenomenon to study physical. chemical. and
biological properties of matter. As a consequence. NMR spectroscopy has found many
applications in many areas of science. In this dissertation. I will specifically discuss NMR
applications in protein chemistry. The isotopes or atoms in amino acids that are of
greatest interest in protein chemistry are 'Ha. ”Ca, ISCB, Bco. N. 'HN, as shown

below (R represents the amino acid side chain; Bco="C)
1
o "Ha H
e ,,
o — c,_ 13c o __15N

13CB

R

The true usefulness of NMR as a technique for structural biology depends on the
fact that NMR resonances are not wholly dependent on nuclear properties. Different

atomic or molecular structures can lead to different absorption frequencies. These



chemically and structurally dependent changes in absorption frequency are known as
chemical shifts. It has been long recognized that chemical shifts contain important
structural information about for proteins. For example, proteins are known to have two
characteristic subsets of secondary structure — helices and beta strands. The 'Ha chemical
shift for most residues is different enough between helices and beta strands to manifest
itself as either an upfield shift (for helices) or a downfield shift (for beta-strands)
(Wishart and Sykes, 1994b). These chemical shift changes have also be observed for °C,
'>N nuclei of amino acids as well (Le and Oldfield, 1994; Wishart and Sykes, 1994c). By
plotting the difference between the chemical shifts arising from the secondary structure
and the chemical shifts expected in a random coil (the so-called secondary chemical shift),
one can get a simple plot which shows the location and length of helices and beta-strands

in a protein or polypeptide — called the chemical shift index (Wishart et al., 1992).

Technical improvements in high resolution NMR spectroscopy since the 1980s,
combined with enhanced molecular biology techniques, have provided powerful tools to
study the structure and dynamics of macromolecules (Wuthrich, 1986; Markley, 1990;
Stockman and Markley, 1990). Two and three-dimensional NMR techniques are now
frequently used, and are playing an increasingly important role in the structure
determination of protein, DNA or RNA molecules. These efforts have led to a
proliferation of assigned macromolecular chemical shift data. However, due to space
limitations and cost overruns, journal editors have long been under pressure to reject or
avoid publishing chemical shift data. In response to this issue, a biomolecular chemical

shift database - the BioMagResBank (BMRB) (Seavey et al., 1991) was set up in 1990 to

~
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archive chemical shift data (http://www.bmrb.wisc.edu). The number of protein chemical
shifts in the BMRB has grown from 20,000 at the time of its launch to more than 560,000
protein chemical shifts now. To date, NMR spectroscopy has been used to solve more
than 2500 biomolecular structures, many of which are now deposited in the Protein Data

Bank (Bemnstein, et al., 1977) and Nucleic Acid Database (NDB) (Berman et al., 1992).

When the BMRB became available, researchers began to use it to develop related
bioinformatics tools for various NMR-related tasks. SHIFTY (Wishart et al., 1997) and
TALOS (Comilescu et al., 1999) are examples of two bioinformatics applications in the
NMR area. The purpose of both SHIFTY and TALOS is to simplify the process of NMR

chemical shift assignment or structural refinement.

The primary goal in biomolecular NMR is to assign as many chemical shifts as
possible for each residue in a protein sequence. However, most resonance assignment
schemes depend on the spectroscopist having some knowledge of approximate chemical
shifts or expected chemical shift ranges for the residues under question. Assigning
chemical shifts for each residue in a protein sequence is usually a time-consuming task,
even for an expert. Inspired by the fact that homologous sequences exhibit not only
similar structures but the similar secondary chemical shifts as well (Redfield and
Robertson, 1991), Wishart and colleagues (1997) developed an automated protein
chemical shift prediction program — SHIFTY, to help assign chemical shifts for proteins.
The technique uses dynamic programming to detect sequence homology between the

query protein and the sequences of hundreds of previously assigned proteins in the



BMRB. Once a homolog is found, SHIFTY uses a simple set of rules to directly assign or
transfer a complete set of 'H, 3C or '>N chemical shifts to the unassigned protein. In this
way, SHIFTY makes the sequential assignment process substantially easier, significantly
faster and much less dependent on NOEs or other information. The SHIFTY web server
(http://redpoll.pharmacy.ualberta.ca/shifty) has been linked to BMRB web server and

widely used by NMR spectroscopists.

TALOS is another example of how bioinformatics techniques can be applied to
NMR spectroscopy. TALOS (Cornilescu et al., 1999) uses sequence similanty to effect
backbone dihedral prediction, with an accuracy of +/- 15°. Specifically, TALOS
compares a query protein (and its associated chemical shifts) to a database of previously
assigned proteins, including their sequence, their chemical shifts and their corresponding
backbone dihedral angles (as determined by X-ray crystallography). TALOS uses a very
simple measure of sequence similarity to predict the most likely backbone dihedral angles
from homologous peptides (based on a combined measure of sequence similarity and
chemical shift similarity). In this way TALOS offers a simple, intuitive approach to
converting raw chemical shift information into useful structural restraints for NMR-based

structure generation and refinement.

As discussed above, more and more biomolecular NMR spectroscopists are
interested in interpreting chemical shifts in peptide and protein NMR studies. However,
past problems and inconsistencies in NMR data collection methods have led to a growing

problem but previously undetected for chemical shift assignments. Indeed, about 20~30%



chemical shifts deposited in the BMRB are either mis-assigned or mis-referenced (see
Chapter 3). In Chapter 3, we describe the development of a corrected protein chemical
shift database — RefDB. RefDB is a self-updating, self-correcting database of carefully
corrected or re-referenced chemical shifts, derived from the BMRB. The process involves
predicting protein 'H, °C and "N chemical shifts using X-ray or NMR coordinate data
via a specially developed program called SHIFTX (Neal and Wishart, manuscript in
preparation), and then comparing those predictions to the observed shifts reported in the
BMRB (via SHIFTCOR). RefDB provides a standard chemical shift resource for NMR

spectroscopists, wishing to derive or compute chemical shift trends in peptides and

proteins.

1.7 My Contribution to This Dissertation

This dissertation contains contributions from a number of people, as indicated in
the acknowledgment page. In particular, I would like to thank Dr. Peter Hooper for the
development and implementation of GRPL in chapter 2. I would also like to thank Steve
Neal and Dr. Alexander Nip for their contributions to SHIFTX which is described in

chapter 3.

Concerning my contributions to the work described in chapter 2, [ was
responsible for almost all aspects of the data collection, reduction and analysis. This
included collecting the test and training data sets from GENBANK, performing statistical

analyses for the different gene structure prediction programs, developing a program to



calculate all of the quoted statistical values and finally developing, implementing and

testing the protein sequence alignment algorithm and program for GRPL+.

In chapter 3, [ developed two major programs — SHIFTCOR and UPDATE. These
two programs automated the process of auto-correcting and auto-updating the RefDB
database. This process includes the data retrieval, data evaluation and statistical analysis
between the observed and predicted chemical shift data. [ was also responsible for setting
up the RefDB web server, installing the GLIMPSE search engine, the BLAST sequence
searching tool and implementing all of the related CGI programs. I was also responsible

for performing the manual checking and data verification of the RefDB database.



Chapter 2

Prediction of Genetic Structure in Eukaryotic DNA using
Reference Point Logistic Regression and Sequence Alignment

2.1 Introduction

The Human Genome Project, along with various projects in the pharmaceutical,
agricultural, and forestry industries, is creating an enormous quantity of raw, unannotated
DNA sequence data. With this abundance of data, there is a growing need for more
effective software tools to extract vital information from this raw data. Tools for
identifying protein coding regions and predicting complete genes are of particular
importance. Since the early 1990's, a number of computer programs for eukaryotic gene
identification have been developed, tested, and described in the literature. These include:
SORFIND (Hutchinson and Hayden, 1992), GenelD (Guigo et al., 1992), GENMARK
(Borodovsky et al., 1993), Xpound (Thomas and Skolnick, 1994), FGENEH (Solovyev et
al., 1994; Solovyev and Salamov, 1997), GRAIL2 (Xu, 1994), GeneParser (Snyder and
Stormo, 1995), Genie (Kulp, 1996), and GENSCAN (Burge and Karlin, 1997). Most of
these programs make use of sophisticated pattern recognition techniques such as linear
discriminant analysis, neural networks, or Hidden Markov models to identify coding
regions. Some programs also make use of database sequence alignment methods, such as
BLAST or XBLAST, to further improve their predictions (Kneche, 1995; Searls, 1995;

Snyder and Stormo, 1995). The idea of using a similarity-based approach to gene

*Portions of this chapter were published as a paper by Hooper, P.M., Zhang, H. &
Wishart, D.S. in Bioinformatics 16(5), 425-438 (2000).
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detection was first proposed by Gish and States (1993). The expectation was that
previously identified homologs (genes or proteins) could be used to better define
exorn/introns boundaries and to correct possible reading frame errors. Therefore.
information from homologous sequences can be used not only for gene detection, but also

for detailed prediction of exon-intron structure as well.

The evaluation of gene prediction accuracy has always been an area open to much
controversy and debate (Burset and Guigo, 1996). Different evaluation methods will
reveal different strengths and weaknesses for different methods. The difficulty in
evaluating gene prediction arises from the fact that it is not simply a two state
(right/wrong) problem. There are actually four states to consider: true positives (TP),
false positives (FP), true negative (TN) and false negatives (FN). Depending on how one
wants to bias their prediction one can always develop a method to preferentially eliminate
false positives (improve specificity) or reduce the number of false negatives (improve
sensitivity). Ideally one would want to improve both sensitivity (Sn) and Specificity (Sp)
simultaneously. Indeed, a perfect prediction always has a sensitivity and specificity of 1.0.
How then is gene prediction accuracy normally evaluated? In Figure 2.1 we provide a
simple illustration of the meaning of at least some these definitions and scoring schemes.
Hopefully this should help in later discussions in this chapter. However, it is important to
note that this figure illustrates the common evaluation methods for gene prediction at the
single base or single nucleotide level only. Because introns, exons and intergenic regions
typically consist of hundreds or thousands of consecutive bases, information about the

start, end and length of these regions should ideally be encoded into any evaluation
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Actual

Predicted

Figure 2.1 Evaluation statistics for gene prediction. TP = True Positive. FN = False
Negative. TN = True Negative. FP = False Positive.

Sensitivity  Fraction of actual coding regions that are correctly predicted
as coding Sn=TP/(TP+FN)
Specificity  Fraction of the prediction that is actually correct Sp=TP/(TP+FP)
Correlation Combined measure of sensitivity and specificity
CC=(TP*TN-FP*FN)/[(TP+FP)(TN+FN)(TP+FN)(TN+FP)]"*

[ 78]
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procedure. This has led some groups to prefer to evaluate prediction accuracy not at the
base or nucleotide level, but at the exon/intron level. When this more rigorous approach

is adcpted, the accuracy of many gene prediction methods falls to embarrassingly low

levels.

Because of the continuing controversies over evaluation procedures Burset and
Guigo (1996) compared many of these programs with a large test set of 570 vertebrate
sequences using several accuracy measures. Among those methods not using database
searches, the average correlation coefficient (CC) at the nucleotide level varied from 0.65
to 0.80 while the combined average specificity and sensitivity (Avg) at the exon level
varied from 0.17 to 0.63. Among those methods that used database searches as an adjunct
to exon prediction, their CC values ranged from 0.85 to 0.87 while their Avg ranged from
0.57 to 0.71. To date the best results reported for exon prediction belong to the
GENSCAN program described by Burge and Karlin (1997). This method, which does not
use explicit database alignments, yields a CC of 0.92 and an Avg of 0.80 when tested on
the dataset of Burset and Guigo. These results suggest that, while definite progress has

been made, there is still some room for improvement.

In this chapter we describe a novel approach to gene prediction in eukaryotic
organisms. This technique makes use of a new to statistical classification technique called
referencing point logistic (RPL) developed by Dr. Peter Hooper. Reference point logistic
(RPL) regression (Hooper, 2001) is a generalization of logistic regression (Cox, 1989)

that can be used in complex classification problems to model the conditional probability
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that an item belongs to a specified class given features observed for the item. RPL
regression is closely related to a classification technique in which reference points are
used to construct piecewise linear classification boundaries (Hooper, 1999). An
approximated idea of how the method works can be gained by looking at Figure 2.2.
This figure shows some artificial data for a two-group classification problem with two
features. The piecewise linear boundary between the two groups represents an RPL
classifier based on four reference points, two for each class. The linear boundary
segments are perpendicular to lines joining pairs of reference points (not shown in the
plot). The position of the linear segments, relative to the reference points, is controlled by
additional parameters. The reference points and additional parameters are determined
using a training algorithm similar to a neural network backpropagation algorithm (Michie,
1994). A corresponding RPL regression model represents the conditional probability of a
class given the observed features as a smooth function of the location in the plot.
Therefore, the estimated probability for a point in class A is close to 1.0 at points well
below the boundary, close to 0.0 at points well above the boundary, and close to 0.5 at

points on the boundary.

Our gene prediction program has two stages. In the first stage, RPL regression
models are used to calculate scores for potential functional sites at exon boundaries.
These are combined with scores for interval content, length, and state (via a Generalized
Hidden Markov Model) to determine a score for each possible parse of a sequence into
exons, introns, and intergenic regions. An optimal parse is then found using a dynamic

programming algorithm (Needleman and Wunsch, 1970). In the second stage, protein
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Figure 2.2 [llustration of RPL classification boundaries. Plot symbols denote the
actual classes. The RPL classifier would assign points below the boundary to
class A.
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sequence alignment versus OWL protein database (version 29.4) methods are applied to
improve the accuracy of the parse. Overall we found the results of this second step to be
quite promising and show that protein sequence alignment can be and should be a
routinely used to improve upon initial exon prediction results. We refer to the first stage
of the program as GRPL (pronounced grapple) and to the full two stage program as
GRPL+. In this chapter, we mainly describe the methods and results associated with
GRPL+ and how it improves GRPL predictions. A more complete description of GRPL
can be found in Hooper et al. (2000). GRPL and GRPL+ are both capable of predicting
the genetic structure of vertebrate, invertebrate, and plant DNA with an accuracy
exceeding that of other programs that were tested on the same data set. We also report on
how the size of the protein database and the accuracy of the initial GRPL predictions

affect the accuracy of the final GRPL+ predictions.

2.2 Methods

Training and Test Sets

Three versions of GRPL and GRPL+ were evaluated, trained on separate sets of
human, Drosophila, and Arabidopsis sequences. The human version of GRPL (GRPL
(Hu)) was trained on 367 human DNA sequences. These were selected from 380
sequences (238 multi-exon genes and 142 single-exon genes) compiled by Burge &
Karlin (1997). We dropped 13 of the single-exon genes where the translation initiation
and/or termination sites were too close to the end of the sequence to be useful for
modeling the functional sites. When estimating the coding region model for GRPL (Hu),

the training set was augmented by 1618 human ¢cDNA sequences. These were selected
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from 1619 human ¢cDNA sequences compiled by Burge & Karlin (1997). One cDNA
sequence (HSCA2VR) was dropped because it did not begin with ATG or end with a stop

codon.

We assembled a set of 171 Drosophila DNA sequences from the Oct. 1998
version of GenBank (Benson et al., 2000). The Drosophila version of GRPL (GRPL (Dr))
was trained on the first 139 sequences, sorted by name, and the remaining 32 sequences
were assigned to a test set. Fourteen sequences (10 in the training set and 4 in the test set)
contain nonconsensus splice sites (21 of the 5’ splice sites and 15 of the 3' splice sites).
We suspect that most of the nonconsensus sites are due to data entry or annotation errors.
There 1s usually a consensus site in close proximity to the reported site. The
nonconsensus sites appear to have little effect on prediction accuracy measured at the
nucleotide level. The effect at the exon level is more substantial, since GRPL does not
predict exons with nonconsensus sites. We also assembled a set of 272 Arabidopsis DNA
sequences from GenBank (October, 1998), where all splice sites were consensus sites. A
test set was created with the first 32 sequences, sorted by name, and GRPL (Ar -

Arabidopsis) was trained on the remaining 240.

Three additional test sets were used: the 570 vertebrate DNA sequences
assembled by Burset & Guigo (1996), and the two test sets (28 and 34 human DNA
sequences) originally assembled to evaluate performance of GeneParser by Snyder &

Stormo (1995). We obtained more recent versions of the GeneParser test sequences from
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GenBank (October, 1998). There appear to be minor changes in several of these

sequences.

Database Sequence Alignment in GRPL+

It has previously been shown that comparisons of predicted exons with protein
sequence database can improve both the sensitivity and specificity of the overall
prediction (Guigo et al., 1992; Gelfand, 1995; Snyder and Stormo, 1995). Based on these
earlier results, we implemented a database search component into GRPL to serve as a
final "knowledge-based"” refinement stage. Predicted exon locations, including the
predicted exon start, exon end, and reading frame, were first obtained from GRPL. The
predicted exons were then spliced and translated to create a single tentative protein
sequence. This initial sequence was searched against the OWL protein database (Bleasby
et al., 1994) using a slightly modified form of the FAST-ALIGN program (Wishart et al.,
1994a). OWL (release 29.4) is a non-redundant protein sequence database containing
198,742 peptide and protein sequences. FAST-ALIGN is a global alignment algorithm
that uses n-tuple comparisons, similar to FASTA (Pearson and Lipman, 1988) and
BLAST, to identify initial sequence matches followed by a global alignment using
dynamic programming (Needleman and Wunsch, 1970) with generous gap insertion and

extension penalties.

After the initial database alignment/scoring was complete, those sequences with
global alignment scores exceeding an empirically determined cutoff value (Abagyan and
Batalov, 1997) were kept for further analysis. To simulate the situation where the query

sequence is not yet deposited in the database, we also removed the top scoring sequence
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from each list, as this sequence often matched the query sequence identically. If no
sequence homologue was found in the first pass, a second search was performed wherein
each exon was translated (all three reading frames) and searched against the OWL
database using the same scoring and selection criteria. If this follow-up search also failed
to identify a significant match in the database, the original GRPL prediction was kept

without further modification.

Once a “‘second-best” protein homologue was identified from the translated exons,
a second pairwise comparison was performed. Specially, the protein homologue would be
aligned against all three translated reading frames of the GRPL predicted (spliced) gene
using a standard Needleman-Wunsch alignment algorithm. The significance of each
alignment was assessed using the same empirically derived cutoffs as before. Predicted
exons were then extended, shortened, linked, or combined to more closely match the
database protein sequence. This three-frame comparison also allowed rapid identification
and correction of mistaken GRPL predictions, indels (internal deletions), or frameshift
errors. If a portion of protein sequence was found to be missing, the region of the gene
that mapped to the missing segment would be translated in all three frames and a pairwise
alignment performed with the corresponding segment from the database sequence to
identify the missing exon or exon fragment. To remove any alignment bias that might be
introduced by the presence of remotely related sequences, the final refinement step was
performed only if the global pairwise sequence identity between the database homologue
and the translated query sequence exceeded 40%. The time required to complete the

database search and all requisite translation, alignment and comparison steps in GRPL+
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is about 250 CPU seconds (180 MHz SUN SPARCY) for a typical query sequence of 300

residues.

2.3 Results and Discussion
Accuracy Measures

The accuracy of gene structure predictions was evaluated on test sets as follows.
For each sequence in the test set, the predicted exons were compared with the annotated
exons (GenBank "CDS" key). Standard measures of predictive accuracy per nucleotide
and per exon were calculated for each sequence and averaged over all sequences for
which they were defined. For a given sequence, TP (true positive) is defined as the
number of nucleotides correctly predicted to be in coding regions, TN (true negative) is
defined as the number of nucleotides correctly predicted to be in non-coding regions, FP
(false positive) is defined as the number of nucleotides incorrectly predicted to be in
coding regions, and FN (false negative) is defined as the number of nucleotides
incorrectly predicted to be in non-coding regions. These four values can be arranged in a
2 x 2 array. The row and column totals are: PP = TP + FP (predicted positive), PN = TN
+ FN (predicted negative), AP = TP + FN (actual positive), and AN=TN + FP (actual
negative). There are four ratios of potential interest. Sensitivity is defined as Sn = TP/AP.
Specificity is usually defined as TN/AN, but the alternative definition TP/PP has become
standard in the gene structure prediction literature (Burset and Guigo, 1996). We argue
that the former definition has merit when considering the effect of coding proportion, but
we adopt the gene prediction definition Sp = TP/PP to avoid confusion. We define Sq =

TN/AN and Sr = TN/PN. Note that (Sq, Sr) is equivalent to (Sn, Sp) with the roles of
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coding and non-coding regions interchanged. Two additional measures are reported: the

correlation coefficient

CC =((TP)(TN) - (FPX(FN))/((PP) (PN) (AP) (AN))""? 2.1)

and the approximate correlation AC = -1+2(Sn+Sp+Sq+Sr)/4. Usually CC and AC have
similar values but, if one of the four ratios has zero denominator, then CC is undefined
while AC is redefined using the average of the other three ratios (Burset and Guigo,

1996).

Two additional measures were calculated at the exon level. XTP (exon true
positive) is defined as the number of actual exons that exactly match predicted exons.
Exon sensitivity Xsn is XTP divided by the number of actual exons. Exon specificity Xsp

is XTP divided by the number of predicted exons.

Comparisons with Other Programs

There is growing interest in the analysis of invertebrate and plant DNA. Since
genetic structure varies substantially among organisms, any gene prediction program can
be improved by tailoring its parameters for specific families of organisms. GENSCAN
(Burge and Karlin, 1997), Genie (Kulp, 1996), and GeneID (Guigo et al., 1992) provide
options for organism type. Dr. Hooper developed three versions of GRPL, with human,
Drosophila, and Arabidopsis training sets, and evaluated them using five test sets.

Detailed descriptions of the training and test sets are provided in the Methods section.

41



When carrying out sequence alignment in GRPL+, the second best homologue match was
used in order to simulate a situation where each gene sequence is novel and not yet
deposited in GenBank. Usually the best homologue match was the translated sequence
for the gene being analyzed.

Table 2.1 Performance comparisons for GeneParser Test Set I (28 human genes, average
coding proportion 0.14).

Program Sn Sp Sq CC AC Xsn Xsp
GRPL 096 088 0978 090 091 0.72 0.69
GRPL+ 098 095 0994 096 096 0.73 0.80
GenScan 097 088 0982 091 091 0.74 0.73
Genie 0.86 0.8l 0964 080 080 068 0.64
Grail 2 091 086 0980 086 087 048 044
GenelD 0.80 084 0979 0.79 079 060 0.51
Xpound 0.76 0.87 0984 0.78 0.79 021 0.24

Table 2.1 contains performance results using the Burset/Guigo set of vertebrate
sequences. Results, other than those for GRPL, were obtained from published sources.
GRPL (Hu) denotes the version of GRPL trained on human DNA. Results for GRPL (Hu)
match those of GENSCAN at the nucleotide level, and are slightly worse at the exon
level. Results for GRPL (Hu)+ are substantially better at both levels.

Table 2.2 Performance comparisons for GeneParser Test Set II (34 human genes, average
coding proportion 0.17).

Program Sn Sp Sq CC AC Xsn Xsp
GRPL 089 093 0989 089 090 0.69 0.77
GRPL+ 093 096 0995 094 094 0.71 0.76
GenScan 089 092 098 090 0.89 0.68 0.69
Genie 075 076 0967 071 072 0.54 0.51
Grail 2 0.70 081 0978 073 0.72 036 0.32
GenelD 0.70 075 0961 0.68 071 049 048
Xpound 0.7t 091 0987 076 0.78 0.26 0.27
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Tables 2.2 through 2.5 contain performance results based on smaller test sets.
Results for Xpound were obtained by running the Xpound program locally. Results for
GENSCAN, Genie, Grail2, and GeneID were obtained by submitting test sequences to
their corresponding web servers’. Tables 2.2 and 2.3 contain performance results using
the GeneParser test sets of human DNA sequences, described in Snyder & Stormo (1995).
The “organism’ option was set to vertebrate or human in GENSCAN, GenelD, and Genie,
and the default in Grail2 and Xpound. Results for GRPL (Hu) and GENSCAN are again
similar. Our findings differ in some respects from those of Burge & Karlin (1997, see
Table 2.2). The differences may be related to several factors: possible improvements in
some of the programs being tested, minor changes in some of the GenBank sequences,

and a different convention used for averaging statistics.

Table 2.3 Performance comparisons for Drosophila test set (32 genes. average coding
proportion 0.45).

Program Sn Sp Sq CC AC Xsn Xsp
GRPL 098 096 0975 094 094 0.68 0.68
GRPL+ 098 099 0992 097 097 0.70 0.77
GenScan 098 095 0951 093 093 0.70 0.70
Genie 090 095 0982 088 0.88 0.59 0.64
Grail 2 0.83 091 0942 0.75 0.76 0.17 0.16
GenelD 0.79 097 098 082 0.76 047 0.57
Xpound 0.86 089 0903 0.75 0.76 0.11 0.18

*Web sites:

GENSCAN server: http://gnomic.sta.nford.edw/GENSCANW html
Genie server: http://www-hge.ibi.gov/projects/genie.html

Grail server: http://compbio.omi.gov/Grail-bin/EmptyGrailForm
GenelD-3 server: http://apolo.imim.es/geneld.html

Xpound program: ftp://igs-server.cnrs-mrs. fr/pub/Banburg/xpound/
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Table 2.4 contains performance results for a test set of 32 Drosophila sequences.
The human and Drosophila versions of GRPL were tested here. The “organism’ option
was set to vertebrate in GENSCAN and GenelD, Drosophila in Genie, and the default in
Grail2 and Xpound. Results for GRPL (Dr) and GENSCAN are similar, and only slightly
better than those for GRPL (Hu). The presence of nonconsensus splice sites in four of the
test sequences (see the Methods section) adversely affected performance at the exon level
for all methods.

Table 2.4 Performance comparisons for Arabidopsis Test set (32 genes, average coding
proportion 0.43).

Program Sn Sp Sq CC AC Xsn  Xsp
GRPL 097 092 0943 090 090 080 0.74
GRPL+ 098 093 0958 092 092 080 0.80
GenScan 092 091 0939 08 0.8 072 071
Genie 0.27 0.76 0966 030 032 0.14 0.18
Grail 2 039 087 0968 044 046 0.13 0.10
GenelD+ 0.64 086 0945 0.61 0.61 046 0.45
Xpound 023 0.79 0977 0.29 033 0.01 0.02

Table 2.5 contains performance results for a test set of 32 Arabidopsis sequences.
The human and Arabidopsis versions of GRPL were tested here. The ‘organism’ option
was set to Arabidopsis in GENSCAN, human or other in Genie, plants in GenelD, and
the default in Grail2 and Xpound. While GRPL (Hu) performed reasonably well here,
GRPL (Ar) did substantially better. It appears that the use of a specialized training set is
more effective for 4rabidopsis than for Drosophila. The improvement in GRPL (Ar) over
GRPL (Hu) in Table 2.5 is greater than the improvement in GRPL (Dr) over GRPL (Hu)

in Table 2.4. This result may be related to differences in average C+G content: 49% for



the Burst/Guigo test set, 53% and 52% for the Gene Parser test sets, 47% for the

Drosophila test set, and 39% for the Arabidopsis test set.

Table 2.5 Performance comparisons for the Burset/Guigo test set (570 vertebrate genes,
average coding proportion 0.21). GENSCAN results are from Burge & Karlin (1997).

Genie results are from Kulp et al. (1996). The remaining results are from Burset & Guigo
(1996).

Program Sn Sp Sq CC AC Xsn Xsp
GRPL 093 093 0984 091 091 0.76 0.79
GRPL+ 097 097 0990 096 096 081 0.85
GenScan 093 093 n/a 091 092 0.78 0.81
Genie 0.76 0.77 n/a 0.72 N/A 055 048
Grail 2 0.72 0.87 /a 0.75 076 036 0.43
GenelD+ 091 091 n/a 0.88 088 0.73 0.70
Xpound 0.61 0.87 n/a 0.68 069 0.15 0.18
GenelD 0.63 0.81 n/a 0.65 067 044 046

GeneParser3 0.86 091 n/a 0.85 086 056 0.58

The comparisons reported above are for sequences containing a single complete
gene. We carried out a small additional study based on four multigene sequences: Z83317
(Caenorhabditis elegans, 2 genes, 12 exons, 32kb), Z47352 (mouse, 4 genes, 7 exons,
14kb), Z38015 (mouse, 1 full and 1 partial gene, 17 exons, 12kb), and AB008545
(Schizosaccharomyces pombe. 2 genes, 4 exons, 4kb). Our results using GRPL (HU)
were: Sn = (0.93, 0.95, 0.94, 1.00) and Sp = (0.70, 0.56, 0.95, 1.00). Our results using

GENSCAN were: Sn = (0.65, 0.83, 0.94, 0.96) and Sp = (0.52, 0.50, 0.97, 1.00).
Effect of C+G Content

It has been shown in a number of previous studies (Lopez et al., 1994; Xu, 1994;

Snyder and Stormo, 1995; Burset and Guigo, 1996) that the accuracy of gene prediction
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programs tends to increase with the proportion of C+G content. Some programs, such as
GENSCAN, compensate for this problem by grouping sequences into distinct C+G ‘rich’
and ‘poor’ categories. By adjusting the program parameters on the basis of these
categories, it is possible to improve their overall performance while maintaining accuracy
across C+G isochors (Burge and Karlin, 1997). Rather than arbitrarily grouping
seqeucnes, we have found that a continuous model of C+G content can be used to good
effect. The interval content, length and state scores used by GRPL shows stability across
isochors similar to that of GENSCAN. Burge and Karlin (1997) evaluated accuracy
measures on four subsets of the Burset/Guigo sequences determined by proportion of
C+G content: (<0.40, 0.40-0.50, 0.50-0.60, >0.60). Their GENSCAN CC averages were
(0.93, 0.91, 0.92, 0.90). Our corresponding GRPL (Hu) CC averages were (0.90, 0.92,
0.90, 0.92). One might expect lower Sp levels for lower C+G content, since C+G content
and coding proportion CP are positively correlated. The apparent absence of such an
effect may be due to the relatively weak association between CP and C+G content within

the Burset/Guigo test set.

Effectiveness of Sequence Alignment

Tables 2.1 to 2.5 show modest improvements in GRPL+ over GRPL. More
substantial improvements may be difficult to attain, given the high level of accuracy
achieved by GRPL alone. To investigate the improvements attainable with sequence
alignment, we looked into how the accuracy of initial GRPL predictions affects the
accuracy of final GRPL+ predictions. To obtain predictions with varying levels of

accuracy, we employed a damaged version of GRPL in which functional site scores and
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content statistics were contaminated with random errors. Table 2.6 shows accuracy
results for initial predictions (IP) and final predictions (FP) after sequence alignment.
Note that improvements in Sn and Xsn are relatively small compared with improvements
in Sp and Xsp. Based on these results it appears that sequence alignment is most effective
in removing non-coding segments from predicted genes. Sequence alignment is less
effective in adding coding segments. Predicted exons can be extended but exons that are

not initially predicted by GRPL are often not recovered.

Table 2.6 Effective of sequence alignment in improving initial predictions of various
accuracies. Performance is evaluated on the Burset/Guigo test set. The initial predictions
(IP) were obtained using damaged versions of GRPL. Sequence alignment was then
applied to obtain final predictions (FP). The initial predictions vary from GRPL(Hu) to
random predictions. The performance of GRPL+ for 570 vertebrate genes with different
predictions of GRPL.

Sn Sp CC Xsn Xsp
P FP P FP IP FP [P FP [IP FP
093 097 093 097 091 096 0.76 0.81 0.79 0.85
0.87 093 0.84 095 0.82 093 055 060 049 0.72
0.75 0.87 0.67 0.89 0.63 085 025 031 0.18 0.3
0.68 0.73 0.54 0.65 043 056 027 032 030 0.40
0.62 0.69 043 0.59 032 049 0.12 0.16 0.15 0.29
049 0.49 0.22 041 0.03 0.23 0.00 0.02 0.00 0.10

Based on these results, a question that one might ask is: Does the effectiveness of
sequence alignment decrease or increase as IP accuracy increase? We would argue that
effectiveness appears to increase, given a reasonable definition of effectiveness. We
examined several plots constructed from the data in Table 2.6. We found a negative
association between FP — IP and IP for Sp, CC, and Xsp, and no association for Sn and

Xsn. These results are largely a consequence of the measures being bounded by a
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maximum value of 1. Also, there is little improvement in Sn or Xsn when initial
predictions are poor. Plots of proportional improvement (FP - [P)/(1 - IP) versus IP reveal
a different picture. In each plot there is a strong positive association. The slope is steepest
for Sn, shallowest for XSn and XSp. These observations seem reasonable. We would
expect a strong relationship between [P and proportional improvement in Sn. As [P
increases, fewer exons are missed entirely and sequence alignment is more effective in
improving sensitivity. Slopes for XSn and XSp are shallow because the denominators (1 -
[P) remain relatively large. Plots for Sp and CC are very similar. Values for AC are

nearly the same as CC, and so are omitted from Table 2.6.

Table 2.7 Performance comparisons for Burset/Guigo set of 570 vertebrate genes with
different protein database sizes.

Sequences Sn Sp CC AC Xsn Xsp

198742 0972 0967 0961 0961 0.809 0.854
158992 0966 0966 0957 0957 0.796 0.836
119245 0954 0959 0944 0945 0.780 0.817
99371 0954 0959 0944 0945 0.768 0.810
79497 0944 0950 0932 0933 0.753 0.787
66244 0933 0954 0927 0929 0.732 0.771
49685 0934 0948 0925 0927 0.722 0.760
37264 0921 0940 0910 0914 0.693 0.732
19874 0922 0934 0907 0910 0.687 0.712
0 0929 0928 0908 0911 0.758 0.788

Several authors (Snyder and Stormo, 1995; Burset and Guigo, 1996) have
commented on a serious difficulty in comparing programs that incorporate sequence

alignment as their performance depends on the database being searched. We investigated
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Figure 2.3 Performance of GRPL+ using the Burset/Guigo set of 570 vertebrate genes versus
differing sizes of the OWL protein database.
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the extent and nature of this dependency by applying GRPL+ using randomly selected
subsets of varying size from the OWL database. We found an approximately linear
relationship between each performance measure (Sn, Sp, Sq, CC, AC, XSn, XSp) and the
logarithm of the subset size (see Table 2.7). Figure 2.3 displays a plot of CC versus
subset size, with a logarithmic curve fitted to the points. We also found that, for measures
at the nucleotide level, the GRPL results were improved by sequence alignment when
only a small subset of the database was used. For measures at the exon level, however, a
subset of 100,000 sequences (half of the database) was required before an improvement
was seen. XSn and XSp were made worse by sequence alignment when smaller subsets
were used. To further test effectiveness of sequence alignment, we predicted coding
regions by two defective GRPL versions and one randomly generated prediction along
with the full version of GRPL and then applied sequence alignment on top of these
predictions. The results of this experiment are illustrated in Figure 2.4. We found that the
performance of GRPL+ is somewhat related to the accuracy prediction levels of GRPL.
The more accurate of the initial GRPL prediction, the smaller the effect of sequence
alignment (GRPL+) on improving the prediction. This decreasing margin of
improvement is expected, especially as the accuracy at the initial predictions approaches

100%.

2.4 Conclusion

The use of reference point logistic (RPL) classification and regression, both alone and in
combination with other techniques, represents a novel approach to functional site

identification and gene prediction. Comparisons with other methods indicate that GRPL
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can identify 5' and 3’ splice sites with greater accuracy than other methods (Rogozin and
Milanesi, 1997). Furthermore, by combining GRPL classification with more established
approaches (dynamic programming, Generalized Hidden Markov Models, and database
sequence alignment) we have shown that it is possible to match (using GRPL) or exceed
(using GRPL+) the performance of many of the best gene prediction (Burset and Guigo,
1996; Burge and Karlin, 1997). Importantly, the exceptional performance of GRPL is not
compromised by computational speed. Indeed, we estimate that GRPL is typically five to
ten times faster than other high-performing methods. Additionally, GRPL has been
adapted to deal with partial, single, and multi-gene sequences from a wide range of
eukaryotic organisms, including vertebrates, invertebrates, and plants. This combination
of speed, accuracy, and versatility should make GRPL (and GRPL+) a useful tool for
analyzing gene structure in large-scale sequencing projects. Burset and Guigo (1996)
previously demonstrated that the inclusion of sequence alignment information in exon
predictions can improve the accuracy of the results. We have both confirmed this and
have helped to rationalize these results in this chapter. Given the database trends
illustrated in Figure 2.3, we believe that as the database continues to expand that may
allow for close to perfect gene predictions. No doubt these methods and results should be

of some interest to those working on deciphering the first draft of the human genome.

2.5 Availability

An academic implementation of GRPL and GRPL+ compiled for SUN
workstations (Solaris 25 or higher), is available on

http://redpoll_pharmacy.ualberta.ca/download. The training and test sets used in this work,

52



together with supplementary material, can be obtained at the same location. A
commercial implementation is available as a component of GeneTool (BioTools Inc.,

http://biotools.com).

53



Chapter 3

RefDB: A Database of Uniformly Referenced Protein Chemical
Shift Assignments Derived from the BioMagResBank

3.1 Introduction

Chemical shifts are perhaps the most precisely measurable but the least accurately
measured parameters in NMR spectroscopy. This curious state of affairs has arisen
because, unlike most spectroscopic measurements, chemical shifts are relative. As such,
chemical shifts are prone to numerous kinds of reporting and measurement errors. The
problem with chemical shift measurement is particularly acute in biomolecular NMR.
Indeed, the large number of chemical shifts that must be measured (hundreds to
thousands), the variety of chemical shifts (IH, Bc, PN, ? lP), and the incredible range of
solvent conditions (pH, temperature, salts, organic solvent mixtures) — all contribute to
the problem. A further complication has been the historic reliance on many different
chemical shift standards or chemical shift measurement protocols — many of which are
now obsolete or widely considered to be irreproducible. The problems with chemical
shift standardization have been discussed at length in a number of recent articles (Wishart
and Sykes, 1994c; Iwadate et al., 1999; Comilescu et al., 1999; Wishart and Case, 2001)
and several suggestions or widely-agreed upon standards have been advocated (Wishart

et al., 1995; Wishart and Sykes, 1994¢; Maurer and Kalbitzer, 1996; Markley et al., 1998).

A key point raised by these authors has been the fact that biomolecular chemical

shifts, in particular, contain a tremendously rich source of structural and dynamic
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information. However, the structural and dynamic information contained in chemical
shifts is subtle and, consequently, inaccurate or incorrectly referenced chemical shift

measurements can easily blur or distort an exquisitely detailed picture of a biomolecule.

The BioMagResBank (Seavey et al., 1991) was established in 1991 to help
address some of the problems and inconsistencies in biomolecular chemical shift
reporting. Over the past 10 years the BMRB has given biomolecular NMR
spectroscopists a superb opportunity to systematically assemble, compare and interpret
chemical shifts. It has been through the BMRB, for instance, that a number of important
chemical shift trends have been identified (Spera and Bax, 1991; Wishart et al., 1991;
Wishart et al., 1992; Metzler et al., 1993; Gronenborn and Clore, 1994) and a varnety of
chemical shift theories or prediction/assignment schemes have been refined (Osapay and
Case, 1994; Wishart and Nip, 1998; Beger and Bolton, 1997; Le and Oldfield, 1994).
Throughout its 10-year history the BioMagResBank has served as a superb historical
archive as it has meticulously recorded the ever-changing trends in chemical shift
measurement and reporting. Because the BMRB is an archival database (it accepts "as-
is" data directly from depositors) it depends crucially on the integrity and accuracy of its
depositors. However, given the nature of chemical shift assignments and the variability
of chemical shift reporting, it has been difficult to develop a rigorous set of protocols to
validate the chemical shifts being deposited into the BMRB. As a result the BMRB
likely contains a number of chemical shift assignments which have been improperly
referenced or incorrectly assigned (Williamson et al., 1995; Iwadate et al., 1999; Wishart

and Case, 2001). Indeed, a preliminary survey conducted in 2000 suggested that up to
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20% of '*C shifts and 30% of “°N shifts are improperly referenced (Wishart and Case,
2001). This result is of some concern and it leads immediately to a number of important
questions: What is the true magnitude of these referencing problems? What nuclei are
most frequently or significantly affected? Do these affect the chemical shift trends or
theories that have been developed from BMRB data? Can a corrected set of shifts be

assembled? Can a chemical shift validation suite or protocol be developed for the BMRB?

Here we wish to report on the development of a set of software tools and a
complementary chemical shift database (RefDB) containing a subset of BMRB chemical
shifts that have been properly re-referenced according to the [UPAC/IUB conventions
(Wishart et al., 1995; Markley et al., 1998). We also demonstrate how these analysis
tools can be used not only to correctly reference chemical shifts, but to identify potential
mis-assignments, to flag typographical errors, to detect spectral folding problems and
zero-in on the location of potential structural differences or structure refinement errors.
We also show how the RefDB shifts can be used to generate a more refined set of
secondary shifts for all 20 amino acids, a tabulation which may be of some use in

secondary structure analysis and empirical chemical shift calculations.

3.2 Materials and Methods

RefDB was prepared using a combination of three different computer programs.
The first program (SHIFTX) calculates backbone 'H, '*C and '°N chemical shifts from
protein 3D coordinate data. The second program (SHIFTCOR) compares the calculated

shifts with the observed shifts, evaluates any statistically significant differences and
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performs the necessary chemical shift corrections. The third program (UPDATE)
automatically retrieves newly deposited BMRB data along with any corresponding PDB
data. UPDATE also directs the data to SHIFTCOR and appends the "corrected” chemical

shift file to the RefDB database. A more detailed description of each program follows:

SHIFTX

SHIFTX uses a semi-empirical approach to calculate 'H, 3C and “N protein
chemical shifts. The program employs both a combination of empirically derived
chemical shift hypersurfaces (Spera and Bax, 1991; Le and Oldfield, 1994; Wishart and
Nip, 1998) and classically calculated ring-current, electric field, nearest neighbor and
hydrogen bond effects (Wagner, 1983; Wishart et al., 1991; Osapay and Case, 1991).
The hypersurfaces, which relate 'H, '*C and '°N chemical shifts to backbone dihedral
angles, were derived from the chemical shift assignments of more than two dozen fully
assigned and highly resolved (< 1.8 A) X-ray structures in a manner similar to Iwadate et
al. (1999). Ring current effects were calculated using the method of Haigh and Mallion
(1979), whereas electric field and hydrogen bonding effects were calculated using
methods similar to Osapay and Case (1991) and Wagner (1983). Nearest neighbor
effects and local side chain effects were derived through a specialized data-mining
program and incorporated into SHIFTX as empirical correction factors. Nucleus-specific
constants were calculated for ring-current, electric field, nearest neighbor and hydrogen
bond effects. The performance of SHIFTX was evaluated both on a training set (20
proteins) and a test set (10 proteins) each of which had high resolution (<1.80 A) X-ray

structures with uniformly referenced chemical shifts. Overall, the program was able to
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attain a correlation coefficient (r) between observed and calculated shifts of 0.905 (‘Ha),
0.973 (**Ca), 0.996 (°CB), 0.860 (*CO), 0.891 (*°N) and 0.748 (‘HN). The RMS error
was 0.25, 1.3, 1.2, 1.3, 3.4, 0.3 ppm for for 'Ha, *Ca, *CB, '*CO, "°N and 'HN shifts,
respectively. Relative to previously published shift prediction programs (Iwadate et al.,
1999; Xu and Case, 2001; Osapay and Case, 1994) SHIFTX is uniquely able to calculate
all measurable backbone chemical shifts (including '*CO and '°N shifts) with a very high
degree of accuracy and precision. SHIFTX reads standard PDB-formatted files and
outputs the predicted chemical shifts in a simple tabular form (BMRB or SHIFTY
(Wishart et al., 1997) format). More complete details regarding the performance and

structure of SHIFTX will be forthcoming shortly (Neal and Wishart, manuscript in

preparation).

SHIFTCOR

SHIFTCOR is an automated shift correction program that uses statistical methods
to compare and correct SHIFTX-predicted shifts relative to an input set of observed
chemical shifts. SHIFTCOR uses several simple statistical approaches and pre-
determined cutoff values to identify and correct potential referencing, assignment and
typographical errors. The standard input for the SHIFTCOR program is a set of observed
chemical shifts (BMRB or SHIFTY format) and a corresponding PDB file. SHIFTCOR
identifies potential chemical shift referencing problems by comparing the difference
between the average value of each set (1Ha, l3COL, 13CB, 13CO, >N and lHZN) of observed
and predicted chemical shifts. The average observed shifts are calculated after excluding

potential mis-assignments or typographical errors to ensure these extreme outliers do not
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bias the calculation. Potential mis-assignments are initially identified by looking for
predicted chemical shifts that differ from their corresponding observed chemical shifts by
approximately 4 standard deviations (i.e. 4x the RMS error expected for SHIFTX
predicted shifts). Specifically the maximal cutoff differences were 0.7, 5.0, 5.0, 5.0, 10.0
and 2.0 ppm for 'Ha, *Ca, "*CB, *CO, '°N and 'HN shifts respectively. These values
were determined after an extensive series of cut-off selection trials and later rounded up
or down for ease of recall. Notice that the precise cut-off value differs slightly for each
nucleus due to a combination of factors. When SHIFTCOR is run, it creates two files,
one contains the chemical shift analyses (including lists of potential mis-assignments,
estimates of the referencing error, correlation coefficients, RMSD values) and the other
contains the corrected BMRB formatted chemical shift file (see Figure 3.1 for an
example). Note that SHIFTCOR is not capable of detecting or classifying typographical
errors (missing or added digits), switched assignments (i.e. Ser for Thr) or other
anomalies. These were identified manually (after initially being identified as mis-

assignments) and the corrections included in the current version of RefDB.

UPDATE

UPDATE is a database updating program designed to automatically process
newly deposited protein chemical shift data in the BioMagResBank and store the results
in the RefDB database. It can be divided into five steps (Fig. 3.2). Firstly, UPDATE
uses standard web query protocols to identify and download newly deposited chemical
shift data in the BioMagResBank. Second, after downloading the BMRB file, UPDATE

reads the file description keywords to identify if the file has a corresponding PDB
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The following residues have a HA chemical shift difference (obs-pred)
greater than 0.7ppm:

#NUM AR Cs Observed Predicted
# 17 Q HA 4.06 5.40
# 76 I3 HA 4.42 5.49
&8 77 G HA 5.20 4.02
# 78 Q HA .24 5.07
# 98 L HA 4.19 2.71
#102 A HA 4£.56 3.587
#104 K HA 4.71 3.06
#1085 F HA 4.87 3.37
#107 g HA 5.26 3.59%
#109 K HA 5.2% 3.94

The following residues have a CB chemical shift difference (obs-pred)

greater than 5.0ppm:
#NUM AA cs Observed Predicted
# 99 S 16421 56.56 62.37

The following residues have an N chemical shift difference (obs-pred)
greater than 10.0ppm:

#NUM AA cs Cbserved Predicted

# 6 Q N 121.01 131.52

The average CS difference between predicted and observed:

(Add these values to the corresponding observed chemical shifts.)
HA CA CB co N HN

0.06 Q.17 0.30 0.06 -1.56 0.11

The Correlation Coefficient between predicted and observed:
HA CA CB a(e] N HN

0.511 0.968 0.596 0.822 0.793 0.693

The RMSD between predicted and observed:

HA Ca CB CC N HN
0.381 0.654 0.947 0.673 2.240 0.336

Figure 3.1 SHIFTCOR output for bmr4766.str.

60



Download newly deposited chemical
shifts files from BioMagResBank

Determine if it contains protein
chemical shift

Yes

Extract protein sequence and perform
sequence comparisons with PDB

No Discard DNA and
RNA chemical
shift files

Sequence identity
>95%"?

Call SHIFTX and SHIFTCOR to
perform analysis and correction

Send all information to
RefDB

Save the file to a list. and
perform sequence
comparisons for next
update

Figure 3.2 An outline of the UPDATE algorithm.
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accession number. If the PDB code is found, UPDATE extracts the sequence from the
BMRB file and uses a second web-based query to conduct a BLAST sequence search
against the PDB. At least 95% sequence identity between the two sequences is required
to identify a “matching” PDB file. If a single match is found, it is downloaded and
processed. [f more than one PDB file is found, the 3D coordinate file that is most highly
resolved is selected. X-ray structures are given precedence over NMR structures because
of their intrinsically higher resolution (Vriend, 1990; Laskowski et al., 1993). If the PDB
file contains more than one structure (as is the case with many NMR data sets) UPDATE
selects just one of the structures for processing. If the X-ray/NMR structure differs in
length from the reported assignments, only those residues with 3D coordinates will have
their chemical shifts calculated and adjusted. This can lead to an apparent “shortening”
of the assignment list. After the appropriate PDB file has been selected and
automatically downloaded, SHIFTX and SHIFTCOR are then called to perform their
respective calculations and corrections. UPDATE then appends these corrected data files,

along with the corresponding 3D coordinates to the RefDB database.

RefDB

Currently RefDB contains nearly 300 sets of corrected protein chemical shifts.
All of the original chemical shift sets were obtained from the BioMagResBank. Each
polypeptide in RefDB is required to contain at least 25 residues and to have an X-ray or
NMR structure deposited in the PDB with backbone and side chain coordinates. RefDB

does not include proteins dissolved in urea, TFE, DMSO or other organic solvents since
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these solvents can affect the chemical shift referencing in unpredictable ways (Wishart et
al., 1995; Wishart and Nip, 1998). Furthermore, polypeptides dissolved in these solvents
differ substantially from their native (X-ray) or reference structure. RefDB exists as both
a single flat-file (~18 Megabytes) for convenient downloading, and as a web-enabled,
queryable  database. The RefDB  web server is  located at
http://redpoll.pharmacy.ualberta.ca (Figure 3.3). The web version of RefDB uses a
formatted table to list the name of the original BMRB file (hyperlinked to the BMRB
site), the name of the corrected or adjusted shift file (hyperlinked to the shift list), the full
name of the protein and the PDB accession number of the corresponding 3D structure
(hyperlinked to the PDB). The web version of RefDB also supports a local BLAST
sequence search (Altschul et al., 1997) as well as a fast boolean keyword query system
supported by GLIMPSE (Manber and Wu, 1994; Manber and Bigot, 1998). This allows
users to search RefDB via the sequence, partial sequence, protein name, author name,
accession number, chemical shift or any other keyword or combination of keywords. All
corrected protein chemical shift files archived in RefDB adhere to the BMRB star format,
with the SHIFTCOR analysis placed at the top of each file as a set of comments.
Individual files can be downloaded separately via the web. RefDB is updated weekly via

the UPDATE program.

3.3 Results and Discussion

At the time of this writing, RefDB consists of 263 different proteins out of a total

of ~400 fully (>80 % complete) assigned, non-redundant proteins in the BioMagResBank.



Of these 263 proteins, 41 contain only 'H assignments, 43 have '°N and 'H assignments
and 178 proteins have 'H, °C and I5N assignments. Of those proteins with reported *C
assignments, 97% have at least BCa shift assignments, 85% have both B3Ca and “CP
shift assignments while just 55% have *CO shift assignments. A total of 121 proteins
have at least one corresponding X-ray structure while 142 have only NMR derived
structures. The smallest protein in RefDB is 25 residues (PDB 1THVW; bmr4937) and the
largest is 370 residues (PDB 1ANF; bmr4354). There are a total of 150,057 corrected
and re-referenced chemical shift assignments in the RefDB database. Statistics
concerning the size and composition of RefDB are updated weekly and posted at the

RefDB web site.

Of particular interest for this study was a precise determination of the magnitude
and extent of chemical shift errors or problems in the BioMagResBank. Based on
previous experience, we identified five types of potentially classifiable chemical shift
"errors" including: 1) referencing errors; 2) typographical errors; 3) assignment switches;
4) mis-assignments; and 5) structural discrepancies. With the possible exception of
referencing errors, the latter four types of chemical shift errors have to be inferred on the
basis of manual inspection or “reconstruction” of the assignment process. Some of these
errors are easily identified, while others are far more subtle. For instance, the addition or
deletion of digits or decimal points (84.0 vs. 8.40 for a 'HN shift) is an obvious
typographical error, whereas the exchange of two digits (8.34 vs. 8.43 for a 'HN shift) is

almost undetectable. As a general rule, if we couldn’t classify a chemical shift anomaly



as either a typographical error, an assignment switch/exchange or a mis-assignment, we

would attribute it to a structural discrepancy (solution vs. solid state).

Referencing Errors

Referencing errors or referencing adjustments are systematic errors arising from
the improper referencing of 'H, '3C or '"N chemical shifts. Most NMR spectroscopists
are quite diligent in their chemical shift referencing protocols. However, even the most
careful worker can make mistakes. These mistakes may arise from 1) incorrect
instrument settings; 2) data processing errors; 3) sample preparation or decay; 4) failure
to account for isotopic shifts; 5) failure to adhere or failure to understand [UPAC/TUB
referencing protocols; or 6) use of obsolete referencing standards (TMS, NH.CI, H.O)
These kinds of systematic errors are of considerable concem in biomolecular NMR
because they can affect nearly every chemical shift assignment. Furthermore, they can
often be sufficiently large to make almost all secondary shifts undetectable or misleading
(Wishart et al., 1995). What is most frustrating is that these types of chemical shift errors,

particularly for '*C and "*N nuclei, have often been exceedingly difficult to identify.

In this study we investigated the occurrence of referencing errors for each type of
nucleus (‘H, "°C and '°N) separately. To validate our methods for detecting referencing
errors, we conducted exhaustive comparisons to a number (>30) of fully (‘H, *C, °N)
assigned proteins and the reported referencing procedures provided in either the BMRB
or the associated literature. Our results showed that the method was able to consistently
detect and correctly quantify the magnitude of the systematic error based on published

shift correction tables (Wishart and Case, 2001). Because of these manual comparisons,
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we are confident that the predicted chemical shift adjustments calculated by SHIFTCOR

and presented in RefDB are accurate.

The first set of shifts we analyzed in RefDB was the 'H shifts. Because almost all
'H chemical shifts are determined using an internal primary reference (DSS, TSP) or a
well characterized secondary reference (HDO) one would not expect to find any
significant 'H shift referencing errors. Indeed the data in RefDB bear this out as we
found no significant referencing errors among ~255 sets of 'H assignments. The largest

difference between any set of observed and predicted 'Ha shifts was 0.27 ppm (bmr4952)
with the vast majority of Ha referencing errors being less than 0.10 ppm. On the other
hand, because of the long-standing confusion over how to indirectly (or directly)
reference '*C or °N shifts, we found there were many more significant problems with
these shifts. For instance, 60/212 (28.3%) of proteins with '>N assignments required
reference adjustments (up or down) of more than 1 ppm. Furthermore, 45/178 (25.3%),
51/161 (31.7%) and 23/105 (21.9%) of proteins in RefDB required reference adjustments
of more than 0.5 ppm for their reported BCa, *CPB and "*CO assignments, respectively.

Table 3.1 The number of proteins and their associated ranges of referencing errors for
'3C and "N chemical shifts.

Referencing error (ppm) °Ca. °CB__ "Co  ©°N

0.5~1.0 16 23 10 54)
1.0~1.5 12 11 4 31
1.5~2.0 9 9 4 17
>2.0 8 8 5 12
Total 45 51 23 60
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Although there are many proteins that required chemical shift adjustments, most
of these re-referencing changes fell into the range of 0.5-1.0 ppm for "*C shifts and 1.0-
1.5 ppm for '>N shifts (Table 3.1). As might be expected, the relative frequency of these
BC/®N chemical shift referencing errors falls off exponentially relative to their
magnitude. The largest referencing adjustment required for '’C shifts was more than 3
ppm (bmr4431), whereas the largest "N chemical shift adjustment was 4.1 ppm
(bmr4127). Among those proteins identified as requiring significant adjustments were
seven proteins which were fully deuterated (bmr4354, bmr4775, bmr4836, bmr4936,
bmr4986, bmr4987, vmr5161). Since the °C and '°N chemical shifts of deuterated
proteins are shifted upfield (0.43 ppm for *Ca, 0.82 ppm for CP, and 0.23 ppm for '*N)
relative to those expected for a fully protonated sampled (Gardner et al., 1997; Bjorndahl
et al.,, 2001), these chemical shift differences should not be classified as referencing
errors. Indeed, their reported chemical shift displacement suggests that all seven samples

were correctly referenced according to [UPAC conventions.

Figure 3.4 and Figure 3.5 plots the frequency of chemical shift referencing errors
for '*Ca, '*CB, 1*CO and °N assignments versus the year of reporting/deposition. As can
be seen from these graphs, heteronuclear chemical shift referencing problems were
especially widespread prior to 1994. After 1995 there appears to be a significant
improvement, indicating a stricter adherence to [UPAC/IUB "°C and '°N chemical shift
referencing recommendations (Wishart and Sykes, 1994c; Wishart et al., 1995; Markley
et al., 1998). Interestingly, more than five years after the recommendations were first

made, we still see that approximately 20% of newly deposited protein chemical shifts are
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improperly referenced. This suggests that chemical shift referencing is still problematic

for a significant number of individuals in the biomolecular NMR community.

Outside of improved education, improved lab practices and stricter rules about
adherence to [UPAC recommendations, it may be that the best approach to dealing with
this problem is to use computer programs such as SHIFTCOR as an integral part of the
data checking/validation process prior to submitting or accepting data at the BMRB.
Similar data checking and validation procedures for PDB coordinate submission are
either freely available to structural biologists (Lin et al., 2000) or are already in place at
the RCSB (Berman et al., 2000). Indeed, the development of data validation and data
checking programs have become a major thrust for just about every major biological or

bioinformatic database (Lin et al., 2000).

Mis-Assignments, Typo’s and Other Errors

While our principle concern was to develop software tools and methods to

identify and fix chemical shift referencing errors, we found that other chemical shift

Table 3.2 Number and type of assignment-related errors (263 proteins).

Type of error BCa BCp “CO °N '"HN  'Ha
Mis-assignment 31 27 194 30 5 N/A
Labelling/Typographical 2 1 N/A 1 N/A 2
Struct difference N/A N/A N/A 4 5 171
Switches 2 2 N/A 2 2 N/A
Switch/Typographical 2 5 N/A N/A N/A 3

All categories 37 35 194 37 12 176
Total assignments 23205 14210 13051 23356 30068 29140
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errors could also be detected. Indeed, as Williamson et al. (1995) has already pointed out,
accurate, structure-based chemical shift calculations can be used quite effectively to
identify 'H assignment errors. Unlike systematic referencing errors, these “random”
errors are not easily classified (or identified) without manual inspection or some prior
knowledge about the nuances of the NMR assignment process. Similarly, the correction

of these errors also requires manual intervention.

Table 3.2 provides a summary of the number and type of assignment-related
errors that were manually identified. It must be emphasized that these are “‘probable™
errors as we cannot confirm their origin or cause without access to the raw experimental
data. In all likelihood this is an underestimate of the true number of errors in the data set.
As seen in this table, we identified 6 typographical errors in 5 different proteins
(bmr4087, bmrd1135, bmr4126, bmrd726, bmr4894). We also found four instances of
l:’Cot./”CB switches (bmr4068 and bmrd4050) — two for threonine and two for serine.
These assignment switches are quite understandable in light of the unusual downfield
'>CB shifts for these amino acids and their proximity to '*Ca values. We also identified 2
assignment switches for 'HN and 2 for '°N (bmr4082 and bmr4344). Another 10
assignments were identified as either switches or typographical errors but could not be
definitively classified in one or the other category. For those *C and '°N shifts that
differed by more than 5-6 standard deviations from the predicted values, but which fell
within the allowed range of *C or "N shifts (regardless of amino acid type), we
classified as “mis-assigned”. Clearly, some of these resonances may be correctly

assigned and that their substantive differences arose from structural effects or our



imperfect understanding of chemical shift principles. Nevertheless, their level of
abundance (~0.5 %) and past experience with other NMR assignment data sets suggests

that this is well within the range of expected mis-assignments.

On the other hand, for many of the 'H shifts it was essentially impossible to
determine whether substantial shift discrepancies arose from mis-assignments or from
structural differences. Consequently, we chose to err on the side of caution and ascribed
these extreme outliers to probable structural differences (solid vs. liquid state, imperfect
refinement, N or C terminal changes, etc.) as opposed to mistaken assignments. An
example of the kind of issues one might find when analyzing 'H shifts is found in
bmrd4766 (Fig. 3.1). As can be seen in this example, there are two near-contiguous
regions exhibiting larger-than-expected deviations in their 'Ha chemical shifts. The
chemical shift differences seen for residues 76-78, likely arises from structural
differences between the solution and crystal state. Specifically, the ring of Phe 76 is
probably much closer to the backbone in the crystal structure than in solution, thereby
leading to an upfield ring-current induced shift for nearby 'Ha nuclei. On the other hand,
the chemical shift differences seen for residues 102-109, most assuredly arises from the
fact that the protein structure solved by X-ray crystallography was shorter than the
protein assigned by NMR. This C-terminal truncation in the X-ray structure likely lead
to a real structural change (i.e. the loss of a helix) that is manifested in the substantially
different 'Ha chemical shifts for this region. Given the different conditions and different
samples used by X-ray crystallographers relative to NMR spectrscopists, these kind of

small discrepancies were not uncommon, nor were they unexpected.
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Perhaps the most dramatic example of an assignment error in RefDB was found
for the '*CO resonances in bmr4775. While displaying good overall correlations for 'Ha
(0.709), '*N (0.698) and *Ca (0.947) shifts, we found the '>’CO shifts were strongly
negatively correlated (-0.765)! As no other protein analyzed by SHIFTCOR had shown a
negative correlation for any set of chemical shifts, we decided to investigate this situation
further. On closer inspection it became obvious that the '*CO spectrum for this protein
must have been folded prior to its assignment (perhaps due to the use of incorrect offset
pulses, a far too narrow sweep width or inappropriate data processing). Given the
intrinsically narrow range of 'CO shifts and the lack of any kind of characteristic
“marker” shifts (such as those seen with glycine for '>N and "*Ca) it is not difficult to

understand how this kind of error could be made nor how it could go undetected.

Re-evaluating Secondary Chemical Shifts

While the primary purpose of this exercise was to identify, enumerate and correct
chemical shift referencing and chemical shift assignment errors, we also wanted to
demonstrate how this *“corrected” data could be used in a more practical sense. One
obvious application would be to use this data to improve upon the accuracy of chemical
shift calculation routines (Iwadate et al., 1999; Osapay and Case, 1994; Wishart and Nip,
1998; Wishart and Neal, in preparation). A second application might be to improve upon
secondary structure identification (Metzler et al., 1993; Wishart et al., 1992; Wishart et
al., 1995) or in dihedral angle calculation (Comilescu et al., 1999). A third application
might be in developing more accurate or consistent methods for alignment-based

chemical shift prediction (Wishart et al., 1997; Potts and Chazin et al., 1998).
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Rather than attempt to address all three areas here, we decided to focus on re-
evaluating the so-called secondary chemical shifts or secondary-structure induced shifts
associated with 'H, '*C and "N nuclei. To generate this data set, corrected chemical
shifts from RefDB were assembled for each residue type along with the experimentally
observed secondary structure. Secondary structures were calculated directly from PDB
files using program VADAR (Wishart et al., 1994d). Because it is based on objective
measures of peptide geometry, VADAR provides a far more consistent assignment of
secondary structure location than those made by individual crystallographers or NMR
spectroscopists. The results of these calculations are shown in Tables 3.3 — 3.8 where we
have calculated the average characteristic shifts for residues in helices, beta-strands and
*coil” regions for 'Ha, 'HN, *Ca, '*CB, '*CO and '>N nuclei. With 150,057 “corrected”
assignments, this collection represents the largest and most complete set of shifts for
which this kind of calculation has been done (Wishart et al., 1991; Wishart and Sykes,
1994; Wishart and Nip, 1998). Given that the smallest number of assignments for any
one category was still 39 (**CO assignments for tryptophans in helices), we can be quite
confident about the statistics (mean, median, standard deviation, range, etc.) for these

numbers.

Overall, these chemical shifts show a very good level of agreement relative to
previously published sets (Wishart et al., 1991; Wishart and Sykes, 1994c; Wishart and
Nip, 1998), with the possible exception of some of the less-abundant residues and/or

nuclei (esp. tryptophan, methionine and histidine). Interestingly, with a much larger data
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Table 3.3 Averaged '*Ca chemical shift values categorized according to secondary

structural assignment (total number of residues observed in parentheses).

Residue type Coil Helix Beta strands
Ala 52.77 (404) 54.63 (625) 51.46 (279)
Cys 56.87 97) 60.25 (89) 56.02 (101)
Asp 54.14 (550) 56.29 (303) 5391 (195)
Glu 56.85 (423) 58.99 (599) 55.58 (260)
Phe 57.77 (187) 60.56 (224) 56.69 (264)
Gly 45.40 912) 46.54 (191) 45.18 (211)
His 56.00 (151) 58.62 (125) 55.20 (90)
Ile 61.35 (206) 64.35 (309) 59.92 (364)
Lys 56.65 (503) 58.70 (429) 55.44 (314)
Leu 55.12 (401) 57.24 (575) 53.93 (387)
Met 55.74 (113) 58.11 (192) 54.43 (85)
Asn 53.27 (433) 55.20 (193) 52.58 (180)
Pro 63.18 (451) 65.11 (103) 62.71 (149)
Gln 56.18 (250) 58.34 (307) 54.74 (144)
Arg 56.38 (313) 58.87 (330) 55.39 (210)
Ser 58.38 (331) 60.64 (257) 57.49 (299)
Thr 61.60 (399) 65.39 (251) 61.20 (406)
Val 61.98 (275) 65.96 (386) 60.78 (531)
Trp 58.13 (69) 59.91 (67) 56.63 (87)
Tyr 57.79 (183) 60.99 (162) 56.77 (239)

Total number of

chemical shifts 6748 5630 4727
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Table 3.4 Averaged ’CB chemical shift values categorized according to secondary
structural assignment (total number of residues observed in parentheses).

Residue type Coil Helix Beta strands
Ala 19.10 (343) 18.16 (511) 21.10 (249)
Cys(ox) 40.44 43) 39.52 (33) 43.19 (36)
Cys(red) 29.86 (43) 27.49 (40) 30.28 (35)
Asp 40.77 (449) 40.38 (247) 42.12 (162)
Glu 30.12 (350) 29.29 (468) 31.82 (225)
Phe 39.69 (153) 38.93 (187) 41.39 (219)
Gly N/A N/A N/A N/A N/A N/A
His 29.59 (125) 29.29 (101) 31.70 (74)
Ile 38.44 (180) 37.54 (253) 39.96 317)
Lys 32.64 (408) 32.17 (351) 34.51 (259)
Leu 42.26 (323) 41.66 (456) 44.02 (340)
Met 32.87 (84) 32.01 (142) 34.58 (73)
Asn 38.53 (358) 38.35 (152) 39.97 (160)
Pro 32.07 (380) 31.31 (85) 32.22 (123)
Giln 29.17 (209) 28.30 (263) 31.48 (124)
Arg 30.68 (259) 2995 (265) 32.26 (171)
Ser 63.94 (431) 63.06 (195) 65.10 (249)
Thr 69.89 (326) 68.86 (297) 70.73 (340)
Val 32.54 (226) 31.44 (318) 34.00 (444)
Trp 29.78 (55) 28.97 (53) 31.44 (74)
Tyr 38.84 (145) 38.21 (140) 41.05 (198)

Total number of

)
chemical shifts 4890 4448 3872
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Table 3.5 Averaged *CO chemical shift values categorized according to secondary
structural assignment (total number of residues observed in parentheses).

Residue type Coil Helix Beta strands
Ala 177.65 (242) 179.38  (362) 176.26  (146)
Cys 17494  (64) 176.47  (5%) 174.06  (56)
Asp 176.33  (359) 177.89  (180) 175.84 (122)
Glu 176.55  (255) 178.47  (345) 175.60 (160)
Phe 175.74  (99) 176.93  (148) 174.36  (173)
Gly 174.03  (511) 17543 (122) 172.85 (109)
His 17498 (72) 176.80  (60) 174.04 (58)
lle 175.63 (114) 177.51  (183) 174.86  (219)
Lys 176.39  (304) 178.29 (234) 17542  (187)
Leu 176.92  (244) 17831  (335) 175.76  (230)
Met 175.61 (54) 178.08  (123) 174.82  (55)
Asn 175.12  (255) 176.71  (109) 17451 (97)
Pro 176.80  (223) 17845  (69) 176.19  (80)
Gin 17598  (148) 178.05 (179) 174.88  (86)
Arg 176.29  (1595) 178.05  (185) 175.24  (104)
Ser 17445  (310) 175.69  (175) 173.76  (173)
Thr 174.71  (240) 176.13  (142) 17394  (218)
Val 175.86  (138) 177.62  (224) 174.81 (322)
Trp 176.23  (43) 177.80 (39) 175.58 (43)
Tyr 17537 (92) 177.04  (86) 174.74  (127)

Total number of

chemical shifts 3853 3270 2728
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Table 3.6 Averaged °N amide chemical shift values categorized according to secondary
structural assignment (total number of residues observed in parentheses).

Residue type Coil Helix Beta strands
Ala 122.93  (459) 121.20  (701) 124.51 (329)
Cys 118.69  (122) 11791  (101) 121.39 (116)
Asp 119.62  (609) 118.97  (338) 122.20  (225)
Glu 120.19 (472) 118.81  (649) 121.73  (29%)
Phe 119.99 (202) 118.85 (250) 121.01  (298)
Gly 109.19  (1013) 107.16  (198) 109.33  (228)
His 118.32  (156) 117.88  (139) 120.55  (101)
lle 120.97 (241) 119.56  (330) 122.74  (419)
Lys 120.36  (544) 118.86  (490) 12240  (348)
Leu 121.22 (457) 119.50  (651) 124.30 (425)
Met 119.27  (109) 117.73  (207) 121.53  (92)
Asn 117.96  (481) 117.13 (214) 121.39  (191)
Pro N/A N/A N/A N/A N/A N/A
Gln 119.38  (281) 11797  (338) 120.95  (173)
Arg 120.64  (345) 118.55 (371) 12195  (225)
Ser 115.77  (584) 114.67 (296) 116.80 (332)
Thr 113.43  (436) 11449 (278) 116.90  (491)
Val 119.93  (322) 119.04 (415) 121.95  (593)
Trp 120.88  (82) 119.79  (70) 122.17  (104)
Tyr 119.10 (195) 11890 (187) 121.59  (264)

Total number of

chemical shifts 7018 6124 5214
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Table 3.7 Averaged 'Ha chemical shift values categorized according to secondary
structural assignment (total number of residues observed in parentheses).

Residue type Coil Helix Beta strands
Ala 4.26 (499) 4.05 (645) 4.80 (299)
Cys 4.71 (198) 4.19 (115) 5.12 (163)
Asp 458 (632) 4.47 (324) 4.87 (210)
Glu 430 (492) 4.03 (616) 4.76 (285)
Phe 4.60 (215) 4.18 (227) 4.99 (281)
Gly 3.95 (1040) 3.82 (195) 4.18 (206)
His 4.54 (170) 436 (138) 5.00 (101)
lle 4.16 (273) 3.70 (327) 4.67 (410)
Lys 424 (603) 4.02 472) 4.71 (355)
Leu 4.32 (486) 4.02 (619) 4.84 (420)
Met 440 (130) 4.07 (208) 4.89 97
Asn 4.66 (502) 451 (202) 5.01 (181)
Pro 437 (531) 4.23 (109) 4.58 (151)
Gin 427 (292) 4.00 (333) 4.83 (165)
Arg 4.29 (388) 3.99 (374) 4.73 (224)
Ser 4.47 (635) 4.28 (294) 4.90 (327)
Thr 444 “471) 4.03 (283) 4.81 472)
Val 4.15 (363) 3.62 (396) 4.61 (576)
Trp 4.64 (89) 437 (67) 5.15 (99)
Tyr 4.54 (210) 4.10 (182) 5.07 (246)

Total number of

chemical shifts 7953 6006 5181
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Table 3.8 Averaged 'HN chemical shift values categorized according to secondary
structural assignment (total number of residues observed in parentheses)

Residue type Coil Helix Beta strands
Ala 8.22 (546) 8.04 (740) 8.51 (341)
Cys 8.36 (202) 8.14 (129) 8.72 (167)
Asp 8.29 (673) 8.17 (348) 8.57 (231)
Glu 8.34 (330) 8.22 (673) 8.53 (309)
Phe 8.26 (231) 8.16 (257) 8.70 (308)
Gly 8.33 (1145)  8.21 (224) 8.37 (245)
His 8.16 (183) 8.03 (154) 8.62 (108)
Ile 8.02 (282) 8.02 (356) 8.67 (450)
Lys 8.22 (640) 7.94 (531) 8.52 (382)
Leu 8.08 (527) 8.05 (683) 8.67 (445)
Met 8.26 (121) 8.05 (215) 8.67 (104)
Asn 8.40 (545) 8.19 (236) 8.64 (209)
Pro N/A N/A N/A N/A N/A N/A
Gin 8.17 (303) 8.03 (362) 8.52 (181)
Arg 8.21 (408) 8.11 (403) 8.52 (254)
Ser 8.26 (675) 8.06 (323) 8.55 (349)
Thr 8.16 (508) 8.09 (299) 8.54 (523)
Val 8.08 (386) 8.05 (438) 8.64 (643)
Trp 8.06 (99) 8.19 (76) 8.63 (113)
Tyr 8.00 (220) 8.15 (200) 8.70 (282)

Total number of i
)
chemical shifts 7979 6526 5563
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set and better chemical shift referencing, the upfield/downfield trends for helices and beta
sheets are now much more obvious for >N, 'HN and "*CO resonances. These trends had
likely been obscured in previous studies because of the “noise” arising from improperly
referenced chemical shift assignments. Looking at the results obtained for each of the 20
different residues for any given nucleus, it is also obvious that there are certain residue-
specific trends concerning the extent of the upfield/downfield shifts. These may reflect
intrinsic structural limitations (restricted phi/psi or side chain chi angles) or a statistical

proclivity to be located in less mobile (or more mobile) regions of a polypeptide.

As indicated earlier, these tables may be of some utility in predicting chemical
shifts (Wishart and Nip, 1998), in assessing preliminary chemical shift assignments, in
automating chemical shift assignments (Moseley and Montelione, 1999), in identifying
secondary structure (Wishart et al.,, 1992; Metzler et al, 1993) or evaluating nearest

negihbor effects (Schwarzinger et al., 2001)

RefDB as a New Model for Bionformatic Databases

With the increasing movement of towards storing vast quantities of biological
data on electronic databases, it is clear that data handling and data storage will become
increasingly important for just about everyone in the life sciences. Given the difficulty
associated with handling and assimilating so much data from so many sources, we
believe that it will be important to develop new approaches for automatically handling
and analyzing biological data. In our view, RefDB may serve as a useful model for a new

generation of self-updating, self-correcting bioinformatic databases. Specifically RefDB



makes use of the fact that all of the data it needs can be retrieved from the web through
automated data mining tools (web-bots or web-spiders), automatically checked and
modified (through resident data validation/checking software) and automatically
displayed or accessed (via a self-updating web interface and CGI scripts). In other words,
unlike any other biological database we are aware of, RefDB was designed to function
autonomously, without the need for human intervention or human data entry. While the
removal of the “human factor” from the database side does have its occasional down-side
(run-away processes, mix-ups due to unannounced data format changes), we have been
operating and updating RefDB continuously for the better part of a year, without the need
for any student annotators or dedicated staff members. Furthermore, the data in RefDB is
never more than 1 week out of date and never subject to slow-downs due to staff turnover

or holidays.

The concept of self-updating databases appears to be relatively new and yet given
the abundance of web-based tools, it is something that can be relatively easily
implemented. While it was not our intention to break new ground in bioinformatics
concepts, it appears that the ideas behind RefDB could be generalized to a much wider

variety of biological or chemical databases.

3.4 Conclusion

There can be little doubt that chemical shifts are playing an increasingly important
role in biomolecular NMR. Not only are they the “mileposts” which map atomic structure

to NMR detectable parameters, but they also provide a means for NMR spectroscopists to
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share and exchange raw experimental data. With the observation that chemical shifis
contain a considerable amount of useful structural information, the importance of
chemical shifts in biomolecular NMR has grown even further (Wishart and Sykes, 1994c;
Szilagyi, 1995; Case, 2000; Williamson and Asakura, 1997). However, much of the
utility of chemical shifts, both for assignment and for structural purposes depends on their
accuracy and reliability. Recently, this reliability has been called into question (Wishart

and Case, 2001).

In this study we have demonstrated that a significant portion of '*C and "N
chemical shift assignments made prior to 1995 need to be re-referenced - in some cases
by as much as 4 ppm. We have also demonstrated that, while NMR spectroscopists are
increasingly adhering to [UPAC recommendations, at least 20% of newly deposited
protein chemical shifts are still improperly referenced. Furthermore, it appears that
approximately 1% of all reported assignments may also be mis-assigned. In an effort to
help sort out these persistent chemical shift referencing problems and to assist with the
identification of potential mis-assignments, we have developed a self-updating database
(RefDB) and a set of computational tools (SHIFTX, SHIFTCOR, UPDATE). As shown
here, these tools should help correct these problems and facilitate both chemical shift

analysis and chemical shift referencing.
Specifically, we believe RefDB and its associated programs could serve as: 1) a

suite of programs and a set of criteria with which to assess, annotate and correct new (or

old) BMRB entries; 2) a suite of programs and set of criteria with which individuals can
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assess and correct their own assignments and structures (during refinement, or prior to
submission); 3) a resource to help test, refine and develop chemical shift prediction
programs; 4) a resource with which to test, refine and develop methods to predict protein
structural features (helix caps, beta turns) from chemical shift data; and 5) a resource
from which accurate chemical shift dependent patterns (secondary shifts, periodicity in

shifts) may be derived and useful chemical shift ranges may be calculated.

No doubt more sophisticated approaches for both chemical calculation and
chemical shift validation will eventually be developed (as they need to be), however, it is
our hope that RefDB and its associated software will at least initiate a concerted
movement towards improving the quality of data that NMR spectroscopists deposit in the

field of biomolecular NMR.

3.5 Availability

RefDB, along with web-server versions of SHIFTX and SHIFTCOR are freely

available at http://redpoll.pharmacy.ualberta.ca
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Chapter 4

General Conclusions and Future Directions

The human genome project has revolutionized the life sciences. Through the
development of a variety of high throughput technologies such as multiplexed DNA
sequencing, soft-ionization mass spectrometry, DNA microarrays, and a host of other
tools we have been able to fully sequence more than 60 organisms, including humans,
mice, fish, fruit flies, nematodes and yeast (McPherson et al., 2001; Venter et al., 2001).
These complex eukaryotic organisms are of considerable interest to pharmaceutical
scientists as their genomic sequences provide exquisite insight into how they act and
react. It 1s widely expected and, in fact, it has already been shown that detailed
knowledge of the constituent sequences of pathogens and their hosts can accelerate the
discovery of new drugs and new drug targets (Kinzler and Vogelstein, 1996). Yet,
despite the abundance of DNA sequence data and the exciting promise of new drugs and
drug targets to be discovered from this sequence data, there remain a number of

significant hurdles still to be cleared.

For instance, even though we have sequenced nearly a dozen eukaryotic genomes,
we still have considerable difficulty enumerating and locating all of their genes. This is
quite problematic, especially for human and mouse genomes as it makes it exceedingly
difficult to identify the genetic source of a disease or the appropriate target gene (or gene

product) for drug development. An equally difficult problem for pharmaceutical
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researchers (and probably for all life scientists in general) is concerned with how to track,
update and correct the torrent of biological data that is pouring forth every day from
genome centres, structural biology labs and proteomic nodes located around the globe.
Manual data entry, validation and updating is simply too tedious and too time consuming
for anyone to pursue. While these problems of gene identification and database
development are but two among hundreds of "key" issues confronting life science

researchers, | have chosen to address these two specific issues for this thesis.

In Chapter 2, I described the development (in collaboration with Dr. Peter
Hooper) of a suite of computer programs for the identification of eukaryotic genes.
Eukaryotic gene prediction is a particularly challenging task as the signals used by gene
processing enzymes are poorly defined and highly dependent on context and patterns.
The approach we developed, which is based on combining advanced statistical methods
with sophisticated comparative sequence methods, appears to perform at a level greater
than or equal to the best gene prediction programs so far published. Specifically, the
GRPL and GRPL+ software packages make use of data training sets, reference point
logistic classification (Hooper, 1999), generalized Hidden Markov Models (Michalski
etal., 1998), dynamic programming (Needleman and Wunsch, 1970) and sequence
database comparison (Altschul et al., 1997) to train, identify and refine the location of
exons, introns and full-length genes. Our tests indicate that the software is able to predict
the location of genes in organisms as diverse as humans, flies and plants with a
correlation coefficient (at the nucleotide level) of 0.97. We also demonstrated that

sequence database comparison (the + in GRPL+) was able to improve the performance of
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all gene predictions, regardless of the quality of the initial prediction. Our tests also
revealed the difficulty in correctly predicting gene locations as the size of the intergenic
or intronic regions increased. This particular problem was not previously considered to
be significant until the first draft of the human genome sequence was published in 2001
(Venter et al, 2001). This revealed the remarkable dispersion of exons and introns
throughout the human genome and underlined the need for even more accurate gene

prediction algorithms.

In an effort to improve GRPL and GRPL+ we may apply DNA sequence
alignment methods against the expressed sequenced tag (EST) database. The EST
database is a ¢cDNA sequence database containing short, (300-600 base) sequence
stretches at the 3” end of transcribed genes. Since these short sequences likely contain
multiple exons, we expect to be able to improve GRPL’s prediction of exon boundaries

(at least for the 3’ ends).

In addition to the use of other databases, it may also be possible to improve GRPL
through the use of more rapid database search techniques. In particular, GRPL+ used a
relatively slow alignment program called FASTALIGN (Wishart et al., 1994) to seek out
sequence homologues. With recent improvements to BLAST (Altschul et al., 1997) we
expect that the incorporation of this alignment algcrithm should improve not only the
search speed (by a factor of 4 or more) but also the sensitivity of the GRPL+ search.
Similarly, the use of BLAST for the dbEST search should also enhance the speed and

sensitivity.
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In chapter 3 of this thesis, I described the development of an automated,
self-updating, self-correcting database for biological (esp. chemical shift) data.
Specifically I developed a series of software packages (SHIFTX, SHIFTCOR and
UPDATE) along with a series of CGI scripts to perform web-based data mining, file
comparison, data evaluation, data validation, file concatenation, file re-formatting and
web-based file display. The results of this work appear in the database called RefDB — a

database of reference-corrected chemical shifts specifically for peptides and proteins.

At the time of this writing, RefDB consists of 263 different proteins out of a total
of ~400 fully (>80 % complete) assigned, non-redundant proteins in the
BioMagResBank. Of these 263 proteins, 41 contain only 'H assignments, 43 have '°N
and 'H assignments and 178 proteins have 'H, "’C and '’N assignments. Of those
proteins with reported '*C assignments, 97% have at least '*Ca shift assignments, 85%
have both '*Ca and "*CB shift assignments while just 55% have '*CO shift assignments.
A total of 121 proteins have at least one corresponding X-ray structure while 142 have
only NMR derived structures. During our analysis and corrections for RefDB we found
that 60/212 (28.3%) of proteins with '°N assignments required reference adjustments (up
or down) of more than 1 ppm. Furthermore, 45/178 (25.3%), 51/161 (31.7%) and 23/105
(21.9%) of proteins in RefDB required reference adjustments of more than 0.5 ppm for
their reported "*Ca, *CPB and '*CO assignments, respectively. Overall, we found that the
primary or "source” database for RefDB (the BioMagResBank) had more than 25% of its

entries incorrectly or improperly referenced. We also found a number of obvious mis-
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assignments or typographical errors that had been missed by BMRB depositors or BMRB
data checkers. These discoveries are somewhat alarming as they indicate an
unacceptably high level of non-compliance or shoddy experimental practices in
biomolecular NMR. It is hoped that through the widespread adoption and use of tools

such as SHIFTCOR and RefDB that this sorry state of affairs may soon be corrected.

While I chose to apply this self-updating database concept to the relatively narrow
area of biological NMR, I believe the concepts and software tools developed for the
RefDB project are highly generalizable. It is possible that these concepts and principles
could be applied to a wide variety of biological or chemical data including sequence data,
structural data. microarray data or any other biologically interesting data which is easily
accessible from the web and for which a high percentage (>1%) of data entry errors is

expected.
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Appendix A

SimPRED

Introduction

For a number of years it has been observed that the three dimensional
conformations of polypeptides, carbohydrates and nucleic acids had a weak to be
observable effect on chemical shifts (Wishart et al.. 1991; Wishart et al., 1992; Le and
Oldfield, 1994; Osapay and Case, 1994; Wishart and Sykes, 1994a; Wishart and Sykes,
1994b; Oldfield, 1995). These effects are likely due to magnetic anisotropies arising from
the asymmetric electron distribution found in many of these molecules. In 1992, Wishart
et al. demonstrated that these so-called secondary chemical shifts were related to protein

secondary structure.

Proteins are known to have two characteristic subsets of secondary structure —
alpha helices and beta strands. These structures arise from the rotation of backbone phi
and psi angles into regular or repeating patterns. These repeated patterns in p/ii and psi
angles actually show up as identifiable patterns in chemical shift. Evidently, the magnetic
anisotropy in the peptide bond is different enough between helices and beta strands to
manifest itself as either an upfield shift (for helices) or a downfield shift (for beta-strands)
in the a - 'H resonances of amino acid residues (Wishart et al, 1992). These chemical
shift changes have also been observed for *C and '°N shifts of amino acids as well (Le
and Oldfield, 1994; Wishart and Sykes, 1994b). By plotting the difference between the

chemical shifts arising from the secondary structure and the chemical shifts expected in a
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random coil, one can get a simple plot (called the chemical shift index), which shows the
location and length of helices and beta-strands in a protein or polypeptide (Wishart et al.,

1992; Wishart and Sykes, 1994b).

In a like manner, if one knows that sequence and secondary structure of a peptide
or protein (from CD, from x-ray crystallography or from secondary structure prediction),
then it stands to reason that one can predict the chemical shift of a given peptide or
protein. The SImPRED program implements this hypothesis and allows researchers to
essentially predict 'H, '*C and N shifts using only sequence and secondary structure as
input. In this way, SimPRED may assist researchers in the difficult process of spectral

assignment.

Methods and Materials

SImPRED uses a set of residue-specific random coil 'H, *C and >N chemical
shift table (Wishart et al.. 1995) along with nearest neighbor effects for '°N and *CO
resonances (Wishart et al, 1995; Wuthrich, 1994) and residue specific secondary shifts
(Wishart et al., 1991). The predicted chemical shifts for each residue are calculated by
adding the neighborhood sequence information to the corresponding secondary chemical

shifts. SimPRED does not attempt to predict the 'H.shifts of aromatic protons.

The SimPRED program is written by standard C language and has been tested on

SGI, SunOS and Linux operating systems. SimPRED has also been implemented as a
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web server and is located at http://redpoll.pharmacy.ualberta.ca/simpred. Figure A.l

show a screen shot of the SIMPRED server.

Input File Format

The user must provide a file containing both the protein sequence and its
secondary structure. The file should only contain one protein sequence. The format of the
file is similar to the FASTA format, the sequence given in standard [UPAC single letter
code with a title marked by a ">'. Unlike the FASTA format, the secondary structure is
marked on separate lines below the sequence. For secondary structure description, we use

three letters: C -- Coil, B-- Beta Sheet, H -- Alpha Helix. An example of the input file is

shown below:

>FRUCTOSE-1, 6 -BISPHOSPHATASE
ADQAPFDTDVVTLTRFVMEEGRKARGTGELTQLLNSLCTAVKAISSAVRK
CCCCCCCCCBBBHHHHHHHHHHHHCCCCHHHHHHHHHHHHHHHHHHHHHC

AGIAHLYGIAGSTNVTGDQVKKLDVLSNDLVMNMLKSSFATCVLVSEEDK
CCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHHHHHCCCBBBBBBCCC

HAIIVEPEKRGKYVVCFDPLDGSSNIDCLVSVGTIFGIYR
CEBBBCCCBBEBBBEEBBCCCCCHHHCCCCBBEEBBBBEB

Note: There should be no space between the first letter and the last letter of each line. It is

not necessary to have a blank line between each line of text.

Outpur Format
SIMPRED generates text format output file. The residue number is given in the left-most
column, the amino acid sequence is given in the next column and the remaining chemical

shifts are given in the other columns. The 'H shifts proceed from HN to HA to HB to HG
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to HD etc. depending on the residue type. The number 9999 indicates there is no

chemical shift available for this type of nucleus. An example output file is shown as

below:

Z
o

CA CB CO N HN HA HB
55.4 329 1763 9999 9999 448 2
543 31.5 1745 1223 851 4.88 2.
60.0 40.0 175.0 124.6 8.58 4.61 1.76
56.3 41.7 173.5 125.6 8.78 5.08 3.01
60.4 34.1 174.6 120.8 8.54 4.56 1.92

5

2.11 2.10 2.01
2.07 1.88
1.10 0.77 0.61
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Results

Figure A.2 shows how SimPRED can be run on a Unix system.

Availability:

The SimPRED web server is on http://redpoll.pharmacy.ualberta.ca/simpred.
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* Package...: SimPRED Version 1.0 *
* Date........: May 27, 1999 *
* Author....: Haiyan Zhang, David S. Wishart *
* Purpose...: To predict chemical shifts using *
* sequence + secondary structures *
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1) Predict all shifts

2) Predict 13C/15N shifts only
3) Predict 1H shifts only

4) Help

5) Exit

>>1 <« user input

Input Sequence Filename ("q" to quit)
>>test.seq <« user input
Enter output Filename

>>test.out <« user input

Thank you for using SimPRED!

Figure A.2 The procedure of running SImPRED on a Unix system. SImPRED is initiated
by typing simpred. The places where the user needs to input information is indicated by
‘user input’ in bold face.
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Appendix B
SHIFTOR

Introduction

'H, C and '°N chemical shifts of amino acid residues in proteins have long
recognized to be sensitive to local conformation (Wishart et al., 1991; Osapay and Case,
1991; Wishart and Sykes, 1994b). The correlation between secondary chemical shifts and
backbone phi/psi angles is also well known (Spera and Bax, 1991; Wishart and Nip,
1998). As a result, several methods and a number of computer programs have been
developed to predict protein secondary structures from chemical shifts (Wishart et al.,
1992; Luginbuhl et al., 1995; Sharma and Rajarathnam, 2000). Given that we can
accurately identify protein secondary structures from chemical shifts, it stands to reason
that we should also be able to predict polypeptide phi/psi dihedral angles from chemical
shifts as well. While this may seem like a trivial extension, it was only recently that this

was attempted — using a program called TALOS.

TALOS (Comnilescu et al., 1999) uses sequence similarity to effect backbone
dihedral prediction, with an accuracy of +/- 15°. Specifically, TALOS compares a query
protein (and its associated chemical shifts) to a database of previously assigned proteins,
including their sequence, their chemical shifts and their corresponding backbone dihedral
angles (as determined by X-ray crystallography). TALOS uses a very simple measure of
sequence similarity to predict the most likely backbone dihedral angles from homologous

peptides (based on a combined measure of sequence similarity and chemical shift
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similarity). In this way TALOS offers a simple, intuitive approach to converting raw
chemical shift information into useful structural restraints for NMR-based structure
generation and refinement. While TALOS has helped immeasurably in the application of
chemical shifts to protein structure generation, it is a remarkably slow and inefficient
program. Typically, to predict the phi/psi angles for a 100 residue protein requires
several CPU hours. Furthermore, TALOS is incapable of recognizing the presence of
homologous proteins in the databank and so its performance is less than satisfactory for
predicting phi/psi angles for homologous (>35% ID) proteins. Here we present a far
more efficient approach to backbone dihedral angle prediction called SHIFTOR. While
still using the concept of database comparison as TALOS, SHIFTOR is able to predict

the phi/psi angles of a 100 residue protein almost 200 times faster than TALOS.

Materials and Methods

Database construction

The SHIFTOR chemical shift database consists of 27 proteins comprising 3809
residues. All 27 proteins have fully assigned 'H, '°C and/or '°N shifts and all have a
corresponding high resolution (<2.2A) X-ray structure. The phi and psi angles for each
residue in the SHIFTOR database were calculated from the corresponding X-ray structure
using VADAR (Wishart et al., 1995). All of the chemical shifts were further re-

referenced and corrected using the SHIFTCOR program (Chapter 3).
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Query protein chemical shifts for
i-1,i,i+1

Chemical shift reference matrix
1 Amino acid residue similarity matrix
Weight factors

v
Calculate similarity scores

A 4

select dihedral angles with the
10 lowest scores

CSI prediction —»

Calculate reliability scores

A 4

Predicted Phi and Psi
angles for residue /

Figure B.1 The SHIFTOR flow chart.
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Table B.1 Empirically optimized scaling factors (k ':) where m denotes homology (‘'Ha,

BCa, '*CB, *Co, "N, 'HN) for weighting the relative importance of a given chemical
shift or residue type in determining the SHIFTOR similarity score S(i/) (Equation B.1).

Residue Homology 'Ha '"“Ca “Cp "“Co "N 'HN

n=-1 0.5 37 11 9 5 1 1
n=0 2.5 31 14 14 6 1.5 025
n=1 1.5 37 7 7 4 2 1.5

Similarity score calculations

SHIFTOR uses a sliding window technique to measure the similarity of a
sequential set of three (a triplet) amino acids and their corresponding secondary chemical
shifts for a given query protein against all triplets contained in the SHIFTOR database.
For each query triplet with center residue i and each database triplet with center residue j,
the similarity score S(ij) is calculated using Equation B.l. In this equation, K7
represents the empirically optimized scaling factors for weighting each type of chemical
shift (”Ca, l"‘CB, ”Co, 'Ha, '*N and l[-IN) and sequence similarity score. The values of
K7 are displayed in Table B.1. For SHIFTOR we used the amino acid similarity scoring
matrix developed by Wishart et al. (1994a) to calculate the similarity score (ZRrestype)
between any two corresponding residues. Note that A in Equation B.1 denotes the

secondary chemical shifts, or the difference of the observed chemical shift from the

random coil value (Wishart et al., 1995).
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Description of the Database Search Procedure

An outline of the SHIFTOR search and calculation procedure is shown in Figure
B.1. SHIFTOR begins by reading the sequence and assigned chemical shifts of the query
protein. It then converts these raw shifts to secondary chemical shifts by subtracting the
corresponding random coil values as given by Wishart and Nip (1998). A sliding window
consisting of three sequential residues in the query protein (including secondary chemical
shifts) is searched against every set of three residues (and their corresponding secondary
shifts) in the SHIFTOR database. The combined chemical shift and residue similarity
scores between the query triplet with database triplets is sequentially calculated for all
3807 triplets in the database and the ten triplets with the lowest scores are selected. The
phi and psi dihedral angles for each central residue of the ten triplets is also extracted to
help estimate of the most likely phi/psi angle of the query residue. In addition, a dihedral
angle reliability score for each of the ten triplets is calculated using Equation B.2. Then
the phi and psi angles are clustered, using a simple hierarchical clustering algorithm. by
evaluating the difference between the 10 sets of predicted dihedral angles. Clusters are
grouped if the difference of their phi or psi angles is less than 15°. The reliability score

for each group is the sum of the individual reliability score for each triplet. The group
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:
:
:

CA CB CO N HN

1 M 4.22 54.2 32.9 170.9 0] 0
2 Q 5.27 54.3 30.4 176.4 124.5 8.96
3 I 4.21 5%.4 41.7 172.7 116.7 8.35
4 F 5.61 54.8 40.9 175.5 120.1 8.63
5 v 4.79 60.2 33.8 175.2 122.8 9.33
6 K 5.34 54.3 34.1 177.5 129.4 8.98
7 T 5.00 60.2 70.3 177.3 116.9 8.77
8 L 4.33 57.3 41.7 179.2 122.8 9.13
S T 4.41 61.2 68.8 175.9 107.4 7.67
10 G 4.36 45.0 0 174.4 110.7 7.86
11 K 4.37 56.1 33.2 176.1 123.4 7.30
12 T 5.08 62.1 68.6 174.7 122.1 8.65
13 I 4.53 59.8 40.5 175.6 129.1 9.57
14 T 4.97 61.8 69.5 174.1 123.2 8.75
15 L 4.75 52.5 46.6 174.9 126.7 8.77

Figure B.2 An example of the SHIFTOR program input formats. The first line of the
input file must begin with '#' and must provide descriptions for each column (NUM -
number of residue; AA — amino acid residue name; HA, CA, CB, CO, N and HN - six
kinds of backbone chemical shifts). The columns are separated by at least one space. The
number of columns may vary from 3 - 8. The minimum requirement is one 'NUM'
column, one 'AA' column and one of chemical shift column. The order of the columns
may vary. The amino acid entry should in format of [UPAC single letter code. For
unassigned chemical shifts, a '0' value should be entered.



R (phi) R(psi) Res PHI PSI

1.00 0.70 Q -91.00 138.30
0.60 0.90 I -131.10 163.00
0.90 0.90 F -116.00 140.20
0.90 1.00 v -118.00 114.20
0.70 0.80 K -95.20 127.50
0.70 0.40 T -99.60 170.80
0.90 0.70 L -73.40 -6.90
0.90 0.80 T -101.40 14.90
0.70 0.60 G 77.40 16.50
0.70 0.80 K -96.30 138.10
0.60 0.70 T -119.90 131.80
0.70 0.50 I -109.50 142.00
0.70 1.00 T -101.40 139.70
0.60 0.70 L -126.40 154.00
0.70 0.90 F -111.80 121.10
0.70 0.80 A% -139.00 170.70

.
.

Figure B.3 An example of the SHIFTOR output format. All output files have five
columns. The middle column is the amino acid residue (one letter code). The two
columns on the right are the predicted phi and psi angles, respectively. The two columns
on the left are the reliability scores for the phi and psi angle predictions. The reliability
score varies between 0~1with 1 being most reliable and 0 being least.

103



with highest reliability score is then selected and the mean phi and psi angle for that
cluster is used as the predicted value for the central residue of the query triplet. To
prevent spurious predictions, chemical shift indices (Wishart et al.,, 1992; Wishart and
Sykes, 1994c) are also calculated from the query protein shifts to help choose the correct

torsion angles.

*S(i 11938 5)2
R = 2-(3*S(ij)238.5) ©2)

Results

Examples of the input and output file formats for a typical SHIFTOR prediction
are shown in Figure B.2 and Figure B.3 respectively. As can be seen from these figures
SHIFTOR provides predicted values for phi and psi angles, as well as a reliability score

for the predicted results (Figure B.3).

Our results indicate that SHIFTOR is able to correctly predict (+/- 15°) more than
80% of a given query protein’s phi and psi angles. Because we have tried to include
global sequence bias into the algorithm we have found that SHIFTOR is able to correctly
Table B.2 Performance comparison between SHIFTOR and TALOS on 4 proteins (400

residues). The phi and psi prediction for a residue is considered to be corrected if the
difference of their values to the actual values is less than 30.

Programs  Results without query sequence Results with query sequence in

in the database (% correct) the database (% correct)
SHIFTOR 82% 95%
TALOS 77.8% 81%

104



predict ~95% of a query protein’s torsion angles if the query protein (or a close
homologue) is already in the database. This high performance should be expected as any
reasonable dihedral angle prediction algorithm should be able to *“recover” the dihedral
angles it was based on. As seen in Table B.2, the accuracy of the results we obtain with
SHIFTOR are at least comparable and generally superior to those obtained with TALOS.
However, the most noteworthy improvement by SHIFTOR over TALOS is in its
calculation speed (20 seconds vs. 2 hours). This speed-up was possible due to more
efficient use of memory, the use of improved (i.e. mre efficient) alignment algrithms and
the use of a compiled language (C - for SHIFTOR) instead of an interpretive language

(Tcl/Tk for TALOS).

Availability:

The SHIFTOR web server is located at http://redpoll.pharmacyv.ualberta.ca/shiftor.
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