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Abstract

The fiust chapter of this paper is concerned with finding necessary and sufficient
conditions for the surjectivity of automata. This problem is reduced to the study
of semigroups of matrices. Partition permutivity, a generalisation of the concept of
permutivity is developed and analysed.

Chapter two is devoted to the study of surjective automata from the point of view
of ergodic theory. Surjectivity is shown to be equivalent to measure prescrvation.
Several types of automata are shown to be strongly mixing. Bipermutive automata
are shown to be equivalent to one-sided Bernoulli shifts. Products of automata are

shown to also be automata. An index of ergodicity is developed for local functions.



Preface

Cellular Automata (which are also known as tessellation structures or endomorphisms
of the shift dynamical system) have become an important tool for modelling natural
phenomena in the last three decades. A (one dimensional) cellular automaton is a
continuous shift invariant mapping ¢ of bi-infinite sequence space SZ into itself, where
the sequence entries are from a finite set S = {0,1,...,N —1} for some N > 1 (each
point of the space can be regarded as an infinite lattice of cells, each cell holds a value
from 0 to N —1). This gives ¢ a local component-wise structure in the form of a local
function - that is, the components of future cells depend on a finite number of past
cells. Cellular Automata are the ultimate discrete dynamical systems.

Cellular automata were fiis\ used by Von Neumann and Ulam in the 1940’s to
model the survival, reproduction and evolution of organisms. We might call this the
“first wave” of automata theory.

The “second wave”, whose two leaders would surely be Hedlund and Conway
began in the late 1960’s. Hedlund was concerned with <tudying the mathematical
properties of automata themselves - as opposed to using them for modelling. Con-
way’s contribution was a two dimensional automaton called “Life”, which at the time
attracted much attention from the mathematical biologists.

Stephen Wolfram is undoubtably the instigator of the “third wave” of automata
theory. This wave started in the early 1980’ and still continues to the present day.

Wolfram applied automata to computation theory and statistical mechanics (which



is the father of ergodic theory).

Today, cellular automata are being used for modelling in physics, biology, chem-
istry, information theory, computation theory, ordinary and partial differential equa-
tions, fractal geometry, and many other branches of mathematical science (two good
sources for applied cellular automata are [CA} and [Wol]). They even have application
in the arts: any one with a computer connection to th World Wide Web and a gif
viewer can retrieve the document URL gopher://life.anu odv au/i%/landscape_ecology

/firenet/software/ignite/monalisa.gif to see th- iar the sfona Lisa burn up.

In this thesis, we will be looking at tho- ..i0° wa wia e surjec. ve. These
automata are important as they will be fourd to be measure preserving transforma-
tions - transformations which are the basis of ergodic ti.cory. We divide our studies
into two chapters.

The first of these chapters will concern finding - onditioi. for an automaton to be
surjective. We reduce the problem to the study of automata whicli have bivariate
local functions. For such automata, we construct a matrix semigroup (called the
family of preimage matrices) to aid our analysis, particularly in showing that a new
class of automata - the partition permutive automata - are onto. We conclude by
showing that the composition of two permutive automata is partition pcrmutive.

In the second chapter we apply ergodic theory to analyse surjective automata. We
show that the class of measure preserving automata is exactly the class of surjective
automata. We show that automata with large (either positive or negative) left and
right indices are mixing. Certain permutive automata are found to be mixing, and
some bipermutive automata are shown to be equivalent to Bernoulli shifts. We next
consider products of automata, and we show how such constructions yield other au-
tomata. We conclude by summarising our results in the form of an index on local

functions.
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Chapter 1

Surjective Automata

1.1 Preliminaries

In the past twenty-five years, most authors whe have written about surjective au-
tomata have restricted their attention to permu.ve automata, and usually on a two
letter alphabet. We shall spend this chapter exploring the rich structure of surjective
automata in full generality.

In this chapter we analyse the local functions of surjective automata. We will
develop a method to treat local functions with several variables as bivariate functions,
and this will lead to an intriguing method of analysis using semigroups of matrices.
We will exploit these matrix methods in the development and analysis of partition
permutive automata.

We begin with some basic definitions and constructions.

Let N € Z, with N > 1 and let Sy = {0,1,...,N —1}. We call Sy =
{0,1,..., N —1} a symbol set or an N letter alphabet . Give Sy the discrete topology
and give S¥ the induced product topology.

A subbasis for this topology are the sets of the form A,; = {z € SF : =: = a},

where a € Sn,t € Z. We choose for a basis of S% the collection of cylinder sets , i.e.,
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sets of the form
Aal.il N A02|i2 n...N Aam"n = {.'E € Sl% CX = A, Ty = A2, .., T, (l,.},

where ay,a3,...,a, € SN, t1,12,...,in € Z, with §; < iz < ... < 7,. Note: we 2lso
consider the empty set to be a cylinder set so that the collection of cylinder sets is
closed under finite intersections.

By Tychonoff’s Theorem, $% is compact under this topology. We give 5% ametric,
d, in the following way: If z,y € SZ we let d(z,y) = 0 if z = y, and d(z,y) = 3k,
where i* = min{}¢| : z; # ¥}, if = # y. This metric generates the product topology
on S%.

Let r,s € Z, r < s. Let f: Sy ™! — Sy be given by f = f(zr,Zr41,...,%4).
Let foo : S% — SZ be given component-wise by (foo(2))i = f(Zitrs- - -, Tiss), for all
i € Z. fy is called a (one-dimensional) cellular automaton with local function f. r
and s are called the left and right indices of fo respectively (note that in using the
notation f = f(z,...,z,) we have implicitly built the left and right indices into the
local function f).

Let F,,(Sn) denote the set of all local functions with left and right indices r and

s respectively, i.e.,

:Fr,a(SN) = {f : SI'V_H-I — Sy f= f(:L‘,.,...,:l‘,)},

and define F(Sn) = Urg, Fro(SN)-

Note that the identity map id : S§ — S¥ is a cellular automaton with local
function id(zo) = zo € Fo,o(SN)-

The shift map on SZ is the map o : Sx — S which satisfies (o(z)); = iy, for
all z € SZ. o is a cellular automaton (with local function o = o(z1) = z1 € F1,1(Sn))

which is a homoeomorphism of S% (we drop the subscript oo for convenience).
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One important property of o is that o ~ommutes with all automata (i.e, fo00 =
00 fx). It has been shown that this propesty may be used to formulate an equivalent
definition of a cellular automaton: @ : S% — S% is a cellular automaton <= & is
continuous and commutes with the shift map [Hed].

Historically, the shift map plays an important role in ergodic theory, chaos theory,
and dynamical systems in general. The shift is the prototypical chaotic map, and
a map whose dynamical properties are transparent. Many kinds of different shifts
are considered in these subjects such as Bernoulli shifts, Markov shifts, subshifts of
finite type, and sofic systems, which are defined by the underlying spaces on which
they act, and the measures endowed upon these spaces (The shift defined above,
together with the measure we give SZ in the next chapter, is a two-sided Bernoulli
shift ). The other shift that we will consider is the one-sided shift . This is the map
o: SN — SV defined co.zponent-wise by [0(z)}i = Ti41, for all i € IN (in general,
we can define one-sided automata on S but of these we shall interest ourselves with
the one-sided shift only). Notice that the one-sided shift on SY is an N-to-1 map,
whereas the two-sided shift is a2 homeomorphism. The one-sided shift will play an

important role in the discussion of bipermutive automata in chapter 2.

Example 1.1 Let f € F,,(S,), where p is ¢ prime number. If we give S, a field

structure (i.e., S, = Z/pZ) then we may ezpress f as a polynomial in the indeter-

minates Ty, Tri1y---,Tsy L€,
— M1 M2 |, pxMemrtl
f - Z aml,mz.«--.m.—r+1zr $,+1 T, et
0g<my my,...,

my—r415p-1

where am, my,...ms-rqr € Sp-
For n > 1, let f : S5 ™+" — S} be the n** block map of f, defined by

fn(xr» Trdlae o1 Tay Taglye ey zs+n—l)

= (f(I,-, e ,I,),f($r+1,. . ,$,+1), e ,f($r+n_1, e ,$,+n..1))
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The following theorem is a combination of two theorems from [Hed]:

Theorem 1.2 (Hedlund) Let f € F,,(Sn). The following are equivalent:
1) fs is onto.

2) fm is onto for all m.

3) card f7'(ay,az,...,a~) = N°7" for all (a1,0z,...,am) € S§.

Let f € F.(Sn), with r < s (i.e,, f is not univariate). We say that fo is left
permutive if for each (a,41,...,2,) € SN, f(*,ar41,---,a,) is a permutation of Sy
(in this case, we also say that f is left permutive). Similarly, foo 15 right permutive if

=T

for each (a.,...,a,-1) € SN 7, far,- .., 51, .) is a permu*ation of Sy. A bipermutive
automaton is both left and right permutive.
It is a well known fact that permutive automata are onto (this will be proven later

as a consequence of Theorem 1.29).

Example 1.3 Let f = f(Z,,....%5) € Fra(S2) be left permutive. If we treat S;
as the field with two elements, we may ezpress f in a particularly nice form: f=
2 4 g(Tr41,. -+, Ts), for some g € Friy.(02). The reason for this is that there are
only two permutations of Sy, given by i(x) = r and p(z) = z + 1. Thus we construct

g as follows: For any a,41,...,a, € Sy let

0, if fls;x(@r4srnas)(Trse ey Ta) = Zo,
G(Qrgry.-185) = { 1, éﬁsz:ta,:,....a.;gxn---,xs; —z, +1.

Note that if f € Fr.(S,) is permutive, where p is a prime number, f need not be linear
in either x, or z, when ezpressed as a polynomial in the indeterminates z,,...,z, over
the field with p members. An ezample of this is the left permutive map f € Foi(Ss)
given by f = o + 22022 + zoz1 + 27, (notice that f(z0,0) = zo, f(20,1) = 2o + 2,
and f(z0,2) = 220 + 1).

In an entirely analogous fashion, if f € F,.(S:) is right permutive, we have [ =

g(x,-, L aza—i) + I, f01‘ some g € fr,a-—l(SZ)-
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We give F(Sn) 2 binary operation. For each f € Fy,.0,(SN); § € Frz,0(SN), let
fg € Fritran+s(Sn) be defined by

fg(x"H"’z 1y Tryi4ra+ly- - xa;+ag)
= f(g(xfl-f-fz’ Tri4ratlyecs zr1+62)’g(zr1+72+1’ Lrydra42s-- $71+82+1)v ey

g(x31+72’ Ty 4ra419--- 7xsl+32))

We call this binary operation local composition .

This leads to the following:
Proposition 1.4 Let f € Fr,4,(SN), 9 € Fr02(SN). Then (fg)oo = foo © goo-

Proof. (f¢)e = foo © goo if and only if (foo © 9oo(Z))i = ((f9)oo(x))i, for all z € Sk
and all : € Z. We calculate

(foo © 9o(T))i = (foo(9eo()))i = F((goo(2))itrir -+ (9oo(Z))its1)
= f(g(xi+rl+rza ERE $i+1‘1+az)a <o ,g($i+a1+rza < azi+01+62))

- fg($i+r1+rza « o3 Titsy +sz)

((fg)oo(x))i'D

One particular implication of the above proposition is that F(Sn) is a semi-
group under local composition. Indeed, if f € Fr,,, (SN)s 9 € Fry,02(Sn), and h €
Frsns(SN), then (fg)h € Friprsdrs,ortoztss (Sn) is the local function of ( foo0ge0)0hoo =
oo 0 (goo © hoo) Which has local function f(gh) € Fri4ry4rasitsatss (Sn).

Remark 1.5 Let f € F;.(Sn), 9 € Fr#(Sn). Then

1) If f and g are both left [right] permutive, then fg is left [right] permutive.

2) We define f2 = ff € For2,(Sn), and for anyn € Z, n > 2 define f* = ff* 1 e
Farma(Sn). f7 is the local function of f5,. We also have that if f is left [right,bi-]
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permutive, then f* is left [right bi-] permutive for all n.

3) 0 € F1.1(Sn), o € Fix(Sn), for all k € Z and we have fo* = o*f. We have,
furthermore, that f is left [right] permutive if and only if % f € Fr ik 041 (SN) is left
[right] p ~mutive for all k € Z (Note that f and o*f are the same function when

conside. .. as mappings from S "*! to Sn, but their left and right indices differ).

An important theorem due to Hedlund should not be overlooked: If f, is injective,
then fo is surjective. Hence all injective automata are homeomorphisms.
We will begin our analysis of surjective automata with a brief look at those au-

tomata which have univariate local functions.

1.2 TUnivariate Local Functions

The surjectivity of an automaton with univariate local function is the easiest to decide:

Theorem 1.6 (Hedlund) Let f := f(z,) € F,+(Sn). The following are equivalent:
1) f is a permutation of Sy,

2) fm : Sf — SF is surjective,

3) card f;}(B) =1 for each m > 1, and each B € S§,

4) foo is surjective, |

5) fo is @ homeomorphism.

Proposition 1.7 Let f = f(z,) € F,.(Sn) and let f be onto. Then there ezists
n € Z,n 21 such that f2, =o™.

Proof. Let f = f(z,) € Frr(Sv) with f,, onto. Then f is a permutation of
SN, so there exists a N € Z* such that f" is the identity on Sy. We then have
f" = Zpy € Furmr(SN), so that for any a € S¥ and any i € Z we have

[(foo)"(@)k = [(F)oo(@)]s = ignr = [0 (a)}i.0
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We wili see in the next chapter that automata with univariate local functions are

also the simplest to analyse as dynamical systems.

1.3 Multivariate Local Functions

In this section we will look at those automata whose local functions depend on more
than two variables. We will show that such automata may be treated as automata
#1.0se local functions depend on cnly two variables (we will study such automata in
the next section).

Let f € F:.(Sn) and suppose s —r +1 > 2 (f depends on more than two
variables). We wish to associate fo with a new automaton with bivariate local
function f : T xT — T (where T = Sy.-r) such that foo = h1 0 foo 0 hy for some
homeomorphisms A, : S¥ — TZ hy: TE — Sﬁ.

Let T ={0,1,...,N*~" — 1},and let ¢ : S§" — 7 be given by
V(T0y+ -y Tomrm1) = Toice ' Ts—r—1-iN'. ¥ is a bijection of sets,which induces the

homeomorphism 1, : S§ — TZ% given component-wise by

(Yoo (T))i = P(Z(s=r)is - - - » T(a=r)(i+1)=1)>

forallz € 8%, i€ Z

Now, consider the (s — r)*-block map of f, f,—r, with domain SX,("") and range
S§". We can treat this map as f,, : Sy x Sy ° — Sy, and in doing so
we will define f : T x T — T by f(z0,21) = ¥(four(¥™(20), ¥ (21))), for all
(20,21) € T x T. We then similarly define fo : T2 — 7Z component-wise by
(fool2))i = f(ziyzigr), for all 2 € TZ,i € Z. If z € TZ and z = P3}(2) € SF, we

have

(Fol(2))i = f(2ir2i01) = Y(four (¥ (20), ¥ (2i11)))

Y(Fame(T(amrdis - - - » T(amr) (1) =15 T(s=r)(i41)s - + - T(s—r)(i+2)-1))
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x

= Y(f(Zomr)is- -+ s T(amr)(in-?) 7 Tlamr)idtss+ oy T(amr)(i+1)4+1)s
ooy J(@(amr)ig1)=1s - - 1 Xla 2)-1))

= P([fool@)(s=r)imrr- -+ [fool 1o ri+1)=1=1)

= P([07" 0 focl@)isor)is- - 11677 € fool @) (a=r)(i+1)-1)

= [Yoolo™" 0 fuol2))ki

= [0 007" 0 foo 0 P (2)]:-

Thus foo = o0 00" 0 foo 07} = hy0 foo 0 ko, where by : S TZ hy: T
S%, b1 = Yo 007", hy = P!, We call f the tuba map of f (tuba is an acronym -

two unknowns, bigger alphabet).

Remark 1.8 f, is topologically conjugate to o~ foo via Poo. If 1 # 0, then in
general, the dynamical properties of fo and foo will be significantly different.

Example 1.8 Let f = f(z-1, %0, 1) € F-11(S2) be given by f(0,0,0) = 1,
f(0,0,l) = O,f(O,l,O) = Oaf(oalal) = 0,f(1,0,0) = l’f(laoal) = l,f(19110) =
0, f(1,1,1) = 1. We calculate f € Foa(84):
£0,0) = $(f(¥71(0),¥7(0)) = ¥(£(0,0,0,0)) = #%(1,1) = 3,
F0,1) = ¥(H710),97(1)) = $(£(0,0,0,1)) = ¥(1,0) =

and similarly

!
X

f0,2)=0, f(0,3)=0, f(1,00=1, f(1,1)=1,
fa,2)=0, f(1,3)=1, f(2,00=3, f(2,1)=2,
f(2,2)=2’ f(273)=2a f(3’0)=17 f(371)=1a
f(312)=2a f(3’3)=3

Proposition 1.10 Let f : S§™ — SN, f = f(2rsTr415-. -, Ts), and let f:T x
T — T, f = f(20,21) be the tuba map of f. Then
1) foo is onto if and only if foo is onto;
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2) f is k-to-1 if and only if foo is k-to-1;
3) fx is left(right,bi-)permutive if and only if foo is left(right,bi-) permutive.

Proof. 1) and 2) are obvious and follow from basic set theory. For 3) we direct the

reader to proposition 1.1 of [Elo].O

Remark 1.11 Thus many aspects of the surjectivity of cellular automata may be
solved by studying those automata with local function f = f(zo,71) € Fo1(Sn)-
This is good news, since for such automata we may introduce the notion of preimage

matrices, as will be done in the nezt section.

1.4 Bivariate Local Functions and Preimage Ma-
trices

Let f = f(zo,z1) € Fo(S). To f we assign an N x N image matriz F (with indices
i,j =0,1,...,N — 1) defined by (F);; = f(¢,5). We also define for f, and for each
a € Sy an N x N (primary) preimage matriz A, (again, with indices in Sy), defined
by

(A)ij = { 1, i f(G,5) = e,

0 , if f(5,)) # a
Example 1.12 Let f = f(zo, 1) € Fo,1(S4) be given by

f(0,0)=1a f(0’1)=01 f(0a2)=3’ f(0y3)
f(1’0)=21 f(1a1)=2a f(1’2)=0’ f(1,3g
3
3)

i

w0 O o

-

-

f(2a0)=3a f(271)=1a f(272)=1a f(2a
f(3a0)=0, f(3a1)=2’ f(3a2)=2) f(3,

The image matriz, F, of f is given by

F =

O W N
N =N O
N - W
WO W
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We calculate the primary preimage matrices of f to be

0100 1 090 1\ 0000
0on10 0000 1100
Ao = (\OI’A‘_OIIO’A"_OOOO
1 00 0000 0110
0010
0 0 01
and Az=1 1 g ¢ o
0 0 01
Remark 1.13 The following are . v tous:
Z(Aa)ij:'l, foralli,jGSN,
aESN
3 Y (A=Y 2 (A =N, forall iy, ji € Sy,
aESN IESN aESyN JESN

> 2 X (A =N,

F = Z a.Aa,
aESN
(AsGqp)i; =1, for alli,j € Sn.

10

(1.1)
(1.2)
(1.3)

(1.4)
(1.5)

These formula are just translations of properties of f. For ezample, 1.1 states that

for all (i,5) € S%, there exists ezactly one a € Sy such that f(i,j) = a, and 1.3

states that card [domain of f] = card [S}] = N2.

For a1,a3,...,8, € Sy let Agap,.0n = Aay * Aay + ...~ Ag,. For any n 21 let

An = {Aa 09,00 18 ESN,1 <2<k k< n}, and define

A= An-

n=1

We call A; the family of preimage matrices of f.

Remark 1.14 The family A; is a matriz semigroup, with generators {Az}aes,-
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Define the matrix norm | - | for any non-negative matrix A by

|A| = sum of entries of A
N-1N-1

= X 2 (A

7=0 =0
This norm has some nice properties, in particular if A, B are non-negative matrices
and if ¢ > 0 .. ~ real number then |A + B| = |A| + |B|, and lc- Al = ¢+ |A|. The

matrix norm |- | has a special relationship with the family of preimage matrices:
Lemma 1.15 Let f € Fo1(Sn), and let (ay, ... ,ay) € 8% for somen > 1. Then

(Auyansan)is = card{f7(ar, .., an) ) [} x S x { i}
for all i,j € Sn.

Proof. (by induction on n). For n =1, we have

card {f'l(ch)n {(1,1)}} = { zz:{éz_’—_]%}, ;}Ezif];(;é, i)l.z "

= (A
Suppose the property holds for some n > 1 and consider (Aqy a2, amiangs )ii TOT
SOMe a1,@2, . .- ,an, Ant1 € Sn. Then,

(Aahaz.---.ﬂn.anﬂ)ii = (Aal.ﬂz ----- an ’ Aan+1 )ij

N-1
= Z (Aax.azw-,an)ik : (Aamn )ki

k=0
N-1
= ?_‘; card { f7" (a1, -+, @) [{i} x SF* x {k}]} - card {F @) N (K, N}
We have, for any i, j,k € Sn,

card {f (s, ., an) (N [{i} X SF x {K}]} - card {7 (@nsa) (K )}}

_ { card {f7 (a1, .., aa) N [{} % S} x (kY] }, if f(E,5) = annr,
0, if f(ka]) # Qny1-

= card {frhy(an,- - am,0ngn) Y [{3} X SF7 x {k} x {4} }-
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Now, noticing that {f i} x Syt x {k} x { j}}kes is a partition of
N
{{i} x S5 x Sw x {i}} = {{i} x S} x {j}}, we have

(Aal 132).4098ny@n41 )‘J

N-1 r
= Y cad {f;:l(al,...,a,,,a,,ﬂ)ﬂ [{z} x S x {k} x {]}]}

k=0

N-1
card U {ﬂ._'_:l(al,...,a,.,anﬂ)ﬂ [{z} x Syt x {k} x {]}]}

k=0

= card {ff::l(al,-'"aman-*-l)n[{i} X Sy X {]}]} .0
Theorem 1.16 Let f € Fo1(Sn), and let (ay,...,a,) € Sy for somen > 1 .Then

|Aa1,...,a,.| = card{fn_l(ah ey an)}

Proof. We use Lemina 1.15 and the fact that {{z} x Sp1 x {j}}'jes is a partition
L N
of Spt:

N-1N-1

IAa],-.-,anl = Z Z(Aal,...,a,.)ij

i=0 j=0
N-1N-1

= 3 Z Ca.l‘d{f,:l(al,'”aan)ﬂ [{z} x Syt x {3}]}

=0 j=0
N-1N-1

= cad |J U {fn_l(al,---aan)n[{i} x Sy x {J}]}

=0 ;=0
= card {f;l(al,. ..,a,.)ﬂS,'\‘,“} = card {f;l(al,. . .,a,.)} .0

We translate theorem 1.2 into the language of preimage matrices:

Theorem 1.17 Let f € Fo1(Sn). The following are equivalent:
1) foo is onto.

2)0¢& Ay.

3) |A| = N for all A € Ay.
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Proof.
This follows easily from Theorem 1.2 and Theorem 1.16.0

Theorem 1.18 Let [ € Fo1(Sn)- foo is onto if and only if Ay is a finite set.

Proof. Ontoness implies |[A| = N for all A € A;. Let B be the set of all non-
negative N x N mat:ices with integer entries which have norm N. This set is finite
(if B € B then 0 < (B);; < .7 for all 4,5 € Sy, so card B < NN, A; C B so Ay is
finite.

To prove the converse statement, suppose [, is not onto. Lemma 5.8 of [Hed]
states that if f € F;.(Sn) and if fu is not onto then for every k,¢ > 1 there exists
(a1y....am) € SF, for some m > ¢t such that cardf;1(a1,...,0m) > k. Thus we
have if f € Fo1(Sn) and if fo is not onto then for every k,t > 1 there exists

infinite, as it contains matrices of arbitrarily large norm. O

Proposition 1.19 Let f € Fo1(Sn). Let foo be onto. Then:
1) For any real bo, by, . .. ,obn-120let B= Ziv;ol b, - As. Then

N-1 n

\B"| = (z; b.,) N

a=0
for alln € Z,n > 1 (in particular, the image matriz of f, F, satisfies |F"| =
N"'H‘N-lt")

2" :

2) If A is a characteristic root of some A € A; then ) is either zero or a root of unity.

Proof.

1) We recall that if A and B are nonnegative N x N matrices and if ¢ > 0 is a real
number, then |A + B| = |A]+ |B| and |c- A| = c- |A|. Now since f, is onto, we have
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|A| = N for all A € A;. The distributive law then gives us

N-1 n
|Bn‘ = (Z ba’Aa)

a=0

N-1 N-1 ‘

= |3 S bay e e Agy e A,

ay1=0 an=0

N-1  N-1

= Z PERIRY E bal *aee’ ba" * Aal,az,.--.ﬂn
a;=0 an=0
N-1 N-1

- Z “ae z ba‘ LIPS ban * IAal,ag,...,anI

a3=0 an=0

N-1 N-1

= Z"'Z—bax'---'ba,.'N

ay=0 an=0

- (’ﬁ:b)N

a=0

Now from equation 1.4 and the fact that "' a = N(N —1)/2, we have

=i o= (Fa) v = (MDY - X

a=0 a=0
2) If f. is onto, then A; is a finite semigroup. Thusif A € Ay, then there must exist
ki,ky € Z,k; > ki 2 0, such that Ak = Ak (for if no such ky, k; exist, then {A"}32,
is an infinite set contained in finite A;). We have A% — A" = 0, so the minimal
polynomial of A divides the polynomial p(z) = z*2 — z*1 = zh(zk2~hk — 1), whose
roots are either zero or roots of unity. Thus the eigenvalues of A are either zero or

roots of unity.O

Remark 1.20 Let f € Fo1(Sn) with image matriz F. Although the above propo-
sition tells us that when fy is onto, |F"| = ﬂn—“%é’-:lm, foralln € Z,n > 1, the

converse statement is not generally true. A counter example is [ € Fo1(S4) with
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image matriz

w o o
w oo
w o o

F =

wWww oo

3 33

which satisfies |F"| = i‘l;%’: =4.6" for all n > 1, yet f is not onto (notice that
y & foolSZ), where y € S¥ satisfies y; = 1 for all i € Z). Although the equation is
fallible, it is however useful as a g.ick test in deciding which automata are not onto

(particularly when analysing a large number of autvmata).

Proposition 1.21 Let f € Fo1(Sn). Let A€ Ay, if (A)i; =k > 1 foranyi,j € Sy

then f is not onto.

Proof. Suppose (A);; =k > 1. Let B = A- Ay(;) € As. Then equation 1.5 gives us

N-1
(Bli = Y (A)ik- (ArGa)ki = (A)ij - (Agpa)ii + 20 A)ik - (A
k=0 k#j
= k+ D (A - (Asaes 2 k.
k#i

Now, B" € A; for all n, and (B™);; > k" for all n (since (B);; > k and B is a
nonnegative matrix), so we must have |B®| > k" for all n. We must then have

{B"| > N for some n, and so by Theorem 1.17, f, is not onto.!

Remark 1.22 Proposition 1.21 implies that if f. is onto, then (A);; € {0,1} for all
Ac Ay, 1,5 €Sn.

Prc position 1.23 Let f € Fo1(Sn). Then

1) f is left permutive if and only if A, has ezactly one 1 in every column (all other
entrics are 0), for all a € Sy, if and only if each column of F contains every member
of Sn.

2) f is right permutive if and only if A, has ezactly one 1 in every row (all other
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entries are 0), for all a € Sy, if and only if each row of F contains every member of
Sn.
3) f is bipermutive if and only if A, is invertible for all a € Sn. if and only if each

row and each column of F' contains every member of Sy

Proof.

1) f is left permutive <= f(:,7) is a permutation for all j € Sy <= f(i,j) =«

has exactly one solution ¢ € Sy for 1142, € Sy <= (A.)i; = 1 for exactly one

t € Sy for all a,) € Sy <= A, bas exactly one 1 in every column for all a € Sy.
The statement about F follows from equation 1.4.

2) Similar to proof of (1)

3) If f is bipermutive it is left permutive and right permutive so (1) and (2) imply

that each A, is a permutation matrix, hence invertible for all a € Sy.

If A, is invertible for each a € Sy, then A, has no zero rows and no zero columns.
Thus each A, has at least N nonzero entries. Equation 1.3 ensures that each A, has
exactly N nonzero entries which are equal to 1. Since A, has no zero rows or columns,
A, must have exactly one 1 in every row and every column. (1) and (2) then imply
that f is bipermutive.

Again, the statement about F' follows from equation 1.4.0

The next theorem connects the surjectivity question to number theory.

Theorem 1.24 Let f € Fo1(S,), where p is a prime number. Then fo, is onto if

and only if f, is permutive.

Proof. This is a simple mixing of theorems from {Hed] which unfortunately requires
a number of tools. Although it is impractical to cover all these tools in much detail,
we shall use what we need and refer to the appropriate Theorems in [Hed].

z € S% is said to be a bilaterally transitive point (of o) if for every n > 1 and

for every (by,bs,...,b,) € S there exists i1,i, € Z with ?; < 0 < i3 such that
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zi, = b = Tipent1y Tt = by = Tijent2y-+ s Tiy4n-1 = b, = z;, This means that
every y € S% is a limit point of both the forward orbit of £ under o and the backward

orbit of z under o, i.e.,
y € {o¥(z)}i=2 and y € {0*(2)}iZ) o,

where the overline denotes closure.

Let f € F,.(Sn) with f« onto. From Theorems 11.1 and 11.2 of [Hed], there
exists a positive integer M{f) such that card fzH(z) > M(f) for all z € S% and such
that cardfZ}(z) = M(f) if « is bilaterally trausitive.

Let A € Sy for somen > s—r, and let B « S for some m 2 1. let ¢ =
n+m— (s —r). The set B is said to be right [left] compatible with A and f if
f(AB) = f,(AC) [fo(BA) = fy(CA)] for all B,C € B. Let RC(A, f)m ={B CSy:
B is right compatible with A andf}. Define

R(A,f) = fnuzg{w;gaf . leardB}}

Remark 14.3 of [Hed] states that R(A, f) = R(C, f) for all A € S§,C € SN
with nq,n; > s — r. Let R(f) be this common value. L(f) is defined analogously.

Theorem 14.9, pg. 362 of [Hed] states that L(F) - M(f) - R(f) = N*7".

Lemma 17.1,page 370 of [Hed] states that f is left [right] permutive if and only if
L(f) =1 18(f) = 11

Now, let f € Fo1(Sp), where p is a prime number. If f is onto, we have L(f) -
M(f) - R(f) = p'~° = p. If the product of three positive integers is a prime p then
two of those integers are 1 and the other is p. Thus at least one of L(f) and R(f) is
one, hence f must be permutive.0

We will conclude this section by developing a generalisation of the concept of per-

rutivity.
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Let P be a partition of Sy into equal parts, i.e., there exists n,m € Z, with
n,m >0 and n-m = N, such that card P = n, and card P = m for all P € P. We
call Q C Sy a slice of P if Q contains exactly one member from each P € P. Let Qp

be the collection of all slices of P. We call Qp the cross section of P.

Remark 1.25 Let P and Qp be as above. Then:

1) If Q € Qp and y,z € Q then we must have either y = z ory € P,z € P, for
some Py, P, € P with P, # P;. Conversely, ify € P,z € P, with P, # P, then there
exists Q € Qp such that y,z € Q.

2) We can write P = {P,,..., P}, where P; = {pir,Pizs-- - Pim}, fori=1,... . n. If

1< j1y...ydn S m} (notice that Qjy,..;n N Pi = pij,) and card Qp = m").

Definition 1.26 Let P be a partition of Sn into equal parts and let Qp be the cross
section of P. Let f € Fo1(Sn). f is left P-permutive if flpxq: PxQ — Sy s a
bijection for ali P € P, Q € Qp.

f is right P-permutive if flgxp : @ X P — Sy is a bijection for oll P € P,
Q€ Qr.

If f is left (right) P-permutive for some partition P, we say that f is left (right)

partition permutive .

Example 1.27 Let P = {{0,2},{1,3}} be a partition of S into equal parts. The

cross section of P is then
Q‘P = {{0’ 1}1 {Oa 3}a {21 l}a {27 3}}

If we take f € Fo1(Ss) from ezample 1.12, we see that f is right P-permutive since

£({0,1} x {0,2}) 7({0,3} x {0,2}) f({2,1} x {0,2})
£({2,3} x {0,2}) £({0,1} x {1,3}) f({0,3} x {1,3})
f({2,1} x {1,3}) f({2,3} x {1,3}) {0,1,2,3}

I |
o
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Remark 1.28 Let f be left P-permutive. Then we have the following:

1) Let a € Sy and let y € P, z € P, with P,, P, € P, P # P,. Tken f(a,y) '-;é
f(a,2).

2) Leta € Sy and let y,z € P, for some P € P. Then f(y,a) = f(z,a) if and only
ify=-=z.

If P = {Sn} then @» = {{0},{1},...,{N — 1}}. In this case, if f is left P-
permutive, then f|syx{a} is 2 bijection for all a € Sy, i.e., f is left permutive.

It P = {{0},{1},...,{N —1}} then Qp = {Sn}. Right P-permutivity in this
case also implies left permutivity.

Analogous formulations of right permutivity exist.

Thus left and right permutivity are special sub cases of left and right partition
permutivity. Permutive automata are onto, but what can we say about partition

permutive automata?
Theorem 1.29 Let f be partition permutive. Then f is onto.
Before we prove this result we need some definitions and lemmas.

Definition 1.30 Let A be an N x N nonnegative, integer matriz (with indices in
S, as usual). Let P be a partition of Sy into equal parts with cross section Qp. A
is left P-compatible if for every P € P, Q € Qp we have

2 Z(A)p,q =1.
pEP qeQ

Note that Y ,ep Yqeq(A)pq = 1 if and only if (A)p,y = 1 for exactly one couple

(prq) = (B,d) € P x Q, and (A)pq =0 if (p,q) € P x @\ {($,4)} (since (A)p, € Z
and (A)pq = 0 for all p,gq).
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Lemma 1.31 [ is left P-permutive if and only if A, is left P-compatible for all
a € Sy.

Proof. Let P € P, Q € Qp and suppose f|p..q is a bijection. This is equivalent
to saying that for every a € Sn, the equation f(p,q) = a has a unique solution (p,9)
in P x Q. This will occur if and only if (As)p, = 1 for exactly one couple (4,4) in
P x @Q, if and only if ¥pep 3-qcq(Aa)pq = 1. Thus f|pxq is a bijection for all P € P,
Q € Qp if and only if Tpep Tgeq(Aa)pg =1 foralla € Sy, PEP,Q € Lp. O

Lemma 1.32 Let A be an N x N left P-compatible matriz, and let P, P, € P. Let
p1,p2 € P,. Then

Z (A)p,m = 2 (A)p,pa-

peP pER,

Proof. Consider @, € Qp with p; € @;. Then the set Q2 = (Q:1\ {m})U{p:} isin
Qp also, since it contains exactly one member of each P € P. Le Q"= @\ {n}=

Q2 \ {pz}. Left P-compatibility of A gives 3_pep, Equ(A)p.q = X peP, quQz(A)P-q =
1. Thus we have

0 =1-1=Y T(Api— X X (Ag

pEP) 9e p€EP, q€Q2

= Y (Apmt+ 2 D2 (A
pEP PEP) g€Qi\ {1}

- Z (A)p,pz - Z Z (A)p-q
pEP P€EP: q€Q2\{pz}

= Z (A)p.; N + Z 2 (A)qu
vEP pEP 9q€Q°

= Y (Am— 2 2 (Apa
pEP: pEP; 9€Q°

= z (A)p,m - Z (A)p.pz'
peEP; pEPR

This implies the lemma.D
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Remark 1.33 Lemma 1.82 and lemma 1.81 imply that if f is left P-permutive and
if P, P, € P, then f(Py x {m}) = f(P x {p2}) for all p1,p; € P;.

Lemma 1.34 Let A, B be N x N matrices which are left P-compatible. Then A- B
is left P-compatible.

Proof. Let A, B be left P-compatible and let P € P, Q € Qp. Then

N-1
E Z(A B)pg = Z Z(Z(A)p.k « (B)k,q)

pEP q€Q pEP geQ k=0
N-1
= (X (A)pa)- QO (Bhka)
k=0 pEP q€Q

Now v~ can write P = {P,...,P.}, where P, = {pi1,Piz;- .- »Pim}, for ¢
1,...,n, as in remark 1.25 (2), so that Sy = {k : k € Sv} ={p;:1 <1<
n,1 < j < m}, and we have

Z E(A ' B)p.q ZZ(Z(A)p p-,) (Z(B)p.,.q)

p€P qeQ i=1 j=1 peP

For each i fix p! € P,. From lemma 1.32 we have ¥pcp(A)ppi; = Lpep(A)rr;> for

each 1,7, thus

ZZ(A'B)WI = ZE(Z(A)PJ’.) (Z(B)P-JQ)

pEP 9€Q i=1j=1 peP
= 2_;(56; (A)pr) - (z_; ZGZ(B)p.,.q)
= YD (Aps =1,
i=1 peP

since A and B are left P-compatible, P, = {p;;}T,, and {p}}-, € @p. Thus A-Bis
left P-compatible.O
We are finally ready to tackle Theorem 1.29:
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Proof (of theorem 1.28). Let f be left P-permutive. Theorem 1.31 states that

A, € Ay is left P-compatible for all a € Sy. The set {Aa}aesy generates Ay, and

products of left P-compatible matrices are left P-compatible, thus every member of

Ay is left P-compaiible. Now let A be an arbitrary P-compatible matrix. If we write

P={P,...., P}, @» = {Qjr,in : 1 S J1,.+.,Jn £ m}, as in remark 1.25(2) then

the set {Qj,. ..,j};'n=1 is a partition of Sy. Since A is left P-permutive, we have
——

n times

YpeP: Teeq;. (Al =1 forall1 <i<n, 1 <j<m. We then have

1Al = 3 (A

keSn leSn

= E Z Z Z (A')qu
i=1 p€ePi j=1q€Q,,....;5

= 22(2 X (Ahd)

.....
7/

—

1
= n-m=N

Thus we have |A| = N for all A € Ay, so fo is onto.0

The following proposition describes the block maps of partition permutive au-

tomata.

Corollary 1.35 If f € Fo1(Sn) is left P-permutive then for everyn > 1, P € P,
QEQp
f,,lp__xsx'-lxo :P xSy xQ — Sy

is a bijection.

Proof. Let P € P, Q € Qp. Foreach (a1,...,a,) € S¥, Aq,,...a. 18 @ P-compatible

matrix, 50 3pep Ygeo(4ay,.an)pg = 1. From lemma 1.15 we have
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card{f ' (as,...,a,) NP x S x Q}
= 3 3 card{f; (ar,- -, an) N {p} x S§" x {q}}

p€EP q€Q

Z Z(Aax,...,an)p,q = 1.

pEP q€Q

Thus every (ay,...,a,) € Si has exactly one preimage in P x Sr! x Q under f,,

hence fnlp, S5 xQ is a bijection.0)

We will generalise the concept of partition permutivity to multivariate local func-

tions in the final section of this chapter.

1.5 Partition Permutive Automata

Definition 1.36 Let f € F,,(Sn) with s > r and let f € Fo1(Sne-r) be the tuba
map of f. We say that f is left [right] partition permutive if and only if fis left
[right] partition permutive.

The following proposition should be clear, given the definition of partition per-
mutivity for bivariate local functions, and the derivation of the tuba map of a local

function.

Proposition 1.37 Let f € F,.(Sn). f is left partition permutive if and only if there
erists a partition P of S§ " into equal parts with associated cross section Qp such

that
f,_,-lpxq : P x Q — S;V_r

is a bijection for all P € P, Q € @p.
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Let f € F;,5,(SN), 9 € Fry02(Sn). Remark 1.5 states that if f and g are left
[right] permutive, then fg is left [right] permutive. What can be said about fg when
f is right permutive and g is left permutive? (or if f is left permutive and g is right
permutive?) We will show that such maps are partition permutive. To simplify the
analysis, we may assume that ry = r; = 0 ( since 0™ f € Fos,-r,(Sn) is right
permutive if and only if f is right permutive, 0™2g € Fo,s;-r, (Sn) is left permutive
if and only if g is left permutive, and 0~" fo~"2g = 6771”2 fg is partition permutive

if and only if fg is partition permutive).

Proposition 1.38 Let f € Fo,,(Sn) be right permutive and let g € Fo,.,(Sn) be left
permutive. Then fg € Fo,s 45, (SN) is left P-permutive, where

P = {Pao,...,a,l -1 }a°l"‘!a.l —lesN

is a partition of ST with

Pag,...,a.,-: = {(an sy $01+az—1) € Slasll.Hz ‘9s (an ve e axal+az+l) = (aOs cee aaal—l)}

= g;,l(a()a oo ’a-’l_l))

for all ag,...,a5-1 € ON.

Proof. Let P,,..0,,-, € P for some 0y -+ @a—1 € Sy and let Q € @p. We must
show that

.....

is a bijection. By theorem 1.2 and since g, is onto, we have cardF,,. 0,1 =
cardg;!(ao,...,us-1) = N2, and cardQ = cardP = N* so card(Pu,,...a,, 4 X Q) =

N#1.N% = cardS3**, so we need only show that (fg)s; +s,|P.,.. xQ i8 one-to-one.

Ggq =1

Let y = (yo" . 'sy2(81+82)—1)’ z = (20" . 'az2(01+52)-1) € Pdo---qan,-: X Qv with
(f9) 1422 (¥) = (f9)s14+5:(2). We must show that y = 2.
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Now, Since (yO, ceey yn-hz—l), (20, esey 231-]-32—1) G P"Ov---r“q-l N we must have
g(yi, cee ,yH—s;) = g(Zo, .o "zi+32) = a;, for:1 = O’ ey 81— 1. (16)
(f9)a+a2(y) = (£9)s, +32(2) implies that

f(g(y.-, ey 3/:‘+sz)» g(yi+h ) yi+1+az)a <o ,g(y;+,l 3oy yi+31+52))

= f(g(zia R 7zi+oz),g(zi+la seey zi'+l+82)’ o 1g(zi+8n ovey Zitsy+ ))’ (17)

fori =0,...,8 + 82 — 1. If we let i =0 in equation 1.7 and substitute equation 1.6,

we have

f(ao’al,- .. ,asx—lag(ydn s 7y’l+32)) = f(ao,al’ LR 5081—1ag(28n .. "za1+az))°

f is right permutive, so f(ao,-..,as-1, -) is a permutation of Sy, hence there must

exist an a,, € Sy such that
g(y811 s ,y81+82) = g(zan LRRE ] za1+82) = Qg
Now, if we let ¢ = 1 in equation 1.7, we have

f(ah o ’aang(y61+la s ,y81+!2+1)) = f(ala s ,asug(281+11 AR} 231+02+1))a

and again, the right permutivity of f ensures the existence of an a, 41 € Sy such

that g(¥s41s---rYstat1) = 9(Zo411-- 2 Zatsr+1) = Garia. Inductively, for z =
Siy-..,281 + s — 1, we find a; € Sy such that

g(yia---ayi+az) =g(zia°-"zi+82) = a;. (18)

In particular, we have

Gs, (Yor 4825« s y2(81+63)—1) = G (Zay#azs e z2(a;+az)+1) = (a81+82) ceey a281+32—1),
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thus

(y31+32 IR y2(51+sz)—l)’ (zsl+327 RN 22(51+32)+1) € Pa,,+.2....,a2,l+,2_| . (1 9)

NOW, Y,z € Pao,...,a,l_l X Q lmplles that

(ysx-*-sz? s ’y2(31+32)—1)a (zsl+az’ veey 22(31+32)+1) € Q

By remark 1.25 we must have either (¥s, 4151« -1 Y2(s1432)=1) = (Zsy4s21 - - -1 Z2(s145)+1)s

or (y31+827 R 1y2(31+82)—l) € Pl’ (za1+32, R ’22(31+33)+1) € P2, where Pla P2 € P with
P, # P;. The latter case contradicts equation 1.9, so we must conclude that the first

case holds. If we apply equation 1.8 with i = s; + s, — 1, we have
g(y81+82-1’ Ysi+s23-- - y81+212—1) = g(z31+32—h Zsy 4830128 +252-—1)
= g(zsI+sz—hysl+321'"’y31+2&2—|)'

Now, g is left permutive, 50 g(*, ¥s;4s25- - - » Ysy+20,-1) 1S @ bijection, so we find that
Ysy+a~1 = Zsy4a2—1. We similarly use the left permutivity of g to conclude that y; = z;

fori=0,...,51 + 82 — 2, hence y = z and fyg is left P-permutive.0]

Remark 1.39 Note that in the above proposition, gf is right P-permutive, where
P= {P a0,--1Bag-1 }ao....,a.,_,esN

is a partition of Syt with

R {(Z0s- - -1 Tuy4,-1) € ‘Sf.\;-ﬂz : for(Zoy - s Taytap41) = (a0, - . 1 @ay-1)}

= fg;l (a07 cee ’aaz-—l)a

for ~li ag,...,a5-1 € SN. A similar method to that above is used to prove this

~tatemers.
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We will end this chapter by discussing some of the drawbacks and strengths of
the concept of partition permutivity, and suggest some lines of further research.
The first drawback is that not all surjective automata are partition permutive. In

fact if we consider f, g,k € Fo1(S3) with image matrices

01 2 1 0 2 0290
F={100}|,G=]1012],and H=| 1 1 2
2 21 0 21 201

respectively, then it can be shown using rather exhaustive methods that fgh €
Fos(Ss) is not partition permutive. This means that theorem 1.38 cannot be gener-
alised to include arbitrary compositions of permutive automata, as we have f is left
permutive, g is right permutive, and h is left permutive.

Another problem is that for automata on large alphabets and for automata with
local functions with many variables it is very difficult to verify whether or not ihe
automaton is partition permutive: The “rather exhaustive methods” mentioned above
involved analysing the 27 x 27 image matrix of the tuba map of fgh.

The main reason why partition permutivity is a worthwhile concept is this: All
surjective automata with local functions in Fo:1(Ss) are partition permutive. This
statement was proven by a computer program which checked the surjectivity of every
automaton with local function in Fo1(S4), but it has not been proven with rigourous
methods. We pose the following conjecture, which may perhaps be related to theo-
rem 1.24:

Conjecture 1 Let f € Fo1(Spq), where p,q are prime numbers. Then f. is onto if

and only if fx is partition permutive.

A possible weakening of this conjecture is to demand that p = g. One possible
approach to this problem may be to use the numbers L(f), M (f), and R(f) from the
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proof of proposition 1.24, since for ;” € Fo.1(Sp.q) we have L(f) - M(f)- R(f)=p-q,
so at least one of L(f), M{f}. or R(f) must be equal to one ( in the cases L(f) =1
and R(f) = 1, we have f is permutive, hence partition permutive). At any rate, a

proof or disproof to this conjecture is not obvious.



Chapter 2

Yreodic Theory

~eneral Results

Now that we have discussed the structure of surjective automata in terms of local
functions, we are more than ready to discuss the dynamical properties of surjective
automata. We will see that another sufficient and necessary condition for surjectivity
is the preservation of measure, and this brings us into the realm of ergodic theory.
Many of the results of the next two sections are generalisations of results from [SR].
Their paper dealt with automata on two symbols, and hence such algebraic niceties
as those discussed in examples 1.1 and 1.3 were exploited. In discussing these results
in a more general setting, we must be a little more careful in our set up and analysis.
Lets begin.

To describe the ergodic properties of cellular automata, it is of course first neces-
sary to introduce a measure on S§.

We first introduce a probability measure p on Sy, by demanding that for any AC

S, p(A) = ca,;'vdA . We now give S¥ the probability measure g, the product measure

corresponding to the measure p on Sn. Ifi1,...,0n € Z with i < i3 < ... < 1y, if

29
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ai,...,a, € Sy, and if A is the cylinder set defined by
A={re 8%z, =apfork=1,....,n},

we then have u[A] = (1/N)* = N~". p acts on the smallest o-algebra containing the
cylinder sets, and is hence a Borel measure, as the cylinder sets are a basis for the
topology of S%.

We will require some basic definitions from ergodic theory.

Definition 2.1 Let (X, 8, ) be a measure space, i.e., X is a nonempty set, 3 is a
o-algebra of subsets of X, and p is a normalised measure on X (i.e., plX] = 1. Let
¢ : X — X be a measureable function. Then

1) ¢ is measure preserving if u[¢~'(B)] = u[B] for all B € .

2) ¢ is ergodic if ¢ is measure preserving and for every B € f3 satisfying ' (B)=B
we have either u[B] =0 or u[B] = 1.

3) ¢ is (strongly) mixing if ¢ is measure preserving and for every A, B € B we have
limp—oo p[A N ¢7(B)] = plA] - u[B].

It is clear that mixing transformations are ergodic (for if ¢~!(B) = B, taking
A =X\ B in (3) above yields (1 — p[B])u[B] = 0).

Intuitively:
1) measure preserving systems are analogous to volume preserving flows from differ-
ential equations;
2) an ergodic system is one that cannot be decomposed into two systems on sets of
statistically significant size;
3) a mixing transformation is one that exhibits a form of asymptotic statistical inde-
pendence, in particular, if $ is mixing, we have

. plAn¢™(B)]
g, ulA]

= #[B],
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which is a statement about conditional probabilities. Roughly, we have thai the
proportion of ¢™"(B) that is in A approaches the proportion of B in the whole space
X (this almost suggests that o™"(B) b(’.:t‘,- -nes like a fractal. as n increases).

An equivalent formulation of ergodic 15 @is ergodic if and only ifforall A, B € 3
we have limn—o L T52g s[A N 675(B)] = ulA] - u[B].

In general, given two measure spaces (X1, B1, 1) (X2y 32, 42) and a measureable
function ¢ : X; — X», we say that ¢ is measure preserving if mlo~HU)] = w2V},
for all U € ;.

Consider (X}, 51, #1), and (X3, Ba, p2) where X,, X,, are topological spaces, and
3,. 3, are the o-algebras of Borel sets on these spaces respectively. If ¢ : A} — A%
is
1) a homeomorphism with inverse ¢7! : Xy, — A},

2) measure preserving.

and if

3) ¢! is measure preserving,

then we call ¢ a measure theoretical homeomorphism.

If furthermore we have two continuous functions (dynamical systems) f : &1 —
A, and g : A — X which satisfy éo f = go ¢, then we say that f and g are
measure theoretically equivalent or measure theoretically conjugate, ard we call ¢ a
measure theoretical conjugacy in this case. (Note: this terminology may conflict
with the standard nomenclature which is used for more abstract settings - such as
non-topological measure spaces - but the definitions above more closely resemble the
scenarios we will face).

If the dynamical systems f and g are measure theoretically conjugate they are
essentially the same system when viewed from topological and measure theoretical

standpoints. This is partly because the homeomorphism ¢ preserves Borel sets, i.e.,
U € 3, if and only if 6(U) € Ba, and V € B, if and only if o71(V) € B1. A
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consequence of this is that f is measure preserving if and only if g is measure pre-
serving. Indeed, if f is measure preserving and [" € 3;. we have Vo= o6Y(U) €
3 so mlg- U] = walg (V)] = ml(o™ 0 ) (V)] = mal(f 0 67V =
walo(f 1 V)] = m[f (V)] = m[V] = m[U], since 0 and o' are measure preserv-
ing. We similarly have that f is ergodic [mixing] if and only if g is ergodic {mixing].

We will now apply some of these concepts to cellular automata.

Let Cn denote the set of cylinder sets on SZ. Cn has a very useful property: if
A, B € Cy then A\ B = Ul,C; for some Cy,...,Cn € Cn, all pairwise disjoint. This

follows from the fact that Cw is closed under intersections, and from the fact that

S!%\{zes‘\z':zil = Q1y---4T¢, =an}

— z. = -
= U (reS¥: iz, =b.....,1, = b},
(b .b")ES.’{,.
(b bn,# ay an !

for any n € Z%, ay,...,a, € Sx,and t1,.. 1, € Z with 1; < ... < 1,. This next

theorem illustrates the value of this property:

Theorem 2.2 Let (X,8,p) be a measure space, and let ¢ : X — X. Suppose
C C 3 generates 3 (i.e.,3 is the smallest o-algebra containing C). Suppose that for
all A, B € C we have A\ B is a finite union of pairwise disjoint sets in C. Then

1) if p[¢~(C)] = p[C] for all C € C, ther ¢ is measure preserving.

2) if limp—ce L 220 u[AN ¢~%(B)] = p[A] - p[B] for all A, B € C, then ¢ is ergodic.
3) if limn—o p[AN ¢~"(B)] = p[A] - u[B] for all A, B € C, then ¢ is mizing.

Remark 2.3 If we give Sx an (additive) group structure which induces a group struc-
ture on SZ via component wise addition, then u is the (unique) Haar measure on Sz,
i.e., for any measurable set U C SZ, and for any a € SZ, we have pla + U] = p[U],
where

a+U ={z€8%:r=a+u for some ucU}.
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The proof goes as follows: For any a € SZ we let ¢, : S§ — SZ be defined by
$o(z) =z —a, forallz € SZ (and hence ¢;'(z) = z +a). We then have for any
cylinder set U = {z < SF 1 2;, = ¢1,..., Tip, = Cn} that o7\ U) = {z € SF : 2, =
¢1 + @iy ey Tin = €+ @i} = a+ U, and hence plo71(U)] = plU] for cylinders.
Theorem 2.2 (1) then ensures that pla + U] = p[U] for all measurable sets U.

We will now develop a useful way to describe the open sets of SZ.
Define F2,(Sn) C Fr,s(Sn) to be the set of all local functions (with left and right
indices r and s respectively) which have image set {0,1}, i.e,
F2(Sn)={f:SF" —{0,1}},
and let F2(Sn) = UFZ,(Sn). X p € F7;(Sn), we define M(p) = {r € ST :
p(zi, ..., ;) = 1}. M(p) is the finite union of cylinder sets, i.e,

M(p) = U {z € S : 2i = i, Tig1 = Gig1y. .-, Tj = Qj}. (2.1)
(ais..a;)EP~1(1)

Proposition 2.4 Let f € F..(Sn), and let p € F2;(Sn). Then pf € Ffy, ;4,(SN)
and M(pf) = f'(M(p)).
Proof.

z € M(pf) Pf(Zigr,. s Tiva) = 1
P(f(Titrs- s Tiva)s- s [(Titrs- o Tina)) = 1
P(foo(2))is - - -5 (foo(T))5) = 1
fo(x) € M(p)
z € foo (M(p)).0

We give F2(Sy) a binary operation. If p € 2 ; (Sy) and if g € Fi ., (Sn) then
we define pN g € f?m-"{;,"-2}‘,,,“{1-1',-2}(81\7) by

11111

1, ifp(xiy,...,Z5) = q(Tiyy. .., Zj) =1,
pN q(xmin{im'z}w'-azmaz{jx-iz})={ 0 . otﬁgm‘,i’se_ #) = e 0 25)
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We call this operation on F2(Sy) local intersection .

Proposition 2.5 Letp€ F2 . (Sn), q €

1,01

(Sn). Then M(pNq) = M(p)N M(q)

'2 WJ2

Proof. We have

M(png) = {z €8x :PNA(Tminfiriz)y- - Tmas(inia)) = 1}

= {z€8%:p(ziyy--r2j,) = q(Tipy. .., T5,) = 1}

= {zGSﬁ:p(mi,,...,mh)=l}ﬂ{xGSﬁ:q(:c;,,...,xj,)=1}
M(p) N M(qg).0

For any a € Sy, t € Z define x,, € fzi(SN) by Xai(zi) =1 &= =z = a.
This provides a useful representation of cylinder sets, i.e., if U = {reS%:z, =
ax,for k = 1,...,n}, for some n > 0,iy,i3,...,1, € Z, with 3, <i; ... < iy, and

a,az,-..,an € Sy, then U = M(xa, i, (zi,) N ... N Xan.in(Tin))-

Remark 2.8 We now have an efficient way to charactevisc the properties of mea: :re

preservation, ergodicity, and mizing for cellular automata: Let | € F,(SN).

1) fo is measure preserving if and only if u[M(p))] = p[M{p)], for allp = Xa, i, (i, )N

oo O Xamim(Tim) € F2 5 (SN), with a1,a3,...,8m € SN, T1yi2,..0tm € Z, and

1 <2< ... <im.

2) foo is ergodic if and only if limy.o 2 325 p[M(pf™ 0 q)] = u[M(p)] - u[M(q)] for

all p = Xayiy (i) N+ - 0 Xamsi (Tim) € F2 i (SN)s 4= Xowa (232) N - O Xiii(25) €
H "(SN) with ay,82,...,8m,b1,b2,...,b0 € SN, t1,82,...,%m, ]1,]2,...,]" € Z,

1 <2< ...<imand j1 < j2<...< JI.

3) foo is mizing if and only if limnoo p[M(pf™ 0 q)] = p[M(p)] - p[M(q)] for all

P = Xopia (i) 0 oo O Xamim (Tim) € F2 i (SN), 4 = Xor0n (2i) O -2 O xii(T5) €
H J,(SN), with @1,a2,...,8m,b1,b2,..., b1 € SN, t1,02,..im, J1,J2,---s 01 € Z,

11<12< ... <1y and_h <j2<...< ]
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If f € F2,(Sn), we define supp(f) = {r,r+1,...,8}. Welet |[f|=s—r+1,and
let ¢(f) = cardf~1{1}

Proposition 2.7 Let p,q € F*(Sn). Then
1) u[M(p)] = c(p) N~
2) If supp(p) N supp(g) = 0, then u(M(p) N M(q)) = p(M(p)) - 1(M(q))-

Proof.

1) Let p € F7;(Sn), and for any (air-..,a;) € pY(1), let Us,,..0; = {7 € STz =
@i, Tig1 = Gig1s-- -+ Tj = @} be a cylinder set. We then have p[U,,,...q,] = N-l-i+1) =
N-P and U,,,..a; 0 Uy,
(ai,...,a;) # (bi,...,b;). Equation 2.1 then gives us

b; = 0, whenever (@i -.ra5), (biy- .., b;) € p~(1), with

pM(p)] = u[(' U V.. a,]

(@iyeees a,‘)Ep‘l(l)

— Z N-lpl

(air.a;)€P~1(1)
= c(p)N7Pl.

2) Let p € F2 ;.(Sn),q € F ;,(Sn). supp(p)Nsupp(q) = {i1,--.,82}N{j1. .-, G2} = 0
implies that either j, > %2 or 43 > ja. Suppose j1 > i2. We then have [pNgq| =
ja— i1+ 1. Let (ai,...,a,) € p~*(1) and let (a;,...,85) € ¢~ '(1). Then for
every (@i41,---18j,-1) € S~ we have (Giy,. .+, Gips Bigt1s - -1 @iy =1, Gy s -+, Gjp) €
(p q)~(1). We then have c(p N q) = card (pNg)~'(1) = card p (1) - card ¢7'(1) -
card i7" = ¢(p) - e(g) - N#=2=1. Thus u[M(p) N M(q)] = u[M(pNg)] = c(pNq)-
N-lPnel = ¢(p) - ¢(q) - Nir—iz=1, N=(iz=i1+1) = ¢(p) - N-Gz=+1) . ¢(q) N-(2=i141) =
c(p) - N~ - ¢(q) - N7l = p[M(p)] - u[M(qg)}.
The proof when i; > j; is similar.O
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Theorem 2.8 f. is onto if and only if fo is measure preserving.

Proof. Let f. be onto and let p(zi,,Ti41,-+ > Tin) = Xepin(Ti) O Nepia (7)) 0
oo O Xemim (Tim) S0 that M(p) is a cylinder set. We have p[M(p)] = N™™ and, by
remark 2.6, we must show that u[M(pf)] = N™™.

Now, pf € F2 rints(Sn), s0 we have |pf| = (im +5) = (11 +7) + 1. We calculate
c(hf). Let (@itrs---r@imts) € S(mt=(144) Then pf(ai4ro-- s Bimes) = 1 <
P(f(@iytrs -1 Birta)s- v o F(@imtrs oo 18imta)) = 1 = Xerit (f(@ir4rs- -1 804)) O
oo N Xemim (f(@imtrs e 2 Gimts)) = 1 &= fimmiy#1(@igtrs -« -1 Gimta) € {a} X
S~ x {c} x Sizi7l L x S,';',"-i""—l X {em} =T <= (Giygrr---1Qipss) €

141(T). Thus c(pf) = cardf71; 1(T). cardT = N@-i=1. No=w-l,
Nim—imo1=1 = Nim—i1=(m=1) 3nd since f, is onto, we have by Theorem 1.2 that
cardf} ; ;1(b) = N*" forallb € T, so card ;' ; 1(T) = card Uper ol by =
Soer cardfil; 41(b) = Tyer N*77 = cardT-N*7" = Nim=ii=(m=-1)+s-r Thyg we have
by proposition 2.7, u[M(pf)] = c(pf)N~t/! = Nim=ir—(m=1)+s-r N-[im+a)=(i1+r)+1] =
N-™ = u[M(p)], so fw is measure preserving.

To prove the converse statement, suppose that f. is measure preserving. Then
we have 1= p[SE] = plf (fou(ST)] = lfoo(SF), 50 foo(SF) is dense in SF. SF is
compact, 50 foo(SK) is also compact, hence closed, so we must have fo(S%) = SZ,

and f, is onto.O

Theorem 2.9 Let f € F,,(Sn) with either r > 0 or s < 0 and iet fo, be onto. Then

foo ts strongly mizing.

Proof. We prove the case r > 0. Let p € F2,,(Sn),q € F} j,(Sn). We will
show that u[M(pf™ N )] = p[M(p)] - u[M(g)] for all sufficiently large n. We have
Pf™ € FE ynrigns(SN), for each n € Z. There exists n* such that i; + nr > j, for all
n > n*. supp(q) = {j1,j1 +1,...,J2} and supp(pf") = {Hi+nriy+nr+l,...,0+



CHAPTER 2. ERGODIC THEORY 37

ns}, so if n > n*, we have supp(q)Nsupp(pf™) = 0. By proposition 2.7, we have

u[M(pfNq)] = u[M(pf*)NM(q)] = p[M(pf™)]-u[M(q)] = plf (M (P)]- u[M(q)] =
u[M(p)] - u[M(q)] for all n > n” (the last equality follows since fo is onto, so fg is

measure preserving). Thus fo, is strongly mixing.O

Corollary 2.10 Let f € F,.(Sn) be univariate, and let fo be onto. Then fy is
mizing if and only if r # 0.

Proof. Theorem 2.9 ensures that fo, is mixing if r # 0.

If r = 0, we show that f. is not ergodic by presenting a measurable set V with
0 < p[V] < 1 which satisfies fZ'(V)=V.

Now, proposition 1.7 states that there exists n > 0 such that f = ¢° = id. If we
let U C Sy be such that 0 < p[U] < 1/n, and let

V=UUNU)U...u f(W),
then

“1(V) = f2UUFRAU)U... U FPAU) U FRTIO)
= f2 UV fRU)V.. .U T U FSHY)
= AUV FRO) V..U )UU =V
We then have 0 < u[V} = plUshfzH(U)] < Th% wlfH (U] = TisoulU] < n-

(1/n) = 1. Thus fs is not ergodic, hence f is not mixing. O

2.2 Permutive Automata

In this section we will continue to generalize the results of [SR]. We will look at
left permutivc automata with negative left indices and right permutive automata

with positive right indices and show that such automata are mixing. In view of
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theorem 2.9, this means that left permutive automata with nonzero left indices and
right permutive automata with nonzero right indices are mixing, and we will conclude
the section with a brief look at some permutive automata which do not satisfy these
conditions.

We start with a technical lemma which describes certain independence conditions

of cylinder sets under the influence of permutive automata.

Lemma 2.11 Let p = p(Za,.--,25) € F25(Sn). Let g = g(zr,...,2,) € Fra(Sn) be
left permutive. Let i € Z with i +r < a. Then for any a € SN, Xio9 € Fiiriva(SN),

and

1)
| e(p)Ne-G¥-1 | ifit s < B,
c(xiag NP) = { c(p)Na—rH-ﬁ-‘ , tfi+s2>2p. "

2)
pM(xiag N p)) = N71 - u[M(p)].

Proof.
1) Let h = xiag N p.

Suppose i + § < B and let (Uitr,. .. Uas-..,us) € R} (1). Then p(uq,... up) =
1. There are c(p) choices for (uq,...,up). For any choice of uitrsr,... Ua—1 We
have g(-,Uisr41,--.,%i4s) i8 @ bijection of Sy so there is exactly one u;4, € Sn
such that g(Uisr,- .., Uits) = @, and hence xiag(Uitr,--.,ui+s) = 1. Thus there are
e(p) - No=1-(+r+1+1 = ¢(p) . No=(+7)=1 choices for (uitr,. .., up)-

Now, let B < i+5 and let (Uigry..-sUay---rUpy -y Uits) € h~1(1). We must have
p(Uas, - ..,up) = 1 (there are again c(p) possibilities). For any choice of
Uigrtls- - ol s UGH1, -« - » Uiss there is exactly one uiy, € Sy such that

9(tisry ... Uigs) = a. Thus (k) = ¢(p) - NoTI=(raD+t . Nits=(G+IH = o(p) -
Na-—ﬁ+s—r-—1.
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2) If i + s < B, then |xiag Np| = B— (i + r) + 1. We then have

pM(xiag Np)] = cxiagNp): N-Ixi.a907]
= ¢(p)No~CHn-1. N-A+(+r)-1
= N-lc(p)N—(ﬁ—a-H) = N_IC(p)N_lﬂ
= N7'-p[M(p)).

Ifi+4s>p,then |xiagNpl=(G+s)—(+r)+1=s—-r+1 We then have

#[M(x.'.ag n P)] = c(x,-'ag N p) . N-lx-'.agﬂpl
p)No—r+-81 . N+
= N—lc(p)N‘(ﬁ--a+l) = N-! 'ﬂ[M(p)].D

Notice that in the above we have p[M(xiag N p)] = N7* - p[M(p)] = uM(xia)) -
u[{M(p)]. In general, if ¢ = g(Try..-12s) € Fro(Sn) is left permutive, if p =
p(Tay..128) € F24(Sn), and if ¢ = ¢(zi,...,2;) € F?(Sn), with j + 1 < o we
have u[M(qg N p)] = p[M(q)] - u[M(p)]. Lemma 2.11 is sufficiently strong to help

prove the main theorem of this section:

Theorem 2.12 Let f € Fr.(Sn) be left [right] permutive with r < 0 [s > 0]. Then

foo 18 strongly mizing.

Proof. We prove the first reading.
If s < 0, then foo is mixing by Theorem 2.9, so assume that s > 0.
Let p= Xal,i:(%) n...N Xam.t'm(xim) € }:?I,im(‘sN) and let ¢ = xb,.5 (xh) ﬂ .: N

Xbiii(Zi) € F ;,(Sn), for some ay, ay,. . vy @m, Dy b2y ... bl € SN, 152254 4 1y 2m,

jl,jz,---,jlez,With O <i3<...<im and 7 <j2<-..<j1.



CHAPTER 2. ERGODIC THEORY 10

To show that f is mixing, it is sufficient to show that u[M(pf" Nq)] = u[M(p)]-
p[M(q)] = N~™ - N7, for all sufficiently large n.

Now, there exists an n* € Z such that if n > n* we have ¢, + nr < ji. We have
an N q = Xapiy fn($i1+nf, IREXR) zi1+na) N Xaz,igfn(xig-i-nra sy xiq-{—na)
O N Xamin S (Timtnrs - - s Timtns) N G(T -5 T5)
If we let

hl = xamyimfﬂ(zim""ﬂ"’ R | xim+ﬂ‘) n q(mjl R | xjm)')

and for k=2,...,mlet

— - n . .
hk - x“m—k+lv'm—k+1f (xlm-k+1+nn cecy ztm_k+1+ns) N hk—h

then we clearly have pf® N ¢ = hy. Now, f" is left permutive and i, + nr < ji for

n > n", so lemma 2.11 gives
plM(k1)} = N7'- u[M(q)} = N7* - N7

We also have for k = 2,...,m, that iym—k41 + 7 < im_k42 + nr so lemma 2.11
gives
p(he) = N7" - u[M (hi—1))
We thus have

pM(pf*Nq)] = p[M(hn)) =N p[M(hm-1)]
= N7?p[M(hn-2)]

= N-=Du[M(hy)]
= N-(m-1.pN-1.N-
= N~ = u[M(p)] - u[M(g)].0



CHAPTER 2. ERGODIC THEORY 41

Remark 2.13 Let f € F,.(Sn) be left permutive with r = 0. Is fo strongly mizing®
The answer is maybe.

If s > 0 and f is actually bipermutive, then the second reading of theorem 2.12
ensures that fo is mizing.

On the other hand, consider f € Fo1(S3) with image matriz given by

000
F=|121].
21 2

We then have f~1(0) = {0} x 83, and so if U = {z € SZ : 2o = 0} we have
foNU) = U. p[U] =1/3, s0 fo is not ergodic, hence not mizing.

o0

2.3 Bipermutive Automata

The main theorem of i.}'s chapter states that certain bipermutive automata (ie.,

those with local functions f € F,,(Sn), with r < 0 < s) are identical to one-sided

Pt aoulli shifts as far as topology and measvre theory are concerned. The case s = —r
was proves .~ Al by showing that fo is expansive and by constructing a Markov
partitio::. i s i -.ding 2 topological conjugacy. They then went on to show that

the measu:-* on vhe space which the bipermutive automaton acted ayon vsas that of
maximal entropy. In the more accessable proof provided here we will construct a
measure theoretical conjugacy.

The driving force behind this theorem, in layman’s terms, is that every z € S%
is completely determined by a “thin strip” through its orbit under foo- Being a little
less vague, what we mean is that we only need look at the evolution of [fZ ()] for
a few i € Z to completely know what the orbit of x looks like dynamically, and
such “strips” are unique to z. The following lemma may help to clarify this point

somewhat.



CHAPTER 2. ERGODIC THEORY 42

Lemma 2.14 Letr <0 < s and let f = f(zr,...,Ts) € Frs(Sn) be bipermutive. Let
z,y € S%. Thenz =y if and only if [f3(z))i = [fL(¥))i foralln 20,0 <i < s—r—1.

Proof. It is obvious that if z = y then [f2(z)}i = [f2(y))iforalln > 0,0 <: <

s—r—1.

Let i < 0 and suppose that [f2(z)]x = [fa(¥)lkforalln>0,i <k <s—-r-1
Then for each n we have [f3+ (2)li—r = f([f&(2)is [fo(@)ivrs- - - [foo(@)ivs~r). Now
we have [f*(z))i—r = [f%(y))i-r since i < i—r < s—r—1. Wealso have [f5 (z). =
[~ (y)); for j = i+1,i+2,...,i+s—rsincei < i+l <i+2<...<its—r<s—r-1l

f is left permutive so we must have [f2(z)); = [f%(y));, since

U@ @it fo@ias-r) = FU® @it foo()live-r)
= f(lfe®l fool@isns -5 [fo(@)ia-r)

and f(-, [f2(2))i+1, - - - » [foo(2)]i4s~+) is @ bijection.

Thus inductively we have [f2(z)}; -~ [f2(y)]i for alln > 0,: < s -7 —1, in
particular z; = y; forall : < s —r - §.

The proof that z; = y; for all i > s —r — 1 uses the fact that f is right permutive,
and is entirely similar.0

The following lemma is purely technical, but will serve us well later.

Lemma 2.15 Letr <0< s and let f = f(z,,...,2,) € Fr,(Sn) be bipermutive. Let
i€Zi>0,andletp € FL,_,_(Sn), 9 € F3 5(SN), wherea 2 i, f < sits—r—1,
and B—a+1<(s—r)i+1 (ie., |g| <|f]). Then

1) c(pf* N q) = c(p)e(g) Ni=-7)~F=etD),

2) p[M(pfi 0 @) = u{M(p)] - nlM(q)].



CHAPTER 2. ERGODIC THEORY 43

Proof.

1) (%riy«+ -y Usita—r-1) € (pf* N q)~*(1) if and only if ¢(ta, ..., us) =1, and

pfi(tyis. ..y Usits—r—1) = 1 (i.e., there must exist (vo, . ..,Vs—r—1) € p~*(1) such that
iy orthe)) = S (Urig1ye ey Usigr) = U1y oony Fi(trigdsmr—1y- -« Usiqa—r1) =
va—r—l)-

Now, let (ta,.-.,us) € ¢7}(1), and (vo, ..., Vs—r-1) € p~1(1) (there are ¢(p) - c(q)
ways in which (ta,...,ug) and (vo,...,Vs—r-1) may be chosen). We will show that
there are exactly N i(a=r)=(B—a+1) choices fOT Uniy. -+ Uory UB41, - - - s Usi4+s—r—1 SUCch that
f‘(uria vae ,uai) = Yg, fi(uri-i-l, ceey u'aH-l) = Uty ceey fi(uri+s—r—1, cee ausi+a—r—l) =
Vs-r—1 ( and thus c(pf* N q) = c(p)c(q)Nile=r)-(B-at1)),

Now, there exists k € Z with 0 < k < s —r — 1, which satisfies either 1)
ritk=aand B < si+kor,2)ri+tk<aand f=3si+Fk (since we have
B—a<(s—r)i=/(si+k)—(ri+k)).

Now, if k satisfies 1) then if we choose ug + 1,..., Usitk—1 arbitrarily (there are
Nitk-1-(B+1)41 = Nsit(a-ri)=p=1 = N(e=r)i=(B-a+1) ways to do this), then

F (Urigks - - > Usith-1,") IS @ permutation of Sy, so there exists exactly one uri1x €
Sy such that fi(uripk,- - s Usitk—1, Usitk) = V-

If k satisfies 2), and if we choose Uritks1,.. . Ua1 arbitrarily (again, there are
N(s-1)i=(B-a+1) ways to do this), the left permutivity of f* ensures that there exists
exactly one uyi4x € Sy such that P (Urigky Uritkd1s - - - 3 Usidk) = Uk

If k > 0, then we have fi(*, Uritk, .- -, Usi+k—1) is @ bijection, so there is exactly
one upi4k-1 such that S (rigkm1s Uridky - -+ » Usith=1) = Vk—1> and similarly we prove
that there is exactly one choice of uri,...,Uritk-2 such that Fitriy- .., Usi) = Yo,
FiUrigse e+ Uaig1) = V1y « oo f (Uridk=2s - - s Usikk—2) = Vk—2.

If k < s—r—1, using the right permutive nature of ft, we also conclude that

there is exactly one choice of Usiqks1y+ -« Usi4s—r—1 SUch that



CHAPTER 2. ERGODIC THEORY 4-
fi(uri+k+l, ey usi+k+l) = Vk4lyeeoy f'.(ufl'-}-a—r—la seey usi+s—r—l) = Vger-1.

2) We have u[M(p)] = ¢(p) - N7, and u[M(q)] = ¢(q) - NE=04D s

c(pfi Ngq)- N-lernal

= c(pfiNgq)- NteT-1-miHd

= c(pfing)- N~C=l)

= c(p)-c(q)- N(=rYi—(B-atl) | prsits—r—1-ritl
= ¢(p)- N"C D . ¢(q) - N~b-o+))

= WM(p))- ulM(q)].0

p[M(pfi N q)

l

We finally have:

Theorem 2.16 Letr < 0 < s and let f = f(z:,...,2,) € Frs(Sn) be bipermuliv
Then fs is measure-theoretically equivalent to a one-sided Bernoulli shift on N*®-

symbols.

Proof. We denote the measures on S¥ and SN, by g1 and p, respectively (
in the case with two-sided sequence space, the measure p; on Sﬁ._, is the produ
measure induced by the uniform measure on Sy.-r).

Let z € S%. Define 7 : S& — Sns—r by 7(z) = TiZf ™ @i - N* (note th
n(z) = n(y) if and only if z; = y; for i = 0,1,...,s — r— 1). Let 7 : ST — S
be given by [7,o(z)]i = n(fi,(z)) for all 7 € IN (5o, serves as an encoding of the th
strips mentioned earlier into one-sided sequences).

It is easy to see that if z € S¥, then we have [nw(fwo(z))]i = 1(fi(fo(2)))
2(F2(z)) = [1oo(z))i41 = [0 0 Neo(2)];, for all i € N, so the following diagram co:

mutes:
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foo

SF —=—~ 8%
N l N>

SNl—r —? Shl]qn—r

What needs to be shown is that 7. is a measure preserving homeomorphism.

Let 7,y € 8% with 76(7) = 7 (y). Then we must have

['ho(z)]n

s—-r-1 s—r-1

3 a@LN = Y FR@)N = Do)l

=0 =0

for all n > 0. This holds if and only if [f2 ()] = [fa(y)iforalln 20,0 <1 <

s —r — 1. By lemma 2.14, we must have z = y.

‘e prove that 7 is continuous and measure preserving. Let ay,...,an € Sy~ for

somen>0andlet i,...,1, €EZwith0<1; <22 < ... <1t Let U = {z ESF,_, :
i, = aj,...,%i, = az} be a cylinder set of SN._.. We then have p,(U] = (N*77)7".

For k =1,2,...,nlet axo,ar1,.--+8ks-r-1 € Sy be the unique members of Sy such

that Y1777 akr - N' = a;. We then have

y € (U)

[ A A

9(fix(y)) = ax, fork=1,...,n

s—r-1

S Uy N =ap.for k=1,...,n

=0

[f;é(y)h:ak,u fork=1,...,n,l=1,...,5s—-r—1

fi(y) € M(Xay0), for k=1,...,n,0=1,....s —r—1
y € f¥(M(Xap ) fork=1,....n,0=1,...,8s —r—1
yeM(xﬂk,lJfﬁ‘% for k = 1,...,n,l=l,...,s—r—1

n s—-r-l1

ye€ ﬂ ﬂ M(xak,hlfik)

k=1 =0



CHAPTER 2. ERGODIC THEORY

IS
<

Thus we have

ne (U) =

s-r~1

DL

M(Xﬂkl-lfik)

r
I=

»
i}

-
(=]

It
s

M(Xﬂk,o.of‘k n...N Xax yor—1.8—1=1 fi*)

>
[
-

Il
DL

.‘!((Xak.o'o Nn...N Xag,._,_l.s—f—l)f“)'

»
1
-

It is clear that 5o is continuous as n;}(U) is the finite intersection of open sets.

Fork=1,2,...,n,let Pk = Xay 000 - -NMXapseroys-r-1 € Fe,r-1(Sn). We clearly
have u1[M(pi)] = N~t=7), for each k. We then have 2 (U) = Ni M(pef**) =
M(pif O ... O pafin), where pf'* € F2, yirroeey(SN). Let h=prfi 0. O pafo.

Now, let g, = pif* and for k = 2,...,n let g« = pif™ N ge-s- We then have
h = gn.

For k = 2,...,n we have gio1 € F2% _ yii_ 4smr—1(SN), and Tiey 2 rik, stk +
s—r—1>six+s—r—1,and |ge1| = (s =)l +1) < (s—r)ir +1 = |f*¥], thus
we can apply lemma 2.15,

ulM(g)) = mM(pef* 0 ger)] = m(M(po)] - 1M (gr-1))
= N6 [M(ge1))-
We thus have
mnZ (V)] = m[M(g.)]
= N6 [M(gaa)]
= (N-('-r))zﬂl [M(gn-2)]

= (N (M ()] = (NTE) 7 i (M)
= (N~ = (U]
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Thus 7. is continuous and measure preserving. The compactness of both S%
and Sh,-, ensures that 1o is onto, and that 57! is both continuous and measure
preserving.O

It is perhaps interesting to note that this theorem may have been anticipated in
[Hed] via the theorem: Let f € Frs(Sn). Then card f3'(z) = N"""forallz € SZ if

and only if f is bipermutive.

2.4 Product Automata

Give any two dynamical systems to a mathematician and he will give you a third by
taking the product.

Products of dynamical systems play an important role in ergodic theory. In this
section we will see tt  ~roducts of cellular automata are essentially cellular automata
themselves (via me ¢ preserving conjugacies).

Let N,p,q € Z,vith N = p-qand p,g > 1. Consider the bijection ¢ : Sp X Sg —
Sn given by ¥(y, z) = y-g+2, for all (y, z) € S, x5, (where addition and multiplication
are taken over the integers). Let v = ¥~'. We may write v = a X B,a:8y — S,
8: Sy — S,, where f(z) = z mod ¢, and a(z) = %’-@-, for all z € Sy (a(z) is the
quotient upon dividing z by ¢, so we have z = afz) - ¢+ B(x)).

4 induces a bijection P, : SZxSF — SF given component-wise by [thoo(y, 2)}i =
V(yi,2), foralli € Zand ally € S§¥, z € qu. The inverse of 1o 18 Yoo : S —
SZ x ST, where Yo, = oo X B and Qo : ST — S%, o, : ST — ST, are given by
[@oo(2))i = (%), [Boo(@))i = B(z:), forall i € Z and all z € S%.

Give sz X qu the product topology. Denote the measures on S%, sz, and qu
by pn, ke, and g, respectively. We give sz X qu the product mcasure fpg, i.e., the
o-algebra of measurable sets on sz X qu is the smallest o-algebra containing the sets

of the form U x V, where U is a measurable set of sz , apd V ic & measurable set of
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SZ, and we require that pp,[U x V] = p,[U] - po[V].
Lemma 2.17 9 : S;,z X qu —S%isa measure preserving homeomorphism.

Proof. Let U = {r € S% : z;, = a1,...,Ti, = @a}, for some n,t,...,i, € Z,
a1,...,0, € SN, where n > 0 and 4; < i3 < ... < i,. We then have enlU] = N7,

and

'»b:ol((/.) = Yoo(U) = ao(U) x Bos(U)
= {y €87 :yi = (@), .., ¥i, = &(an)}
X{Z € qu “Z) = ﬂ(al)a" ©y2ip & B(aﬂ)}

$=}(U) is clearly open (it is the product of two open sets), so 1y is contin-

uous (and compactness ensures that t3lis also continuous). It is also clear that

pslew(U)] = p7", and PalBoo(U)] = q7", thus ppe[h ) (U)] = pglaree(U) X Bo(U)] =
tp[@oo(U)] - BqlBos(U)] = p™™ - ¢ = N7 = pn[U], thus ¥ is measure preserving.
(]

Yoo is “shift invariant” in the following way: Let on, gy, and o, be the shift maps

on the spaces S¥, sz, and qu respectively. We then have
Yoo 0 (Fp X 0g) = ON O Yo.
Thus the product dynamical system
apxaq:sz xqu—»szxqu

is measure theoretically conjugate io the automaton oy : S§ — S% via P! = v

This motivates the following definition:
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Definition 2.18 Let f € Fr,.0,(Sp), 9 € Fryu0a(Sq). Let r = min{ry,r2} and s =
maz{s;,s;}. We define f x g € Fr.s(Sn) by

(f X g)(rre -, 7a) = V(f(@(zr)s - -, 2(20,)), 9(B(Zr2)s - - B(42)))-

We call f x g the product of f and g.

Theorem 2.19 (f X g)o : SF — SF is measure theoretically conjugate t0 foo X goo

S;,szqz——»Sfof VEd Yoo-

Proof. We know that 7o is a measure preserving homeomorphism, so ' what we
need to prove is that (f X g)e = Yo' © (foo X o) © Yoo-
Let z € SZ. For any i € Z we have

[7;;1 0 (foo X goo) © Yoo (Z)]i = [thoo 0 (foo % goo) O Yool E)]i

= [thoo © (foo(@00(2), Goo( Beo(2))l:

= P([fool@oo(2))is [9o(Beo())]:)

= P(fllavo(@)itris- - s [Oo0(@)]itor ), 9([Boo@itras - - - » [BoolZ)lits2)
= Y(fla(ign)s -, Tira) 9(B(Titr)s - - » B(Zits))

= (f X g Titrs- -1 Tite)

= [(f x 9)w(2)]i-0

Give any three dynamical systems to a mathematician and he will desperately
want to give you a well def aed forth.
In order to define arbitrary products of automata in any meaningful manner, we

must first endure the next proposition.
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Proposition 2.20 Let p,q,w € Z, with pqw > 1. Let N = p-q-w. Let
f € fr:.sx(sp)! g € ffz,sz('sq): h € frs.’a(SW)’ and let r = min {7'137'2»7'3}o s =

min {sy,52,53}. Then
(f xg) x h=f x(g x h) € F; .(SN).

Proof. Let r' = min {r;,r2}, s’ = min {s1,s2}, # = min {ry, 73}, § = min {s3,53}.
For any ni,n; € Z with ny,n, > 1 we define tp, : Sp, XS, — Sn,yny, (in the manner
above) by ¥n,(y,2) = y-n2+2, for all (y,2) € Sn, X Sn,, With inverse yn, = an, X Bras
where B,,(z) = £ mod nz, and ap, = E’%’i‘ﬂ (so that z = an,(z) - n2 + Bn,(z)) for
all z € Sp;ny-

We have (f X g)(@r1,+ - Za) = f(g(Zr)); - -, Ag(25,)) - g+ 9(Bao(zr2)s - - 1 Belz4,))s

and so

(f x 9) X h(zry"* %)
= \f X g)(aw(@r), s au(za)) * w+ h(Bu(Zrs), - -+ BulZas))
s f(og 00y(Try)y. e g 0Qu(Zs,)) g W
+9(Bs0 @u(@r)s- s Broaulzy)) w0 (2:2)
+h(Bu(Zrs)s - - - s Bul(Zss))-
Similarly, (g X k)(2#, -+, 5) = g(@u(Try)s - - -, u(Ts;)) - w + h(Bu(Zry)s- -y Pu(Zae))s

so it is easily computed that

fx(gx k)\zr, -+, %)
= flagu(®n ), rqu(za)) g~ w
+9( 0w 0 Byuw(Zry)s - -+ Ow 0 BoulZs,)) - W (2.3)
+h(Bu © Bguw(@rs)s - - > Buw © Bau(Zs3))-
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Comparing equations 2.2 and 2.3 we see that we must verify that

1) ag 0 ay = aqu,
)

[3

B, 0 aw = @y © Pau, and

3 ﬂw=ﬂw°ﬂqwa
to show that (f x g) x h = f x (g x h).

1) Let = € Sn. We may write z = 4u(Z) - qw + Bgu(x). We then have
(aqu(z) - quw + Byw(z)) — Bu(oqu(z) - quw + Baw(z))
w
aqw(a:) quw + (ﬂqw(z)) - ﬂw(ﬂqw(z))

w

= 0gu(z) - g+ aw o Beu(z), (2.4)

au(z) =

since (g (2) - qw) mod w = 0, and

(oqu(Z) - ¢+ @w 0 Beu(T)) — ﬂ-(aaw(m) - + aw 0 Bau(T))

a, 0 ay(r) =

q

ogu(Z) - g + (aw 0 Bgu(T)) — Bylaw 0 Beuw(z))
q

= Qgu(T) + a0 oy 0 Beu(z)

since (aqu(z) - g) mod ¢ = 0. We must show that o5 0 @y © Bow(z) = 0. Now
Bpw(z) = = mod qw, s0 0 < Byu(z) < quw — 1. ay(Bew(z)) is the quotient upon
dividing 3,u{(z) by v, 80

{.oat
Baufct _ qw-—1
. &

0 S Yy © ﬂqw(x) f.
w w

and ag(ay, © Buu(z)) is the quotient upon dividing 0 Beu(z) by ¢, so

awo fiule) _ qu=1

0< a 0 ay 0 Bu(z) <
q qw

b

so we must have a, 0 a,, 0 fau(z) = 0.
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2) We have ay,(z) = ag(aw(z)): ¢+ Be(aw(z)), 50 B0 au(z) = au(z) — ag0 au(z) - .
From equation 2.4 we have
Qy O ,qu(.’l)) = aw(:c) - aqw(x) *q
= ayu(z) - a,0au(z) ¢

By 0 a().

3) z = agu(z) - qw + Bau(2), 50 By(z) = By(aqu(z) - qw + Bou(z)) = By 0 Bau(z)
since (aqu(z) - qw) mod ¢ = 0.

We thus have f x (g x h) = (f x g) X h.O

If welet fx g x h=(f xg)xh=fx(gxh)from the above theorem, we may
now define arbitrary products inductively: if n,...,n; € Z, with ny,...,n, > 1 and
N =ny-ng-...-ng, and if f; € Fr, 0i(Sn;) for i =1,...,k, and if r = min {ry,..., 7},
s = max {s1,...,8k}, then define fy x fo x ... x fr € Foo(Sn) by fix ... x fi =
(fy X ... X fi-1) X fr. With this definition it is clear that proposition 2.19 implies
that

(flx...xfk)oo:Sf, ——>Sﬁ

is measure theoretically equivalent to
(Fi)oo X ++- X (fidoo : S X ... x SE — ST x ... x SL..

Remark 2.21 If we let F = UX_, F(Sn), then F becomes a semigroup under the

binary operation x.

We now present some standard results from ergodic theory:
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Theorem 2.22 Let (X1, B1, 1) and (X2, P2, p12) be measure spaces. Let ¢ : X —
X, and ¢ : Xy — X,. Then

1) ¢1 x ¢z is mizing if and only if both ¢, and ¢2 are mizing.

2) If 1 X ¢z is ergodic then both ¢, and ¢, are ergodic.

We then Lave for product automata

Corollary 2.28 Ifni,...,n € Z, with ny,...,ng >l and N =ny-nz-...-ny, and
if fi € Frini(Sni), fori=1,...,k, and if r = min {r1,...,rx}, s = maz {s1,..., 8k}
then

1)

(flx...xfk)m:Sﬁ—uS'ﬁ

is mizing if and only if (fi)eo is mizing fori=1,..., k.
2) If (fy X ... X fi)oo is ergodic, then (fi)oo is ergodic for eachi=1,...,k.

Example 2.24 Consider id x 0 € Fo,(Ss), where id(zo) = zo € Foo(S2), and
o(z1) = 21 € F11(852). (3d X 0)oo 15 clearly not ergodic, as id is not ergodic, and so
idx o : STxSF — SExSF is not ergodic ( notice that we have (idx )~ (U xSE) =

U x SZ for every measurable set U C SZ). The image matriz of id X 7 s

NDoOoO

0 1
0 1
F_2 3
2 3

QW GO k=

Note that id x o is left partition permutive with partition {{0,2},{1,3}} and right
partition permutive with partition {{0,1},{2,3}} (it is suspected that all products of

permutive automata are partition permutive).
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2.5 The Non-Ergodic Index and Concluding Re-
marks

It is clear that two factors influence whether or not a surjective automaton f,, with
local function f € F,,(S~) is ergodic:
1) The structure of the local function f: SF ™+ — Sy.

2) The values of the left and right indices, r and s, of fu.

In this section we will provide an interesting way to analyse the first of these
factors by constructing a “measurement” of ergodicity for local functions (or to be
more precise, a measure of “non-ergodicity”), and in doing so, provide an elegant way

to summarise some of the results of this chapter.

Definition 2.25 Let f € F,.(Sn) and let fo, be onto. Let
NE(f) = card {k € Z : 0* o f,, is not ergodic}.

We call NE(f) the non-ergodic index of f.

Remark 2.26 Two things should be made clear:

1) Theorem 2.9 ensures that NE(F) is finite for all f € F,.(Sn) with fo onto, for
we have o*f € Friko+k(Sn) and so o* o fo, is mizing (and hen.: ergodic) if k < —s
and ifk > —r.

2) The non-ergodic indez eliminates the influence of the second factor above in the
sense that NE(f) = NE(a*f) for all k € Z (f and o* f are the same function, when

regarded as functions from S} "*! to Sy, but have different left and right indices).

We summarise some of the results of this chapter in the following proposition:
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Proposition 2.27 Let f € F,(Sn) and let fo be onto. We have the following:
1)0S NE(f)<s-r+1.

2) If f is permutive, then NE(f) < 1.

38) If f is bipermutive, then NE(f) = 0.

4) If f is univariate (i.e., s =r) then NE(f) =1.

5) If g € Fruo(Sk) and goo is onto then NE(f),NE(g) < NE(f x g).

6) If N has n prime divisors, then there ezists f € F(Sn) with NE(f) =n.

Proof.

1) This follows from the first remark above.

2) I f € F,,(Sw) is left permutive, then o* o f,, is mixing if k£ > —r by theorem 2.9
and if k¥ < —r by theorem 2.12.

3) If f is bipermutive, then o* 0 fo, is mixing for all k € Z by theorem 2.12.

4) This follows from corollary 2.10.

5) This is a consequence of corollary 2.23.

6) Let p1,..., D, be the prime divisors of N. For k=1,...,n let by = oF € F(Sp.)-
Then f = hy X hy X ... X hy is che desired f (o*f is not ergodic if and only if
k=-1,-2,...,—n.0

We will now take a moment to pose some unanswered questions

In [SR] the following question was posed: Are all onto automata fo : S 57
strongly mixing (with the exception of id and p,, where p(zo) = zo + 1 € Fo,(S2)).
This is found to be false. The counter example is ho,, where h(z_1,2o,z1,22) =
To+ 21 + T1Z1 + 2122 + 217122 € F-1,2(82) ( this is o1 from [AP], Appendix A).
One may verify that h2, = id.

A less strong version of the question shall be posed here: Are all onto automata

foo : S¥ — SZ strongly mixing with the exception of those automata fo which
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satisfy f* = id for some k > 07 This is not true for automata on ST with N > 2

(see remark 2.13 and example 2.24 for examples).

Each time an automaton was shown to be ergodic in this paper, it was through
the virtue of being mixing. This leads to the next question: Are there any ergodic

automata which are not mixing? It is strongly suspected that there are not.

Now, let f € Fr,.r1(SN)s ¢ € Frar,(Sn) be univariate local functions, with foo, goo
onto. We then have fo 0 goo is mixing if and only if ry +r2 3 0. A similar result is:
let f € Fry s (Sn) and g € Fr,,0,(SN) be left permutive. Then fo 0 goo is mixing if
r+r2#0.

Now, what can we say about fo 0 goo if f € Fr,,4,(Sn) is right permutive and
g € Frp.5(Sn) is left permutive? It is believed that foo0goo is mixing if s;+72 # 0. The
method developed in praving theorem 2.12 does not adapt well to this problem. Now
fg is partition permutive. Are there any generalised conditions we can impose on the
left and right indices of partition permutive automata (in the flavour of theorem 2.12)
to ensure mixing?

These are all worthy problems with no easy answers.
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