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ABSTRACT 

The increase of wind penetration into electric power system creates challenges 

to power grid management due to the variable nature of wind. Unlike conventional 

power plants, such as thermal, gas or hydro-based plants, wind power generation is 

not controllable. For example, days of calm weather may suddenly be followed by 

gusty winds associated with a storm or a front. 

The current wind power forecasting methodologies, which combine Numerical 

Weather Prediction (NWP) models and mathematical methods, have been well 

established during the last decade. However, this forecasting methodology has 

demonstrated a limited ability to forecast wind ramp events, which are defined as 

sudden, large changes in wind production. 

In this study different strategies are developed to improve wind ramp prediction 

and to provide additional probabilistic information of wind ramp occurrences to 

end users. First, a methodology of separate wind power predictions based on 

different weather regimes is presented. Second, an independent wind ramp 

prediction system is proposed to complement conventional ramp predictions. This 

system integrates information about the pressure gradient that is extracted by 

applying Gabor filters to two-dimensional pressure grids. Third, the temporal 

uncertainty of wind ramp occurrences is addressed using power scenarios generated 

from quantile forecasts of wind power. The probability of a wind ramp occurrence 
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conditional to the number of scenarios predicting the ramp within certain time 

intervals is estimated using a logistic regression technique. The proposed strategies 

were tested on four wind farms located in southern Alberta, Canada, and their 

performance is discussed. 
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1 Introduction 
As one form of renewable energy, wind energy has many merits such as low-cost, 

strong economic development potential, and small environmental impact. During 

the past decade, wind power has taken a huge load off electric grids. By the end of 

2012, 282 GW of wind power was installed worldwide (GWEC 2012). Wind power 

installation capacity has grown by more than 10% in 2012. In Canada, wind 

installation reached 936 MW in 2012, driving over $2 billion in investment, and 

bringing the total installed capacity to 6,200 MW by the end of 2012 (GWEC 

2012).  

The variable nature of wind challenges the usage of wind power. Intermittent 

wind can introduce excessive power or power shortage, leading to grid instability 

and problems in market bidding (Wu et al. 2007). Therefore, the accuracy of 

wind-forecasts is important to competitive electricity markets. Appropriate 

incentives of attractive market price are offered on energy imbalance charges 

based on market prices, thus a correct forecast can help to function hour-ahead or 

day-ahead markets (Giebel et al. 2011). The financial benefit of good wind power 

forecasting has been validated by Milligan et al. (1995). 

Wind ramps are defined as sudden and large changes (increases or decreases) in 

wind power production. Wind ramp forecasting was first considered to be a 

forecasting requirement in a pilot project run by the Alberta Electric System 

Operator (AESO) in 2006 (Giebel et al. 2011). Unlike well-distributed wind 

installations in Europe, wind farms in the U.S. and Canada are installed in large, 

geographically confined blocks; this results in sudden and large variations in wind 

power generation, i.e., wind ramps. In the event of a wind ramp, electrical grid 

operators have to take action to satisfy electricity needs and, at the same time, 

maximize economic benefits.  
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1.1 Research Goals and Methodologies 

The occurrence of future wind ramps is generally extracted from predicted power 

series that rely on wind speed forecasts from a numerical weather prediction (NWP) 

model and a mathematical model that functions as a power curve. However, wind 

ramp events are not well predicted by existing wind power forecasting systems.  

Wind ramp predictions might be improved by exploring the specific weather 

patterns that accompany wind ramps (Grant et al. 2009; Pinson et al. 2007) 

because weather patterns have a direct effect on wind speed forecast. Wind 

prediction performance has been found to deteriorate in dynamic weather situations 

like low-pressure systems or frontal zone crossings (Lange et al. 2001). Separate 

models for wind prediction could involve meteorological variables other than wind 

speed to address ramp predictions and, in addition to timing and magnitude 

information, probabilistic information (e.g., the temporal uncertainty of a ramp 

occurrence) might prove valuable to system operators.  

This thesis contributes to existing wind power forecasting methods in three 

ways: (1) a separate power forecasting model that addresses different weather 

regimes is built, (2) meteorological variables other than wind speed forecast are 

used to better predict ramps, and (3) the temporal uncertainty of ramp event 

occurrence is addressed using probabilistic forecasts of wind power generation.  

The three main undertakings of the thesis are illustrated in Figure 1. In the first 

undertaking we built specific power prediction systems for each subset of data, 

which was divided into several classes according to different criteria. The wind 

ramps were thus identified from predicted power series. In the second part an 

independent prediction system was constructed using a pressure gradient extracted 

by Gabor filters, an image processing technique designed to extract edges. This 

system was used to complement the conventional wind ramp prediction method 
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by providing warnings in case the conventional method missed the ramp event. 

Third, we designed a methodology to address the temporal uncertainty of wind 

ramp forecasts using scenarios generated from quantile forecasts of wind power. 

The probability of wind ramp occurrence was estimated using a logistic regression 

technique.  

 

Figure 1. Illustrations of the three undertakings of the thesis. 

1.2 Thesis Organization 

The thesis is organized into six chapters. Chapter 2 provides background on 

conventional power and ramp event prediction methodologies, definitions and 

evaluation metrics of ramp events, and current challenges in this field. The 

conventional ramp prediction method is tested in chapter 2 using data from four 

wind farms located in southern Alberta, Canada. In chapter 3, individual ramp 

prediction methodologies are analyzed. The whole datasets are clustered into 

subdata-spaces according to different criteria such as hourly wind speed changes; 

and then a forecasting model is built separately within each cluster. The 

performance of this separate prediction methodology on both power and ramp 

events is evaluated and compared with conventional methods. In chapter 4, Gabor 

features are used to describe the pressure pattern in a variety of spatial scales, and 
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this information is integrated into a ramp event prediction task. The involvement 

of Gabor features and their performance in improving ramp event predictions are 

discussed. In chapter 5 the temporal uncertainty of ramp events is addressed using 

scenarios generated from probabilistic forecasts of wind power. Chapter 6 

concludes the thesis; the main contributions are summarized and future work is 

proposed.  
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2 Background 
This chapter presents a literature overview of wind power and wind ramp 

prediction, covering methodologies for wind power prediction at various temporal 

and spatial scales, strategies for ramp predictions, and methods that can be used to 

address the temporal uncertainty of ramp predictions.  

2.1 Wind Power Forecasting 

The information provided by wind power forecasting is essential to the strategic 

deployment of electricity generating resources and can help operators to maintain 

electrical grid stability. It can also reduce the financial risk of participants in 

electricity markets. The increased worldwide penetration of wind power into 

electric grids has drawn much research interest in wind power forecasting. 

In power systems, balance is maintained by continuously adjusting generation 

and demand. In an electrical power system that integrates electricity generated by 

wind, such adjustments are difficult because the variable nature of wind provides 

a fluctuating source of electrical energy (Foley et al. 2012). As the levels of wind 

power penetration into the electrical grid increase, additional system balancing is 

required, the cost of which varies with the rise and fall of the available power. 

Usually, slow changes of wind power can be compensated for by adjusting the 

base load power generation. However, abrupt and large wind changes may lead to 

grid instabilities. To ensure grid stability in the event of a sudden wind increase, a 

wind power producer might have to shut down turbines to avoid producing an 

excess of energy that cannot be compensated for by a rapid decrease in power 

generation from other sources, such as thermal plants. Alternatively, in 

collaboration with system operators, a producer can increase the wind generation 

and supply more wind energy to the system. When the wind power generation 

decreases, system operators must switch on additional reserves, i.e., other 



6 

 

generating units, to meet load requirements. This option is readily available in wind 

powered systems that work with hydropower plants, but it requires careful planning 

and scheduling in wind powered systems that work with coal or gas powered plants. 

Holding additional reserves is costly because the generation units run and consume 

fuel when they are not needed to produce electricity (Grant et al. 2009). 

In grid operations, wind energy is scheduled using wind forecasts for the next 

few hours. This forecast is either based on data from meteorological towers or 

derived from numerical weather prediction (NWP) model outputs. Forecasts are 

usually provided several hours ahead of the expected wind activity and are updated 

hourly. 

Timeframes of wind power forecasting include: very-short-term (seconds to 

minutes), short-term (hours to days), and medium-term (one week ahead). Power 

system operations such as regulation, load following, balancing, unit commitment, 

and scheduling are mainly carried out within these prediction horizons (Lei et al. 

2009).  

2.1.1 Wind Power Predictions at Different Spatial and Temporal Scales 

Wind power can be forecast using different spatial scales; forecasts can be made 

for a single turbine, for a wind farm, or for a whole wind area containing several 

farms. The output power of a wind turbine significantly varies with wind speed, 

thus each wind turbine has a unique power performance curve. A power curve aids 

in wind energy prediction without the technical details involving the components 

of the wind turbine generating system. The electrical power output as a function 

of the hub height wind speed is captured by the power curve (Spera et al. 1994). 

The minimum speed at which the turbine delivers useful power is known as the 

cut-in speed. Rated speed is the wind speed at which the rated power—that is, the 

maximum output power of the electrical generator—is obtained. The cut-out 



7 

 

speed is usually limited by engineering design and safety constraints. It is the 

maximum wind speed at which the turbine is allowed to produce power.  

For a single turbine, the power curve shows the relationship between the wind 

turbine power and the hub height wind speed (Figure 2). Power curves for existing 

machines, derived using field tests, can be obtained from wind turbine 

manufacturers. Wind power varies nonlinearly with actual power because of the 

transfer functions of available generators (Lydia et al. 2014). The power curve 

plays an important role in condition monitoring and control of wind turbines. 

 

Figure 2. Illustration of the power curve for a wind turbine. 

In a wind farm that contains several wind turbines, the wind speed/power 

generation relation is complex as different turbines in the farm use multiple wind 

directions and speeds to achieve optimal power output. A small error in the wind 

speed forecast can generate a larger error in the wind power forecast (Grant et al. 
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2009). 

Wind power generation can be highly variable within different time scales and 

with different applications. Wind variations from milliseconds to seconds are 

associated with turbine control (Giebel et al. 2011), which involves the bulk motion 

of a wind field measured a few seconds before it hits the turbine. A light detection 

and ranging instrument (LIDAR) in the nose of the turbine is helpful for turbine 

control and usually no prediction is needed at this level of time scale. Wind power 

prediction tasks with prediction horizons from seconds to days ahead of wind 

activity can be conducted; the prediction horizon varies according to the specific 

wind power needed (Colak et al. 2012; Grant et al. 2009; Foley et al. 2012).  

Predictions a few seconds to 30 minutes ahead of wind activity are used for 

electrical load tracking. Artificial neural network models and adaptive neuro-fuzzy 

inference systems have shown good performance in this prediction task (Xia et al. 

2010). Predictions of wind power 30 minutes to six hours ahead of wind activity are 

usually applied in preload sharing of generated power from different sources. Time 

series models such as the persistence method, autoregressive moving average 

models (ARMA), wavelet transform, neural networks (NN), and support vector 

machines (SVM) can be used on this time scale. Predictions days and weeks ahead 

of wind activity are utilized for wind farm maintenance and energy storage 

operations. For this forecasting task, NN and adaptive neuro-fuzzy inference 

systems are dominant, according to the literature on this topic.  

Wind force predictions one day ahead of expected wind activity are generally 

useful for power system management, for planning unit commitment and dispatch, 

and for electricity trading in electricity markets where wind power and storage can 

be traded or hedged (Giebel et al. 2011); NN models or adaptive neuro-fuzzy 

inference systems are most commonly used. A multilayer perceptron neural 

network (MLP NN) showed excellent performance in terms of predicting wind 



9 

 

force six hours to three days ahead of wind activity (Catalao 2009; Carolin et al. 

2008; Santoso et al. 2006). However, prediction performance decreases with 

increasing prediction horizons. 

Short-term wind power forecasting—one or two days ahead of wind activity—is 

the focus of this thesis. A typical short-term wind power forecasting system 

consists of a numerical weather prediction (NWP) model that produces wind 

forecasts, and statistical or machine learning methods that model the relationships 

between the wind forecasts and the actual wind power generation (Costa et al. 2008; 

Giebel et al. 2011). Current wind power and wind speed from NWPs have been 

mostly used as input parameters in developed power prediction models. Other 

parameters such as wind direction, air temperature, atmospheric pressure, solar 

radiation and rainfall can also be considered for a comprehensive analysis due to 

their impacts on wind power.  

Until now, there have been no standard databases to properly test and compare 

different forecasting systems (Colak et al. 2012). Wind force prediction is more 

difficult in mountainous regions than in flat areas (Ferreira et al. 2010).  

2.1.2 Methodologies for Short-term Wind Power Forecasting  

Complex interactions between pressure, temperature, the rotation of the earth, and 

local characteristics of the earth’s surface make wind one of the most difficult 

meteorological parameters to forecast. With the increasing integration of wind 

energy into power networks, it is becoming more important for power utilities to 

plan this integration on a daily basis to obtain a reliable method of forecasting 

wind power. Short-term wind power forecasting theories published over the past 

two decades (Lydia et al. 2010; Wang et al. 2011; Lei et al. 2009; Costa et al. 2008; 

Giebel et al. 2011) have been developed by physical, statistical, and artificial 

intelligence (AI) methods. Statistical models of wind speed and wind power (Liu 
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et al. 2010; Stathopoulos et al. 2013; Zhou et al. 2011; Sideratos et al. 2007; Peng 

et al. 2013) do well in short-term prediction, up to six hours ahead of wind activity. 

Statistical models include the direct random time-series model that includes 

autoregressive (AR) and autoregressive integrated moving average (ARIMA) 

methods, as discussed below. Physical methods (Zhao et al. 2012) consider 

terrains, obstacles, pressures, and temperatures to estimate future wind speeds and 

generated power. Artificial intelligence models, such as MLP NN, and support 

vector machines have the ability to rapidly learn complex patterns and tendencies 

presented in data. AI models adapt quickly to changes that prevail in wind power 

forecasting (Ouammi et al. 2012; Catalao et al. 2011; Sideratos et al. 2008; Kusiak 

et al. 2010; Xia et al. 2010).   

Wind power forecasting models are classified according to their forecasting 

horizons and time-scales. The most frequently used techniques are: autoregressive 

moving average (ARMA) models that perform linear mapping between inputs and 

outputs, neural networks (NN), and adaptive neuro-fuzzy inference systems 

(ANFIS) that perform nonlinear mapping. New wavelet-based methods (De 

Giorgi et al. 2011) have been recently introduced. 

Zhang et al. (2013B) investigated short-time interval (10 seconds up to 1 min 

ahead of wind activity) prediction of wind speed and wind turbine power. 

Exponential smoothing and data-mining algorithms were employed to establish 

wind speed prediction models based on wind turbine data. Pourmousavi et al. 

(2008) used ANN and Markov chain (MC) to forecast wind speed using a very 

short-term time scale.  

Ramirez-Rosado et al. (2009) compared two new advanced statistical 

short-term wind power forecasting systems with a prediction horizon of 72 hours. 

One system used a power curve model for each wind turbine represented by a 

multilayer perceptron neural network. This MLP NN approach enabled each wind 

http://www-scopus-com.login.ezproxy.library.ualberta.ca/authid/detail.url?origin=resultslist&authorId=55499252000&zone=
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turbine transfer function to be correctly represented, modelling the pattern 

differences of electric power production due to terrain characteristics, wake effect, 

and power curve characteristics of each power generating machine. The MLP NN 

was trained with a back-propagation learning algorithm that had one hidden layer 

with 13 neurons and used the hyperbolic tangent activation function. The other 

system comprised a set of forecast models; their outputs were the inputs of a fuzzy 

inference system that provided the forecasted value as a nonlinear combination of 

the outputs of the three selected models. Nine fuzzy inference systems were built, 

one for each forecast horizon. Two forecasting systems were evaluated using the 

same input variables: forecasted meteorological variable values obtained from a 

numerical weather prediction model, and electric power-generation data from the 

supervisory control and data acquisition (SCADA) system of the wind farm.  

A clustering approach was presented for short-term prediction of power 

produced by a wind turbine at low wind speeds by Kusiak et al. (2010). The 

approach took advantage of data subspaces that lead to accurate predictive models. 

First, significant parameters were selected by physics-based equations and 

data-mining algorithms. Second, training and test data sets were clustered 

according to five different criteria (scenarios). The clustering algorithm used was 

the k-means algorithm. Third, for the data in each cluster the most suitable 

algorithm for building a power prediction model was identified. Kusiak et al. 

(2010) noted that increased prediction accuracy of future wind power is often 

constrained by the prediction model complexity and computational time involved.  

2.1.3 Strategies for Day-Ahead Wind Power Forecasting  

Wind power generation (usually measured in kW or MW of electrical power) can 

be highly variable on different spatial and temporal scales that correspond to 

specific applications. The need for day-ahead wind power forecasts was stated in a 
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report (Giebel et al. 2011) of interviews conducted with schedulers, dispatchers, 

and energy planners from U.S. wind utilities. Participants stated a need for a 

forecast given in the morning so that the unit commitment schedule and energy 

trading could be planned for the following day. In this thesis the focus is on wind 

power prediction for day-ahead wind power forecasting and the theory is tested on 

the spatial scale of a wind farm. Predictions of this type are useful when power 

generated by wind is integrated into electrical power system management, i.e., unit 

commitment, economic dispatch, dynamic security assessment, and participation in 

the electricity market (Giebel et al. 2011).  

Some wind power software models such as Prediktor (Alexiadis et al. 1999) and 

WPPT (Focken et al. 2002) have been developed and applied in geographical 

locations worldwide. A typical day-ahead wind power forecasting system employs 

a numerical weather prediction (NWP) model that produces wind forecasts, and a 

statistical or machine learning method that builds a relationship between wind 

forecasts and the generation of electrical power from wind activity (Costa et al. 

2008; Giebel et al. 2011).  

The advantage of using a NWP model has been shown in wind power forecasts 

longer than six hours ahead of wind activity. Wind speed, wind direction, or other 

meteorological variables from NWP model output are used as input parameters in 

the wind power prediction models. To reduce systematic biases that NWP models 

exhibit when focusing on local applications near the earth’s surface, Kalman 

filtering can be applied to NWP outputs (Stathopoulos et al. 2013). 

Regression (Stathopoulos et al. 2013), neural networks (Carolin et al. 2008; 

Barbounis et al. 2006; Carolin et al. 2008; Catalao et al. 2009), fuzzy logic 

(Sideratos et al. 2007), a spatial correlation model (Alexiadis et al. 1999; Focken et 

al. 2002), and support vector machines (Ortiz-García et al. 2011; Mohandes et al. 

http://www-scopus-com.login.ezproxy.library.ualberta.ca/authid/detail.url?origin=resultslist&authorId=55499252000&zone=
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2004) have all been applied to convert wind activity forecasts into wind power 

forecasts. Stathopoulos et al. (2013) predicted wind power generation using a 

variety of statistical regression models, including polynomial functions, and 

nonlinear hyperbolic functions. The systems developed were tested in two areas of 

Greece. They also used power output in previous time steps as input, but found that 

the power output in previous time steps did not contribute significantly to the 

improvement of the wind power forecast. 

Neural networks (NN) are a widely used algorithm in short-term wind power 

forecasting. Catalao et al. (2009) used an NN approach to forecast wind power in 

Portugal. The results showed that the MAPE has an average value of 

7.26%, outperforming the persistence approach (which relies on recent wind power 

trends). Carolin et al. (2008) analyzed power generations of seven wind farms in 

India using a multilayer perception (MLP) neural network with a back propagation 

algorithm. The input variables included wind speed and relative humidity. When 

constructing the NN the logarithmic sigmoid function was used in the hidden layer 

of the NN and a number of tests were performed by varying the number of hidden 

layers and the number of neurons in the hidden layer.  

Kusiak et al. (2009) predicted wind power with five different data mining 

algorithms: a support vector machine regression, an MLP neural network, a radial 

basis function (RBF) network, a classification and regression tree, and a random 

forest. The accuracy of the generated models were estimated and compared, and the 

model generated by the neural network outperformed all other models for both 

12-hour-ahead and 84-hour-ahead wind activity forecasts. Kusiak et al. (2009) also 

examined two basic prediction methods: the direct prediction model in which the 

power prediction is generated directly from the weather forecasting data, and the 

integrated prediction model in which the wind speed is first predicted and then is 

used to predict wind power. Comparisons between the two models showed that the 
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direct prediction model offered better prediction performance than the integrated 

prediction model.  

Some hybrid structures for wind power forecasting have been designed. In 

Sideratos et al. (2007), a system consisting of three models was presented. The first 

model comprised a combination of a self-organized map and three radial basis 

neural networks that functioned as the preliminary power prediction model. The 

second model consisted of a fuzzy logic model that provided a fuzzy index with the 

reliability of NWP outputs, and two radial basis neural networks that predicted 

wind power. The final wind power predictions were given by the three radial basis 

neural networks. Peng et al. (2013) designed a hybrid strategy that integrated 

physical strategy and NN technique. This strategy gave higher prediction accuracy, 

but operation was costly and slow compared to individual ANN prediction methods. 

It was also found that prediction errors were small when the wind speed was lower 

than 5 m/s or higher than 15 m/s. The reasons for such phenomena were 

investigated. The nonlinearity of the generator power curve was large in the range 

of 5–15 m/s, thus the wind speed error was amplified in this range. 

In a wind farm, some approaches first conduct power forecasting for each 

turbine (when the generation data of each turbine is available), and some 

approaches first conduct power forecasting for each turbine, and then aggregate the 

forecasts for the whole farm (Peng et al. 2013; Zhao et al. 2012). However, the 

most common way is to choose one or more representative locations, predict the 

wind power generations for those locations, then aggregate the forecasts (Kusiak 

et al. 2010; Grant et al. 2009). If forecasting for wind farms that are likely to be 

affected simultaneously by the same weather system, usually only one 

representative location is chosen.  

2.2 Numerical Weather Prediction Models 
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The energy output of a wind farm is highly dependent on the weather conditions 

present at its site. If the output can be predicted more accurately, energy suppliers 

can coordinate the collaborative production of different energy sources more 

efficiently to avoid costly overproduction. Wind power prediction is derived from 

wind speed prediction, thus the theories and practices of both meteorology and 

climatology are involved (Ahrens et al. 2012). Wind speed forecasting is usually 

performed with a NWP model—a computer program that solves equations that 

describe atmospheric processes and mathematically represents atmospheric 

changes with time (Al-Yahyai et al. 2010). If the initial condition of the 

atmosphere is known, then the equations can be solved by representing the 

physical forces by variables and applying the forces that act on the variables over 

time to obtain new values for the variables at a later time.  

The atmospheric motion within an NWP model obeys Newton's second law of 

motion (momentum), the first law of thermodynamics (energy), the continuity 

equation (mass), an equation of state, and a water conservation equation 

(Skamarock et al. 2008). These equations are simplified models of atmospheric 

behaviour. Due to their nonlinearity, analytical solutions are computationally 

expensive to find, therefore, a numerical approximation is applied. Some NWP 

models divide the atmosphere into 3D cubes with grid points centered in the 

middle of the cubes. An NWP model solves weather parameter equations for each 

atmospheric variable at each grid point. The minimum distance between adjacent 

grid points represents the horizontal model resolution. Higher resolution (more 

and closer grid points) models are more accurate than lower resolution models. 

NWP models divide the atmosphere vertically into layers to depict weather 

phenomena. The higher the number of vertical layers, the better the chance to 

depict the weather phenomena, but the more computational power is needed. 

Many NWP models divide the atmosphere into unequally spaced layers. More 
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layers are generated in the lower part of the atmosphere where most of the 

weather phenomena occur. Increasing the vertical resolution in the lower 

atmosphere enables the models to better define boundary layer processes and 

features that contribute significantly to sensible weather elements, such as low 

level winds, turbulence, temperature, and stability. Many NWP models use hybrid 

vertical coordinate systems such as sigma-pressure that follow the terrain in the 

lower atmosphere and follow pressure levels in the upper atmosphere. For 

numerical stabilization, NWP models are not allowed to calculate large changes in 

the atmospheric state during one time step; therefore, small time stepping is used. 

Higher resolution models require smaller time steps and hence more 

computational power. NWP models usually require information about the initial 

state of the atmosphere which is constructed by data assimilation using real world 

measurements and the output from a previous short-range model. To start the 

NWP model, an initial value for each grid point is required. These values are 

obtained by surface observations, upper air observations, vertical wind profilers, 

remote sensing satellite data, and measurements taken by airplanes during takeoff 

and landing.   

NWP models are classified as global or regional based on their spatial coverage. 

Due to limitations in computational resources, few meteorological centers run 

global models. Each NWP model tries to monitor the evolution of the atmosphere 

in its specific scale, although high spatial resolution cannot be combined with 

high temporal resolution. In general, the predictions of an NWP model with high 

spatial resolution (small spatial scale) will have low temporal validity. An NWP 

model with low spatial resolution (large spatial scale) will have a much greater 

temporal validity (De Giorgi et al. 2011). Global models typically use coarse 

resolutions and thus cannot detect small scale phenomena such as convection 

induced by the presence of mountains (orographic effects). 
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Regional models are typically used to forecast mesoscale weather phenomena, 

and have higher resolution than global models. Due to limited area coverage, 

regional models need boundary conditions, which they can obtain from global 

models. Regional models are available for research and operational use. They 

typically differ in terms of numerical formulation, assumptions, and equation 

simplifications. The Weather Research and Forecasting Model (WRF) (Skamarock 

et al. 2008) is the mesoscale NWP model that is used in this thesis. Due to grid 

call averaging, elevations of the highest mountain peaks are generally less than 

what they are in reality, and valleys are often not represented or are represented 

with less elevation difference between peaks and valley floors. This implies that 

orographic influences such as convection and downslope wind will not be fully 

depicted by the model. The coarse resolution gives smoother features than higher 

resolution, and model terrain heights are likely to differ from actual terrain 

heights.  

Short-term wind power forecasting requires predictions from an NWP model 

with high spatial resolution. The meteorological variables in the output of an 

NWP model can be used to improve wind power forecasting. Techniques for 

variable selection conducted by several researchers are reported in Stathopoulos et 

al. (2013). Vladislavleva et al. (2013) analyzed the correlation of important 

weather data parameters (such as wind speed, pressure, and temperature) with 

wind energy output. Based on this analysis, a small space of input variables was 

selected, and the model obtained for energy prediction gave a very reliable 

prediction of the energy output for this newly supplied weather data. The study 

was carried out on publicly available weather and energy data for a wind farm in 

Australia. 

2.3 Wind Power Ramp Prediction 

http://www-scopus-com.login.ezproxy.library.ualberta.ca/authid/detail.url?origin=resultslist&authorId=55499252000&zone=
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Giebel et al. (2011) conducted interviews with electricity grid schedulers, research 

planners, unit dispatchers, and energy planners at seven U.S. utilities. Participants 

were asked to describe what they thought was needed in a wind energy forecast. 

According to interview results, the most needed item was a dedicated severe 

weather and ramp event forecast, with its probability provided. That is, the players 

would like to receive a warning before a storm hits and triggers the ramp events or 

shut down of wind farms (Giebel et al. 2011). 

Wind ramp forecasting is a new and important subfield in wind power 

forecasting. The more accurate the predictions of wind ramp events, the more 

effective the actions taken by grid operators can be. If the actions are either 

insufficient or not performed in time, the grid system may fall into load curtailment, 

a scenario to be avoided. For example, Francis (2008) documented an extreme 

downward ramp event in the Electric Reliability Council of Texas (ERCOT) 

operations area in February 2008, which eventually resulted in a high-cost system 

emergency event. Wind ramp forecasting has been a crucial issue in recent years 

due to the increased penetration of wind power into electric grids. In the past, when 

the percentage of wind energy relative to the load was small, the impact of ramp 

events was relatively small, making it easy to keep the load balanced. However, 

with increasing wind power penetration, the impact of ramp events has increased, 

posing a severe challenge to balance the load and the power generation.  

2.3.1 Ramp Forecasting Research 

Wind ramps are generally identified from predicted power time series which can be 

predicted using different methods. In Cutler et al. (2007), wind ramps were 

extracted from forecast power series using a statistical method. In Ramirez-Rosado 

et al. (2009), two power forecasting systems are presented, one using MLP NN and 

the other using fuzzy inference systems. Wind ramps are extracted from the outputs 
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of these two systems. 

Wind ramps are defined by thresholding wind power changes within several 

hours. For example, Greaves et al. (2009) defined a wind ramp event to be a power 

output change that exceeded the nameplate capacity by more than 50% and that 

occured over a period of 4 hours or less. The performance of wind ramp event 

forecasting systems is usually evaluated by metrics like the wind ramp capture rate 

and the forecast accuracy (Cutler et al. 2007; Greaves et al. 2009; Ramirez-Rosado 

et al. 2009). There have been many attempts to improve wind ramp prediction 

(Kamath et al. 2010; Kamath et al. 2011; Zack et al. 2007; Zack et al. 2010). Zack 

et al. (2010) presented methodologies to predict wind ramps between zero and six 

hours ahead of wind ramp activity. The system included a deterministic wind ramp 

event forecasting module, and provided confidence bands for the predictions. 

Greaves et al. (2009) analyzed the phase error that occurred when a future wind 

ramp event was identified. They associated the temporal uncertainty with predicted 

wind ramp events by calculating the statistics of historical phase error. Bossavy et 

al. (2013) introduced a methodology that identified wind ramps by mapping the 

initial wind power series into a signal that results from computing the average of 

time power differences. They proposed two probabilistic forecasting methods to 

calculate a confidence interval for the timing of future ramps—one that used 

information extracted from the intensity and forecast time information of ramps and 

another that used the results from NWP ensemble.  

2.3.2 Challenges in Current Ramp Detection 

The occurrence of future wind ramps is generally extracted from predicted power 

series that rely on wind speed forecasts from a numerical weather prediction (NWP) 

model and a mathematical model that functions as a power curve. However, wind 

ramp events are not well predicted by existing wind power forecasting systems. 
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Prediction performance is worse during ramp events than during stable periods. 

Cutler et al. (2007) analyzed the performance of a wind power forecasting system 

that combined wind speed and direction forecasts from the 12.5 km-resolution 

Australian Bureau of Meteorology regional numerical weather prediction model, 

which includes recent wind generation data, to make hourly forecasts of wind farm 

power output up to 42 hours ahead of wind activity. They found that, while the 

overall mean wind power forecast was reasonable, the root mean square error 

(RMSE) of the prediction model was nearly the same as the climatology method. 

Existing forecasting systems do not predict wind ramp events effectively 

because the mathematical models in forecasting systems learn from historical data, 

which is mostly occupied by less variable scenarios. Therefore, the forecasting 

system tends to predict typical events better than rare events (Giebel et al. 2011). 

Consequently, it is beneficial to build a separate power forecasting model 

representing different weather regimes to address ramp predictions. When the 

forecast is found to be inaccurate and big wind variations occur, decisions can be 

made based on prior experience as well as the current weather conditions. To this 

end, other meteorological variables are used to complement wind speed forecasts.   

2.3.3 Temporal Uncertainty of Ramp Predictions 

Unlike the point forecast of wind power, which provides single-value estimate of 

the wind power at a certain future time, probabilistic forecasts of wind power can 

provide estimate of the uncertainty of the prediction errors (Pinson et al. 2006; Wu 

et al. 2014; Xu et al. 2013; Botterud et al. 2011, 2013). Over the last decade, much 

research has been conducted on probabilistic forecasts of a farm’s or region’s 

wind power production. Wind power point forecasts can be used as input to a 

probabilistic model to compute the wind power uncertainty. 

The temporal uncertainty of ramp forecasts can be derived from uncertainty 
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information about wind power forecasting. This uncertainty derives either from a 

NWP ensemble (Inness et al. 2012), which is produced by perturbing the initial 

conditions, or a different parameterization of a NWP model, or statistical 

information from the model’s historical performance (Bessa et al. 2009; Juban et 

al. 2007; Bludszuweit et al. 2011).  

Bossavy et al. (2013) used 51 NWP ensembles provided by the European 

Centre for Medium-Range Weather Forecasting (ECMWF) model to derive the 

temporal uncertainty of ramp predictions, by using probability forecasts of ramp 

occurrence conditional on the number of ensemble members forecasting a ramp in 

certain time intervals. The performance is evaluated as reliable with greater 

accuracy than climatology. Greaves et al. (2009) estimated a probability density 

function with finite time intervals, derived from the phase error distribution of 

historical ramp forecasts. 

The temporal uncertainty of ramp forecasts can also be addressed by using 

probabilistic wind power forecasts, such as scenarios. Scenarios are multiple 

representations of future wind power series.  

Ferreira et al. (2013) generated scenarios by using a Monte Carlo sampling 

process given a probability density function for the wind power forecasts, and 

then built a histogram of the probability of having a ramp event above a certain 

magnitude for each prediction horizon. Pinson et al. (2012) detected ramps in 

scenarios and calculated the ratio of scenarios predicting the same event. 

Evaluations based on the Brier Score and Brier Skill Score relative to climatology 

forecasts were conducted. 

Instead of analyzing a continuous ramp event, both works analyzed point ramp 

forecasts, which are ramp occurrences at each time step of the forecasting horizon. 

However, in operations, it is more meaningful to perform predictions on an event 

basis.   
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3 Framework of Conventional Wind Ramp Prediction 
This chapter presents a framework for wind power and ramp prediction. The 

performance of meteorological variables involved in wind ramp prediction 

methods is evaluated by testing wind ramp predictions in four wind farms in 

Alberta, Canada.  

3.1 Conventional Wind Power Prediction Model Framework 

Most existing wind power forecasting systems consist of a numerical weather 

prediction (NWP) model to produce wind forecasts, and mathematical methods to 

construct relationships between the forecasted wind speed and the actual wind 

power generation. These mathematical methods, including statistical and pattern 

recognition models, learn or optimize the involved parameters through training on 

historical data, and by minimizing the predefined error metrics such as root mean 

square error (RMSE) or mean absolute error (MAE). 

Figure 3 shows a wind power prediction framework. The input includes some 

variables from weather research and forecasting (WRF) outputs, while the output is 

the power generation data. The input could include wind speed, wind direction, 

surface pressure, and temperature two meters above ground. Recent power 

generation is often also used as input, which has great value in estimating power 

generation in the near future. After a power series is generated, wind ramps can be 

extracted from the power series.  
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Figure 3. A diagram of conventional wind ramp prediction. 

3.1.1 WRF Model Structure 

An NWP model predicts local wind speed and wind direction. In addition to wind 

speed, meteorological variables such as temperature and humidity are sometimes 

used to predict wind power generation (Kusiak et al. 2009). Skamarock et al. (2008) 

hindcast NWP data using a weather research and forecasting (WRF) model to 

perform regional atmospheric simulations based on the initial and boundary 

conditions provided by the National Centers for Environmental Prediction (NCEP) 

operational Global Forecast System (GFS) 

(http://www.nco.ncep.noaa.gov/pmb/products/gfs/). The parameters of the WRF 

physics settings (Skamarock et al. 2008) were configured as follows: scheme for 

microphysics (Lin et al. 1983); the rapid radiative transfer model for longwave 

radiation (Mlawer et al. 1997); the Dudhia scheme for shortwave radiation (Dudhia 

1989); the MM5 similarity surface layer model (Paulson 1970; Zhang and Anthes 

1982); the Noah land surface model (Chen and Dudhia 2001); the boundary layer 
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model based on the Yonsei University scheme (Hong et al. 2006); and the 

Kain-Fritsch scheme for cumulus parameterization (Kain 2004). The region of 

interest was located in southern Alberta, Canada. Figure 4 shows wind rose (a 

diagram that summarizes information about the wind at a particular location over 

a specified time period) information calculated from wind measurements made by 

weather station CZPC (Pincher Creek, Alberta) for the entire year of 2009. 

Westerly to southwesterly winds dominated throughout the year and provided the 

strongest wind sources.  

 

 

 

Figure 4. Wind rose data collected in 2009 by the CZPC weather station in Pincher Creek, 

Alberta. 
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Figure 5. Wind rose data for different seasons in the year of 2009 collected by the CZPC 
weather station in Pincher Creek, Alberta. 

The wind rose data in Figure 5 is plotted for different seasons. There is no 

significant difference between the dominating wind directions, all of them are 

westerly. The wind speed is strongest during the winter and weakest during the 

summer, thus, winters have more available wind energy on site. Located east of the 

Rocky Mountains, southern Alberta is a suitable location for wind energy 

production. It is dominated by subsiding, westerly wind flows over the lee of the 

mountains and frequented by strong Chinooks. 

The WRF simulations were performed using two nested domains with 

resolutions of 18 km and 6 km. The region covered by the outer domain has an area 

of 492,804 km2 centered on southern Alberta, Canada (Figure 6), represented by a 
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grid of 39×39 points. The inner domain also has 39×39 grid points.  

 

 

Figure 6. Terrain of the testing area, and the locations of the four wind farms. 
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Figure 7. Surface pressure observed (station) and modeled (WRF). 

 
Figure 8. Surface temperature observed (station) and modeled (WRF). 
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Figure 9. Surface 10 m wind speed observed (station) and modeled (WRF). 

Figures 7-9 present comparisons between WRF outputs (for 6 hours ahead of 

wind activity) and observed values of surface pressure, temperature at two meters 

above ground, and wind speed.  

The daily patterns of surface pressure are well represented by WRF data, but 

constant bias occurs due to terrain height differences between the model terrain and 

the actual terrain at the precise location of the wind station. Because the terrain is 

complex in the area being modelled, the terrain height in the model appears to be 

different from the actual terrain height when interpolating surface pressure to the 

location of predicted wind activity. Temperature measurements two meters above 

ground are well matched to WRF outputs, with diurnal patterns clearly simulated 

by WRF, except for some mismatches between local variations.  
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Figure 9 shows the comparison of wind speed at 10 meters above ground 

between WRF simulations and actual measurements. The wind simulated WRF 

outputs have less variation than values measured on site, although the overall 

patterns are similar. Mismatch between the two is partly due to the noise introduced 

by horizontal and temporal interpolation of the WRF outputs.  

The wind forecasts used in the conventional power prediction model were 

extracted by interpolating the gridded WRF wind output to wind farm locations and 

wind turbine hub height (60 meters in our case). The five-minute wind data were 

averaged into hourly forecasts to match the temporal resolution of the power 

generation data. Pressure field data for the methods are extracted from the 

outermost domain as described in sections 5.3. 

The WRF simulations provided forecasts with horizons of up to 24 hours. The 

temporal resolution of the WRF output was 30 minutes for the outer domain and 

five minutes for the inner domain. Forecasts were issued at 0:00, 6:00, 12:00, and 

18:00 Greenwich Mean Time (GMT) each day. A few hours of model spin-up was 

usually required to generate cloud, precipitation, and high-resolution atmospheric 

features. Some missing Global Forecast System (GFS) (a global numerical weather 

prediction system) data resulted in missing wind forecast values at several time 

points. These time periods were removed from the datasets. The entire simulation 

period covered one year from August, 2011 to July, 2012.  

3.1.2 Converting Wind Speed Forecast into Power Predictions 

After extracting wind speed forecasts from WRF model outputs, a mathematical 

method is required to convert wind speed forecasts to wind power predictions. This 

process simulates a power curve, in which the maximum wind power density of a 

wind turbine can be expressed as: 

35.0 vPtb ρ= ,                                           (1) 
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where ρ is the air density, v is the horizontal component of wind velocity, normal 

to the rotational plane of the turbine, and tbP  is the maximum power density that 

the turbine can generate (Spera 1994). 

Maximum wind power generation is determined by both air density and wind 

speed. Since the axis of a wind turbine is typically about 60 meters above the earth’s 

surface, air density can be considered relatively constant for a particular turbine or 

wind farm, and wind speed is therefore the only dependent variable. 

Forecasting wind power generation relies very much on the accurate prediction 

of wind speed. The yaw system on a wind turbine allows the turbine rotor to orient 

itself always into the wind. A typical wind power forecasting methodology 

combines NWP and statistical methods (Grant et al. 2009). A statistical or machine 

learning method can be used to model the power curve, which transforms 

meteorological inputs into generated power. In the absence of online power 

generation measurements and on site wind measurements, a common wind power 

forecast function can be expressed as: 

))(),(()(ˆ
000 tPTtWfTtP +=+ ,                     (2) 

where W represents the wind forecast for prediction horizon T (in hour), P is the 

measured wind power generation at current time 0t , and P̂ is the predicted wind 

power generation at time Tt +0 . Function f represents the statistical or machine 

learning based method, trained using historical wind speed and power generation 

data. 

Machine learning methods are used to relate the inputs, such as wind speed 

forecasts, to wind power generation. This relationship can be trained using 

historical datasets. Various machine learning methods have been applied to wind 

power prediction (Stathopoulos et al. 2013; Sideratos and Hatziargyriou 2007).  
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K-nearest neighboring support vector machines (SVMs), random forests (RF), 

and neural networks (NN) (Kusiak et al. 2009) are all popular in wind power 

forecasting. An SVM constructs a linear discriminant function to separate training 

samples as widely as possible. RF is an ensemble method that uses many decision 

trees to classify a new sample based on its input vector. NN is widely used to tackle 

nonlinear regression and classification problems (Bishop 1995). NNs are 

data-driven and nonparametric models, and can capture subtle functional 

relationships among the empirical data even though the underlying relationships 

are unknown. 

Among them, MLP networks (Bishop 1995) have been widely used (Foley et al. 

2012; Kusiak et al. 2009; Ramirez-Rosado et al. 2009; Catalao et al. 2009; Carolin 

and Fernandez 2008). Also, some comparative work has shown that MLP networks 

perform better than other techniques.  

MLP is a feed-forward, artificial neural network model that has been successful 

in solving a number of regression and pattern recognition problems. A typical MLP 

configuration consists of a single hidden layer of neurons with a sigmoidal transfer 

function. Theoretically, this configuration is a universal approximator, given a 

sufficiently large number of neurons in the hidden layer (Bishop 1995). The 

number of neurons in the hidden layer is usually determined using rule of thumb or 

trial and error. MLP learns patterns from training datasets. The most common 

learning algorithm for MLP, namely the back-propagation algorithm, was used in 

our experiment. In the present work, MLP was used to develop the power 

prediction model.  

We also tested the predictions of a dynamic neural network, which is illustrated 

in Figure 10. The wind power forecast function can be expressed as: 

))1(ˆ),(()(ˆ
000 −++=+ TtPTtWfTtP .                         (3) 
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In a dynamic NN, predictions for different prediction horizons follow a single 

model. In this model, wind power prediction for each prediction horizon is affected 

only by the previous predictions and the wind prediction made at the current time 

step. 

 

Figure 10. Illustration of a dynamic neural network. 

3.1.3 Case Studies: Power Prediction for Four Farms 

We evaluated the performance of wind power forecasting methods using data 

collected at wind farms located in southern Alberta, Canada. Hourly wind power 

generation data were obtained from the Alberta Electric System Operator (AESO) 

website (http://www.aeso.ca). The power generation of four wind farms (see Table 

1) was used for testing the model.  

Table 1. Wind farm characteristics. 

No. Name Latitude Longitude 
1 Blue Train Wind 49.55 -113.45 
2 Castle River 49.49 -113.97 
3 Soderglen Wind 49.51 -113.49 
4 Enmax Taber 49.78 -112.14 

 

An MLP model was constructed for each one-hour forecast horizon. The 

training, validating, and testing data were extracted sequentially as 50%, 20%, and 
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30% of the overall data set. The performance of the conventional wind power 

prediction method was gauged using the RMSE shown for each prediction horizon 

in Figure 11. Like any time series forecasting task, wind power forecasting can be 

evaluated using several metrics including MAE and RMSE.  

Figure 11 shows the prediction error in power forecasts with different 

combinations of input variables, including wind speed and direction, surface 

pressure, pressure gradient, two meter above ground temperature, and current 

generation. The pressure gradient was calculated from the pressure difference 

between neighboring grid points in north-south and west-east directions around the 

grid point where the farm is located. 

The involvement of electrical current generation in the input generally provided 

persistence information (that relies on recent trends in current generation) and 

contributed mostly to the predictions in the first 6 hours. The forecasts involving 

current generation performed better than forecasts that used wind speed predictions 

alone.  

For forecasts longer than six hours ahead of wind activity, the prediction error 

increased slightly as the prediction horizon increased. The RMSE is between 15% 

and 20% for the four farms. The forecasts of wind direction gave the lowest RMSE 

for Farm 1, while its contribution was not obvious for the other three farms. For 

Farms 2, 3, and 4, the basic input combination with wind speed and current 

generation performed comparably with the forecasts involving other 

meteorological variables. 

The performance of the dynamic neural network is shown in Figure 12. The 

prediction errors derived from the dynamic model are much smoother than the 

errors derived from feed-forward MLP NN. However, the performance of the 

dynamic NN was generally worse than that of the MLP NN.  
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Figure 11. Prediction error (RMSE) calculated by feed-forward MLP NN using the input 

meteorological variables wind speed (ws), wind power (pw), wind direction (wd), surface 

pressure (P), two meters above ground temperature (T) and pressure gradient (Pgrd), for 

Farm 3. 
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Figure 12. Prediction error (RMSE) calculated by dynamic NN (dyn) compared to RMSE 

calculated by feed-forward MLP NN variables wind speed (ws), wind power (pw), for 

Farm 3.  

3.2 Wind Ramp Predictions 

The conventional wind power prediction method predicts wind ramps based on 

power generation forecasts. As established earlier, wind ramps represent sudden 

and large changes in wind power generation. Based on this concept, different 

definitions have been used in the literature.  

3.2.1 Wind Ramp Definitions 

Wind ramps are defined as changes of wind power generation exceeding a 

minimum percentage of the rated power within a short period of time (Grant et al. 

2009; Greaves et al. 2009). This definition includes two variables: a power change 
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threshold thP , expressed as a percentage of the nominal capacity of a wind farm, and 

a time interval threshold n . Let ],[ nttP + be the power generated from time t to

nt + . A wind ramp can be defined simply as a change of wind power exceeding the 

threshold thP  within duration from time t to nt + . 

thPtPntP >−+ |)()(| .                           (4) 

The wind ramp definition in Equation 4 uses the power difference between only 

two time points, ignoring any changes within that time period. According to 

another definition, a wind ramp is said to occur if 

 thPnttPnttP >+−+ ]),[min(]),[max( .                (5) 

The wind ramp definition in Equation 5 is based on the difference between the 

maximum and minimum values of power generation within a specified time period. 

A third wind ramp definition uses a threshold power wind ramp rate value thPRR  

to define a wind ramp based on the rate of change of power generation. 

thPRR
n

tPntP
>

−+ |)()(| .                      (6) 

Bossavy et al. (2010) defined a wind ramp by transforming the original power 

time series )(tP into a filtered representation )(tP f . 

th
f
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>

=−+−+=
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},...1);()({)(

,            (7) 

where h  is the number of time steps from the current time point, and n  is the 

number of averaged power differences. After the filtered signal is calculated, the 

time points corresponding to a signal exceeding the threshold thP  are extracted; 

among these points, the one with the maximum magnitude )(tP f is labelled as the 
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wind ramp time (Figure 13). 

 

Figure 13. Illustration of wind ramp defined by Equation 7. Solid line indicates power 

generation time series, the dashed line corresponds to filtered signal. “0” and threshold 

are plotted by dotted horizontal lines. The dots represent the time points whose filtered 

signal exceeds the predefined threshold. 

In the following experiments, wind ramp definitions represented by Equations 5 

and 7 are used to evaluate wind ramp predictions. To compare predicted and 

observed wind ramps, a timing event is associated with a wind ramp event. The 

timing of a wind ramp is usually described using the central time of the event, i.e., 

2/nt + . 
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3.2.2 Wind Ramp Evaluation Metrics 

Metrics are commonly used in the literature to represent binary events and can also 

be applied to evaluate wind ramp predictions. Although wind ramps are identified 

as events with continuous time steps, they can also be evaluated per horizon, i.e., 

whether a future time step is associated with a wind ramp event or not. Therefore, 

wind ramp event forecasting results can be classified (Ferreira et al. 2010) as hits or 

true positives (TP), alarms or false positives (FP), misses or false negatives (FN), 

and true negatives (TN). These classes are arranged with respect to contingency in 

Table 2. 

Table 2. Contingency of event observations and forecasts. 

 Yes (observation) No (observation) 
Yes (forecast) TP  FP 
No (forecast) FN TN 

Precision and recall are two important metrics used for the evaluation of event 

forecasts (Cleverdon 1972). Precision is the ratio of true positive events to all 

positive forecasts, indicating what fraction of predicted events actually happened. 

Precision=
FPTP

TP
+

.                            (8) 

Recall is the ratio of true positive events to all positive observations, indicating 

what fraction of actual events were predicted correctly. 

Recall=
FNTP

TP
+

.                             (9) 

Another metric, scoreF , is the harmonic mean of precision and recall (van 

Rijsbergen 1979). 

RecallPrecision
RecallPrecisionFscore +

×
×= 2 .                  (10) 

This score ranges from 0 to 1, where 0 represents no detection, and 1 represents 
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perfect detection. Equation 10 quantifies the extent of unbalanced combinations 

between precision and recall. 

The Critical Success Index (CSI) measures the ratio of properly forecast events 

to all observed and forecast events. Both missing forecasts (FN) and false alarms 

(FP) are penalized. 

FPFNTP
TPCSI

++
= .                                 (11) 

The Bias Score measures the ratio of forecast events to observed events. 

FNTP
FPTPscoreBias

+
+

= .                                    (12) 

The Extreme Dependency Score (EDS) is designed specifically for rare events 

(Coles et al. 1999). It measures the association between forecast and observed rare 

events. 

1
)/log(

)/)log(2
−

+
=

nTP
nFNTPEDS ,                             (13) 

where n is the size of the data sample, 0 represents no detection, and 1 represents 

ideal detection. But EDS only considers TP and FN, ignoring FP. The Odds Ratio 

(OR ) is a metric based on the hit rate (similar to Recall) and the false alarm rate. A 

perfect OR  score is ∞ , and values larger than 1 indicate that the hit rate exceeds 

the false alarm rate. 

TNFP
FPF

FNTP
TPH

+
=

+
= ,                            (14) 

)1/(
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−
−

= .                                      (15) 

The Odds Ratio Skill Score (ORSS) measures the advantage of using the 

forecasting system over a random prediction. The value -1 implies no forecasting 
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ability, while 1 indicates perfect forecasting skill. 

1
1

+
−

=
OR
ORORSS .                                        (16) 

Among the metrics mentioned above, OR and ORSS measure the association of 

hit rate and false alarm rate. EDS considers the sample size rather than the exact 

value of bias, and it does not tend to zero for rare events such as wind ramps. 

Wind ramp event predictions usually occupy several time steps, while TN does 

not. In this case, the true positive rate (or Recall), and the precision are commonly 

used (Cleverdon 1972). In wind ramp forecasting literature, the two measures are 

renamed as wind ramp capture and forecast accuracy, respectively (Greaves et al. 

2009). The wind ramp capture rate indicates the fraction of actual events that were 

predicted correctly, while the forecast accuracy rate indicates what fraction of 

predicted events actually occurred. 

Phase errors may occur in wind ramp predictions, e.g., a wind ramp event may 

be predicted hours before or after the actual one occurs. To account for these timing 

errors, a tolerance time is typically used to associate predicted wind ramp events 

with actual ones (Bossavy et al. 2013; Greaves et al. 2009). The tolerance time 

defines a temporal range around the timing of observed wind ramps. For instance, if 

the tolerance time is set to eight hours, a predicted wind ramp event whose timing is 

up to eight hours earlier or later than the actual one is still considered to be a correct 

forecast. The tolerance time should be short enough to separate neighboring wind 

ramps but long enough to associate corresponding forecast and observed wind 

ramps. 

In some cases, more than one predicted wind ramp event may correspond to the 

same observed event (Bossavy et al. 2013). This is very likely in our case, where 

results of two independent methods are combined to make wind ramp predictions. 

When two or more forecast wind ramps are associated with a single observed wind 
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ramp, only the wind ramp whose timing is closer to the observation is taken to be 

correct.  

3.2.3 Case Studies: Wind Ramp Prediction 

The predicted wind power ramps were identified from the predicted power series. 

The wind ramp definitions represented by Equations 5 and 7 (section 3.2.1) were 

tested. Governed by the second definition of a wind ramp (Equation 5), a wind 

ramp event was identified when the power production changed by at least 50% of 

the rated power within 4 hours. Equation 7 represents a filtering method, therefore, 

the wind ramp magnitude threshold was set at 25% and the time threshold was set at 

3 hours. The tolerance time was set to eight hours, comparable to the range 

commonly used in the literature (Bossavy et al. 2013; Greaves et al. 2009).  

Because WRF forecasts were updated every six hours, predicted wind power 

generations with 6 hours length in each forecast were combined to form a 

consecutive time series to identify wind ramps. For example, the predictions 

updated every 6 hours with forecast horizons from 19 to 24 hours in each forecast 

were connected as a single time series in order to conduct wind ramp identification. 

The timing of the simulations is shown in Figure 14.  
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Figure 14. Time line for identifying wind ramps. 

Bossavy et al. (2013) stated that conventional power prediction models tend to 

underestimate the power generation of high winds and overestimate the power 

generation of low winds, thereby underestimating the magnitude of wind ramps. 

Consequently, they used a lower magnitude threshold for the predicted power 

generation compared to the actual generation. Similarly, here we uses a lower 

threshold, 35% of rated power changes ( thP in Equation 5), to identify wind ramps 

from the predicted power series for the second wind ramp definition; to follow the 

fourth wind ramp definition (Equation 7), we used magnitude threshold of 20%. 

When a lower threshold value was applied, more wind ramps were detected but 

lower forecast accuracy was achieved.  

Tables 3 and 4 list the performance of wind ramp predications based on different 

evaluation metrics on a per-horizon basis. Results for different input variables, 
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wind ramp definitions, prediction horizons, wind ramp types (upward or 

downward), and farms are summarized.  

Models 1 to 6 denote forecasting models with the following input variables: 1) 

wind speed; 2) wind speed and current generation; 3) wind speed, current 

generation, and wind direction; 4) wind speed, current generation, and surface 

pressure; 5) wind speed, current generation, and two meters above ground 

temperature; 6) wind speed, current generation, and pressure gradient. 

Among the different metrics, CSI measures the proportion of observed wind 

ramp-related time steps among observed and predicted ones; Fscore measures the 

balance between Precision and Recall; OR and ORSS measure the balance between 

Hits and False Alarms. EDS is specially designed for rare events evaluation, 

without considering FP. Bias measures the number of predicted and observed 

events, thus it cannot be judged alone. 

Tables 3 and 4 show that for prediction horizons less than 6 hours, Model 1, 

which does not involve a current generation input, performed worse than other 

models. This was due to lack of persistence information provided by recent trends 

in electrical current generation data. Also consistent with the evaluation of power 

forecasting, the performance of wind ramp detections deteriorates as the prediction 

horizon increases.  

Models 2 to 6 performed comparably to each other, except that some were 

superior in certain situations. Involvement of the pressure gradient variable 

delivered the best performance in the prediction of upward wind ramps (as in 

Tables 3 and 4), showing the highest CSI and EDS values; however, inclusion of 

the pressure gradient variable did not improve the prediction of downward wind 

ramps. Temperature inputs gave higher CSIs in the prediction of downward wind 

ramps in Farm 2 but not in Farm 4.  
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Different wind ramp definitions performed similarly. Among the six models 

with different inputs, Model 6 which included a pressure gradient variable 

performed better in terms of CSI, Fscore, and EDS. Bias rate differences are due to 

the chosen magnitude thresholds used to extract wind ramps. By changing the 

threshold, the number of wind ramp-related time steps can be tuned. 

Table 3. Evaluation metrics for Farm 1, upward wind ramps, Equation 5, 1-6 hours ahead. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Precision 0.18 0.31 0.29 0.35 0.35 0.36 

Recall 0.23 0.45 0.44 0.45 0.46 0.49 
CSI 0.11 0.23 0.21 0.25 0.25 0.26 

Fscore 0.20 0.37 0.35 0.39 0.39 0.42 
Bias 1.26 1.47 1.53 1.26 1.33 1.38 
EDS 0.30 0.55 0.54 0.55 0.56 0.59 
Hits 0.23 0.45 0.44 0.45 0.46 0.49 

False 
alarms 

0.07 0.07 0.07 0.05 0.06 0.06 

OR 3.93 11.14 9.81 13.67 13.49 15.15 
ORSS 0.59 0.84 0.81 0.86 0.86 0.88 

Table 4. Evaluation metrics for Farm 1, upward wind ramps, Equation 7, 1-6 hours ahead. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Precision 0.27 0.28 0.29 0.33 0.35 0.34 

Recall 0.18 0.24 0.25 0.22 0.22 0.26 
CSI 0.12 0.15 0.15 0.15 0.16 0.17 

Fscore 0.22 0.26 0.27 0.26 0.27 0.29 
Bias 0.69 0.86 0.84 0.68 0.64 0.77 
EDS 0.23 0.31 0.31 0.28 0.28 0.33 
Hits 0.18 0.24 0.25 0.22 0.22 0.26 

False 
alarms 

0.03 0.04 0.04 0.03 0.03 0.03 

OR 5.77 6.78 7.38 8.34 9.23 9.16 
ORSS 0.70 0.74 0.76 0.78 0.80 0.80 

After combining identified wind ramp related time steps into several wind ramp 

events, the true negative (TN) does not exist anymore. Tables 5–8 list the wind 
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ramp capture rate and forecast accuracy on a per-event basis, with different input 

variables and wind ramp definitions. Generally, when the wind ramp capture rate 

gets higher, indicating that more wind ramps are captured, the accuracy forecast 

tends to get lower, but none can be judged separately. The balance between wind 

ramp capture and forecast accuracy can be tuned by setting different wind ramp 

magnitude thresholds.  

Although the results listed in Tables 5–8 were based on wind ramp events 

instead of separate time steps, the conclusions drawn on a per-event basis were 

similar to wind ramp prediction results obtained on a per-horizon basis.  

In Tables 3-6, with regard to wind ramp capture and forecast accuracy for 

prediction horizons less than 6 hours, Model 1, which does not include a current 

generation input, performed more poorly than models that included current 

generation input. This was mainly due to lack of information about power 

generation persistence, or recent trends in power generation.  

Model 6, which includes a pressure gradient variable, presents the best 

performance with regard to wind ramp capture and forecast accuracy in the 

prediction of upward wind ramps (Tables 5 and 6), but not in the prediction of 

downward wind ramps (Tables 7 and 8). Model 5, which included 

two-meters-above-ground temperature as one of the input variables, presents the 

highest values for both metrics for predicting downward wind ramps in Farm 2 but 

not in Farm 4. These conclusions support the conclusions drawn from wind ramp 

prediction performance on a per-horizon basis. 

 

Table 5. Performance for Farm 1, upward wind ramps, Equation 5, 1-6 hours ahead. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

wind ramp capture 0.48 0.64 0.70 0.64 0.64 0.67 

forecast accuracy 0.40 0.47 0.46 0.52 0.50 0.53 
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Table 6. Performance for Farm 1, upward wind ramps, Equation 7, 1-6 hours ahead. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

wind ramp capture 0.53 0.74 0.72 0.63 0.66 0.72 

forecast accuracy 0.62 0.60 0.68 0.67 0.72 0.72 

Table 7. Performance for Farm 2, downward wind ramps, Equation 5, 19-24 hours ahead. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

wind ramp capture 0.25 0.37 0.23 0.30 0.41 0.32 

forecast accuracy 0.61 0.59 0.62 0.56 0.60 0.56 

Table 8. Performance for Farm 4, downward wind ramps, Equation 5, 19-24 hours ahead. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

wind ramp capture 0.60 0.43 0.56 0.52 0.70 0.45 

forecast accuracy 0.55 0.60 0.54 0.60 0.50 0.53 

3.3 Summary 

Day-ahead wind power forecasting is necessary for effective power system 

management such as unit commitment, economic dispatches, and dynamic security 

assessments. A framework for wind power and wind ramp predictions that used 

forecasts from a WRF model as input and converted the input into future wind 

power generation were constructed with a MLP neural network. Wind ramp 

events were identified based on predicted power series. The most straightforward 

way to define a wind ramp is the difference between the maximum and minimum 

values of power generation within a specified time period. A filtered representation 

of an original power series can also define a wind ramp. The two definitions were 

applied to predict wind ramps and the predictions performed similarly. Wind ramp 

capture rate and forecast accuracy were also examined.  

Different input combinations, including surface pressure, temperature at two 

meters above ground, and pressure gradient were tested and the results were 

compared. All these combinations performed comparably to each other, except that 

some were superior in certain situations. The wind power and ramp prediction 
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framework built in this chapter was a benchmark for the experiments conducted in 

the following sections. 
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4 Separate Predictions Based on Meteorological 

Variables 
In this chapter, we build separate power forecasting models to predict power and 

ramps. We build separate models based on different criteria, including hourly wind 

speed changes, K-means clustering of different meteorological variables, and 

synoptic weather pattern classification. 

4.1 Separate Prediction Methods 

Weather systems have a large impact on wind speed and thus can be analyzed to 

improve wind power forecasting. Pinson et al. (2007) have suggested that one of 

the next breakthroughs in wind power forecasting should be in “models specific to 

different weather regimes.” Zack et al. (2007, 2010) built a specific power 

forecasting model for each weather scenario, including cold fronts and low-level 

jets for wind farms in the US.  

4.1.1 Based on Hourly Wind Speed Changes 

Large wind speed changes within approximately one hour usually mean that a 

dynamic weather system, such as a cold front in the winter season, is passing by. 

When wind changes are subtle, in most cases a stable weather system is 

dominating the area. Our first attempt at separation forecasting is based on the 

simple method of thresholding the hourly wind speed changes. Separate models 

are built and trained  using the method discussed in Section 4.  

The threshold of hourly wind change is experimentally set at 1 m/s, resulting in 

two datasets. Power predictions are built and evaluated by using these two datasets 

separately. 

4.1.2 Based on K-Means Clustering of Meteorological Variables 

We attempt to divide datasets by using clustering of several meteorological 
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variables, including the wind speed, surface pressure, wind direction, and direction 

of pressure gradient. The K-means method is used to divide the datasets into 

several clusters (as in equation 17).  

Let ),...,( 21 nxxx  represent the data samples, and each sample jx is a d

-dimensional vector. The K-means algorithm partitions these vectors into k  

clusters { kCCC ,..., 21 } by minimizing the within-cluster sum of the squared 

distances: 

∑∑
= ∈

−
k

i Cx
ij

C
ij

x
1

2
minarg µ    ,                                  (17) 

where iµ is the center of the data samples in each cluster.  

For wind direction, we first derive the cosine and sine component of the 

directional variables and then apply K-means to this obtained two-dimensional 

variable. The clustering is first conducted for training the datasets in order to find 

the cluster centers. The testing data are afterwards classified into the corresponding 

clusters by searching for the nearest cluster centers.  

Figure 15 shows the histogram of the data in each cluster for four different 

meteorological variables: (a) wind speed in m/s, (b) surface pressure (in hPa), (c) 

wind direction, and (d) direction of pressure gradient. The pressure gradient is 

calculated from the two-directional pressure difference between two neighboring 

grid points.  

For the clustering based on the wind speed, three clusters are derived by using 

the K-means algorithm: (1) 0-7 m/s, (2) 7-12 m/s, and (3) >12 m/s. The three 

clusters with respect to the wind direction are: (1) 0-50 and 300-360 degrees, (2) 

50-200 degrees, and (3) 200-300 degrees. They correspond to the directions north, 

east or south, and west, respectively (Figure 15-c). The distribution of the pressure 
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gradient directions in each cluster is shown in Figure 15-d.  

 

Figure 15. Histogram of clusters based on different variables: (a) wind speed in m/s, (b) 

surface pressure (in hPa), (c) wind direction, and (d) direction of pressure gradient. 

4.1.3 Based on Synoptic Weather Pattern Classification 

The classification of the synoptic weather pattern used here is derived from the 

Lamb system (Lamb et al. 1972). In literature on weather pattern classification 

schemes, this system is a widely used synoptic pattern typing method (Lamb 1972; 

Jenkinson and Collison 1977) for analyzing the influence of weather types on local 

surface observations, such as those of temperature and precipitation (Trigo and 

Dacamara 2000; Demuzere et al. 2009).  
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The Lamb system is based on the relationships between the geostrophic wind (F) 

and vorticity (Z). These two variables are calculated from the gridded sea-level 

pressure field. Here, we adapt the method designed for pressure grids with equal 

increments of latitude/longitude in the WRF domain, and then calculate F and Z.  

 

Figure 16. Illustration of WRF grid numbering (the numbering corresponds to equation 

18).The diamond in the center indicates where the wind farm of interest is located. 

The pressure data from the outer WRF domain (with resolution of 18km) are 

used to calculate the wind F and vorticity Z. In order to consider a bigger spatial 

scale, the distance between each neighboring grid pair covers seven WRF grids; 

i.e., the distance between the neighboring grids in Figure 16 is actually 126 km.  

Based on the area shown in Figure 16, the geostrophic wind F and vorticity Z of 

the center grid (where the farm of interest is located), can be calculated as 

2/)641311( ppppWF −−+=  

2/)114136( ppppSF −−+=  

2/)219*28*21615( ppppppWZ ++−−+=                (18) 

10312*25*2147 ppppppSZ ++−−+=  

22 SFWFF +=  

SZWZZ += , 
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where p1-16 represent value of the pressure in the corresponding grid shown in 

Figure 16; WF and SF represent the westerly (zonal) and southerly (meridional) 

components, respectively, of the geostrophic wind; F stands for the geostrophic 

wind speed; WZ and SZ are the westerly and southerly vorticities; and Z is the total 

vorticity. 

The weather pattern can thus be divided into 26 types based on the relationship 

between F and Z:  

(1). |Z|/F < 1: directional circulation type;  

(2). |Z|/F > 2: type of cyclonic (Z>0) or anti-cyclonic (Z<0); 

(3). |Z|/F in [1, 2]: hybrid type, and 16 minor hybrid types are divided based on 

the directions of F and the presence of cyclonic or anti-cyclonic types. 

Using the above scheme, we use the three major types which were derived above.  

4.2 Case Studies: Evaluation of Power Predictions by Separate Models 

Separate MLP NN models are built for each obtained cluster discussed in Section 

4.1. We first evaluate their performance in power prediction.  

Figure 17 shows the RMSE for the data in each cluster and for the whole 

datasets for the different clustering methods. The first 4 subplots, i.e., (a) to (d), 

represent K-means clustering based on the wind speed, surface pressure, wind 

direction, and direction of the pressure gradient, respectively; the plots in (e) 

represent the classification based on the hourly wind change; and the plots in (f) 

represent the synoptic weather type classification.  

For the different clustering methods, no significant difference among the 

performances for different farms was found, yet the performance for different 

clusters differed. For the K-means clustering using the wind speed, the lowest 

RMSE was observed in the first cluster, i.e., the cluster with the lowest wind speed. 

In the clustering using the surface pressure, the worst performance occurred in the 
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cluster with the lowest pressure values. A low pressure indicates more dynamic 

weather circulations, which lead to a worse performance of the wind speed (and 

thus, the power) forecasting.  

For the clustering based on the wind directions, the cluster with a westerly wind, 

i.e., a wind blowing from the lee side of the Rocky Mountains, presented the worst 

performance. Although westerly winds provide a major wind resource to the farm 

area, they are more dynamic compared to winds blowing from the other directions. 

Also, for the cases in farm 2, the cluster with easterly and southerly winds showed 

big variations in the RMSE in different prediction horizons.  

For the K-means clustering using the direction of the pressure gradient, the 

within-cluster RMSE was quite comparable between the different clusters. This 

result also occurred for the clustering using the hourly wind changes in the subplot 

(e). 

For the classification using the synoptic weather patterns, the Type Two 

(cyclonic or anti-cyclonic type) performed slightly better than the other two types, 

but the former also showed a large variation of the RMSE for different prediction 

horizons. In addition, it was also found that the poor performance of the RMSE in 

some clusters was associated with the relatively small amount of data in these 

clusters.  

Figure 18 shows the RMSE of the whole dataset derived from the wind power 

prediction based on the different clustering methods. The performance of the basic 

prediction method described in Section 3, which does not separate data, is also 

presented for comparison. The performance of the different separate methods and 

the basic method is comparable, showing that the improvement made by the 

separation methods is not obvious with respect to prediction accuracy for the 

whole dataset. However, additional information on accuracy of the forecasting in 

different weather scenarios is provided through clustering methods. 
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Figure 17. RMSE in each cluster using different clustering methods for Farm 1. Here, (a) - 

(d) represent K-means clustering based on wind speed, surface pressure, wind direction 

and pressure gradient separately; (e) is based on hourly wind change as described in 

Section 4.1.1; and (f) is based on synoptic weather type classification.  
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Figure 18. RMSE of overall datasets using separation prediction compared to basic 

predictions for the four farms. The legend shown in the first figure is also used for the 

other three. 

4.3 Case Studies: Evaluation of Ramp Event Predictions by Separate Models 

Table 9 lists the performance of the separation methods for the ramp event 

predictions on a per-horizon basis (see Section 3). Models 1- 4 in the tables refer to 

the separation prediction based on K-means clustering by using the wind speed, 

surface pressure, wind direction, and direction of the pressure gradient, 

respectively; Model 5 denotes the separation prediction based on classifying the 

hourly wind changes; Model 6 represents the separation prediction based on 
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synoptic weather type classification; and Model 7 is the basic prediction model 

without separation, as described in Section 3.   

The evaluation metrics used in Table 9 are described in detail in Section 3. The 

performance of Model 7 (prediction without separation) generally ranks in the 

middle compared to that of the models with separation. In terms of the different 

prediction tasks, i.e., in case of different prediction horizons, farms, and ramp types, 

the model showing the best performance in each prediction task is different.  

As Table 9 reveals, the performance of the ramp detections is worse for longer 

prediction horizons. Also, the separation models involving the wind speed (Model 

1 and Model 5) give better results in the shorter prediction horizons than all the 

other models, but not for the longer horizons, based on the CSI, EDS and OR 

values.  

The performance of the models between the different farms is quite different. 

Model 4, which involves the direction of the pressure gradient, performed best 

among all the models for farm 4. However, for farm 2, the best models are Models 

2 and 5, which conducted separation based on the wind speed. The results also 

show that the model with the best performance was the one related to the pressure 

for the cases of upward ramps. However, for the downward ramps, all models 

performed comparably. 
   Table 9. Evaluation metrics for farm 2, downward ramps, 1-6 hours ahead. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Precision 0.47 0.43 0.51 0.43 0.50 0.43 0.49 

Recall 0.47 0.43 0.27 0.43 0.48 0.34 0.38 

CSI 0.31 0.27 0.22 0.27 0.32 0.23 0.27 

Fscore 0.47 0.43 0.36 0.43 0.49 0.38 0.43 

Bias 1.00 1.00 0.53 0.98 0.96 0.78 0.76 

EDS 0.51 0.46 0.28 0.46 0.51 0.36 0.40 

Hits 0.47 0.43 0.27 0.43 0.48 0.34 0.38 

False alarms 0.05 0.06 0.02 0.06 0.05 0.04 0.04 
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OR 14.50 11.05 12.83 11.39 16.37 10.02 13.51 

ORSS 0.87 0.83 0.85 0.83 0.88 0.81 0.86 

Tables 10 -13 below list the comparison of the performance of different models 

in terms of the ramp capture rate and forecast accuracy.  

Note that the balance between the two metrics can be tuned by setting different 

magnitude thresholds for the exacting ramps. We used the same threshold to judge 

the different models, so the ramp capture rate and forecast accuracy cannot be 

judged separately.  

The separation model with the synoptic weather pattern (Model 6) has the best 

result for farm 2, downward ramps, and a lead time of 1-6 hours (Table 10). Yet for 

lead time of 19-24 hours (Table 11), no significant difference exists among the 

different models. Also in Tables 10 -13, the separation model involving the 

pressure generally provides a better performance compared to the other models.  

Table 10. Performance for farm 2, downward ramps, 1-6 hours ahead. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

ramp capture 0.74 0.81 0.51 0.55 0.76 0.72 0.58 

accuracy 0.68 0.57 0.78 0.52 0.62 0.77 0.71 

Table 11. Performance for farm 2, downward ramps, 19-24 hours ahead. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

ramp capture 0.39 0.30 0.27 0.62 0.32 0.39 0.37 

 accuracy 0.47 0.46 0.48 0.39 0.53 0.53 0.59 

Table 12. Performance for farm 4, downward ramps, 1-6 hours ahead. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

ramp capture 0.61 0.61 0.67 0.57 0.59 0.65 0.55 

accuracy 0.52 0.61 0.52 0.54 0.60 0.53 0.61 

Table 13. Performance for farm 2, upward ramps, 19-24 hours ahead. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

ramp capture 0.48 0.44 0.34 0.52 0.28 0.36 0.36 

accuracy 0.63 0.61 0.68 0.40 0.58 0.62 0.69 
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4.4 Summary 

Since weather systems have a large impact on wind speed, some researchers have 

suggested that wind power forecasting models specific to different weather 

regimes might improve the performance of prediction. To analyze the impact of 

weather patterns on wind ramp predictions, specific prediction systems were built 

for each subset of data, which was divided according to the hourly wind speed 

changes, the synoptic atmospheric circulation types, and the K-means clustering 

of meteorological variables, including surface pressure, pressure gradient, 

atmospheric temperature, and wind direction. We evaluated the performance of 

the separation prediction in terms of both wind power and wind ramp event 

forecasts at four wind farms. For the performance of power prediction, no 

significant difference occurred between the RMSE for different farms under 

different clustering methods. However, the performance for the different clusters 

differed. Situations with poor forecast performance often correspond to dynamic 

weather systems. Thus, by using separation predictions based on different weather 

patterns, the information of weather types can be provided to electrical grid 

operators, together with the expected corresponding forecast accuracy under that 

weather pattern.  
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5 Proposed Ramp Prediction Method With Gabor-based 

Pressure Gradient 
In this chapter, we propose to use the spatial features of atmospheric pressure fields 

in order to aid ramp prediction. In particular, we develop a framework using 

pressure gradient information based on Gabor filters. 

5.1 Use of Pressure Gradient Pattern in Wind Power Prediction 

The analysis of the weather patterns associated with ramps can add substantial 

value to ramp prediction. Grant et al. (2009) stated that human intervention can 

greatly improve ramp forecasts in practical operations by examining the precise 

weather situation. Zack et al. (2007, 2010) pointed out the importance of analyzing 

the physical processes that cause ramps and developed a system called ELRAS (the 

ERCOT Large Ramp Alert System) to forecast power output by training a specific 

mathematical power forecasting model for each weather scenario. The scenarios 

included cold fronts and low-level jets (Ahrens et al. 2012). 

Some researchers have used meteorological variables in NWP output other than 

wind speed in order to improve the wind power and ramp predictions (Carolin and 

Fernandez 2008; Kusiak et al. 2009). Kamath (2011) used a feature selection 

technique to evaluate the influence of several meteorological variables on the 

identifiability of ramp occurrences. 

Of the many meteorological variables, the pressure field is most frequently used 

as an indicator of weather types (Jenkinson and Collison 1977; Phillipp et al. 2010). 

It has been widely used in existing weather pattern recognition schemes (Phillipp et 

al. 2010; Zagouras et al. 2012). A widely used weather classification system, the 

Lamb system (Lamb 1972; Jenkinson and Collison 1977), is based on geostrophic 

wind and vorticity. Both these quantities can be derived from gridded pressure data. 

The Lamb system has been widely applied to analyze the influence of weather types 
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on surface meteorological observations, such as those of temperature and 

precipitation, in several regions (Trigo and Dacamara 2000; Demuzere et al. 2009). 

In addition to its association with weather type, pressure is also strongly related 

to the surface wind speed via the geostrophic wind equation (Ahrens et al. 2012). 

Gutierrez et al. (2013) used pressure data to reconstruct the historical wind speed 

for a wind farm area. The strong association between pressure gradients and wind 

makes air pressure a suitable variable to examine for its potential to improve ramp 

predictions. 

In this chapter, we propose to predict ramp occurrences by applying a texture 

extraction technique common in image processing. Specifically, Gabor feature 

extraction (Grigorescu et al. 2002) is applied to pressure fields. This Gabor-based 

ramp prediction methodology is then combined with the conventional method in 

order to make the final, improved ramp predictions. 

5.2 Gabor-Based Pressure Gradient Extraction 

The proposed Gabor-based method predicts ramp occurrences from a 

two-dimensional pressure field derived from the NWP model output. The pressure 

fields can be regarded as two-dimensional images, with individual pixels 

corresponding to the pressure values on a two-dimensional array of grid points. By 

using this analogy, ramp prediction can be seen as an image classification problem.  

5.2.1 Gabor Filtering Technique 

Gabor filtering is a common texture extraction technique used in image processing. 

In the context of the proposed system, it is used to extract features from the gridded 

pressure data. A Gabor filter (Turner 1986; Grigorescu et al. 2002) modulates a 

Gaussian kernel function with a sinusoidal plane wave. The form of the Gabor filter 

family is shown in equation (19): 
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The parameters 𝜃, λ ,𝜑, 𝛾 and 𝑏  determine the characteristics of the Gabor 

filter support: θ specifies the orientation of the support; λ represents the 

wavelength of the cosine factor of the Gabor filter kernel and thus determines the 

scale of the support; ϕ , the phase offset, determines whether the support is 

symmetric (ϕ =0) or not (ϕ = 2/π ); γ is the spatial aspect ratio, specifying the 

ellipticity of the support; and b is the bandwidth, related to the ratio ofσ  (the 

standard deviation of the Gaussian factor) toλ . 

Gabor features are derived by convolving the Gabor filter with a 2-dimensional 

image derived from the pressure field p : 

 ∫ ∫ −−= ηξηξηξ ddyxgpyxG ),(),(),( .             (20) 

5.2.2 Pressure Gradient Extraction based on Gabor Filters and Feature Selection 

When applied to the detection of wind ramps, the Gabor filter parameters must be 

chosen to facilitate the identification of the pressure gradients. Based on several 

empirical tests, an asymmetric, elongated filter support with a single parallel strip 

was selected (Figure 19). Since our aim is to simulate the pressure gradient (the 

pressure difference in certain directions), the filters which can simulate the 
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pressure difference between two sides of a wind farm in different directions are 

chosen to calculate features, as indicated in Figure 19.  

We have experimentally determined four scales ( 8,6,4,2=λ ) and four 

orientations ( πππθ
4
3,

2
1,

4
1,0= ). The resulting supports of the Gabor function 

with different orientations are shown in Figure 20. For each pixel (grid point), a 

16-dimensional feature vector was extracted.  

 

Figure 19. Parameter tuning of Gabor filters. The x denotes the rejected candidates while 

the check marks denote the acceptable candidates. 

 

Figure 20. Gabor filter support with different orientations. 

5.3 Ramp Prediction With Gabor-based Pressure Gradient Information  

After the Gabor filters are extracted, a framework is built to use the Gabor filter 

simulated pressure gradient to predict ramp events.  
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5.3.1 Framework of the Proposed Method 

The proposed approach is illustrated in Figure 21. Both conventional and 

Gabor-based ramp prediction methods apply a train-and-test strategy. The 

conventional method (the dashed box on the left) takes NWP wind forecasts and 

current power generation as input in order to predict future power generation. 

Future ramp occurrences are then estimated by applying the ramp definition to the 

predicted power series. The Gabor-based method (the dashed box on the right) 

predicts ramps by using NWP output pressure fields exclusively. The forecasts 

derived from these two models are then combined to make the final prediction of 

ramp occurrence.  
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Figure 21. Framework of proposed ramp prediction method. 

5.3.2 Methodology of Ramp Prediction With Gabor-based Pressure Gradient 

Information 

For the identification of spatial pressure features, mean sea-level pressure (SLP) 

data/maps are commonly used in the literature for weather pattern classification. 

However, using SLP in western Canada may introduce extrapolation errors due to 

the substantial terrain height exceeding 1000 m above mean-sea-level. To avoid 

these errors, various isobaric and geopotential surfaces were considered and tested: 

SLP, the 700 hPa geopotential height surface, and several WRF coordinate levels. 

Each WRF coordinate layer is denoted by a specific σ value (the ratio of the actual 

pressure to the surface pressure), representing the fraction of the total air mass 
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above it: σ = 1 represents the ground surface, while σ = 0 is the top of the model 

atmosphere.  

To avoid the effects of random network initialization, MLP network training 

was conducted five times for each choice of vertical coordinate surface. No 

significant differences were found among the layers. However, the WRF level 9 

with σ = 0.84, provided slightly better results in terms of RMSE of power 

prediction. This level was therefore used for all subsequent experiments. 

The feature vector extracted from the pressure data corresponding to the grid 

point at the location of the wind farm is used as the input to the predictor. The 

predictor can be regarded as a classifier, which assigns each pressure field to one of 

two possible classes: either “ramp” or “non-ramp.” 

The predictor was developed by using a MLP neural network that provides 

continuous rather than binary output. As a consequence, the predictor provides 

continuous ramp forecasts that can be regarded as probabilities. To convert these 

probabilities into deterministic predictions, they are subjected to a threshold. The 

threshold can be set by network operators to provide a desired trade-off between 

missing events and triggering false alarms. 

5.3.3 Case Studies 

This section describes the results obtained by using the MLP predictor and Gabor 

features derived from WRF pressure fields. Additional training data consisted of 

actual ramp occurrences derived from the observed power series. The ramps were 

extracted by using the same criteria as for the conventional method. Separate 

models were developed for up and down ramp events. 

Considering that the Gabor-based method is based on weather patterns, and that 

these patterns are specific to the time of year, it is not reasonable to divide training 

and testing data simply sequentially. Therefore, the datasets were divided for the 
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entire year into 3 consecutive components. Then training, validating and testing 

data were extracted sequentially as 50%, 20%, and 30% of all of the available data 

points respectively within each component. 

The MLP outputs probabilistic forecasts of ramp occurrence. The performance 

of ramp occurrence forecasts is evaluated on a point-wise basis. Each individual 

time point forecast is evaluated with respect to actual ramp occurrence. 

Accordingly, by setting different thresholds of the MLP outputs, the Receiver 

operating characteristic (ROC) curve is plotted in Figures 22-23. 

We tested for two scenarios, one using the Gabor feature vector as input alone, 

and the other using the Gabor feature together with the predicted wind generation. 

The ROC curves for the four farms in the former scenario are shown in Figures 

22-23 (a); the ROCs for the latter scenario are in Figures 22-23 (b). All these 

figures show that in both scenarios, the performance was much better than the one 

that could have been obtained by chance, which is represented by the diagonal 

lines in Figures 22-23.  

When using Gabor features as input alone, the performance on upward ramps is 

better than the one on downward ramps, indicating that the upward ramps are more 

sensitive to pressure information. The results for Farm 1 and 2 are relatively better, 

while the ones for Farm 4 are worst.  

The prediction of ramp events when using both Gabor features and wind power 

predictions as input is much better than the one that uses only Gabor features. This 

result happens for both upward and downward ramp events in all four farms and 

especially for the downward ramps for Farm 4. Also, the performance on upward 

ramps is much better compared to that on downward ramps. 

The forecasts for the longer horizons are worse than those for the shorter ones. 

For the forecasts for prediction horizons of 19-24 hours, the performance of ramp 

prediction at Farm 1 and 2 are better than those at the other two farms. 
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Figure 22. ROC curve for forecasts 1-6 hours ahead, with Gabor features as the only input 

(a), and with Gabor features and current power generation as input (b), for upward ramps 

in Farm 1. The diagonal line indicates the results that could have been obtained by chance. 
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Figure 23. ROC curve for forecasts 1-6 hours ahead, with Gabor features as the only input 

(a), and with Gabor features and current power generation as input (b), for upward ramps 

in Farm3. The diagonal line indicates the results that could have been obtained by chance. 
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Here, we evaluate forecasts based on ramp events, and each event can occupy 

several time steps. The Gabor-based method predicts ramps point-wise, resulting in 

poor continuity between the neighboring time points of the ramps’ occurrences. To 

alleviate this problem, any neighboring forecast ramp events separated by less than 

2 hours were connected to form a single, continuous ramp event. As discussed in 

Section 3, the tolerance time, which defines a temporal range around the timing of 

observed ramps, is set as eight hours. In addition, if more than one predicted ramp 

event corresponds to the same observed event, only the ramp whose timing is closer 

to the observation is taken as a correct forecast.  

Tables 14 - 19 show the variation of ramp capture and forecast accuracy with the 

threshold value for MLP probabilistic forecasts. Tables 14 and 15 show the cases 

for upward ramps for 1-6 hours ahead; Table 16, for upward ramps and a lead time 

of 19-24 hours; and Tables 17 - 19, for downward ramps. 

In most cases, the trade-off between the two metrics is obvious: low threshold 

values provide a better ramp capture rate with worse forecast accuracy, while high 

thresholds provide greater forecast accuracy with fewer captured ramps. However, 

the ramp capture rate may decrease with increasing thresholds, yet not with a 

higher forecast accuracy (e.g. last column in Table 14). 

The combination of ramp capture and forecast accuracy appeared better when 

using both Gabor features and wind power predictions as input, compared to the 

cases using only Gabor features.  
Table 14. Performance for upward ramps, 1-6 hours ahead, with Gabor as input only. 

Farm No. thresholds 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

1 ramp capture 0.62 0.71 0.57 0.52 0.30 0.22 0.13 

accuracy 0.43 0.51 0.53 0.68 0.62 0.65 0.57 

2 ramp capture 0.60 0.59 0.52 0.46 0.37 0.27 0.18 

accuracy 0.67 0.64 0.66 0.66 0.66 0.63 0.68 

3 ramp capture 0.64 0.59 0.39 0.39 0.28 0.18 0.17 
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accuracy 0.53 0.57 0.55 0.71 0.66 0.75 0.73 

4 ramp capture 0.51 0.48 0.24 0.20 0.16 0.05 0.03 

accuracy 0.56 0.53 0.46 0.47 0.47 0.27 0.33 

Table 15. Performance for upward ramps, 1-6 hours ahead, with Gabor and power 

predictions as input. 

Farm No. thresholds 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

1 ramp capture 0.86 0.84 0.76 0.64 0.64 0.61 0.47 

accuracy 0.44 0.46 0.54 0.61 0.71 0.78 0.80 

2 ramp capture 0.76 0.79 0.78 0.72 0.72 0.68 0.60 

accuracy 0.56 0.56 0.63 0.63 0.64 0.72 0.79 

3 ramp capture 0.87 0.81 0.81 0.67 0.62 0.5 0.39 

accuracy 0.47 0.54 0.58 0.64 0.76 0.82 0.75 

4 ramp capture 0.70 0.68 0.62 0.48 0.38 0.31 0.22 

accuracy 0.29 0.35 0.37 0.40 0.45 0.50 0.54 

Table 16. Performance for upward ramps, 19-24 hours ahead, with Gabor and power 

predictions as input. 

Farm No. thresholds 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

1 ramp capture 0.81 0.69 0.66 0.57 0.44 0.33 0.25 

accuracy 0.44 0.43 0.50 0.53 0.60 0.64 0.60 

2 ramp capture 0.78 0.70 0.67 0.58 0.51 0.5 0.44 

accuracy 0.48 0.52 0.55 0.61 0.6 0.61 0.67 

3 ramp capture 0.86 0.87 0.76 0.70 0.58 0.41 0.30 

accuracy 0.47 0.50 0.53 0.53 0.54 0.6 0.55 

4 ramp capture 0.66 0.81 0.70 0.66 0.53 0.35 0.18 

accuracy 0.34 0.40 0.40 0.44 0.50 0.46 0.40 

Table 17. Performance for downward ramps, 1-6 hours ahead, with Gabor as input only. 

Farm No. thresholds 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

1 ramp capture 0.67 0.56 0.44 0.32 0.25 0.20 0.18 

accuracy 0.42 0.44 0.54 0.63 0.60 0.60 0.64 

2 ramp capture 0.68 0.60 0.39 0.28 0.23 0.14 0.05 

accuracy 0.44 0.43 0.48 0.51 0.50 0.47 0.37 

3 ramp capture 0.71 0.50 0.25 0.17 0.17 0.17 0.17 

accuracy 0.39 0.40 0.40 0.47 0.50 0.62 0.66 

4 ramp capture 0.55 0.48 0.42 0.34 0.21 0.19 0.14 
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accuracy 0.33 0.39 0.40 0.43 0.37 0.52 0.53 

Table 18. Performance for downward ramps, 1-6 hours ahead, with Gabor and power 

predictions as input. 

Farm No. thresholds 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

1 ramp capture 0.74 0.75 0.72 0.63 0.53 0.48 0.34 

accuracy 0.49 0.52 0.55 0.60 0.59 0.59 0.58 

2 ramp capture 0.76 0.75 0.81 0.75 0.62 0.51 0.40 

accuracy 0.50 0.48 0.57 0.62 0.66 0.63 0.63 

3 ramp capture 0.64 0.78 0.75 0.71 0.57 0.46 0.32 

accuracy 0.38 0.44 0.46 0.50 0.53 0.59 0.66 

4 ramp capture 0.78 0.74 0.55 0.53 0.44 0.27 0.21 

accuracy 0.43 0.44 0.45 0.52 0.55 0.54 0.55 

Table 19. Performance for downward ramps, 19-24 hours ahead, with Gabor and power 

predictions as input. 

Farm No. thresholds 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

1 ramp capture 0.59 0.57 0.55 0.54 0.47 0.35 0.25 

accuracy 0.44 0.45 0.5 0.53 0.52 0.52 0.05 

 2 ramp capture 0.75 0.68 0.60 0.64 0.62 0.51 0.35 

accuracy 0.45 0.47 0.51 0.58 0.62 0.64 0.57 

3 ramp capture 0.60 0.64 0.53 0.51 0.41 0.35 0.17 

accuracy 0.34 0.40 0.38 0.43 0.46 0.47 0.40 

4 ramp capture 0.77 0.62 0.51 0.42 0.26 0.22 0.15 

accuracy 0.40 0.45 0.51 0.54 0.48 0.52 0.50 

By choosing a suitable threshold for probabilistic forecasts, the Gabor-method is 

able to provide additional useful information to supplement the conventional 

method by providing warnings when the conventional method misses a ramp event.  

Several examples of ramp prediction using the two methods individually are 

presented in Figure 24. The yellow band indicates ramp predictions made by the 

Gabor method. In Case 1, an up ramp event is predicted by both methods. In Case 2, 

a down ramp is predicted by both methods. In Case 3, the Gabor method provides 

an up ramp warning, while the conventional method misses it.  

The capability in ramp prediction of Gabor-based method is also illustrated in 
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Figures 25 and 26. From bottom to top in each histogram, the percentage of ramp 

events predicted by the conventional and Gabor-based methods exclusively, by 

both methods and the misses are shown. It is clear that the improvement made by 

the Gabor method is less obvious for short horizons than for longer horizons. The 

difference is due to the fact that in the short term the conventional power prediction 

model provides accurate forecasts, which include information about the current 

power generation. However, it is obvious that the Gabor-method is able to provide 

additional warnings to end-users when the conventional method makes a false 

ramp prediction. 
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Figure 24. Three ramp prediction examples. Dotted lines indicate conventional power 

prediction series, and gray bands indicate up and down ramps predicted by Gabor-based 

method, for 13-18 hours ahead. 
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Figure 25. The percentage of ramp events predicted by conventional and Gabor-based 

method exclusively, by both methods and the misses (from bottom to top in each histogram) 

for downward ramps in Farm 1 (top) and Farm 2 (bottom). 
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Figure 26. The percentage of ramp events predicted by conventional and Gabor-based 

method exclusively, by both methods and the misses (from bottom to top in each histogram) 

for upward ramps in Farm 2 (top) and Farm 3 (bottom). 



76 

 

Table 20. Performance comparison for Farm 2, upward ramps. 

 Methods 1-6 hr 7-12 hrs 13-18 hrs 19-24 hrs 

ramp capture 
Conventional 81.16 72.46 52.86 44.29 

Proposed 94.20 88.41 75.71 70.00 

accuracy 
Conventional 87.50 81.97 84.09 70.45 

Proposed 79.27 73.49 77.94 72.06 

Table 21. Performance comparison for Farm 3, upward ramps. 

 Methods 1-6 hrs 7-12 hrs 13-18 hrs 19-24 hrs 

ramp capture 
Conventional 84.38 62.5 58.46 53.85 

Proposed 93.75 76.56 78.46 76.92 

accuracy 
Conventional 77.14 62.50 65.52 61.40 

Proposed 86.96 76.56 73.91 69.44 

Table 22. Performance comparison for Farm 2, downward ramps. 

 Methods 1-6 hrs 7-12 hrs 13-18 hrs 19-24 hrs 

ramp capture 
Conventional 82.81 69.84 42.86 46.03 

Proposed 89.06 79.37 69.84 76.19 

accuracy 
Conventional 85.48 59.46 62.79 74.36 

Proposed 78.08 68.49 65.67 73.85 

Table 23. Performance comparison for Farm 3, downward ramps. 

 Methods 1-6 hr 7-12 hrs 13-18 hrs 19-24 hrs 

ramp capture 
Conventional 76.79 57.14 45.45 51.79 

Proposed 89.29 82.14 70.91 73.21 

accuracy 
Conventional 56.58 50.00 52.08 51.79 

Proposed 71.43 63.01 60.00 63.08 

In order to quantify the ramp forecasting improvement provided by our 

proposed method (i.e. involving warnings provided by the Gabor method), we test 

ramp capture and forecast accuracy on the testing data sets using the conventional 

method and the strategy involving the warnings provided by the Gabor-based 

method. The inclusion of the Gabor method improves both metrics in most cases 

(Tables 20 – 23). The exceptions are for forecast horizons of less than six hours. For 

short prediction horizons, the performance of the conventional method itself is 

excellent, due to the inclusion of the current power generation (i.e. persistence) in 
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the model input. The forecast improvement achieved using the proposed 

Gabor-based method is apparent for cases with longer forecast horizons, both for up 

and down ramps.  

5.4 Summary 

In this chapter, we have addressed the pressure gradient, a key meteorological 

variable widely applied in power and wind ramp forecasting, using an edge 

extraction technology called Gabor filters. A ramp prediction system was first built 

using an MLP predictor together with extracted pressure gradient features using 

Gabor filters. The output of wind ramp occurrences obtained from this system was 

combined with the result from a conventional wind ramp prediction framework 

described in chapter 3. Experiments were conducted at four wind farms to examine 

whether the Gabor method could complement the conventional wind ramp 

prediction. The Gabor method was able to provide warnings in cases where wind 

ramps were missed by the conventional prediction method. For forecast horizons of 

more than six hours, inclusion of the Gabor method improved both the wind ramp 

capture rate and the wind forecast accuracy in most cases.  
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6 Temporal Uncertainty of Ramp Detection Based on 

Scenario Generations 
In this chapter, we address the temporal uncertainty of ramps and use different 

scenarios to help make probabilistic ramp forecasts. 

Two types of errors are associated with ramp forecasting: magnitude and phase 

errors. A phase error refers to an error in forecasting ramp timing. A large phase 

error may severely decrease the benefits of ramp prediction, resulting in delayed 

or too advanced operations (Potter et al 2009; Bossavy et al. 2013). A report on 

interviews of end-users indicates that a probabilistic ramp forecast is much needed. 

It would provide uncertainty information on ramp timing (Giebel et al. 2011).  

6.1 Scenario Generation 

As one form of probabilistic wind power forecast, scenarios have been widely 

used in electric market operations such as stochastic unit commitment (Zhou et al. 

2013; Wang et al. 2008, 2011).  

Scenarios (Figure 27) can be generated by converting a series of prediction 

errors to a multivariate Gaussian random variable on the basis of quantile power 

forecasts (Morales et al. 2010; Pinson et al. 2009). Statistical scenarios are 

generated based on the predicted density distributions of wind power production.  
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Figure 27. Illustration of generated scenarios. Dotted lines indicate the five scenarios 

generated based on predicted power series (thick solid line) using a statistical method. 

6.1.1 Quantile Forecasts of Wind Power 

Input to scenario generation is generally obtained from other forms of 

probabilistic forecasts of wind power (Pinson et al. 2007B,  2012B; Sideratos et 

al. 2012; Zhang et al. 2013A), including quantile forecasts (Nielsen et al. 2006; 

Anastasiades et al. 2013), the kernel density function (Jeon et al. 2012; Bessa et al. 

2011, 2012), and prediction intervals (Pinson et al. 2010). Quantile forecasts are 

the most widely used of these forecasts, and other probabilistic wind power 

forecast methods can be expressed in terms of quantile forecasts. 

Pritchard et al. (2011) discussed several quantile-type models for forecasting 

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=55617510300&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=7101687526&zone=
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uncertainty in wind power within a few hours. Bremnes et al. (2004, 2006) used a 

local quantile regression model based on meteorological forecasts. Nielsen et al. 

(2006) used splines quantile regression, which consists of a linear quantile 

regression and parametric additive models with the basis functions formulated as 

cubic B-splines, to produce quantiles of conditional predictive distributions of 

forecast error.  

We use the approach by Nielsen et al. (2006) to produce quantile forecasts of 

wind power based on point power forecasts. The model employs a linear quantile 

regression, where the basis functions are formulated as cubic B-splines, in order to 

obtain the quantile with a proportion of the forecast errors. The explanatory 

variable used for quantile forecasting is only the predicted power.  

The input explanatory variable can be approximated by a linear combination of 

the basis functions of the corresponding variable: 

∑
=

=
N

n
jnjjnjj xbxf

1
)()( ε ,                           (21) 

where )( jj xb  are basis functions, and ε are the unknown coefficients. A 

restriction is imposed on the above equation, such that 0)0( =jf , in order to obtain 

unique estimates. The resulting quantile model is a linear regression model: 

pjxfQ
p

j
jj ,...,1,);()()(

1
=+= ∑

=

ττκτ .                         (22) 

In equation 22, p represents the number of variables involved. Parametersε and

κ are estimated by using least squares estimation. 

6.1.2 Scenario Generation Methodology 

The scenario generation used in this work is adopted from Pinson et al. (2009). 
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The method takes as inputs the forecasted quantiles for each look-ahead time-step 

and also the observed wind power generation. The forecast errors are made 

Gaussian by applying a transformation with the inverse of the Gaussian 

cumulative distribution function, resulting in a Gaussian random variable with 

zero mean and unit standard deviation. By generating several realizations of this 

Gaussian random variable, scenarios can finally be obtained after the quantile 

forecasts of the wind power have been made. 

For a lead time k based on current time t , let ktP+ represent the power generation; 

tktf |
ˆ
+ is the estimated probability density function (PDF) of the predicted power at 

time t for lead time k ; and tktF |
ˆ
+ is the related cumulative distribution function 

(CDF). A random variable tktY |+ is defined as  

)(ˆ
|| kttkttkt pFY +++ = ,                                    (23) 

which should be uniformly distributed; i.e., ]1,0[~| UY tkt+  if the forecast is reliable. 

Then we convert tktY |+  to tktX |+ by applying the probit function 1−Φ  corresponding 

to the inverse of the Gaussian CDF: 

)12(erf2)( 11 −=Φ= −− t
k

t
k

t
k XYX ,                                (24) 

where -1erf  is the inverse error function.  

The obtained tktX |+ is normally distributed; i.e., )1,0(~| NX tkt+ ; d realizations 

of the random variable diX i
tkt ...1,)(
| =+  can then be generated by using a Gaussian 

random generator. 

Based on these realizations, d realizations of )(
|

i
tktY +  can be obtained by applying 
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the inverse probit function to each component of )(
|

i
tktX +  for each future time step

kt + : 

)( )(
|

)(
|

i
tkt

i
tkt XY ++ Φ= .                                      (25) 

Finally, we apply to the d  realizations diY i
tkt ...1,)(
| =+ the inverse cumulative 

distribution function 1
|

ˆ −
+ tktF . The resulting power value at kt + for the i th scenario 

should afterwards be written as 

)(ˆˆ )(
|

1
|

)(
|

i
tkttkt

i
tkt YFP +

−
++ = .                              (26) 

By using this method, we obtain d  scenarios of the wind power production

)(
|

ˆ i
tktP+  at time t for lead time k .  

6.2 Probability of Ramp Occurrences Given Scenario Member  

As mentioned above, a predicted ramp event could actually occur hours before or 

after an observed one. Therefore, a tolerance interval, defining a temporal range 

around the timing of observed ramps, is typically used to account for the phase 

error.  

To address uncertainty about the phase error, here we use scenarios to estimate 

the temporal uncertainty of ramp forecasts. The uncertainty is expressed as 

probabilities of ramp occurrence conditional on the number of scenario members 

forecasting the ramp event, within a set of time intervals centered on that timing 

(Bossavy et al. 2013). 

After generating scenarios, ramps are identified from each scenario member 

separately. These forecast ramps are then clustered into coherent groups, each of 

them resulting in a unique forecast event. The probability of the occurrence of 

each forecast ramp is defined conditional on the number of members predicting. 
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This relationship can be formulated by using logistic regression or Linear 

Discriminant Analysis (LDA). LDA assumes that the independent variables are 

normally distributed, but logistic regression has no such assumption and leaves 

the marginal density of independent variables as an arbitrary density function 

(Hastie et al. 2009). Instead, we choose logistic regression to conduct conditional 

probability estimation. This method was used in Bossavy et al. (2013) where 

NWP ensembles are used rather than scenarios. 

Let mp ,δ be the probability of observing a ramp within δ tolerance interval, 

conditional on m scenario predicting it. It can be written as 

)|1Pr(, mNRp memm === δδ ,                             (27) 

where memN is the number of scenario members predicting one ramp event, and δR

represents whether a ramp actually is occurring within the tolerance intervalδ ; i.e., 

1=δR if the ramp does occur and 0 otherwise. 

Then mp ,δ can be estimated by using logistic regression as follows: 

δδ
δ

δ βα +=
−

m
p

p

m

m

,

,

1
log ,                             (28) 

where model parametersα and β are fit by using the maximum likelihood method, 

using the conditional likelihood of outputs given those independent variables.  

6.3 Case Studies: Evaluation of the Temporal Uncertainty of Ramps 

In this section, we analyze the results of the temporal uncertainty of ramp event 

prediction. The entire dataset was sequentially divided into three components of 

50%, 20%, and 30% of data, denoted as the training, validating and testing dataset, 

respectively. Based on these datasets, an MLP network was constructed to provide 
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point power forecasts. Quantile regressions of wind power were trained over the 

training datasets and tested for the others. The probabilistic forecast is represented 

through a set of quantiles ranging from 5% to 95% in 5% increments. 

Five hundred scenarios were generated based on the predicted quantiles for both 

the validation and testing datasets, in which the former were then used to train the 

probabilistic forecasts of ramp occurrences while the latter were used to test the 

performance.  

6.3.1 Evaluation of Probabilistic Forecasts of Wind Power 

We first estimate the calibration of quantile forecasts. Figures 28 and 29 show the 

estimated probabilities and observed proportions below each quantile for the 

testing datasets for different prediction horizons and for different farms.  

Figures 28 and 29 show that for a lead time of 6 hours, the quantiles are 

underestimated for Farms 1, 2 and 3, and the worst performance occurs at Farm 2. 

The quantile forecasts for Farm 4 are close to the actual ones. For a lead time of 24 

hours, the quantile forecasts for all four farms are comparable to the ones for the 

6-hour-horizon, except that overestimation occurs for Farm 4.  
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Figure 28. Forecast probabilities and observed proportions below each estimated quantile. 

The dotted line is the ideal situation, for a lead time of 6 hours. 
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Figure 29. Forecast probabilities and observed proportions below each estimated quantile. 

Blue dotted line is the ideal situation for a lead time of 24 hours. 

6.3.2 Evaluation of Scenarios 

In order to validate the marginal distribution of scenarios, a rank histogram is used, 

which illustrates the frequencies with which the observations of power generation 

are located between the ordered values from the scenarios on a per-horizon basis. 

The perfect marginal distribution of scenarios will result in a flat rank histogram. 

We generated 50 scenarios, indicating 51 bins in which the actual power generation 

may fall. In an ideal situation, equal frequency should be present in each bin.  

Figure 30 shows that the rank histogram deviated no more than 0.01 from the 

ideal line, i.e., the line with the 1/51 ordinate. The deviation is symmetric with 
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respect to the ideal line. For the different prediction horizons, the illustrations of 

the rank histogram do not significantly differ in the accuracy of the marginal 

distribution of the scenarios.  

 

Figure 30. Rank Histogram. Frequencies of observed power located between ordered 

scenarios, for a lead time of 6 hours. 

6.3.3 Evaluation of Temporal Uncertainty of Ramps 

In the proposed method, the scenario member is used as the single explanatory 

variable to conduct conditional probability forecasts of ramp occurrences. Figure 

31 shows the relationship between the number of supporting scenario members and 

the corresponding probability estimation of ramp occurrences. The estimated 

probability increases with the number of scenario members predicting the events 
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over all prediction horizons, and this phenomenon is more obvious in shorter 

prediction horizons than in the longer ones for all four farms. 

 

Figure 31. Scenario member and the corresponding probability estimation of ramp 

occurrences, for downward ramps in Farm 1. 

The performance of temporal uncertainty forecasts of ramp occurrences is 

estimated in terms of its improvement compared to climatology forecasts. We first 

calculate the Brier Score (BS). The BS is widely used to evaluate the probabilistic 

forecasts of binary events, which in our case, are the ramp events (Wilks 2011; 

Roulston et al. 2002; Hersbach et al. 2000).  

Let ip represent the estimated probability of i -th ramp event occurrence. Let iy  

represent the actual occurrence of the corresponding event: iy =1 if the ramp 

actually occurs and equals 0 otherwise. BS is thus defined as 
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.                            (29) 

The Brier Skill Score (BSS) is then derived on the basis of the BS. The BSS 

indicates the improvement of the proposed method, i.e., the conditional 

probabilistic forecasts of ramp occurrence conditional on the supporting scenario 

number, over climatology forecasts. Climatology means the unconditional 

probability of ramp occurrence within a certain prediction interval, as defined in 

equation 30: 

lim
lim 1

c
c BS

BSBSS −= ,                                  (30) 

where the climatology forecast is ∑
=

=
N

i
ic y

N
p

1
lim

1
 

Table 24 lists the BSS values for different tolerance intervals and the prediction 

horizons for all four farms. This table shows clearly that the performance of the 

proposed method is better in the shorter prediction horizons than in the longer ones. 

The reason may be the high accuracy of point power forecasts in short predictions, 

due to the inclusion of the current power generation (i.e., persistency) in the model 

input. 

As shown in Tables 24 and 25, large tolerance intervals do not indicate a better 

BSS. For prediction horizons from 1 to 6 hours, the BSS value is significantly 

higher than that for the other horizons, especially for the upward ramp events.  

Table 24. BSS for upward ramps in Farms 1-4. 

Farm No. tolerate time 1-6 hrs 7-12 hrs 13-18 hrs 19-24 hrs 

1 

3 hrs 7.47 2.98 1.68 2.90 

5 hrs 7.46 3.90 0.20 2.58 

8 hrs 5.73 2.44 0.95 1.98 

10 hrs 5.03 2.70 1.30 1.56 
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2 

3 hrs 11.80 1.64 1.47 0.83 

5 hrs 11.97 1.45 2.94 5.55 

8 hrs 10.18 2.05 3.81 4.73 

10 hrs 12.19 4.40 5.10 5.07 

3 

3 hrs 11.79 3.80 3.16 3.46 

5 hrs 9.81 1.29 2.36 5.71 

8 hrs 5.24 1.52 1.84 2.23 

10 hrs 4.45 1.30 1.36 1.50 

4 

3 hrs 12.08 2.75 5.93 6.88 

5 hrs 10.19 2.22 2.18 6.33 

8 hrs 4.78 3.94 2.71 3.62 

10 hrs 3.96 4.31 2.48 3.58 

Table 25. BSS for downward ramps in Farms 1-4. 

Farm No. tolerate time 1-6 hrs 7-12 hrs 13-18 hrs 19-24 hrs 

1 

3 hrs 4.13 1.68 0.87 2.94 

5 hrs 7.06 1.83 1.48 1.71 

8 hrs 4.33 0.76 0.42 1.59 

10 hrs 2.92 0.93 0.059 1.69 

2 

3 hrs 12.7 0.91 4.25 4.37 

5 hrs 8.42 1.33 1.93 4.98 

8 hrs 7.78 2.85 2.38 2.41 

10 hrs 6.80 3.35 4.01 3.70 

3 

3 hrs 7.18 1.97 0.60 3.32 

5 hrs 4.92 2.61 3.94 1.88 

8 hrs 1.73 1.53 1.64 1.11 

10 hrs 1.88 1.85 1.21 0.30 

4 

3 hrs 7.58 5.04 6.70 6.41 

5 hrs 11.29 3.59 4.52 6.14 

8 hrs 6.26 3.17 3.11 2.64 

10 hrs 4.68 4.33 3.89 2.00 

In addition to the BS, we also test the reliability of probabilistic forecasts of 

ramp occurrences. Reliability pertains to the correspondence of the frequencies of 

the actual ramp occurrences conditional on the forecasts. By sorting and dividing 

the probabilistic forecasts into several bins, the average frequencies of the ramp 

occurrences in each bin are calculated and compared to the corresponding average 
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forecasted probabilities. 

Figure 32 illustrates the reliability diagram for a tolerance interval of 8 hours for 

different prediction horizons. In order to alleviate the uncertainty of the results 

caused by the limit in data size, we used a resampling technique designed to 

calculate the 90% confidence intervals of perfect reliabilities. Figure 32 shows that 

for prediction horizons of 1-6 hours, our proposed method generally does not 

deviate further from the range of perfect reliability, indicating a good 

correspondence between the observed and forecast probabilities.  

 

Figure 32. Reliability diagram for downward ramps and lead time of 1- 6 hours. The 

vertical lines indicate ranges of 90% confidence intervals of perfect reliabilities. 

However, for the prediction horizons from 19 to 24 hours, the observed 
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frequencies are much higher than the forecast probabilities for the cases in Farms 2, 

3 and 4. This underestimation of the ramp occurrences in a single bin may be due to 

the very limited number of data points presented.  

To tackle the problem of the limited data size, we also apply logistic regression 

to the testing datasets and compare the estimated probabilities with the ones derived 

from the training datasets. The results are illustrated in Figures 33 and 34, where 

the estimated probabilities conditional on the scenario numbers derived separately 

from the training and testing datasets are plotted. The results present a close 

correspondence between the two, illustrating the merits of the proposed method, 

which conducts conditional probability forecasts by using the scenario number as 

the explanatory variable. 
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Figure 33. Estimated probability comparison between training and testing datasets, for 

downward ramps and 1-6 hours lead time. 
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Figure 34. Estimated probability comparison between training and testing datasets, for 

downward ramps and 19-24 hours lead time. 

After we derive probabilistic forecasts of ramp occurrences for different time 

intervals, we can derive the temporal uncertainty for a single ramp event with 

respect to different tolerance intervals. An example is illustrated in Figure 35, 

where two ramps occur in the presented time series. In each ramp, the probability of 

ramp occurrences within certain intervals is presented. A wider tolerance interval is 

associated with increased probability of ramp occurrence.  
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Figure 35. Example of temporal uncertainty forecasts of ramp events. Observed and 

predicted power series are shown, together with the probabilities of ramp occurrence 

within the corresponding banded areas. 

6.4 Summary 

Phase error refers to the time difference between the wind ramp forecast and 

observed wind ramps. Providing temporal uncertainty information in addition to 

conventional power time series for wind ramp timing can be helpful to end users. In 

this chapter we provided a reliable way to forecast the temporal uncertainty of wind 

ramp occurrence. The temporal uncertainty of wind ramps was addressed with an 

NWP ensemble by Bossavy et al. (2013). Here we propose to address this issue 

using statistical scenarios generated from quantile forecasts of wind power. The 

probability of a wind ramp occurring in a certain time interval was estimated using 
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logistic regression based on the number of scenario members forecasting the wind 

ramp event. To evaluate the reliability of the probabilistic forecast of ramp 

occurrences, the method was applied to data from four wind farms in Canada and 

the output from a WRF model. Quantile forecasts of power generation were 

validated by comparing the observed frequencies and forecast probabilities under 

each quantile. The estimated probability of ramp occurrences increased with the 

number of supporting scenario members. The BSS score indicated that the 

proposed method was superior to climatology forecasts, especially for short 

prediction horizons. Finally, we used a reliability diagram to test the 

correspondence of observed and forecast wind ramp occurrences. The results 

indicated that our method that uses the scenario number as the explanatory variable 

to make conditional probability forecasts can help operators judge the uncertainty 

of wind forecasting and lower the risk to operations. 
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7 Conclusions  
In power systems, balance is maintained by continuously adjusting generation and 

demand. In an electrical power system that integrates electricity generated by 

wind, such adjustments are difficult because the variable nature of wind provides 

a fluctuating source of electrical energy. When wind power is integrated into an 

electrical grid, the ups and downs of wind velocity, particularly wind ramps, are 

reflected in the power output of wind turbines, thereby compromising the balance 

and security of electrical power production. In such a scenario, accurate wind 

power forecasts can help to balance electrical output, and the creation of wind 

power forecasting models is a fertile research activity. Short-term wind power 

forecasting models for day-ahead predictions of wind activity usually comprise a 

NWP model that can provide wind forecasts and statistical or machine learning 

methods that can convert wind forecasts to wind power generation predictions. 

Wind ramps cause sudden and large changes in wind power generation and the 

thesis presents research that addresses the difficulty of wind ramp prediction by 

investigating the impact of weather patterns on wind ramps and by examining the 

probabilistic information in wind ramp forecasts. The methodologies proposed in 

the thesis are tested with data from four wind farms located on the leeside of the 

Rocky Mountains. NWP model performance in regions of complex terrain leads 

to less accurate wind power and wind ramp predictions in mountainous areas than 

would be expected for relatively flat areas. 

7.1 Research Contributions  

The research contributes to improvements in wind ramp predictions. Several 

meteorological variables were tested with respect to wind ramp prediction on four 

wind farms. Some of the metrics delivered better prediction performance than 

others in certain situations. The inclusion of a pressure gradient resulted in good 
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prediction of upward wind ramps and inclusion of the temperature two meters 

above ground resulted in a better prediction of downward wind ramps. 

To analyze the impact of weather patterns on wind ramp predictions, specific 

prediction systems were built for each subset of data, which was divided 

according to the hourly wind speed changes, the synoptic atmospheric circulation 

types, and the K-means clustering of meteorological variables, including surface 

pressure, pressure gradient, atmospheric temperature and wind direction.  

To complement conventional wind ramp prediction methods, an independent 

prediction methodology was constructed using pressure gradient information in 

different directions and spatial scales. The extraction of this information was 

realized by Gabor filters, image processing techniques designed to extract edges.  

Temporal uncertainty of wind ramp forecasts was addressed using scenarios 

generating from quantile forecasts of wind power. The probability of wind ramp 

occurring within certain time intervals was thus estimated using logistic 

regression technique, conditional on the number of scenarios forecasting the wind 

ramp event.  

7.2 Significance of the Research  

The research in this thesis provides insight into wind ramp predictions, and will 

thus support the daily operations of wind power penetration into electric grids. 

Dynamic and stable weather systems were distinguished with the use of clustering 

and classification methods. Experiments showed that dynamic weather made wind 

power prediction difficult and thus forecasts had lower accuracy whereas stable 

weather allowed forecasts with higher accuracy.  

By using separation predictions based on different weather patterns, the 

information of weather types can be provided to electrical grid operators, together 

with the expected corresponding forecast accuracy under that weather pattern. For 
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example, during a period of dynamic weather such as a high wind speed change or 

a large pressure gradient, electrical grid operators can be notified of a large 

forecast error in that period and take actions to handle the risk. 

Pressure gradient, an important meteorological variable closely associated with 

wind speed, is proposed to be described using Gabor filters. This technique is able 

to extract pressure gradient information at different spatial scales and in different 

directions. Using this information, a single wind ramp prediction model can be set 

up. The method is able to provide warnings in case the wind ramps are missed by 

the conventional method. This is a significant complement to daily operation of 

wind power management based on conventional strategy.  

The thesis provides a reliable way to forecast the temporal uncertainty of wind 

ramp occurrence. It is realized as the probability of each forecast wind ramp event 

happening in a certain time interval. The temporal uncertainty of wind ramps has 

been addressed using an NWP ensemble; this is the first time that it has been 

addressed using a probabilistic wind power forecast. The need for this 

probabilistic forecast of wind ramps has been stated by end-users in the industry 

(Giebel et al. 2011). The forecast can help operators to judge the uncertainty of 

forecast and the risk to operations, and thus make decisions accordingly.  

7.3 Future Work  

This thesis contributes to the improvement of wind ramp predictions, and aims to 

help end-users in power systems better manage wind power integration. 

Nevertheless, there are potential opportunities to expand on the research presented, 

for example, to increase the forecasting accuracy of an NWP model or to provide 

more information on the uncertainty of forecasting errors. Different 

parameterization options can be used in NWP models, and the accuracy of wind 

forecast can thus be evaluated and compared between model outputs in order to 
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obtain the optimal parameterization option. An NWP ensemble, which is produced 

by perturbing the initial conditions, or a different parameterization of a NWP 

model, can provide additional uncertainty information for a wind forecast. 

A more comprehensive dataset could be built, spanning a time frame long 

enough to reflect climate characteristics. First, it would ensure that the period 

considered is not an anomalous one. Second, instead of clustering the data based 

on a single variable as we did, it is possible to build a more detailed separate 

method. The meteorological variables can be considered in combination and more 

clusters can be derived. For example, data with a steep pressure gradient, low 

temperature, and low wind speed change can be defined as a single cluster. In this 

case, the impact of more specific weather patterns on wind ramp events could be 

analyzed.  

Different areas have different prevailing weather systems, thus the weather 

conditions causing wind ramps are different. For example, in an area of calm 

conditions with wind gusts, the prevailing wind gusts might cause wind ramps. 

The applicability of the Gabor-based wind ramp prediction method could be 

studied for use in locations with different geographic and climatic conditions. 

Post-processing steps such as model output statistics (MOS) should be added 

operationally in order to better use NWP forecasts. This would improve the 

accuracy of the forecast weather data, given the on-site measurement of wind 

speed.  

Objective identification of weather systems associated with wind ramps, such 

as cold fronts and cyclones, are well addressed using computing intelligence 

methods. These methods have been used mainly as automatic tools to generate 

official weather maps, yet have not been well integrated into wind power 

forecasting. They have potential in providing valuable information in wind ramp 

event forecasting, such as the type, strength, and movement of wind-ramp-related 
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weather systems.  
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