PM-1 3%"n4" PHOTOGRAPHIC MICROCOPY TARGETY

NOS 1910a ANSI/IS0 #2 BOUIVALENT
JLo i
w R
v e —
¢ w29

i
1

PRECISION®™ ARSOLUTION TARGETS



.* . gatioml Library

385, rue Wellngton
Onawa (Ontano)

Bibhothéque nationale
du Canada

Direction des acquisitions et

Acquisitions and
Bibkographic Services Branch  des services biblographwques
305 Welknglon Si
Onawa. Oniano e
K1A ON4 K1A ON4
NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the

degree.

Some pages may have indistinct
print especially if the original

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

$'il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualith d'impression de
certaines pages peut laisser a
dactylographiées & ['aide d'un




UNIVERSITY OF ALBERTA
Computer Investigation of Stability Boundaries
of Chemical Reaction Networks

bor

Weimin Jiang @

A Thesis
Submitted to the Faculty of Graduate Studies and Research
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

DEPARTMENT OF CHEMISTRY

EDMONTON, ALBERTA
Spring 1994



l* Natnonal L:brary

Acquisitions and

Bibhothéque nationale
du Canada

Direction des acquisiions et

Bibliog.aphic Services Branch  des services bibliographiques

395 Welington Street
Onawa, Ontario
K14 ON4 K 1A ON4

The sesuthor has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell coples of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395 tue Wellington
Ottawa (Ontano)

L'auteur a accordé une licence
irrévocable et non exclusive
permettant & la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de queique maniére et sous
queique forme que ce soit pour
mettre des exemplaires de cette
thése & Ila disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d'auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de cellecl ne
doivent étre Iimprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-11247-0



UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Weimin Jiang

TITLE OF THESIS: Computer Investigation of Stability Boundaries
of Chemical Reaction Networks

DEGREE.: Doctor of Philosophy

YEAR THIS DEGREE GRANTED: 1994

Permission is hereby gianted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly or

scientific purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor
any substantial portion thereof may be printed or otherwise reproduced in any
material form whatever without the author’s prior written permission.

(SIGNED) /}\m y v %

Department of Chemistry
University of Alberta
Edmonton, Alberta, Canada T6G 2G2

DATED Dec. 29, 177)’




UNIVERSITY OF ALBERTA
FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled Computer
Investigation of Stability Boundaries of Chemical Reaction Networks
submitted by Weimin Jiang in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

[rewee £ (Late
Dr. Bruce Clarke (Supervisor)

, /{Z;’/?‘é‘\f

en Hepler -

AL den T e e,

A Uil e |

] 4N
Dr. Michael Menzinger |




To my mother and father for the intelligence they gave me and for the
hardship they ezperienced.

To Xiaoling, my wife, for her love and support which are critically
tmportant to me.

To Lulu, my seven-year-old daughter, who is learning and growing to-
ward her bright future.



Stability boundarie~ taport o ae study of chemiceal reaction net-
works with nonlinear kinet: - as area apply to nonlinear chemieal,
biochemical and environme Potential applications in industry are also

very promising.

This thesis focuses on colputer investigation of stability boundaries. First,
numerical algorithms and approximate analytical formulas for calculating steady
state manifolds are discussed. Criteria for determining the stability of steady states

are then presented with emphasis on the Hurwitz determinants and the first col-

umn of the Routh array. The global structure of stability boundaries for bifurcations

value curves. To study the dependence of stability boundaries on the experimental
parameters, three methods are proposed for deriving explicit approximate stabil-
ity boundary equations. For the situations where explicit equations are difficult to

obtain, a slope pattern method is developed and it can be applied to any networks.

Two reaction networks are analyzed using the new methods. As an impor-
tant prototype network, the Gray-Scott network is used to illustrate the details of
the various methods. A complete stability analysis is conducted and the important
extreme currents in various regions of the steady state manifold are found. The
stability boundary structures and stability regions of the network are also explored
in detail.

The bromate-sulfite-ferrocyanide (BSF) network is an important experi-
mental reaction network. This thesis finds that the stability boundary structure of



the network is intrinsically different from the original interpretation of the experi-
mental data. An in-depth investigation reveals the reasons for the previous misun-
derstanding and a procedure is developed to correct the problem. An excellent fit to
the experimental results at 20°C was obtained by setting k; = 5.765 x 10-2M -15-!
and kg = 39.5M " 25~'. Among the twenty-eight extreme currents of the network,
four are responsible for the saddle-node bifurcations in the experimental parameter
range. They constitute a simplified network, whose stability boundary equations
were derived. The feedback cycles responsible for the instability were found. They

give physical insight into the reason for instability.



Acknowledgment

I sincerely appreciate the advice and help I received from my supervisor Dr.
Bruce Clarke in completion of this thesis. I also would like to thank members of
my Ph.D. advisory committee for their helpful discussions and suggestions. Spevial
thanks are also extended to Dr. Michael Menzinger of University of ‘Toronto who

attended my Ph.D. final exam and discussed some very stimulating ideas with me.



Contents

LIntroduction ........... ... ... 1
1.1 Brief history and background ........... ... .. . 0 i 1
1.2 New work in this thesis .......... ... ... ... iiiiiiiiiiiiiinnrnninans. 4
I1. Steady states of chemical reaction networks .......................... 8
2.1 Reaction systems and reaction networks ...................................8
2.1.1 Reaction systems and reaction networks .................ccovunivnnn.. 8
2.1.2 Reaction network diagrams ....................ccoiiiiiiiiiinininen, 9
2.2 Steady states of reaction metworks .......................ciiiiiiiien.n 11
2.2.1 Conventional steady state conditions ....................cocvvninenn., 11
2.2.2 Extreme currents and steady state conditions in j parameters ........ 12

2.2.3 Two sets of steady state parameters: (k,C) and (h, ) parameters .... 14

2.3 Numerical calculation of steady state manifolds in log space .............. 17

2.4 Analytical steady state equations in the (k, C) parameter space ...........21
2.4.1 Hyperplane approximation in the log space .......................... 22
2.4.2 Example: hyperplane approximation for the steady state

manifold of the Gray-Scott network .......................c000000e....23




3.2 Steady state bifurcations and stability boundaries ......... ... . ... 0080
3.2.1 Steady state bifurcations and stability boundaries ................... .39

3.2.2 General equations for stability boundaries ........................... 40

3.3.3 Y-shaped structures formed by SN, SN* and Hopf curves ............ %)
3.3.4 DZ as the crossing point of SN, SN*, Hopf, SE curvex ............... 5}

IV. Dependence of stability boundaries on experimental parameters .61

5.2 A complete stability analysis in the (h, J) parameter space ... ............B87
m-shaped steady state manifold ........... 93

5.3 Extreme currents and mushro

5.4 Structural elements and bifurcation structures of stability boundaries .....98



6.2 Searching for the oscillation region .......... ... ... ... .. ... 112
6.3 Stability boundaries of the BSF network ................................ 117
6.3.1 Cross-shaped phase diagrams ....................................... 117
6.3.2 Unexpected stability boundaries of the BSF network ................ 119
6.4 Why were experimental phase diagrams previously considered to
be cross-shaped? ... e e 124
6.4.1 Comparison of my stability boundaries with previous numer-
ical simulations ... e 124
6.4.2 Comparison of my stability boundaries with the experimen-
LAl data ... e e e 131
6.5 A procedure for locating all attractors at a phase diagram point ......... 132
6.6 Adjusting rate constants to fit experimental results ...................... 139

6.7.1 The minimum set of unstable combinations of extreme currents ..... 146

6.7.2 The minimum set of necessary extreme currents for bifurcations .....148
6.8 Stability boundaries of the BSFSNnetwork ............................. 150
6.8.1 SN bifurcations in the simplified BSFSN network ................... 150
6.8.2 Linear segments of SN boundaries of the BSFSN network ........... 153
6.8.3 Explicit stability boundary equations of the BSFSN network ........ 159
6.9 Destabilizing feedback cycles of the BSFSN network ..................... 164
VII. Summaryand conclusion ...................ccoiiiiiiiiinninninninnns 167
Blblography ...........coiiiiiiiiii i e e i, 170
Appendix 1. Nnmeriegl mntlnuithm method for calculating steady
state < 177
ALl The Problem .........c.cciviiiiiiiiiiiiiiiiiieiieesenerenssssassnnens 177



Appendix 2. Dominant extreme current approximation of the

Gray-Scott network ................................. ... o IR2
A2.1 Simplex (E\.Ea. Ex Es) o oo I8S
A2.2 Simplex (EV.E;. Eqx. En) oo IR
A23 Simplex (E\.E3. Eq. En) o oo I8RO
A2.4 Simplex (E;. E3 . Eq En) ............... N I 1

Appendix 3. Data points on the published phase diagrams of the

BSF network .....................ccocoii i IRT
A3.1 The calculated phase diagram with ko = 326 M 28 V.. ... ... ... .. I8N
A3.2 The experimental phase diagram at 20°C .............................. I8Y
A3.3 The experimental phase diagram at 30°C' ..............................1%
A3.4 The experimental phase diagram at 40°C .............................. 191
Appendix 4. Computational techniques ................................ {17
A4.1 Managing large polynomials in (h,§) parameters ....................... 192
A4.2 Mapping between polynomial terms and memory addresses ............ 193



List of Tables

Table 1. SN & SN* Stability Boundaries of the GS Network (produced by the hyper-

Table 2. Unstable Regions of the Gray-Scott Network

Table 3. Stability Analysis of the GS Network in (h, j) Space



Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. &
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Fig. 10

Fig. 11 T

Fig. 12
Fig. 13

Fig. 14

Fig. 18

Fig. 16

List of Figures

Some simple current cones in a three-dimensional space.

Current polytopes corresponding to the current cones shown in Fig, 2.
Network diagram of the Gray-Scott network.

Croes-sections through the steady state manifold of the Gray-Scott network.
Symbols used to mark stability regions.

SN and SN* bifurcation points.

Hopf and SE points.

Relationships between Hopf, SE, SN, SN* and DZ hypersurfaces.

al Y-shaped structures.

One SE curve connects two DZ-centered structures.

A steady state manifold with multiple Ay, = 0 points.

A qualitative stability boundary diagram including an onion structure formed
by Ag-1 = 0 hypersurfaces.

Flattened view of a steady state manifold with onion-structured Ay.; = 0

Fig. 17 Steady state manifold equations of the Gray-Scott network, produced by the




Fig. 18 The current polytope of the Gray-Scott network and two ways to divide it into

simplices.

Fig. 19 Stability boundaries of the Gray-Scott network calculated by the numerical
continuation (curves without equations) and by the approximated analytical

formulas (curves with equations).
Fig. 20 Network diagram of the SNB reaction network.

Fig. 21 (a) Steady state manifold of the SNB network on the (log [Br~],log ko) plane;
(b) Stability boundaries of the SNB network on the (log [Br~]o, log ko) plane.

Fig. 22 Steady state manifolds of the BSFSN network.

Fig. 33 The Gray-Scott reaction network.

Fig. 24 Five extreme currents of the Gray-Scott reaction network.

Fig. 236 Stabilities of steady states for the Gray-Scott network.

Fig. 26 Important extreme currents in various regions of the Gray-Scott network.
Fig. 37 Comparison of two mushroom-shaped curves of the Gray-Scott network.
Fig. 28 Three two-dimensional phase diagrams of the Gray-Scott reaction network.
Fig. 20 Network diagram of the bromate-sulfite-ferrocyanide reaction network.

Fig. 30 Experimental points on a phase diagram in reference (25) (experiments at
20°C).

Fig. 31 A steady state manifold of the BSF network, calculated at [SOf~)o = 0.08M.

Fig. 32 (a) A steady state manifold and (b) an oscillatory trajectory of the BSF net-
work.

Fig. 33 Steady state manifold of the BSF network at [S03-Jo = 0.10018M, ky =
200.50M-25-" and [H*]o = 0.145M.



Fig. 34 Two different types of dvnamic trai ciories caleulated from the same set of

parameter values.
Fig. 35 Cross-shaped phase diagrams.
Fig. 36 A qualitative bifurcation diagram of the BSF network.
Fig. 37 Stability boundaries of the BSF network.

Fig. 38 Comparison of the published data points based on numerical integrations with
my calculated stability boundaries of the BSF network.

Fig. 39 A qualitative bifurcation diagram of the BSF network when [SO% o < 0.068A1.
Fig. 40 Trajectories at three selected puints on the (kg. [SO3~]y) parameter plane.

Fig. 41 Comparison between the calculated stability boundaries and the experimental
results.

Fig. 42 Why the upper stable steady states were not detected and how to detect them.
Fig. 43 Trajectories of the BSF network when [SO3~ ]y = 0.085M.

Fig. 44 Comparison between the calculated stability boundaries and the experimental
results at 20°C.

Fig. 45 Comparison of the calculated stability boundaries with the experimental results
at 20°C after k) is adjusted from 8.000 x 10~3M 4~ t0 5.765 x 103~ M ~'a~},

Fig. 46 Comparison of the calculated stability boundaries with the experimental results
at 20°C after k) is adjusted from 8.000 x 107 2M "4~ ! t0 5.765 x 103~ M !5}
and ky is adjusted from 32.5M ~2s~! to 49.5M 347!,

omparison of the calculated stability boundaries with the experimental results
uﬂéﬁak.hﬂmﬁmsm:m M5 5. 785 x 103~ M 1s}
and ks is adjusted from 32.5M ~23-! to0 39.5M 25!,

Fig. 47



Fig. 49 A steady state manifold after ten of the fourteen extreme currents have been
deleted for the BSF network.

Fig. 80 Network diagram of the BSFSN network.
Fig. 81 Four extreme currents of the BSFSN network.
Fig. 82 Stability Boundaries of the BSFSN network.

Fig. 83 Concentrations of dynamical intermediates on the stability boundaries of the
BSFSN network.

Fig. 54 Destabilizing feedback cycles of the BSFSN network, shown along with the
original network diagram.



I. Introduction

1.1 Brief history and background

When two or more chemicals are mixed in a closed container. the reactions
will eventually reach an equilibrium state where the Gibbs free energy is a minimum.

But in the real world, do all chemical reactions approach such equilibria states”

The answer is no. Real world chemical systems arc mostly open systems.
Flow reactors in chemical plants, human bodies and environmental systems are
open systems. When a chemical system is open, has nonlinear kinetics, and is
operating far from equilibrium, the system can exhibit exotic behaviour that is
more interesting than simple exponential decay to the unique equilibrium state! -3,
Biological and industrial implications have generated increasing interest** in exotic
phenomena such as sustained oscillations, multi-stability and chaos during the last

30 years.

The first advance in this area was achieved by Lotka. As early as 1910, he
showed that the law of mass-action and an autocatalytical process may cause oncil-
lations in a chemical reaction®. In 1920, he presented another simple scheme where
an open autocatalytic chemical system had sustained oscillations!?. Even though
there was evidence for the existence of such sustained oscillations at that time!!,
real interest appeared only after Belousov'? published his discovery of an inorganic
redox reaction with sustained barely damped oscillations, and Zhabotinskii!? in-
tensively studied the reaction. The Belousov-Zhabotinskii reaction (the axidation
and bromination of malonic acid by acidic bromate, catalysed by Ce(IV) ions) and
the FKN mechanism (Field-K&rbs-Noyes)!* proposed for the BZ reaction have been

|



used to lay the foundation for this field.

Among the many problems to be solved, the stability boundary problem is
one of the most important. The objective is to find the boundaries of the regions
in multi-dimensional parameter space where systems exhibit different stability be-
haviour such as asymptotic stability, sustained oscillations and bistability. The
results can be applied directly to explain experimental observations, to evaluate
experimental parameters such as rate constants or concentrations, and to predict
system behaviour under different conditions where experiments have not been done

or are difficult to do because of experimental obstacles.

There are two closely related concepts here. One is the stability bound-
ary just mentioned, which is sometimes called the bifurcation set. The other is
the phase diagram, which is a graph showing the regions divided by the stability
boundaries. These regions are called stability regions because each region possesses
its own stability properties.

Stability boundaries are hypersurfaces in a multi-dimensional parameter
space. Because of mathematical difficulties arising from the nonlinearities, it is
usually impossible to derive accurate analytical formulas for the stability bound-
aries of real reaction networks. To obtain insight into the sources of instability
in complicated dynamic features, Gray and Scott proposed a two variable model
network'® and carried out a series of investigations on the network!¢-2, The stabil-
ity boundaries for the Gray-Scott network show great richness of dynamical features

2



various dynamic features near the crossing point in the cross-shaped phase diagram.
Later, Guckenheimer?? studied the mathematical details of the general crons-shaped
phase diagrams, which has been used as a tool to help discover new chemical oscil-

lators.

It is not difficult to imagine that real chemical networks are much more
complicated because more parameters and variables are involved. In practice, re-
searchers usually do the experiments by changing two experimental parameters
while keeping all others fixed. The results are summarized in phase diagrams®42",
where different stability regions are divided by stability boundaries. Based on the
reaction mechanisms proposed for the experimental systems, cither an IVP (Initial
Value Problem) solver?® cr a two-parameter numerical continuation method?® is
used to calculate the stability boundaries. Using the IVP solver, the calculation is
slow and the result is necessarily partial, as Olsen and Epstein?® have pointed out.
Even more seriously, the conclusions could be wrong even though they might meet
the widely accepted expectations of a cross-shaped phase diagram. This will be dis-
cussed in detail later in the thesis. Using the two-parameter continuation method,
results are usually accurate, but this method cannot give a global picture of stabil-
ity boundaries, either quantitatively or qualitatively, in the whole multi-dimensional
parameter space. It does not tell us how other parameters affect stability boundaries
or phase diagrams. Ringland?’ recently pointed out that the qualitative structure
of a two-parameter phase diagram can be changed very easily by a change in a
third parameter. His rapid reconnaissance approach using numerical continuation
can help look for qualitative changes. But in situations where more parameters
are involved, this approach is hopeless, no matter how fast the computer or the

algorithm.



1.2 New work in this thesis

Until recently, there have been no general methods or techniques available
for obtaining stability boundaries in a multi-dimensional experimental parameter
space. The most promising approach is called the Stoichiometric Network Analysis
(SNA)?#-2%_ In this approach, Clarke proposed a set of new parameters, called
(h,}) parameters, and developed the theory and algorithms to do stability analysis of
chemical systems based on the (h, j) parameters. It is the only successful attempt up
to now to explore the stable and unstable regions throughout the whole parameter

space. The basic ideas of SNA have recently been used by other authors to study

MBS

rameters, their direct application to real chemistry problems was limited because
chemical experimental results are usually presented in conventional experimental
parameters. Therefore, it was essential to develop a method for converting between

the (h,j) parameters and the conventional ex
are the set of rate constants k = (k,, k3, -, ,) and

the amounts of the conserved species C = (C),C3,:--,Cm). They will be called
using the SNA without a mapping between the (h, j) and the (k, C) parameters.

A formula giving the (k,C) parameters in terms of the (h,})
was discussed by Clarke. The difficult problem is to calculate the (h, §) parame
from the (k,C) parameters. The h parameters are defined as the reciprocals of
the steady state concentrations. This problem requires calculating steady state
 in terms of rate constants k. Due to the monlinear nature of the

4



equations involved. it is usually impossible to derive accurate analytical solutions.

There are two possible ways to approach this problem. One is numerical
and one is analytical. Computer programs which calculate the steady state manifold
are now available on mainframe computers and workstations. AUTO ix such a

program?®. It is not convenient to use these program packages because of technical

puts all calculated points into a file and a separate graphics program must be used
to display the results. To solve this problem, I developed a program to do the
calculation on IBM personal computers. Using my program, one clicks a mouse
button and a plot of the steady state concentrations vs. rate constants is promptly
displayed on the screen. The steady states are colored to represent different stability
obtained at fixed settings of all other rate constants. Changing the rate constants
can be done quickly by dragging the mouse. This allows us to focus our attention
on a kinetically interesting region in parameter space. It also enables 1:: to flip back
and forth easily between the unstable region screen in (h, J) space and the steady
state manifold screen in (k, C) space. Corresponding stability regions in the two
spaces can be compared efficiently.

steady state manifold in the regions of interest. For this purpose, I developed three
methods which can be used in different circumstances. The resulting equations
show the explicit deg

After the h parameters have been calculated from the (k, C) parameters,



the vector J may be calculated easily, either numerically or analytically. Once the
J vector is calculated, the stability boundaries can be calculated without difficulty.
The stability boundaries calculated in this way not only provide us with knowledge
of different stability regions, but also reveal the important factors that determine

the stability.

The analytical stability boundaries derived using SNA in the (h,}) space
are based on three approximations®’, We need accurate numerical stability bound-
aries to test the approximate equations, and to show the detailed stability boundary
structures on 2-dimensional subspaces. I could have used software packages that
explicitly evaluate the signs of the Jacobian matrix eigenvalues®®; however, I devel-
oped a new software package which fits much better into the SNA approach. An
important mathematical concept called the Hurwitz d 1ant has been used by
Clarke for many years. This thesis extends the application of Hurwitz determinants
using Orlando’s theorem and the Routh array. Stability boundaries defined and
calculated this way show very interesting geometrical structures, which cannot be

Using these methods and programs, I carried out research on several impot-
lodide network?, the Showalter-Noyes-Bar-Eli (SNB) network®®, and the Bromate-
Sulfite-Fesrocyanide (BSF) network?®. Among them, the GS network and the BSF

6
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package can be used to study larger and more realistic systems.

1.3 Prospects

Today’s SNA package makes analyzing reaction networks enjoyable. We
can analyze various experimental and model reaction networks with a few clicks of
the mouse. The package is not only efficient, it also finds the unique and impor-
tant features of the stability boundary diagrams. It is expected that a wide range
of chemical reaction networks will be analyzed in the near future with very high
efficiency. The outcome will be applied to explain experimental observations, to elu-
cidate reaction mechanisms, to evaluate rate constants, and to predict experimental

results.



I1. Steady states of chemical reaction networks

To analyze stability boundaries of chemical reaction networks, we first need
to define, calculate and understand their steady state manifolds. This chapter
discusses the definition of steady states, the treatment of steady states in terms of
two different sets of parameters, an effective algorithm for numerical calculation of
steady state manifolds in log space, and the methods for deriving analytical steady
state equations in the multi-dimensional experimental parameter space. It will lay

a foundation for the following chapters.

2.1 Reaction systems and reaction networks

3.1.1 Reaction systems and reaction networks

In chemistry, complicated chemical reactions are made from simple reaction
steps called elementary reactions. The set of elementary reactions for a complicated
reaction constitutes a reaction mechanism for the reaction. The definition of a
reaction mechanism includes the following information:

1. reactants, products and intermediates of the reaction,

2. stoichiometry of the reaction,

3. kinetic orders with respect to each reactants and intermediates.
In this thesis, the term ‘reaction network’ has the same meaning as the term ‘reaction
mechanism’ defined above; however, the reactions in a reaction network need not be
elementary. They could be complex reactions, which are composed of elementary
steps.

Wemmu.mmmmbemmm
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rate constants for each reaction. Rate constants are parameters rather than being
part of a mechanism. A mechanism only specifies how the chemicals react with each

other but does not indicate how fast or how far the reactions will go.

To express the effect of rate constants on reaction kinetics, the term reaction
system is used. A reaction system is a reaction network with a specified vector k
runs under a specific temperature, pressure and other experimental conditions. The
experimental conditions determine the specific rate constants. A reaction network

is a set of reaction systems, one for each possible set of rate constants.
3.1.2 Reaction network diagrams

A reaction network can be represented by a network diagram. Fig. 1 ix a
typical reaction network diagram using Clarke's notation®™. On the diagram, the
numbers of head barbs and tail feathers at each chemical on the branched arrows
indicate the stoichiometry of each reaction. The number of left feathers on a tail
represents the kinetic order with respect to the chemical. Single line arrows indicate
forward reactions while double line arrows show reversible reactions. Each chemical
appears only once in a reaction network diagram. Chemical formulas enclosed in
80 slowly that they are considered constant in the time scale of interest. In some




intermediates.

Fig. 1 Network diagram of the bromate-sulfite-ferrocyanide network.

The network diagram in Fig. 1 represents the reactions involving bromate,
sulfite and ferrocyanide in a CSTR system. This mechanism was proposed by
Edblom, Luo, Orban, Kustin, and Epstein?® (ELOKE) and is given in Scheme 1.

Scheme I:
HBrO; + 8O3~

2HOBr

BrO; + HSO;

HBrO; + Br~ + H*
HOBr + Br~ + H* Br; + H0

2HBrO, BrO3 + HOBr + H*

Br; + HSO;7 + H,0 . 2Br- + 802~ + 3H*

L2415 = |

10



L1

H* + 80%- = HSO;
BrOj + 2Fe(CN)§~ + 3H* =& HBrO;, + 2Fe(CN)3- + H,0

The reactions which ELOKE called B,,B;, ... are called Ry, R3.... here. The re
versible reaction which ELOKE called B; and B, is shown as a single reaction R on

the diagram with a double line to indicate reversibility. The same comment applies

2.2 Steady states of reaction networks

3.2.1 Conventional steady state conditions

For a chemical reaction network with n intermediates and r reactions, the
kinetic equations of the network can be written as

?—HV, (1)

where X is the concentration vector with n components; N is the n by r stolchio-

At a steady state, rates of concentration change are zero for all intermedi-

dXo _ Nv® =
5 = Nv® = 0, (2)

where X, is X at the stoady state and v° is v at the steady state.

v° = diag(k)X¥, (3)



where k = (k;, k3, -, k;) is the rate constant vector with r components; diag(k) is
a n by n diagonal matrix whose diagonal elements are k;, k3, -, kn; K = (x,;) is
the n by r kinetic matrix. The order of reaction j in species i is x,,. The expression

X% represents a vector whose j-th component is
(xﬂ )J = nl-lxg‘? ’
where X, , is the steady state concentration of the i-th intermediate.

Substituting equation (3) into (2) gives the conventional steady state con-
dition,
200 = NP = N(ding(k))XE = 0, “

which is a system of nonlinear equations. Generally speaking, its solutions cannot

Steady state conditions can also be expressed in a much simpler form using
opriate parameters. Clarke?® invented a new set of parameters called the (h, )
parameters in order to simplify the stability analysis.

Consider the meaning of equations (1) and (2). In equation (1), v is a
the left to the right of a chemical

A+B+...—C+D+....

If we imagine the reaction to be a flow of chemicals from the left to the right in the
we imagine them to be flowing), then a sequence of reactions (R;, Ry, R, .., R»)
12



will form a current of the flow. In equation (2), a restriction is imposed on the
reaction rates to keep the reaction network at a steady state. We call a steady state
reaction rate vector v0 a steady state current, or a current. In this way, flowing
chemicals through a reaction network are treated like flowing electricity through
an electrical network. Then concepts of electrical network theory should help us
investigate chemical reaction networks.

Clarke found that currents have a geometrical interpretation. Based on
linear programming ideas*®, he proved that the set of all currents of a reaction
network constitutes a convex polyhedral cone4!4?, called the current cone. Fig. 2
shows some simple current cones in a three-dimensional space. Note that in a three
polyhedral cone are called half-lines or rays. Since they are the extreme points
of a convex set, they are called extreme currents. Chemically, extreme currents
for brevity when the meaning is clear from the context.

be written as a linear combination of extreme currents, i.e.

Here B is the r by f extreme current matrix. Each of the f columns of the & matrix
is an extreme current. Each component of § = (4, j2,...,jy) is a weighting factor,
call j; the rate of extreme curvent E,.

13



© (d)

Fig. 3 Some simple current cones in a three-dimensional space. Note that the dimensions
of the cones themselves are (a) one-dimensional, (b) two-dimensional, (c) three-
dimensional, and (d) three-dimensional.

parameters,

dX,
T:m":m-o. (6)

Since every column of € is a steady state, NE = 0 identically. Hence every }
represents a steady state.

3.2.3 Two sets of steady state perameters: (k,C) and (h,]) parameters

We have seen that steady states of chemical reaction networks can be de-

4



scribed by different parameters. Let's have a closer look at these parameters and

examine their relationships to each other.

As we have seen in Section 2.2.1, steady state conditions of a reaction
network with r reactions and n intermediates can be presented by equation (2). If
there exist some conservation conditions among chemical intermediates, then not
all rows of N are independent. Let the number of independent rows of the matrix
N be d, that is d = rank(N). If there are conservation conditions, d is smaller than
n. The difference n — d is the number of conservation conditions. The dynamics of

the network is then d-dimensional.

The (k,C) parameter vector is the complete set of parameters that are
widely used in chemistry. In this set of parameters, there are r rate constant

of parameters is r + n — d. If there are no conservation conditions, then d = n, and
the total number of parameters is r. These are rate constants.

The (h,)) parameters are the parameters proposed by Clarke. Definition
as reciprocals of steady state concentrations of all intermediates, i.e.,

h= o, )

Since there are n intermediates, there are n h-parameters. To make the
must be r — d. In other words, dimension of the current cone is r — d in general.
For networks without conservation conditions, d = n, 50 the dimension is r — n.




Cross sections of a current cone are called current polytopes. The dimension
of a current polytope is one less than the dimension of its corresponding current
cone. Hence the dimension of a current polytope is r — d - 1. Fig. 3 shows current
polytopes corresponding to the current cones shown in Fig. 2. Any steady state

current vector can be expressed as a point in a current polytope.

(@) () () (d)

Fig. 3 Current polytopes corresponding to the current cones shown in Fig. 2. Diw ensions
of the current polytopes are one less than dimensions of the corresponding current

In the (k, C) parameter space, the steady states of a reaction network form
a steady state manifold. In (h, J) space, the same set of steady states forms a convex
polyhedral cone. Clarke?®42 proved that a smooth 1-1 mapping exists between the
steady states in the two representations. The (h,J) space cone is an unfolding of
g steady state manifold in the (k, C) space.

to calculate (k,C) meters from (h,}) parameters. According to equations (3),
(5) and (7).

€) = diag(k)XJ = diag(k)h~X. (8)

(hix): = “:‘:l(h%)-" J=12:..-,r.

16



Solving this for k gives
k = diag(E})(h¥). (9)

servation matriz I,

C=rh" (10)

F is an (n — d) by n matrix that shows the conservation of atoms, functional groups

or electrical charges.

Calculating (h, J) parameters from (k, C) parameters is much more difficult
because of the nonlinear nature of equation (8) with respect to the (h, j) parameters.
If we could do this calculation analytically, we would be able to calculate stability
boundaries directly from the systems of inequalities in the (h, J) space. This thesis
develops an approach to calculate (h,jJ) from two angles. One is to calculate X,
(thus h) from k parameters numerically, and then calculate steady state reaction
rates v°. Equation (3) is solved for J vector, as discussed in Ref. 43. The other is

2.3 Numerical calculation of steady state manifolds in log space

1. ky, k3, ...,k : the rate constants of true chemical reactions,
3. ko : the CSTR flow rate,

17



3. Ao,1,Ao0a,... : the concentrations that each input species would attain
in the CSTR if no reactions took place. They are also referred to as the
concentrations of CSTR input species in the reservoir;

4. M, M,, ... : the concentrations of major species, i.e., the species whose

concentrations are assumed to be constant during the reactions.

We call these abscissa parameters because they will be plotted horizontally
when showing the steady state manifolds. Abecissa parameters are either k param-
eters themselves or parameters that determine k. We want to know how the steady
state concentrations of intermediates change with the abscissa parameters.

The condition for a reaction network to be at steady states can be written

2K = 1(Xo,k) =0. (11)
We want to plot the solutions of the system of equations (11) as a function of any
given abscissa parameter a in the log space. The k parameters depend on a and are
given by known functions k(a). The form of the function depends on which type of
parameter is used for a. The solutions X, at steady states satisfy

f(Xo(a), k(a)) =0 (12)

Our purpose is to calculate log Xo(a) against loga, which requires evaluating the
dependence of the solution of a system of equations on the parameter a. The curve
(log Xo(a), log a) can be obtained by a numerical continuation method provided a
starting point (log Xo(ao), log ag) is known.

18



tion with controlled pivoting?>, the Adams-Bashforth explicit multi-step method of
integration*®, and the Newton method as a corrector to improve the results$445, |
also developed a method to decide the direction of the solution curve as the con-
tinuation method was being applied. The details are provided in Appendix I. Here
I discuss only a new general form for the Jacobian matrix which is valid for all

stoichiometric methods.

According to equations (4) and (12),
f(Xo(a), k(a)) = Ndiag(k(a))Xo"(a) = 0

at the steady states Xo(a). Consider a curve log Xo(a) vs. loga. Let 7 be the
arc length along such a curve. Then log Xy and loga are functions of r. Thus
(log Xo(7),log a(7)) are the points on the curve for 7 in some range. Therefore

df _ BNdiag(k)Xo"] dIn Xo _ 8|Ndiag(k)Xo"|d In a

ar 5in X, ' oma ar 0 (13)

where a is the abscissa parameter. Note that ‘In’ is used in equations for the

simplicity of calculation. It can be converted to ‘log’ after the calculation is done.

The terms in the Jacobian matrix in equation (13) can be evaluated explic-
itly.

_ _ > K o
3["‘{;‘1‘;!‘;’:‘"1 = Ndiag(k)diag(Xo")K* = Ndiag(v)K’ (14)

'ky 0 .- 0
0

ONdiag(k)Xo®] . 9 | O ko - 0] _
Olna !Nalng H N : Xo (15)

0 0 - &k
where K* is the transpose of K.
,,,,,,, end on the
parameter a and on the forms of the functions k(a). The derivatives of the four




a) k, does not depend on a: then

b) &, = a: then

ok _ Oa_ _ _ ..
dlna =M

k, = akg, where k¢ is the flow rate of CSTR; a is the concentration of a
species in a CSTR reservoir: then

d) k; = Aoa, where a is the flow rate of CSTR; A, is the concentration of a

species in a CSTR reservoir: then

%= %gﬂoﬂ=ki;
ki = M*<«a, where a is the true rate constant of a reaction involving a
major species as a reactant; M is the concentration of the major species;
K¢, is the kinetic order with respect to the major species: then
B e B g
f) &k =

kinetic order with respect to a; k{ is the true rate constant of the reaction:
then

Ok .

Blng =~ N Keca =k

The six cases above can be classified into three classes:

clasn ) ;l:"a-o;




dlna

class ii) = ky:

ok;
Olna

class iii ) =k, - Ke,.

‘ K
— enable us to calculate O[Ndiag(k)Xo ")

These expressions for 3na oo

(15).

using equation

Equation (13) is a system of n equations in n + 1 variables, which include
dIn Xy an dlna

pm d prat To solve the system of equations, we

need the (n + 1)-th equation

the n components of the

i(d In X;)? + (d1n a)? = (dr)?

=]

which defines 7 to be the arc length.

Based on the Jacobian evaluation formulas discussed above, the numerical
continuation of steady state manifolds is carried out and the results are displayed on
the computer screen. By clicking the mouse, different cross-sections of the calculated
steady state manifold can be seen on the screen. We can quickly observe how various
chemical concentrations change with any abscissa parameter.

2.4 Analytical steady state equations in the (k,C) parameter space

The steady state manifold in the log space often appears to be composed
of several segments which are close to linear. If this is the case, then it should be
possible to approximate the steady state manifold using linear equations.

I will discuss two techniques for obtaining analytical steady state equations.
One is a geometrical method based on slope measurements of the linear parts. Since
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linear equations represent hyperplanes in a multi-dimensional space, the method
will be called the hyperplane approzimation in log space. The second method is
algebraic and is based on the concept of dominant extreme current. It will be
called the dominant ertreme current approzimation. The first method can produce
analytical steady state equations directly without any chemical basis. The second
method depends on the chemical processes in the network and provides insight into

the important reactions at steady states.

1,2,.-.,d. Suppose there are m abscissa parameters, a,,a3,- - -, a,,, whose values
determine X;, i.e.

log X; = lﬁgxi(hgag,hgd:,“* ylogam).

Then,

dlog X, = (a'“‘x')dbg ,+(B§x dlogaz + -- (az‘“) 08 am

nately constant, so we have

= 83, s (g:;‘;:

In the linear region, all slopes are app:

dlogX,,  OlogX,
(8k§a)—3ui (Iﬂﬂggg)

) = Sim.

dlog X, = Z!udhsn; (16)

=1

Integrating equation (16) gives the equation of the hyperplane tang
the steady state manifold at the point where the partial derivatives are evaluated.
log X; = f-ij loga; + ¢ (17)

=1



where c; is an integration constant. In the non-log space. equation (17) has the
form

m
Xi=Caj"a3? - apm = C, [ o). (18)
1=1

logX =Sloga +c,
where § = (s,;).
For convenience in determining slopes of linear regions, we plot steady state
are at 1:1 ratio with this scale. We measure the slopes of different line segments

against all abecissa parameters and get approximate linear equations for the stendy
state manifolds in the neighbourhood of a chosen point.

3.4.2 Example: hyperplane apj
of the Gray-Scott network

The Gray-Scott network is an important reaction network with rich dy-
namical features. I will discuss this network in detail in chapter V. For now this
network will be used to illustrate the hyperplane approximation method.

Scheme I1:
R;=1 A+2BEL3B v, =k, AB?
Ry=2 B. vs = kB
Ry=A exit AL, vy = koA
Re=B exit B2 ve = koBB



R,=A inflow WA A s = koA
Rs=B inflow bl p ve = koBo.

A and B are the two dynamical intermediates; Ay, By are their concentra-

tions in the CSTR reservoir; ky is the flow rate of the CSTR flow; k,, k; are the

two true rate constants.

The network diagram of the GS network is shown in Fig. 4.

1L/

Eatf

Fig. 4 Network diagram of the Gray-Scott network.

Fig. 5 shows several steady state manifolds, where the logarithm of the

parameters:
a) =(‘STRﬂ0W. 02=Ao. 03=Bo, a4=k1, a;=k3.

All curves are plotted through the point
log A = -1.868 x 10-4 log B = -3.675
log Ap= -1.727 x 10-32 log Bo= -2.310
log ko = -2.960 logk; = 1.010
log k; = ~1.49%4,
24



which is called point #1 to distinguish it from other points of interest.

To obtain hyperplane equations for log A and log B. we measure the slopes
at the point #1 on the plots. As an example, we show how an equation for log B is

obtained. From Figure 5

o= Ol8B . OlgB . dlgB _
' Blogko ” Dlog Ag " Olog By
yo Q08B _ . 0OlgB _
4" Blogk, ° Blogk;
Substituting the slopes into equation (17) gives
log B = log ko + log By ~ log k3 + ¢ (19)
Evaluating c at point #1 gives
c =0.101.
In the non-log space, the equation is
B = 1.26 koBok; . (20)

This approximate equation for the steady state manifold is valid near point
#1. It shows how the steady state concentration of species B in the region is affected
by the parameters ko, By and k;. Other abscissa parameters have no effect on B in
the region. A similar treatment can be used to obtain an equation for species A.

3.4.3 Dominant extreme current approximation

Why are there linear regions in log — log plots of the steady state manifold?
This can be explained by using the concept of dominent extreme curvents. In each
lincar region of the steady state manifold, there exist a small number of extreme



Fig. 5 Cross-sections through the steady state manifold of the Gray-Scott network. Five
properties of the steady states, which will be discussed later. More graphs on the
next page.
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currents whose contributions to the steady states are often much bigger than other
extreme currents. In some cases, one extreme current dominates in each reaction.
Using only the dominant extreme current for each reaction is an approximation
which can greatly simplify treatment of the network and produce approximate an-

alytical solutions for the steady state manifold.

At a steady state, reaction rates v° can be calculated from the (h,j) pa-

rameters using

For the i-th reaction, the reaction rate v? is

r=d

v?mejh (21)

=1
where ¢, is the i-th row, [-th column element of the extreme current matrix E;
Ji is the rate of extreme current [ at the steady state; and r - d is the dimension
of the current cone. In the dominant extreme current approximation, only the

(21) is retained. If the largest contribution to the v? comes from the m-th extreme
current, then equation (21) becomes

vjn‘gi!ljﬁh
Note that m depends on i. In vector form




The simplified equations for steady states can be expressed in terms of

steady state concentrations using
E°) = diag(k)Xo". (23)

If there are no conservation conditions, n = d. and the i-th equation of the system
(23) is

Eimjm = k;’x;i“x;" ces X;"'n

Note K = (k;;), where ;; is the order of reaction j in X,. Taking the logarithm

gives
log €im + log jm = log ki + K1, log X1 + k3, log X3 + - - - + Ky, log X4,
and rearranging gives

x1ilog Xy + xailog X3 + -« + Kkyilog Xy — log jm = —logk, + boge,m-  (24)

The left side contains r unknowns
(belJOCXzo“ ’ ,quiikgi,lil‘g.??i ' 1kgjfii)'

This system of equations has one equation for each of the r reactions. Hence, it is a
system of r linear equations in r unknowns which can always be solved analytically
provided the equations are independent.

3.4.4 Example: dominant extreme current approximation for steady
state manifold of the Gray-Scott network

Let us take the Gray-Scott network as an example again to see the proce-




equations for steady state manifolds, The algorithm CORRALFRAME?S calculated
the following extreme current matrix for the Gray-Scott network,

(1

m
i
DY Y e o]

O e O e (D
S e OO
=

1
0
0
1
0

1)

,

Because there are six reactions (r = 6) and two independent intermediates (d = 2),

the dimension of the current cone is r ~ d = 4. Therefore, only four columns of E

Let us consider as an example the region of parameter space where js = 0
and where following inequalities hold

Ja>Ja> 0 > Jjs

These inequalities apply to point #1 used to illustrate the hyperplane apps
tion. The most important extreme current in this region is current 3. Current 4 is

matrix E gives the dominant extreme current matrix

1

[]
— 0 [~ [ ]

oco~oOoe

O~O0O~oo
coooCco

0
0
0
0
0

A L 4

Substituting this matrix into equation (22) gives a simplified steady state reaction

rate vector v° expressed in terms of j;,

'D = (Jl!hi:!l"!ﬁlh)l'
0



According to equations (22) and (23).

v’ = E% = diag(k)X,X.

this equation. The equation can be written explicitly in terms of § as follows

1= kiAB?
ja = kaB
J3 = koA

Ja =koB
Ja = koAo
Ja2 = ko By,

which corresponds to the system of linear equations

log A+ 2log B - log j; = ~ logk,
log B - log j2 = — log k3
log A - log js = - log ko
log B - log js = ~ log ko
~ log js = — log(koAo)
—log j2 = - log(ko By)

in the six unknowns (log A, log B, log jy, log j2, log j3, log js ).
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ifold:
log A = log Ag

log B = log ko + log By — log k;
log ji = log ky + 2log ko + log Ao + 2log By — 2log k3
log jz = log ko + log Bo
log ja = log ko + log Ao
log j4 = 2log ko + log Bp — log k3.
The equivalent non-log equations are

A=A
= koBo
=5
kik3 Ao B3
k3
Ja = koBo
Ja = koAo
. 3B,
= ks

Comparing the expression for B with equation (20) obtained using the
hyperplane approximation method, we see that the concentration expressions are
almast the same except for the numerical factor. This difference is caused by keeping
only one element in each row of the E matrix and ignoring all other elements.

If we only want to get steady state concentration expressions and are not
interested in the log j; expressions, the dominant extreme current approximation
can be simplified further in many situations. We may use only two columns, which
correspond to the two most important extreme currents. The dominant extreme
current matrix in the above example can be constructed by considering only extreme



currents 2 and 3

i
—_ 00 =S
S~ O =D

Using the equation
E%) = diag(k)X""

gives
J2 = k2B

Ja = koA
Ja = koAo
Ja = koBo

or in log space
log B - log jz = — log k3

log A — log ja = - log ko
- log j3 = - log(koAo)

- log jz = - log(ke Bo)

previously.
In this section, I have used the region near point #1 as an example to show
can also be applied to other regions of the steady state manifold. In fact, it is a

Mapﬂythpmadmtnmthemmﬁd:rmdeﬂveaqmimnhmHMy



I1I1. Steady state bifurcations and stability boundaries

Steady states are states at which the rates of concentration change for
all dynamic intermediates are zero. In experiments, some steady states may be
extremely vulnerable to small perturbations in experimental conditions and may
never be achieved. Such steady states are unstable. We want to divide parameter
space into regions where steady states exhibit different stability behaviour, and to
find how the dynamical features of reaction networks change with experimental
(k,C) parameters or (h,J) parameters. This chapter uses Hurwitz determinants
to analyze the stability of steady states. 1 will also introduce mathematical ideas
based on the Routh array and Orlando’s theorem. They will be used to calculate
stability boundaries which have very interesting structures. They can also help
explain dynamical features of chemical reaction networks.

3.1 Stability of steady states

3.1.1 Characteristic equations, eigenvalues and stability

A steady state is stable if there is an arbitrarily small region containing
the steady state with the property that all trajectories that start within the region
remain within this region forever. Otherwise the steady state is unstable. It is
asymplotically stable if all such trajectories return to the steady state. In this
thesis, for simplicity, the word ‘stable’ will be used to mean ‘asymptotically stable’
unless otherwise indicated.

Fandnmhlmhnm,ﬁaﬂpodbbnudymfadlm
eter values are stable, we say that the network is a steble networt. A network is an
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unstable network if there are parameter values for which unstable steady states are
present.
The dynamics of concentration vector X near a steady state Xp can be

linearized near the steady state as

‘-’%’5=MAx+m (25)

where AX = X — X, and the Jacobian matrix M has the form®’

M = Ndiag(v°)K'diag(X; ). (26)

The characteristic equation of the Jacobian matrix is

[1A = M| = apA™ + a3 (P)A""! + -+ + ap-1(P)A + an(p) = 0.

If there exist some conservation conditions, the stoichiometric matrix N will have
only d linearly independent rows (d < n). Accordingly, there are n ~ d constants of
the motion and n — d zero eigenvalues that correspond to changes in these constants
of the motion. The last n — d coefficients of the characteristic equation vanish
identically, i.e.

a¢+1(P) = ag+2(P) = ... = an(p) = 0.

Factoring A"~¢ out of the characteristic equation gives a polynomial of order d
having aq as the constant term. The characteristic equation becomes

1A — M| = aoX? + ay(P)A*~! + - + ag_1(P)A + ay(p) = 0. (27)
If there are no conservation conditions, d = n. Equation (27) is still valid.

The solutions of this equation are the eigenvalues of M. They determine
the stability of the steady state designated by the parameter p. When all the
35



cigenvalues have negative real parts, the corresponding steady state is asymptot-
ically stable. When one or more eigenvalues have positive real parts, the steady
state is unstable. The situation where the largest eigenvalue has a zero real part is

states. The transition occurs on the stability boundaries (or bifurcation sets) which

are the subject of this research.

The eigenvalues are determined by the coefficients in the characteristic
equation, which are functions of the parameter set p. When (k,C) parameters
are used, the coefficients often cannot be expressed in terms of the parameters us-

Only numerical approaches can be used. When (h, j) parameters are employed, the
coefficients of the characteristic equation are polynomials in the (h,J) parameters.
Stability analysis can then be conducted analytically. Because of the complexity of
the calculation, the analysis must be done on a computer using symbolic algebra.

the steady states for a parameter set p is stable and not in the transition situation,
are missing (= 0) or negative (< 0), the steady state is either unstable or in the
transition situation. If any coefficient is negative, the steady state is unstable.

%



determinants.

The Hurwitz determinants*®*4® are defined as

] (g (g l
g a2
0 ) (3

a; a3

A] =, Agg . Ai‘;

a, a3 a5 - G-y |
g 2 (g - 342
Ag=|0 a1 a3 - azd-a (28)

0 0 0 - a4
where ay =0if k > dor k < 0; ag,ay,...,aq are the coefficients of the character-
istic equation.
The (i, j)-th element of the Ay can be expressed as

Au(s,j) = az;-, (29)

and a3;_; = 0 whenever 2j -i >dor 2j-i<0.

All eigenvalues have negative real parts if and only if all Hurwitz determi-

are stable; steady states that have any negative Hurwitz determinants are unstable.

The Liénard-Chipart stability criteria®’ give stability conditions based on
combinations of a’s and A's. They eliminate the necessity of calculating all the A's
in order to determine the stability. The Liénard-Chipart stability criteria can be

JA) =aod+ 1A'+ ... +ay  (ag >0)

7



to have only roots with negative real parts may be expressed in any one of the four
following forms:

a) ag 20, ag 2-0-; A} >0, A3>0,--.

b) g >0, ag 2207 B3>0, A¢>0,.-.

c) g >0, aq4.1 >0, ag.3>0---;: AH; >0, A3>0,- ..

d) a4 >0, a4-1 >0, ag-3>0:--; A3>0, Aq>0,:--.
Steady states that satisfy any of the Liénard-Chipart criteria are stable.
3.1.4 The first column of the Routh array

Sign variations in the first column of an array called the Routh array?”
determine the stability of steady states. The first column of the Routh array is a
sequence of numbers (Ag, Bo,Co, Dy, - - -). The numbers can be calculated from the

Hurwitz determinants

(I!Ah AI'AS‘” ‘Adil) (m)

jular cases, number of characteristic roots with positive real
parts oquals the number of sign changes in the first column of the Routh array.

steady state is unstable if any one of the numbers in the sequence is negative.
38




The principal reason for the importance of the first column of the Routh
array is that it can help identify various kinds of instability. This subject is dincussed

in the next section.

3.2 Steady state bifurcations and stability boundaries

Steady state bifurcation is a crucial concept relating to stability bound-

aries. A bifurcation means a qualitative change in system behaviour. For steady

the dynamics occurs close to a steady state, the bifurcation is said to be local and
is a steady state bifurcation. Otherwise the bifurcation is global.

The qualitative change in the dynamics could be a stable steady state be-
coming unstable or a single steady state becoming multiple steady states, and so on.
The point in parameter space where the bifurcation occurs is called a bifurration
point. The set of bifurcation points constitutes a bifurcation set. The bifurcation
set for local bifurcations is called the steady state stability boundary.

There are two typical steady state bifurcations (stability boundaries) for
chemical reaction networks. One is the saddle-node bifurcation (SN)™0-52 where
two steady states coalesce and disappear. The SN bifurcation appears as a fold of a




bifurcation is the Hopf bifurcation (Hopf)™-%2 where a stable steady state (a stable

focus) loses its stability and changes into an unstable steady state (an unstable

main reason for chemical oscillations observed in experiments.
3.2.2 General equations for stability boundaries

Saddle-node bifurcation is caused by one real eigenvalue passing through

hypersurface in parameter space where the bifurcation occurs.

The characteristic equation (27) shows that when a real eigenvalue equals
zero, the constant term ay must also equal zero. When ay equals zero,
aod! + a1 (P)A?! + -+ + ag-1(P)A

= AMagA? ' + oy (p)A¥2+ ...+ aq-1(p)}

= 0.
Then one of the eigenvalues must be zero. Therefore, a saddle-node bifurcation
happens if and only if ag = 0.
equation (2), we can write the general equations for the saddle-node bifurcation

NV’=0 ay=0. (31)

A Hopf bifurcation occurs when a pair of complex conjugate eigenvalues




The location of the Hopf bifurcation hypersurfaces can be calculated using
Hurwitz determinants. The theoretical basis is Orlando's theorem”#3, which states
that

did-1 e
Bar = (DT ad [T + M) (@22)
J<k
where the A\;(i = 1,2,.--,d) are the eigenvalues or roots of the characteristic oqua-

tion (27), and the product is taken over all pairs of eigenvalues. Hence, Ay. 1 =0

if and only if there is at least one pair of eigenvalues whose sum is zero.

At a Hopf bifurcation point, there is a pair of pure imaginary eigenvalues.
Since their sum equals zero, Orlando's theorem says A4_; = 0. On the other hand,
because one side of the Hopf bifurcation is a stable region, all stability conditions
are satisfied. So, Ag-1 > 0. Therefore, the equations for the Hopf bifurcation
hypersurface are

Nv° =

(=

Ag-1=0 (32)

with the restriction that all other stability conditions are satisfied. This means all
other
Ai>0 i=12,...,.d-2,d

or any one of the Liénard-Chipart criteria excluding Ag_; > 0 is satisfied.

All Hopf bifurcation hypersurfaces satisfy equation (32), but not all points
satisfying equation (32) are on Hopf bifurcation hypersurfaces. In other words, Ay,
equals zero at all Hopf bifurcation points, but not all points at which Ay_; equals
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A4-1 = 0 according to the Orlando’s theorem. One kind of hypersurface produced
by this cancellation gives us very useful information on geometrical structures of
stability boundaries. It will be called the symmetrical eigenvalue hypersurfaces (SE)

and be discussed later.
3.2.3 Numerical calculation of stability boundaries

E-quations (31) and (32) have been used to calculate stability boundaries
is similar to that used for the numerical calculation of steady state manifolds dis-
cussed in section 2.3. We use one more parameter. Continuation methods had not
previously been developed for the calculation of stability boundaries. My method
is based on the explicit equations for stability boundaries. It is conceptually clear
and straight forward.

are two more issues to be addressed for the calculation of stability boundaries.

One is the determination of a starting point for the two parameter con-
tinuation. The objective is to find a point on the steady state manifold where the
number of eigenvalues with positive real parts changes. For the Hopf bifurcations,
this number changes from zero to two. For the SN bifurcations, the number chan .

According to the theory introduced in section 3.1.4, the sign pattern for
the first column of the Routh array is
(+. 4, ..., 4+, 4)
for a stable region. This ensures that all eigenvalues have negative values only.
Wﬁ;mpﬂmaSNpm.ldmmmmmmthd@ﬂAgm
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change because Ay = Ag_104. The sign pattern for the above sequence becomes
(+.4+ 4+ 04, -).

There is one sign change in the above sequence. When a point goes across a Hopf

point, the A4_; changes sign. The sign pattern becomes
(+ 4+ 4+ 4, = 4+).
There are two sign changes in the sequence.

To find a starting point for the 2-parameter continuation, the first column of
the Routh array is calculated numerically at each point on the steady state manifold.
By counting number of sign changes at each point, the SN and Hopf bifurcation

boundaries.

The second issue is the difficulty in handling the large numerical values of
the Hurwitz determinants for certain parameter values of large experimental net-
works. The numbers can easily overflow the machine limit without proper handling.
A solution is to reduce the magnitude of the Hurwitz determinants while keeping
their signs unchanged. The mathematical justification is

] .y | '] ol .. 7

a a3 as - G3i-) a, a3 a5 - O3y
! of - . 7

Qg a3 aq - O3i-3 G 3 a4 - Oy

A;=|0 a1 a3 - a3-3 =p'|0 ay a) - ahy_3| = Al
0 0 0 - a 6 0 0 - a
Since A, and A] change signs at the same time, we can use a smaller A to replace
the larger A, by reducing the a; to a = a,/p. The factoring constant p can be set
according to specific needs. A good choice of p is
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p=100_1 .

If necessary, the original A, value can be calculated from A/ using

log A, = ilogp +log A!.

3.3 Structures of stability boundaries

3.3.1 Symbols for marking stability regions

A point on a steady state manifold lies in a saddle node region if ag < 0.

saddle node regions are interleaved between non-saddle node regions. We propose
to mark all non-saddle node regions with symbols which are stacked above one
another in the proper order. The number of symbols in a stack tells us how many

is stable and will have various symbols to classify it as “upper” or “lower”. The
second type is unstable and lies in a Hopf region where A; < Ofori =1,2,-..,d-1.

Figure 6.

If the Hopf bifurcation is supercritical, a limit cycle attractor is usually
responds exactly to the Hopf region. In this situation, the Hopf region symbol (a
circle with horizontal line) is replaced by a limit cycle oscillation symbol (a circle).
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Fig. 6 Symbols used to mark stability regions. Their meanings are: (1) unique upper sta-
ble steady state (sss) : (2) unique lower ssx: (3) Hopf region state; (4) oscillatory
state; (5) coexistence of upper sas and its surrounding oscillatory state; (6) coexis-
stable steady states; (8) coexistence of upper sss and lower Hopf region state; (9)
coexistence of upper Hopf region state and lower sss; (10) coexistence of upper s
and lower oscillatory state; (11) coexistence of upper oucillatory state and lower s;

(12) coexistence of upper Hopf region state and lower Hopf region state.

stable steady state without folding the steady state manifold. This situation is
represented by a circle which surrounds a stable steady state symbol. This conven-
tion enables us to indicate the presence of two attractors without stacking symbols.
Thus, the number of stacked symbols still indicates the number of non-saddle node
region steady states produced by the folding of steady state manifold.

3.3.2 Structural elements of stability boundaries

tural elements. Structural elements include pieces of stability boundaries, structural
centres and cusp points on the stability boundaries. Structure elements are hyper-
surfaces in a multi ] parameter space and are line segments or points in




of structural elements. Among them. saddle node (SN), saddle node plus (SN*),
and Hopf are all pieces of stability boundaries. Symmetrical eigenvalue (SE) curves
(DZ) points are structural centres. Cusp points are second order singular points on
the steady state manifold. Different arrangements and organizations among these
structural elements can produce many different types of phase diagrams, which can
be understood in terms of these structural elements and their relationships to each

other.

Section 3.2.2 discussed equations for saddle node bifurcation hypersurfaces.
These include two subcases called SN and SN* bifurcations. A SN bifurcation is
a boundary between stable steady states and unstable saddle-shaped steady states.
Geometrically they are folding points between a stable branch and an unstable
branch. At a SN point, all eigenvalues have negative real parts except one eigenvalue
equals zero. Since one side of a SN point is a stable region, all stability conditions
must hold except aq = 0 at the SN point. A SN* is similar to a SN in that it is
also a geometrical folding point and it cbeys the same equation ay = 0. However,
a SN* point also has a real positive eigenvalue. Steady states on both sides of a

The difference between a SN and a SN* can be seen from Fig. 7. On the

hence all eigenvalues have negative real parts. When a point A on the upper branch

approaches the SN point along the curve, the positive ag at the point A becomes

smaller and smaller until it reaches 2¢ero at the SN point. Since Ay = ag x Ay_;

while Ay is still greater than sero at the SN, the A; becomes sero at the SN and
40



becomes a negative number after the point A gets into the middle branch. The sign
pattern of the Hurwitz determinants changes to (+,+....,+.+,-) and the first
column of the Routh array also becomes (+.4,...,+,+, =), which means that one

eigenvalue has become positive.

28 28 24 22 20

Fig. 7 SN and SN* bifurcation points. In addition to negative eigenvalues, there is only
one sero eigenvalue at a SN point, but there are one zero eigenvalue AND one
positive eigenvalue at a SN* point. (The graph is calculated using the Gray-Scott

There is also a SN* point on the same graph. It occurs between the lower
branch and the middle branch of the fold. Both sides of the SN* point are unstable
regions. When a point B on the lower branch moves from the stable region on the
far-right part of the lower branch toward the SN* point, it first passes through a
Hcpfpﬂlﬂtwhmm-n=0 Aftor passing this point, a pair of conjugate complex
es changes signs of their real parts to positive numbers. The pair of eigen-
ﬂmthQMtbmduiﬁmwmmmm
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parts become zero. The pair of complex conjugates becomes two real eigenvalues.
One of the eigenvalues approaches zero moving along the curve towards the SN+,
It becomes zero at the SN* while the other eigenvalue is still positive. At the SN+
point, ag = 0 while at least one A, < 0, for i = 1,...,d = 1. After the point
gets into the middle branch, there is only one positive eigenvalue and only one sign

change in the first column of the Routh array.

The difference between a Hopf and a SE point is illustrated in Fig. 8. In
Fig. 8(a), the Hopf point is a point where all Hurwitz determinants are positive
except Aq-) = 0. ay is also positive at a Hopf point. Imagine that we can move
the Hopf point toward the fold and let it pass through the SN* point. Then it
becomes the point SE in Fig. 8(b). When we check the signs of A4, starting from
the stable region on the lower-left part of the curve, we find that the Hopf or the
SE point is the first occurrence of Ay_; = 0 in both cases. The difference is that
ag > 0 at a Hopf point and a4 < 0 at a SE point.

2N =) é 7. |

4 3 -
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Fig. 8 Hopland SE points. (s) ag > 0at & Hopl point; (b) ag < 0 at & SE point. After a



Double zero points (DZ). also known as Takens-Bogdanov points38-54-5
are codimension 2 bifurcations where two eigenvalues are simultaneously zero. They
are the hypersurfaces which are one dimension lower than stability boundaries in
a general multi-dimensional space. As I will explain in the following sections, they
are places where different types of stability boundaries meet. Using a DZ point as a
centre, SN, SN* and Hopf curves form Y-shaped structures. A DZ point is also the

and SE curves join at DZ points.

Cusp points are higher order singular points on the stability boundaries.
Three steady states collapse to one steady state and the fold disappears at a cusp
point. It is seen as a tip or a sharp turning point on stability boundary or phase

diagrams.

Fig. 9 gives a summary of the relationships between Hopf, SE, SN, SN+

space. At the left is the Hopf region which is defined as the region where some
A; <Ofori=1,..,d~-1 At the right is the region where ag < 0. Outside
boundary of the combined region separates stable and unstable steady states with
Hopf and SN bifurcation curves as marked on the figure. When the Hopf region
overlaps the region where ay < 0, DZ points and two new curves called the SN+
curve and the SE curve appear. The SE curve is the subset of the boundary of the
wmﬁhﬁég{Oﬁfmislpn,dﬁlii‘l@hiﬂﬂgmﬂj'l‘ioi
Note that the SE curve is the continuation of the Hopf bifurcation boundary inside
the set ay < 0.
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Fig. 9 Relationships between Hopf, SE, SN, SN* and DZ hypersurfaces. The relationships
as shown here are valid inside the steady state manifold when it is flattened out in

the (h, J) space.

These structural elements will enable us to understand most theoretical and
experimental stability boundaries or phase diagrams. The bifurcation structures
revealed by these diagrams are very useful information for explaining experimental
results and exploring reaction 1

3.3.3 Y-shaped structures formed by SN, SN+ and Hopf curves

The Y-shaped structures mentioned in the last section are formed by SN,
SN+ and Hopf curves. There are two types of Y-shaped structures shown in Fig. 10
and Fig. 11.

Fig. 10(a) represents one type of steady state manifold near a DZ point.

An unstable region exists between the Hopf point and the SN* point on the graph.

is to push the Hopf point toward the SN* point. When the Hopf meets the SN+
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Fig. 10 Steady state manifolds near the Y-shaped structures. (a) near a type I Y-structure;

(b) near a type Il Y-structure.
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Fig. 11 The topological Y-shaped structures. (a) the type I Y-structure; (b) the type 11
Y-structure; (c) a combination of type I and type I structures.
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at the folding point, two eigenvalues equal zero and this is a DZ point. At the DZ
point, both A4_, and ay are zero. If we push the Hopf point further, it will become
# SE point and the SN* point changes into a SN point. Stability boundaries formed
this way appear Y-shaped and are shown in Fig. 11(a). On the graph, the first and
the second parameters are plotted as horizontal and vertical axes respectively. We
call this Y-shaped structure the type | Y-structure. In parameter space, the region
between the Hopf and the SN* curves (region 1 in Fig. 11(a)) within the type I
Y-structure is the region where oscillations could be found. If the Hopf bifurcation
is supercritical, region I is the only possible oscillatory region. The region on the
left side of the Hopf and the SN curves is named region II on the graph. This is
the region where bistability is usually found. If the Hopf bifurcation is subcritical,
it is also possible to find oscillations on the upper part (the part where the second
parameter is higher than that of the DZ point) of the region. The oscillations could
coexist with one or two stable steady states. Real final states of the system are
determined by initial system states in these situations.

Fig. 10(b) represents another type of steady state manifold near a DZ point.
On the lower branch of the curve, there is an unstable region between two Hopf
bifurcation points marked ‘Hopf-1' and ‘Hopf-2". There is also a SN point between
the middle and the lower branches. When we push the point Hopf-1 toward the
SN point by changing a second parameter (the position of the Hopf-2 point may
aleo change at the same time, but we do not consider this change at the moment),
the region between the Hopi-1 and the SN points becomes smaller and smaller.
Eventually the Hopl-1 and the SN points will coincide and a DZ point is formed.
Pushing the Hopf-1 point even further will produce a SN* point. The stability
boundaries formed this way also possess a topological Y-shaped structure shown
in Fig. 11(b). This is the type I/ Y-structure. Notice that the regions | and II in
Fig. 11(a) have exchanged their positions in Fig. 11(b).
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After the Y-structure in Fig. 11(b) is obtained, if the point Hopf-2 in
Fig. 10(b) is pushed toward the SN* by changing the second parameter, another
Y-structure of type I will be formed. The combination of the two Y-structures gives
stability boundaries shown in Fig. 11(c). The unstable regions caused by the two
combined Y-structures are marked II. I, II respectively. The region number I and 11
have the same meaning as | discussed above. The symbols DZ-1 and DZ-2 indicate

two DZ points.

Fig. 11 is a qualitative illustration of the topological Y-shaped structures.
For a specific network and some specified parameters, real shapes of the Y-structures
could be bent. Slopes of the curves could also be different from that shown in the
figure. But the topological structures are always held.

Y-shaped structures are seen on many phase diagrams. While the type 1 Y-
to be discussed later), the type II Y-structures have also been olwerved in chemical
networks such as the Willamowski-Rossler model®®.57. Qur research shows that in
the neighbourhood of a DZ point, distance between two aj Hopf and SN

they often appear to overlap on each other. But no matter how close they are, the
Y-shaped structures discussed previously always exist. A grasp of the structures
can help us understand experi | and theoretical results clearly.

3.3.4 DZ as the crossing point of SN, SN*, Hopl, SE curves

In the previous section, we saw that a DZ point is a cromsing point in the




also meets the DZ point. To see this, the location of the SE point could be added

to Figure 10 and its location plotted on Figure 11,

the middle unstable branch of the fold and becomes a SE point. The SN or the
SN* point changes into a SN* or a SN point accordingly. Further change of the
second parameter will push the SE point away from the newly formed SN* or the
SN point. Resulted stability boundaries look like one of the DZ point-centered (or
DZ-centered) structures shown in Fig. 12.

Fig- 12 One SE curve connects two DZ-centered structures. (a) Hopf curves belonging to

the two DZ-centered structures cross over on a two

by equation (31) and equation (32) without other res jons. Using equation (31)
and choosing any SN or SN* point as a starting point, we can calculate a curve
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as a starting point, we can calculate a curve composed of Hopf and SE segments.
cross at the DZ point. However. because the manifold is folded along the SN-
SN* curve the curves appear to meet tangentially rather than cross on the phase

diagram.

It is not uncommon to see two such crossing structures (Y-shaped structures
are part of the crossing structures) on a stability boundary or a phase diagram. The
two crossing structures are often connected in one of the two ways. If there exints
a cusp point on the (SN.SN*) curve, then the (SN,SN*) curve will be in a position
of joining the two crossing structures. If no cusp points exist, the two crossings are
usually connected by a SE curve, as shown in Fig. 12. The two double zero points
are usually located on the upper and the lower branches of a fold, respectively.
So are the two Hopf bifurcations. On a two-dimensional parameter plane, the two

diagram (Fig. 12(a)). However, they really do not touch at any point since they are
on different branches of a fold. It is also possible that the two Hopf curves do not
cross over at all as shown in Fig. 12(b). For both cases, the two Hopf bifurcation
curves are connected by a SE curve. The SE curve serves as a bridge between the

two Hopf curves and between the two branches of a fold.

The SE curves shown in Fig. 12 have had a significant impact on our studies
structures centred at two DZ points. They also connect two seemingly separated
Hopf bifurcation curves. By following a SE curve, we can quickly find new bifur-
cation structures on new parameter regions that could be very important to the
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in pieces without the SE curves. Since a numerical continuation method can only
calculate continuous steady state manifolds or continuous stability boundaries, it
could restrict our investigations only on a small piece of a bifurcation structure or
only in a small region of the parameter space. The discovery of SE curves provides

an effective solution to this problem.
3.3.5 Onion structure of the A4_; = 0 hypersurfaces

In a previous section, we saw that the Hopf and SE bifurcation sets are
hypersurfaces of A4-; = 0 in multi-dimensional paramet >r space. They are curves
of Aq-) = 0 in a two-dimensional subspace. Actually, not all Ay.; = 0 hypersur-
faces are Hopf or SE bifurcation sets. The hypersurfaces can form a multi-layered

structure similar to an onion.

Fig. 13 shows a representative steady state manifold con multiple
Aqy-) = 0 points (the curve is calculated using the SNB model*). Four Ay_; = 0
points are marked as A, B, C and D. Among them, A and D are two points on a
SE curve, which is connected to a Hopf curve at a DZ point. The points B, C also

from the Hopf hypersurface. Points B and C are not a part of the SE curve defined
in this thesis.

and the last Ay_; = 0 points are Hopf or SE points. As soon as Ay._; becomes

MiwnﬁﬂwﬂndnﬂapfﬂtaSEpdnt‘mmmchmmmmm

»0 that the first column of the Routh array still provides right number of sign
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Fig. 13 A steady state manifold with multiple A4_; = 0 points. Among four such points
marked by A,B,C.D, the points A and D are on the SE curve defined in this thesis

while the , .ints B,C are not.

we saw before was a steady state manifold at a cross section of Fig. 14.

Fig. 14 A qualitative stability boundary diagram including an onlon structure formed by
A4-) = 0 hypersurfaces. For simplicity, only two layers of an onion structure are

Distances between the A,_) = 0 hypersurfaces could be very small in some
networks. When we calculate a steady state manifold numerically, a step size that
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A4-) = 0 hypersurfaces. This could lead to misinterpretations of sign changes in

Ag4-) along the steady state manifold. Understanding the onion structures solves

this problem.

3.3.6 Stability boundaries viewed from within the steady state manifold

We have seen crossing structures of stability boundaries where a DZ point
sits at the centre of a (SN,SN*) curve and (Hopf,SE) curve crossing. Based on
this structure, we can design a new coordinate system to describe relationships
between stability boundaries, stability regions and signs of (A4-,, ag) pairs. In this
coordinate system, the steady state manifold will be flattened so that (SN,SN+)
and (Hopf,SE) curves exhibit a true crossing.

Fig. 15 shows the flattened view of the steady state manifold on the coor-
dinate system. In the first quadrant, (A4-1,aq) sign patterns are (+,+). Steady
states are all stable in this parameter region. In other quadrants, either Ay_; or
ay is negative, these are unstable regions.

The coordinate system can be used as a tool for understanding stability
properties of steady states on various parts of a steady state manifold. It brings
steady states, stability boundaries and signs of (A4-),a¢) pairs all together. For
example, existence of onlon-structured Ay_, = 0 hypersurfaces can be presented as
in Fig. 16. The steady state manifold shown in Fig. 13 is qualitatively seen as two
been unfolded and stabilities of steady states are clearly seen. The curve starts from
the stable quadrant, goes across s SN boundary (thin-dashed part of the horisontal
axis) and a SE boundary (thin-solid part of the vertical axis), then passes through
another Ay_; = 0 boundary in quadrant III twice. Finally it goes across the SE
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chosen such that the curve Ay_; =0 is the y-axis and the curve ag = 0 is the

I-axis.

and the SN boundaries again and comes back to the stable quadrant.

Fig. 13 and Fig. 16 show only two layers of Ay_) = 0 hypersurfaces in
an onion structure. Theoretically, there may be many layers of the Ay, = 0
surfaces. The number of layers depends on the network and the parameters. Dis-
tances between the layers also vary quite substantially. When the distance between

steady states. When the distance between a SE and its clomest Ay_; = 0 surfaces
is extremely small, it can be difficult to calculate the SE curve using a conventional
numerical continuation method.



Fig. 16 Flattened view of a steady state manifold with onion-structured Ay-; = 0 hyper-
surfaces. Meanings of elements in the coordinate system are shown in Fig. 15.



IV. Dependence of stability boundaries
on experimental parameters

From both experimental and a theoretical points of view, it is very im-
portant to understand how stability boundaries are affected by various experimen-
tal parameters. As mentioned earlier, stability boundaries are hypersurfaces in a
multi-dimensional parameter space. Generally speaking, it is impossible to derive
analytical formulas for these boundaries in the whole parameter space because of
the nonlinear nature of the stability boundaries.

The situation is not totally hopeless. After we worked with many different
stability boundaries, we realized that it is possible to derive analytical formulas
for many stability boundaries in specific parameter regions. These locally valid

situations. The first three give explicit analytical formulas for stability boundaries.




can yield analytical formulas for SN and SN* stability boundaries.

The key idea is based on the fact that SN and SN* hypersurfaces are at the
intersections of two neighbouring branches of a fold. Therefore, the concentrations
of all chemical species at a point on a SN or a SN* hypersurface must satisfy both
equations for the neighbouring branches. If we already know equations for the two
neighbouring branches, then moving a specific concentration variable to the left side
of each equation and letting the right sides of the two equations be equal to each
other will produce equations for the SN or the SN* stability boundary.

Consider the general forms of two hyperplane approximations as in Chap-

logX = $!joga + ¢!
logX = $?loga + c?
where the superscripts 1 and 2 distinguish between the hyperplanes. When the two

$'loga +c! = $loga +¢?

(8" - $%)loga + (c! - c?) =0.

The resulting set of d equations places d restrictions on a. Since there can only

Fig. 17 shows linear equations for six regions of a steady state manifold of
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used in section 2.4.1. Letting log B = log B for every pair of neighbouring regions
ylelds analytical formulas of the three SN and one SN* stability boundaries listex
in Table 1. These boundary equations are hyperplanes in a 5-dimensional log space,

Their corresponding non-log forms are also given in the table.

Table 1. SN & SN* Stability Boundaries of the GS Network

(produced by the hyperplane approximation)
No. Expre:iiam

% SN, llﬁlngko+bgﬁg+lZﬁ(bng+logkl)—2ﬂlogkg=042-()
kt‘,“Bo(Ank,)‘“k-_.’“ =26

SN+ llﬁlegko+226bg.do+126k:gh-248[9;1:;—057;!)

K19 A3 20k} 17200 = 3.7 ]
SNz | 1.19logko - ualo;.ao—lzslagk,aso'n 0o
ki 1942900128 _ .53
SNs 7119&.;1;., hgauglzshuo—lxhgk,-mia 0 B
k&l'Bol(Ank )—13 075 _ B ]

4.2 Analytical stability boundaries based on the DECA

the DECA method. The intersection of two hyperplanes gives SN and SN* stability
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Fig. 17 Steady state manifold equations of the Gray-Scott network, produced by the hy-
perplane approximation. Parameters: log g = —1.727 x 10~%;log B, =
-231G;logky = 1.0 logk; = —1.494.. Left sides of the equations are
all log B, i.e.,

Region #1: log B = log ko + log By — log k3 + 0.101
Region #2: log B = -0.16 log ko — 1.26(log Ao + log k;) + 1.48log k3 + 0.52
Regin #3: log B = log ko + log Ao - log k; — 0.0048
Region #4: log B = log Ao - 0.03359
Region #5: log B = 1.19log ko — 1.26(log Ao + log k) + 0.24
Region #6: log B = log By + 0.114
64



order used. However. the method can be generalized to cover all of the parameter
space by dividing the current polytope into simplices with every possible ordering
of the currents. Since r — d currents are used. there are (r — d)! orderings. For the

Gray-Scott network, r — d = 4 and there are 24 orderings.

Equations in the (h,J) parameters for the SN, SN* and Hopf stability
boundaries can be derived using the standard approach of SNA. They may be
converted to the equations in experimental parameters using the dominant extreme

current approximation. The complete method includes five steps, which will be

Step 1. Decomposing a current polytope into simplices

Section 2.2 showed that the set of steady states of a reaction network con-

stitutes a current polytope in which each point represents a single steady state.

mid in a three-dimensional space. Its five vertices correspond to the five extreme

currents of the network. We now want to decompose the current polytope into
simplices.

In a three-dimensional parameter space, simplices are tetrahedrons with
four vertices. There are two ways to decompose the current polytope of the Gray-
Scott network into simplices. One is to decompose the polytope into tetrahedrons
(1,2,3,4) and (2,3,4,5). where the numbers in the parentheses represent the vertices
(Fig. 18(b)). The other way is to decompose the polytope into tetrahedrons (1,2,3,5)
and (1,3,4,5) as shown in Fig. 18(c). Either decomposition can serve our needs. |
(1,2.3,4) and (2,3,4,5) in the (h, }) space.
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(c)

Fig. 18 The current polytope of the Gray-Scott network and two ways to divide it into
simplices. (a) The current polytope of the Gray-Scott network, which is a three-
dimensional square pyramid; (h) Decomposition of the current polytope into sim-
plices (1,2,3.4) and (2.3,4.5): (c) Decomposition of the current polytope into sim-
plices (1,2,3.4) and (2,3.4.5)

Step 2. Clalculating systems of snequalities for unstable regions in the (h,}) param-

eter apace

has the form %

The Jacobian matrix (equation (26)) in (h, J) parameters
M = Ndiag(E))K'diag(h). (33)

The coeflicients a, of the corresponding characteristic equation (27) are polyno-
inants built from the a, are

miaks in the (h.)) parameters. The Hurwitz
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also polvnomials in these parameters. Analyzing the polynomials using exponent
polytopes?® gives systems of inequalities for unstable regions in the (h, J) parameter
space. The results of a stability analyeis for the Gray-Scott network using current

polytope simplices (1.2.3.4) and (2.3.4.5) are given in Table 2.

Table 2. Unstable Regions of the Grav-Scott Network

Currents# Onscillation Regions Bistable Regions

h2 >y J1 7> J2
Jv > 2 Jy
1> )a > Ja
1,234 Jrha > jahy

— -4

hy > hy Ja > h
J4 >N 4>
Ja> 12 Ja > Ja
Jahz > jah,

ha > hy Ja > Ja
2,345 Jja > 2 Ja > Ja
Ja> Ja > Jgn
Jahz > gah)

Each system of inequalitics in Table 2 is enclosed in a box. A system
corresponds to an unstable region in the (h, j) space. For the Gray-Scott. network,
there are three systems of inequalities for the oscillation regions and another three
systems of inequalities for the bistable regions. In the next step, we will analyze
these systems of inequalities and find the relative importance of the extreme currents
for each system.

Step 3. Finding all possible j-orderings consistent wath @ system of snequalites



Most inequality systems contain inequalities involving the J parameters.
They indicate the relative importance of certain extreme currents in the unsta-
ble region. Only certain orderings of the j parameters are consistent with these

inoqualities.

For example, the first system of inequalities for the oscillation region in
Table 2 requires
J 1> sz Jl > J‘
These two inequalities are consistent with only 8 of the 24 possible orderings of

J1yJ2, Ja, Ja- The acceptable orderings are:

J1 > J2 > j3 > jas Nh>J2>js>0s

J1 > Ja > j1> Ja, Nh>Js>Ja>0
> Ja > ja > Ja Nh>Je>33> 0

Ja > jy > ja > Ja, J3 > 01 > ja > Jja.

For the simplex (2,3,4,5), there are also 24 possible orderings of j3, js, ja, Js-
The unstable region inequalities in Table 2 must be evaluated in each of the 48

into the two simplices (1,2.3.5) and (1,3,4,5), we also get 48 different Jj-orderings.

Thix means we can divide unstable regions into 48 small regions. In any small

dominant extreme current approximation method discussed in section 2.4.3 will

the (h, ) parameters and the (k.C) parameters, which can be used to convert the
a8




Step 4. Dominant ertreme current approrimation

For the set of (h.J) parameters using currents Jjy, ja. ja. js. there are 24
orderings of the § parameters. The dominant extreme current approximation dis-
cussed in Sections 2.4.3 and 2.4.4 can be applied to each possible ordering,  For

example, the ordering j; > jz > js > j4 yields the simplified current matrix
0 0 0 0
0 0 00
0100
0 010
1 0 0 00
001 0 0 o0l
and the simplified steady state reaction rate vector

[

(=T

E

vl = (Jr. Jas Jay Jas vy 3a)".

Using this reaction rate vector as the left side of equation (23) gives
it =k AB?

h=kB
Ja = koA
Ja = koB
J1 = koAo

J2 = ko By,
which produces the mapping




The mapping is determined by the simplified steady state reaction rate vec-
tor v?. Several j-orderings could produce the same simplified steady state reaction
rate vectors, and hence the same mapping. For the Gray-Scott network, I have
found that the 24 orderings of j, jz, js, 4 and 24 orderings of jg, ja. j4. js produce
16 different simplified steady state reaction rate vectors v°. Therefore, there are 16
different mappings between the (h, J) and the (k, C) parameters. All steady state
reaction rate vectors, their corresponding j-orderings, and the resulting mappings

are given in Appendix 2.

Sometimes the system of six equations in the six (h,J) parameters
(A, B, j1, 32, ja, Ja) is not solvable unless certain relationships among the (k, C) pa-

rameters hold. Examples appear in the tables of Appendix 2.
Step 8. Substituting the mapping into the systems of inequalities

When all mappings are substituted into each of the six systems of inequal-

ities in Table 2, certain combinations have no solutions. The combinations with

cter space. The two bistable regions are

[ ko >k

1. ¢ k(; - k[A*’\Bo
| k145 > ko

[ k> kokiAoBo
2 4 kokjﬂg > Eg
| ky > ko.




( k3 > 3k, A2
Ao > By
ke > ko

\ k()k]Aﬁ > kg

kl A;‘; > kg
k3 > koky Ao By
ks > ko

{ koky Ag > kg

Fig.19 shows the accurate stability boundaries and the approximate sta-
bility boundaries. They are qualitatively very similar. Even though the analytical
stability boundaries do not exactly match the accurate stability boundaries, the
approach has some unique advantages. The accurate stability boundaries can only
be calculated in a low dimensional subspace (usually two-dimensional), but the an-
alytical formulas are valid in the full high dimensional p.rameter space. They can
answer questions that cannot be answered by the numerical stability boundaries,
such as how various two-dimensional stability boundaries are affected by all the

other experimental parameters.

The analytical stability boundaries can reveal additional useful facts. For
example, the first system of inequalities for the bistable regions in the (k,C) pa-

rameters tells us:

1. The range of ko covered by the first bistable region is determined by the
parameters Ay, k;, Bo;

2. When k,, By are fixed, increasing Ay will move the bistable regions to a
higher ko range;

3. When &,, By are fixed, increasing Ao will widen the bistable range.

n



Fig. 19 Stability boundaries of the Gray-Scott network calculated by the numerical con-
tinuation (curves without equations) and by the approximated analytical formulas
(curves with equations). Parameters: log By = -2.310; log k) = 1.010; log k3 =
=1.494.

I have examined the Gray-Scott network thoroughly and have confirmed these con-

clusions.
4.3 Directly derivable analytical stability boundaries

Analytical stability boundaries can sometimes be derived directly from
equation (8)
€) = diag(k)XX = diag(k)h—*

Ly



in combination with a boundary equation in (h, §) parameters. The boundary equa-
tion in the (h.J) parameters can greatly simplify the process of solving equation (8).

which may otherwise be unsolvable.

The Showalter-Noyes-Bar-Eli (SNB) network™ is a typical network that
contains directly derivable analytical stability boundaries. Fig. 20 is the network
diagram of the SNB network. Fig. 21(a) is a cross-section of its steady state man-
ifold and Fig. 21(b) is one of its two-dimensional phase diagrams. To explain the
procedure for deriving analytical formulas, 1 will focus on obtaining the formula
for the stability boundary near the point P in Fig. 21 (the low Hopf bifurcation

surface).

Fig. 20 Network diagram of the SNB reaction network.

Detailed studies®® found that four of the network’s 53 extreme currents,
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Fig. 21 (a) Steady state manifold of the SNB network on the (log [Br~], log ko) plane; (b)
Stability boundaries of the SNB network on the (log [Br o, log ko) plane.



extreme current submatrix consisting of these four currents is

E, E;y E; E;;
R, ( 1 0 0 0 \
R; 0 0 0 1
Rj 0 0 0 |
Rq 0 1 0 2
Res 0 0 0 1
I 0o 0 1 1
07 0O 0 0 2
oo lo o 1 o
R, | 0 0 0
Ra\O 1 0 o)
where reaction numbers R;,R3,... stand for reactions 1, 2, ... on the network

diagram; 1;,0,; are the CSTR input and output reactions for BrO,;: ()7 ix the

CSTR output reaction for HOBr. The rate laws for the reactions involved in the

four currents are o o
v = ki [BrO; |[Br~ J[H*)?

vz = k3[HBrO)[Br |(H']
vs = k[BrO; |[HBrOa[H*]
ve = kq[Ce’* |[BrO,)[H?]

ves = ke s[Cet*)?

vy, = ko[BrOj o

vo, = ko|HOBr]

vo, = ko[BrO;]

v_y = k_,[HBrO,)|HOB]

v_4 = k_4[HBrO;][Ce**)

]



where the subscripts attached to v's are the reaction numbers. Note that H* is

treated as a major species in the network, so its concentration is constant.

Substituting v® = EJ in these rate expressions ylelds

ki [BrO3 |[Br~][H*)? = jy (34.1)
k2{HBrO;)(Br~|[H*] = j1a (34.2)
ka[BrOj3 |[HBrO][H*| = 512 (34.3)
ka[Ce®*][BrOa)[H*] = jq + 2512 (34.4)
kes[Ce**)? = jya (34.5)
ko[BrO3Jo = jr + jra (34.6)

ko[HOBr] = 2j;3 (34.7)

ko[BrO3 ] = js (34.8)

k-1 [HBrO,)[HOBr] = jy (34.9)
k_4[HBrO;)[Ce**) = jq. (34.10)

The solution of this system of equations is the desired mapping between the (h, j)

stability analysis in the (h, J) parameters shows that the low Hopf ' '
in Fig. 21 is

Jiz = 3j;. (34.11)



The introduction of this stability boundary equation greatly simplifies the caleu-
lation of the stability boundaries. Combining equations (34.7). (34.9) and (34.11)

gives

ko[HOBr] = 6k _,[HBrO,)[HOBX).

which can be solved to get

ko
6k_y

[HBI‘O:] = (35)

Combining equations (34.1), (34.2) and (34.11) yields

3k, [BrO; |[H*] = ky[HBrO,). (36)

Substituting (35) into (36) and rearranging the equation produce

-1_ _ koka .

According to equations (34.8) and (37),

o
i1 = kolBrO3 | = ST

According to equations (34.3), (37) and (35),
Jra = ks[BrO3 | [HBrO;][H*] = “M

108k, k2 |

Since ko[BrO3 lo = jr + jia, the low Hopf boundary equation is

_ 108K,k [H*][BrO;
ko ka(Bk_, + ks[HY]) (38)

m”



Here the jz and jjz expressions have been used,

Equation (38) represents the vertical line on the (log ko.log [Br=]o) plane
shown in Fig. 21. It is nonlinear in other dimensions. Similar procedures were
used to derive equations for the other stability boundaries of the SNB network. See

Ref. 43 for the detail.

4.4 Slope patterns and stability boundaries

I have discussed three methods for deriving analytical stability boundaries;
however, there are still circumstances where analytical formulas cannot be obtained.
The stability boundaries might be located in a highly nonlinear region so the hyper-
plane approximation cannot be used. The extreme currents might have comparable
rates, so that approaches based on big differences in § values cannot be used.

Even under these situations, it is often possible to get information on how
the experimental parameters affect the stability boundaries. 1 developed a method
based on the slope differences on opposite sides of a bifurcation point. The sign
move the stability boundaries in any desired direction on the phase diagram.

We need the signs of the coefficients of a tangent hyperplane to the steady
state manifold at two points, called #1 and #2. The tangent hyperplane is given
by the same equation used for the hyperplar= approximation,

log X, = iiig‘ kfd!j + ¢;.

j=1

The signs of the coefficients s}; and s7, at the two points can be obtained from plots
I



The procedure starts with moving the cursor to point #1 on one side of a
bifurcation point of interest. Steady state manifold cross-sections with respect to
all other experimental parameters are calculated and approximate slopex «! |, at the
cursor point are recorded. Then the cursor is moved to point #2 on the other side
of the bifurcation point and the slopes s?] are recorded again. It doesn't matter if
we cannot measure slopes accurately as long as we can tell the relative magnitudes
of the slopes at two sides of the bifurcation point. Put a “+",“0" or “-* sign at
t

or 8! < a?

the corresponding position in the sign pattern if s}, > &2, s! = #? | < Wl

1 1)

Only parameters with “+" or “—" signs affect the positions of stability boundaries.

As an example, consider the steady state manifold shown in Fig. 22 of
the simplified BSF network?® called the BSFSN network. (Details on the BSFSN
network will be discussed in chapter XI). Two abscissa parameters will be used to
illustrate the procedures.

Consider the lower left saddle-node bifurcation point in Fig. 22. Parts (n)
and (c) show that the slope is greater than 0 at the point 1 and it ix kews than 0 at
the point 2 when the log CSTR flow rate is used as the abacissa parameter. At the
first position in the sign pattern, we write a “+” sign because the slope at the point
1 is greater than the slope at point 2. Similarly, Fig. 22(b) and Fig. 22(d) show
that the slope is great than 0 at the point 1 and less than 0 at the point 2 when
log [SO3~]o is used as the abscissa parameter. Then, we write another “4+” sign
at the second position in the sign pattern. Calculating the steady state manifold
using all other abscissa parameters and using the fixed species log [HY], we can
determine all the signs in the sign pattern. The resulting sign pattern is

ko [SO3jo [BrO3lo ki ks ks ks ke ky
m“‘l)—’:')g +, +, ) T T 0’ +, 0' +)

4]
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Fig. 22 Steady state manifolds of the BSFSN network. T'wo abscissa parameters are used
here. Please note the slopes at: (a) point 1 with CSTR flow rate as the abeciss
parameter; (b) point 1 with log [SO3~ ], as the abscissa parameter; (¢) point 2 with
CSTR flow rate as the abscissa parameter; (d) point 2 with log [SO3" |, ax the
abscissa parameter. A pattern of slope differences is constructed for this network in
order to determine the effects of experimental parameters on the stability boundaries

of the network.

The mathematical justification for the method to be used is as follows. At
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a hifurcation point, we have
.s} loga, + .-.i loga, + - + s,,l,n log a,, + ¢y
(39)
= stlogay + s2logaz + - + &2 loga 2
=s1logay + s3logaz + - + s, loga,, + c3,
If we choose the first and the second abscissa parameters to be the independent and

the dependent parameters respectively, then equation (39) can be written as

L — s -8 -
logay = T loga, - Z(:L Sé)lﬂgzz, +C. (40)
2~ 42 =3 Y27 %2

where C is a constant.

In equation (40), the terms within the summation on the right-hand side
determine the intercept of the two-dimensional stability boundary. For the i-th
1_ o2

- o NS — B & 2 € 1
term in the summation, if ———; > 0, then increasing a, will d~crease the loga;

intercept because of the negative sign ahead of it.

Based on equation (40), we now give a method for constructing a new sign
pattern such that a “+" or “-" indicates whether increasing log a, increases or de-

creascs the intercept. First we decide which variables will be plotted on the vertical

of the two-dimensional phase diagram. If the sign corresponding to the dependent
variable a3 is “+", reverse all signs in the sign pattern. Otherwise, keep all the signs
unchanged. The resulting sign pattern gives the sign of the coefficient of loga; in
equation (40). Since the dependent variable a; does not appear on the right of
equation (40). put a blank in the new sign pattern for aj.

th:mthgeﬂmmndjmtpﬁnmﬁmmthn;bﬂuybmmﬁrym
Fig. 22 increases its intercept. If we choose [SO3~Jo and ko as the dependent and
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the independent variables for the BSFSN network. the new sign pattern is

ko [SO37 Jo [BrOgw Ky hy hy ko kg hy

—. . +. L | T | A )

variable will increase the intercept of the two-dimensional stability boundary. A

“=" sign indicates the opposite.

We can also read from the new sign pattern how to shift the boundary to
the left or right. If the sign corresponding to the indepeadent variable a; is 4"
increasing the intercept means moving the stability boundary to the left. Otherwise,

it means moving the stability boundary to the right.

For the BSFSN network, since the sign corresponding to the independent
variable kg is —, we need to decrease any of the variables whose signs are +, or
increase any of the variables whose signs are —, in order to move the two-dimensional
stability boundary to the left. That is to say, we need to decrease any of the
(BrOg3 o, k1, k2 or increase any of the ky, k7 to move the stability boundary to the

left.
This method will be used in section 6.5 to adjust parameter values in order

to fit experimental stability boundaries of the BSF network.

4.5 Adjusting experimental parameters to fit experimental results

The task of adjusting parameters to fit experimental results is an important



and other features of the new SNA program package. The methods available for

parameter adjustment are:

1. If we can derive analytical stability boundary equations using one of the three
methods discussed in sections 4.1 to 4.3, we know which experimental variables

affect stability boundaries and how to adjust them to move the boundaries in

order to fit experiments;

2. If we cannot derive stability boundary equations explicitly, the sign pattern

method in section 4.4 can be used to make paramecter adjustments;

3. Another method uses the SNA program package interactively. On the steady

procedure moves the stability boundary so that the cursor is in the interior
of the unstable region. First have the program calculate another cross-section
of the steady state manifold using a different abecissa parameter. On the
new cross-section, the cursor is on the same bifurcation point observed in the
previous crose-section. Move the cursor into the interior of the unstable region.

Recalculate the steady state manifold using the first abscissa parameter. The

tion. This procedure has been used for the oxalate-peroxide-sulfite network
analysis®7.



V. Stability boundaries of the Gray-Scott network

The Gray-Scott anetwork is a simple. but dynamically rich network. It
contains almost all experimentally observed nonlinear features such as oscillations

and bistability. except chaos. It is a promising prototype network for modelling

In their papers, Gray and Scott'®~2" ysed a set of dimensionless parametoers
to treat the network analytically. In this chapter, I will do a systematic investigation
in the conventional experimental parameter space. 1 will explain the emergence

of various nonlinear dynamical features. the structure of stability boundaries, the

familiar concentrations and rate constants. We will sec how the important chemical

pathways (dominant extreme currents) contribute to various steady states. The

network which I will discuss in the next chapter.

5.1 The Gray-Scott network

The Gray-Scott network includes two chemical species and six reactions.
Both species are intermediates and they are dynamical variables. Among the six
reactions, only two are real chemical reactions. Two are CSTR inflow reactions

reactions that wash the two intermediates out of the system.

Scheme 111 and Fig. 23 are duplicates of Scheme 11 and Fig. 4 discussed in
chapter I1. The real reaction 1 is an auto-catalytic reaction in which B is both a



product and a catalyst. It is an essential reaction to bring about instabilities. The

real reaction 2 is a reaction that eonsumes B.

Scheme III:
R, =1 A+2BLL 3B v, = k,AB?
R,;=2 B— vy = k3B

R:g':A exit A— U3 = kﬂA

R4=B exit B-Xe, ve = ko B
Rs=A inflow kody A vs = ko Ao
Re¢=B inflow kB g ve = koBo.

Fig. 23 The Gray-Scott reaction network.

Steady states of the intermediate A are by three reactions. The
CSTR inflow reaction labeled by an A reservoir symbol provides A, while the real
chemical reaction 1 and the CSTR outflow reaction consume A. When the rate of

pmduﬂbncvaequshther&tenfcﬁnmpthndA.Ais:tlnegdym.
hbehdbysﬂm:ymbﬂpodeﬂnlmﬂmnlmmbmm
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and produces three B molecules at th - et of the reaction | s
to produce B. The other two reactio S outow reaction and the
real reaction 2. consume B. B is at o . b rate of production equals
its rate of consumption. When boti P steady state, the network is

at a steady state.

The Gray-Scott network ha: - retne currents, i.e., there are five basie
chemical pathways for the network « e steady states. Fig, 24 shows the
five extreme currents as thick lines. Cwirents E;. E; and E; involve real chemieal
reactions while currents E; and Es are simply CSTR flow-through currents with no
real chemical reactions involved. The set of these five extreme currents constitutes

the extreme current matrix E

m
]
Lol o B e T 1~

fom

o e T T
S=o =2

Each column of the E matrix represents an extreme current and each row corre

sponds to a reaction in the sequence listed in Scheme I11.

The five extreme currents are the five vertexes of the current polytope (see
Fig. 18). They are five special steady states of the network. Any linear combinations
of the five extreme currents with nonnegative coefficients (} values) are also steady
states, and the whole set of steady states constitutes the steady state manifold.
We know that some steady status are stable while some are unstable. We want to
find the boundaries between the stable and unstable regions and to understand the
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Fig. 24 Five extreme currents of the Gray-Scott reaction network.

5.2 A complete stability analysis in the (h,j) parameter space

Because of the simplicity of the Gray-Scott network, it is not difcult to
doncunpletembilitymdy:hintbe(h,j)pnnmeterm. A complete stability
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analysis means that we do the stability analysis using all combinations of extrome
currents. It provides us with complete information on the stability regions of the

whole parameter space.

Table 3 summarizes the results of the complete stability analvsis. In the
table, j, is the rate of the i-th extreme current. h; and h; are the reciproeal steady
state concentrations of the intermediates A and B. The “conditions for A, « gives
the regions bounded by Hopf bifurcation hypersurfaces. They are usually oseillation
regions. The “conditions for az < 0" gives the regions surrounded by the SN or
the SN* bifurcation hypersurfaces. Steady states in these regions are on middle
branches of the folds. These regions are usually bistable, A “Yes" in the column
“a; = 0" or “az = 0" indicates that the corresponding o, is identically zero for the

combination of extreme currents. A “Yes" in the column “a; > 0" or “ag > 0" tells



Table 3. Stability Analysis of the GS Network in (h, ) Space

Currents#

conditions for
A <)

a;=0|a; >0

conditions for

az <0

02

0

az >0

—

'lg > h]

2 Yes ) Yes |
3 Yes Yes

£

hy > hy

2

Yes

7Yes

1,2

h, >hh
Jr > Jj2

1,3 ha > h,y Ja>n
Jrha > jahy 7
14 hy > h, Yes

1,5

h;}h]
J1>Js

2,3 Yes iYes

24 ha > h, 7 R Y&i
Ja > ja ) )

2,5 Yes Yes

34

hg > hy
Jaha > jsh

3,5

Yes

4,5

hy > hy
de> ds

Yes

1,23

hg > h,
J1> Ja
1 Jrha > jshy




Table 3. Stability Analvsis of the GS Network in (h.J) Space (continued)

Currents#

conditions for
A] <0

M =0fa; >0

conditions for
az < ()

vy = 0

ay >0

1.24

ha > h;
Ja > h
Js > Ja2

ha > h,
J1> J2
J1>Js

Yex

1,2,5

hy > h,
J1>Js
J1> J2

Yes

1,34

hy > h,
Je>n
Jaha > jahy

hy > h,
1> Ja
Jiha > jahy

Ja>
Ja> Ja

J1> Ja
Ja>n

1,3,5

hy > h,
J1>Js
Jrha > jahy

Ja> g
J1>Js

1,4,5

ha > h
Je> 0
Ja > Js

hz)hl
J1> Js
1> Js

Yes

234

hz > hy
Je > 72
Jaha > jah,

Ja > J2
J3 > Ja

235

Yes

if

* to be continued ...



Table 3. Stability Analysis of the GS Network in (h, J) Space (continued)

0 jaz >0

]
»
]}

Currents# | conditions for | a; =0 | a; > 0 | conditions for
A <0 az <0

h; > h,
245 Ja > J2 Yes
Ja > Jjs

hy > h, Ja > Ja
Jaha > jahy

hz > h, Ja>n
Ja> 5 Ja > Ja
Ja> T2 Ja > Ja
1,234 ]qhg > _13'!1
h2 > hy J1> 3
J1>J2 J3a> 5
J1 > Jja J1> Jja
Jrha > jahy
ha > h, 21> ja
1,2,3,5 > J2 Js >0
J1> s J1> 8
rha > jahy
hy > h,
Ja> 5
Ja> 2
1,2,4,5 Ja>Js Yes
hy > hy
21> j2
21> Js
J1>Js




Table 3. Stability Analysis of the GS Network in (h.J) Space (continued)

Currents# | conditions for conditions for
A1 <0 ax <0
hy, > h, Ja >
J1 > Ja J1 > s
J1> Js J1 > Js

1,3,4,5 Jha > jah,
ha > h, Ja >y
Ja> 5 Ja > Ja
Ja>Js Ja > Js
Jahz > jah
ha > h, Ja > Jja
2,34,5 Ja > J2 Ja > Ja
Ja>Js Ja > Jjn
Jaha > jah,
ha > h, Jr > Jja
J1> 73 Ja > g
J1> Js J1> Ja
J1>Js J1> s
1,23,4,5 Nha > jsh]
hz > h, Ja > i
Ja > h Ja > J2
Ja > J2 Ja > Je
Ja>Js Ja > s

Jaha > jsh,




According to table 3, current E; ad the two CSTR flow-through currents
Ej, Eg are stable currents. All combinations of these currents are also stable. Cur-
rents Ey and E4 include the auto-catalytic reaction 1. They are unstable currents.

All combinations of currents containing either one or both of them are unstable.

condition &y < (0 occurs. az is always positive under these circumstances. A combi-
nation of the two unstable currents also possesses oscillatory features but cannot be
bistable. Bistable regions exist if and only if one or both unstable currents combine
with stable current Ej, which is the CSTR flow-through current for the species A.

All combinations of currents that contain bistability exhibit oscillatory dynamics.

There is one common inequality for all unstable combinations of currents.
It is hy > hy. In other word, [B] < [A]. A steady state can only be unstable if the
steady state concentration of B is lower than A. This is a universal conclusion for
the whole network.

For the Gray-Scott network, a; is never identically zero. But there are
three 1- ~urrent cases for E;, E3 and Es where a; are identically zero. In each
case, one of the species A or B is isolated. In E; or Es, A is isolated. Hence [A]
is constant. In E,, B is isolated. Hence [B] is constant. Therefore, in these cases
d=1and a; = 0. In E; or Es, we cannot have ky = 0 because B enters. So, we
must have [A]o = 0. In E;s, A enters so [Bo = 0.

5.3 Extreme currents and mushroom-shaped steady state manifold
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Gray-Scott network and its steady state manifold in the experimental parameter

space.

Fig. 25 is a steady state manifold of the Gray-Scott network. The curve's
line patterns indicate the stability of the steady states. Solid lines and dashed lines
represent stable and unstable steady states respectively. Among the unstable st cady
states, thin dashed lines stand for middle unstable branches of the folds. There is
only one positive eigenvalue for each steady state on this branch. Thick dashed
lines correspond to Hopf regions, where there exist two cigenvalues with positive

real parts for each steady state.

o.s A L] é L] é v v L4 \A/ L A o
0 — P
J y
L]
Fos|
08 [ ° 1
0...
107 )
18} .

-2.8 20 1.8 -1.0 0.8
log CSTR flow

Fig. 25 Stabilities of steady states for the Gray-Scott network. All steady states on the
dashed lines are unstable. All steady states on the solid lines are stable.

The curve in Fig. 25 looks like an inverted mushroom. Therefore it is
sometimes called a mushroom curve. The mushroom curve can be divided into six
regions according to the ordering of extreme current dominance. Fig. 26 shows



the underlying reasons for the curve shape and the stability of the different steady

states.

In region 1, the high concentration of intermediate A makes the CSTR flow-
through current of A (current E;) very important. The steady state concentration
of A is totally determined by this current. The steady state concentration of B is
determined by current E; independently. Since currents E; and E; are both stable,

the steady states in region 1 are stable.

In region 2. the lower steady state concentration [A] makes the CSTR flow
through current E; less important. It boosts up the relative importance of another
current E,. The introduction of unstable current E, causes the instability. The
coexistence of current E; and current E; produces a fold and a bistability region
in the parameter space. As a result, region 2 emerges as the middle branch of the
fold and the region is unstable.

In region 3, the even lower concentration of A eliminates the importance
of current E;. The most important current now is current E, involving both the
auto-catalytic reaction 1 and the B decomposition reaction 2. The steady states in
this region are totally chemistry-controlled. Although the concentration [A) is low
in this region, from Fig. 27 we can see that it is still higher than the concentration
of species B. According to table 3, steady states in the region must be unstable and

Ra_-gmimmﬂulmmnamthhgdwhh
shaped curve. But they are apparently different on the log [B] vs. log ko curve shown
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Fig. 27 Comparison of two mushroom-shaped curves of the Gray-Scott network. (a) log A
va. log ko; (b) log B vs. log ko.

4 makes the CSTR outflow reaction of B more important than the B decomposition
reaction in consuming B. Therefore, the most important current in region 4 is
current E, instead of current E,. Current E, is also an unstable current and the
region where current E4; dominates could be unstable. But since the concentration
[B] is higher than [A] (A < hy), no system of inequalities for instability listed in
table 3 is satisfied. So region 4 is a stable region.

Moving into region 5 from region 4, concentration [A] increases while con-
centration [B] decreases. Higher [A] raises the importance of the CSTR flow-through

inequalities for az < 0 cause region 5 to be the middle branch of the fold. Region
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current E;. Comparing with region 1. the other important current is the CSTR flow-
through current of B in region 6 while it is current E; in region 1. The contributing
factor to this difference is the flow rate value, which is higher in region 6 and is
lower in region 1. Since steady state concentrations [A] and [B] arc determined by
the two CSTR flow-through currents respectively, they are all constant in region 6
and their values are determined by their concentrations in the CSTR reservoir. The

steady states in region 6 are all stable.

I have explained the relationships among the important extreme currents,
the steady state manifold, and the stability properties of the steady states for the
Gray-Scott network. Understanding steady state manifolds and stability proper-
ties in terms of the controlling chemical processes or pathways can help explain

experimental observations and help model real-world chemical processes.

5.4 Structural elements and bifurcation structures of stability bound-

aries

Even through the Gray-Scott network is a simple model network, it has all
thecixtypuolnnwtmdekmenumduﬁnrmbnnmctmdhmﬁadlndnp;ﬁ
II1. The network possesses rich nonlinear dynamics.

Fig. 28 shows three two-dimensional phase diagrams of the Gray-Scott net-
work, which are plotted in the two-dimensional (log [Alo, log ko), (log [Blo, log ko),
(log k1, log ko) subspaces respectively. Unless otherwise specified, the parameters
used for the calculations are



ko Ao By ky ks

k: 001 1 003333 1 0.025
logk: =2 0 -1477 0 ~-1.60206
Except for parameters explicitly shown on the diagram, all other parameters are

constant during the numerical continuation calculations.

Each phase diagram in Fig. 28 contains at least five different structural
clements. They include the stability boundary pieces composed of the thin dashed
SN curves, the thick dashed SN* curves, the thick solid Hopf curves, and the thin
solid SE curves. They also contain DZ points. Fig. 28(b) has two cusp points.

There is one DZ point in Fig. 28(a), which is the centre of the general
structure discussed in section 3.3. We can quickly identify a Y-shaped structure
formed by a Hopf, a SN* and a SN curve. On the left half of the diagram, when the
log [A]o value is decreased, the Hopf curve and the SN+ curve get closer and closer

SN curve. This is a type I Y-structure. When the SE curve is also considered in the
DZ-centred structure, a more general structure where the DZ is the crossing point

SEMtMSNmmmmm&rinthm:mgmm,
TlrSEmmnayswtheleﬁﬂiﬂﬁhESNmnﬁ:gnmmhﬁ
were carried out (SE points are always located on the middle branch of a fold on a
steady state manifold). If the SE could touch the SN curve, it would cause a new
region. Such is not the case.



(a)

. ,e_b.., , q ,,,,.

,n. J,
% o

; (b)log [Bovs. log ko; (c)log k) va. log ko.

log ko

(a)log [A)ovs.
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The stability boundaries shown in Fig. 28(b) are dynamically rich in the
sense that they contain two cusp points and a crossing of a Hopf curve and a SN
curve. The net effects of these structures are three different oscillation regions as
well as the collapsing of bistable regions. I leave these interesting dynamic features

to the next section and focus here on the bifurcation structure.

As for Fig. 28(a), we can quickly locate a Y-shaped structure and a croesing
structure centred at the DZ point in Fig. 28(b). Note that the DZ point here does
not belong to the same DZ hyperplane as the DZ point in Fig. 28(a). This DZ point
is located on the upper branch of the fold on the steady state manifold while the
DZ point in Fig. 28(a) is on the lower branch. Later we will see that the two DZ

(SN*) hyperplanes join at the cusp points. So, we have two separate SN (SN*)
curves in Fig. 28(a), but we have only one unique SN (SN*) curve in Fig. 28(b).

In Fig. 28(b), there is a crossing of the lower branch Hopf and the upper
branch SN curves in the parameter space. This crossing is similar to the crossing
discussed by Ringland?” because both crossings are the crossing of a Hopf curve
over a SN curve. But in Ringland's paper, the unstable region that started at the
Hcpfenthntmhzrﬂapfwhﬂehsetheumhkmthltﬂiﬂdnthﬂopf
ends at a SN+, This structural difference causes different stability regions in the

Arameter space. Therefore, the crossing appeared in the Gray-Scott network is a
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Gray-Scott network. It contains two DZ points and two Hopf bifurcation curves.
They are located respectively on the upper branch and the lower branch of a fold
on the steady state manifold. For the upper branch DZ point, it is hard to see the
separated Hopf and SN* curves and the separated SE and SN curves because they
are so close to each other. But our understanding of the bifurcation structure tells
us the Hopf and the SE curves are on the left side of the SN* and the SN curves.
The structures surrounded the two DZ points are identical. Both of them are the
type I Y-shaped structures, the same as in Fig. 28(a) and Fig. 28(b).

The SE curve in Fig. 28(c) connects the two DZ points and the two Hopf
curves into an integrated structure. It serves as a bridge between the upper branch
and the lower branch of the steady state manifold. Without the SE curve, we would
not be able to obtain the upper Hopf curve when we do the numerical continuation
starting from a Hopf bifurcation point on the lower branch . This demonstrates one
important application of the SE curves in finding new bifurcation hypersurfaces.

There is also a crossing of a Hopf curve and a SN curve in Fig. 28(c). It is
structurally the same as in Fig. 28(b).

5.5 Stability regions

8.8.1 Stability regions and steady state manifold

Because of the complicated stability boundary structures discussed in the
last section, the Gray-Scott network exhibits a wide variety of dynamics and sta-
bility regions. In the parameter space, there exist the following types of regions
based on the steady state bifurcations. Even more complicated global dynamics s
possible but will not be considered here.
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1. Single stable region: There is only one stable steady state at every point in
the region;

2. Single oscillation region: There is only one limit cycle oscillation at every
point in the region;

3. Bistable region with two stable steady states: Two stable steady states
coexist at every point in the region;

4. Region with one stable steady state and one oscillatory state: One stable
the region;

5. Region with two oscillation states: Two oscillation states coexist at every

point in the region.

In cases 1 and 2, the global dynamics has one attractor. In cases 3, 4
and 5, the global dynamics has two attractors. Every attractor has a region where
trajectories go to the attractor. The region of the initial state determines which
of attractions. If the initial system state is within the basin of attraction of a
particular final state (attractor), then the system dynamics will eventually bring
the system onto that attractor.

(» circle). This situation is the result of steady state manifold evolution started
in Fig. 28(a) is adjusted, two nearby SN (or SN*) points on the two folds of a
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mushroom-shaped curve can get closer and closer, After they meet at a certain
point. a single steady state manifold and an isola emerge. The last type of steady
state manifold contains a single steady state manifold only. It is the decaying
product of either the first or the second type steady state manifold. The first
decaying process starts from shrinking of the two folds on a mushroom-shaped
steady state manifold. After passing through the cusp points, a mushroom-shaped
steady state manifold becomes a single steady state manifold. The second decaying
process goes through the shrinking of the isola in the second type of steady state
manifold mentioned above. After the isola becomes a single point and then the

point disappears, only a single steady state manifold is left.

5.8.3 Stability regions on the phase diagrams

The (log Ao, log kg) phase diagram in Fig. 28(a) can be divided into four

regions:
a.1 a stable region containing lower stable steady states;

a.3 a region containing upper stable steady states and possible lower oncillation

states;

a.3 a bistable region containing both upper and lower stable steady states;

a.4 a stable region containing upper stable steady states.

Similar analysis can be applied to the (log Bo, log ko) phase diagram in
Fig. 28(b). The phase diagram consists of five stability regions
b.1 a stable region similar to a.1;
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b.2 a region similar to a.2;
b.3 a bistable region similar to a.3;
b.4 a single oscillation region;

b.8 the tiny region in the neighbourhood of the left cusp point and the DZ
point. Because a piece of the Hopf and a piece of the SN* curves are so
close to each other in the neighbourhood, the existence of the region may
not be noticed. A magnified picture of the region is shown on the right
side to the Fig. 28(b). This region is very small, but dynamically it is
very significant. In the region, steady states are on a fold. There are three
unstable steady states at each point in the region. This is a region where

two oscillation states could be found.

Stability regions on the (log k), log ko) phase diagram in Fig. 28(c) are qual-

figure for stability properties of the regions.
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VI. Stability boundaries of the
bromate-sulfite-ferrocyanide network

The mechanism for the bromate-sulfite-ferrocyanide (BSF) reaction was

experimentally observed oscillations and bistability of the reaction. The reaction
is a counterpart of the jodate-sulfite-ferrocyanide oscillator discovered by Edblom,
Orbén and Epstein (EOE)®® but the mechanism is substantially different from that

of the jodate oscillator®®%,

I chose the BSF network for studies of stability boundaries because of the
importance of bromate oscillators®!, and the extensive published experimental re-
sults. My initial intention was to enhance our understanding of this network, and
explore the effects of various experimental parameters on its stability boundaries.

Surprisingly, my first calculation of unstable regions on steady state mani-
fold showed quite different results than expected. A wide Hopf region of oscillation
on the steady st: e manifold was missing. There was a fold in the experimental pa-
rameter region which suggested the existence of bistability at [SO?" o values where
only oscillations were reported.

More investigation revealed that exper | results do not conflict with
my calculation but must be given a new interpretation, as will be explained.

6.1 The bromate-sulfite-fer ide network

le (BSF) network is composed of twenty-
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three reactions and twelve chemical species. Among the twenty-three reactions, nine
of them are true chemical reactions, five are CSTR inflow reactions, and nine are
CSTR outflow reactions. Among the twelve species, nine are dynamic intermediates,
and three are major species or doum-stream species whose concentrations do not
affect chemical dynamics. The down-stream species are products that do not take
part in other real reactions and are washed out of the system by the CSTR flow.

Fig. 29 is a complete network diagram of the BSF network. All the twenty-three

reactions are listed in Scheme IV.

V=l

Fig. 20 Network diagram of the bromate-sulfs
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Scheme IV:

R, BrO; + HSO;
R; HBrO; + Br~ + H*
Rs HOBr + Br- + H*
R_; Br; + H,0
Rs 2HBrO,
Re Br; + HSO; + H;0
Ry H* + 803"
R_, HSO;
Ry BrOj + 2Fe(CN)s~ + 3H*
I {Br~}
I {so3")
I {H*}
I {Fe(CN)s ™}
Iy {BrO;3}
O, Br-
0, 803"
Os H*
O, Fe(CN)g™
Oy BrO;
Os HSO;
Oy HBrO;
Os Bry
Oy HOBr

HBrO; + SO}
2HOBr

Br; + H,0

HOBr + Br- + H*
BrO; + HOBr + H!
2Br- + 803~ + 3H*
HSO;

H* +803-

HBrO; + 2Fe(CN)3~ + H,0
Br-

803~

H+

Fe(CN)g™

BrO;



Br-,S03" ,H* ,Fe(CN)§~,and BrO;. On the diagram, these reactions are la-
belled with the species and cup-shaped symbols are drawn around the species.
In the scheme, a pair of curly brackets instead of the cup-shaped symbol is
used. The outflow reactions flush out the nine dynamical intermediates, which
are Br=,803~ H*,Fe(CN)&~,BrO; ,HSO; , HBrO;, Bra, and HOBr. The nine true
chemical reactions affect chemical dynamics in different ways. The reactions
Ry, R2, Ry, R_3 and Rg provide the auto-catalytic generation of H* and Br~ with

the overall stoichiometry

The disproportion of HBrO; (reaction Rs) is included to maintain [HBrO;) at a
reasonable level. Reactions Ry, R_7 provide an equilibrium between sulfite and

sumption.

currents. The transpose of the complete extreme current matrix is shown on the
next page. Among the twenty-eight currents, there are five CSTR flow-through
currents. These are currents E,, Ey, Es, Eq, E7, which are the flows of Br~, SO3-,
H*, Fe(CN)§~, BrO; through the CSTR, respectively. Two other currents E,,
(Rs.R_3) and the reactions (R7, R_7) respectively. The remaining twenty-two ex-

mediates (n = d = 9), dimension uf the current cone is r —d = 14. Any steady state
can be expressed as a linear combination of fourteen extreme currents. In other
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oceurring.

Using a thermally regulated CSTR®2, ELOKE found both sustained oscil-
lations and hysteresis (bistability) in the BSF reactions?®. They collected experi-
mental points using parameters ([SO3 "o, ko). Figure 30 is a replotted experimental
phase diagram from reference (25) (experiments at 20°C).
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To begin the detailed study of the BSF network, I first calculated a steady
state manifold using parameter values given by reference (25). The results were

unexpected.

Fig. 31 is a steady state manifold calculated at a cross section where
[SO3~Jo = 0.08M. The graph seems to have nothing to do with the BSF system
even though it is exactly produced from the BSF network.

&

>
xS
<0

o L-el.lca 28 | ’sgfg 7 24 22 as.bi

Fig. 31 A steady state manifold of the BSF network, calculated at [SO3~]o = 0.08M.
Other fixed parameters are [BrO3Jo = 6.5 x 10-2M, [Br-}o = 5.27 x 10-"M,
[H*]o = 2.0x10-2M, [SO3"}o = 5.0 x 10~2M, [Fe(CN)$~ o = 2.0 x 10-2 M,
ky =8.0x10"2M =15~ ky = 9.5 x 10°M~25"", ky = 1.6 x 10'°M 35",
ke = 1.1 x 10's=%, ky = 3.0 x 10°M 12! kg = 1.0 x 10°M~1a"), ky =
5.0 x 10'°M~5~1 ky = 3.0 x 10°s~", ke = 3.2 x 10' M ~%5"1,
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First, all experiments and numerical integrations in reference (25) pointed
out that at [SO3"] = 0.08M most steady states are stable, except for some oscilla-
Livn states in a low flow 1ate region. This can be seen from Figure 30. This suggests
that ti.e steady state manifold does not have a fold and it only has an unstable re-
gion bounded by Hopf bifurcations. In contrast, Fig. 31 has a fold that indicates
the existence of a bistability region. Although it has a region between the Hopf
and the SN* points on the upper branch, as shown by a shoit piece of thick-dashed
curve, the region is very small compared to the wide experimental oscillation region.
A careful examination of dynamic trajectories in this small region showed that no
oscillations exist. Trajectories always end at the points on the lower branch of the
fold.

There are two questions to be answered here. Where are the oscillations
found by ELOKE? What is the origin of the fold and the bistability that I found?

The only ambiguity is the CSTR input concentration [H*}o from the CSTR reser-
voir. Reference (25) mentioned that [H3804)0 = 1.0 x 10-2M. If the starting
solution is quite basic as pointed out by the reference, then both H*'s should disso-
ciate from the H3804 and we should use [H*]o = 0.02M, which is what I actually
used. If we take the partial dissociation of the second H* into consideration, then
a lower [H*]o = 0.0145M should be used. So, I decided to try this new [H*]o to
see if it made a difference.

parameter range. Fig. 32 shows a steady state manifold (a) and an oscillats n (b)
that occurred at log ko = -9.7376. It is obvious that the oscillation is not the one
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Hopf point on the upper branch very close to the most upper-right folding (SN+)

point. This small region cannot provide us with the desired oscillations either.

(a)

®)

R
] I

943 loglBr,) 4816
Fig. 32 (s) A steady state manifold and (b) an oscillatory trajectory of the BSF network.
CSTR input concentration [H*]o = 0.0145M is used for the calculation. The
oscillatory trajectory is calculated at log ko = —9.7376. This is much lower than
the real experimental parameter range. All other parameters are the same as in
Fig. 31
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Another possible way to get a !a,rge region of oacillations is to widen the
Fig. 32(&,) by adjusting some of the other experimental parameters. Since the steady
states in this region are within the basin of attraction of the lower stable branch,
an oscillation region would be produced only if we could extend the unstable region
far enough to the left so that the Hopf point could go across the lower SN point in
ve this goal, I needed to adjust some rate constants.

the parameter space. To ac

rate constant kp must be changed. This matches the experimental observation that
oacillations appeared only after Fe(CN)3~ was added and reaction Ry occurred.
Calculations show that when the rate constant kg is increased, the Hopf bifurcation
the upper SN* point become larger. It is found that kg = 200.59M -25-! is the
experimental parameter range. Fig. 33 is the tte;dy state manifold calculated at
[SO3"]Jo = 0.10018M and ky = 200.59M ~2s-". Notice that the upper branch Hopf
point and the lower SN point occur at approximately the same CSTR flow rate.
ke = 250M ~25-1,

The results are still not convincing for two reasons. One is that the kp values

are too big compared to the optimized value 32.5M ~25-! in reference (25) and Birk
1.25 x 10-3

and Kozub's value®” 39.5M 25! ([H*] = 10-49, »—o=i5— = 39.5). Another

mhmmhthuwhnhhmdenhm-mm 33, ﬂgm

ﬂmuﬁqmmtnlﬁmmbm;hhmnhh;(sofk
the bistable region falls within a closed curve at 30°C and 40°C.
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22 a1 -30 29

Fig. 33 Steady state manifold of the BSF network at [SO3"), = 0.10018M, k¢ =

parameter range. All other parameters are the same as in Fig. 31.

It is now clear that the difference between my results and ELOKE's results

oscillatory region might occur. This would involve a limit cycle which coexists with
the upper stable steady state. Such limit cycles sometimes occur when the Hopf

ic solution(SNP)®®, The details will be explained later.

To test this idea, I dragged the cursor on the upper branch of Fig. 31
to a little lower ko value than that of the lower SN point. Then I dragged the
system state point X a little off the steady state on the dynamics screen of the SNA
integration. The dynamic trajectory soon approached a limit cycle and started a
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looking for.

To make sure this understanding of the oscillation is correct, I tried to find

quickly found trajectory 1 shown in Fig. 34 . The trajectory coexists with other
trajectories such as trajectories 2 and 3 on the graph, which eventually become
limit cycles. Fig. 34 demonstrates the coexistence of a limit cycle oscillation and

a stable steady state. The trajectory approaching the stable steady state is inside

ential equations and the same parametcr settings. The only difference between the
trajectories is the initial point. The approach of the trajectories to two different
attractors confirmed the reason for the oscillations discussed above.

6.3 Stability boundaries of the BSF network

6.3.1 Cross-shaped phase diagrams

In experimental studies of nonlinear chemical systems, the phase diagrams
often appear cross-shaped as shown in Fig. 35. Detailed calculations show that com-
plicated dynamics usually occur near the crossing point. Epstein and Luo showed
thusmalycrou—shpedphmdhgnmoccmfotdiﬂmntiﬂdehythihen
two of the parameters are restricted®. This is a special case where there must be
amhtbmbipbetweentheparmwobtdnthecro&ihgpedphgem.
(In their studies, r = ﬁ). The crossing is often a very simplified picture of what
actually happens.

which can be considered cross-shaped if the fine detail is neglected, and the situation
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-7.435

-2.016 e -1.687
log(HSO3)
Fig. 34 Two different types of dynamic trajectories calculated from the same set of param-

cillation (trajectories 2 and 3). The dark dot stands for the stable steady state.
Parameters: (SO} ]o = 0.08M; ko = 0.0020s"; all other parameter values are
the same as in Fig. 31. The starting points are obtained by dragging the cumor
on the screen from the stable steady state to the desired starting points of the

in the BSF network which is very different. Since I found oscillations at parameter
values which correspond to stable steady states, 1 questioned the validity of the
the phase diagrams of the BSF network cannot be made into cross-shaped phase
diagrams no matter what changes in the network are used. While many published
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Fig. 35 Cross-shaped phase diagrams. Left: general shape. Right: the BSF data appears
consistent with a cross-shaped phase diagram using estimated stability boundaries
of ELOKE (replotted). The solid curves represent boundaries for the oscillation
ngiou,lndthednhedcurvurepfelentboundaﬂesfo:thebhubleteﬂon. The

point P is the crossing point.

cross-shaped phase diagrams are truly close to being cross-shaped, I believe at
leastaomeoftbemmnotintﬂnﬂcaﬂycmhapedatall. The BSF network is a
representative of the later type.

6.3.2 Unexpected stabllity boundaries of the BSF network

ﬂleacillatlomintheBSFnetmkarel-ochtedwithambcﬂtlcdHopf
biﬁnutbn,whichexteudathen;ﬁonofucﬂhtionmummuﬂyhmedbtmbe-
yond the Hopf bifurcation point. This wide region is called a subcritical Hopf over-
lap. Theoocﬂhtlomoccurlttbepqnmetupohuwheneonupondh;nedy
states are stable. Fig. 36 is a qualitative bifurcation diagram to illustrate the ides.
Ontbedhcnm.tbenppetbnuchcmbedividedmmw

wahthuwmrwunthymwbytbﬂop(md
the SN* bifurcation points. Steady states in the segment are unstable. There are
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Fig. 36 A qualitative bifurcation diagram of the BSF netwock. [SO3]o > 0.068M. The

branch is a branch of stable limit cycles. SNP is a saddle-node of periodic solution.
SNL is a saddle-node on a loop. All other parameters are the same as those in

Fig. 31.

two conceivable attractors to trajectories in this parameter range. One is & limit
cycle surrounding the unstable steady state. The other is the stable steady state
on the lower branch at the same parameter point. In the case of the BSF net-
work, the trajectories started near the upper branch unstable steady states always
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at the lower SNL point (SNL means saddle-node on a loop®®). Steady states in the
segment are stable. They are surrounded by an unstable periodic solution. The
unstable periodic solution is a repeller that pushes dynamic trajectories away from
it. When a trajectory starts between the upper stable steady state and the unstable
periodic solution, the trajectory will be attracted to the upper stable steady state.
When a trajectory starts outside the unstable periodic solution, it is attracted to

the stable steady state on the lower branch. Experimentally we cannot observe

each ky value. The two stable steady states are located on the upper branch and

the lower branch respectively.

The third segment is from the point where the second segment ends to the
point S where the limit cycles end. In this range, there are a stable steady state,
an unstable limit cycle and a stable limit cycle for each ko value. The difference
hetween this segment and the second segment is that this segment is outside the
folding region of the steady state manifold so that there is only one steady state for
each ko value. The lack of the lower branch means that the dynamic trajectories
started between the unstable limit cycle and the possible stable limit cycle can only
be attracted to the limit cycle. Trajectories started between the unstable limit cycle
mdtlwsublescudymmitﬂ]ntrmt,othenendymtsmthenppe:
branch. Therefore, at every experimental CSTR flow rate in this region, we should
Imalkwobafwthemhmdnmmmmmdlmm

state.

The segment to the left of the point S is the fourth segment. In this segment,
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state.

Based on the bifurcation structure discussed above, the st ability regions as
ko is increased from lower flow rates to higher flow rates should be in the order of:

- upper stable steady state only;

- coexistence of the upper stable steady state and oscillation:

- bistability between the upper and lower stable steady statc;

- lower steady state only.

Fig. 37(a) shows calculated stability boundaries on the (kg, [SO; %)) pa-
rameter plane. The thick-long-dashed line is the SN* bifurcation curve, which is
the right boundary of the upper steady states. It is difficult to see the SN* curve
because it almost coincides with the thick-solid Hopf bifurcation curve, The thin-

The upper part of the SN curve coincides with the right half boundary of the os-
cillation region when [SO3~]o > 0.068M. The thick-dotted lines are boundaries of
the oscillation region. The two large regions at the upper-right and the lower-left
corners of Fig. 37 (a) are stable with a single lower and upper stable steady state
respectively. The region between the Hopf and SN curves is the bistable region con-
upper-left of the plot is the region where the oscillations exist. The upper branch
existence of oscillations and upper stable steady states. Fig. 37(b) is a counterpart
of Fig. 37(a) in the log space.

At each cross section of Fig. 37 above the DSN poiit (Dowble Seddle Node
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Fig. 37 Stability houndaries of the BSF network. (a) on the (ko, [SO; 2Jo) parameter plane;
(b) on the (log ko, log [SO; ?]o) parameter plane. All parameters are the same as
those in Fig. 31 except ko and [SOj32]o. Hopf: thick-solid curves; SN: thin-dashed
curves; SN*: thick-long-dashed curves; Oucillation boundary: thick-dotted curves.

that throughout most of the range covered by the [SO3"]o, the fold and bistability
exist. The oscillations only occur in the high [SO3~]o range above the DSN point.
When we scan the whole [SO3~), range from the top, we first see a bifurcation
structure represented by Fig. 36. The four stability regions listed above all exist
at the higher [SO3Jo values. Lowering the [SO3}o moves all stability boundaries
to the higher CSTR flow rate region. At the same time, the | aining
region becomes narrower. At [SO3"Jo % 0.068M, them:ﬂhthﬁdbppu:hﬁ:ﬂue
left boundary of the oscillation region (the SNP point) meets the boundary of the
SN (SNL) curve at the DSN point. All dynamic trajectories that were originally
mmtedwthenmncycbwmhemmmdmthemmbhmmEﬁﬁs
stable regions occur when [SO3" o < 0.068M{. No oscillations occur below the DSN
point.

lthobvlm.thﬂtheﬁnﬂﬂtyh@:rhhﬁﬂmﬂ crose-sh
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In next section, I will show how to interpret the cross-shaped phase diagrams ob-
tained from the experiments and numerical integrations using our non-cross-shaped

stability boundaries.

6.4 Why were experimental phase diagrams previously considered to
be cross-shaped?

6.4.1 Comparison of my stability boundaries with previous numerical
simulations

published in reference (25).

The stability boundaries in the published phase diagrams were drawn on
thehuhrinumﬂcﬂin@nmgmmminumthpﬂrmm
To avoid human prejudice in interpreting computer-generated data, the correct
comparison would be to use only calculated data points (not the original phase
were no numerical data published, I measured the locations of all published data
pdmin?igiﬁ(g)dthenfemmgmdrepbtted;llthepdmmmymﬂm
diagrams. Thetmﬂtimlhnwninﬂgfiﬁlnbuthmh;mdlqm The
numerical data corresponding to the points are listed in Appendix 3.

hﬂnﬂﬂtyhetmuih&deﬁymm“ﬂﬁﬂmmﬁthmm The
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Fig. 38 Comparison of the published data points based on numerical integrations with my
calculated stability boundaries of the BSF network. All parameters and line pat-
mmtbm-thmehm.ﬂ.h&.chthmuthm
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tion point. But both my stability boundaries and my numerical integrations showed
that it should be a point where only an upper steady state exists. All published
stable steady state points fit into the correct regions of my diagram. Indeed, my

region of bistability between two stable steady states includes the published points

of lower steady states. Therefore, there are no fundamental differences as far as

a partial reflection of all dynamic features. A phase diagram that gives a complete
picture is needed.

It is not strange to see that only partial results were obtained by the nu-
merical integration method. Results of numerical integrations depend on the initial
points chosen. When there is more than one attractor and one of the attractors has
a much larger basin of attraction than the other attractors, the chances of choasing

upper branch of Fig. 36, the region between the stable steady states and the unsta-
ble limit cycles is very narrow. Among many points picked up for calculations in
reference (25), only two of them were started in that narrow region. The results of
the two calculations were shown by ELOKE on the graph with the circled triangles.
If the two points were investigated further and a clear understanding of stability

numerical integrations in the narrow range between the stable steady states and
the unstable limit cycle? I will start our analysis from the SN* point in Figure 36
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segment would escape detection. We would conclude there are Dnly lower steady

hetween the first and the second segment would not exist. We would get a single
large region having only lower steady states. Further to the left, the upper steady
states would escape detection again and we would conclude the third segment is a

region with only one attractor, a limit cycle oscillation.

What would happen to the situations where [SO3~]g < 0.068M? In these
situations, the segment 3 (osacillation region) has disappeared. Fig. 39 shows how
Figure 36 must be modified for this situation. A lower [SO3~]o has pushed the point
where limit cycles ends (the SNP point) inward into the folding region. The original
SNP point becomes a homoclinic loop bifurcation point (HL)®®. The point divides
the ko range corresponding to the fold into two parts. On the left part, the steady
states on the upper and the lower branches attract their neighbouring dynamical
trajectories without being influenced by any other attractors or repellers. Both
steady states would be easily detected by numerical integrations. On the right,
there still exists a narrow region between the upper stable steady states and the
unstable limit cycles. Failing to start numerical integrations within the narrow
region would still cause all trajectories be attracted to the lower steady states. The
bemmbinedinmthefegimmmﬁghtmﬁrmnhrgem;lemdymmm

bilitkudtheESF-yuemandohtunedd;nth;tmmhtmwith-ﬁ_—m
phase diagram. When [SO3 ]y > 0.068M, one would find ouly a single oscillation
region on the left part of the graph. When [SO3 o < 0.068M, one would find only
-m:ymmthmmdthmmmmmn-m
where [SO3~], ~ 0.068Af. This is the point where the ko on the left boundary
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log CSTR flow

Fig. 390 A qualitative bifurcation diagram of the BSF network when [SO2~ ], < 0.068M.
All symbols, patterns and other parameters are the same as those in Fig. 36. HL is
a homoclinic loop bifurcation point.

of the oscillation region coincides with the ko at the lower SNL point. It makes a
perfect cross-shaped phase diagram.

Fig. 40 gives six dynamic trajectories calculated at three points on the
(ko, [SO3"Jo) parameter plane. Fig. 40(a) shows my calculated stability boundaries,
the selected points for calculating dynamic trajectories, and the correct stability
features of the selected points. The letters beside the selected points indicate the
figure number for the corresponding trajectori

Trajectories calculated at the selected point b are shown on the following
plots (b.1) and (b.2). Point bis at ko = 1 x 1073571, [SO3"}, = 0.10M. It i
located in the oscillation region on the cross-shaped phase diagram and in the
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Fig. 40 Trajectories at three selected points on the (ko, [SO3"|o) parameter plane. They
match with non-cross-shaped stability boundaries. But they do not fit into the
crose-shaped phase diagrams. (a) locations and stability properties of the three
selected points on my calculated phase diagram; (b.1)(b.2) trajectories at the point
b, ko = 1 x 10-3571,[S03")p = 0.10M; (c.1)(c.2) trajectories at the point c,
ko = 2.5 x 103571,[SO3"Jo = 0.085M; (d.1)(d.2) trajectories at the point d,
ko =5 x 10735}, [SQ%’]:; = 0.06M. Big dots are the upper steady states that
we start with. All starting points of integrations are obtained by moving a steady
state point to a neighbouring point as shown on the graphs. Small dots are steady
states on the lower branch of the fold. Some trajectories end at these points. All

other parameters are the same as those in Fig. 31.

phase diagram. Two different types of trajectories presented in Fig. (b.1) and
Fig. (b.2) support my conclusions. Fig. (b.1) shows a stable limit cycle. Fig. (b.2)

Fig. (c.1) and Fig. (c.2) are two trajectories ended at two different steady
states. Theydemnmmthﬂmuﬂymh:h@nm
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revented by the selected point c. They match with my calculated phase diagram.
They contradict the conclusion that the point ¢ is located in the region of single
lower steady states based on the cross-shaped phase diagram.

Trajectories at point d are shown in Figr (d.1) and Fig. (d?) My calculated

predict the coexistence of two steady states at the point glthaug‘; the justifications
for the stability classification are different. My prediction is based on the fact that
the points c and d are both located in the same large region of bistnbility The cross-

two different regions. From Fig. (d.l‘), we can also clearly see that the upper steady
state at the point d is a stable focus. It supports the explanations presented in
Fig. 39, i.e., there is an unstable periodic solution surrounding each stable steady
state, Theunitgbleperhdlcmlutinnmnlrepeuerwhﬂethenudymhm
attractor to the nearby dynamic trajectories.

It is more complicated to compare my stability boundaries with the pub-
natche eriment m!quﬂﬂﬂvdyvhmthepmdﬂeﬂ:muaﬂ
Samnﬂthgmmmbjectmmem,f” ! )
numerical integrations. Setting starting points for the
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The results are shown in Fig. 41.

There are three sets of data for experiments at 20°C,30°C and 40°C.
Fig. 41(a), (b) and (c) compare my calculated stability boundaries with the three
experimental data sets. None of the data sets fit the calculated stability boundaries
very well. Actually, the same differences also exist between the results of numerical
integrations and the experiments in the original publication?®.

By careful examination of Fig. 41, we found that the basic shapes of our
stability boundaries match with the experimental results. For Fig. 41(a) and (b), if
without incurring a change in the shapes of the stability boundaries, we would be
perimental bistability points in our correct region of bistability,

ital oscillatory points in our region where oscillations exist.
I will discuss this topic in more detail in Section 6.6.

6.5 A procedure for locating all attractors at a phase diagram point

The most important mandate for theoretical investigations is to explain
he experimental results and develop experimental procedures. My research results
have clearly shown the correct stability boundaries. We have also understood the

and numerical integrations which
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sults. (a) comparing with the experiments at 20°C’; (b) comparing with the exper-
iments at 30°C’; (c) comparing with the experiments at 40°C.

I have pointed out that numerical integration at the selected points could
give us only a partial picture of all dynamic features. But the numerical integration
method still has a special feature of which we could take advantage. It is a very close
simulation of real chemical processes in the laboratory. In the laboratory, we set up
, al conditions and then start up an experiment at a certain initial
system state. In theoretical investigations using the numerical integration method,
we specify a set of parameters, which are the counterparts of the experimental con-
ditions. We also select a starting point, which is similar to an initial experimental
system state, to do the numerical integration. This is parallel to running an ex-
periment on a computer instead of running it in a chemistry laboratory. This close
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maoddel like the BSF network. Using our understanding of stability boundaries of the
network, we will develop an investigation strategy using computer simulations. If
the numerical simulation can get correct results, we should be able to apply it to the
real chemical experiments and to confirm all system features. Since experiments are

not part of this thesis, I will focus on exploring the missed features using numerical

integration.

Look at Fig. 38 again and imagine how we could use numerical integration to
simulate experiments. In an experiment, we set up a set of experimental conditions.
In our case, we set up a CSTR reservoir concentration [SO3~]o and a flow rate ko
slong with some other fixed parameters. We run the experiment from a certain
initial state. After some time, the system will reach either a stable steady state or a
sustained oscillatory state. Then we change one of our parameters to a new value.
In most cases, we adjust our flow rate. Then the system will evolve from the state we
just achieved to a new stable or oscillatory state. In a numerical simulation, we do
exactly tbeumethlngnwedldlntberedexpeﬂmtlnthehopeolduplicatin;
the experimental results. In Fig. 38, let's assume our first point is the point A.
Numerical in*rgration leads the system to a stable upper steady state. Then we
change the flow rate to the point B. More numerical integration will bring us to
an oscillatory state. This way, we get the same conclusion on the stability as the
experiment did. However, we actually missed a stable steady state that coexists

with the oscillatory state.

The reason for failing to detect the coexisting stable steady state can be
seen from Fig. 42. mﬁg\mhmhnwadtouhovtbeiduduﬂy.
After the system setties at the stable steady state So, at the flow rate A discussed
m.uwdmhmmmmahmammm
state to the point P in Fig. 42. Point P is within the basin of attraction of the
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stable limit cycle, s0, we get a sustained oscillation.

log CSTR fow.
Fig. 42 Why the upper stable steady states were not detected and how to detect them. A
big adjustment of flow rate kg moves the system from the steady state Sp to the
point P. The rystem will be attracted to the stable limit cycle when P is used as
system states will be changed in the sequence of Sy 4 1 —= 8§, = 2 — 8,.

It is not difficult to find the oscillation when we scan the ko range back
from the high CSTR flow rate. It is difficult to find the coexisting steady state.
From Fig. 42, we see that the answer is to adjust the CSTR flow rate slowly near
the stability boundaries. The pattern of adjustment shown on the figure carries
the system from the state Sy to state 1 by adjusting the flow rate, then to 8; by
integration, then to 2 by the flow rate adjustment again, and 50 on. This way, we
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Dynamic trajectories in Fig. 43 show the differences in final states when
we adjust the flow rate at different step sizes for the BSF network. Fig. 43(a) is a
trajectory at the point A in Fig. 38, where ko is 1 x 10351, The trajectory ends
at a stable upper steady state. Then we change ko so that we get to the point B in
Fig. 38, where ko is 1.5x107%s~ 1. The numerical integration at the point B gives the
trajectory in Fig. 43(b). The resulting state is an oscillatory state. Fig. 43(c) is what
happens when we adjust ko from 1 x 1073s~! t0 1.5 x 10~3s~! using three smaller
step sizes. The adjustment is in the sequence of 1 x 10~3s~! — 1.25 x 10-3s~! —
1.40x 1073~ — 1.50x 103", For ko = 1.25x 10~3s~1, the trajectory ends at a
stable steady state S;. Then ko is changed to 1.40 x 10~3s~! while keeping all other
parameters and concentrations fixed. A new round of numerical integration carries
the trajectory to a new stable steady state S;. Changing ko again to 1.50x 10-3s-1,
we conduct one more step of numerical integration. The trajectory finally lands on
& stable steady state Sy instead of the oscillatory state shown in Fig. 43(b). Hence,
we find the upper stable steady state that was missed before.

In a real experiment, it might take a lot of time to adjust the flow rate
slowly. If this is a real concern, a strategy such as a bisection method should be
applied when we see a sudden change of dynamic features. If a well-established
model is available, it is strongly suggested to calculate stability boundaries first.
Then use a combination of the stability boundaries and the numerical integration
method to explore the possibility of the existence of other dynamic features. This
moedmshmﬂdhingmmtheimmingpummwy. Then a
thorough experimental investigation should be conducted in the specific region.
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Fig. 43 Trajectories of the BSF network when [SO3"]o = 0.085M. (a) A trajectory
starting point of the trajectory in (b) is the same as the final stable steady state
of the trajectory in (a) except that ko has been adjusted from 1 x 10-3s-! ¢o
1.5 x 1073571 (c) A trajectory still ends at the upper steady state. The final ko
for the trajectory in (c) is the same as that for the trajectory (b). But the change
of ko has been taken in three smaller stop sises.
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6.6 Adjusting rate constants to fit experimental results

From Fig. 41, we have seen that the BSF network does not quantitatively
match any set of the experiments conducted at 20°C, 30°C and 40°C'. The problem
is not caused by the reaction mechanism. My studies show that the rate constants
can be adjusted to fit experimental results. I will use the 20°C experiments as an

example to show how to modify the rate constants.

Fig. 44 is a plot in log space that compares my calculated stability bound-
aries with the experimental points at 20°C. As discussed in section 6.4.2, we want to
move our stability boundaries SN and SN* to the left to include all experimentally
observed bistable points between the SN and the SN* boundaries. We also need
to move the oscillation region boundary to the lower left to catch all experimental
oscillation points in our calculated region of oscillation.

According to the slope pattern discussed in section 4.4, parameters
[BrO; Jo, k1, ka2, ks, ke, k7 affect the positions of the bistable boundaries. Numer-
ical calculation shows that the stability boundaries are especially sensitive to a
small adjustment in k). Changing k; causes the SN and the SN* boundaries to
move in the same direction without noticeably changing the width of the bistable
region between them. The effect of changing k; on the boundary of the oscillation
region is also desirable. It does not change the slopes of the oscillatory boundary so
that treatment of the oscillatory boundary can be conducted separately. All these
fu'tarehtedmklwthathbmldedcmdldatewhichubmldbeww
first. The slope pattern derived in section 4.4 indicates that &, should be lowered
to move the boundaries of the bistable region to the left of the phase diagram on

the (log [SO3" Jo. log ko) plane.

139



log ky
Fig. 44 Comparison between the calculated stability boundaries and the experimental re-
sults at 20°C. Original rate constants in reference (25) are used. The rate constants
need to be modified in order to match the calculated stability boundaries with the

Fig. 45 shows the calculated stability boundaries for the 20°C experiments
after k; has been changed from 8.000 x 10-2M~'s~! to0 5.765 x 10-2M ~'s-!. We
see that all experimentally observed bistable points are in the region between the
SN and the SN+ boundaries. Other experimental points in the region were reported
to have only a single lower steady state. It disagrees with the prediction based on
the stability boundary calculations. However, this disagreement is understandable
becuuse of the narrow basin of attraction caused by the subcritical Hopf bifurcation
for the upper steady states. Using the strategy discussed in Section 6.5, a second

The next step is to fix the problem associated with the boundaries of the
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oscillation region. The right boundary of the region always coincides with the SN
boundary because of the existence of the saddle-node on a loop(SNL) bifurcation
structure illustrated by Fig. 36. As long as the SN boundary is moved to the
desirable position as we already did. the right boundary of the oscillation region is
determined.

According to Fig. 45, left boundary of the oscillation region needs to be
moved downward so that we can get a wider oscillation region to accommodate all
experimentally observed oscillatory points. Since this boundary consists of saddle-
nodes of periodic solutions (SNP), it is related to global system dynamics. It cannot
be determined from the local steady state features only.

There exists some information that can help us to find the right parameter
for the adjustment. As I mentioned in section 6.2, key extreme currents associated
with the Hopf bifurcation all contain reaction Ro. Experiments also demonstrated
that the oscillations appeared only after ferrocyanide was added to the bromate-
sulfite system so that reaction Ry occurs in the system. Since the oscillations here
are directly related to the subcritical Hopf bifurcation, its boundary must be related
to reaction Ry. Hence, adjustment of ko should change position of the boundary
for the oscillation region.

Fig. 46 and Fig. 47 show two comparisons of calculated stability boundaries
with experiments at 20°C after k; is adjusted. In Fig. 46, ke is changed from
32.5M~25~! t0 49.5M 25! while all other parameters are kept constant. All
experimental oscillation points are now located in the newly calculated oscillation
region. Although we call the region an cscillation region, real dynamics in the
regionhactuaﬂytbeeomtenceducﬂhtbmmdtheupperuableuudym
as discussed previously. One suspicious experimental point that | cannot explain
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using the calculated stability boundaries is the point P in Fig. 46. The original
experiment should have produced either a single upper steady state, an oscillatory
state or a combination of an upper steady state and an oscillation. From the figure,

we can conclude that 49.5M ~%5-! is approximately the upper limit for the ko value

to the left and cause discrepancies between the experimental and the calculated

results.

A better choice of kg value is kg = 39.5M ~2s~!. Fig. 47 is calculated using
this ko value. The experimental and calculated results also match very well on
the figure except the suspicious point P. The main difference between Fig. 46 and
Fig. 47 is the location of the curve where the oscillation region ends.

As mentioned earlier, the left boundary of the oscillation region is a SNP
(saddle-node of periodic solutions) curve while right boundary of the region is a
SNL (saddle-node on a loop) curve. The ending point of the region is a point
where the SNP and the SNL curves join. A normal SN curve also joins the SNP
and the SNL curves at the point. This is a codimension 2 bifurcation point. In
Fig. 47, the point is located at [SO§‘]o~522x10"M All experimental bistable

pocmonbeo-cumonngson. mumm-tmlsog-h
values, bifurcation diagrams have the qualitative shape shown on Fig. 39. It is
much easier to detect two stable steady states in a range between the SN and
the HL (bomoclinic loop) as I explained before. So, Fig. 47 not only shows the
experiments. In Fig. 46, the ending point of the oscillation region is located at
[SO37Jo % 4.71 x 10~2M. Even though the te
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Fig. 48 Comparison of the calculated stability boundaries with the experimental results at
20°C after k) is adjusted from 8.000% 10-2M 15! ¢05.765x10~2M - !5~ and
ke is adjusted from 32.5M 25~ to 49.5M ~2s~). All experimentally cbearved
Mwmmmmwhthwmmmmum
point P. (a) in the conventional parameter space; (b) in the log space. All other
parameters are the same as those in Fig. 31.
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Fig. 47 Cmrhmﬂthmkuh&dﬂ:biﬁtyﬁuﬂubﬁthh’ mental results at
20°C after k) is adjusted from 8.000 x 10~2M =15~} to 5.765 x 10-IAf~15-}
and ke is adjusted from 32.5M 25! to 390.5M 351, All experimentally ob-
cept the point P. The figure also explains why some bistable points were detected
in experiments but some bistable points were not detected. (a) in the conventional

in Fig. 31. 145



accommodate all experimental points except point P in the figure, it cannot explain
why some bistable points were detected experimentally, but some points were not
detected. Therefore, ko = 39.5M ~25~! should be our chosen ky valuc.

The complete phase diagram at 20°C for the experimental points is shown
in Fig. 48. All experimentally observed dynamic features (except one point discussed
above) match the calculated stability boundaries very well. The phase diagram also

shows the features which were missed at the various experimental points.

6.7 Important chemical pathways for the steady state bifurcations of
the BSF reaction network

In this section, I will examine the chemical pathways responsible for the
Hopf and the SN bifurcations.

6.7.1 The minimum set of unstable combinations of extreme currents

There are twenty-eight extreme currents in the BSF network. They corre-
spond to twenty-eight chemical pathways for the network to achieve steady state.
The transpose of the complete extreme current matrix was given in Section 6.1. To
ﬁndmeuofimtabihtyintbenetmk,lhaveomductedammpumbndmrch
for the minimum set of unstable combinations of currents. The calculation shows
that there are ten unstable extreme currents. There are also twenty-seven combina-
tions of two stable currents are unstable. That is to say, the two stable currents in
each combination combine to produce instability. No combinations of three stable
currents can produce instability. Therefore, we can conclude that the instabilities
in the BSF network are caused by at least one of following thirty-seven unstable
combinations.
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Fig. 48 The correct phase diagram for the BSF network at 20°C. (a) in the conventional
parameter space; (b) in the log space. All parameters are the same as those in
Fig. 46.
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1 - current: 10 11 21 22 23 24 25 26
27 28
2 -currents:  (9,16) (9,17) (9.18) (9.19) (9.20) (10.16) (12.17) (12,18)
(1219) (12,20) (13,14) (13.15) (13,16) (13.17) (13.18) (13.19)
(13.20) (14.16) (14,17) (14.18) (14,19) (14.20) (15.16) (15.17)
(15,18) (15,19) (15.20)

6.7.2 The minimum set of necessary extreme currents for bifurcations

In the search of important chemical pathways responsible for the steady
state bifurcations, we need to know the relative rates of the extreme currents near
the bifurcation point. Usually at a bifurcation, the rate of one current increases

above the rate of another current.

To find the minimum set of necessary extreme currents for a bifurcation, we
calculate the j values at the bifurcation point only and put the j values in a descend-
ing order. Using the SNA package, we delete the currents one by one starting from
the lower end of the j-ordering. After deleting a current, we flip over to the screen
where unstable regions on steady state manifold are calculated. If the bifurcation
feature is still unchanged, we go back and delete one more current. The procedure
hrepeatedumﬂwedhcovetacmrentthatcannotbedeletedwitbomdutmyiu
the bifurcation feature. We then carry out the same procedure starting from the
top of the j-ordering until we meet another undeletable current. Sometimes, certain
very strong currents are detail-balanced currents or CSTR flow-through currents.
They maintain some concentration levels without influencing the stability. In a
Mwiwmmcabndmymm&xawmtion. these currents can
often be deleted. If a quantitative match is necessary, then we have to keep these
currents. They will make our minimum set bigger. After finding the two ends of the
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necessary currents in the j-ordering. we then try to delete the remaining currents
one by one to make sure all the remaining currents are necessary. We only keep the

minimum number of necessary currents,

Using this procedure, we can also investigate more then one bifurcation
point at a time. For example, when we are working on one SN (or SN*) point
of a fold, we can keep an eye on the other SN (or SN*). If we want to find the
minimutn set for keeping both SN (or SN*) bifurcation points, we should delete
only those currents whose elimination does not eliminate either one of the two SN
(SN*) points. The minimum sct of extreme currents found this way will be the

minimum set responsible for the whole fold.

I applied the procedure to the fold of the BSF network. I started with the
lower-left SN point. There are fourteen nonzero § values because the current cone
is fourteen dimensional. The nonzero j values at the point are

Ja= 59.63 Jie= 3.8664 x 10-7
Jr=1.8684 x 10°%  j;= 2.8544 x 10-*
Je= 7.1365 x 10-2 Jo= 1.5321 x 10~*
Ja= 7.0960 x 10-® Ji1= 1.8742 x 10-*
Ju=38032x10"%  jzo= 1.8182 x 10-°
Ja= 8.4378 x 10-¢ Js= 1.8014 x 10~-°
J10=6.TT23 x 10*  jye= 9.2623 x 10~12

three of the left column currents in the order of jag, s, ja7, 1, Jor J2, j1es 53, Ju» Je-
points and the whole fold. Fig. 49 is a calculated steady state manifold after ten of
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of unstable combinations of extreme currents, we know the sources of instability are

the unstable extreme currents E;o and E;;. They have rates jjo and J11 respectively,

245 240 236 230 225 220

Fig. 49 A steady state manifold after ten of the fourteen extreme currents have been deleted
nts still preserve the whole

for the BSF network. The remaining four extreme cur
fold. The relative rates of the four extreme currents in different regions are given
by the j-orderings on the graph. ence between the numbering of the j,
for the simplified network and that for the original network will be given in next

section.

6.8 Stability boundaries of the BSFSN network
6.8.1 SN bifurcations in the simplified BSFSN network

The minimum set of necessary extreme currents (Eq, Ey, B0, E;)) consti-



Fig. 50 is the network diagram of the BSFSN network.

Fig. B0 Network diagram of the BSFSN network. It contains only four extreme currents

that are necessary to maintain the fold and the SN bifurcations.

There are eleven reactions and eight intermediates in the BSFSN network
as compared with twenty-three reactions and nine intermediates in the original BSF
network. There are four extreme currents in the BSFSN network. They correspond
to the original extreme currents of the BSF network in the following way:

BSFSN: 4y j2 Ja Jja
BSF: Ja Jr Jo Jn

Fig. 51 gives graphical representation of the four extreme currents of the
the results of changing the relative rates of the four extreme currents on different

181



4. As we can imagine intuitively, the stable current 1 is faster on the stable upper
branch while the unstable current 4 is faster on the middle branch. The lower-loft
SN bifurcation is the result of the changing relative rates of stable current 1 and
unstable current 3. The stable current 1 is faster on the lower stable branch and

the unstable current 3 is faster on the middle unstable branch.

© @

Fig. 81 Four extreme currents of the BSFSN network. (a) current E; (current E4 in the
BSF network); (b) current E; (current E7 in the BSF network); (¢) current Eq
(current E,g in the BSF network); (d) current Eq (current E;; in the BSF net-
work).

Another difference between the two SN bifurcations is that current 3 is the
second fastest current at the upper-right SN point while current 4 is the second
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chemical pathways for the same total reaction:
3303‘ + EI'QS —_— 35(:)“ +Br-.

At high CSTR flow rates, a large portion of Br~ is washed out of the system.
This effect benefits its competing species H* . From Fig. 51(c), we can see that
H* competes with Br~ via both reactions R; and R;. So, the upper-right SN
bifurcation occurs at a higher flow rate and a higher [H*] concentration. When the
flow rate is low, its effect on concentrations is opposite to the above. According to
Fig. 51(d), a lower flow rate washes less Br~ out of the system. This causes the
concentration of its competing species H* be suppressed via reaction R;. Hence,
both the flow rate and the [H*] are lower at the lower-left SN bifurcation point.

6.8.2 Linear segments of SN boundaries of the BSFSN network

Fig. 52 is a calculated phase diagram of the BSFSN network on the two-
dimensional (log [SO3"Jo, log ko) plane. The experimentally interesting region is
shown in the small rectangle. It includes part of the stability boundaries that are
close to straight lines with slopes of -1. It is complicated to derive explicit equations
for thewe stability boundaries. I will discuss the process in the next section. Now, 1
SN; and SN; on the graph to prove its linearity.

R BrO; + HSO; L HBrO, + SO3-

R; HBrO; + Br- + H* X% JHOB:

R; HOBr+Br- +H* X Br, + H,0
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5 F L . . 5 y j
-5 -4 -3 -2 -1 0 1
log k
Fig. 52 Stability Boundaries of the BSFSN network. The region covered by the small rect-

Ry 2HBrO; X% BrO; + HOBr + H*

Rs Br; + HSO; + H,0 2% 2Br- + 803~ + 3H*

Ry H* +80%- XL Hso;

I (80§~} == so3-

Iy {BrO;} X BrO;

O, Br- =

0; S0~ =

Os Bro; .

that a direct comparison between the two networks can be made.
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The extreme current matrix of the BSFSN network is
E:. E; E; E,

Rfo o 1 2)
RJo o 1 o
Rafo o 2 1
Rs|] 0 0 o0 1
Rel] 0 0 2 1
E=R, |0 o 3 3
L1 o 3 3
s|o 1 1 1
oolo o 1 1
o:/1 0 o0 o
os\0 1 0 o)/

For this network, equation (8) can be written as

ki [HSO; |(BrOy ] = js + 2j (41.1)
ka[H*|[HBrO,)[Br~| = js (41.2)
k3[H*)|[HOBI)[Br~] = 2js + ja (41.3)
ks[HBrO;)* = jq (41.4)
ko[HSO5 |[Bra) = 2j5 + js (41.5)
kz[H*)[SO3"] = 3j3 + 3¢ (41.6)
ko[SO3"Jo = jr + 3js + 3j¢ (41.7)
ko[BrOglo = ja + j3 + js (41.8)

ko[Br™| = js + js (41.9)
ko[SO3"] = jy (41.10)
ko[BrO; ] = ;. (41.11)
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According to Fig. 49. the linear segment of the lower stability boundary

SN, shown in Fig. 52 also satisfies the equation:
J1 = Ja. (41.12)
On the linear segment of SN, concentrations of five chemicals are constant.
Fig. 53 shows all eight concentrations on the stability boundaries. We can see that

HSO; , HOBr, HBrO;, Br; and BrO; have constant concentrations on the lincar
segment of the SN; boundary.

To prove the linearity for the linear segment of the SN 1 boundary, we
need to derive an equation that contains only experimental parameters and the five
constant chemical concentrations mentioned above.

From equations (41.6) and (41.9), we have
3ko[Br~] = ks[H*][SO3"]. (42)

Similarly, we have
ka[H*|[HBrO,]([Br "] = ko[SO3 "] (43)

according to equations (41.2), (41.10) and (41.12). We also have
ka[H*])[HOBr|[Br~] = k|HSO; |(Br,) ()

according to equations (41.3) and (41.5). Dividing (43) by (44) and rearranging the
resulting equation gives

-1 _ kaks[HSO; ][Br;][HBrO;)
[805°) = : koélllo:k] ) (45)
Dividing (42) by (43) and rearranging produce
‘= ! "/-“" %
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Substituting equations (45). (46) into (42) gives an expression for (Br-]

ki kekd [HSO;[Bro)[HBrO,)} |

Be) = Uakoks— [HOBH]

(47)

Substituting equations (41.9). (41.10). (45) and (47) into (41.7) gives the stability
boundary equation

2-) _ kake [HSO; }[Brs)[HBrO,] V3ki ”
ko[803 ] » ‘[HOBI'] {1+ m} (48)

On the linear segment, all variables and parameters included on the right
side of equation (48) are constant. Hence, the equation can be written as

ko[SO37] = c,

where c is a constant whose value equals to the right-hand side of equation (48). In
log space, the equation is

log [SO3"Jo = —log ko + C,

where C = logc. This is a straight line with a slope of -1.

Udngthedmﬂutmtment,wecandeﬂvemqmimﬁthemrﬁ
saddle-node bifurcation surface SN,:

2 ak;k.h ,[ﬂnrosllHSD;l d[Bra)t f
ko[SO3"Jo = ks[HBrO,}* + ( ) Hone] (49)

lnhgm,thhhahoawllnewithalhpenf-l,
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6.8.3 Explicit stability boundary equations of the BSFSN netw

It is difficult to derive analytical stability boundary equations of the BSFSN
network because of two reasons. First, the steady state manifold of the BSFSN
network is highly nonlinear. The hyperplane appraximation cannot be used to derive
cither the steady state manifold equations or the stability boundary equations. The
nonlinearity can be seen from Fig. 49. The second difficulty in deriving the stability
boundary equations is that the rates of the important currents are comparable.
The rates of the currents at a typical point on a stability boundary of the BSFSN

J1=12002x10"%  jp = 35413 x 1073;

ja=T.1249x10°%  ji = 4.6070 x 107,

tion cannot be used to derive explicit equations for the stability boundaries. The
only method that we can use is to do a stability analysis in (b, }) parameters and
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following inequalities.

— log ji + log jz + log jia = log jy > lng;—i
log ja — log j4 — log [HSO; | + log [HOBr| > log 2
log js = log j4 — log [HSO5 | + log [H*] > log 2
= log ji + log ju > lﬂ!%
~ log [HSO; ] + log [Bry] > log 6
- log [HSO3| + log [HBrO,) > log 1
log j3 + log j4 > log 6.
The unstable steady states in the SN region must satisfy all of the 7 inequalitien.
Non-log form of the system of inequalities is
s > §Jm
Ja[HOBr] > 2j4(HSO; |
j;[H*] > 21;[HSO; ]
Ja 311
[HBrO;) > [HSO;]

Ja > 6j3.

, 2.
Jal‘*g.hs

This inequality is violated when js = §j;, which is one of the boundaries of the
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with the numerical observation that essential currents E, and Ej have roughly equal
rates at the bifurcation. The factor of § in the SNA result is not significant because
the method omits terms from polynomials. Such an approximation can produce

coefficients which are inaccurate by a factor close to 1.

The unstable region in the log h-logj parameters is a convex polyhedral
cone. The boundary of each inequality above is one face of the cone. Two boundaries
meet at a codimension 2 face of the cone. We now consider the special case of the

codimension 2 face where the condition
Ja = Gj3

is satisfied in addition to the condition js = §;i, which holds along the SN; curve.
This extra condition makes it possible to solve the equations explicitly.

Substituting the two boundary equations into equations (41.1) through
(41.11) gives

k. [HSO5 |[BrO7 | = i (50.1)
ka[H*|HBrOs [Br | = 35y (50.2)
ko [H*|[HOBH[Br "] = =)y (50.3)

ks [HBrO,)? = 4j, (50.4)
ka[HSO5 |[Bez] = 35 (505)

ke[H*][803"] = 145y (50.6)
ko[SO3"Jo = 155, (50.7)
ko[BrO3lo = 2 + 2 (50.8)

ko[Be) = )y (50.9)
ko[SO3"] = jiy (50.10)



ko[BrO; ] = js.

(h0.11)

Equations (50.1) through (50.11) can be solved to give concentrations of

eight species and the stability boundary equation. Procedures for solving the equi-

tions mainly include substitutions of one equation into another and rearranging the

resulting equations.

Substituting (50.10) into (50.7) gives

(803" = (803 o
Substituting (50.9) into (50.7) gives

[Br~] = %[303'10;
Substituting (50.11), (50.7) into (50.8) gives

[BrO3] = [BrOj Jo - 131903l
Substituting (50.4) into (30.7) gives
[HBROy] = {12803 "Jo};
Substituting (50.6), (51.1) into (50.7) gives
L4k

) x 9.
H*) = ===

Substituting (50.3), (51.2) and (51.5) into (50.7) gives

8ky

[HOBI'] = ﬁ;;

Substituting (50.1), (51.3) into (50.7) gives

sl = l‘“(soi:b ——
[HS0;] k1 {45(BrO3 o - 14/S07 o}’

(51.1)

(51.2)

(51.3)

(51.4)

(51.5)

(51.6)

(51.7)



Substituting (50.5). (51.7) into (M).7) gives

Hkl

H8Hky,

[Bry) = {45BrO Jo - 14[SO3"]o}. (51.8)

The stability boundary equation is obtained by substituting (50.7), (51.2), (h1.4)

and (51.5) into (50.2) and rearranging the equation. The result is

15ks k3

1602 ] =
ky[SO; " Jo 38416k3°

(52)

Naote that the equation does not necessarily hold at the SN, curve. It holds
only if the parameters satisfy the extra condition jg = 63, which means the steady

state is on a codimension 2 face of the cone of instability.

On the (log [SO3 ]o, log ko) plane, the right-hand side of equation (52) is

constant, so the equation can be written as
ko[SO3 "o = c.
In log form, the equation is

log [SO3 Jo = - logko + C.

This is a straight line with a slope of —1. which matches Fig. 52. Sub-
stituting this equation into equations (51.1) to (51.8) and converting the resulting
«quations into the log version gives a set of equations which matches the eight plots
in Fig. 53. The derivation is very straight forward and is omitted here. (For the
concentrations [BrO; |, [HSO; | and [Br], approximate straight line equations can
be obtained by considering that current 2 is the fastest current in the parameter
range.)
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Using the same procedures an above, we ean derive an explicit equation for
the SN3 boundary (upper-right SN bifurcation surface). To get the cquation, we
need to combine boundary equations

Ja =34

J1 = bjy.
with equations (41.1) through (41.11). All other steps are the sume as those nsed
for deriving SN; boundary equation. The result is

a2l 117k k3
ko[SO3 Jo = ﬁz

Like Equation 52, this equation holds when the SNy bifureation is on a cedimension

2 face of the cone of instability.

6.9 Destabilizing feedback cycles of the BSFSN network

The feedback cycles which produce the instability can be determined easily
using the SNA software. Eiswirth, Freund and Ross™ “*' have summarizod some
prototype unstable cycles for chemical oncillators wsing SNA. For the BSFSN 1uvt-
work, there are no Hopf bifurcations and oncillations. We will only identify the
destabilizing cycles responsible for the saddle-node instability.

the location of the cycles in the whole network, [ have abvo included the network
diagram in the figure.

The four destabilizing feedback cycles in figures 54(b), 54(c), 54(¢) and 54(f)
have similar network features. They all contain a critical current cyche and a denta-
bilizing positive feedback 2-cycle. In Fig. 54(h), the critical current cyche contains
H* and Br; via reactions Ry and R;. H* abo lies on & pasitive fendback cycle
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Fig. 84 Destabilizing feedback cycles of the BSFSN network, shown along with the original
network diagram. Positions of species and reactions in the current cycles were not
(Wmtheunmmupﬂththwuwmkdhpmcmbemdmly.



involving SO3~ via reaction Rs. which destabilizes. That such an arrangement
of feedback cycles destabilizes was proven bv Clarke in theorem V.10 in Ref. 28,
Fig. 54(c) contains the same critical current cyele as Fig. 54(b). but the destabi-
lizing positive cycle involves HBrO; via Rz, A similar analysis con be applied 1o
critical current cycles and positive feedback cyeles in Fig. 54(e) and Fig 54(f). where

different species and reactions are involved.

Fig. 54(d) contains a short-circuited cycle which involves reactions Ry, Ry sl
species Bra, H*, Br=. A positive feedback 2-cycle botween HY and Br vin Ry still

destabilizing here. This is also a source of instability.



VII. Summary and conclusion

In this thesis, I have systematically presented my research on computer
investigation of stability bounduries. It includes theoretical investigation, method

development and real chemical reaction network analysis.

Following the introductory chapter, I discussed topics related to steady
state manifolds of chemical reaction networks in chapter II. I first summarized ter-
minology, ideas and parameters used by the SNA. Then, the problem of calculating
steady state manifolds was tackled using numerical and analytical approaches. My
numerical algorithm calculates reaction network steady state manifold. accurately
nate analytical formulas

and efficiently. Two analytical methods provide approxit
for steady state manifolds in a multidimensional parameter space. They tell how
important chemical pathways at the steady states.

The investigation of stability boundaries begins in chapter III. First, I dis-

cussed steady state stability problems and explained the mathematical methods
used for dete | stability. Then, I discussed the general equations for the sta-

bility boundary and a numerical method for calculating them. The general stability

boundary equations cause the stability boundary to have an interesting structure.
The structure is useful for exploring unstable regions.

ated with stability boundaries. How do the experimet | parameters affect stability
boundaries? Multidimensional analytical equations for stability boundaries were de-
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variables in the equations, their implications on stability boundaries can be mwvl
explicitly. For some networks. analytical equations may not always be available. In
these situations, a. operational method based on slope sign patterns can be used
to determine how experimental parameters atfect stability boundaries. The meth-
ods presented in chapter IV can be used as o guidance for adjusting experimental

parameters or predict experimental results,

In chapter V, 1 discussed stability boundaries of the Gray-Scott network. A
complete stability analysis was conducted in the (h. J) parameter space. It identitied
all sourres of instabilities. A mushroom-shaped steady state manifold was obt ained.
The important chemical pathways were found for various regions of the stendy state
were calculated numerically. The various stability boundary structures explains

why this prototype reaction network has such rich chemical dynamics

In chapter VI, I analyzed stability boundaries of the bromatesulfite-
ferrocyanide (BSF) reaction network. The focus here is the stability boundary
structure and its relationship to the experimentally olwerved nonlinear dynamics,
I explained the process in searching for the observed oscillations. The fact that the
expected cross-shaped phase diagrams were not found prompted in-depth investi-
gation on reasons for this. My results require a reinterpretation of the experimental
results. | also developed an approach to avoid misinterpreting the experimental sta-
bility boundaries and dynamical features in the various stability regions. 1 devived
a method which uses the sign patterns of the slopes to improve the rate constants
and make them match the experimental results.

After solving the stability boundary structure problem, [ analyzed the BSF
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aries. I simplified the network and discussed how the key chemical pathways affect

stability properties of the steady states. This picture helps on understanding the

whole reaction network.

The research conducted in this thesis uses the approach known as SNA.
This work has greatly enhanced SNA's ability to deal with real chemical reaction
networks using both the conventional (k, C) parameters and the (h, J) parameters.
It has also enriched our understanding of stability boundary structures. The nu-
merical and analytical methods for calculating steady state manifold as well as
stability boundaries provide us with an effective means for investigating chemical
reaction networks. The SE curves discovered in this thesis are important. They
connect DZ-centered structures so that new unstable regions in parameter spaces
can be explored. The discovery that non-cross-shaped stability boundaries occur
may help explain other experimental results. The strategy proposed in the thesis
can be applied to many mechanisms.

The SNA program package makes it possible to treat other mechanisms
casily. A particular interesting research project is to reexamine reaction networks
whichh.vebeencldmedtohnvecm&;h;pedphﬁdhgm. I have shown that
what appears to be cross-shaped is not always truly cross-s) ped. Olsen and Ep-
stein have recently emphasized the importance of investigating stability boundaries
using bifurcation analysis methods?® ™, Their approach is based on the universal
unfolding and the singularity theory. Using the stability boundary structures, SE
curves and other methods presented in this thesis, we can extend our understand-
ingmmwﬂu-cope.omhuthenhthnlhlphﬁmﬂnﬁhﬂuﬁiﬁmnﬁm
different branches of a fold. Using the algorithms developed for this thesis, we can
Mtrmmtywhmmm&atmﬁSNAhm
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for calculating steady state manifold
Al.1 The problem
The kinetic equations of a reaction network are

dX .
”H— I(Xiru.

where X is the concentration vector of the intermediates, and a is a specific abscissa
parameter. X is a steady state if

We need to calculate the steady state X in a given range of a. This is the
mathematical problem of evaluating the dependence of the solution of a system of

equations on a specific parameter. The result will be a function X(a).

A1.2 Dependence of the solution of a system of equations on a specific
parameter

Consider a system of equations

(X, Xa,...,Xa,a) =0,

!Z(thii--nxniﬂ)goi o
(A.1)

In(X1,X3,...,Xn,8) =0.
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We want to know X, X, . ...

l!

3.

. Xn at different a values. The procedure is as follows.

Rewrite equation (A1) as
j;(X;ngi....Xﬁ,XnH) =),
fg(xlix"a'i”'!ixpﬁsxﬂ*l) ;0!
(A.2)

(X1, X2, ... Xn X 1) =0,

where X4 = a.

Differentiate each equation of (A.2) with respect to a variable we will call

T. 7
hd, Af, dX,
e X df
=1

i‘é i=12... (A.3)
T

n

We let T be the arc length on the curve X(a).

dX, dX3  dXi-i dXkss
Solve equation (A.3) for the unknowns ar ' dr ' dr

d;f_ d'z':" assuming % is a fixed independently adjustable vari-
able. The unknowns are proportional to ﬁ

dr
numbers (3 such that

gy

and the solution produces n

dX;

dr

dX , N
- ey + 1, (A.4)

1,2,....k-1k+1,

An infinitesimal piece of the curve where X changes by (dX,,dX3,...,dX,)

has the infinitesimal length dr where



AV e . \
Then s determined by the J, coethicients as follows,

iaT
tiel

ii.\,}»-,_;z nol
(df’) = (1 + Z a9 L

it -lask

The subscript & is determined by the Gaussian elimination procedure when

it chooses the best index for pivoting.

l. Predict the next point on the curve by integrating equation (A.4) using the

Adams-Bashforth explicit multi-step method with an antomatic adjustment

in the order of approximation.
a). The first order approximation

X, = Xo + h X0
dr

= Xo + hx:,

b). The second order approximation
X1 = Xo + 0.5h(3X}) - X'_,)
c). The third order approximation
Xy =Xo + l—';(zax:, - 16X, +5X",)
d). The fourth-order approximation
X, =Xo+ 2%(553:3 - 59X’ , + 37X’ , - 9X'_,)

where A is the step size; Xo,X_;,X_3,X_3 are previous points;
X, is the new point that we want to calculate.

depends on the number of previous points available. It is set back to 1
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5. Correct the predicted point using Newton-Raphson (NR) iteration. The

NR formula ean be derived as follows.

Let AX be the difference between the estimated point on the curve and

the nearest true point on the curve, then
( N Ofy N ofi dfi

dr, ), dzk_1  OTgs OZnsi
dry dzy Ok DTk Insr | AX =f

\dry drz 9Tk 0T OZn4) /

or

where

(oh oh  Oh  Oh  _Oh
dry 0z, Oze_y T4 . OTp4
on ofh . oh' o% . ok
Fe= | 0y Oz, Ozx-y  OTis 0zny |,

O Ot . Ofn  Ofa . Ofn
\ 9z, O 0k Oz BzZpyy 4

The correction to X that is required to get back to the curve is —AX, or
Xoew = Xoa = -3t

ngfE xj = (X!| xﬂi‘ "QXQallxi*l!iii!xﬂ*!)T‘

Xiew = Xoug = Fi'1.
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other round of prediction using the predictor is carried out. It will produce

another predicted point for the curve,



Appendix 2: Dominant extreme current approximation
of the Gray-Scott network

When the dominant extreme current approximation method is applied to
simplices in the current polytope of the Gray-Scott network, the simplices are di-
vided into smaller simplicial regions, each with a given j ordering. The ordering
gives the relative importance of the extreme currents in the region. In r}. following
tables, the extreme currents are arranged in descending order of importance in the
J orderings. The simplified steady state reaction rate vectors vg are expressed in

terms of the vector of the dominant currents.

abbreviated notation means that v, is approximated as

Vo = (jhjl'j"—‘ijﬂhjl,jg)

one of which is (1 2 3 4). This abbreviated notation means case 1 applies when
J1>J2> ja > ja

The tables give vg for all possible current polytope simplices of the Gray-
Scott network. The current polytope can be decomposed into two simplices, such
as (1,2,3,4) and (2,3,4,5) which are given in Tables A2.1 and A2.4. The alter-

native decomposition into simplices (1,2,3,5) and (1,3,4,5) uses the formulas in
Tables A2.2 and A2.3. Refer to section 4.2 in the thesis for details.
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A2.1 Simplex (E\.E;. Ey. Ey)

1. Reaction rates and ; orderings

Case

J orderings

W =~ U e W N

1411]3,7414.1:

(123 4.0
(2134,

(231 4).(
(2341).(3

1

21)

RRENEE

Dt

2413) 21 (12321423 04321)

(3124),3
(3412)
(4132),4

142)

312)

2. (h,)) - (k,C) mapping

Case

Ja

1

J'E Rl

ko Bo

Boko

ko Bo

ko By

ko Bo

demﬂﬁdmmwinmsmkzdgshﬂg

ko Bo
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A2.2 Simplex (E,, E,, E3, Ey)

C‘aae 7 7 ‘;97 J orderings with same vq
9 isisia | (1235),(1253),(1325) .
10 Jdrjaisivds (1352),(1523),(1532),(6123),(5132)
11 JJadadsija (2135),(2153),(2513)
12 J1J2jajsJaja2 (2315),(2351),(2531),(3215),(3251)
13 Jijrjadsiaja (31259)
14 JidrJsisdads (3152),(3512),(3521),(5312)
15 J1jajajsirs (5213)
16 jljijajajajg (5231),(6321)
3. (h,)) - (k,C) mapping
Case vo A 2 Ja Js Js
9 Jirdadsivia | eida koAo

146
12 .in.i:jsjsjajz Ao
Ao
Ao
Ao

Pl | gL 5Ll

‘Tbimﬂﬁed:mmvgmmlﬂmh&?!&hs
The simplified rate vector vq in case 14 requires k3 = k; Ay Bo.
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A2.3 Slmplex (E\, E3. E;. Ey)

1. Reaction rates and ) orderings

Case ) Vo j:;r(ierings;itla Sﬂﬂlj;u
17 | Jujijajajiis | (13 45.(1435)(1458)
18 | jurdsdsiids | (1354)(1534)(1543).(5134).(5143)
19 Nrdajajajs | (3145)
20 | Junjajsjags | (3154)(3514)(5314)
21 Jadrjajagais | (3415),(3451)
22 Jadrdajsjajs | (3541),(5341)
23 | Jujrjajejeds | (4135),(4153),(4315)(4351),(4513),(4531)
24 jajljsjsjdis (5413),(5431) B o
3. (h,})) - (k,C) mapping
Case Vo A B jxr Ja j; ) J4
17 jmjmjm T | M8 | kodo | 2k | M2 | kb
18 jljljmjm B | B | koo | 4t 0 | koBo
19 jliliﬂljﬂﬂ Ao | M| 2k | kAo | B | kB
20 jl.il.i:jsiajl Ao By | k3Bo | koAo 0 ko Bo
21 jdnia.i;iajs Ao | ot | el [ kode | M | kB0
22 ijust Ao Bo | kaBo | koAo | kiAeB3 | koBo
28 | s | M | A | ke | 2k | kAo | koo
U | i |ty | Bo | kaBo ?ﬁ kodo | koBo

‘demﬂ&dm@vnmmlamh&:h&,
The simplified rate vector v, in case 20 requires ky = k) Ao By.
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A2.4 Simplex (E;, Ey, Eq, Es)

1. Reaction rates and j orderings

Case Vo j orderings with same vo
25 Jadajsjagsiz | (2345),(3245),(3425)
26 Jajajadsiaja (2354),(2534),(3254),(3524),(3542)
27 Jajajajajada (2435),(2453),(4235),(4253),(4325)
28 Jajajajsiada (2543)
29 Jaj2jadajals (3452)
30 JaJajaiedads (4352),(4523),(4532)
)| Jadajajsjajs (5234),(5324),(5342)
32 | jajajsisieis | (5243)(5428),(5432)
3. (b)) - (k,C) mapping

* The simplified rate vector vo in case 25 requires kg = k; AgBo;
The simplified rate vector vy in case 27 requires ky Ag = ko By.
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Appendix 3: Data points on the published phase
diagrams of the BSF network

Note
The tables list a “stability code” beside each point. The meaning of the code is as
follows.

Stability Code Meaning

1 SSI = lower stable steady state

2 SSII = higher stable steady state

3 bistability between two stable steady states

4 oscillations only

5 bistability between an oscillatory state and a lower stable steady state
6 bistability between an oscillatory state and a higher stable steady state
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A3.1 The calculated phase diagram with kg = 32.5 M -25-!

ko [SO%3-]o stability ko [SO%-]o stability

3.50 2 10°%  0.030 2 3.50 x 10~ 0.060 3
4.00 x 10~*  0.060
4.50 x 103  0.060 1
6.00 x 10-3  0.060 1

8.50 x 10~3  0.060 1

[

5.50 x 1071 0.030

el b

7.00 x 10°%  0.030
92.00 x 103 0.030
275 x 1073 0.040
4.25 x 107 0.040 1.00 x 10~ 0.075 2
1.50 x 10~%  0.075 2
2.00 x 10~3  0.075 6
2.25 x 1073 0.075 6

500 x 102  0.040
6.00 x 10°3  0.040
7.00 < 1073 0.040

8.00 x 10-?  0.040 2.50 x 10~  0.075% 1

2.00 x 10-3  0.050

» ~ b L] b L] L [ )

4.00 x 10~3  0.075 1
7.00 x 10~3  0.075 1
5.00 x 10~¢  0.085
1.00 x 103 0.085
1.50 x 103  0.085
1.75 x 10~%  0.085
2.00 x 10~  0.085
5.00 x 10-3  0.085
5.00 x 10~¢ 0.100
1.00 x 10~  0.100
1.50 x 10~*  0.100
3.00 x 10-* 0.100

»~

4.00 x 10~3  0.050
4.50 x 10~%  0.050
5.00 x 10-3  0.050
6.00 x 10  0.050
7.00 x 103 0.050
7.50 x 10~  0.050
8.00 x 10~*  0.050
9.00 x 10~%  0.050
1.75 x 103 0.080
2.50 x 10~*  0.060
3.00x 10-* 0.080

~
>3

[-*.] [-+]
[ 9 [ Y »

NN W e e L R
Lo B I
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A3.2 The experimental phase diagram at 20°¢°

ko [SO3~]o  stability ko [SO2 1y stability

2.00x 10~ 0.025 2 2005 10 Y 0060 !
5.00 x 10-*  0.025 2 250 <10 4 0.060 1
9.00 x 1073  0.025 2 300 x 10 7 0.060 !
2,00 x 1073  0.030 2 4.00x 10 ¥ 0.060 |
5.00 x 10-3  0.030 2 500 x 107 0.060 |
9.00 x 103 0.030 2 9.50 x 10°*  0.060 |
5.00 x 103 0.040 2 500x 107 0.07% 2
6.00 x 10~*  0.040 3 1.00 x 10 *  0.075 4
7.00 x 1073 N.040 3 1.50 x 10-%  0.075 |
8.00 x 103  0.040 3 200 % 107 0.075 1
9.00 x 10~3  0.040 3 3.00 x 10°*  0.07% 1
9.50 x 103  0.040 3 4.00 x 10-3  0.075 l
3.00x 10-3  0.050 2 500 x 103 0.075 1
4.00 x 10~  0.050 3 9.50 x 10~%  0.07% |
5.00 x 103 0.050 3 5.00 x 10-4  0.100 4
6.00 x 10~  0.050 3 1.00 x 10-3  0.100 1
7.00 x 10-3  0.050 1 2.00 x 10°*  0.100 1
9.50 x 10~  0.050 1 3.00 x 10~  0.100 1
1.00 x 10-3  0.060 2 4.00 x 10-*  0.100 1
1.50 x 10-3  0.060 2 5.00 x 10~  0.100 |



A3.3 The experimental phase diagrain at 30°C

ko [S(‘)%’ ](j H[ﬂhui[y’ ko [SD%!](} Etgbi"ty

200 <104 0.025 2 4.00 x 10-%  0.060 1
500 x 1077 0.025 2 5.00 x 10-3  0.060 1

7.00 x 10-*  0.060 1
9.50 x 10~  0.060 1

9.70 x 10°%  0.025
500 x 10°%  0.040

L] L] L

8.00 x 10-%  0.040 5.00 x 10~* 0.075 2
1.00 x 10~3  0.07% 4
1.25 x 10~3  0.075 4
1.50 x 10~3  0.075 4
2.00 x 1073 0.075 1

3.00 x 103  0.075 1

950 x 10°%  0.040
1.00 x 1073 0.050
2.00 x 10°%  0.050

L) L] L]

3.00 x 10°7  0.050

3.50 x 10-%  0.050
4.00 x 103 0.075 1
5.00 x 10~  0.075
9.50 x 10~%  0.075
5.00 x 10~*  0.100
7.50 x 10~  0.100
1.00 x 10-3  0.100
2,00 x 10~%  0.100 1
3.00 x 10~  0.100 1
4.00 x 10~  0.100 1
5.00 x 10-3  0.100 1

5.00 x 10-3  0.050

[

550 x 10-3  0.050

6.00 x 10-*  0.050

Y

6.50 x 103  0.050
9.50 x 10~  0.050

-
LB S R

2.00 x 103 0.060
225 x 103 0.060
2.50 x 10~%  0.060

[ X (%]

3.00 x 10-* 0.080
3.50 x 10°%  0.060

Lo Y



A3.4 The experimental phase diagram at 40°(*

ko [SO3-Jo stability ko [SOF ]o  stability

1.00 x 10~3
5.00 x 10~3
9.50 x 103
6.00 x 103
7.50 x 10~3
8.00 x 10-3
8.50 x 103
9.50 x 103
3.00 x 10~3
3.50 x 10-3
4.00 x 103
5.00 x 103
5.50 x 10~3
6.00 x 10-3
9.50 x 10~3
1.00 x 1073

[

-k & B N W

[ ]

1.50 x 10
200 x 10 4
3.00 x 1074
4.00 x 1073
5.00 x 1073
7.00 x 10°9
9.50 x 10~3
5.00 x 1074
7.50 x 1074
1.00 x 103
1.75 x 10-3
2.00 x 103
2.50 x 103
3.00 x 1073
4.00 x 104
5.00 x 10-3

0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
0.100
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Appendix 4: Computational techniques

I developed a FORTRAN program for calculating the steady state manifold,
the stability regions on the steady state manifold, and the stability boundaries
in experimental parameter space. [ wrote a graphics program in CGI (Computer
Graphics Interface)”! to plot these curves. I also rewrote subroutines which generate
the polynomials in the (h, J) parameters. Some of the key concepts and algorithms
used in my new software are described below. This information on the software

should be of interest to users of the SNA package.

A4.1 Managing large polynomials in (h,}) parameters

Stability analysis in the (h,J) parameters involves expanding Ay-, and
a; as polynomials in these parameters. Huge number of terms can be produced.
An efficient algorithm had to be developed in order to treat the networks which

The characteristic equation (27) is
A +ay(B A +aa(B A+ + an-i(B,)) + an(h,)) =0

where a,, a3, - - -, ay are summations of many
that for any term in the ay,

1. The sum of the exponents of all j’s equals the sum of the exponents of all
h's= §;

3. the exponent of each A equals either 1 or 0.
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puter memory. For example, a term hyhah hs - can be stored as

Bit#: 1 2 3 4 5 6 T ... "
t o | 1| 1o ol 1] ... 0
h, h, hj hy hs hg h, ... h,, )

Thus, a four-byte computer word can handle up to 32 species, which would be a

large network.

The exponents of the j parameters are treated in the similar way to the h
exponents. The difference is that the j exponents can be much bigger than 1. So, we
have to use more than one bit to store a j exponent. If the number of independent
intermediates is n, then we need log,(n + 1) (rounded up) bits for each j component.
The j components are always put in the higher bits of a word memory.

When polynomial terms are stored this way in memory, one can multiply
two terms by adding the exponents. Doing bit-level manipulations makes the com-
putation very fast. Access to the exponent of a specific A or j parameter is achicwed
using bit shift and bit rotation operations™ 73,

A4.2 Mapping between polynomial terms and memory addresses

A large amount of memory can be saved by storing only the coefficients of
the polynomial terms at memory addresses which are in one-to-one correspondence
with the possible exponents. This way, we do not need to explicitly store the
exponents in memory.

The one-to-one mapping needed to convert polynomial terms and memory
addresses to each other cannot be expressed as an explicit function, but can be



calculated by a computer algorithm.

An example illustrates the algorithm. For a reaction network with four
extreme currents and four independent intermediates, we have f = 4 and n = 4,
where f is the number of currents. To set up a mapping between a polynomial term
and an address, we first set up a mapping between every possible set of exponents
of the J parameters and a j-address. The following table gives the exponents of j3,

Ja, and j; for each j-address.



j-address ja  Ja Ji J-address gy gy iy

0 0o 0 0 18 1 0o 3
1 0 o0 1 19 1 1 0
2 0o 0 2 20 1 1 |
3 0o 0 3 21 1 1 2
4 0 o0 4 22 l 2 0
5 0 1 0 23 1 2 l
6 0o 1 1 24 1 80
7 0o 1 2 25 2 0 0
8 0 1 3 26 2 0 1
9 0 2 0 27 2 0 2
10 0 2 1 28 2 1 0
11 0o 2 2 29 2 1 1
12 0 3 0 30 2 2 0
13 0 3 1 31 3 0 0
14 0 4 0 32 3 0 1
15 1 0 0 3 3 1 0
16 1 0 1 H 4 0 O
17 1 0 2

/
For the polynomial a;, we have Zlg = i, where [, means the exponent of ji. So,
k=1

3
lqgiizlg

k=]

for our example.
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We increase the number one by one on the column until the summations of numbers

next entry, we eliminate the number on the column to 0 and add 1 to the column
on the left. We treat every column in the same manner until the number on the

most left column reach the value i.

In actual calculations, we do not need to construct the whole table as above.
We only fill in the table until the j sequence of exponents in the table matches our

J sequence. The corresponding j-address is the one we need.

The true address of a term is obtained by shifting the j-address n bits to
the left in the memory and adding the bit sequence for the h exponents as discussed
in the last section.

Let's use the polynomial term j¢jsjajihehshah; as an example to show how
the address is calculated. Since the sum of the exponents is 4 one exponent can be
ignored. We ignore j4. The exponents of the sequence (js, j2, 71) are (1,1,1), so the
j-address corresponding to the (1,1,1) is 20 according to the above mapping. To
shift the j-address 4 bits to the left we multiply by 2¢ to get 20 x 2¢. The exponents
of hehzhah, are (1,1,1,1) whose bit pattern is the number 2¢ — 1. The address is
calculated by combining the bit pattern.

address = 20 x 24 + 2* — 1 = 335.

To get the polynomial term from the address, the same procedure is carried
of j4 using the equation lg =4 - ) .
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To get the characteristic equation from a Jacobian matrix, the determinant
[1A — M| is expanded. In the expansion. a series of minors is caleulated. Each minor
can contain many large polynomials. Keeping track of the positions of the polyno-
the Hurwitz determinants, there are also many minors to be calculated and stored

in memory temporarily.

I developed a method to handle these problems cfficiently. Here are the
basic ideas.

1. Minor numbers
When determinants are expanded, the polynomials representing succen

sively larger minors are stored in memory. The minors are indexed by

are called the minor numbers. For example:

g aj

Smim(llz) azy 4axn

an a
a an

a5 a)
ax a3;

a2 OG14

laza azs = minor(2, 4) = minor(i,j), j>i

| @y a; an , , 7
a3 a3; az | = minot(i, j, k) k>j>i
Gy a3; ax
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ann 412 - Gy |
az31 432 -:* G324 . , , - ,
. . = minor(1,2,---,n) = |IA = M|

nl Gnz "+ Qny

3. Converting a minor number into a single integer number

In an early version of the stability analysis program, the address range of the
minors involving columns (i, j, k,!) was stored in a matrix whose subscripts

are (i, j,k,1). This method of storage wastes memory and it is limited by

The method that I developed for storing the address range of minors has
no such limitations. It uses an integer variable that has at least n bits to

do the conversion. All bits whose sequential numbers appear in the minor

‘\m . p\

Q@ |
o
-~

— - 54

D(54,1) ~— starting addresses of minor (2,3,5,8)
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D(54.2) — ending addresses of minor (2.3.5.6).

These techniques make it possible to construct the Hurwitz determinant
polynomials for networks with as many as 19 intermediates on a personal computer

with 16MB of memory.






