
Uncertainty is the only certainty there is, and knowing how to live with insecurity
is the only security.

– John Allen Paulos

University of Alberta

CLASSIFICATION AND SEQUENTIAL PATTERN MINING FROM
UNCERTAIN DATASETS

by

Metanat Hooshsadat

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Metanat Hooshsadat
Fall 2011

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.

Abstract

Several research projects explore the application of uncertain databases which con-

tain probabilistic attributes. Uncertainty in data can be caused by inherent random-

ness, imprecision in measuring equipment, ambiguity, information extraction from

unstructured data, etc.

The classification and Sequential Pattern Mining (SPM) of uncertain datasets

both play a vital role in decision making systems and have recently attracted sig-

nificant attention. In this study, we propose two novel algorithms for the aforemen-

tioned problems. Our novel associative classifier for uncertain data, UAC, has an

effective rule pruning strategy. Using a general model for uncertainty, our exper-

iments show that in many cases, UAC reaches higher accuracies than the existing

algorithms.

In SPM for uncertain data, other studies aimed to solve the problem for specific

uncertainty models. We introduce UAprioriAll which conducts SPM from datasets

with general attribute level uncertainty. Our experiments show that this method

scales linearly when increasing the number of transactions.

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Hypothesis . 5
1.3 Contributions . 6
1.4 Outline . 7

2 Related Works 9
2.1 Modeling Uncertain Data . 9
2.2 Frequent Pattern Mining . 10
2.3 Classification . 13
2.4 Sequential Pattern Mining . 16

3 UAC: Uncertainty-handling Associative Classifier 17
3.1 Uncertainty Modeling . 18

3.1.1 Categorical Attributes . 18
3.1.2 Numerical Attributes . 19

3.2 Algorithm . 20
3.2.1 Rule Extraction . 20
3.2.2 Rule Filtering . 21
3.2.3 Rule Selection . 28

3.3 Experiments and Results . 29
3.3.1 Accuracy Comparisons . 29
3.3.2 Training Time and Number of Rules 39

4 UAprioriAll: Mining Sequential Patterns from Uncertain Data 42
4.1 UAprioriAll . 42

4.1.1 Data Modeling . 43
4.1.2 AprioriAll . 44
4.1.3 UAprioriAll . 45
4.1.4 Algorithm Correctness . 51

4.2 Experiments . 52
4.2.1 Datasets . 52
4.2.2 Experiments and Discussion 54

5 Conclusions 56
5.1 Summary of Contributions . 57
5.2 Future Work . 58

Bibliography 60

List of Tables

1.1 A sample transactional database 3

2.1 A sample uncertain transactional database 12

3.1 %Accuracy, reported by rule based classifiers on datasets modeled
based on [14] . 31

3.2 %Accuracy, reported by rule based classifiers on datasets modeled
based on [14] . 32

3.3 %Accuracy, reported by rule based classifiers on datasets modeled
based on [14] . 33

3.4 %Accuracy, reported by rule based classifiers on datasets modeled
based on [14] . 34

3.5 %Accuracy, reported by rule based classifiers on datasets modeled
based on [14] . 35

3.6 %Accuracy, reported by rule based classifiers on datasets modeled
based on [14] . 36

3.7 comparison between UAC and UCBA 38

4.1 Computation table for p(c ⊆ s) where c =< x, y, z > and s =<
x : 0.1, y : 0.5, x : 0.9, y : 0.8, t : 0.9, z : 0.5 > 49

4.2 A sample probabilistic sequential dataset with timestamps 50
4.3 Sorted form of Table 4.2 . 50
4.4 Output of U-Litemset: frequent single sequences mined from Table

4.3, also called L1 . 50
4.5 Transformed form of Table 4.3 . 50
4.6 Frequent Sequential Patterns mined from 4.5 51

List of Figures

1.1 Some of the possible models for uncertainty.(a) An uncertain tuple
with three items and the class label. Probability pr is set on the
whole record. (b) An uncertain tuple in which a probability is at-
tached to each observed value. (c) An uncertain tuple in which each
item is denoted by a vector of probabilities on the whole attribute
domain, where the size of the domain is nj . (d) An uncertain tu-
ple in which only kj elements of the probability vector are known
(kj ≤ nj). One may also consider class labels uncertain. 2

1.2 Some of the possible models for uncertainty in databases and se-
quential datasets: (a) A tuple with record-level uncertainty; (b) A
tuple with attribute level uncertainty; (c) A transaction with transaction-
level uncertainty; (d) A transactions with item-level uncertainty; (e)
A sequence with transaction-level uncertainty; (f) A sequence with
item-level uncertainty. 5

3.1 A comparison between UAC and UCBA in number of rules of fi-
nalSet and the training time elapsed. 41

4.1 Time consumption of UAprioriAll with different support values . . . 53

List of Papers

• Metanat Hooshsadat, Osmar R. Zaı̈ane, An Associative Classifier For Uncer-
tain Data, submitted to ICDM 2011.

• Metanat Hooshsadat, Samaneh Bayat, Parisa Naeimi, Mahdieh S. Mirian, Os-
mar R. Zaı̈ane, Finding Sequential Patterns in Probabilistic Data, submitted
to ICDM 2011.

• Metanat HooshSadat, Hamman Samuel, Sonal Patel, Osmar R. Zaı̈ane. Fastest
association rule mining algorithm predictor - farm-ap. In Fourth International
C* Conference on Computer Science and Software Engineering., pages 43–
50, Montreal, QC, Canada, 2011.

Chapter 1

Introduction

1.1 Motivation

Typical relational databases or databases in general hold collections of records rep-

resenting facts. These facts are observations with confident values stored in the

fields of each tuple of the database. In other words, the observation represented by

a record is assumed to have taken place and the attribute values are assumed to be

true. For example, a customer database contains records of customers that exist and

in each tuple, the recorded attribute values are considered to be true observations

such as the address, the amount purchased, etc. We call these databases “certain

database” because we are certain about the recorded data and their values. Sophis-

ticated techniques for storing, managing, querying, sorting and mining “certain”

databases have been developed for decades and are nowadays ubiquitous.

In contrast to “certain” data there is also “uncertain data”; data for which we

may not be sure about the observation whether it really took place or not, or data

for which the attribute values are not ascertained with 100% probability.

Many applications deal with such uncertain data. A typical example is data

collected from sensor networks. Sensors may collect data such as temperature,

pressure or other with some uncertainty specified by the manufacturers or uncer-

tainty due to the age of the sensor, its location, the condition it is in or simply the

energy source available. Another application example is the tracking of moving

objects where the position of an object is never exact but an approximation bound

by an interval or associated with a probability. Another example deals with medical

1

records that are populated from text-based patients’ records. The information ex-

traction methods used have confidence levels attached on the extracted information,

that we use as uncertainty.

There are many models proposed in the literature to represent uncertainty and

often these models are specifically fitted to the application at hand. However, in

general, there are models that focus on uncertainty attached to a whole record cen-

tering on what is referred to as possible worlds, while other models put the uncer-

tainty on the attribute values by either attaching a probability on an observed value

for an attribute or a set of probabilities for all possible values an attribute could have

(see Figure 1.1).

a1 a2 a3 c
prv1,i v2,i v3,i ci

(a)

a1 a2 a3 c
v1,i : p1,i v2,i : p2,i v3,i : p3,i ci

(b)

a1 {v1,i,1 : p1,i,1, v1,i,2 : p1,i,2, .., v1,i,n1 : p1,i,n1}
a2 {v2,i,1 : p2,i,1, v2,i,2 : p2,i,2, .., v2,i,n2 : p2,i,n2}
a3 {v3,i,1 : p3,i,1, v3,i,2 : p3,i,2, .., v3,i,n3 : p3,i,n3}
c ci

(c)

a1 {v1,i,1 : p1,i,1, v1,i,2 : p1,i,2, .., v1,i,k1 : p1,i,k1}
a2 {v2,i,1 : p2,i,1, v2,i,2 : p2,i,2, .., v2,i,k2 : p2,i,k2}
a3 {v3,i,1 : p3,i,1, v3,i,2 : p3,i,2, .., v3,i,k3 : p3,i,k3}
c ci

(d)

Figure 1.1: Some of the possible models for uncertainty.(a) An uncertain tuple with
three items and the class label. Probability pr is set on the whole record. (b) An
uncertain tuple in which a probability is attached to each observed value. (c) An
uncertain tuple in which each item is denoted by a vector of probabilities on the
whole attribute domain, where the size of the domain is nj . (d) An uncertain tuple
in which only kj elements of the probability vector are known (kj ≤ nj). One may
also consider class labels uncertain.

Querying probabilistic data, particularly computing aggregations, ranking un-

certain data or discovering patterns in probabilistic data is a challenging feat. Many

researchers have focused on uncertain databases, also called probabilistic databases,

for managing uncertain data [38, 22], top-k ranking uncertain data [18, 49], query-

ing uncertain data [29, 10], clustering [9] or mining uncertain data [2, 24, 21].

In this study, we use frequent pattern mining to classify and mine the frequent

2

sequences from uncertain databases. Frequent pattern mining has been the focus of

many studies for years. Numerous algorithms have been designed for addressing

different problems in this area, ranging from frequent itemset mining in transaction

databases, sequential pattern mining, structured pattern mining, correlation mining,

associative classification, and frequent pattern-based clustering, to applications of

these algorithms.

A transactional database, such as the one in Table 1.1, is a database containing

sets of items correlated to id numbers. Frequent patterns are defined to be the set of

items which appear in at least t transactions. The number of transactions containing

an itemset is called support. To find frequent patterns, usually a user defined lower

bound called Minimum Support is set on the support values of the itemsets, which

adjusts the sensibility of the mining procedure to the noise. For example, with the

minimum support of 2, itemset a, b, which appears in transactions 1, 2, 4 and thus

has a support of 3, is frequent. However, a, b, c only appears in 1 and thus has the

support of 1, which implies that it is not frequent.

ID transactions
1 a,b,c,e,f
2 a,b,f
3 e,f
4 a,b,e

Table 1.1: A sample transactional database

Using the concept of frequent pattern mining from uncertain data, we are inter-

ested in building associative classifiers on medical data in the context of health care

decision support systems. There are two main challenges to this endeavor. The first

challenge is that users of these decision support systems are medical practitioners

who prefer to understand the classification models used and be able to inject new

domain knowledge within the learned model. Therefore, rule-based classifiers are

preferred. The second challenge is the fact that existing classification techniques

are based on “certain” datasets. Very little work has been done so far on building

a classifier on uncertain training data. The medical data we need to use is indeed

uncertain. Most medical records are largely in free-text form and thus require ad-

3

vanced text mining techniques to extract structured information [50, 23]. Extracting

patient information from free-text to populate a structured database is inherently un-

certain. The machine learning techniques that identify specific information such as

diseases, treatments, treatments for which disease, blood pressure, drug dosage, etc.

do these identifications and extractions with some measured confidence. Therefore

the acquired database is an uncertain database with probabilities attached to each

attribute value representing this confidence obtained by the machine learning tech-

niques used to extract the variety of patient information.

The other problem which is of our interest is mining sequential patterns from

uncertain datasets. SPM is an important problem defined on the sequential datasets.

In these datasets, each sequence is associated with a unique id and contains multiple

transactions. Each transaction in a sequence is stamped with a particular order

identifier, e.g. time. In this chapter, we often use the terms time stamp and order

identifier interchangeably for simplicity. However, while time stamp is the most

commonly used, there are many other order identifiers.

Definition 1. Given a set of sequences, where each sequence consists of a list of

elements and each element consists of a set of items, and given a user-specified

minimum support threshold, sequential pattern mining is to find all of the frequent

subsequences, i.e., the subsequences whose occurrence frequency in the set of se-

quences is no less than the minimum support.

There are many applications for SPM from uncertain datasets. For example,

assume the problem of mining from medical records again. We are interested in

studying the side effects of the medicine taken by patients on their health. To

study this, we need to mine sequences from this inherently uncertain datasets to

find chronological correlations between medicines and symptoms.

UAprioriAll presented in Chapter 4 is designed based on the well known and

efficient AprioriAll to enable mining frequent sequences in datasets with existen-

tial uncertainty. One can assume a variety of models to capture uncertainty in se-

quential datasets. The uncertainty can be assumed on the transaction level (anal-

ogous to record level uncertainty) or on the items (analogous to attribute level un-

4

certainty). Possible models of uncertainty for datasets used for classification are

presented in Figure 1.2. Item-level uncertainty, which is considered more general

than transaction-level uncertainty, is our choice of model in Chapter 4. This is the

first work that considers this broad model, while all of the previous related studies

have assumed limitations on the dataset, such as assumptions on length of transac-

tions. Indeed, there are numerous cases where the length of transactions differ in

variations of the possible worlds (i.e. all possible databases). Our data model in

Chapter 4 is more general and does not assume any restriction of this sort on the

items or transactions.

a1 a2 a3 p
v1 v2 v3

(a)

a1 a2 a3
v1 : p1 v2 : p2 v3 : p3

(b)

ti: {vi,1, vi,2, .., vi,n} pi
(c)

ti: {vi,1 : pi,1, vi,2 : pi,2, .., vi,n : pi,n}
(d)

s: < {v1,1, .., v1,n1} p1 .. {vk,1, .., vk,nk
} pk >

(e)

s: < {v1,1 : p1,1, .., v1,n1 : p1,n1} .. {vk,1 : pk,1, .., vk,nk
: pk,nk

} >
(f)

Figure 1.2: Some of the possible models for uncertainty in databases and sequential
datasets: (a) A tuple with record-level uncertainty; (b) A tuple with attribute level
uncertainty; (c) A transaction with transaction-level uncertainty; (d) A transactions
with item-level uncertainty; (e) A sequence with transaction-level uncertainty; (f)
A sequence with item-level uncertainty.

1.2 Hypothesis

In this manuscript, we are to prove the following hypotheses:

1. A dataset with general attribute level uncertainty (model specified in Section

3.1) can be classified by an associative classifier where the accuracies are im-

proved upon the existing rule based classifiers, including uHARMONY, DTU,

uRule, UCBA.

2. Sequential Patterns can be extracted from a dataset with attribute level un-

certainty.

5

Hypothesis 1 can be elaborated as follows:

• The associative classifier is accurate on both traditional uncertainty model

(Figure 1.1(c)) and the new more general uncertainty model introduced by

this study (Figure 1.1(d)). To prove this, we apply our proposed method,

UAC, to real data with randomly added uncertainty.

• The associative classifier is more accurate than the state of the art uncertain

data classifiers. We report the accuracies of our proposed method and existing

methods on both uncertainty models which shows that UAC reaches higher

accuracies on most cases and on the average.

• The strategy used for handling uncertainty reaches better accuracy, more

compact set of rules and needs less time to build the model, than the ex-

isting strategy. We compare our method to the existing method UCBA [33],

an existing method which is similar to our method except for the uncertainty

handling technique.

Hypothesis 2 can be elaborated as follows:

• Using expected support as a mathematically sound measure for frequentness,

frequent sequential patterns can be extracted from uncertain datasets, using an

algorithm for which the runtime grows linearly when increasing the number

of sequences.

1.3 Contributions

• In this study, we introduce a new more general model for capturing uncer-

tainty in classification problems. The space of this model contains the space

of the model addressed by the existing uncertain data classifiers. Our model

is able to capture more realistic cases of uncertainty.

• We present a probabilistic data associative classifier that effectively handles

uncertainty. UAC is more accurate than the state of the art rule based algo-

rithms. It is more accurate than UCBA, another CBA based algorithm, under

6

the new more general model. Additionally, the number of rules and the run-

ning time is far less than UCBA.

• To handle uncertainty in the classification without filtering out any informa-

tion from the dataset, we introduce the concepts of coverage, probability in-

clusion and applicability.

• We design UAprioriAll, that is the first sequential pattern mining algorithm

for uncertain datasets that handles a general form of attribute level uncer-

tainty. We provide soundness and completeness proof for this algorithm, and

results that show that the runtime of UAprioriAll grows linearly when in-

creasing the number of transactions.

1.4 Outline

• Chapter 2 reviews the most important studies in the area of uncertainty mod-

eling, frequent pattern mining, sequential pattern mining and classification.

Section 2.1 mentions and briefly describes the different studies published on

uncertainty modeling. Section 2.2 describes the problem of frequent pattern

mining and addresses some of the important methods to solve the problem.

Algorithm Apriori which is adopted by our algorithms is described and the

concepts of expected support and probabilistic support are compared in this

section. Section 2.3 briefly overviews the existing associative classifiers. This

section also gives a clear explanation on the problem of coverage and com-

pares the different probabilistic data classifiers based on the way they address

this issue. Section 2.4 gives a summary of the most important sequential

pattern mining algorithms for both traditional and probabilistic datasets, and

clarifies the difference between our new method and the existing methods.

• Chapter 3 addresses the problem of devising an accurate rule-based classifier

on uncertain training data after the information extraction. In this chapter,

Section 3.1 explains our data model. Section 3.2 provides the elaborated

description of our novel classification method: UAC. Section 3.3 contains the

7

experiments description and the results.

• Chapter 4 addresses the problem of mining sequential patterns from data with

attribute level uncertainty and presents algorithm UAprioriAll. In Section 4.1

the data model used and the algorithm are explained. Algorithm correctness

proof is provided in this section as well. Section 4.2 describes the exper-

iments and the figures that show the runtime of the algorithm. The work

presented in this chapter originated from an initial study made in the Winter

of 2010 in the graduate course on Electronic Health Records and Data Analy-

sis (CMPUT 690) by Samaneh Bayat, Parisa Naeimi and Mahdieh S. Mirian.

In this chapter, I introduce their original contributions and further enhance

their research.

• Chapter 5 summarizes the important conclusions and the contributions. In

addition, we list the important future work that can be done regarding the

problems discussed in this study.

8

Chapter 2

Related Works

In this chapter we review some of the important studies related to uncertain datasets,

frequent pattern mining and classification.

2.1 Modeling Uncertain Data

The possible worlds model [1] represents the whole set of databases that are con-

sistent with a schema and is used to display incomplete information (uncertain)

databases. If N is the set of all finite n-ary relations over D, where D is a fixed

countably infinite domain, an incomplete information database I is a subset of

N [19]. With this definition, the usual (certain) databases are the single mem-

bered subsets, and the no-information databases is N which contains all possible

databases. In other words, an uncertain relation represents a set of possible relation

instances, rather than a single one. The possible world model is complete meaning

that any possible set of relation instances is representable by an uncertain relation

in the model. Consequently, the possible world model is closed under relational

operations, meaning that applying any relational operator on databases represented

by the possible world model results in a database that is also representable in the

possible world model.

An inherent tension in the possible world model is the high complexity. Com-

plete models are usually excessive for some applications and they are less readable

than the incomplete models. Usually the intuitive models that can describe data are

not complete. Sarma et al. [37] addressed this problem and introduced incomplete

9

models including or-sets and existential uncertainty.

In addition, the possible world model is not usually pragmatically usable in ap-

plications, since there are many different possible states for the database and the

problem of mining and classification of such data is computationally intractable.

Studies on uncertain data often use simplifications over the possible worlds model

that do not reduce the generality of the problem [3]. The simplifications lead to fa-

mous practical models of uncertain databases, including record-level and attribute-

level uncertainty. Record level uncertainty assigns a confidence for each tuple.

Attribute level probability (or existential uncertainty) is another case in which at-

tributes are associated with probabilities, probability density functions, or other

statistical parameters such as variance. The probabilities assigned to the items are

often assumed to be independent to simplify the calculations.

In the real world applications, Studies use simpler models that are as close as

possible to reality, for example record level and attribute level uncertainty models.

The continuous attributes are usually modeled by intervals where the minimum

and maximum of an attribute value is known. Usually the interval is descritized

to transform this data to categorical attributes. A probability density function may

also be considered for the continuous attribute [31].

2.2 Frequent Pattern Mining

Many frequent pattern mining algorithms have been proposed over the past 20

years. Apriori [4] was the pioneer algorithm in which the frequent itemsets are

mined from the data using a multilevel approach. This approach is based on down-

ward closure property, that is if itemset x is a subset of y and x is not frequent, y is

consequently impossible to be frequent. Other algorithms including FP-growth [20]

and eclat [46] also mine the frequent patterns using data structures. From the per-

formance point of view, none of the frequent pattern mining algorithms is superior

to the others all the time. Some studies have captured the significant properties of

the datasets that influence the running time of the different mining algorithms [27].

In this study, we propose two Apriori based algorithms to solve classification

10

and sequential pattern mining problems for probabilistic databases. The reason for

this choice is that Apriori is a fast, simple and well known algorithm. Algorithm 1

shows the pseudocode of Apriori. In line 1 of this algorithm, function “freq-items”

finds all of the single items that have a greater support than the minimum support.

In line 3, function “generate” generates the level candidates based on the frequent

itemsets of the previous level, that is generating the cartesian product Lk−1 × Lk−1
and eliminating any itemset that has subitemsets that are not frequent.

Algorithm 1 Apriori
1: input: D is the dataset, minsup is the minimum support
2: L1= freq-items(D);
3: for all (k= 2; Lk−1 6= ∅; k++) do
4: Ck= generate(Lk−1).
5: for all transaction t in D do
6: for all c ∈ Ck do
7: if c ∈ t then
8: c.count+ +
9: end if

10: end for
11: end for
12: Lk = ∀ candidates c in Ck with c.count ≥ minsup
13: end for
14: return

⋃
k Lk

A probabilistic transactional database with item level uncertainty contains records

that have probabilities attached to each item. Table 2.1 is a probabilistic database,

where a : p shows that a transaction contains item a with the probability p attached

to it. To find Frequent patterns in an uncertain dataset, most studies use a user de-

fined threshold on expected support. The expected support of itemset x in dataset

D is defined by Equation 1 where P (x ∈ T) denotes the probability of x existing

in T . Based on this definition an item is frequent if E(s(x)) ≥ σ where σ is the

minimum support threshold defined by the user.

P (x ∈ T) =
∏

i∈x P (i ∈ T)
E(s(x)) = ΣT∈D P (x ∈ T)

(1)

Aggarwal et al. have studied frequent pattern mining on uncertain data by ex-

tending well-known deterministic algorithms of different classes using expected

11

ID transactions
1 a:0.4,b:0.6,c:0.8,e:1,f:0.1
2 a:0.3,b:0.4,f:0.7
3 e:0.5,f:0.5
4 a:0.4,b:0.3,e:0.5

Table 2.1: A sample uncertain transactional database

support. These include Apriori, which belongs to the class of candidate generate-

and-test algorithms, H-mine and FP-Growth which are pattern growth-based algo-

rithms. In the deterministic case, FP-Growth is well-known for its efficiency espe-

cially in dense datasets. However, according to their study, an extension of deter-

ministic algorithms to uncertain data shows completely counter-intuitive behavior.

Apriori and H-mine demonstrate more efficiency in dealing with uncertainty while

FP-Growth, because of its compressed structure, is not efficient enough in the un-

certain case. Moreover, their evaluation shows that pruning techniques which are

useful in cases of low uncertainty probability, do not work well in high uncertainty

probability conditions [2, 44, 3].

Probabilistic support [7, 48] is another measure defined based on the probability

that the itemset x in datasetD has a support more than the minimum support thresh-

old σ. The frequent itemsets based on this definition, are the ones that match the

inequality presented in Equation 2 where τ is the user defined probability threshold.

P (s(x) ≥ σ) = 1− Σ S∈D:|S|<σ (Πt∈S P (x ∈ t)).
(Πt∈(T−S) (1− P (x ∈ t))) ≥ τ

(2)

PFIM [48] is one of the algorithms that uses probabilistic support as its fre-

quency measure. Using dynamic programming to speed up computation time, the

probabilistic support of each item is calculated and k most frequent items are com-

puted. Another way of using the algorithm is to set a threshold for the probabilistic

support of itemsets where the minimum support is also defined by the user.

Expected support-based algorithms like UApriori [3] grow linearly when the

number of transactions is increased and the time complexity is O(|T |) in the worst

case [3], while probabilistic support-based algorithms like PFIM [7] are ofO(σ.|T |)

time complexity. Usually σ is chosen relatively to the size or as a percentage of the

12

number of transactions, PFIM is of O(|T |2) time complexity in its average case [7].

In this study we use expected support, not only because of its strong theoretical

basis, but also because of its linear time complexity.

2.3 Classification

Classification or supervised learning is one of the most active fields in machine

learning which involves predicting the category of a given piece of data based on the

previously observed information. In this category of learning algorithms, required

information is extracted from an available database and then used for predicting the

unknown attributes of other objects. For example, having enough information about

symptoms and diseases in a number of patients, we can diagnose the disease of a

new patient based on his/her symptoms. Various algorithms have been designed for

this purpose, including SVM (Support Vector Machine), rule based classifiers, K

nearest neighbors, neural networks, etc [40].

Recently, a considerable amount of studies in machine learning are directed to-

ward the uncertain data classification, including: TSVC [8] (inspired by SVM),

DTU [30] (decision tree), UNN [17] (based on Neural Network), Bayesian classi-

fier [31], uRule [32] (rule based), uHARMONY [14] (based on HARMONY [41])

and UCBA [33] (based on CBA [26]). However, models suggested by the previous

work do not capture some possible types of uncertainty. In previous studies, numer-

ical attributes are only modeled by intervals, while they may exist in other forms

such as probability vectors. Categorical attributes are modeled by a probability dis-

tribution vector over their domain where the vector is unrealistically assumed to be

completely known. Section 3.1 explains this issue in detail and introduces our more

general model for uncertainty.

High accuracy and strong flexibility are some of the advantageous characteris-

tics of the rule based classifiers. Another important advantage is their high under-

standability by human experts, even those specialized in other fields of knowledge

than computing science. For example, health experts can revise the rules of a rule

based classifiers applied in health sciences to increase the accuracy. This is of

13

course only true if the number of rules is reasonably low. Given these significant

advantages, investigating rule based uncertain data classifiers has been the theme of

many studies. One of these studies is uRule [32], that is an uncertain data classifier

based on RIPPER [11]. uRule defines the information gain metric in the presence

of uncertainty. The probability of each rule classifying the instance is computed

based on the weighting system introduced by uRule.

Associative classification is a large category of rule based classification in which

the rule induction procedure is based on the association rule mining technique. As-

sociation rule mining is to extract all rules in the database that satisfy particular

minimum support and minimum confidence constraints. Some of the prominent

associative classifiers that use candidate generation are CBA [26], ARC [45], and

CMAR [25]. Much work has been done in improving associative classifiers such

as [35] and [36]. In Chapter 3, we introduce an associative classifier for uncertain

datasets, which is based on CBA. CBA is highly accurate, flexible and efficient both

in time and memory [26].

CBA [26] directly adopts Apriori [4] to mine the potential classification rules or

strong ruleitems from the data. Ruleitems are those association rules of form a→ c,

where the consequence (c) is a class label and the antecedent (a) is a set of attribute

assignments. Each attribute assignment consists of an attribute and a value which

belongs to the domain of that attribute. For example, if A1 and A2 are two attributes

and c is a class label, r = (A1 : u1, A2 : u2 → c) is a ruleitem. r implies that if A1

andA2 have values of u1 and u2 respectively, the class label should be c. A ruleitem

is strong if its support and confidence are above the predefined thresholds.

After mining the strong ruleitems, a large number of them are eliminated by

applying the database coverage approach. This method is a filtering technique

commonly used by associative classifiers. The procedure involves removing the

rules that do not classify any instance correctly, as well as filtering the ruleitems that

have negative effect on the accuracy. Database coverage increases both accuracy

and understandability of the rule set. The database coverage method of CBA makes

slightly more than one pass over the dataset. This makes CBA an efficient algorithm

when the database is large and can only be partially loaded into main memory.

14

UCBA [33] is an uncertain data associative classifier which is inspired by CBA.

This study uses the same weighting system as uRule and select multiple rules for

classification of each instance. Another study in uncertain data classification is

uHARMONY [14]. uHARMONY is mostly inspired by HARMONY [41], that is

an associative classifier for “certain” data. HARMONY does not directly apply an

association rule mining algorithm. It combines the mining and the construction of

the final set of rules to improve the efficiency. uHARMONY defines and uses the

concept of expected confidence.

An important problem addressed by all rule based uncertain data classifiers is

the coverage problem. Rule based classifiers often need to evaluate various rules

to pick the best ones. This level is critical in maintaining a high accuracy. The

evaluation often involves the answer to the following question: To which training

instances can a rule be applied?. Of course, in “certain” data classifiers the answer

is obvious, a rule can only be applied to those instances that satisfy its antecedent.

However, the answer is not obvious for uncertain datasets. Many uncertain dataset

instances may satisfy the antecedent of a rule, each with a different probability. We

call this the coverage problem. Existing uncertain data rule based classifiers have

suggested various answers to this problem.

uHARMONY suggested a lower bound on the probability by which the instance

satisfies the rule antecedent. This approach is simple and fast, but the difficulty

or even impossibility of setting the threshold is a problem. This is explained in

more detail in Section 3.2.2. uRule suggested that a rule can only be applied to

a part of an instance. In contrast to uHARMONY, this method uses the whole

dataset but it may cause sensitivity to noise which is undesirable. UCBA does not

include the uncertainty in the rule selection process; they select as many rules as

possible. This method does not filter enough rule; so may decrease the accuracy

and understandability.

15

2.4 Sequential Pattern Mining

Many sequential pattern mining algorithms and approaches exist for “certain” se-

quential datasets. Pei et al. [28] presented an algorithm called Prefix Span which

uses a prefix tree to speed up the SPM process on standard data. AprioriAll [5] is

an apriori based algorithm which finds all of the frequent sequential patterns in a

database. Algorithm SPIRIT [16] aims at finding the patterns that are specified by

the user using regular expressions. SPADE [47] is another sequential pattern min-

ing algorithm that uses lattice search and simple joins to speed up the procedure.

GSP [39] discovers the sequential patterns in a database, assuming that the distance

between the items in a sequence must be less than a user specified threshold.

Yang et al. [43] proposed an algorithm for SPM in uncertain datasets. Their

problem involves finding the sequential patterns in presence of noise. Noise may

cause an item to be misinterpreted as another item in the process of data gather-

ing. This phenomenon happens in many cases including biomedical studies and

consumer behavior analysis. They used a matrix of probabilities in which each cell

shows the probability by which an item such as x is misread as another item such

as y. Using this matrix, they calculated the probabilities for each sequence to be in

the dataset and extracted the frequent sequences.

TrajPattern [42] is another study on frequent sequential pattern mining of un-

certain databases that is an algorithm for finding the trajectory of mobile objects.

In applications dealing with mobile objects, data is imprecise because it is only

possible to obtain the imprecise locations at a given time due to the mobility of de-

vices and unreliable communication links. The uncertainty modeling of this study

included an interval of uncertainty for the location of each object .

16

Chapter 3

UAC: Uncertainty-handling
Associative Classifier

Classifying uncertain datasets is an interesting problem that has different real world

applications. Data collected from sensor networks, or data measured by imprecise

measuring devices are always subject to uncertainty. These data can be collected in

databases with attribute level uncertainty and used for prediction purposes.

We are interested in building classifiers on medical data in the context of health

care decision support systems. There are two main challenges to this endeavor. The

first challenge is that users of these decision support systems are medical practition-

ers who prefer to understand the classification models used and be able to inject new

domain knowledge within the learned model. Therefore, rule-based classifiers are

preferred. The second challenge is the fact that existing classification techniques

are based on “certain” datasets. Very little work has been done so far on building

a classifier on uncertain training data. The medical data we need to use is indeed

uncertain. Most medical records are largely in free-text form and thus require ad-

vanced text mining techniques to extract structured information [50, 23]. Extracting

patient information from free-text to populate a structured database is inherently

uncertain. The machine learning techniques that identify specific information such

as diseases, treatments, relationships: treatment for each disease, blood pressure,

drug dosage, etc. make these identifications and extractions with some measured

confidence. Therefore the acquired database is an uncertain database with proba-

bilities attached to each attribute value representing this confidence obtained by the

17

machine learning techniques used to extract the variety of patient information.

This chapter addresses the problem of devising an accurate rule-based classifier

on uncertain training data after the information extraction. There are many classifi-

cation paradigms but the classifiers of interest to our study are rule-based because

the practitioners want a transparent model as opposed to a black box. We opted for

associative classifiers, classifiers using a model based on association rules, as they

were shown to be highly accurate and competitive with other approaches [6].

First, in Section 3.1, we introduce our model for representing uncertain data. In

Section 3.2, we introduce our novel classification method UAC. Finally in Section

3.3 we present empirical evaluations comparing UAC with other published works.

3.1 Uncertainty Modeling

In this study, we address the attribute level uncertainty. Expression of attribute value

uncertainty depends upon whether an attribute is categorical or numerical.

3.1.1 Categorical Attributes

Categorical attributes have finite domains. The domain of uncertain categorical

attribute Aj is denoted by Aj.D= {Aj.v1, Aj.v2, ..., Aj.vn}. The value of this

attribute for the i-th instance is a set of value-probability pairs denoted by Aj,i.L

and is presented by Equation 1. An example of uncertain categorical attributes

is color with domain of {black, white, blue}. Previous work on uncertain data

classifiers assumed that the probability vector [pj,i,1, pj,i,2, .., pj,i,k] is always known

(Figure 1.1(c)). Thus, the sum of the elements in the vector is always 1. Our model

rejects that assumption. For example, for an attribute such as color, if value black

has a probability of pblack, pwhite and pblue are not identified (Figure 1.1(d)). This is

Especially observed when the size of the domain is large.

Aj,i.L = {(uj,i,1 : pj,i,1), (uj,i,2 : pj,i,2), .., (uj,i,k : pj,i,k)}
∀l ≤ k ;uj,i,l ∈ Aj, i.LΣk

l=1 pj,i,l ≤ 1.
(1)

18

3.1.2 Numerical Attributes

Numerical attributes have infinite sets as their domains. An example is attribute

time expressed in milliseconds. The domain of time is all numbers greater than 0.

Based on the method of extraction and the source of data, numerical attributes may

have two different forms in an uncertain dataset: Sampled and Interval.

Sampled Numerical Attributes

Uncertainty in numerical attributes may be expressed by a set of possible values

each associated with a probability. For example, an instance of attribute time may

have values of 10 or 12 associated with probabilities 0.5 and 0.4, respectively.

Equation 2 presents the formal definition of this model. Ai,j.L is the value list

associated with Ai,j , that is the i-th instance of sampled numerical attribute Aj and

Aj.D = [Aj.l, Aj.u] . Similar to categorical attributes, the sum of probabilities for

each probability vector is not necessarily 1, but at most 1.

Aj,i.L = {(xj,i,1 : pj,i,1), (xj,i,2 : pj,i,2), .., (xj,i,k : pj,i,k)}
∀q ≤ k ;Aj.l ≤ xj,i,q ≤ Aj.uΣk

q=1 pj,i,q ≤ 1.
(2)

Interval Numerical Attribute

In the real world, sometimes we are not able to identify the exact value of an at-

tribute, but we have a lower and upper bound (interval). Besides the interval, a

Probabilistic Density Function or pdf may also be available in some cases. For ex-

ample, assume a network of sensors, where each sensor reports the time by which

a car passes by it. In this system, the time consumed by processing, sending the

information, and other undetermined errors lead to a value that is a close estimation

of the actual time. However, there are methods to calculate the upper bound and the

lower bound of this error which lead to a better representation of the information:

an interval which contains the actual value of attribute Time. Equation 3 presents

the formal definition of an interval based numerical attribute. Ai,j.I is the interval

associated with Ai,j , that is the i-th instance of interval numerical attribute Aj and

Aj.D = [Aj.l, Aj.u]
Aj,i.I = [Aj,i.l, Aj,i.u]
Aj.l ≤ Aj,i.l, Aj,i.u ≤ Aj.u.

(3)

19

3.2 Algorithm

In this section, we present our novel algorithm, UAC. UAC can be applied to all

datasets modeled with the general notion introduced in 3.1. Before applying UAC to

uncertain numerical attributes, they are first transformed into uncertain categorical

attributes using U-CAIM [31], which is an uncertain data discretizer. This is further

explained in Section 3.3.1.

Building an associative classifier consists of two distinct steps: 1- Rule Extrac-

tion, 2- Rule Filtering. In this section each step of UAC is explained. Later, the

procedure of classifying a new test instance is described.

3.2.1 Rule Extraction

In uncertain datasets, an association rule is considered strong if it is frequent and its

confidence (Conf) is above a user defined threshold called minimum confidence. A

ruleitem is frequent if its Expected Support (ES) is above a user defined threshold

called minimum expected support. The definitions of the expected support and the

confidence are as follows.

Definition If a is an itemset and c is a class label, expected support (ES) and

confidence (Conf) of a ruleitem are calculated by Equation 4. Here, the ruleitem is

denoted by r = a→ c and T is the set of all transactions.

ES(a) = Σ∀t∈TΠ∀i∈aP (i ∈ t)
ES(a→ c) = Σ∀t∈T,t.class=cΠ∀i∈aP (i ∈ t).
Conf(a→ c) = ES(a→c)

ES(a)
.

(4)

Some studies have criticized expected support and defined another measure

which is called probabilistic support [48] [7]. Probabilistic support is defined as the

probability of an itemset to be frequent with respect to a certain minimum expected

support. For example assume that in a dataset with two itemsets a : x : 0.8, y : 0.5

and b : x : 0.2, y : 0.5, we are to find the items with minimum expected support

of 1. Using the expected support, both x and y are frequent, but the probability of

x being frequent is 0.84. This probability for y is 0.75. In this case, probabilistic

support is a better measure for measuring frequentness. However, probabilistic sup-

port increases the time complexity significantly. In addition, since we apply a rule

20

filtering step, we will set the minimum support to a very small value. So the cases

mentioned above are not significant in the resulting classifier. Therefore, UAC uses

the expected support.

uHARMONY defines another measure instead of confidence which is called ex-

pected confidence. The computation of this measure takes O(|T |2) time where |T |

is the number of instances. Computing confidence is only O(1), thus we use con-

fidence for efficiency reasons. Our experimental results in Section 3.3 empirically

proves that our confidence based method can reach high accuracies.

Our rule extraction method is based on UApriori [2]. The candidate set is first

initialized by all rules of form a → c where a is a single attribute assignment and

c is a class label. After removing all infrequent ruleitems, the set of candidates

is pruned by the pessimistic error rate method [34]. Each two frequent ruleitems

with the same class label are then joined together to form the next level candidate

set. The procedure is repeated until the generated candidate set is empty, meaning

all the frequent ruleitems have been found. Those ruleitems that are strong (their

confidence is above the predefined threshold) are the potential classification rules.

In the next section, the potential ruleitems are filtered and the final set of rules is

formed.

3.2.2 Rule Filtering

The outcome of the rule extraction is a set of rules called rawSet. Usually the num-

ber of ruleitems in rawSet is excessive. Excessive rules may have negative impact

on the accuracy and the understandability of the classification model. To prevent

this, CBA uses the database coverage method to reduce the set of rules. UAC ben-

efits from the database coverage too, but can handle uncertainty. The purpose in

UAC is similar to CBA, which is to remove the rules that do not increase the accu-

racy. The initial step of the database coverage method in UAC is to sort rules based

on their absolute precedence to accelerate the algorithm. Absolute precedence in

the context of uncertain data is defined as follows:

Definition: Rule ri has absolute precedence over rule rj or ri � rj , if a) ri

has higher confidence than rj; b) ri and rj have the same confidence but ri has

21

higher expected support than rj; c) ri and rj have the same confidence and the

same expected support but ri have less items in its antecedent than rj .

When data is “certain”, confidence is a good and sufficient measure to examine

whether a rule is the best classifier for an instance. But when uncertainty is present,

there is an additional parameter in effect. To illustrate this issue, assume rules

r1 : [m, t → c1] and r2 : [n → c2] having confidences of 0.8 and 0.7, respectively.

It is evident that r1 � r2. However, for a test instance like I1 : [(m : 0.4), (n :

0.6), (t, 0.3)→ x] where x is to be predicted, which rule should be used? According

to CBA, r1 should be used because its confidence is higher than that of r2. However,

the probability that I1 satisfies the antecedent of r1 is small, so r1 is probably not a

reliable rule. We solve this problem by including another measure called PI . PI

or probability of inclusion, denoted by π(ri, Ik), is described as the probability by

which rule ri can classify instance Ik. PI is defined in Equation 5. In the example

above π(r1, I1) is only 0.3× 0.4 = 0.12, while π(r2, I1) is 0.6.

π(ri, Ik) = Πw∈ri P (w ∈ Ik). (5)

Next, we define applicability, denoted by α(ri, Ik) in Equation 6. Applicability

is the probability by which rule ri correctly classifies instance Ik and is used as

one of the main metrics in UAC. For the previous example, α(r1, I1) = 0.096 and

α(r2, I1) = 0.42. Thus, it is more probable that I1 is correctly classified by r2 than

r1.

α(ri, Ik) = ri.Conf × π(ri, Ik). (6)

Now based on the applicability, we define the concept of relative precedence of

rule ri over rule rj with respect to Ik. This is denoted by ri �[Ik] rj and is defined

as follows:

Definition: Rule ri has relative precedence over rule rj with respect to instance

Ik denoted by ri �[Ik] rj , if: a) α(ri, Ik) > α(rj, Ik) b) ri and rj have the same

applicability with respect to Ik but ri has absolute precedence over rj .

Having ri �[Ik] rj implies that ri is “more reliable” than rj in classifying Ik. It is

evident from the definition, that the concept of “more reliable” rule in an uncertain

data classifier is relative. One rule can be more reliable than the other when dealing

22

with an instance, and the opposite may be true for another instance. In the previous

example, r2 has relative precedence over r1, even though r1 has absolute precedence

over r2.

UAC uses the relative precedence as well as the absolute precedence to filter

rawSet. The database coverage algorithm of UAC has 3 stages that are explained

below.

Stage 1: Finding ucRules and uwRules

After sorting rawSet based on the absolute precedence, we make one pass over the

dataset. On this pass we link each instance in the dataset to two rules in rawSet:

ucRule and uwRule. ucRule is the rule with the highest relative precedence that

correctly classifies i. In contrast, uwRule is the rule with the highest relative prece-

dence that wrongly classifies i. The pseudocode for the first stage is presented in

Algorithm 2.

In Algorithm 2, three sets are declared. U contains all the rules that classify at

least one training instance correctly. Q is the set of all ucRules which have rel-

ative precedence over their corresponding uwRules with respect to the associated

instances. If i.uwRule has relative and absolute precedence over the corresponding

ucRule, a record of form < i.id, i.class, ucRule, uwRule > is put in A. Here, i.id

is the unique identifier of the instance and i.class represents the class label.

To find the corresponding ucRule and uwRule for each instance, the procedure

starts at the first rule of the sorted rawSet and descends. For example, if there is

a rule that correctly classifies the target instance and has applicability of α, we

pass this rule and look for the rules with higher applicabilities to assign as ucRule.

Searching continues only until we reach a rule that has a confidence of less than α.

Clearly, this rule and rules after it (with less confidence) have no chance of being

ucRule. The same applies to uwRule. Also as shown in Algorithm 2 lines 4 and 6,

the applicability values of ucRule and uwRule are stored to expedite the process

for the next stages.

The purpose of the database coverage in UAC is to find the best classifying rule

(coverage) for each instance in the dataset. The covering rules are then contained

23

in the final set of rules and others are filtered out. The best rule, that is the cov-

ering rule, in CBA is the highest precedence rule that classifies an instance. This

definition is not sufficient for UAC because the highest precedence rule may have

a small PI . To prevent this situation, we set a lower bound on the applicability of

the covering rule. This lower bound is determined by the algorithm itself, as we

explain in the following sections, and each individual instance has its specific lower

bound. Setting a lower bound on PI decreases the effect of noise by excluding the

unlikely predictors from the decision making process.

uHARMONY also takes a similar approach by setting a predefined lower bound

on PI value of the covering rule. We do not predefine the lower bound, because

of its disadvantages. Clearly, not only estimating the suitable lower bound is crit-

ical, but it is also intricate, and even in many cases impossible. When predicting

a label for an instance, rules that have higher PI than the lower bound are treated

alike. To ameliorate this effect, it is necessary to set the lower bound high enough

to avoid low probability rules covering the instances. But then, it is possible that the

only classifying rules for some of the instances are not above that lower bound and

removed. Additionally, setting a predefined lower bound filters out usable informa-

tion, while the purpose of the uncertain data classifiers is to use all of the available

information. Moreover, having a single bound for all of the cases is not desirable.

Different instances may need different lower bounds.

Given all the above reasons, we need to evaluate the suitable lower bound for

each instance. Definition of the covering rule in UAC is as follows, where we use

the applicability of i.ucRule as our lower bound for covering i.

Definition: Rule r covers instance i if: a) r classifies at least one instance

correctly; b) π(r, i) > 0; c) α(r, i) > α(i.ucRule, i) = cApplic. d) r � i.ucRule

cApplic represents the maximum rule applicability to classify an instance cor-

rectly. Thus, it is the suitable lower bound for the applicability of the covering

rules. This will ensure that each instance is covered with the best classifying rule

(ucRule) or a rule with higher relative and absolute precedence than ucRule. In the

next two stages, we remove the rules that do not cover any instance from rawSet.

24

Algorithm 2 UAC Rule Filtering: Stage 1
1: Q = ∅;U = ∅;A = ∅
2: for all i ∈ Dataset do
3: i.ucRule = firstCorrect(i)
4: i.cApplic = α(i.ucRule, i)
5: i.uwRule = firstWrong(i)
6: i.wApplic = α(i.uwRule, i)
7: U.add(ucRule)
8: ucRule.covered[i.class] + +
9: if (ucRule �[i] uwRule) and ucRule � uwRule then

10: Q.add(ucRule)
11: flag(ucRule)
12: else
13: A.add(< i.id, i.class, ucRule, uwRule >)
14: end if
15: end for

Stage 2: Managing Replacements

In this stage, cases that were stored in A at Stage 1 are managed. Algorithm 3

displays the pseudocode for Stage 2. A contains all cases where i.uwRule has

relative and absolute precedence over i.ucRule, thus i.ucRule may not cover i.

If i.uwRule is flagged in Stage 1, i is covered by i.uwRule (lines 3, 4, and 5).

Otherwise based on the definition of the covering rule in Stage 1, i may get the

coverage by the other rules such asw which have the following characteristics: a)w

classifies i incorrectly; b) w has relative precedence over i.ucRule with respect to

i; c) w has absolute precedence over i.ucRule.

Function allCoverRules (line 7) finds all such rules as w within U , which are

called the replacements of i.ucRule. The replacement relation is stored in a DAG

(directed acyclic graph) called RepDAG. In RepDAG, each parent node has a

pointer to each child node via the replace set (line 12). The number of incoming

edges is stored in incom (line 14). Each node represents a rule and each edge

represents a replacement relation.

Each rule has a covered array in UAC where r.covered[c] is used to store the to-

tal number of instances covered by r and labeled by class c. If r.covered[r.class] =

0, then r does not classify any training instance correctly and is filtered out. Starting

25

from line 22, we traverse RepDAG in its topologically sorted order to update the

covered array of each rule. Rule ri comes before rj in the sorted order, if ri � rj

and there is no instance such as Ik where rj �[Ik] ri. If a rule fails to cover any

instance correctly (line 26), it does not have any effect on the covered array of the

rules in its replace set. At the end of stage 1, enough information has been gathered

to start the next stage, which finalizes the set of rules.

Stage 3: Finalizing Rules

At Stage 3, the set of rules is finalized. Algorithm 4 presents the pseudocode of

Stage 3. In this stage, UAC filters the rules based on a greedy method of error re-

duction. Function computeError counts the number of instances that are covered

by rule r but have a different class label than r.class. The covered instances are

then removed from the dataset. Function addDefaultClass finds the most fre-

quent class label among the remaining instances (line 6). In line 8, the number

of instances correctly classified by the default class is calculated. totalError is

the total errors made by the current rule r and the default class. In fact, each rule

with positive coverage over its class, is associated with a particular totalError,

defClass, and defAcc (line 10). After processing the rules, we break the set of

rules from the minimum error and assign default and defApplic. defApplic is

used in rule selection as an estimate of applicability of the default class.

Our rule filtering algorithm has a runtime of O(|T | × |R|) in the worst case

scenario, where |T | is the number of instances in the dataset and |R| is the size of

rawSet. This is considering the assumption that the number of attributes is neg-

ligible compared to the number of instances, which is a fact in most of the real

world problems. The worst case scenario is when at Stage 1, at least one ucRule or

uwRule is the last rule in the sorted rawSet. This case rarely happens because the

rules are sorted based on their absolute precedence. UAC also makes slightly more

than one pass over the dataset in the rule filtering step. Passes are made in Stage

1 and 2. Note that array A is usually small, given that most of the instances are

usually classified by the highest ranked rules. The number of passes is an important

point, because the dataset may be very large. Especially for datasets that can not

26

Algorithm 3 UAC Rule Filtering: Stage 2
1: RepDAG = ∅
2: for all < i.id, y, ucRule, uwRule >∈ A do
3: if flagged(uwRule) then
4: ucRule.covered[y]−−
5: uwRule.covered[y] + +
6: else
7: wSet = allCoverRules(U, i.id, ucRule)
8: if !RepDAG.contains(ucRule) then
9: RepDAG.add(ucRule)

10: end if
11: for all w ∈ wSet do
12: w.replace.add(< ucRule, i.id, y >)
13: w.covered+ +
14: ucRule.incom+ +
15: if !w ∈ RepDAG then
16: RepDAG.add(w)
17: end if
18: end for
19: Q = Q.add(wSet)
20: end if
21: end for
22: S ← set of all nodes with no incoming edges
23: while S 6= ∅ do
24: r = S.next() {next removes a rule from the set}
25: for all < ucRule, id, y >∈ r.replace do
26: if (r.covered[r.class] > 0) then
27: if id is covered then
28: r.covered[y]−−
29: else
30: ucRule.covered[y]−−
31: Mark id as covered.
32: end if
33: end if
34: ucRule.incom−−
35: if ucRule.incom = 0 then
36: S.add(ucRule)
37: end if
38: end for
39: end while

be loaded into memory at once, it is not efficient to make multiple pases. This is

an advantage for UAC over UCBA, which passes over the dataset once for each

27

rule in rawSet. The next section explains the rule selection that is the procedure of

classifying test instances based on the set of rules.

Algorithm 4 UAC Rule Filtering: Stage 3
1: C = ∅
2: for all r ∈ Q do
3: if r.covered[r.class] > 0 then
4: finalSet.add(r)
5: ruleErrors+ = computeError(r)
6: defClass = addDefaultClass()
7: defErrors = computeDefErr(defClass)
8: defAcc = addDefAcc(uncovered(D)− defErrors)
9: totalError = defErrors+ ruleErrors

10: C.add(r, totalError, defClass, defAcc)
11: end if
12: end for
13: Break C from the rule with minimum error
14: C contains the final set of rules
15: default = defClass.get(C.size)

16: defApplic = defAcc.get(C.size)
|T |

3.2.3 Rule Selection

Rule selection is the procedure of classifying a test instance. In the previous sec-

tions, excessive rules were filtered out from rawSet. The remaining set of rules is

called finalSet, and classifies the test instances. UAC selects one classifying rule

for each instance. The selected classifying rule has the highest relative precedence

with respect to the test instance.

The role of the default class (default in Algorithm 4 line 15) is to reduce the

number of rules. The default class predicts the labels of those instances that are

not classified by the rules in the finalSet. So the best predicting label for some of

the test instances may be default class. But UAC may prefer rules with small PI

values to the default class if we follow the procedure of “certain” data classifiers.

To prevent this, defApplic is used as an estimate for applicability of the default

rule. This value shows the number of training instances that were expected to be

classified by the default rule. For example, when two classes, such as a and b, have

the same population in the dataset but no rule labeled b exists, default rule has a

28

very important role. Consequently, the value of the default applicability is high.

As a result, if the highest precedence rule with respect to a test instance has less

applicability than the default rule, the default rule will predict the label for that.

3.3 Experiments and Results

We use an empirical study to compare UAC against the existing rule based methods.

In all of the reported experiments on UAC, the minimum support is set to 1%, the

minimum confidence to 50% and the maximum number of mined association rules

to 80, 000. Each reported number is an average over 10 repetitions of 10-fold cross

validations. The value of the minimum support is set to a very small number so no

pattern is left out. Later in the filtering step we filter the unwanted patterns. The

minimum confidence is set to 50% so we are sure that the rules we pick are more

accurate than blind chance.

Since there is no known public repository of uncertain datasets, we synthetically

added uncertainty to 30 well known UCI datasets. This method was employed by

all the studies in the field including uHARMONY, DTU and uRule, uncertain svm,

UCBA, etc., and gives a close estimation of the classifier performance in the real

world problems. Although we cannot compare the algorithms applied to the real

world problems, using synthetically added probabilities we are enabled to limit

the uncertainty level and perform a valuable comparison. We selected the same

datasets as in [14] to compare our method with the results reported in their paper

for uHARMONY, uRule and DTU. This also ensures that we did not choose only

the datasets on which our method performs better. For convenience, we use the

same set of databases to compare UAC to UCBA.

3.3.1 Accuracy Comparisons

To compare our method against other classifiers, we employ averaging technique

and case by case comparison [12]. The same method was employed by many other

studies including CBA, uHARMONY, DTU and uRule to prove the better perfor-

mance of their algorithms. Tables 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 provide a com-

29

parison between UAC and other existing rule based methods in terms of accuracy

for various levels of uncertainty. The reported accuracies for uHARMONY (#3),

DTU (#4) and uRule (#5) are reproduced using the provided implementation from

[15]. We applied UAC (#2) to the same datasets generated by the same procedure

of adding uncertainty as [14] to make the comparison meaningful. Value ∗ shows

that the classifier has run out of memory resources in the experiments. In Tables

3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 uncertainty level is Ux@y meaning that datasets have

x percent uncertainty, where y of the attributes with the highest information gain

are uncertain. To add a level x uncertainty to an attribute, its is attached with a

1− x/100 probability and the remaining x/100 is distributed randomly among the

other values present in the domain. The accuracies in this table are reported on

already discretized versions of dataset that are available online and referenced in

[14]. The uncertainty model is set to be complete, as the algorithms are explicitly

mentioned to work with this model.

In each table, Average shows the average accuracy over all cases where the

classifier has reached an answer. Averaging on all datasets excluding those where

at least one classifier has run out of resources, we get AverageToCompare. Number

of wins shows the number of cases where the classifier has reached the maximum

accuracy among all four classifiers. Bold values in the table show the maximum

accuracy reached in that case.

The accuracies reported show that in most cases UAC has reached higher accu-

racies. This is evident from comparing the number of wins among the classifiers.

In addition, UAC performs more accurately on average too.

Table 3.7 presents the accuracies reported by UAC, using a different method

of adding uncertainty. In this experiment, we added uncertainty to the original

versions of the datasets from UCI using our model explained in Section 3.1. UCBA

is selected as our baseline because it is also inspired by CBA. The purpose of this

is to measure the accuracy of UAC in more realistic cases, as well as to study

the effectiveness of the adaptations made by the two algorithms. Both methods

were implemented in Java and the experiments were performed on a system with a

2.2GHz processor and 4G of memory.

30

Table 3.1: %Accuracy, reported by rule based classifiers on datasets modeled based
on [14]

U10@1 U10@2

dataset UAC uHarmony DTU uRule UAC uHarmony DTU uRule
australian 85.0 82.8 82.3 81.6 85.0 85.0 82.2 82.0

balance 84.5 87.6 59.3 67.3 84.8 87.4 64.4 69.0
bands 78.6 67.8 60.9 * 78.5 65.7 * *
breast 91.1 92.2 84.3 92.5 91.0 90.2 90.1 92.1

car 89.0 86.5 87.5 83.2 89.0 88.4 69.9 67.4
cmc 41.8 50.1 45.1 41.3 41.1 46.9 47.9 40.7

credit 85.0 81.8 81.5 82.2 85.0 82.1 84.0 82.7
echocardiogram 94.3 92.0 89.9 89.4 93.8 89.1 89.8 88.5

flag 62.3 63.0 61.3 59.8 61.9 59.4 62.8 56.4
german 74.0 71.4 66.4 69.4 74.0 68.6 67.7 67.4

heart 80.0 56.6 48.3 47.9 78.7 53.3 52.1 49.4
hepatitis 84.4 80.8 75.7 77.0 84.4 78.8 76.0 76.1

horse-colic 80.2 82.5 79.4 85.0 80.3 82.9 82.6 84.5
monks-1 100.0 100.0 100.0 100.0 100.0 100.0 73.2 100.0
monks-2 77.5 67.6 61.5 62.5 76.7 69.3 63.6 60.6
monks-3 97.9 92.7 94.0 95.6 97.7 92.8 78.8 78.9

mushroom 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
pima 73.2 64.9 59.3 66.8 73.1 64.6 61.9 65.8

postoperative 69.0 67.2 64.7 66.4 68.7 64.9 66.1 68.8
promoters 84.2 83.6 70.6 70.3 83.1 81.7 70.5 67.8

spect 84.0 83.2 74.4 81.2 85.0 84.4 77.6 80.1
survival 73.7 71.6 69.0 68.7 73.7 69.5 72.1 68.6

tae 55.0 51.0 37.8 38.1 54.0 49.1 45.1 30.7
tic-tac-toe 100.0 100.0 79.5 100.0 100.0 100.0 77.2 100.0

vehicle 71.2 61.9 59.1 * 70.8 61.4 62.9 *
voting 94.1 94.0 89.9 90.7 94.1 91.6 90.1 87.7

wine 92.0 51.0 36.5 40.8 91.5 51.9 38.8 38.2
zoo 95.5 92.8 85.6 86.9 95.0 90.3 87.2 86.9

Average 82.1 77.7 71.6 74.8 81.8 76.8 71.6 72.7
AverageToCompare 81.2 77.2 70.8 73.2 81.1 76.1 70.9 71.1

Number of Wins 23.0 7.0 2.0 4.0 22.0 4.0 3.0 6.0

31

Table 3.2: %Accuracy, reported by rule based classifiers on datasets modeled based
on [14]

U10@4 U10@8

dataset UAC uHarmony DTU uRule UAC uHarmony DTU uRule
australian 80.2 85.4 83.6 84.3 80.0 81.7 83.1 83.2

balance 84.9 89.3 56.3 62.9 84.8 88.4 54.3 59.2
bands 78.4 58.6 * * 76.8 64.5 * *
breast 94.3 65.5 91.3 94.6 94.3 88.9 90.1 91.0

car 89.3 77.7 70.0 70.0 83.8 81.8 66.1 68.8
cmc 43.6 47.6 50.1 44.3 41.5 46.1 43.6 41.1

credit 78.1 86.0 84.3 74.3 78.0 83.8 82.9 69.8
echocardiogram 92.0 93.3 92.4 87.0 93.5 92.2 91.2 86.2

flag 45.7 52.4 59.3 44.8 42.5 51.9 56.4 49.7
german 71.9 69.6 72.3 70.1 73.2 70.8 66.1 67.4

heart 77.3 56.6 53.0 52.4 77.2 52.9 51.3 47.2
hepatitis 81.5 82.5 80.0 79.4 80.8 75.5 78.0 78.7

horse-colic 72.4 82.9 85.3 * 72.3 82.2 81.4 *
monks-1 99.0 91.4 74.6 * 99.0 98.0 71.0 73.8
monks-2 75.5 65.7 65.7 65.7 75.4 66.4 62.1 61.9
monks-3 98.1 96.4 80.0 68.1 98.1 93.6 77.2 63.0

mushroom 100.0 97.5 100.0 100.0 100.0 100.0 100.0 98.8
pima 73.8 65.1 65.1 67.3 72.7 63.5 * 61.1

postoperative 58.0 69.8 70.0 70.0 58.0 65.5 67.8 66.2
promoters 66.0 69.0 71.7 61.3 67.2 76.4 73.8 63.8

spect 81.8 80.2 79.0 81.6 80.0 81.3 76.4 76.4
survival 74.0 73.5 73.5 72.5 73.9 70.9 71.8 70.5

tae 52.0 45.0 48.3 33.8 50.8 41.0 46.6 36.5
tic-tac-toe 90.8 76.2 72.7 81.5 91.0 74.0 66.8 72.6

vehicle 69.8 62.4 64.8 * 67.7 57.4 * *
voting 91.1 92.9 94.5 94.9 92.1 92.8 89.8 88.6

wine 87.9 51.1 42.1 41.6 86.0 44.1 49.4 36.7
zoo 92.3 88.8 92.1 89.1 85.0 79.6 76.1 74.0

Average 78.6 74.0 73.0 70.5 77.7 73.8 67.7 67.4
AverageToCompare 77.3 73.1 72.0 69.4 77.5 74.2 67.7 66.8

Number of Wins 16.0 5.0 7.0 3.0 18.0 7.0 3.0 1.0

32

Table 3.3: %Accuracy, reported by rule based classifiers on datasets modeled based
on [14]

U20@1 U20@2

dataset UAC uHarmony DTU uRule UAC uHarmony DTU uRule
australian 82.7 82.0 80.6 75.6 82.3 84.4 81.3 77.8

balance 82.3 86.8 62.0 67.1 84.1 86.3 63.8 68.7
bands 77.7 65.4 62.3 * 77.7 66.3 * *
breast 90.1 91.8 86.8 90.0 90.0 93.0 87.8 90.2

bridges-v1 63.4 61.2 49.9 57.0 63.3 63.4 51.6 58.2
bridges-v2 64.2 63.0 60.7 56.9 64.3 59.1 64.1 51.8

car 89.9 86.5 88.7 77.7 88.4 86.7 67.0 67.0
cmc 41.1 48.9 48.2 42.0 41.1 45.7 49.7 42.3

credit 85.0 82.1 79.4 77.9 83.2 83.0 82.4 80.1
echocardiogram 94.0 90.6 88.8 90.6 93.8 90.9 82.6 75.7

flag 62.5 63.2 62.1 61.0 61.6 59.7 64.4 58.2
german 74.2 68.3 65.7 67.0 74.0 70.3 68.5 67.1

heart 78.3 53.2 50.3 47.1 76.5 56.4 50.8 47.4
hepatitis 84.8 80.9 77.8 75.1 84.2 79.6 78.0 76.1

horse-colic 80.3 85.0 83.0 84.7 80.7 84.7 83.3 85.4
monks-1 100.0 95.4 92.2 92.5 100.0 100.0 72.4 88.6
monks-2 77.0 71.4 63.2 61.6 77.0 71.8 61.9 59.3
monks-3 97.3 92.0 94.6 94.8 96.4 93.0 76.3 76.3

mushroom 100.0 96.2 100.0 96.4 98.0 97.6 97.9 97.9
pima 73.4 64.7 64.3 66.2 73.4 65.6 62.9 65.3

postoperative 69.4 68.3 67.5 65.9 68.1 67.6 67.4 67.4
promoters 83.6 82.3 75.4 68.0 82.7 82.4 71.9 67.2

spect 81.7 82.1 77.6 81.7 80.4 83.0 77.3 80.3
survival 73.7 68.8 72.4 69.1 73.7 71.0 72.2 69.6

tae 54.3 49.2 42.7 37.5 54.3 46.9 42.4 35.7
tic-tac-toe 100.0 100.0 82.7 100.0 100.0 100.0 75.9 100.0

vehicle 71.2 62.6 61.9 * 70.6 61.2 62.4 *
voting 94.0 93.2 90.2 88.2 93.9 90.1 92.2 89.9

wine 90.8 50.8 35.7 41.1 91.0 49.2 36.3 36.3
zoo 96.0 92.3 89.3 85.7 94.5 89.7 86.4 86.4

Average 80.4 76.0 71.9 72.1 80.0 76.0 70.0 70.2
AverageToCompare 80.4 75.7 71.6 72.0 79.9 75.7 69.6 69.9

Number of Wins 22.0 7.0 1.0 1.0 19.0 6.0 2.0 1.0

33

Table 3.4: %Accuracy, reported by rule based classifiers on datasets modeled based
on [14]

U20@4 U20@8

dataset UAC uHarmony DTU uRule UAC uHarmony DTU uRule
australian 80.1 86.4 75.9 75.5 81.2 84.7 81.9 75.1

balance 83.8 90.1 54.9 61.4 80.0 87.8 54.2 61.0
bands 77.7 68.7 * * 75.0 65.3 * *
breast 90.0 92.5 89.2 91.5 88.6 93.7 84.5 85.7

car 89.2 78.0 65.6 67.0 88.9 73.2 66.9 66.9
cmc 40.8 48.3 45.9 41.7 40.8 45.2 44.7 42.4

credit 78.1 82.2 78.6 72.2 77.8 84.6 82.2 61.9
echocardiogram 93.4 87.7 73.1 85.0 93.5 90.9 90.0 77.8

flag 43.4 53.8 45.6 36.5 42.6 55.1 59.0 45.6
german 71.8 70.9 69.3 64.9 71.0 68.1 66.5 66.5

heart 76.6 57.1 52.0 47.9 77.0 53.0 46.4 41.7
hepatitis 80.9 79.7 77.8 77.6 80.5 75.5 77.3 76.1

horse-colic 80.9 84.5 83.2 * 78.6 80.1 81.2 *
monks-1 100.0 100.0 72.5 67.0 100.0 100.0 71.9 69.4
monks-2 76.5 70.2 62.8 63.1 74.2 62.5 62.7 62.7
monks-3 96.4 93.1 76.7 68.1 96.4 93.3 77.3 57.6

mushroom 100.0 100.0 100.0 100.0 100.0 94.2 98.0 98.7
pima 73.5 66.8 63.8 64.9 73.9 65.3 * 61.5

postoperative 68.1 65.4 65.8 68.5 71.0 66.7 67.3 67.3
promoters 66.0 77.6 55.7 53.4 66.9 79.2 72.2 56.1

spect 81.0 83.6 74.5 77.6 81.0 77.0 77.1 77.4
survival 73.7 70.0 70.0 70.9 73.6 71.5 71.6 71.0

tae 53.2 42.5 38.5 29.9 50.1 43.8 37.9 35.2
tic-tac-toe 99.0 96.4 70.5 75.2 98.3 94.6 63.1 67.6

vehicle 69.7 62.3 62.8 * 63.2 56.2 * *
voting 92.0 91.7 88.5 85.6 91.9 92.3 84.3 85.9

wine 87.2 47.6 38.1 38.1 87.1 44.1 48.8 35.4
zoo 93.6 88.2 87.2 86.9 93.0 84.5 70.1 71.1

Average 79.2 76.3 68.1 66.8 78.4 74.4 69.5 64.7
AverageToCompare 78.4 75.5 66.7 65.8 77.8 74.8 67.7 63.7

Number of Wins 18.0 11.0 1.0 2.0 19.0 8.0 2.0 0.0

34

Table 3.5: %Accuracy, reported by rule based classifiers on datasets modeled based
on [14]

U40@1 U40@2

dataset UAC uHarmony DTU uRule UAC uHarmony DTU uRule
australian 81.0 77.4 73.0 74.1 80.7 79.4 73.2 73.1

balance 82.0 84.3 63.2 62.8 82.0 82.5 62.8 60.3
bands 75.2 68.9 64.1 * 75.2 68.8 * *
breast 89.1 91.4 90.0 92.6 88.8 89.9 92.1 91.4

car 80.8 73.3 70.4 66.7 75.0 68.8 67.4 67.4
cmc 41.1 49.5 46.4 41.5 41.0 46.0 47.0 42.0

credit 83.8 79.3 71.7 71.0 83.0 82.6 73.7 74.8
echocardiogram 93.7 92.2 91.3 89.4 91.8 89.3 70.5 65.1

flag 62.5 60.8 62.2 62.6 62.4 61.5 64.0 57.3
german 74.2 70.4 69.0 68.5 74.2 70.0 67.9 66.4

heart 76.9 55.3 52.2 47.7 76.3 56.6 52.6 49.2
hepatitis 84.8 79.0 74.6 74.7 84.8 79.1 75.8 73.9

horse-colic 80.3 82.9 82.1 86.4 80.3 82.5 83.6 85.7
monks-1 100.0 100.0 81.9 82.4 100.0 100.0 71.8 82.6
monks-2 74.7 66.0 61.0 60.8 73.7 63.0 62.4 59.6
monks-3 97.0 93.9 77.4 78.6 97.0 93.3 70.9 74.5

mushroom 100.0 100.0 100.0 100.0 99.9 96.0 98.4 98.4
pima 73.4 66.1 63.9 65.4 73.4 65.8 64.5 63.3

postoperative 69.4 66.0 66.5 65.7 67.0 69.3 68.3 68.3
promoters 82.0 79.3 71.7 75.3 82.0 77.0 74.3 71.4

spect 81.5 82.1 77.5 79.5 81.7 82.7 80.6 81.7
survival 73.7 71.1 71.1 66.9 73.7 68.7 71.5 69.5

tae 54.2 50.0 43.3 39.9 53.3 46.8 40.1 33.5
tic-tac-toe 99.4 94.7 68.1 85.0 98.0 92.2 66.7 72.6

vehicle 71.1 62.7 61.4 * 68.7 62.5 60.8 *
voting 93.0 88.9 86.4 87.1 92.5 88.5 86.8 85.2

wine 89.3 48.8 36.2 39.5 85.5 48.9 38.8 38.8
zoo 94.4 89.5 87.6 85.9 94.5 90.0 87.6 87.6

Average 80.7 75.9 70.2 71.1 79.9 75.1 69.4 69.0
AverageToCompare 80.0 75.4 69.6 70.2 79.4 74.8 68.9 68.1

Number of Wins 21.0 4.0 1.0 4.0 22.0 3.0 2.0 2.0

35

Table 3.6: %Accuracy, reported by rule based classifiers on datasets modeled based
on [14]

U40@4 U40@8

dataset UAC uHarmony DTU uRule UAC uHarmony DTU uRule
australian 79.8 79.6 69.5 69.2 79.5 83.2 61.0 59.0

balance 83.1 87.3 52.1 64.9 82.0 88.1 53.5 64.2
bands 76.0 66.0 * * 74.9 66.5 * *
breast 86.5 89.4 85.7 90.3 87.2 91.0 85.1 76.6

car 74.8 68.8 68.8 68.8 74.8 68.6 67.6 67.6
cmc 40.5 46.0 40.2 40.1 43.3 46.5 40.0 40.6

credit 76.2 82.4 73.9 72.1 77.6 81.7 62.3 60.2
echocardiogram 93.4 89.6 68.8 65.0 94.4 89.5 62.6 61.8

flag 58.0 56.1 46.5 37.4 61.5 58.5 36.1 41.3
german 74.0 69.4 65.3 67.9 71.0 70.0 66.9 66.4

heart 76.1 53.0 48.5 49.8 75.5 49.8 48.2 44.3
hepatitis 80.7 75.8 76.5 78.3 82.3 80.7 76.5 77.2

horse-colic 79.6 84.4 82.8 * 78.0 79.9 83.2 *
monks-1 78.9 72.2 72.2 64.4 99.9 94.8 73.2 69.6
monks-2 73.9 61.8 62.1 63.0 76.9 63.2 62.5 62.5
monks-3 96.9 94.6 73.1 73.7 96.9 93.3 73.7 59.0

mushroom 100.0 100.0 100.0 100.0 97.2 96.0 98.9 98.9
pima 71.1 65.6 63.3 63.8 69.9 61.6 * 63.6

postoperative 64.1 68.9 66.9 66.9 64.1 66.0 67.8 67.8
promoters 64.3 67.4 49.0 52.7 69.5 72.1 50.6 55.3

spect 81.8 77.5 74.8 73.0 79.9 77.5 77.0 75.5
survival 73.7 70.8 72.3 72.3 73.6 69.9 70.5 70.5

tae 49.3 39.1 33.0 33.0 46.9 40.7 30.9 30.9
tic-tac-toe 95.3 87.4 63.6 62.0 89.0 81.2 64.1 64.1

vehicle 68.0 60.3 60.1 * 63.0 58.7 * *
voting 91.9 87.4 85.2 81.0 91.9 88.8 80.2 76.6

wine 80.3 46.5 41.1 41.1 64.8 40.6 47.0 34.1
zoo 95.0 89.9 90.7 87.8 81.6 73.3 68.3 68.3

Average 77.3 72.7 66.1 65.5 76.7 72.6 64.3 62.2
AverageToCompare 76.7 72.1 65.0 64.6 76.3 72.9 62.1 60.8

Number of Wins 21 7 1 2 19 6 3 1

36

In the columns titled as CBA in Table 3.7, the accuracy reported by CBA on the

original dataset (with no uncertainty) is presented. The columns titled as ulev show

the uncertainty level and columns named as UAC and UCBA contain the accuracies

reported by UAC and UCBA, respectively. For each algorithm, the accuracy on both

interval based and sampled based numerical attributes are reported under columns

named Intrv and Sam, respectively. Value ∗ means that the 10 repetitions did not

finish after 3 days of time.

In Table 3.7, Average shows the average accuracy over all cases where the classi-

fier has reached an answer. Averaging on all datasets excluding those where UCBA

classifier has run out of resources, we get AverageToCompare. Number of wins

shows the number of cases where the classifier has reached the maximum accuracy

among the two classifiers. Bold values show the maximum accuracy reached for

that case. We report accuracies for three uncertainty levels to explore the effect of

the uncertainty on the performance. The uncertainty is added to all of the attributes

present in the dataset. The process of generating an attribute with a particular un-

certainty level or ulev is as follows.

Instances of categorical uncertain attributes contain a list of< value : probability >

pairs. Each of the other values in the domain is false. To generate an uncertain in-

stance, we randomly decide whether to omit the actual true value with a probability

of ulev. Indeed, this method would cause algorithms to achieve lower accuracies,

but it generates more realistic datasets. If the true value is decided to be included,

the probability associated to it is randomly generated between [1−ulevel, 1]. Next,

a set of false values, called false-set, are selected randomly from the domain. The

size of false-set is selected randomly from a uniform distribution and all of the false

values have equal chances to be included. A randomly generated number less than

ulev is then attached to each false value to make a<value:probability> pair, so that

the sum of probabilities is less than 1. If all of the possible values from the domain

are added to the value list, then the probabilities add up to 1.

A slightly different method is adopted for the sampled numerical attributes. The

true value may be omitted with a chance of ulev and the false values are selected

from the domain, which in this case is an interval. Since the size of false-set is infi-

37

Dataset CBA ulev
UAC UCBA

Dataset CBAulev
UAC UCBA

intrvSamintrvSam intrvSamintrvSam

australian 85

0.1 83.5 84 78.5 73.5

monks-1 100

0.1 92.892.8 70 70
0.2 81.581.8 68 72.8 0.2 86 86 63.3 63.3
0.3 73.879.863.8 70.8 0.3 71.671.661.8 61.8

balance 85.5

0.1 82.382.377.5 77.5

monks-2 77.5

0.1 63.563.5 66 66
0.2 76 76 71.3 71.3 0.2 66 66 66 66
0.3 68 68 65.3 65.3 0.3 66 66 66 66

bands 78.3

0.1 74.5 75 74.5 75

monks-3 98

0.1 92.592.578.8 78.8
0.2 68.8 72 68.8 72 0.2 89 89 72.3 72.3
0.3 67.5 66 67.5 66 0.3 84.284.266.8 66.8

breast 94.8

0.1 92.592.587.3 87.3

mushroom 100

0.1 98.598.5 * *
0.2 87 87 82 82 0.2 95 95 * *
0.3 85 85 77 77 0.3 92 92 * *

horse 81.3

0.1 74.576.374.8 73.3

pima 74.8

0.1 72.371.3 71 65.8
0.2 77.5 78 72.5 71.5 0.2 66 71.8 65 68.8
0.3 72.574.369.8 72 0.3 65 66.3 65 66.8

zoo 95

0.1 90.590.571.3 71.3

post oper 68.8

0.1 70.368.3 70 64.5
0.2 82.382.365.3 65.3 0.2 69 71.370.3 69
0.3 75.375.348.3 48.3 0.3 70 67.370.3 70.8

car 89.8

0.1 71 71.3 70 70

promote 84.8

0.1 72.372.3 60 60
0.2 70 70 70 70 0.2 72.572.5 * *
0.3 70 70 70 70 0.3 66.566.5 * *

contracep 44

0.1 43.543.843.5 43

spect 82

0.1 79 79 79 79
0.2 42.8 42 43 42 0.2 79 81.8 79 79
0.3 43.3 44 42.3 43 0.3 79 79 79 79

credit 85

0.1 83.583.8 77 77.3

survival 73.5

0.1 73.8 74 74 74
0.2 79.3 81 65.8 74.5 0.2 74 74 74 74
0.3 72.3 78 61.3 71.8 0.3 74 73 74 73.3

echo 93.5

0.1 98.890.870.5 70.5

ta eval 49.8

0.1 45.8 42 39.5 41
0.2 86.385.365.3 66 0.2 46.344.5 43 41.8
0.3 85.585.5 65 63 0.3 41.842.3 38 40.5

flag 63.5

0.1 56.358.343.8 48.3

tic-tac-toe 100

0.1 83.583.572.3 72.3
0.2 52.851.8 41 43.3 0.2 69.869.8 67 67
0.3 50.849.8 42 39 0.3 65.365.365.5 65.5

german 74

0.1 70.5 70 70 70

vehicle 72

0.1 59.364.853.5 53.5
0.2 70 70 70 70 0.2 52.564.855.3 55.3
0.3 70 70 70 70 0.3 46.3 61 51.6 51.6

heart 80.8

0.1 82.580.3 76 74.5

voting 94.3

0.1 92.592.578.3 78.3
0.2 79.577.569.5 72.8 0.2 89.889.8 75 75
0.3 70.8 72 66 70.8 0.3 87.887.872.5 72.5

hepatitis 84.3

0.1 83.8 82 79.5 79.3

wine 92

0.1 92 91.8 92 84
0.2 80.880.379.3 79.5 0.2 89.592.582.8 81.8
0.3 79.3 79 79 79 0.3 86 88.5 78 81.3

Average on all 74.274.767.3 67.7
AverageToCompare 73.574.167.3 67.7

Number of wins 71 75 25 20

Table 3.7: comparison between UAC and UCBA

38

nite in this case, the size is limited by considering a maximum. In our experiments,

we set the maximum size to 10.

An instance of a numerical attribute modeled by intervals is an interval with a

length of ulength = |Aj.u − Aj.l| × ulev, where [Aj.l, Aj.u] is the domain. The

centre of this interval is selected randomly, in a way that the actual value always

belongs to this interval. Clearly, the actual value is placed in a random position in

the interval, as opposed to the methods introduced in previous studies [32, 31] that

always put the true value at the center. Our randomized generation process creates

more realistic models of uncertain real datasets.

We discretize all numerical attributes before classification using U-CAIM [17].

U-CAIM covers both sampled and interval based data models and their modeling

is compatible with ours. U-CAIM needs the cdf (cumulative distribution function)

within the intervals to be specified. cdf is the anti-derivative function of the prob-

ability density function. Based on the characteristics of data, one can use any dis-

tribution with known cumulative density function. We assume normal distribution.

Since U-CAIM is a supervised method, we apply it only on training sets within the

folds and then use the discretization set to categorize the test data.

It is evident from the table that UAC outperforms UCBA in terms of accuracy,

Especially in monks-1, monks-3, voting, wine, echo and zoo datasets. On average,

UAC improves significantly upon the accuracy of UCBA. As uncertainty increases,

the meaningful patterns in the data start to blur, which leads to accuracy drop in both

algorithms. However based on the results reported in Table 3.7, accuracy decreases

more slowly in UAC than UCBA.

3.3.2 Training Time and Number of Rules

We compare the training time of UAC to UCBA and the number of rules in finalSet

in Figure 3.1. The purpose of the comparison is to study the cost of the adaptations

made by both algorithms in order to handle the uncertainty. We report the results of

the two algorithms on two datasets, one containing only categorical attributes (zoo)

and the other containing numerical attributes as well (hepatitis). The uncertainty

level changes from 0.05 to 0.3. It is evident from the figures that UAC outperforms

39

UCBA with respect to both number of the rules in finalSet and training time. UAC

has the highest number of rules in the finalSet for the two datasets selected. We

chose these datasets to be able to show the difference between the number of rules

found by each classifier.

As uncertainty level increases, the training time and the number of the rules

in finalSet for UAC usually decrease. This is because in our model, uncertainty

decreases the meaningful patterns in the data, and consequently the number of the

rules in rawSet (association rules mined by UApriori). Having less rules in rawSet

has a direct effect on the time consumed by both rule extraction and rule filtering

steps, As well as the number of the rules in rawSet. In Figure 3.1(c), UCBA has

the same number of rules as UAC when ulev is 0.3. However, based on Table 3.7,

UAC has higher accuracy than UCBA in that case. Thus in this case we can claim

the rules kept by UAC are better than UCBA.

40

Sheet6

10822.25 483725.75 10858.5 671743 106.5 1758.5 114.75 2376 0.05
7843 453634 25 8621 25 500947 75 107 5 1375 106 75 1565 0 1

Page 1

7843 453634.25 8621.25 500947.75 107.5 1375 106.75 1565 0.1
8320 784804 8252.5 700254 101.25 881.25 92.75 1623.5 0.15

5652.25 427436.5 7703.25 487663.5 85.75 607.75 91.25 1642.25 0.2
4584.5 302993 5402.5 206411.75 78.25 550.75 78.5 167.25 0.3

100000

1000000

M
S

)
e 1000

1500

2000

f
R

u
le

s

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

in
 T

im
e(

M
S

)
L

og
 S

ca
le

0
100
200
300
400
500
600

m
b

er
 o

f
R

u
le

s

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0
100
200
300
400
500
600

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

1000000

)

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

2500

es

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0
100
200
300
400
500
600

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

UncertaintyLevel

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

0
500

1000
1500
2000
2500

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0
100
200
300
400
500
600

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

UncertaintyLevel

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

0
500

1000
1500
2000
2500

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

Page 1

(a) Results reported on hepatitis dataset with uncertain interval based numerical data and uncertain
categorical attributes

Sheet6

10822.25 483725.75 10858.5 671743 106.5 1758.5 114.75 2376 0.05
7843 453634 25 8621 25 500947 75 107 5 1375 106 75 1565 0 1

Page 1

7843 453634.25 8621.25 500947.75 107.5 1375 106.75 1565 0.1
8320 784804 8252.5 700254 101.25 881.25 92.75 1623.5 0.15

5652.25 427436.5 7703.25 487663.5 85.75 607.75 91.25 1642.25 0.2
4584.5 302993 5402.5 206411.75 78.25 550.75 78.5 167.25 0.3

100000

1000000

M
S

)
e 1000

1500

2000

f
R

u
le

s

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s
Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

in
 T

im
e(

M
S

)
L

og
 S

ca
le

0
100
200
300
400
500
600

m
b

er
 o

f
R

u
le

s

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s
Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0
100
200
300
400
500
600

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

1000000

)

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s
Uncertainty Level

UAC

UCBA

2500

es

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0
100
200
300
400
500
600

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

UncertaintyLevel

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s
Uncertainty Level

UAC

UCBA

0
500

1000
1500
2000
2500

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0
100
200
300
400
500
600

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

UncertaintyLevel

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s
Uncertainty Level

UAC

UCBA

0
500

1000
1500
2000
2500

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

Page 1

(b) Results reported on hepatitis dataset with uncertain sampled based numerical data and uncertain
categorical attributes

Sheet6

10822.25 483725.75 10858.5 671743 106.5 1758.5 114.75 2376 0.05
7843 453634 25 8621 25 500947 75 107 5 1375 106 75 1565 0 1

Page 1

7843 453634.25 8621.25 500947.75 107.5 1375 106.75 1565 0.1
8320 784804 8252.5 700254 101.25 881.25 92.75 1623.5 0.15

5652.25 427436.5 7703.25 487663.5 85.75 607.75 91.25 1642.25 0.2
4584.5 302993 5402.5 206411.75 78.25 550.75 78.5 167.25 0.3

100000

1000000

M
S

)
e 1000

1500

2000

f
R

u
le

s
1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

in
 T

im
e(

M
S

)
L

og
 S

ca
le

0
100
200
300
400
500
600

m
b

er
 o

f
R

u
le

s

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0
100
200
300
400
500
600

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

1000000

)

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

2500

es

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0
100
200
300
400
500
600

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

UncertaintyLevel

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

0
500

1000
1500
2000
2500

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

0
100
200
300
400
500
600

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

Uncertainty Level

1000

10000

100000

1000000

0.05 0.1 0.15 0.2 0.3T
ra

in
 T

im
e(

M
S

)
L

og
 S

ca
le

UncertaintyLevel

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

0
500

1000
1500
2000
2500

0.05 0.1 0.15 0.2 0.3N
u

m
b

er
 o

f
R

u
le

s

Uncertainty Level

UAC

UCBA

Page 1

(c) Results reported on zoo dataset with uncertain categorical attributes

Figure 3.1: A comparison between UAC and UCBA in number of rules of finalSet
and the training time elapsed.

41

Chapter 4

UAprioriAll: Mining Sequential
Patterns from Uncertain Data

Sequential Pattern Mining or SPM is a well known problem and has been addressed

by several studies [28, 43, 47, 5]. SPM in context of uncertain datasets is a recently

raised problem with important applications. In this chapter, we propose a solution

for the aforementioned problem by introducing a new algorithms: UAprioriAll

Sequential Pattern Mining or SPM is a well known and important problem in

data mining and it has been addressed by many studies [28, 43, 47, 5]. However in

spite of several applications, mining frequent sequences from uncertain datasets is

still an open problem. In this paper, we propose a solution for the aforementioned

problem by introducing a new algorithm called UAprioriAll.

The proposed algorithm uses expected support as the measure of frequentness of

transactions and sequences. Expected support is a metric that measures the expected

frequency of an itemset/sequence in uncertain datasets. It is memory efficient and

very fast to compute.

In this chapter, we introduce and describe our proposed algorithm in Section 4.1

and discuss the experiments designed to evaluate the proposed algorithm in Section

4.2.

4.1 UAprioriAll

Mining sequential patterns from datasets with so called attribute level uncertainty

has various applications. For example, consider a sequential database containing the

42

transactions for consecutive days. The items in the transactions may be a result of

inaccurate measurements such as weather conditions which produces an uncertain

dataset. UAprioriAll adopts two well known algorithms of UApriori and AprioriAll

in its structure. UApriori has been described in the previous section. Therefore, we

first give a brief description of AprioriAll, that is an SPM algorithm devised for

“certain” datasets.

4.1.1 Data Modeling

The data model that we propose for a realistic capture of uncertainty in sequential

datasets is the attribute level probabilistic dataset. In such datasets, each item exists

within a transaction with a probability. Equation 1 shows the general form of our

datasets. Each dataset (D) with size |D| is a set of |D| sequences (Si), where each

sequence of size |Si| contains |Si| transactions (ti,j). Each transaction like ti,j is a

set of pairs, where each pair includes an item and an existence probability. The pair

(iti,j,k, pri,j,k) implies that there is 1− pri,j,k chance that item iti,j,k is not included

in ti,j . Sequence< a : 0.4, b : 0.3 > is a simple example of a probabilistic sequence

of size 2 with two transactions of {a : 0.4} and {b : 0.3} each of size 1.

D = {Si : i = 1..|D|}.
Si = < ti,j : j = 1..|Si| > .
ti,j = {(iti,j,k, pri,j,k) : k = 1..|t, j|)}.

(1)

This already covers many real world problems without setting unwanted restric-

tions and assumptions. The only assumption made here is the independence of the

probabilities , which is a common simplifying assumption.

Uncertainty in the order may also happen within the sequential datasets. For

example, as a result of the anonymization process, the dates of the medical docu-

ments are randomly changed to ensure the preservation of privacy. This causes the

place of each transaction within each sequence to be not certainly known, which

leads to multiple possible permutations of each sequence. With some domain based

knowledge, we can assign a probability to each possible permutation. For instance,

< a : 0.4, b : 0.3 > is probable with p = 0.6 and < b : 0.3, a : 0.4 > with p = 0.4.

We do not directly address the uncertainty in the order because of the very large

43

complexity of the solution, but UAprioriAll can also be applied to this problem

with some compromises about the probability independence. If we assume that the

probabilities are independent, we can write the above sequence as < {a : 0.24, b :

0.18}, {b : 0.12, a : 0.16} > which is a sequence of size 2 consisting of two trans-

actions of size 2. Note that this model generates some unwanted sequences of form

< a, a > as well. This does not affect the resulting frequent sequences because

the sequences, within which two or more transactions are the same, do not effect

the results of our algorithm. Of course, the independence assumption in the or-

der uncertainty problem is not necessarily true, however, enables us to convert the

complex problem to our simplified and tractable version of Equation 1 and solve it.

However in this study we do not discuss further the uncertainty in the ordering.

4.1.2 AprioriAll

AprioriAll [5] is an SPM algorithm to mine frequent sequential patterns from “cer-

tain” datasets. It is efficient and has a high performance, which makes it suitable

for large databases. AprioriAll consists of four major phases to find the frequent

sequences:

• Sort phase in which transactions are sorted according to their time stamps.

Sequential transactions are formed in this stage.

• Litemset phase in which frequent itemsets are found by applying Apriori;

• Transformation phase in which the original dataset is transformed to a new

dataset by omitting infrequent itemsets and mapping the frequent ones to in-

teger values for easy comparison;

• Sequence phase in which the candidate sequences are generated and the in-

frequent sequences are filtered out. Candidates set is initialized with the can-

didate sequences of size one which were found by Litemset phase.

44

4.1.3 UAprioriAll

In this section the novel algorithm UAprioriAll is explained. This algorithm is based

on AprioriAll and has four phases: a) Sort; b) U-Litemset; c) U-Transformation;

d) U-Sequence.

Sort: Sorting Based on Timestamps

The first step of UAprioriAll is to sort transactions according to their occurrence

time. During this process the probabilities of the items are preserved.

U-Litemset: Mining Single Sequences

In this phase, the sequences of size 1 (containing only one transaction) are evalu-

ated. Each single sequence (itemsets) is marked as a candidate, if its expected sup-

port is above the minimum threshold. When the dataset is not uncertain, support of

an itemset is defined as the number of sequences of which at least one transaction

contains that itemset. We know that in the probabilistic datasets D the expected

support is computed by Equation 2 [3]. The value of P (x ∈ S), that denotes the

probability by which itemset x existing in the sequence S, is calculated by Equa-

tion 4. This equation computes the probability by which x exists in at least one of

the transactions in S. Evaluating p(x ∈ T), that denotes the probability by which

itemset x existing in the transaction T , is performed by Equation 3.

E(s(x)) = ΣS∈D P (x ∈ S) (2)

P (x ∈ T) =
∏

i∈x P (i ∈ T) (3)

P (x ∈ S) = 1− ΠT∈S (1− p(x ∈ T)) (4)

We mine the probabilistic frequent patterns using a UApriori based technique.

By the definition of the expected support from Equation 2, U-Litemset phase ex-

tracts itemsets that have higher expected support than the minimum support. These

itemsets are put in a set called L1. Next, each of the patterns in set L1 is mapped to

45

a unique integer number and L1 is transformed using this map. Set L1 is the output

of this phase. This phase was designed in collaboration with Samaneh Bayat, Parisa

Naeimi and Mahdieh S. Mirian.

U-Transformation: Simplifying the Dataset

In this phase we transform the sequential dataset based on set L1. The transformed

dataset has two major differences with the original dataset. First, all the infrequent

itemsets of the original dataset, that is the ones that are not contained in L1, are

removed from the transformed dataset. Second, the frequent itemsets are mapped

into integer numbers. Algorithm 5 shows the pseudocode for this phase. Note that

the pseudocodes are high level and do not involve the implementation details. For

example, the list of the transactions that contain a frequent itemset is computed in

U-Litemset phase and stored in the memory which can speed up the process here.

This is not referenced in the provided pseudocode.

In a dataset which is not uncertain, we do not need to assign probabilities to the

mapped frequent itemsets. However, the problem at hand deals with the uncertain

itemsets and the probability associated with each itemset should be computed and

attached. The probability, by which the frequent itemset x is included in the current

transaction, is computed in line 9 of Algorithm 5 by Equation 4. At the end of U-

Transformation Phase, we have a transformed dataset which contains sequences of

transactions of uncertain frequent itemsets where each itemset is shown as an inte-

ger. This phase was designed in collaboration with Samaneh Bayat, Parisa Naeimi

and Mahdieh S. Mirian.

UC-Sequence: Mining the Sequences

In this phase, we mine the frequent sequences from the transformed dataset (output

of U-Transformation). The frequent sequences are computed by a UApriori-like

scheme, that is a multi-level algorithm in which the candidate set for each level is

formed based on the set of frequent sequences of the previous level. The initial

set of frequent sequences is L1 that contains the sequences of size 1, also called

1-sequences. Set L1 is in fact the output of U-Litemset.

46

Algorithm 5 UAlrioriAll: U-Transformation Phase
1: D is the dataset.
2: newD = ∅ {#the transformed dataset}
3: L1 is the output of U-Litemset
4: for all Sequence seq ∈ D do
5: for all Transaction t1 ∈ seq do
6: newseq = ∅
7: for all Transaction x ∈ L1 do
8: if x ∈ t1 then
9: prob = p(x ∈ t1) =

∏
i∈x P (i ∈ t1)

10: Add (x.id, x, prob) to newseq
11: end if
12: Add newseq to newD
13: end for
14: end for
15: end for
16: return newD

Each level of this algorithm includes forming the candidate set, computing the

expected support, and removing the infrequent sequences. The pseudocode of this

phase is presented in Algorithm 6. Function gen-candidates (line 3) fills up the new

candidate set (Ck) based on the frequent sequences of the previous level (Lk−1).

This function evaluates Lk−1 1 Lk−1 for all two tuples that have k − 2 items in

common and then removes those that have infrequent subsets.

Algorithm 6 UAprioriAll: UC-Sequence phase
1: L1 : output of U-Litemset.
2: for k = 2..maximum sequence length do
3: Ck = gen-candidates(Lk−1);
4: if Ck == ∅ then
5: go to line 14
6: end if
7: for all candidate c from Ck do
8: Compute the expected support ExpSup(c) {#by Equation 2}
9: if Expsup(c) ≥ minimum support then

10: add c to Lk
11: end if
12: end for
13: end for
14: return

⋃
k Lk

Function Expsup(c) calculates the expected support of a single candidate c. As

47

before, we define the expected support as the sum of the probabilities by which

the candidate sequence is contained in the sequences of the dataset (Equation 2).

Then we need to calculate the value of P (x ∈ S) based on our definition of the

support. The support of a candidate can be computed by counting the number of

sequences containing it when there is no uncertainty involved. When probabilities

are present, the process is more complex. The probability by which the first k items

of candidate c ∈ Cm (m > k) appears at least once within the first j items of the

sequence s ∈ D is denoted by Pj,k(c, s) and computed by a recursive approach

presented in Equation 5. The probability of c being a subsequence of s (P (c ⊆ s))

is then equal to P|c|,|s|(c, s,) where |c| is the number of transaction is c and |s| is

the number of transactions is s. In Equation 5, s[j] is the j − th transaction in the

sequence and p(s[j]) is the probability associated with s[j] and c[k] is the k − th

transaction of the candidate sequence. Value of Pj,1(c ⊆ s) is computed based on

Equation 4 and the case of k > j results in 0 because a larger sequence cannot be

contained within a smaller one. The recursive equation allows us to benefit from

the dynamic programming scheme.

Pc ⊆ s = P|c|,|s|(c ⊆ s)
Pj,k(c ⊆ s) = Pj−1,k−1(c ⊆ s) ∗ p(c[k] ⊆ s[j])+

Pj−1,k(c ⊆ s) ∗ (1− p(c[k] ⊆ s[j]))
Pj,k(c ⊆ s) = 0, if k > j

Pj,1(c ⊆ s) = 1− Πl=1..j
tl⊆s (1− p(c[1] ⊆ tl))

(5)

The recursive formula is achieved by dividing the problem into two mutually

exclusive states. State a is when s[j] contains c[k] and state b is otherwise. The

probability value is the addition of the probabilities of the two states. State a re-

quires two events to happen, both c[k] ⊂ s[j] and s[1..j−1] (the j−1 first elements

of s) should contain at least one appearance of c[1..k − 1] (the first k − 1 elements

of c). State b also requires two events, c[k] * s[j] and c being a subset of s[1..j−1].

It is evident that states a and b are mutually exclusive.

To illustrate this method, assume that we have a candidate sequence c =<

x, y, z > and a dataset sequence s =< x : 0.1, y : 0.5, x : 0.9, y : 0.8, t : 0.9, z :

0.5 >. Table 4.1 shows the computed values associated with the dynamic program-

ming method that employs Equation 5. Note that there are some don’t care values

48

in this table that are denoted as ‘DC’. The don’t care values are not significant in

the computation of the final value and cover around a half of the table. General

set of don’t care values for computing P (c ⊆ s), denoted as DC(c,s), is formally

stated in Equation 6. The total number of computations required can be assessed by

Equation 7, based on the number of don’t care values and zeros.

DC(c,s) = {Pj,k(c, s) : |c| − k > |s| − j} (6)

Total Computations[P (c ⊆ s)] = |s|.|c| − |c|
2−|c|
2
− |c|

2−|c|
2

= |c|.(|s| − |c|+ 1)
(7)

j 1 2 3 4 5 6

k
PPPPPPPPPc[1..k]

s[1..j]
< x > < x, y > < x, y, x >

< x, y, < x, y, x, < x, y, x,
x, y > y, t > y, t, z >

1 < x > 0.1 0.1 0.91 0.91 DC DC
2 < x, y > 0 0.05 0.05 0.738 0.738 DC
3 < x, y, z > 0 0 0 0 0 0.369

Table 4.1: Computation table for p(c ⊆ s) where c =< x, y, z > and s =< x :
0.1, y : 0.5, x : 0.9, y : 0.8, t : 0.9, z : 0.5 >

Mining Sequential Patterns from An Example Table by UAprioriAll

Below, we illustrate by an example how UAprioriAll proceeds to mine sequential

patterns from an uncertain sequential dataset.

1. Sort: Table 4.2 is sorted into Table 4.3 based on the transaction times pro-

vided.

2. U-Litemset: Table 4.4 shows the output of U-Litemset phase for the dataset

presented in Table 4.3, when the minimum support is 1/3.

3. U-Transformation: According to L1 presented in Table 4.4, Table 4.5 is the

transformed form of Table 4.3.

4. UC-Sequence: Different level sets acquired by UC-Sequential on the trans-

formed dataset shown in Table 4.5 are presented in Table 4.6. Level 1 is

49

Costumer ID Transaction Time Items Bought(item:probability)
S1 14 April 2011 a:0.7 , b:0.6 , d:0.3
S1 24 April 2011 d:0.9
S1 18 April 2011 b:0.8
S1 15 April 2011 c:0.6
S2 26 April 2011 b:0.9
S2 30 April 2011 b:0.8 , e:0.1
S2 25 April 2011 a:0.6 , c:0.2
S2 1 May 2011 d:1.0
S3 26 April 2011 d:0.5 , e:0.4, f:1.0
S3 18 April 2011 a:0.8 , b:0.8

Table 4.2: A sample probabilistic sequential dataset with timestamps

Sequence no. Order (time) Itemset (item:probability)
S1 1 a:0.7 , b:0.6 , d:0.3

2 c:0.6
3 b:0.8
4 d:0.9

S2 1 a:0.6 , c:0.2
2 b:0.9
3 b:0.8 , e:0.1
4 d:1.0

S3 1 a:0.8 , b:0.8
2 d:0.5 , e:0.4, f:1.0

Table 4.3: Sorted form of Table 4.2

Frequent Single Sequence Expected Support Mapped To
a 2.1 1
b 2.7 2
d 2.43 3
f 1 4
a,b 1.06 5

Table 4.4: Output of U-Litemset: frequent single sequences mined from Table 4.3,
also called L1

Sequence no. Order (time) Mapped itemset:probability
S1 1 1:0.7 , 2:0.6 , 3:0.3, 5:0.42

2 2:0.8
3 3:0.9

S2 1 1:0.6
2 2:0.9
3 2:0.8
4 3:1.0

S3 1 1:0.8, 2:0.8, 5:0.64
2 3:0.5, 4:1.0

Table 4.5: Transformed form of Table 4.3

50

the output of U-Litemset phase and is shown in Table 4.4. The minimum

expected support is set to 1/3 and the expected supports are computed by

Equations 2 and 5. After computing all patterns, we can apply the reverse

mapping from Table 4.4 to get the actual patterns in the column named as

“decoded patterns”.

Level Sequential Patterns Expected Support Decoded Patterns
L2 2,3 2.21 b,d

1,3 1.63 a,d
1,2 1.15 a,b

L3 1,2,3 1.09 a,b,d

Table 4.6: Frequent Sequential Patterns mined from 4.5

4.1.4 Algorithm Correctness

Relying on the mathematical meaningfulness of the expected support, the purpose

of UAprioriAll is to find all sequences that have higher expected support than the

predefined threshold. It is easily verifiable that our algorithm successfully fulfills

its purpose. Line 9 of Algorithm 6 suffices to show that UAprioriAll only finds

the sequences with higher expected support than the threshold (soundness). The

following theorem proves the completeness of the algorithm by induction.

Theorem: For all sequences like s =< i1, .., in >, where ExpSup(s) >

minSup and minSup denotes the minimum support, s ∈ Ln is true.

Proof: By induction.

• Basis, n = 1: This targets the completeness of U-Litemset phase. The

correctness of U-Litemset is presumed, as UApriori algorithm is complete.

• Hypothesis, n = k: For all sequences like sk =< i1, .., ik >, where

ExpSup(s) > minSup, sk ∈ Lk is true.

• Step, n = k + 1: For all sequences like sk+1s =< i1, .., ik+1 >, where

ExpSup(s) > minSup, sk+1 ∈ Lk+1 is true. Based on lines 7 − 12 of

Algorithm 6, we need to show sk+1 ∈ Ck+1 (defined in line 3) to prove

sk+1 ∈ Lk+1. For sk+1 ∈ Ck+1 to be true, all sequences like sk which are of

size k and sk ⊂ sk+1 need to be in Lk so that function “gen-candidates” can

51

produce sk+1. According to downward closure lemma for expected support,

sk is also frequent. The hypothesis is now applicable to sk, meaning that

sk ∈ Lk. So sk+1 ∈ Lk+1.�

Based on the proof above, the algorithm is sound and complete. Also the algo-

rithm terminates when a level set is empty. If the maximum length of the sequences

is Kmax, level LKmax is empty which results in the algorithm termination. There-

fore, total correctness is proven for UAprioriAll.

The following observations are useful for analyzing the behaviour of UApriori-

All.

• When the dataset is certain, the results of UAprioriAll and ApprioriAll are

identical.

• When there are only two types of items in the dataset, the certain ones and

ultimately improbable ones (with very low probabilities), the resulting set of

frequent sequential patterns remains unchanged in the presence or absence of

the improbable itemsets.

• Expected support of itemset a is higher than itemset b, if they occur with the

same frequency in the sequences, but a is always more probable than b.

4.2 Experiments

In this section, we present the empirical experiments showing the scalability of our

algorithm in time consumption.

4.2.1 Datasets

The medical data that we are investigating is not completely available as it is being

constructed and moreover, for privacy reasons we would not be able to report the

results of this dataset. As there are no uncertain sequential datasets available to

the public and synthetic data is more useful in scalability measurements, similar to

other studies on uncertain data (such as in [48]), we used synthetic datasets in our

experiments. Each generated synthetic data is characterized by two parameters: the

52

0 2000 4000 6000 8000 10000

2

4

6

8

10

12

14

16

18

20

T
im

e
C

on
su

m
ed

 (
S

ec
on

ds
)

Number of Sequences

UAprioriAll

(a) Time consumption of UAprioriAll when min-
imum support = 0.5

0 2000 4000 6000 8000 10000

50

100

150

200

250

T
im

e
C

on
su

m
ed

 (
S

ec
on

ds
)

Number of Sequences

UAprioriAll

(b) Time consumption of UAprioriAll when min-
imum support = 0.33

0 2000 4000 6000 8000 10000

1000

2000

3000

4000

5000

6000

T
im

e
C

on
su

m
ed

 (
S

ec
on

ds
)

Number of Sequences

UAprioriAll

(c) Time consumption of UAprioriAll when min-
imum support = 0.25

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

2

4

6

8

10

12

x 10
4

T
im

e
C

on
su

m
ed

 (
S

ec
on

ds
)

Number of Sequences

UAprioriAll

(d) Time consumption of UAprioriAll when min-
imum support = 0.10

Figure 4.1: Time consumption of UAprioriAll with different support values

53

number of sequences (L) and the total number of items (I). Our goal is to inves-

tigate the effect of L on the time consumption, so we set I to 20 and L is varied

from 50 to 10000. The number of transactions in each sequence is a monotonically

distributed pseudo-random number from 1 to 20. We randomly choose the items

within the transaction, where all items have equal chances. The existence proba-

bility attached to each item within the transaction is a randomly generated number

between 0 to 1.

To increase the reliability of the results, for each value of L, 5 datasets were

generated and the method was applied 5 times to each dataset. In this process, we

used the Scaling Method. This method scales down a large dataset by randomly

eliminating some transactions, to get a smaller dataset with lower number of se-

quences. Using the scaling method increases the accuracy of the results, as these

values depend significantly on the candidate set size which itself depends on the

trends and structure of the dataset as much as on the size. The scaling method fixes

the trends and structure of the datasets to assess the effect of the size.

4.2.2 Experiments and Discussion

To measure the efficiency of our SPM algorithm, UAprioriAll was applied to the

synthetic data explained in Section 4.2.1. The experiments were carried out on a

machine with 2.66 GHz clock speed and 8 GB of RAM. In the implementation

of the algorithm we adopted a free online Java implementation of Apriori [13].

Samaneh Bayat, Parisa Naeimi and Mahdieh S. Mirian have contributed to the im-

plementation of UAprioriAll.

The experiments include the time consumption of the algorithm. The mini-

mum support is varied from 0.1 to 0.5 for each dataset to assess the impact of the

minimum support on the performance of UAprioriAll. The minimum support is

important because decreasing it may cause a dramatic drop in performance. Also it

is possible that the behaviour of the algorithm and the scalability vary significantly

between the cases with small and large minimum supports. We have used 4 differ-

ent values of support including: 0.1, 0.25, 0.33, 0.5 to investigate the consistency in

the behaviour of UAprioriAll. Setting minimum support in real world applications

54

depends greatly on the domain.

For each value of minimum support and dataset size, 5 experiments were car-

ried out on each of the 5 different datasets. The presented results are the average on

the 25 experiments. Figures 4.1(a), 4.1(b), 4.1(c), and 4.1(d) show the time scala-

bility of UAprioriAll with different values of minimum support. From the provided

figures, it is evident that the time consumption of UAprioriAll grows linearly based

on the number of sequences. The trend remains unchanged with different values

of the minimum support which shows that the scalability of UAprioriAll does not

depend on the minimum support value. The results for Figure 4.1(d) are confirmed

and we have no explanation for the plateau when the transactions are 6000. This

might be due to the shared resources and changes in the resource usage behavior of

other processes running on our server.

55

Chapter 5

Conclusions

In this study, we present two new algorithms for managing uncertainty in datasets.

Uncertainty is common in many applications in today’s world. One example is

extracting information from unstructured health data. We address the problems of

classification and sequential pattern mining and devise algorithms to solve these

problems in uncertain datasets. Experiment results show that our algorithms effec-

tively handle uncertainty.

In Chapter 2, a review over the related research shows the impact of the uncer-

tainty management. Research related to modeling uncertain data, frequent pattern

mining, classification, sequential pattern mining, etc. is reviewed in this chapter.

In Chapter 3, we state the problem of classifying uncertain datasets and in-

troduce algorithm UAC in section 3.2 to solve this problem. Two experiments in

section 3.3 show that UAC is more accurate than the state of the art rule based

classifiers.

The first experiment compares UAC to other rule based classifiers including

uHarmony, DTU and uRule. All of the rule based classifiers mentioned in this ex-

periment are designed for the same uncertainty model which is less general than the

model we use in this study. To be able to meaningfully compare the accuracies, we

limit the space of the uncertainty model to their model using their method of adding

uncertainty. We perform the experiment on the same UCI datasets as uHarmony to

show that we do not pick special datasets where we reach better accuracies. Section

3.3.1, summarizes the experiments which shows UAC is more accurate than other

rule based classifiers in most cases and on the average.

56

The second experiment aims to measure the accuracy under our more general

uncertainty model. Section 3.3.1, compares UAC against another CBA based prob-

abilistic associative classifier, UCBA. Since UCBA has no limitation over the model

it can be used as the baseline for this experiment. The experiment shows that in most

cases and on the average, UAC has better accuracy than UCBA. Also as mentioned

in section 3.2.2, the number of rules is an important factor to the rule based classi-

fiers. To see the effect of our uncertainty management techniques on the number of

rules as well as the time needed for building the model, we perform a comparison

between UAC and UCBA. This comparison in meaningful since both algorithms

are CBA based. The experiment shows that UAC is faster and leads to far less

classification rules than UCBA.

In Chapter 4, we state the problem of mining sequential patterns from uncertain

datasets. Section 4.1, presents UAprioriAll, an Apriori based algorithm that effec-

tively mines sequential patterns from uncertain datasets. Section 4.1.4 discusses

the completeness and soundness of this algorithm and section 4.2 gives experiment

results that show UAprioriAll scales linearly by increasing the number of transac-

tions.

5.1 Summary of Contributions

• Introducing a new more general model for capturing uncertainty in classifi-

cation problems.

• Presenting UAC, the probabilistic data associative classifier that effectively

handles uncertainty. UAC is more accurate than the state of the art rule based

algorithms under their model, and is more accurate than UCBA, another CBA

based algorithm, under the new more general model. Additionally, the num-

ber of rules and the running time is far less than UCBA in many cases.

• Introducing the concept of applicability in probabilistic data classification,

which is a new and more effective way of addressing the coverage problem

as stated in section 3.2.2.

57

• Presenting UAprioriAll, the first sequential pattern mining algorithm for un-

certain datasets that handles a general form of attribute level uncertainty.

5.2 Future Work

Uncertainty management is finding more applications every day in today’s world.

Based on the application, uncertainty modeling may vary in the studies. More gen-

eral uncertainty model may be necessary for some domains. For example, adding

uncertainty to the labels is one unaddressed problem in this area. One possible so-

lution for this is to use an alternative accuracy measuring technique. For example,

if a record like a0.1, b0.9, c10.8, where c1 is the class label, where classified as c1,

accuracy is added by 0.8. Otherwise, we add 0.8 to error.

Devising a data structure for the rules, as the one used in some traditional al-

gorithms including CMAR, and applying a separation technique, as used by ARC,

are other open problems that can be addressed in future research on uncertain data

classification.

An open problem in uncertain data sequential pattern mining is order uncer-

tainty. In health related applications, the process of annonymization may lead to

records with uncertain dates. There are various ways to model this uncertainty.

One way is to have intervals as the dates. For example, P1 : M1p1[d1 − d2] means

that patient P1 took medicine M1 with a probability of p1 between dates d1 to d2.

Mining sequential patterns from this type of datasets is an open problem.

Another way to capture uncertainty in sequential datasets with probabilistic or-

dering is to have a probability assigned to orders. For example, we may have in-

formation like: medicine M1 was either the first medicine patient P1 took (with p1

probability) or the second one (with p2 probability) or the fourth one (with p4 prob-

ability). Some restrictions are applied to the probability values including the fact

that the sum of the probabilities is less than 1. The difficulty with this problem is

to design a technique that with a reasonable running time, measures the probability

that a sequence is a subsequence of another one. In our own problem where order is

not uncertain, we solve this problem in section 4.1.3 using dynamic programming.

58

Although here, since the probabilities are not independent, one cannot use the same

method.

59

Bibliography

[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and query-
ing of sets of possible worlds. SIGMOD Record, 16:34–48, December 1987.

[2] C. C. Aggarwal, Y. Li, J. Wang, and J. Wang. Frequent pattern mining with
uncertain data. In Proceedings of the 15th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 29–38, Paris, France,
June 2009.

[3] C. C. Aggarwal and P.S. Yu. A survey of uncertain data algorithms and ap-
plications. IEEE Transactions on Knowledge and Data Engineering (TKDE),
21(5):609–623, May 2009.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in
large databases. In Proceedings of the 20th International Conference on Very
Large Data Bases (VLDB), pages 487–499, Santiago, Chile, September 1994.

[5] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of
the 11th International Conference on Data Engineering (ICDE), pages 3–14,
Taipei, Taiwan, Mar. 1995.

[6] M. L. Antonie, O. R. Zaiane, and R. C. Holte. Learning to use a learned model:
A two-stage approach to classification. In Proceedings of the 6th IEEE con-
ference on data mining (ICDM), pages 33–42, Hong Kong, December 2006.

[7] T. Bernecker, H. p. Kriegel, M. Renz, F. Verhein, and A. Zuefle. Probabilistic
frequent itemset mining in uncertain databases. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data
mining, Paris, France, June 2009.

[8] J. Bi and T. Zhang. Support vector classification with input data uncertainty. In
Proceedings of the 18th Advances in Neural Information Processing Systems
(NIPS), volume 17, pages 161–168, Vancouver, Canada, December 2004.

[9] M. Chau, R. Cheng, and B. Kao. Uncertain data mining: A new research
direction. In In Proc. Workshop on the Sciences of the Artificial, Hualien,
Taiwan, December 2005.

[10] M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei. Probabilistic reverse
nearest neighbor queries on uncertain data. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 22:550–564, April 2010.

[11] W. W. Cohen. Fast effective rule induction. In Proceedings of the 12th Inter-
national Conference on Machine Learning, pages 115–123, Tahoe City, CA,
USA, July 1995.

60

[12] J. Demsar. Statistical comparison of classifiers over multiple data sets. Journal
of Machine Learning Research 6 (JMLR), 7:1–30, 2006.

[13] P. Fournier-Viger. Algorithms/frequent itemset mining algorithms. url:
http://www.philippe-fournier-viger.com/spmf/index.php, June 2010.

[14] C. Gao and J. Wang. Direct mining of discriminative patterns for classify-
ing uncertain data. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD), July 2010.

[15] C. Gao and J. Wang. uharmony for kdd’10 paper.
http://dbgroup.cs.tsinghua.edu.cn/chuancong/uharmony/, June 2010.

[16] M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern mining
with regular expression constraints. In Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB), VLDB ’99, pages 223–234,
San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[17] J. Ge, Y. Xia, and C. Nadungodage. Unn: A neural network for uncertain data
classification. In Proceedings of the 14th Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining (PAKDD), pages 449–460, Hyderabad, In-
dia, June 2010.

[18] T. Ge, S. Zdonik, and S. Madden. Top-k queries on uncertain data: on score
distribution and typical answers. In Proceedings of the 35th SIGMOD interna-
tional conference on Management of data, pages 375–388, Providence, Rhode
Island, USA, July 2009.

[19] T. Green and V. Tannen. Models for incomplete and probabilistic information.
Data Engineering Bullitan, 29(1):17–24, 2006.

[20] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate gener-
ation. SIGMOD Record, 29:1–12, May 2000.

[21] B. Jiang and J. Pei. Outlier detection on uncertain data: Objects, instances,
and inference. In Proceedings of the 27th International Conference on Data
Engineering (ICDE), Hannover,Germany, April 2011.

[22] B. Kanagal and A. Deshpande. Indexing correlated probabilistic databases. In
Proceedings of the 35th SIGMOD international conference on Management
of data, pages 455–468, Providence, Rhode Island, USA, July 2009.

[23] M.-Y. Kim, Q. Dou, O.R. Zaiane, and R. Goebel. Unsupervised mapping
of sentences to biomedical concepts based on integrated information retrieval
model and clustering. In Proceedings of the First ACM International Confer-
ence on Bioinformatics and Computational Biology, pages 322–329, Niagara
Falls, New York, August 2010.

[24] C. K-S Leung, C. L. Carmichael, and B. Hao. Efficient mining of frequent
patterns from uncertain data. In Proceedings of the Seventh IEEE Interna-
tional Conference on Data Mining Workshops, pages 489–494, Washington,
DC, USA, October 2007.

[25] W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient classification based
on multiple class-association rules. In Proceedings of the 2001 IEEE Interna-
tional Conference on Data Mining (ICDM), pages 369–376, Phuket, Thailand,
December 2001.

61

[26] B. Liu, W. Hsu, and Y. Ma. Integrating Classification and Association Rule
Mining. In Proceedings of Pacific-Asia conference on Advances in knowledge
discovery and data mining (PAKDD), pages 80–86, 1998.

[27] S. Patel O. R. Zaiane M. HooshSadat, H. Samuel. Fastest association rule
mining algorithm predictor - farm-ap. In Fourth International C* Conference
on Computer Science and Software Engineering., pages 43–50, Montreal, QC,
Canada, 2011.

[28] J. Pei, J. Han, B. Mortazavi Asl, H. Pinto, Q. Chen, U. Dayal, and M. C.
Hsu. Prefixspan mining sequential patterns efficiently by prefix projected pat-
tern growth. In Proceedings of the 17th International Conference on Data
Engineering (ICDE), pages 215–226, Heidelberg, Germany, April 2001.

[29] Jian Pei, Ming Hua, Yufei Tao, and Xuemin Lin. Query answering techniques
on uncertain and probabilistic data: tutorial summary. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, pages
1357–1364, Vancouver, Canada, June 2008.

[30] B. Qin, Y. Xia, and F. Li. Dtu: A decision tree for uncertain data. In Proceed-
ings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery
and Data Mining (PAKDD), pages 4–15, Bangkok, Thailand, December 2009.

[31] B. Qin, Y. Xia, and F. Li. A bayesian classifier for uncertain data. In Pro-
ceedings of the 2010 ACM Symposium on Applied Computing (SAC), pages
1010–1014, Sierre, Switzerland, March 2010.

[32] B. Qin, Y. Xia, S. Prabhakar, and Y. Tu. A rule-based classification algorithm
for uncertain data. In Proceedings of the 2009 IEEE International Conference
on Data Engineering (ICDE), Shanghai, China, March 2009.

[33] X. Qin, Y. Zhang, X. Li, and Y. Wang. Associative classifier for uncertain data.
In Proceedings of the 11th international conference on Web-age information
management (WAIM), pages 692–703, Jiuzhaigou, China, July 2010.

[34] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[35] R. Rak, L. Kurgan, and M. Reformat. A tree-projection-based algorithm for
multi-label recurrent-item associative-classification rule generation. Data and
Knowledge Engineering, 64:171–197, January 2008.

[36] R. Rak, W. Stach, O. R. Zaane, and M. L. Antonie. Considering re-occurring
features in associative classifiers. In Proceedings of the Pacific-Asia confer-
ence on Advances in knowledge discovery and data mining (PAKDD), pages
240–248, 2005.

[37] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for
uncertain data. Technical Report 2005-3, Stanford InfoLab, 2005.

[38] P. Sen and A. Deshpande. Representing and querying correlated tuples in
probabilistic databases. In Proceedings of the International Conference on
Data Engineering (ICDE), pages 596–605, Istanbul, Turkey, April 2007.

62

[39] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and
performance improvements. In Proceedings of the 5th international Confer-
ence on Extending Database Technology: Advances in Database Technology,
pages 3–17, London, March 1996.

[40] J. Friedman T. Hastie, R. Tibshirani. The elements of statistical learning:
Data Mining, Inference, and Prediction. Springer-Verlag, 2 edition, 2008.

[41] J. Wang and G. Karypis. On mining instance-centric classification rules. IEEE
Transactions on Knowledge and Data Engineering, 18:1497–1511, November
2006.

[42] J. Yang and M. Hu. Trajpattern: Mining sequential patterns from impre-
cise trajectories of mobile objects. In Advances in Database Technology -
EDBT 2006, 10th International Conference on Extending Database Technol-
ogy, March 2006.

[43] J. Yang, T. J. Watson, W. Wang, P. S. Yu, and J. Han. Mining long sequential
patterns in a noisy environment. In Proceedings of the ACM SIGMOD inter-
national conference on Management of data, Madison, Wisconsin, USA, June
2002.

[44] X. Yin and Han J. Cpar: Classification based on predictive association rule.
In Proceedings of the SIAM International Conference on Data Mining (SDM),
pages 369–376, San Fransisco, CA, USA, May 2003.

[45] Osmar R. Zaiane and Maria-Luiza Antonie. Classifying text documents by
associating terms with text categories. Proceedings of the 13th Australasian
database conference.

[46] M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on
Knowledge and Data Engineering, 12:372–390, May 2000.

[47] M. J. Zaki. Spade: An efficient algorithm for mining frequent sequences.
Journal of Machine Learning Research, 42(1-2):31–60, 2001.

[48] Q. Zhang, F. Li, and K. Yi. Finding frequent items in probabilistic data. In
Proceedings of the 2008 ACM SIGMOD international conference on Manage-
ment of data, pages 819–832, Vancouver, Canada, June 2008.

[49] W. Zhang, X. Lin, Y. Zhang, J. Pei, and W. Wang. Threshold-based probabilis-
tic top-k dominating queries. Proceedings of the International Conference on
Very Large Data Bases (VLDB), 19:283–305, April 2010.

[50] X. Zhou, H. Han, I. Chankai, A. Prestrud, and A. Brooks. Approaches to
text mining for clinical medical records. In Proceedings of the 2006 ACM
symposium on Applied computing, pages 235–239, Dijon, France, April 2006.

63

