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Abstract

In this thesis, we study the problem of robust filtering under network-induced errors. Our

intention is to design a robust filter that provides stable estimates of the plant states

when the plant model is uncertain, the states are disturbed with an unknown input, and

the measurements are quantized and therefore erroneous. To this end, we tackle the

problem by first studying the various problems caused by the network and their effects on

the filtering process when there are no model uncertainties and unknown inputs. Once

familiarized with the challenges encountered in the design process, an active approach is

proposed to deal with the error caused by quantization and packet dropouts, which gives

way to considerably better performance specially when a coarse quantizer is considered.

Since our final design needs to be robust to unknown disturbances, we will propose two

novel unknown-input linear filters, which are free of some of the restrictive assumptions

seen in the literature. Both of these filters are based on a modified plant model, however,

one of them has more design parameters and comes with a heavier computational burden

than the other, but in return it generates slightly smoother estimates of both the states

and the unknown input.

Having two distinct classes of filters, one with the ability to estimate the network-

induced errors and one capable of estimating and rejecting unknown disturbances, we next

propose a two-zone robust filter, which estimates the states with limited information and

under unknown disturbances. The two-zone idea is based on the fact that the error caused

by a linear quantizer is significant only when the estimates are close to their real values.

Taking advantage of this fact, the estimation space can be divided into two operating zones

based on the reliability of the received information. Finally, the two-zone filter is adapted

for a fault-tolerant filtering application where the measurements are assumed to undergo

coarse quantization, and unknown disturbances and model uncertainties are employed to
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model various fault scenarios.
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Notation

R, Z The sets of real and integer numbers

R+, Z+ The sets of nonnegative real and integer numbers

Rn The set of real n-dimensional vector

Rn×m The set of real n×m matrices

`p Function space with well-defined p-norm

`pe Extended `p space of truncated signals

∃ Existential quantifier

∀ Universal quantifier

x ∈ X x is an element of set X

X ⊂ Y X is a subset of Y

AT Transpose of matrix or vector A

A−1 Inverse of matrix A

I Identity matrix of appropriate dimension

‖ · ‖ Euclidean norm of a vector

* Block symmetric matrix in LMI’s

P > (<)0 P is a positive (negative) definite matrix

P ≥ (≤)0 P is a positive (negative) semi-definite matrix

In addition, a function φ(x, u) : Rn × Rm → Rn is said to be locally Lipschitz in re-

gion D ⊂ Rn with respect to x, uniformly in u, if there exists l > 0 satisfying

‖φ(x1, u
∗)− φ(x2, u

∗)‖ ≤ l‖x1 − x2‖ ∀x ∈ D.

The smallest l > 0 satisfying the above equation is known as the Lipschitz constant.

A sequence v is said to have finite support if there is an integer N such that v(k) = 0

for any k > N . A sequence v with support in the set 0,≤ k ≤ s will be denoted vs(k);
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i.e. vs(k) = {v(0), v(1), . . . , v(s), 0, 0, . . .} (see [1]). It is clear that any real sequence with

finite support, belongs to the `2 space.
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Chapter 1

Introduction

1.1 Background and Literature Review

Numerous applications of state estimation and observation have drawn great interest into

the field since its early years. In a classical configuration, an observer receives information

directly from the plant. In a modern configuration, however, the information between the

plant and the observer is transmitted over a communication channel. ”Networked control

systems” have seen a great deal of attention over the last decade. Figure 1 shows the

general schematic of a networked control system.

Figure 1.1: General schematic of networked control systems

Having multiple controllers, sensors and actuators connected through a communication

network has several advantages such as low wiring cost, easy maintenance, reduced power

requirements, and high reliability. However, these advantages become less noticeable as

1



the number of the connected elements drop.

The insertion of the communication network in the feedback loop, on the other hand,

makes the analysis and design of an NCS far more complex than a network-free control

system. The main difficulties encountered are the following:

• Limited channel capacity and quantization effects: data rates used throughout net-

works are typically constrained, thus limiting the sampling rates used in control

design. Quantization effects therefore become important because the number of

quantization levels used in the transmission affects the communication flow and the

capacity required to transmit information.

• Network-induced delays: time-varying delays originated and dependent upon net-

work transmission delays.

• Packet-dropouts: information transmitted through the network is broken into a

stream of packets. Depending on the characteristics of the network, packets can not

only suffer delays but they can also be lost during transmission.

• Communication constraints: the presence of more than one sensor on the network

asks for a network-access protocol. This leads to the unavailability of the sensor (or

controller) data to the filter (or actuator) at every sampling instant.

A report published by Richard Murray in 2003, (see [2]) stated that control over

communication networks would be one of the major challenges and future directions in

control. Since those years, many important results have been obtained in this field. Pioneer

work on NCS include, among others, [3], [4], [5], [6] and [7]. See also the recent survey [8]

covering the subject up to 2007. In this thesis our interest is in the state estimation or

filtering problem over communication networks. A filter is, in fact, a state observer with

the capacity to limit the effects of exogenous inputs on the estimation error and is one of

the classical problems encountered in systems theory. Perhaps the most celebrated result

in estimation theory is the classical Kalman filter [9], which has been applied in numerous

applications ranging from guidance, navigation and control, to biological systems [10], [11].

A standard assumption in Kalman filtering is that the process dynamics and measurements

are affected by additive white noise with known covariance properties, which are not
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always easy to obtain. An alternative to the Kalman filtering problem is the H∞ filtering

which provides a guaranteed noise attenuation level in the presence of noise with unknown

statistics. H∞ filtering has received much attention. See, for example, [12], [13], [11] and

the references therein.

The importance of networked control systems has also been officially acknowledged in

industry. In 2007 the International Society of Automation (ISA) released the ISA100.11

protocol setting industrial standards for networked based control. In 2008 they also re-

leased the ISA100.11a, which focuses on process systems such as the petrochemical indus-

try.

In this thesis our interest is in the robust filtering problem in a network setting. Our

goal is to explicitly discuss the effects of the network on the filter stability and perfor-

mance and to propose a design methodology that can limit those effects with an arbitrary

attenuation level. Different approaches that deal with the filtering problem can be found

in the literature. In [14] the problem of state estimation for discrete-time linear systems

with quantized measurements is investigated. The quantization error is modeled as a

multiplicative noise and a static-gain observer is designed to address the problem. [15] de-

signs a filter for networked linear systems with communication constraints. In that work,

a stochastic approach is taken to model the network access probability. In [16] filtering

of discrete-time linear systems over wireless fading channels is discussed where a mobile

sensor observes a dynamical system and sends its observation to a remote estimation

unit. [17] considers the state estimation of continuous-time linear time varying uncertain

systems via a limited capacity communication channel. [12] considers the problem of H∞

estimation for continuous-time linear uncertain systems when network-induced problems

such as quantization, delay and packet dropout are present. In [18] an stochastic approach

is taken to estimate the states of a Lipschitz nonlinear system with time-varying delays in

the states. [19] finds a minimum data transmission rate for the convergent estimation of a

process with a specific distribution. [20] introduces a two-agent scheme, namely observer

and estimator, under communication constraints. The former is located by the sensor

and is responsible for evaluating the sensor data and transmitting them. The latter is by

the user on the other end of the channel, and is responsible for using the received data

to generate the state estimates. Another similar two-agent scheme is introduced in [21]
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under communication constraints, where the system is assumed to be uncertain and the

estimator part is a Kalman filter. In [22] the problem of Kalman filtering over a network

with packet dropouts is considered. In that work, authors model the information loss

using a probability function and then find the minimum number of the packets that need

to be transmitted for filter stability. More works on estimation and filtering over networks

can be found in [23], [24], [25], [26] and the references therein.

Among the various problems induced by the network, we are more concentrated on

the issues arose by quantization and packet dropouts. Most references in this area handle

the quantization errors in one of two ways: (i) as model uncertainty when they deal with

logarithmic quantization, or (ii) as an unknown disturbance when the quantizer is linear.

In [22], the state estimation problem with packet dropouts is studied and an stochastic

approach with Kalman filter is proposed. [14] considers a joint design procedure for both

the estimator and the quantizer. In that work, both static and dynamic quantization

schemes are studied and the trade-off between performance degradation and quantization

density is investigated. In [17], the authors use the deterministic form of Kalman filter

(see [27]) to design a state estimator in the presence of quantization. [20] investigates a two-

agent estimation problem where the first agent observes the process and decides whether

or not the current information should be disclosed to the second. The second agent

then generates the state estimates based on the limited information received. In [24], the

random packet dropout rate is modeled as an stochastic parameter and then a set of LMI’s

is derived to design an H2 optimal filter. References [28] and [29] consider the problem

of H∞ filtering in the presence of quantization and random sensor packet losses. In [15],

channel accessing processes are modeled as Bernoulli processes and an optimal linear filter

is designed using the orthogonal projection principle and the innovation analysis. [30]

studies the filter design problem under uncertain delay for Lipschitz nonlinear systems.

Our focus in this thesis is on a specific class of filters known as Unknown Input Filters.

Unknown disturbances can lead to significant deviations between the true plant states and

those reconstructed by the observer and therefore much attention has been drawn to the

solution of this problem. One important approach is by using the disturbance decoupling

principle to render a state observer that is immune to those effects. The approach was

first proposed by Wang, Davison and Dorato in 1975, [31], and since then it has been the

4



subject of constant research. In [32] the authors design an unknown input observer with

the assumption that the C matrix in the state space realization has a specific structure.

The idea is to use a similarity transformation to partition the states into two groups

such that only the second set of states is affected by the disturbance. A conventional

observer is then designed for the first partition and the remaining states are obtained

from them. In [33] the problem of unknown input observer design is discussed in detail

for generalized state space models. [34] introduces an optimal unknown input filter with

a form similar to the well-known Kalman filter. In [35] the authors assume bounded

unknown inputs and propose a full-order observer, with the same state parameters as the

original continuous-time linear system. This work was later extended in [36] to reduced

order observers. [37] proposes a full-order observer for delay-free estimation of the system

states by allowing very small errors between the original and estimated states, which

account for the variations of the unknown input. In [38] the general structured observer

framework is used to design an unknown input observer for discrete-time linear systems.

[39] proposes a reduced order dynamic observer with an H∞ performance measure. In [40]

a new dynamical observer framework is used to design an H∞ filter for Lipschitz nonlinear

systems with unknown inputs. In [41] the authors combine an unknown input observer and

a finite time observer to achieve finite time convergence of the estimation error dynamics.

See also [42], [43], [44], [45], [33], [38], [39] , [40], and the references therein.

Unknown input observers rely on a key structural assumption on the state-space real-

ization of the system; namely: rank(CB2) = rank(B2), where C and B2 are respectively

the state space matrices corresponding to the measurements and the unknown inputs.

This assumption was first introduced in [46] and places restrictive necessary and sufficient

conditions in the solution of the decoupling problem and thus in the very existence of

the unknown input observer. Several authors have attempted to circumvent this struc-

tural assumption and design unknown input observers under less restrictive conditions

( [47], [48], [49], [50] , [51], [52] , and [53]).

These references overcome the structural limitations in [46] at the expense of alterna-

tive assumptions. In [47] and [48], Sundaram and Hadjicostis provide a characterization of

observers with delay, which relaxes the well-known structural assumption. Their method

provides a parameterization of the observer gain that decouples the unknown inputs from
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the estimation error and then uses the remaining freedom to ensure stability of the error

system. [49] later extended this work by developing a design procedure that characterizes

the set of all linear functionals of the system states that can be estimated by a linear ob-

server with a given delay. In [50] an algorithm is proposed to design finite-time observers

provided that the system is left-invertible with sampling delays. The algorithm computes

some variables that are not affected by the unknown inputs and then performs a change

of coordinates that makes the transformed system well-suited for designing the delayed

estimator. In [51] the structural condition is circumvented by using a nonlinear sliding

mode observer. [52] also employs a nonlinear sliding mode observer and provides finite-time

error-free estimates assuming that the unknown inputs belong to L2. Unlike [51], their

observer also generates estimates of the unknown inputs, a very important feature in fault

detection applications. [53] replaces the structural condition in [46] with the assumption

that the state space matrix A is invertible. In that work, the authors design an observer

assuming that at each sampling instant, the unknown input can be approximated using a

polynomial.

When both of the previously mentioned problems, namely filter design with limited

information and unknown input filtering, are considered together, a joint problem is formed

which is more complex to solve. The closest literature, which in a way addresses the joint

problem can be found in the field of fault detection in networked systems where a very

common approach for detecting a fault is by designing a residual generating filter. This

filter is designed such that it is robust to the problems imposed by the network and yet

sensitive to faults, which are usually modelled by an unknown signal affecting the states

or the measurements. In [54] a fault detection filter is designed to detect `2-bounded

faults when unknown disturbances and packet dropouts are present. [55] proposes an H∞

approach to designing a residual generating filter which is robust to network-imposed

delays and also packet dropouts. In [56] authors introduce a fault detection filter for a

class of nonlinear systems when random delays and packet dropouts are present and the

system is subject to `2 bounded faults and disturbances. Sensor fault detection through

robust filter design under packet dropouts have also been studied in works such as [57], [58],

and [59]. For more work in the area of fault detection filter design over networks, see for

example [60], [61] and [62], among others.
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One of the most important applications of robust filters is in the fault-related problems.

The fault problem is usually dealt with from either a detection and isolation point of view

or a tolerance and compensation perspective. In the field of fault detection and isolation

(FDI), mainly a threshold analysis is done on the residuals which are generated by fault

detection filters. These filters are designed in a way that they are very sensitive to specific

user-defined faults. For example some works such as [63], [64], [65] and [66], model the

fault as an unknown external disturbance and therefore design a filter which outputs a

residual with high sensitivity to that external disturbance.

Fault accommodation, also known as fault-tolerant control, endeavours to maintain

system stability as well as its performance in the presence of faults. In general, fault-

tolerant control methods can fall under one of the following two main categories: I. Active

and II. Passive. The approaches in the first category use an internal FDI scheme to either

change the controller parameters (and even structure), or generate a compensation signal

which is added to the main control signal, that is of course in case a fault is detected.

Works such as [67], [68], [69], [70], [71], [72] and [73] are all examples of active methods.

The approaches in the second category are robust control schemes which are designed

in a way that they maintain system stability even in the presence of the worst expected

scenario. Examples of this category can be found in, but not limited to, works such

as [74], [75], [76], [77] and [78]. The passive approaches are usually simpler to design and

implement compared to the active ones. However, they usually produce a considerably

weaker performance and can cover a smaller range of faults.

With the growth of networked control systems in the past decade, fault-related prob-

lems in networked setups have attracted a lot of attention in the literature. Network-

induced issues such as quantization, uncertain delays and packet dropouts make the fault

detection and accommodation problems even more challenging. Various works have been

done in the past few years in both the detection and compensation areas. [79] studies the

fault detection problem for networked nonlinear systems when both the measurements

and the control signal are subject to delays and packet losses. [60] proposes a fault detec-

tion filter for linear systems subject to Markovian packet losses. In [80] authors employ

a Takagi-Sugeno fuzzy model to detect faults in a networked setup with delays. More

works in this field can be found in [81], [82], [83], [55], [84], [85] and [86]. All of the works
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mentioned above investigate the detection problem, however, there are several works in

the literature that tackle the accommodation aspect. [87] proposes a fault-tolerant control

system for networked linear systems subject to access constraints and packet dropouts.

In [88] authors use decoupling techniques to introduce a fault-tolerant controller for Lip-

schitz nonlinear systems undergoing delays and packet losses. More related works can be

found in [89], [90], [91], [92] and [93].

1.2 Problem Formulation

Consider the following linear system:

x(k + 1) = (A+ ∆A)x(k) + (B1 + ∆B1)u(k) +B2d(k)

y(k) = (C + ∆C)x(k) +Du(k)

z(k) = Hx(k) (1.1)

where x ∈ Rn is the state vector; y ∈ Rp represents the measured outputs; z ∈ Rr is

the vector to be estimated; u ∈ Rm1 is the known input; d ∈ Rm2 is the unknown input;

A ∈ Rn×n, B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , C ∈ Rp×n, D ∈ Rp×m1 , H ∈ Rr×n are the certain

parameters of the model; and ∆A ∈ Rn×n, ∆B1 ∈ Rn×m1 , ∆C ∈ Rp×n represent the

uncertain parameters of the model. We assume that

• the measurements are quantized via a linear quantizer and transmitted through a

communication network,

• (A,C) is an observable pair,

• B2 has full column rank and C has full row rank with p ≥ m2,

• rank(CB2) = rank(B2) is not necessarily satisfied.

The objective is to design a filter that produces estimates of the system states ib the

presence of the model uncertainties and unknown disturbances when the measurements

are transmitted through a communication channel.

1.3 Thesis Outline

The rest of this thesis is organized as follows:
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Chapter 2: This chapter considers nonlinear discrete-time systems and proposse a

filter design method in a network setting. The nonlinear system is modeled as a linear

system plus a nonlinear function that satisfies a Lipschitz continuity condition and is

disturbed by unwanted exogenous inputs. Lipschitz systems are important because they

provide a mechanism that can account for the effects of, at least, mild nonlinearities and

because of their generality most nonlinear system models can be represented as a linear

system plus a Lipschitz nonlinearity, at least locally around an equilibrium point. In this

work we assume that the data sent by the sensors is subject to finite-level quantization,

uncertain delays and communication constraints. In order to understand the limitations

introduced in the design by each of these effects, first the effects of quantization and un-

certain delay are investigated separately, and distinct design procedures are introduced for

each case. Next, these two issues along with the problem of communication constraints

are assumed to be present simultaneously. Using a Lyapunov-Krasovskii function, an op-

timization problem with linear matrix inequalities is proposed to guarantee filter stability

as well as an H∞ bound on the error system. Although packet dropouts are not explicitly

addressed, our modeling of communication constraints can easily include this case in the

sense that when packet dropouts occur, we are forced to use the estimated measurement

instead of the real one and therefore the effect can be modeled as the error between these

two.

Chapter 3: In this chapter we propose a novel adaptive approach to design filters

for discrete-time (i) linear and (ii) nonlinear Lipschitz systems, whose outputs are subject

to quantization and limited channel capacity. We model network-induced effects as an

unknown error between the real measurement and the one received by the filter, and

employ an adaptive approach to estimate this error. The estimated error signal at every

sampling instant is used to generate state estimates with desired attenuation bounds on

the effects of state and measurement noise and also variations of the network-induced

errors on the estimation error. A hysteresis quantizer is used for the quantization of the

measurements. This quantizer reduces the noise-caused chattering between neighbouring

quantization levels at the expense of a larger error margin between the real and quantized

measurements. Since our approach is based on the estimation of this error regardless of its

magnitude, the benefits of the hysteresis quantizer heavily outweigh its shortcomings. Our
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design process is first formulated as a linear matrix inequality (LMI) feasibility problem

for linear systems and then extended to Lipschitz nonlinear systems.

Chapter 4: In this chapter we propose two new approaches to the design of unknown

input filters that overcome the structural assumption given in [46], i.e. rank(CB2) =

rank(B2) . Although not without limitations, we show that our assumptions are less

restrictive than those in [46]. The main idea in both methods is to modify the plant

model in a way that in the revised model the measurement is directly affected by the value

of the unknown disturbance. The major distinction between the two proposed filters is

the model of the filter on which the design is based. Throughout the chapter our focus is

on the filtering problem. In other words, we consider the problem in which both states

and measurements are disrupted by noise and design a filter to bound the effects of noise

on the estimation error. The proposed filters provide both state and unknown input

estimates, a very important property in fault detection and correction applications, with

zero-delay for the states, and behave exactly as a conventional Luenberger observer in

the absence of noise and unknown inputs. Necessary stability conditions are established

using basic linear system theory for both methods, and then two LMI-based approaches

are proposed to design the H∞ filters. Finally, the proposed filters will be simulated for

examples systems to show the effectiveness of the approach.

Chapter 5: This chapter studies the filter design problem when the system states are

subject to unknown external disturbances and the measurements are transmitted through

a network and therefore are erroneous. Our approach in this article is based on the

concept of the reliability of the received information by the filter. We define a reliable

packet of information as a piece of information which contains more information on the

system behaviour rather than the network-induced errors. Similarly, an unreliable packet

of information is a packet which contains more data about the network-induced errors

than the system behaviour. Using this definition, the estimation space can be divided

into two separate zones in which the received information needs to be treated differently.

In one zone the information is considered reliable and therefore a filter is designed to

estimate the states as well as the unknown disturbances, whereas in the other zone the

information is unreliable and a filter is designed to take this into account when estimating

the system states. Eventually an overall two-zone H∞ filter is formulated using these two
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filters with optimized attenuation gains on the unwanted effects of the network and the

unknown disturbance. Through simulation, it will be shown that the proposed two-zone

filter is more effective than the predesigned single-zone filters.

Chapter 6: This chapter focuses on the design of a fault-tolerant filter under quan-

tized measurements. In order to cover a wider range of potential faults, we model the

internal faults as model uncertainties and common actuator faults such as offset and stuck

as an unknown disturbance on the states. In addition to the existence of faults, we also

assume that the measurements are quantized via a linear quantizer and therefore the mea-

surements are subject to quantization errors in both presence and absence of faults. Our

treatment for this problem is through a dual-zone robust filter which consists of two dif-

ferent sub-filters, each operating in one zone. The dual-zone idea is based on the fact that

the effects of quantization become significant only when the estimation error is near the

origin. Using this, we define zone 1 as the zone where quantization effects are insignificant

and zone 2 as the zone where quantization effects are significant. A separate robust filter

is designed for each zone and through a Lyapunov-based approach with H∞ performance,

necessary LMIs are derived. Finally, the effectiveness of the proposed filter is illustrated

through simulation examples.

Chapter 7: This chapter discusses the concluding remarks and the suggested future

research.

11



Chapter 2

H∞ Filtering of Nonlinear Plants

over Networks

In this chapter, we consider the filtering problem for Lipschitz systems in a networked

environment. We assume that the measurements transmitted over the network are subject

to quantization, uncertain delays and communication constraints. We first analytically

demonstrate how each of the these issues affect the filtering problem. Second, we tackle

the filter design as an optimization problem with LMI constraints. The optimization

maximizes the Lipschitz constant and thus the region of attraction for which the filter is

stable and an H∞ bound is satisfied by the error system.

The rest of the chapter is organized as follows. In section 2.1, we introduce the notation

used in this chapter along with the plant and filter models. section 2.2 discusses the effects

of the network-imposed problems on the filter design and proposes design methodologies.

In section 2.3 the proposed filters are tested via simulation and section 2.4 summarizes

the results of this chapter.

2.1 Plant and Filter Models

Consider now the following discrete-time nonlinear plant model,

x(k + 1) = Ax(k) +Bw(k) + φ(x, u)

y(k) = Cx(k) + v(k)

z(k) = Hx(k) (2.1)
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where x ∈ Rn is the state vector, y ∈ Rp represents the measured outputs, and u is the

control input. z ∈ Rr is the signal to be estimated, and w ∈ Rm and v ∈ Rp denote state

and measurement noises, respectively. Both w and v are assumed to be in `2. A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rp×n are the state space matrices of the linear part of the model; and φ

is a Lipschitz function with Lipschitz constant l.

We note that the model description (2.1) is very general and can provide an accurate

description of a large number of systems of interest, at least locally in a neighbourhood of

an equilibrium point. Before introducing the filter model, we define the static logarithmic

quantizer as follows (see [14]).

Definition 2.1. A static logarithmic quantizer is given by

ȳ = Q(y) =


ρjµ if ρjµ

1+δ ≤ y <
ρjµ
1−δ

0 if y = 0

−Q(−y) if y < 0

(2.2)

where j = 0,±1,±2, . . ., and Q(.) is the quantization function, 0 < ρ < 1 is the quantiza-

tion density, µ is a scaling parameter, and

δ = (1− ρ)/(1 + ρ) (2.3)

For a signal quantized by (2.2), the quantization error is given as

eq = ȳ − y = Λy (2.4)

where Λ is an uncertain variable (see [94]), which depends on y and is bounded by δ, i.e.

−δ ≤ Λ ≤ δ (2.5)

Figure 2.1 shows the quantization error eq with respect to y.

The discrete-time nonlinear filter is given by

xF (k + 1) = AxF (k) + L(Y(k)− yF (k)) + φ(xF , u)

yF (k) = CxF (k)

zF (k) = HxF (k) (2.6)

where xF ∈ Rn and yF ∈ Rp are, respectively, the state and output vectors, and zF ∈ Rr is

the output estimate of the filter. L is the filter parameter to be designed, and Y(k) ∈ Rp

is the feedback term, which is different for each of the three problems to be discussed;

namely, quantization, delay, and communication constraints.
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Figure 2.1: Quantization Error

2.2 Filter Design

In this section, we endeavour to design stable filters of the form (2.6) for the plant (2.1),

when any or all of the aforementioned problems arise due to the presence of a communica-

tion network. More explicitly, we will pursue filter design under three different scenarios:

• measurements are quantized.

• measurements are transmitted with uncertain delay.

• quantized measurements are transmitted with uncertain delay and are subject to

communication constraints.

We note that the delay is only present in the measurements not the states, and our

proposed filter will be delay-independent in the sense that the structure of the filter itself

is free of any delays.

Our interest is in designing a filter with the following properties:

• (Stability) In the absence of external disturbances the observer error converges to

zero asymptotically.

• (Filtering) The region of attraction is maximized for an arbitrary attenuation level

µ on the effects of exogenous disturbances on the estimation error; i.e. we find a

maximized Lipschitz constant l such that

‖ε‖ < µ‖ω‖

where ε is the estimation error, and ω ∈ `2 is the vector of exogenous disturbances

defined as follows:

ε(k) = z(k)− zF (k) (2.7)
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ω =

w
v

 (2.8)

Our solution is based on the use of Linear Matrix Inequalities (LMIs) and is therefore

free of the stringent existence requirements encountered in the Riccati approach. Our

design procedure is effective in the sense that it renders a stable observer, if one exists and

can be solved efficiently using commercially available softwares. Some related results for

discrete-time systems were recently presented in [95] and [96]. See also [30] for an earlier

version of this work.

Remark 2.1. Throughout this chapter, we will focus on the maximization of the Lipschitz

constant assuming a given disturbance attenuation gain µ. However, the optimization

problem can also be stated as the minimization of µ while assuming a given Lipschitz

constant l. In our simulation section, we will illustrate a trade-off curve between the two

optimization parameters.

Before investigating the effects of network-imposed problems on the filter design pro-

cess, the following lemmas need to be introduced.

Lemma 2.1. ( [97])
For any x, y ∈ Rn and any positive definite matrix T ∈ Rn×n, we have :

2xT y ≤ xTTx+ yTT−1y

Lemma 2.2. ( [97])
Let A, E, F , Λ and P be real matrices of appropriate dimensions with P > 0 and Λ

satisfying ΛTΛ ≤ I. Then for any scalar ε > 0 satisfying P−1 − ε−1EET > 0, we have:

(A+ EΛF )TP (A+ EΛF ) ≤ AT (P−1 − ε−1EET )−1A

+ εF TF (2.9)

2.2.1 Filter Design with Quantized Measurements

In this subsection, we consider the filter design problem with quantized measurements.

When the measurements are quantized, Y in (2.6) is given by Y(k) = ȳ(k), where ȳ is

as defined in (2.2). We define the state error as e(k) = x(k) − xF (k), which leads to the

following error dynamics:

e(k + 1) = (A− LC)e(k)− LΛCx(k) +Bw(k)
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− Lv(k)− LΛv(k) + ∆φ(x, xF , u)

ε(k) = z(k)− zF (k) = He(k) (2.10)

where ∆φ(x, xF , u) = φ(x, u) − φ(xF , u), and ε is known as the estimation error. Aug-

menting the plant and error models, we get

X(k + 1) = (A + ∆A)X(k) + (B + ∆B)ω(k) + Ω(X,u)

ε(k) = CX(k) (2.11)

where

X =

x
e

 ω =

w
v

 Ω(X,u) =

 φ(x, u)

∆φ(x, xF , u)

 (2.12)

and

A =

A 0

0 A− LC

 ∆A =

 0 0

−LΛC 0


B =

B 0

B −L

 ∆B =

0 0

0 −LΛ

 C =
[
0 H

]
.

The augmented system is also Lipschitz and its Lipschitz constant is calculated as follows,

ΩTΩ = φTφ+ ∆φT∆φ ≤ l2(xTx+ eT e)

⇒ ‖Ω‖ ≤ l‖X‖ (2.13)

The following theorem establishes a filter design methodology for Lipschitz nonlinear

systems with quantized measurements.

Theorem 2.1. Consider the plant (2.1) with measurements quantized by (2.2). Then the

filter given in (2.6) is optimal with an H∞ bound µ on the effects of the unwanted external

inputs on the estimation error, if there exist scalars α, η, ε > 0 and matrices G, and

P = diag{P1, P2} > 0 for which the following optimization problem has a solution:

min w̄α+ η (2.14)

s.t.
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−P + CTC + εF TF I 0 ATP 0 0

? −αI 0 0 0 0

? ? −µ2I BTP 0 0

? ? ? −P P E

? ? ? ? −ηI 0

? ? ? ? ? −εI


< 0 (2.15)

where w̄ > 0 is an optimization weight for the Lipschitz constant, and

A =

A 0

0 A− LC

 , B =

B 0

B −L

 , C =
[
0 H

]
.

E =
[
0 −G

]T
, F =

[
C 0 0 I

]
(2.16)

Also the optimal filter gain L and Lipschitz constant l can be calculated as follows,

L = P−1
2 G, l = 1/

√
αη (2.17)

Proof. Consider the following discrete-time Lyapunov function:

V (k) = X(k)TPX(k) (2.18)

The forward difference of this Lyapunov function along the trajectories of the augmented

system can be written as

∆V = V (k + 1)− V (k)

= ξT (Γ′2 + ∆Γ)TP (Γ′2 + ∆Γ)ξ + ΩTPΩ

−XTPX + 2ξT (Γ′2 + ∆Γ)TPΩ (2.19)

where ξ =
[
XT ωT

]T
and Γ′2 =

[
A B

]
, ∆Γ =

[
∆A ∆B

]
.

Using lemma 2.1 we can write

2ξTΓTPΩ ≤ ξTΓTPT1
−1PΓξ + ΩTT1Ω (2.20)

where Γ = Γ′2 + ∆Γ. We choose T1 = W where W = ηI − P > 0 for some η > 0.

Substituting (2.20) in (2.19), we get

∆V ≤ ξT (Γ2 + P∆Γ)T (P−1 +W−1)(Γ2 + P∆Γ)ξ
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+ ξTΓ′′1ξ (2.21)

where Γ2 = PΓ′2, and Γ′′1 = diag{ηl2I −P, 0}. Since P and W are codependent, we follow

the procedure introduced in [95] to simplify the term P−1 +W−1,

P−1 +W−1 = P−1 + (ηI − P )−1

= (ηI − P )−1((ηI − P )P−1 + I)

= (ηI − P )−1ηP−1

= (P − η−1P 2)−1 (2.22)

To handle the uncertain element ∆Γ, we can write P∆Γ = EΛF , where E = P
[
0 −LT

]T
,

F =
[
C 0 0 I

]
. Now, using lemma 2.2 and (2.22), the following inequalities are es-

tablished:

(Γ2 + P∆Γ)T (P−1 +W−1)P (Γ2 + P∆Γ1)

≤ ΓT2 (P − η−1P 2 − ε−1EET )−1Γ1 + εF TF

The simplified ∆V is given by

∆V ≤ ξTΓT2 (P − η−1P 2 − ε−1EET )−1Γ2ξ + ξTΓ′1ξ (2.23)

where Γ′1 = Γ′′1 + εF TF . Since our problem is filtering (not just observation), we need

to bound the ratio of the estimation error to unwanted external inputs. To this end, we

define

J ,
∞∑
k=0

{ε(k)T ε(k)− µ2ω(k)Tω(k)} (2.24)

Adding (2.18) to the right hand side of (2.24), we get J ≤
∑∞

k=0 J̃k, where

J̃k = ε(k)T ε(k)− µ2ω(k)Tω(k) + ∆Vk (2.25)

Now, if we design our filter such that J̃k ≤ 0, we can conclude that J ≤ 0, which is

equivalent to ‖ε‖2 < µ2‖ω‖2. This implies that the second norm of the estimation error

is bounded by a factor of the second norm of the exogenous input. In other words, this

establishes an H∞ bound on the estimation error system. Using (2.11) and (2.23), we

have

J̃k ≤ ξT (Γ1 + ΓT2 Γ−1
3 Γ2)ξ (2.26)
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where Γ2 = Γ′2 + diag{CTC,−µ2I}, and Γ3 = P − η−1P 2 − ε−1EET .

To avoid running into bilinear matrix inequalities, the following variable changes need

to be performed (see [95]):

P = diag{P1, P2}, G = P2L, α−1 = ηl2 (2.27)

Now for stability we should have J̃k < 0, which by using Schur’s complement, leads to the

LMI given in (2.15).

Remark 2.2. According to (2.17), maximization of the Lipschitz constant l can be ac-

complished by simultaneous minimization of α and η. A common way of solving this

two-objective optimization problem is to linearly combine these two objective functions

into a single one like the one given in (2.14).

2.2.2 Filter Design with Delayed Measurements

In this subsection we focus on filter design in the presence of uncertain transmission

delay. When the measurements are transmitted with an uncertain delay dk satisfying

0 ≤ dk ≤ dM , one can express Y in (2.6) as Y(k) = y(k − dk). Defining the estimation

error as e(k) = x(k)− xF (k) leads to the following error system:

e(k) = (A− LC)e(k) + LCx(k)− LCx(k − dk)

+Bw(k) + Lv(k − dk) + ∆φ(x, xF , u)

ε(k) = z(k)− zF (k) = He(k) (2.28)

where ∆φ(x, xF , u) = φ(x, u)− φ(xF , u). The augmented system will be given as

X(k + 1) = AX(k) + AdX(k − dk) + Bω(k) + Ω(X,u)

ε(k) = CX(k) (2.29)

where

X(k) =

x(k)

e(k)

 ω =

 w(k)

v(k − dk)


Ω(X,u) =

 φ(x, u)

∆φ(x, xF , u)

 (2.30)
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and

A =

 A 0

LC A− LC

 Ad =

 0 0

−LC 0


B =

B 0

B −L

 C =
[
0 H

]
(2.31)

Similar to the quantization case, the augmented system is also Lipschitz and its Lipschitz

constant is l. The following theorem establishes a filter design methodology for Lipschitz

nonlinear systems affected by variable delays.

Theorem 2.2. Given the plant (2.1) with measurements transmitted with an uncertain

delay dk satisfying 0 ≤ dk ≤ dM . Then the filter given in (2.6) is optimal with an H∞

bound µ on the effects of the unwanted external inputs on the estimation error, if there exist

scalars α, η1, η2 > 0 and matrices P = P ′+P ′′, P ′ = diag{P ′1, P ′2}, P ′′ = diag{P ′′1 , P ′′2 } >

0, and Q,R ≥ 0, and G, and M,S,N for which the following optimization problem has a

solution:

min w̄α+ η1 + dMη2 (2.32)

s.t.

ΓJ + Γ3 + Γ4 + ΓT4 Γ0 ΓT1 0 ΓT2 0 Γ5

? −αI 0 0 0 0 0

? ? −P P 0 0 0

? ? ? −η1I 0 0 0

? ? ? ? −P P 0

? ? ? ? ? −η2I 0

? ? ? ? ? ? −Γ6


< 0 (2.33)

where w̄ > 0 is an optimization weight for the Lipschitz constant, and

ΓJ = diag{CTC, 0, 0,−µ2I}

Γ0 = diag{I, 0, 0, 0}

Γ1 =
[
PA PAd 0 PB

]
Γ2 =

√
dM

[
P (A− I) PAd 0 PB

]
Γ3 = diag{−P + CTC + (dM + 1)Q+R,−Q,−R, 0}
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Γ4 =
[
M +N S −M −S −N 0

]
Γ5 =

[√
dMM

√
dMS

√
dMN

]
Γ6 = diag{P ′, P ′, P ′′} (2.34)

with

A =

 A 0

LC A− LC

 , Ad =

 0 0

−LC 0


B =

B 0

B −L

 , C =
[
0 H

]
Also the optimal filter gain L and Lipschitz constant l can be calculated as follows,

L = (P ′2 + P ′′2 )−1G, l = 1/
√
α(η1 + dMη2) (2.35)

Proof. Consider the following discrete-time Lyapunov-Krasovskii function ( [98]):

V (k) = X(k)TPX(k) +
k−1∑

i=k−dk

X(i)TQX(i)

+
k−1∑

i=k−dM

X(i)TRX(i) +
0∑

j=−dM+1

k−1∑
i=k+j

X(i)TQX(i)

+
−1∑

j=−dM

k−1∑
i=k+j

τ(i)T (P ′ + P ′′)τ(i) (2.36)

where P ′, P ′′, P = P ′+P ′′ > 0, Q, R ≥ 0, and τ(k) = X(k+ 1)−X(k) = (A− I)X(k) +

AdX(k − dk) + Bω(k) + Ω(X,u). The forward difference of (2.36) can be written as

∆V = ξTΓ
′T
1 PΓ′1ξ + 2ξTΓ

′T
1 PΩ + ΩTPΩ + ξTΓ′′3ξ

−
k∑

i=k−dM+1

X(i)TQX(i) + dMξ
TΓ

′T
2 PΓ′2ξ

+ 2dMξ
TΓ

′T
2 PΩ + dMΩTPΩ−

k−dk−1∑
i=k−dM

τ(i)TP ′τ(i)

−
k−1∑

i=k−dk

τ(i)TP ′τ(i)−
k−1∑

i=k−dM

τ(i)TP ′′τ(i) (2.37)

where ξ =
[
X(k)T X(k − dk)T X(k − dM )T ω(k)T

]T
, Γ′1 =

[
A Ad 0 B

]
, Γ′3 =

diag{−P + (dM + 1)Q+R,−Q,−R, 0}, Γ′2 =
[
A− I Ad 0 B

]
. Now, using lemma 2.1,
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we can establish the following inequalities:

2Γ
′T
1 PΩ ≤ ΩTW1Ω + Γ

′T
1 PW

−1
1 PΓ′1 (2.38)

2Γ
′T
2 PΩ ≤ ΩTW2Ω + Γ

′T
2 PW

−1
2 PΓ′2 (2.39)

2ξTM
(
X(k)−X(k − dk)−

∑k−1
i=k−dk τ(i)

)
≤

k−1∑
i=k−dk

τ(i)TP ′τ(i) + dkξ
TMP ′−1MT ξ

+ 2ξTM
[
I −I 0 0

]
ξ (2.40)

2ξTS
(
X(k − dk)−X(k − dM )−

∑k−dk−1
i=k−dM τ(i)

)
≤

k−dk−1∑
i=k−dM

τ(i)TP ′τ(i) + (dM − dk)ξTSP ′−1ST ξ

+ 2ξTS
[
0 I −I 0

]
ξ (2.41)

2ξTN
(
X(k)−X(k − dM )−

∑k−1
i=k−dM τ(i)

)
≤

k−1∑
i=k−dM

τ(i)TP ′′τ(i) + dMξ
TNP ′′−1NT ξ

+ 2ξTN
[
I 0 −I 0

]
ξ (2.42)

whereWi = ηiI−P > 0 i = 1, 2, andM =
[
MT

1 MT
2 MT

3 0
]T

, S =
[
ST1 ST2 ST3 0

]T
,

N =
[
NT

1 NT
2 NT

3 0
]T

are matrices with appropriate dimensions. The first two in-

equalities help us eliminate the terms involving the nonlinear function Ω, while the last

three provide a less conservative approach to avoid the summation terms in (2.37). It

should be noted that in the last three inequalities, the left-hand side of the inequality is

equal to zero. Using the above inequalities and also the Lipschitz property of Ω, we get

∆V ≤ ξTΓ3ξ + ξT (Γ4 + ΓT4 )ξ + ξTΓT1 (P−1 +W−1
1 )Γ1ξ

+ ξTΓT2 (P−1 +W−1
2 )Γ2ξ + dkξ

TMP ′−1MT ξ

+ dMξ
TNP ′′−1NT ξ + (dM − dk)ξTSP ′−1ST ξ (2.43)

where

Γ1 = PΓ′1 , Γ2 =
√
dMPΓ′2
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Γ3 = Γ′3 + diag{(η1 + dMη2)l2I, 0, 0, 0}

Γ4 =
[
M +N S −M −S −N 0

]
Now defining Γ5 =

[√
dMM

√
dMS

√
dMN

]
, Γ6 = diag{P ′, P ′, P ′′}, and using (2.22),

one can simplify ∆V as given by

∆V ≤ ξT (Γ3 + Γ4 + ΓT4 + ΓT1 Γ−1
7 Γ1

+ ΓT2 Γ−1
8 Γ2 + Γ5Γ−1

6 ΓT5 )ξ (2.44)

where Γ5 = P − η−1
1 P 2, and Γ6 = P − η−1

2 P 2. It should be noted that dk is an uncertain

variable with upper and lower bounds, and thus it cannot be used in the design formulation.

As a result, it needs to be replaced with its bounds such that the inequality (2.58) still

holds, as done in formulating (2.44). Now, for the H∞ filtering problem, J and J̃k are

defined as in (2.24) and (2.25), respectively. Using (2.44), we have

J̃k ≤ ξT (Γ3 + ΓJ + Γ4 + ΓT4 + ΓT1 Γ−1
7 Γ1

+ ΓT2 Γ−1
8 Γ2 + Γ5Γ−1

6 ΓT5 )ξ (2.45)

where ΓJ = diag{CTC, 0, 0,−µ2I}. Similar to the quantization case, in order to convert

bilinear matrix inequalities into linear ones, the following variable changes need to be

performed:

P ′ = diag{P ′1, P ′2}, P ′′ = diag{P ′′1 , P ′′2 }

G = (P ′2 + P ′′2 )L, α−1 = (η1 + dMη2)l2 (2.46)

Now for stability we should have J̃k < 0, which by using Schur’s complement is the same

as the LMI given in (2.33).

Remark 2.3. According to (2.35), maximization of the Lipschitz constant l can be ac-

complished by simultaneous minimization of α, η1 and η2. A common way of solving this

multi-objective optimization problem is to linearly combine these objective functions into

a single one like the one given in (2.32).

2.2.3 Filter Design with Variably Delayed Quantized Measurements Sub-

ject to Communication Constraints

In this subsection, we assume that due to the presence of a communication channel,

quantized measurements are transmitted with an uncertain delay and also communication
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constraints apply. When the measurements are quantized, transmitted with an uncertain

delay and subject to communication constraints, Y in (2.6) is given as follows,

Y(k) =

 ȳ(k − dk) if network access is granted

yF (k) otherwise
(2.47)

where dk is the uncertain delay satisfying 0 ≤ dk ≤ dM . From equation (2.47), one can

see that when a sensor is granted access to the network, our filter will use its data, which

is delayed and quantized, for the correction of the estimates. However, when there is no

data coming from the sensors, the estimates will not be corrected. In other words, the

latter means that the filter will operate in open loop until it receives new data from the

sensor. We can rewrite (2.47) as

ȳν(k) = y(k − dk) + Λy(k − dk) + ∆yν(k) (2.48)

where Λy is the error induced by quantization, and ∆yν is the bounded error induced by

communication constraints (unavailability of sensor data). It is important to note that

Λy and dk are both zero for those elements of y, for which we have no sensor data. On

the other hand, for the ones that we have sensor data, ∆yν = 0.

The error system is given as:

e(k + 1) = (A− LC)e(k) + LCx(k)− LCx(k − dk)

− LΛCx(k − dk) +Bw(k)− Lv(k − dk)

− LΛv(k − dk)− L∆yν(k) + ∆φ(x, xF , u)

ε(k) = z(k)− zF (k) = He(k) (2.49)

where ∆φ(x, xF , u) = φ(x, u)−φ(xF , u). For this case, the augmented system is given by,

X(k + 1) = AX(k) + (Ad + ∆Ad)X(k − dk)

+ (B + ∆B)ω(k) + Ω(X,u)

ε(k) = CX(k) (2.50)

where

X(k) =

x(k)

e(k)

 ω(k) =


w(k)

v(k − dk)

∆yν(k)


24



Ω(X,u) =

 φ(x, u)

∆φ(x, xF , u)

 (2.51)

and
A =

 A 0

LC A− LC

 Ad =

 0 0

−LC 0


B =

B 0 0

B −L −L

 C =
[
0 H

]

∆Ad =

 0 0

−LΛC 0

 ∆B =

0 0 0

0 −LΛ 0

 (2.52)

Similar to previous cases, Ω is Lipschitz with the constant l.

Theorem 2.3. Given the plant (2.1) with measurements quantized by (2.2) and trans-

mitted with the uncertain delay dk, where 0 ≤ dk ≤ dM , and subject to communication

constraints. Then the filter given in (2.6) is optimal with H∞ bounds µ and ρ on the

effects of the unwanted external inputs and communication constraints on the estimation

error, respectively, if there exist scalars α, η1, η2, ε1, ε2 > 0 and matrices P = P ′ + P ′′,

P ′ = diag{P ′1, P ′2}, P ′′ = diag{P ′′1 , P ′′2 } > 0, and Q,R ≥ 0, and G, and M,S,N for which

the following optimization problem has a solution:

min w̄α+ η1 + dMη2 (2.53)

s.t.

ΓJ + Γ3 + Γ4 + ΓT4 Γ0 ΓT1 0 0 ΓT2 0 0 Γ5

? −αI 0 0 0 0 0 0 0

? ? −P P E 0 0 0 0

? ? ? −η1I 0 0 0 0 0

? ? ? ? −ε1I 0 0 0 0

? ? ? ? ? −P P E 0

? ? ? ? ? ? −η2I 0 0

? ? ? ? ? ? ? −ε2I 0

? ? ? ? ? ? ? ? −Γ6



< 0 (2.54)

where w̄ is the optimization weight for Lipschitz constant, and

ΓJ = diag{CTC, 0, 0, diag{−µ2I,−µ2I,−ρ2I}}
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Γ0 = diag{I, 0, 0, 0}

Γ1 =
[
PA PAd 0 PB

]
Γ2 =

√
dM

[
P (A− I) PAd 0 PB

]
Γ3 = diag{−P + (ε1 + dM ε2)F TF + (dM + 1)Q+R,−Q,−R, 0}

Γ4 =
[
M +N S −M −S −N 0

]
Γ5 =

√
dM

[
M S N

]
Γ6 = diag{P ′, P ′, P ′′} (2.55)

with

A =

 A 0

LC A− LC

 , Ad =

 0 0

−LC 0


B =

B 0 0

B −L −L

 , C =
[
0 H

]
E =

[
0 −G

]T
, F =

[
0 0 C 0 0 0 0 I 0

]
Also the optimal filter gain L and Lipschitz constant l can be calculated as follows,

L = (P ′2 + P ′′2 )−1G, l = 1/
√
α(η1 + dMη2) (2.56)

Proof. Consider the discrete-time Lyapunov-Krasovskii function given in (2.36). The for-

ward difference of this function can be written as

∆V = ξT (Γ′1 + ∆Γ)TP (Γ′1 + ∆Γ)ξ + 2ξT (Γ′1 + ∆Γ)TPΩ

+ ΩTPΩ + ξTΓ′′3ξ −
k∑

i=k−dM+1

X(i)TQX(i)

+ dMξ
T (Γ′2 + ∆Γ)TP (Γ′2 + ∆Γ)ξ

+ 2dMξ
T (Γ′2 + ∆Γ)TPΩ + dMΩTPΩ

−
k−dk−1∑
i=k−dM

τ(i)TP ′τ(i)−
k−1∑

i=k−dk

τ(i)TP ′τ(i)

−
k−1∑

i=k−dM

τ(i)TP ′′τ(i) (2.57)

where ∆Γ =
[
0 ∆Ad 0 ∆B

]
, Γ′′3 = diag{−P + (dM + 1)Q+R,−Q,−R, 0} and ξ, Γ′1,

Γ′2 are as given in section 2.2.2, only with the parameters defined in (2.51) and (2.52).
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Now, using lemma 2.1, we can establish the following inequalities:

2(Γ′1 + ∆Γ)TPΩ ≤ ΩTW1Ω

+ (Γ′1 + ∆Γ)TPW−1
1 P (Γ′1 + ∆Γ)

2(Γ′2 + ∆Γ)TPΩ ≤ ΩTW2Ω

+ (Γ′2 + ∆Γ)TPW−1
2 P (Γ′2 + ∆Γ)

whereWi = ηiI−P > 0 i = 1, 2, andM =
[
MT

1 MT
2 MT

3 0
]T

, S =
[
ST1 ST2 ST3 0

]T
,

N =
[
NT

1 NT
2 NT

3 0
]T

are matrices with appropriate dimensions. Using these inequal-

ities along with the Lipschitz property of Ω and inequalities given in (2.40-2.42), we will

get

∆V ≤ ξTΓ′3ξ + ξT (Γ4 + ΓT4 )ξ

+ ξT (Γ′1 + ∆Γ)TP (P−1 +W−1
1 )P (Γ′1 + ∆Γ)ξ

+ dMξ
T (Γ′2 + ∆Γ)TP (P−1 +W−1

2 )P (Γ′2 + ∆Γ)ξ

+ dkξ
TMP ′−1MT ξ + dMξ

TNP ′′−1NT ξ

+ (dM − dk)ξTSP ′−1ST ξ (2.58)

where Γ′3 = Γ′′3 + diag{(η1 + dMη2)l2I, 0, 0, 0}, Γ4 =
[
M +N S −M −S −N 0

]
.

To handle the uncertain element ∆Γ, we can write P∆Γ = EΛF , where E = P
[
0 −LT

]T
,

F =
[
0 0 C 0 0 0 0 I 0

]
. Now, using lemma 2.2 and (2.22), the following in-

equality is established:

(PΓ′i + P∆Γ)T (P−1 +W−1
i )(PΓ′i + P∆Γ)

≤ Γ
′T
i P (P − η−1

i P 2 − ε−1
i EET )−1PΓ′i + εiF

TF

for i = 1, 2. The simplified ∆V is given by

∆V ≤ ξT (Γ3 + Γ4 + ΓT4 + ΓT1 Γ−1
7 Γ1

+ ΓT2 Γ−1
8 Γ2 + Γ5Γ−1

6 ΓT5 )ξ (2.59)

where Γ1 = PΓ′1, Γ2 =
√
dMPΓ′2, Γ3 = Γ′3 + (ε1 +dM ε2)F TF , Γ7 = P − η−1

1 P 2− ε−1
1 EET ,

Γ8 = P − η−1
2 P 2− ε−1

2 EET , Γ5 =
[√

dMM
√
dMS

√
dMN

]
, Γ6 = diag{P ′, P ′, P ′′}. As
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explained in section 2.2.2, the uncertain dk needed to be replaced with its known bounds

i.e. 0, dM . For H∞ filtering, we define

J ,
∞∑
k=0

{ε(k)T ε(k)− µ2w(k)Tw(k) (2.60)

− µ2v(k − dk)T v(k − dk)− ρ2∆yν(k)T∆yν(k)}

Adding (2.59) to the right hand side of (2.60), we get J ≤
∑∞

k=0 J̃k, where

J̃k = ∆V (k) + ε(k)T ε(k)− µ2w(k)Tw(k) (2.61)

− µ2v(k − dk)T v(k − dk)− ρ2∆yν(k)T∆yν(k)

Now, if the filter such that J̃k < 0, we can conclude that J < 0, which is equivalent to

‖ε‖2 < µ2‖w‖2 + µ2‖v‖2 + ρ2‖∆yν‖2 (2.62)

This implies that the effect of the unwanted external inputs on the second norm of the

estimation error is bounded by µ, and the effect of the measurement error, caused by

communication constraints, is bounded by ρ. Substituting (2.59) in (2.61), we get

J̃k ≤ ξT (Γ3 + ΓJ + Γ4 + ΓT4 + ΓT1 Γ−1
7 Γ1

+ ΓT2 Γ−1
8 Γ2 + Γ5Γ−1

6 ΓT5 )ξ (2.63)

where ΓJ = diag{0, HTH, 0, 0, 0, 0,−µ2I,−µ2I,−ρ2I}. To avoid BMI’s, the following

variable changes need to be performed:

P ′ = diag{P ′1, P ′2}, P ′′ = diag{P ′′1 , P ′′2 }

G = (P ′2 + P ′′2 )L, α−1 = (η1 + dMη2)l2 (2.64)

Now for stability we need to have J̃k < 0, which by using Schur’s complement is equivalent

to the LMI given by (2.54).

It should be noted that remark 2 is also true about the objective function given in

(2.53).

2.3 Simulation Results

In this section, we will design stable filters using the results of section 2.2 for an example

system. Our intention is to show how the network-imposed imperfections will affect the

28



0 0.5 1 1.5 2
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (sec)

 

 

z
z

F

Figure 2.2: z and its estimate zF

designed filter gains and also the region of attraction of the filters. We assume that the

discrete model of the plant is obtained using a t = 0.01sec sampling period.

Consider the system given in (2.1) with the following parameters,

A =

 0.9323 0.0185

−0.0092 0.9138

 B =

0.0098

0.0095

 C =
[
1 0

]

φ(x, u) =

 0

−0.1(1− cos(x3
2))

 H =
[
0 1

]
Choosing µ = 0.5, and ρ = 0.1, the maximum Lipschitz constant and the corresponding

optimal observer gain are calculated to be as follows:

when the measurements are quantized :

L =
[
0.16× 10−4 3.9× 10−4

]T
l = 0.059

when the measurements are transmitted with an uncertain delay :

L =
[
−0.12× 10−2 −0.09× 10−2

]T
l = 0.0464

when the quantized measurements are transmitted with an uncertain delay on a network

where every sensor is granted access to the communication channel once in every 3 sam-

ples:

L =
[
−0.061× 10−5 −0.11× 10−5

]T
l = 0.0464
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Figure 2.3: z and its estimate zF

The value of l in each case determines a neighborhood of x2, in which the filter stability

is guaranteed. In other words, the filter with quantized measurements is locally stable

as long as |x2| ≤ 0.71, and the filter with uncertain delay as well as the filter with all

of the aforementioned issues are locally stable as long as |x2| ≤ 0.69. Figures 2.2, 2.3,

2.4 illustrate the estimated variable zF for the case with quantized measurements, the

case with uncertain delay, and the case with all the issues, respectively. It can be seen

from these figures that the proposed filters output smooth estimates of z using the noisy

measurements which undergo quantization and delay.

As mentioned in Remark 1, there’s always a trade-off between the maximized Lipschitz

constant l and the disturbance attenuation level µ. Figure (2.5) shows the trade-off curve

between these two parameters in the third case. As one can see from this figure, tighter

bounds on the effects of the external disturbances come at the expense of smaller regions

of attraction, or in other words, with a smaller µ comes a smaller l. A similar trade-

off was also examined between l and ρ and it was seen that different values of ρ have

very small effect on the maximized Lipschitz constant l. However, the filter gain L was

significantly affected by the changes in ρ such that smaller values of ρ led to smaller

maximum singular values of L, i.e. σ(L). In order to see how the upper bound of

the network-induced transmission delay dM affects the maximized Lipschitz constant l, a

trade-off curve between the two is illustrated in figure (2.6) for the third case. It can be
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Figure 2.4: z and its estimate zF
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Figure 2.5: The disturbance attenuation gain µ and the maximized Lipschitz constant l
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Figure 2.6: The upper bound on the delay dM and the maximized Lipschitz constant l

seen from this figure that as delay grows larger, the maximized Lipschitz constant becomes

smaller until the LMI’s become infeasible at dM = 23.

2.4 Summary

In this chapter, the filtering problem for Lipschitz nonlinear systems in a NCS setup

was addressed. It was assumed that the data sent by sensors were quantized by finite-

level quantizers, and also subject to uncertain delays. It was also assumed that the filter

receives sensor data once in every few samples, which models the communication con-

straints imposed by the network. First the effects of quantization and delay on filter design

were investigated separately, and then the general filtering problem, with delayed quan-

tized measurements and subject to communication constraints, was formulated. Using a

Lyapunov-Krasovskii function along with an H∞ bound on the estimation error system,

both stability and performance of the filter were investigated. It was seen that the as-

sociated LMI with the general filtering problem was very similar to that of the filtering

problem with delay. Although quantization and communication constraints introduced

some new variables into the resulting LMI, the structure remained intact. Simulation

results were presented to show the effectiveness of the proposed approach.
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Chapter 3

An Adaptive Approach to Filter

Design with Limited Information

In this chapter, a novel adaptive approach is proposed to account for network-imposed

imperfections such as quantization and limited channel capacity on the filter design. The

main idea is to estimate the error caused by quantization and communication constraints

instead of treating it as a bounded noise input or a norm-bounded uncertainty. Using

an LMI based approach, the filter design procedure is formulated for both linear and

Lipschitz nonlinear systems with desired attenuation bounds on the effects of the state and

measurement noise inputs and also variations of the network-imposed errors. Simulation

results are given to illustrate the effectiveness of the proposed filter.

The rest of the chapter is organized as follows. In section 3.1, we introduce the plant

and filter models. Section ?? and ?? discuss the proposed design approach for linear and

nonlinear systems, respectively. In section ?? the proposed filters are tested via simulation

and section 3.5 summarizes the results of this chapter.

3.1 Plant and Filter Models

We now introduce the plant and filter models as well as the quantizer to be used in later

sections.
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3.1.1 Linear Models

Consider the following discrete-time linear plant model,

x(k + 1) = Ax(k) +B1u(k) +B2w(k)

y(k) = Cx(k) +Du(k) + v(k)

z(k) = Hx(k) (3.1)

where x ∈ Rn is the state vector; y ∈ Rp represents the measured outputs; u ∈ Rm1 is

the known input; z ∈ Rr is the signal to be estimated, and w, v ∈ `2 denote state and

measurement noises, respectively, and

A ∈ Rn×n, B1 ∈ Rn×m1 , B2 ∈ Rn×m2

C ∈ Rp×n, D ∈ Rp×m1 , H ∈ Rr×n.

The discrete-time linear filter is given by

xF (k + 1) = AxF (k) +B1u(k) + L(yrec(k)

− yF (k)− θF (k))

yF (k) = CxF (k) +Du(k)

zF (k) = HxF (k) (3.2)

where xF ∈ Rn, yF ∈ Rp and zF ∈ Rr are, respectively, the state vector, output vector,

and estimate vector of the filter. L is the filter gain to be designed, θF ∈ Rp is the adaptive

parameter of the filter, and yrec represents the measurement signal available to the filter

and is defined as follows:

yrec(k) =

 yF (k) + θF (k) if packet is lost

yq(k) otherwise
(3.3)

where yq(k) ∈ Rp represents the quantized measurement received by the filter and can be

written as

yq(k) = y + θ(k) (3.4)

where θ = yq − y is the error induced by quantization and will be estimated by θF .

Remark I. Please note that according to (3.3), when a packet dropout occurs, the filter

will run in open loop, and therefore no corrections will be made to the state estimation

trajectories.
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3.1.2 Quantization

The quantization is assumed to be done via a dynamic linear hysteresis quantizer, which

is defined as follows,

yqi(k) =



yqi(k − 1) if |yi(k)− yqi(k − 1)| ≤ τi/2 + hiτi/2

otherwise

fτi if fτi − τi/2 < yi(k) ≤ fτi + τi/2

−fτi if −fτi − τi/2 ≤ yi(k) < −fτi + τi/2

(3.5)

where f ∈ N, and . . . ,−2τi,−τi, 0, τi, 2τi, . . . represent the quantization levels for the ith

measurement; and 0 < hi < 1 determines the size of the hysteresis region for that measure-

ment. It should be noted that the initial conditions of the quantizer, i.e. yqi(−1) cannot

be arbitrarily chosen and they should all belong to Yq0 = {. . . ,−2τi,−τi, 0, τi, 2τi, . . .}. In

the sequel, a brief description of the operation of this quantizer will be given, however,

for more detailed information on hysteretic quantizers, the reader is referred to the work

done by Ceragioli et. al in [99].

In order to understand how the hysteresis quantizer given in (3.5) works, one first

needs to understand that the main purpose of this quantizer is reducing the noise-induced

chattering between two adjacent quantization levels. To do so, this quantizer compares the

current non-quantized measurement, i.e. yi(k), with the last quantized one, i.e. yqi(k−1),

and if the absolute value of the error is less than or equal to τi/2 + hiτi/2, then it carries

on with the last quantized measurement. This dynamic behavior helps reduce the noise-

induced back and forth switching between adjacent levels. Furthermore, if the absolute

value of the error is greater than τi/2 +hiτi/2, then the quantizer acts like a conventional

linear quantizer to find the new quantized value. Figure 3.1 shows the quantization error

eqi = yi − yqi versus yi.

Remark II. In the hysteresis quantizer given by (3.5), there are two design parameters.

The first one, which is common among all linear quantizers, is τi. This parameter is

the main design parameter in any linear quantizer and determines how coarse or fine

the quantization levels are. A bigger τi corresponds to coarser quantization levels and

therefore a larger bound on the quantization error. The second parameter is hi, which is

exclusive to hysteresis quantizers, and determines how sensitive the quantizer is to noise

when switching from one quantization level to another. A larger hi implies a less sensitive
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Figure 3.1: Quantization Error

quantizer. However, the reduced sensitivity to noise comes at the price of a larger bound

on the quantization error. i.e. |eqi| ≤ τi/2 + hi/2.

We note that the hysteresis bands can also be applied to logarithmic quantizers. in

this chapter, however, we restrict our attention to linear quantizers.

3.1.3 Nonlinear Models

Consider the following nonlinear plant model,

x(k + 1) = Ax(k) +B1u(k) +B2w(k) + φ(x(k), u(k))

y(k) = Cx(k) +Du(k) + v(k)

z(k) = Hx(k) (3.6)

where all the variables and parameters are as defined for the linear model, and φ(x, u) is

a Lipschitz function with the Lipschitz constant l.

The dynamic model of our adaptive filter is defined as follows

xF (k + 1) = AxF (k) +B1u(k) + φ(xF , u)

+ L(yrec(k)− yF (k)− θF (k))

yF (k) = CxF (k) +Du(k)

zF (k) = HxF (k) (3.7)

where all of the variables and parameters are as defined in (3.2). Similar to the linear

case, quantization is assumed to be done via the linear hysteresis quantizer given in (3.5).
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3.2 Linear Filter Design

In this section we introduce a novel adaptive approach to handle the filtering problem of

linear systems subject to quantization and packet dropouts. As discussed in the previous

section, θF is an adaptive parameter of the filter which estimates the network-induced

quantization error modelled by θ. Consequently, for our filter to function as desired, we

first need to derive an stable adaptive law for θF .

3.2.1 Adaptive Law Extraction

In order to extract an stable adaptive law for θF , we first need to investigate how the

estimation error of the network-induced quantization error, i.e. θ̃ = θ − θF , is related to

the measurement estimation error, i.e. ε(k), defined as follows:

ε(k) = yrec(k)− yF (k)− θF (k). (3.8)

To this end, we use (3.1), (3.2) and (3.3) to simplify the above equation into the following

form:

ε(k) =

 0 if packet is lost

Ce(k) + θ̃(k) + v(k) otherwise
(3.9)

where e(k)
∆
= x(k) − xF (k) represents the state estimation error. The idea is to use

the Gradient optimization rule (see [100]) to find the desired adaptation law. Define the

minimization cost function as follows:

J(θ̃) =
1

2
εT ε. (3.10)

Based on the Gradient optimization rule, for J to be minimized with respect to θ̃, the

adaptive law for θ̃ should be in the following format:

θ̃(k + 1) = θ̃(k)− Γ
∂J(θ̃(k))

∂θ̃(k)
(3.11)

where Γ = diag{γ1, γ2, . . . , γp} > 0 is the adaptation gain, and ∂J/∂θ̃ can be calculated

as follows

∂J(θ̃(k))

∂θ̃(k)
=
dJ(θ̃(k))

dε(k)

∂ε(k)

∂θ̃(k)
= ε(k). (3.12)

37



As a result, the minimizing adaptive law can be written as below

θ̃(k + 1) = θ̃(k)− Γε(k). (3.13)

Substituting θ̃ = θ − θF into (3.13), we have

θ(k + 1)− θF (k + 1) = θ(k)− θF (k)− Γε(k)

⇒ θF (k + 1) = θF (k) + Γε(k) + ∆θ(k + 1)

where ∆θ(k + 1) = θ(k + 1) − θ(k) represents the variation of θ between the sampling

instants k and k+1. Since ∆θ is unknown, alternatively we choose the following adaptation

law for θF :

θF (k + 1) = θF (k) + Γε(k). (3.14)

Remark III. Note that as long as the quantizer is not saturated, ∆θ(k) is bounded for all

k, and its truncation, i.e. ∆θs(k) = {∆θ(0),∆θ(1), . . . ,∆θ(s), 0, 0, . . .} has finite support,

which implies ∆θs ∈ `2.

3.2.2 The Proposed Design Approach

Based on (3.9), ε(k) can have one of the two values:

• ε(k) = 0 which implies an open loop filtering error system whose stability properties

are the same as the plant.

• ε(k) = Ce(k) + θ̃(k) + v(k) which closes the loop and stability of the corresponding

closed-loop filtering error system depends on the how L and Γ are chosen.

Since our goal is to design a closed-loop filter, in the remainder of this article we will only

focus on ε(k) = Ce(k) + θ̃(k) + v(k), having in mind that when a packet dropout occurs,

the loop is opened and the closed loop filter will resume its operation with new initial

conditions as soon as the next measurement is available.

Now using (3.1), (3.2) and (3.14), the closed-loop filtering error system can be written

as

e(k + 1) = (A− LC)e(k) +B2w(k)− Lv(k)− Lθ̃(k)

θ̃(k + 1) = −ΓCe(k) + (I − Γ)θ̃(k)− Γv(k) + ∆θ(k)
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ε(k) = z(k)− zF (k) = He(k) (3.15)

where ε is the estimation error.

Our interest is in designing a filter that can attenuate the effects of state and mea-

surement noise as well as network induced errors on the estimation error ε with bounds

µwv, µθ > 0 defined as follows:

||εs||2 ≤ µ2
wv(||ws||2 + ||vs||2) + µ2

θ||∆θs||2 ∀ws, vs, ∆θs ∈ `2 (3.16)

Remark IV. The above inequality establishes H∞ bounds on the effects of the truncated

signals ws, vs,∆θs on the truncated signal εs. Note that we do not claim that the inequality

is satisfied in the space `2 because, in general, ∆θ is not `2 bounded.

The following theorem formulates the proposed adaptive approach for linear systems.

Theorem 3.1. Consider the linear system (3.1), with measurements quantized via a hys-

teresis linear quantizer, and the linear filter in (3.2) with θF updated by (3.14). Then the

filtering error system satisfies `2 bounds µwv, µθ on the effects of the noise and network-

induced errors, if there are matrices P > 0, Gp, and diagonal matrices Q,Gq > 0 satisfying

the following LMI: 
Ξ1 ΞT2 ΞT3

? −P 0

? ? −Q

 < 0 (3.17)

where

Ξ1 = diag{HTH − P,−Q,−µ2
wvI,−µ2

wvI,−µ2
θI}

Ξ2 =
[
PA−GpC −Gp PB2 −Gp 0

]
Ξ3 =

[
−GqC Q−Gq 0 −Gq Q

]
(3.18)

The filter parameters L and Γ can be calculated via L = P−1Gp, and Γ = Q−1Gq, respec-

tively.

Proof. In order to analyze the stability of the error dynamics, we introduce the following

Lyapunov function candidate:

V (k) = e(k)TPe(k) + θ̃(k)TQθ̃(k) (3.19)
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where P > 0 and Q = diag{Q1, Q2, . . . , Qp} > 0. The forward difference of this Lyapunov

function can be written as

∆V (k) = ξ(k)T (Ξ̂1 + Ξ̂T2 P Ξ̂2 + Ξ̂T3 QΞ̂3)ξ(k) (3.20)

where ξ(k) =
[
e(k)T θ̃(k)T w(k)T v(k)T ∆θ(k)T

]T
, and

Ξ̂1 = diag{−P,−Q, 0, 0, 0}

Ξ̂2 =
[
A− LC −L B2 −L 0

]
Ξ̂3 =

[
−ΓC I − Γ 0 −Γ I

]
(3.21)

Substituting Gp = PL and Gq = QΓ in (3.20) yields

∆V (k) = ξT (Ξ̂1 + ΞT2 P
−1Ξ2 + ΞT3 Q

−1Ξ3)ξ (3.22)

where Ξ2,Ξ3 are as defined in (3.18).

To show that the error system satisfies the desired H∞ performance, we need to es-

tablish attenuation levels on the effects of the noise signals and network-induced errors in

any finite time interval, under zero initial conditions. To this end, J is defined as follows:

J ,
s∑
i=0

{ε(i)T ε(i)− µ2
wv(w(i)Tw(i) + v(i)T v(i))

− µ2
θ∆θ(i)

T∆θ(i)}

=
∞∑
i=0

{εs(i)T εs(i)− µ2
wv(ws(i)

Tws(i) + vs(i)
T vs(i))

− µ2
θ∆θs(i)

T∆θs(i)} (3.23)

where s > 0 is any finite integer, and 0 < µwv, µθ ≤ 1 are, respectively, upper bounds

on the effects of the noise, and network-induced errors on the estimation error. Since

ws, vs,∆θs all have finite supports, J is bounded. A negative J implies limited effects of

these unwanted signals on the estimation error in any finite time interval [0, s]. Since V (k)

is a positive definite function, under zero initial conditions, V (s) − V (0) =
∑s

i=0 ∆V (i)

is positive semi-definite and therefore adding it to the right hand side of (3.23) results in

J ≤
∑s

i=0 J̃(k) where

J̃(k) = ε(k)T ε(k)− µ2
wv(w(k)Tw(k) + v(k)T v(k))
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− µ2
θ∆θ(k)T∆θ(k) + ∆V (k). (3.24)

Substituting (3.22) in (3.24), we obtain

J̃ = ξT (Ξ1 + ΞT2 P
−1Ξ2 + ΞT3 Q

−1Ξ3)ξ (3.25)

where Ξ1 = Ξ̂1 + diag{HTH, 0,−µ2
wvI,−µ2

wvI,−µ2
θI}. Therefore, the estimation error ε

is bounded and satisfies the H∞ performance inequalities given in (3.16) if J̃ < 0 which

is guaranteed if the LMI given in (3.17) holds true.

Remark V. Note that although the proposed linear filter was obtained solving the

feasibility problem in theorem 3.1, the problem can also be stated as an optimization

problem with an objective to minimize the H∞ bounding parameters µθ and µwv. To this

end, one can define min µ̄wv + Wµ̄θ as the objective function with W as a weighting

parameter and µ̄wv = µ2
wv and µ̄θ = µ2

θ as simple variable replacements to avoid bilinear

terms in the LMI given in (3.17).

3.3 Nonlinear Filter Design

In this section, we extend the adaptive approach of section 3 to nonlinear Lipschitz sys-

tems. Similar to the linear case, we define the state error as e = x−xF and the estimation

error of the adaptive parameter as θ̃ = θ − θF . The closed-loop filtering error system can

be written as follows:

e(k + 1) = (A− LC)e(k) +B2w(k)− Lv(k)

− Lθ̃(k) + ∆φ(x, xF , u)

θ̃(k + 1) = −ΓCe(k) + (I − Γ)θ̃(k)− Γv(k) + ∆θ(k)

ε(k) = He(k) (3.26)

where ∆θ(k) = θ(k+ 1)− θ(k) and ∆φ(x, xF , u) = φ(x, u)− φ(xF , u). Before formulating

the proposed approach, we introduce the following lemma that will be used in the proof

of the main theorem:

Lemma 3.1. ( [97]) For any x, y ∈ Rn and any positive definite matrix T ∈ Rn×n, we

have:

2xT y ≤ xTTx+ yTT−1y
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The following theorem formulates the proposed adaptive approach for Lipschitz non-

linear systems.

Theorem 3.2. Consider the nonlinear system (3.6), with measurements quantized via a

hysteresis linear quantizer, and the nonlinear filter in (3.7) with θF updated by (3.14).

Then the filtering error system satisfies `2 attenuation levels µwv and µθ on the effects

of the noise and network-induced errors, if there exist matrices P > 0, G, and diagonal

matrices Q,Gq > 0, and a scalar η > 0 such that the following LMI is feasible:
Ξ1 ΞT2 ΞT3

? −Ξ4 0

? ? −Q

 < 0 (3.27)

where

Ξ1 = diag{HTH − P + ηl2I,−Q,−µ2
wvI,−µ2

wvI,−µ2
θI}

Ξ2 =

PA−GpC −Gp PB2 −Gp 0

0 0 0 0 0

 (3.28)

Ξ3 =
[
−GqC Q−Gq 0 −Gq Q

]
Ξ4 =

 P −P

−P ηI


The filter parameter L, and the adaptation gain Γ can be calculated as L = P−1G and

Γ = Q−1Gq, respectively.

Proof. In order to analyze the stability properties of the error system given in (3.26), we

use the Lyapunov function (3.19). The forward difference of this Lyapunov function can

be written as

∆V (k) = ξ(k)T (ΩT
1 PΩ1 + ΩT

2 QΩ2)ξ(k) + 2ξ(k)TΩT
1 P∆φ

+ ∆φTP∆φ− e(k)TPe(k)− θ̃(k)TQθ̃(k) (3.29)

where ξ(k) =
[
e(k)T θ̃(k)T w(k)T v(k)T ∆θ(k)T

]T
, and

Ω1 =
[
(A− LC) 0 B2 −L −L

]
Ω2 =

[
−ΓC I − Γ 0 −Γ I

]
.
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Using lemma 3.1 we can write

2ξTΩT
p ∆φ ≤ ξTΩpT

−1
1 ΩT

p ξ + ∆φTT1∆φ (3.30)

where Ωp = PΩ1. Choosing T1 = W where W = ηI − P > 0 for some η > 0 and then

substitute (3.30) in (3.29), we get

∆V (k) ≤ ξ(k)TΩp(P
−1 +W−1)ΩT

p ξ(k) + ξ(k)TΩT
2 QΩ2ξ(k)

+ e(k)T (ηl2I − P )e(k)− θ̃(k)TQθ̃(k) (3.31)

where P and W are codependent. We have:

P−1 +W−1 = P−1 + (ηI − P )−1

= (ηI − P )−1((ηI − P )P−1 + I)

= (ηI − P )−1ηP−1 = (P − η−1P 2)−1 (3.32)

Using (3.32), we can simplify (3.31) into the following inequality,

∆V (k) ≤ ξT [Ξ̂1 + Ξ̂T2 (P − η−1P 2)−1Ξ̂2 + ΞT3 Q
−1Ξ3]ξ (3.33)

where

Ξ̂1 = diag{ηl2I − P,−Q, 0, 0, 0}

Ξ̂2 =
[
PA−GpC −Gp PB2 −Gp 0

]
Ξ3 =

[
−GqC Q−Gq 0 −Gq Q

]
(3.34)

with Gp = PL, and Gq = QΓ.

Proceeding as in Theorem 3.1, we consider J and J̃ defined in (3.23) and (3.24),

respectively. Substituting (3.33) in (3.24) and using Schur’s complement, we obtain

J̃ ≤ ξT (Ξ1 + ΞT2 Ξ−1
4 Ξ2 + ΞT3 Q

−1Ξ3)ξ (3.35)

where Ξ1,Ξ2,Ξ3,Ξ4 are all as defined in (3.28). Therefore, the estimation error ε is

bounded and satisfies the performance inequalities given in (3.16) if J̃ < 0, which is

guaranteed if the LMI given in (3.27) holds true.
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3.4 Simulation Results

In this section we consider two illustrative examples and compare the performance of the

adaptive filters of sections 3 and 4 to those obtained using conventional (non-adaptive)

filters and linear quantizers. We assume that the discrete model of the plant is obtained

using a sampling period t = 0.01sec .

Example 1: Linear Case Consider the following linear system,

x(k + 1) =

 0.9323 0.0185

−0.0092 0.9138

x(k) +

0.1

0

u(k) +

0.01

0.01

w(k)

y(k) =
[
1 0

]
x(k) + 0.1u(k) + v(k)

z(k) =
[
0 1

]
x(k) (3.36)

where u(k) = sin(5k) is an exogenous input, and w, v ∈ `2 are noise signals. It is assumed

that both of the quantizers (linear and hysteresis) cover the range [−1.5, 1.5] with τ = 0.5

and therefore have 7 levels, which leads to 3-bit data packets. For the hysteresis quantizer,

we choose the hysteresis parameter h = 0.1. We assume that there are no communication

constraints i.e. the sensor can access the network at every sampling instant.

The Conventional H∞ Filter : In designing this filter, the network-induced error, i.e.

θ, is modeled as noise input, and the H∞ filter tries to bound the unwanted effects of θ,

whereas, in the proposed approach, θ is estimated by θF and the H∞ filter tries to bound

the unwanted effects of the variations of this signal, i.e. ∆θ. Choosing the µwv = µθ = 0.5,

the resulting filter gain is Lconv =
[
1.1072 0.0732

]T
.

The Proposed Filter : Choosing µwv = µθ = 0.5, the filter parameters are Γ = 0.5331

and Ladapt =
[
0.5061 0.0101

]T
. Figures 3.2, and 3.3 show the operation of both the

conventional and proposed filters. Comparing figures 3.2, we see that the proposed filter

is less sensitive to noise and network-induced errors than the conventional counterpart.

Example 2: Nonlinear Case Assume the linear system given in (3.36) plus the

following Lipschitz nonlinear function in the state equation:

φ(x) = 0.05(1− cos(x2(k))2),

which is globally Lipschitz with l = 0.05. The quantizer characteristics are also assumed

to be the same as those in the linear case. Furthermore, we assume that 3 agents use the

network and therefore our sensor is granted access to the network once in every 3 samples.
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Figure 3.2: z and its estimate zF
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Figure 3.3: θ and its estimate θF
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Figure 3.4: z and its estimate zF
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Figure 3.5: θ and its estimate θF

We assume that at t = 1 sec a fault occurs in the sensor, causing a constant offset with

the amplitude 1 in the measurement.

Choosing the gains µwv = 0.5, µθ = 1, the filter parameters are calculated to be

Ladapt =
[
0.21 0.11

]T
× 10−3, Γ = 0.998. Figures 3.4, 3.5, and 3.6 show the operation

of the proposed filter. Due to the offset added to the measurement at t = 1 sec, the

quantizer becomes saturated when y > 1.5, which can be seen in figure 3.6. In the proposed

approach, however, this error is identified and estimated by the adaptive parameter θF

(figure 3.5). As a result, as shown in figure 3.4, the generated signal zF follows z without

any significant deviation.
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Figure 3.6: y and yfb

3.5 Summary

This chapter considered the filtering problem for discrete-time linear and Lipschitz non-

linear systems over communication networks. Our formulation assumes that the sensor

data is first quantized and then transmitted to the filter after access to the network is

granted. The error imposed by the network was modeled as an unknown disturbance of

the measurements and then an adaptive law was proposed to estimate this error. Using a

Lyapunov-based approach, it was shown that the estimation error is bounded with arbi-

trary attenuation gains on the undesired effects of the network and noise inputs if certain

LMI’s were feasible. Finally, the effectiveness of the proposed approach was illustrated

through simulation.
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Chapter 4

Unknown Input Filter Design for

Discrete-Time Linear Systems

In this chapter, a new H∞ filter design approach is proposed for discrete-time linear

systems with unknown inputs. The proposed Lyapunov-based approach, free of any sim-

ilarity transformations, designs a linear filter for the modified model of the plant, and

then extracts the original states of the system. The designed filter estimates both the

system states and the unknown input simultaneously and does not have many of the re-

strictive assumptions and restrictions that the existing unknown input filters do. In the

end, simulation results are used to illustrate the effectiveness of the proposed filter.

The rest of the chapter is organized as follows. Section II introduces the plant model. In

sections III and IV the two design approaches are discussed. In section V the corresponding

simulation results are given for both methods and finally section 4.5 summarizes the results

of this chapter.

4.1 Plant Model

Consider the following linear system:

x(k + 1) = Ax(k) +B1u(k) +B2d(k) +B3w(k)

y(k) = Cx(k) + v(k)

z(k) = Hx(k) (4.1)
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where x ∈ Rn is the state vector; y ∈ Rp represents the measured outputs; z ∈ Rr

is the vector to be estimated; u ∈ Rm1 is the known input; d ∈ Rm2 is the unknown

low-frequency disturbance input; w ∈ Rm3 and v ∈ Rp are the state and measurement

noise inputs, respectively, and A, B1, B2, B3, C, H are the state space matrices of the

model. We assume that (A,C) is an observable pair and also B2, C are full rank with

rank(B2) = m2, rank(C) = p and p ≥ m2.

Now we define the new state variable x̄ as

x̄(k + 1) = x(k + 1)−
σ∑
i=0

AiB2d(k − i) (4.2)

where σ can be calculated through either

min σ

s.t. rank
(
CAσB2

)
= rank(B2) (4.3)

or

min σ

s.t. rank
(∑σ

i=0CA
iB2

)
= rank(B2) (4.4)

These two conditions are extracted through the stability analyses of two correlated yet

distinct approaches which are based on two different filter models. The details of each

approach will be discussed in the next two sections of this chapter.

Before introducing these approaches, we first rewrite the plant model by substituting

(4.2) in (4.1), which leads to

x̄(k + 1) = Ax̄(k) +B1u(k) +Aσ+1B2d(k − σ − 1)

+B3w(k)

y(k) = Cx̄(k) +
σ∑
i=0

CAiB2d(k − i− 1) + v(k)

z(k) = Hx̄(k) +

σ∑
i=0

HAiB2d(k − i− 1) (4.5)

Based on the above revised model we will propose two distinct filter models and the

corresponding design approach.
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4.2 Approach I

In this approach we assume that σ is calculated by (4.3). Consider the following filter

model,

x̄F (k + 1) = Ax̄F (k) +Aσ+1B2dF (k − σ − 1|k − 1)

+B1u(k) + L(y(k)− yFc(k))

yFp(k) = Cx̄F (k) +
σ∑
i=0

CAiB2dF (k − i− 1|k − 1)

yFc(k) = Cx̄F (k) +
σ∑
i=0

CAiB2dF (k − i− 1|k)

zF (k) = Hx̄F (k) +
σ∑
i=0

HAiB2dF (k − i− 1|k) (4.6)

where x̄F ∈ Rn is the state vector of the filter; dF (k− i|k− j) ∈ Rm2 is the estimated dis-

turbance vector dF (k− i), which is calculated using the measurements up to the sampling

instant k− j; yFp ∈ Rp is the predicted measurement vector which is calculated using the

estimated dF up to the sampling instant k − 1; yFc ∈ Rp is the corrected measurement

vector which is calculated using the estimated dF up to the sampling instant k; zF ∈ Rr

is the estimated vector; and L is the static filter parameter to be designed. It should be

noted that this filter has exactly the same structure and same state space matrices as the

original plant if the disturbance is zero.

4.2.1 Stability Analysis

The first step in the stability analysis is to find the unknown input estimate dF . As

explained before, to calculate the value of dF at every sampling instant we propose an

stable adaptive law, which uses the plant measurements to update dF . In this section,

we will first extract this stable adaptive law and then discuss the necessary conditions for

stability.

Adaptive Law Extraction

In order to extract an stable adaptive law for dF , we first need to find how the unknown

input estimation error d̃ = d− dF , is related to the measurement y received by the filter.
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To this end, we define the predicted measurement error εp as

εp(k) = y(k)− yFp(k)

= Cē(k) +
σ∑
i=0

CAiB2d̃(k − i− 1|k − 1)

+ v(k) (4.7)

where ē = x̄− x̄F is the state error, v is the unknown error introduced by the measurement

noise. Similarly, the corrected measurement error εc can be defined as

εc(k) = y(k)− yFc(k)

= Cē(k) +

σ∑
i=0

CAiB2d̃(k − i− 1|k)

+ v(k) (4.8)

We now construct our adaptation law to ensure that ε is exponentially decreasing. More

explicitly; the adaptive law ensures that ‖εp(k + 1)‖, the predicted measurement error at

k+1, is smaller than ‖εc(k)‖, the corrected error at k, and also that εc(k+1),the corrected

error at k + 1, is smaller than εp(k + 1), the predicted error at k + 1. If those conditions

are satisfied we can conclude that ‖ε‖ is decreasing with respect to d̃ in accordance with

the Gradient Optimization Rule. Therefore, using (4.7) and (4.8) we can write

εp(k + 1)− εc(k) = Cē(k + 1)− Cē(k) + δ

+
σ∑
i=0

CAiB2(d̃(k − i|k)

− d̃(k − i− 1|k)) (4.9)

where δ = v(k+1)−v(k) is an unknown error term introduced via the measurement noise.

We now choose d̃(k − i|k) as

d̃(k − i|k) = d̃(k − i− 1|k)− ΓBT
2 A

iTCT εc(k) (4.10)

for i = 0, . . . , σ where Γ is a diagonal positive definite matrix. Substituting (4.10) in (4.9),

we get

εp(k + 1) = (I −
σ∑
i=0

CAiB2ΓBT
2 A

iTCT )εc(k)
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+ C(ē(k + 1)− ē(k)) + δ (4.11)

From the above equation, we can conclude that for a stable ē and a bounded error term

δ, the predicted output error at k + 1, i.e. εp(k + 1), is decreasing with respect to the

corrected output error at k, i.e. εc(k), provided that Γ is chosen in such a way that the

following inequality is satisfied:

|λ(I −
σ∑
i=0

CAiB2ΓBT
2 A

iTCT )| ≤ 1 (4.12)

where λ( M ) represents the eigenvalue of M . We claim that there always exists a small

enough Γ0 > 0, that for all Γ < Γ0 the condition given in (4.12) is satisfied. To show this

more clearly we first break down this condition into the following two inequalities:

λmax(I −
σ∑
i=0

CAiB2ΓBT
2 A

iTCT ) ≤ 1 (4.13)

λmin(I −
σ∑
i=0

CAiB2ΓBT
2 A

iTCT ) ≥ −1 (4.14)

The first inequality is always satisfied due to the fact that for a positive definite Γ, the

matrix given by
∑σ

i=0CA
iB2ΓBT

2 A
iTCT is always positive semi-definite. To investigate

the second inequality we can write

λmin(I −
σ∑
i=0

CAiB2ΓBT
2 A

iTCT )

= 1− λmax(

σ∑
i=0

CAiB2ΓBT
2 A

iTCT )

≥ 1− ‖
σ∑
i=0

CAiB2ΓBT
2 A

iTCT ‖

≥ 1− ‖Γ‖‖
σ∑
i=0

CAiB2B
T
2 A

iTCT ‖

Therefore, for (4.14) to be satisfied we need to have

‖Γ‖‖
σ∑
i=0

CAiB2B
T
2 A

iTCT ‖ ≤ 2

Based on the assumption given in (4.3), ‖
∑σ

i=0CA
iB2B

T
2 A

iTCT ‖ is non-zero and there-

fore there always exists a small enough Γ > 0 for which (4.14) is satisfied.

Next step is to show that εc(k) is also decreasing with respect to εp(k). Going back

to (4.10), it is easy to see that at every sampling instant k, σ + 1 consecutive values of
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d̃ starting from d̃(k − σ|k) to d̃(k|k) are updated. Solving (4.10) in a recursive manner,

links all of the updated variables to d̃(k − σ − 1|k), which was last updated at k − 1, i.e.

d̃(k − σ − 1|k + j) = d̃(k − σ − 1|k − 1) j = 0, 1, . . . (4.15)

As a result, (4.10) can be rewritten as follows:

d̃(k − i|k) = d̃(k − σ − 1|k − 1)− Γ

σ∑
j=i

BT
2 A

jTCT εc(k) (4.16)

for i = 0, . . . , σ. It should be noted that the adaptive law given in (4.16) is not realizable

due to the existence of the unknown disturbance d in the equation. To handle this problem,

we rewrite (4.16) as

d(k − i)− dF (k − i|k)

= d(k − σ − 1)− dF (k − σ − 1|k − 1)

− Γ

σ∑
j=i

BT
2 A

iTCT εc(k)

⇒ dF (k − i|k) = dF (k − σ − 1|k − 1)

+ Γ
σ∑
j=i

BT
2 A

jTCT εc(k) + ∆d(k − i) (4.17)

where ∆d(k − i) = d(k − i)− d(k − σ − 1) is an unknown term, which is bounded for any

continuous signal and cannot be realized. As an alternative, we choose the adaptation law

to be

dF (k − i|k) = dF (k − σ − 1|k − 1)

+ Γ

σ∑
j=i

BT
2 A

jTCT εc(k) (4.18)

for i = 0, . . . , σ. Now in order to calculate εc we first need to calculate the corrected filter

measurement, i.e. yFc. To this end, we substitute (4.18) in the third equation of (4.6),

which results in

yFc(k, l + 1) = Cx̄F (k) +
σ∑
i=0

CAiB2dF (k − σ − 1|k − 1)

+

σ∑
i=0

CAiB2Γ

σ∑
j=i+1

BT
2 A

jTCT εc(k, l) (4.19)
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where l = 0, 1, 2, . . . is a variable introduced to solve the above equation in an iterative

manner. The initial values of this equation are given as

yFc(k, 0) = yFp(k), εc(k, 0) = εp(k)

By substituting (4.19) in εc = y − yFc, we get

εc(k, l + 1) = y(k)− Cx̄F (k)

−
σ∑
i=0

CAiB2dF (k − σ − 1|k − 1)

−
σ∑
i=0

CAiB2Γ

σ∑
j=i+1

BT
2 A

jTCT εc(k, l)

Using this equation, we can conclude that at every iteration, ‖εc(k, l+1)‖ becomes smaller

with respect to ‖εc(k, l)‖ if Γ is chosen small enough so that the following inequality holds:

λmax(

σ∑
i=0

CAiB2Γ

σ∑
j=i+1

BT
2 A

jTCT ) ≤ 1 (4.20)

Based on (4.20), at every iteration, εc(k, l) will become smaller until it reaches its steady

state value, i.e. εc(k). As a result we can state the following corollary:

Corollary 4.1. εc(k+ 1) and εp(k+ 1) are both decreasing with respect to εc(k) and εp(k)

if the inequalities given in (4.14) and (4.20) are satisfied.

The steady state value of εc(k, l), i.e. εc(k) can be calculated via the following equation:

εc(k) = lim
l→∞

εc(k, l + 1) = lim
l→∞

εc(k, l)

= lim
l→∞
{y(k)− Cx̄F (k)

−
σ∑
i=0

CAiB2dF (k − σ − 1|k − 1)

−
σ∑
i=0

CAiB2Γ
σ∑

j=i+1

BT
2 A

jTCT εc(k, l)} (4.21)

Simplifying this equation will result in:

εc(k) = Φ−1y(k)− Φ−1Cx̄F (k)

− Φ−1
σ∑
i=0

CAiB2dF (k − σ − 1|k − 1) (4.22)
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where

Φ = I +
σ∑
i=0

CAiB2Γ
σ∑

j=i+1

BT
2 A

jTCT (4.23)

It should be noted that for a small enough Γ, Φ is positive-definite and therefore invertible.

Note that among the σ + 1 consecutive values of dF , which are updated at every

sampling instant, two stand out. The first one is dF (k − σ) which is being corrected for

one last time at this instant and is therefore of great importance in our mathematical

analysis and design. The second one is dF (k) which is being predicted for the first time

and is therefore important in the analysis of our simulation results. We will refer to the

former as the corrected disturbance estimate or dFc and to the latter as the predicted

disturbance or dFp.

Necessary Stability Conditions

In order to obtain the necessary stability conditions, we first need to calculate εc with

respect to ē and d̃, which can be accomplished by substituting the second equation of

(4.5) in (4.22), i.e.

εc(k) = Φ−1Cē(k) + Φ−1
σ∑
i=0

CAiB2d̃(k − σ − 1|k − 1)

+ Φ−1
σ−1∑
i=0

CAiB2∆d(k − i− 1) + Φ−1v(k) (4.24)

Now we use this equation along with (4.5), (4.6) and (4.18) to write the error dynamics

as follows:

ē(k + 1) = A11
S ē(k) +A12

S d̃(k − σ − 1|k − 1)

+B3w(k) +B11
S v(k) +B12

S ∆d
k−1
k−σ

d̃(k − σ|k) = A21
S ē(k) +A22

S d̃(k − σ − 1|k − 1)

+B21
S v(k) +B22

S ∆d
k−1
k−σ

(4.25)

where

A11
S = A− LΦ−1C
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A12
S = Aσ+1B2 − LΦ−1CAΣB2

A21
S = −Γ(CAσB2)TΦ−1C

A22
S = I − Γ(CAσB2)TΦ−1CAΣB2

B11
S = −LΦ−1

B12
S = −LΦ−1C

[
B2 AB2 . . . Aσ−1B2

]
B21
S = −Γ(CAσB2)TΦ−1

B22
S =

[
0 0 . . . I

]
− Γ(CAσB2)TΦ−1C

[
B2 AB2 . . . Aσ−1B2

]
AΣ =

σ∑
i=0

Ai

and

∆d
k−1
k−σ =


∆d(k − 1)

∆d(k − 2)
...

∆d(k − σ)


It should be noted that our stability analysis is done for i = σ due to the fact that at

sampling instant k, the only updated d̃, that won’t be corrected in the next sampling

instants, is d̃(k − σ). Now using (4.25) the error stability matrix can be written as

S =

A11
S A12

S

A21
S A22

S

 (4.26)

Assume that B2 is partitioned as B2 =
[
B′2 B′′2

]
and

rank(CAσB2) = rank(B′2) < rank(B2). (4.27)

Defining

M ′ = (Aσ+1 − LΦ−1CAΣ)B′2

M ′′ = (Aσ+1 − LΦ−1CAΣ)B′′2

N ′ = (CAσB′2)TΦ−1C

N ′′ = (CAσB′′2 )TΦ−1C
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Γ = diag{Γ1,Γ2} (4.28)

then (4.26) can be rewritten as

S =


A11
S M ′ M ′′

−Γ1N
′ I − Γ1N

′AΣB
′
2 −Γ1N

′AΣB
′′
2

−Γ2N
′′ −Γ2N

′′AΣB
′
2 I − Γ2N

′′AΣB
′′
2

 (4.29)

According to (4.27), the columns of CAσB′′2 are the linear combination of the columns of

CAσB′2, or in other words CAσB′′2 = CAσB′2R. As a result N ′′ = RTN ′. To analyze the

stability of this matrix, we introduce the following similarity transformation matrix:

T =


I 0 0

0 I 0

0 −Γ2R
TΓ−1

1 I

 (4.30)

Applying this transformation to S, we get

ST = TST−1

=


A11
S M ′ M ′′

−Γ1N
′ E −Γ1N

′AΣB
′′
2

0 0 I

 (4.31)

where E = I − Γ1N
′AΣB

′
2 − Γ1N

′AΣB
′′
2 Γ2R

TΓ−1
1 . It is easy to show that ST has h

eigenvalues at 1, where h = rank(B2)− rank(B′2).

Corollary 4.2. The filter (4.6) with the adaptive law given in (4.18) can produce stable

estimates if the following inequality holds true:

rank(CAσB2) ≥ rank(B2) (4.32)

It is crucial to note that the necessary stability condition given in (4.32) is less re-

strictive than the well-known necessary condition rank(CB2) ≥ rank(B2), which is very

common in unknown input observer design. The following example illustrates this point:

Example: Assume

x(k + 1) =


0 0 1

0 −0.5 0

0.25 0.25 0

x(k) +


0 1

1 0

1 0

 d(k)
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y(k) =

0 1 −1

0 1 0

x(k)

For this system, we have rank(B2) = 2, rank(CB2) = 1 and rank(CAB2) = 2.

4.2.2 The Proposed Filter

In this section, we will propose an LMI-based filter design procedure for discrete-time

linear systems subject to unknown state disturbances.

Consider the revised linear model given in (4.5) and the filter model given in (4.6).

The following theorem, formulates the proposed adaptive approach.

Theorem 4.1. Consider the linear system (4.1) along with the linear filter (4.6) with dF

being updated as follows:

dF (k − i) = dF (k − σ − 1) + Γ
σ∑
j=i

BT
2 A

jTCT εc(k)

where εc = y−yFc is the measurement estimation error and Γ > 0 is the adaptation gain.

Let µw, µv, µd, be the `2 attenuation gains bounding the effects of state noise, measure-

ment noise, and disturbance variations, on the estimation error. Then the H∞ filtering

problem with disturbance estimator has a solution if there exist matrices Pe, Pd > 0 and

Ge satisfying the following LMI: Ξ1 Ξ2

? −P

 < 0 (4.33)

where

P = diag{Pe, Pd}

Ξ1 =

Ξ11
1 Ξ12

1

? Ξ22
1


Ξ11

1 =

C1
S
T
C1
S − Pe C1

S
T
C2
S

C2
S
T
C1
S C2

S
T
C2
S − Pd


Ξ12

1 =

0 C1
S
T
D1
S C1

S
T
D2
S

0 C2
S
T
D1
S C2

S
T
D2
S



58



Ξ22
1 =


−µ2

wI 0 0

0 D1
S
T
D1
S − µ2

vI D1
S
T
D2
S

0 D2
S
T
D1
S D2

S
T
D2
S − µ2

dI


Ξ2 =

[
Ξ1

2 Ξ2
2

]

Ξ1
2 =



ATPe − CTΦ−TGTe

BT
2 (Aσ+1TPe −

∑σ
i=0A

iTCTΦ−TGTe )

BT
3 Pe

−Φ−TGTe

−BT
2 C

TΦ−TGTe

−BT
2 A

TCTΦ−TGTe
...

−BT
2 A

σ−1TCTΦ−TGTe



Ξ2
2 =



−CTΦ−TCAσB2ΓPd

(I −BT
2

∑σ
i=0A

iTCTΦ−TCAσB2Γ)Pd

0

−Φ−TCAσB2ΓPd

−BT
2 C

TΦ−TCAσB2ΓPd

−BT
2 A

TCTΦ−TCAσB2ΓPd
...

Pd −BT
2 A

σ−1TCTΦ−TCAσB2ΓPd


C1
S = H(I −

σ∑
i=0

AiB2Γ

σ∑
j=i+1

BT
2 A

jTCTΦ−1C)

C2
S =

σ∑
i=0

HAiB2(I − Γ
σ∑

j=i+1

BT
2 A

jTCTΦ−1CAΣB2)

D1
S = −

σ∑
i=0

HAiB2Γ
σ∑

j=i+1

BT
2 A

jTCTΦ−1

D2
S = H

[
B2 AB2 . . . Aσ−1B2

]
−

σ∑
i=0

HAiB2Γ
σ∑

j=i+1

BT
2 A

jTCTΦ−1C

×
[
B2 AB2 . . . Aσ−1B2

]
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Φ = I +
σ∑
i=0

CAiB2Γ
σ∑

j=i+1

BT
2 A

jTCT (4.34)

Then the filter parameter is calculated as L = P−1
e Ge, and the disturbance estimate dF is

updated as given in (4.18).

Proof. Using (4.25), (4.5) and (4.6), the estimation error system can be written as

ē(k + 1) = A11
S ē(k) +A12

S d̃(k − σ − 1|k − 1)

+B3w(k) +B11
S v(k) +B12

S ∆d
k
k−σ

d̃(k − σ) = A21
S ē(k) +A22

S d̃(k − σ − 1|k − 1)

+B21
S v(k) +B22

S ∆d
k
k−σ

ε(k) = z(k)− zF (k)

= C1
S ē(k) + C2

S d̃(k − σ − 1|k − 1)

+D1
Sv(k) +D2

S∆d
k
k−σ (4.35)

where C1
S , C2

S , DS are as defined in (4.34); and AijS , Bij
S are as given in (4.25). Augmenting

ē and d̃ as X(k) =
[
ē(k)T d̃(k − σ − 1|k − 1)T

]T
and defining ω =

[
wT vT ∆dT

]T
,

the augmented error model will be given as:

X(k + 1) = AX(k) + Bω(k)

ε(k) = CX(k) + Dω(k) (4.36)

where

A =

A11
S A12

S

A21
S A22

S


B =

B3 B11
S B12

S

0 B21
S B22

S


C =

[
C1
S C2

S

]
D =

[
0 D1

S D2
S

]
(4.37)

To analyze the stability of the augmented system, the following Lyapunov function is used,

V (k) = X(k)TPX(k) (4.38)
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The forward difference of this Lyapunov function can be written as

∆V (k) = V (k + 1)− V (k)

= X(k)TATPAX(k) + ω(k)TBTPBω(k)

+X(k)TATPBω(k) + ω(k)TBTPAX(k)

−X(k)TPX(k) (4.39)

Defining ξ =
[
XT ωT

]T
, (4.39) can be simplified as follows:

∆V (k) = ξ(k)T {

AT
BT

P

AT
BT

T +

−P 0

0 0

}ξ(k) (4.40)

In order to establish an H∞ bound on the effects of the unwanted noise inputs and also

the effects of the variations of the unknown disturbance i.e. ∆d, we define

J ,
h∑
k=0

{ε(k)T ε(k)− ω(k)TµTµω(k)} (4.41)

where h > 0 is a finite integer and µ = diag{µw, µv, µd}. Adding (4.38) to the right hand

side of (4.41), we get

J <

h∑
k=0

{ε(k)T ε(k)− ω(k)TµTµω(k) + ∆V (k)} =

h∑
k=0

J̃k (4.42)

Now, if we design our filter such that J̃k ≤ 0, we can conclude that J ≤ 0, which implies

that in the time interval [0, h], the second norm of the estimation error is bounded by

factors of the second norms of the noise inputs and disturbance variations. In other

words, it establishes an H∞ bound on the estimation error system. Using (4.36) εT ε can

be simplified as follows:

εT ε = ξ(k)T

CTC CTD

DTC DTD

 ξ(k) (4.43)

Substituting (4.43) and (4.40) in (4.42), we have

J̃k ≤ ξT (Ω1 + Ω2P−1ΩT
2 )ξ (4.44)

where

Ω1 =

CTC− P CTD

DTC DTD− µTµ


61



Ω2 =

ATP
BTP

 (4.45)

Now if we define Ge = PeL, we can rewrite (4.44) as follows:

J̃k ≤ ξT (Ξ1 + Ξ2P−1ΞT2 )ξ (4.46)

where Ξ1,Ξ2,Ξ3 are as given in (4.34). Using Schur’s Complement one can show that

(4.46) holds true if the LMI given in (4.33) is satisfied.

4.3 Approach II

Consider the following filter model,

x̄F (k + 1) = Ax̄F (k) +Aσ+1B2dF (k − σ − 1)

+B1u(k) + L(y(k)− yF (k))

yF (k) = Cx̄F (k) +
σ∑
i=0

CAiB2dF (k − σ − 1)

zF (k) = Hx̄F (k) +
σ∑
i=0

HAiB2dF (k − σ − 1) (4.47)

where x̄F is the n × 1 state vector of the filter; dF is the m2 × 1 estimated disturbance

vector, which will follow an stable adaptive law to track the unknown disturbance; yF

represents the p× 1 estimated measurement vector; zF is the r × 1 estimated vector; and

L is the static filter parameter to be designed.

4.3.1 Stability Analysis

Similar to Approach I, in this section we will first derive a stable adaptive law for estimating

the unknown input and then we’ll move on to the necessary stability conditions for this

approach.

Adaptive Law Extraction

In order to extract an stable adaptive law for dF , we first need to find how the unknown

input estimation error d̃ = d− dF , is related to the measurement vector. To this end, we

define the measurement estimation error as

ε(k) = y(k)− yF (k)
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= Cē(k) +
σ∑
i=0

CAiB2d̃(k − σ − 1)

+
σ−1∑
i=0

CAiB2∆d(k − i− 1) + v(k) (4.48)

where ē = x̄− x̄F represents the state estimation error; ∆d(k− i) = d(k− i)−d(k−σ−1)

represents the variation of the unknown disturbance; and v is the measurement noise.

We now construct our adaptation law to ensure that ε is exponentially decreasing. Using

(4.48) we can write

ε(k + 1)− ε(k) = Cē(k + 1)− Cē(k) + δ

+

σ∑
i=0

CAiB2(d̃(k − σ)− d̃(k − σ − 1)) (4.49)

where

δ =

σ∑
i=0

CAiB2(d(k − i)− d(k − i− 1))

+ v(k + 1)− v(k)

We now choose d̃(k − σ) as

d̃(k − σ) = d̃(k − σ − 1)− Γ
σ∑
i=0

BT
2 A

iTCT ε(k) (4.50)

for i = 0, . . . , σ where Γ is a diagonal positive definite matrix which represents the adap-

tation gain. Substituting (4.50) in (4.49), we get

ε(k + 1) = (I −
σ∑
i=0

CAiB2Γ
σ∑
i=0

BT
2 A

iTCT )ε(k)

+ C(ē(k + 1)− ē(k)) + δ (4.51)

From the above equation, we can conclude that for a stable ē and a bounded error term δ,

the measurement estimation error, i.e. ε, is decreasing in time, provided that Γ is chosen

in such a way that the following inequality is satisfied:

|λ(I −
σ∑
i=0

CAiB2Γ

σ∑
i=0

BT
2 A

iTCT )| ≤ 1 (4.52)

where λ( M ) represents the eigenvalues of M . We claim that there always exists a small

enough Γ0 > 0, that for all Γ < Γ0 the condition given in (4.52) is satisfied. To show this
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more clearly we first break down this condition into the following two inequalities:

λmax(I −
σ∑
i=0

CAiB2Γ

σ∑
i=0

BT
2 A

iTCT ) ≤ 1 (4.53)

λmin(I −
σ∑
i=0

CAiB2Γ
σ∑
i=0

BT
2 A

iTCT ) ≥ −1 (4.54)

The first inequality is always satisfied due to the fact that for a positive definite Γ, the

matrix given by
∑σ

i=0CA
iB2Γ

∑σ
i=0B

T
2 A

iTCT is always positive definite and therefore

the largest eigenvalue will always be smaller than 1. To investigate the second inequality

we can write

λmin(I −
σ∑
i=0

CAiB2Γ

σ∑
i=0

BT
2 A

iTCT )

= 1− λmax(
σ∑
i=0

CAiB2Γ
σ∑
i=0

BT
2 A

iTCT )

≥ 1− ‖
σ∑
i=0

CAiB2Γ
σ∑
i=0

BT
2 A

iTCT ‖

≥ 1− ‖Γ‖‖
σ∑
i=0

CAiB2

σ∑
i=0

BT
2 A

iTCT ‖

Therefore, for (4.54) to be satisfied we need to have

‖Γ‖‖
σ∑
i=0

CAiB2

σ∑
i=0

BT
2 A

iTCT ‖ ≤ 2

Based on the assumption given in (4.4), ‖
∑σ

i=0CA
iB2

∑σ
i=0B

T
2 A

iTCT ‖ is non-zero and

therefore there always exists a small enough Γ > 0 for which (4.54) is satisfied.

It should be noted that the adaptive law given in (4.50) is not realizable due to the

existence of the unknown disturbance d in the equation. To handle this problem, we

rewrite (4.50) as

d(k − σ)− dF (k − σ)

= d(k − σ − 1)− dF (k − σ − 1)

− Γ

σ∑
i=0

BT
2 A

iTCT ε(k)

⇒ dF (k − σ) = dF (k − σ − 1)

+ Γ

σ∑
i=0

BT
2 A

iTCT ε(k) + ∆d(k − σ) (4.55)
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where ∆d(k−σ) = d(k−σ)− d(k−σ− 1) is an unknown term, which is bounded for any

continuous signal and cannot be realized. As an alternative, we choose the adaptation law

to be

dF (k − σ) = dF (k − σ − 1) + Γ

σ∑
i=0

BT
2 A

iTCT ε(k) (4.56)

Necessary Stability Conditions

In order to establish necessary stability conditions, we first form the filtering error system

by using (4.5), (4.47) and (4.56) as follows:

ē(k + 1) = A11ē(k) + A12d̃(k − σ − 1) +B3w(k) + B11v(k) + B12∆d
k−1
k−σ

d̃(k − σ) = A21ē(k) + A22d̃(k − σ − 1) + B21v(k) + B22∆d
k−1
k−σ

ε(k) = z(k)− zF (k)

= C1ē(k) + C2d̃(k − σ − 1) + D1v(k) + D2∆d
k−1
k−σ (4.57)

where

A11 = A− LC

A12 = Aσ+1B2 − LCAΣB2

A21 = −Γ(CAΣB2)TC

A22 = I − Γ(CAΣB2)TCAΣB2

B11 = −L

B12 = −LC
[
B2 AB2 . . . Aσ−1B2

]
B21 = −Γ(CAΣB2)T

B22 =
[
0 0 . . . I

]
− Γ(CAΣB2)TC

[
B2 AB2 . . . Aσ−1B2

]
C1 = H

C2 = HAΣB2

D2 = H
[
B2 AB2 . . . Aσ−1B2

]
AΣ =

σ∑
i=0

Ai
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and

∆d
k−1
k−σ =


∆d(k − 1)

∆d(k − 2)
...

∆d(k − σ)


Now using the above model, we can write the error stability matrix as follows,

S =

A11 A12

A21 A22

 (4.58)

Assume that B2 is partitioned as B2 =
[
B′2 B′′2

]
and

rank(

σ∑
i=0

CAiB2) = rank(B′2) < rank(B2). (4.59)

Defining

M ′ = (Aσ+1 − LCAΣ)B′2

M ′′ = (Aσ+1 − LCAΣ)B′′2

N ′ = (CAΣB
′
2)TC

N ′′ = (CAΣB
′′
2 )TC

Γ = diag{Γ1,Γ2} (4.60)

then (4.58) can be rewritten as

S =


A11 M ′ M ′′

−Γ1N
′ I − Γ1N

′AΣB
′
2 −Γ1N

′AΣB
′′
2

−Γ2N
′′ −Γ2N

′′AΣB
′
2 I − Γ2N

′′AΣB
′′
2

 (4.61)

According to (4.59), columns of CAΣB
′′
2 are linear combinations of the columns of CAΣB

′
2,

or in other words CAΣB
′′
2 = CAΣB

′
2R. As a result N ′′ = RTN ′. To analyze the stability

of this matrix, we introduce the following similarity transformation matrix:

T =


I 0 0

0 I 0

0 −Γ2R
TΓ−1

1 I

 (4.62)
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Applying this transformation to S, we get

ST = TST−1

=


A11 M ′ M ′′

−Γ1N
′ E −Γ1N

′AΣB
′′
2

0 0 I

 (4.63)

where E = I − Γ1N
′AΣB

′
2 − Γ1N

′AΣB
′′
2 Γ2R

TΓ−1
1 . It is easy to show that ST has h

eigenvalues at 1, where h = rank(B2)− rank(B′2).

Corollary 4.3. The filter (4.47) with the adaptive law given in (4.56) can produce stable

estimates if the following inequality holds true:

rank(
σ∑
i=0

CAiB2) ≥ rank(B2) (4.64)

Similar to the necessary stability condition of Approach I, the above condition is less

restrictive than the well-known necessary condition rank(CB2) ≥ rank(B2).

4.3.2 The Proposed Filter

In this section, we will explain the design procedure for the proposed filter in the second

approach.

Augmenting ē and d̃ asX(k) =
[
ē(k)T d̃(k − σ − 1)T

]T
and defining ω =

[
wT vT ∆d

T
]T

,

the augmented error model can be written as:

X(k + 1) = AX(k) + Bω(k)

ε(k) = CX(k) + Dω(k) (4.65)

where

A =

A11 A12

A21 A22


B =

B3 B11 B12

0 B21 B22


C =

[
C1 C2

]
D =

[
0 0 D2

]
(4.66)

The following theorem formulates the design approach for the zone 1 filter.
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Theorem 4.2. Consider the linear system in (4.1) . Then the linear filter given in (4.47)

with the disturbance estimator given in (4.56) generate stable estimates of z and d with

arbitrary H∞ gains µw, µv, µd > 0, which respectively bound the effects of the state noise,

measurement noise and disturbance variations, if there exist matrices Pe, Pd, Gd > 0 and

Ge satisfying the following LMI: 
Ξ1 Ξ2 Ξ3

? −Pe 0

? ? −Pd

 < 0 (4.67)

where

Ξ1 =

Ξ11
1 Ξ12

1

? Ξ22
1


Ξ11

1 =

 HTH − Pe HTHAΣB2

BT
2 A

T
ΣH

TH BT
2 A

T
ΣH

THAΣB2 − Pd


Ξ12

1 =

0 0 HTD2

0 0 BT
2 A

T
ΣH

TD2



Ξ22
1 =


−µ2

wI 0 0

0 −µ2
vI 0

0 0 DT2 D2 − µ2
dI



Ξ2 =



ATPe − CTGTe
BT

2 (Aσ+1TPe −ATΣCTGTe )

BT
3 Pe

−GTe
−BT

2 C
TGTe

−BT
2 A

TCTGTe
...

−BT
2 A

σ−1TCTGTe
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Ξ3 =



−CTCAΣB2Gd

Pd −BT
2 A

T
ΣC

TCAΣB2Gd

0

−CAΣB2Gd

−BT
2 C

TCAΣB2Gd

−BT
2 A

TCTCAΣB2Gd
...

Pd −BT
2 A

σ−1TCTCAΣB2Gd


D2 = H

[
B2 AB2 . . . Aσ−1B2

]
(4.68)

Once solved, the filter parameters are calculated as L = P−1
e Ge and Γ = P−1

d Gd.

Proof. To analyze the stability of the filtering error system given in (4.65), the following

Lyapunov function is used,

V (k) = X(k)TP1X(k) (4.69)

where P = diag{Pe, Pd}. The forward difference of this Lyapunov function can be written

as

∆V (k) = V (k + 1)− V (k)

= X(k)TATPAX(k) + ω(k)TBTPBω(k)

+X(k)TATPBω(k) + ω(k)TBTPAX(k)

−X(k)TPX(k) (4.70)

Defining ξ =
[
XT ωT

]T
, (4.70) can be simplified as follows:

∆V (k) = ξ(k)T {

AT
BT

P

AT
BT

T +

−P 0

0 0

}ξ(k) (4.71)

In order to establish attenuation bounds on the effects of the network-induced error ∆yq

and also effects of the variations of the unknown disturbance i.e. ∆d, we define

J ,
s∑

k=0

{ε(k)T ε(k)− ω(k)TµTµω(k)} (4.72)

where s > 0 is any bounded integer and µ = diag{µw, µv, µd}. Adding (4.69) to the right

hand side of (4.72), we get

J <

s∑
k=0

{ε(k)T ε(k)− ω(k)TµTµω(k) + ∆V (k)} =

s∑
k=0

J̃k (4.73)
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Now, if we design our filter such that J̃k ≤ 0, we can conclude that J ≤ 0, which implies

that in the time interval [0, s], the second norm of the estimation error is bounded by

factors of the second norms of noise inputs and disturbance variations. In other words, it

establishes an H∞ bound on the filtering error system. Using (4.65) εT ε can be simplified

as follows:

εT ε = ξ(k)T

CTC CTD

DTC DTD

 ξ(k) (4.74)

Substituting (4.74) and (4.71) in (4.73), we have

J̃k ≤ ξT (Ω1 + Ω2P−1ΩT
2 )ξ (4.75)

where

Ω1 =

CTC− P CTD

DTC DTD− µTµ


Ω2 =

ATP
BTP

 (4.76)

Now if we define Ge = PeL and Gd = PdΓ, we can rewrite (4.75) as follows:

J̃k ≤ ξT (Ξ1 + Ξ2P
−1
e ΞT2 + Ξ3P

−1
d ΞT3 )ξ (4.77)

where Ξ1,Ξ2,Ξ3 are as given in (4.68). Using Schur’s Complement one can show that

(4.77) holds true if the LMI given in (4.67) is satisfied.

4.4 Simulation Results

In this section, we simulate the proposed unknown input filter for three examples. In all

of these examples we assume the following:

• the sampling time is assumed to be Ts = 0.1 sec,

• w and v are white noise inputs with the standard deviations of 0.5 and 0.1, respec-

tively,

• the unknown disturbance d is applied to the system at t = 3 sec as a step input

with the amplitude of 2 and then it grows linearly till t = 4 sec where it reaches the

amplitude of 4,
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• H∞ bounds are chosen as µw = µv = µd = 0.5.

In all of the figures, zF1, dF1 represent the estimated signals by Approach I and zF2, dF2

represent the estimated signals by Approach II.

Example 4.1. In this example a stable system with an invertible A matrix is considered

and the results of both of the proposed approaches are compared with those generated by

the approach introduced in [53].

Consider the following stable linear system,

x(k + 1) =


0.8 0 0

2.1 −1.3 −0.6481

0 0.6481 0

x(k) +


1

1

1

u(k)

+


1

1

0

 d(k) +


0.01

0.01

0.01

w(k)

y(k) =
[
0 0 1.543

]
x(k) + v(k)

z(k) =
[
0 0.1 0.1

]
x(k) (4.78)

For this system we have CB2 = CAB2 = 0 and therefore majority of the approaches in

the literature will fail to produce stable results. For both of our approaches we get σ = 2.

Choosing now the adaptation gain as Γ = 0.2, the filter gain derived through Approach I

is

L =
[
0.1968 0.7734 −0.3164

]T
For Approach II, the filter and adaptation gains are calculated as

L =
[
0.2425 0.8284 −0.2962

]T
Γ = 0.2314

Using the above parameters, we simulate the filter in two scenarios:

Scenario 1. we assume that the known input u is zero,

Scenario 2. we assume u(k) = sin(5kTs).

Figures 4.1, 4.2, 4.3 and 4.4 compare the estimated signal zF and dF produced by both

of our approaches to those produced by [53] in scenario 1. In all of the figures of this
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example zF0, dF0 represent the estimated signals by the method given in [53]. As seen in

these figures, the proposed filters illustrate better performance in tracking of both z and d.

0 1 2 3 4 5 6
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0

1

2

3

Time (sec)

 

 

z
z

F1

z
F0

Figure 4.1: Approach I: Real signal z and its estimate zF for the proposed filter in the
first scenario of example 1

Figures 4.5, 4.6, 4.7 and 4.8 compare the estimated signal zF and dF produced by both

of our approaches to those produced by [53] in scenario 2. The supremacy of the proposed

approaches is very obvious in these figures as the approach in [53] does not take the effects

of the known input u into account.

Example 4.2. In this example we will consider a stable system with noninvertible A

matrix. This example is to demonstrate that our approaches do not require the invertibility

assumption of the matrix A encountered in [53].

Consider the following stable linear system,

x(k + 1) =

0.5 0

1 0

x(k) +

1

1

u(k)

+

1

0

 d(k) +

0.01

0.01

w(k)

y(k) =
[
0 1

]
x(k) + v(k)

z(k) =
[
0.1 0

]
x(k) (4.79)
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Figure 4.2: Approach I: Disturbance d and its estimate dF for the proposed filter in the
first scenario of example 1
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Figure 4.3: Approach II: Real signal z and its estimate zF for the proposed filter in the
first scenario of example 1
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Figure 4.4: Approach II: Disturbance d and its estimate dF for the proposed filter in the
first scenario of example 1
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Figure 4.5: Approach I: Real signal z and its estimate zF for the proposed filter in the
second scenario of example 1
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Figure 4.6: Approach I: Disturbance d and its estimate dF for the proposed filter in the
second scenario of example 1
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Figure 4.7: Approach II: Real signal z and its estimate zF for the proposed filter in the
second scenario of example 1
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Figure 4.8: Approach II: Disturbance d and its estimate dF for the proposed filter in the
second scenario of example 1

For this system we have CB2 = 0 and σ for both of our approaches is calculated as σ = 1.

Choosing now the adaptation gain as Γ = 0.5, the filter gain derived through Approach I

is

L =
[
0.1363 0.2758

]T
For Approach II, the filter and adaptation gains are calculated as

L =
[
0.218 0.4199

]T
Γ = 0.7748

Figures 4.9, 4.10, 4.11 and 4.12 show the estimated signal zF and dF for both of the

proposed approaches. As seen in these figures, the proposed filters estimates both zF and

dF regardless of the invertiblity of A.

Example 4.3. In this example we consider an unstable system to show that system sta-

bility is not a requirement for our proposed filters.

Consider the following unstable linear system,

x(k + 1) =

0.5 0.1

0.2 1.01

x(k) +

1

1

u(k)
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Figure 4.9: Approach I: Real signal z and its estimate zF for the proposed filter in example
2
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Figure 4.10: Approach I: Disturbance d and its estimate dF for the proposed filter in
example 2
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Figure 4.11: Approach II: Real signal z and its estimate zF for the proposed filter in
example 2
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Figure 4.12: Approach II: Disturbance d and its estimate dF for the proposed filter in
example 2
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+

1

0

 d(k) +

0.01

0.01

w(k)

y(k) =
[
0 1

]
x(k) + v(k)

z(k) =
[
0.02 0

]
x(k) (4.80)

For this system too, CB2 = 0 and σ = 1 for both approaches. Choosing now the adaptation

gain as Γ = 5, the filter gain derived through Approach I is

L =
[
0.2901 0.6425

]T
For Approach II, the filter and adaptation gains are calculated as

L =
[
0.7795 1.1422

]T
Γ = 6.5152

Figures 4.13, 4.14, 4.15 and 4.16 show the estimated signal zF and dF for both of the

proposed approaches. These figures illustrate the effectiveness of the proposed filters even

with unstable systems.
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Figure 4.13: Approach I: Real signal z and its estimate zF for the proposed filter in
example 3
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Figure 4.14: Approach I: Disturbance d and its estimate dF for the proposed filter in
example 3
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Figure 4.15: Approach II: Real signal z and its estimate zF for the proposed filter in
example 3

80



0 1 2 3 4 5 6
−1

0

1

2

3

4

5

Time (sec)

 

 

d
d

F2

Figure 4.16: Approach II: Disturbance d and its estimate dF for the proposed filter in
example 3

4.5 Summary

In this chapter, two approaches for designing discrete-time unknown input linear filters

were introduced. The proposed filters had similar state space parameters to the plant with

minor changes, and directly estimated the unknown disturbances using the measurement

error. The proposed design approaches were similar in nature, however, they were based

on two different filter models and consequently led to two different filters. Based on the

Lyapunov theory, the H∞ filter design problems were transformed into LMI feasibility

problems, and finally simulation results were employed to verify the applicability of the

proposed approaches.
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Chapter 5

Robust Filter Design with Limited

Information

In this chapter, we propose a novel approach for robust filter design in the presence of an

unknown state disturbance when the sensor-provided measurements are transmitted over

a network and therefore are subject to network-induced errors. The main idea is to divide

the estimation space into two zones based on whether the received information is reliable

or not. This dual-zone approach enables us to treat the reliable packets differently from

the unreliable ones. In the reliable zone, the received information is used to estimate the

states as well as the unknown disturbance, whereas in the unreliable zone, estimation of

the unknown input stops and a secondary filter kicks in to estimate the unreliable part of

the information and the states accordingly. Using an LMI based approach, the filter design

procedure is formulated in both zones and finally an overall dual-zone filter is proposed.

Simulation results are given to illustrate the effectiveness of the approach.

The rest of the chapter is organized as follows. In section 5.1, the main problem is

formulated. Sections 5.2 and 5.3 discuss the different design approaches in the two zones

and section 5.4 introduces the new dual-zone filter. In section 5.5 the proposed filters are

tested via simulation and section 5.6 summarizes the results of this chapter.
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5.1 Problem Formulation

Consider the following linear system:

x(k + 1) = Ax(k) +B1u(k) +B2d(k)

y(k) = Cx(k) +Du(k)

z(k) = Hx(k) (5.1)

where xn×1 is the state vector; yp×1 = [y1, . . . , yp]
T represents the measured outputs; zr×1

is the vector to be estimated; um1×1 is the known input; dm2×1 is the unknown disturbance

input; and A, B1, B2, C, D, H are the state space matrices of the model. We assume that

(A,C) is an observable pair and also B2, C are full rank with rank(B2) = m2, rank(C) = p

and p ≥ m2. Now assume that the measurements are quantized via the following coarse

linear quantizer:

yqi(k) = Qlin(yi) =

 riτi if |yi(k)− riτi| ≤ τi/2

−Qlin(−yi) if yi(k) < 0
(5.2)

where ri = 0, 1, 2, . . ., and τi is the range of each quantization level for the ith measure-

ment. For this quantizer, the real measurement is related to its quantized version by the

following equation,

yqi = yi + ∆yqi |∆yqi| ≤
τi
2

(5.3)

We also assume that the quantized measurements may not reach the filter at every sam-

pling instant due to possible packet dropouts. Consequently when a packet is lost, our

filter will not make corrections to the state trajectories, or in other words, the filter tem-

porarily operates in open-loop. From a mathematical point of view, the measurement

signal received by the filter, i.e. yrec, can be written as

yrec =

 yF if the packet is lost

yq otherwise
(5.4)

where yF is the estimated measurement by the filter and yq = [yq1, . . . , yqp]
T represents

the quantized measurements. Based on (5.4) when a packet is lost, the filter will use its

own estimated measurement instead which will lead to a zero residual error and therefore

no trajectory corrections.
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Our intention is to propose a design methodology which guarantees robustness to un-

known external disturbances as well as the network-induced errors such as packet dropouts

and quantization. To this end we first analyze the residual error ε = yrec − yF . Using

(5.4), we can write ε as follows,

ε =

 0 if the packet is lost

y − yF + ∆yq otherwise
(5.5)

where ∆yq = [∆yq1, . . . ,∆yqp]
T represents the quantization error vector. Using the in-

equality given in (5.3), we can claim that ‖∆yq‖ ≤ τbnd/2 where

τ2
bnd =

p∑
i=1

|τi|2

As seen in (5.5), the residual error ε is either zero, which is due to the loss of information,

or the summation of two signals: The first signal, i.e. y− yF , is the assurable component

of ε and represents the error between the real measurement and its estimate; the second,

i.e. ∆yq, is the uncertain component of ε and represents the bounded error introduced

by quantization. Between these two, ∆yq is an unwanted error term and any corrections

made in the estimates based on this signal can be erroneous. Since the error introduced by

quantization is always bounded, i.e. ‖∆yq‖ ≤ τbnd/2, we can claim that when ‖y− yF ‖ ≥

τbnd/2, the information in ε is more certain than uncertain and vice versa. As a result,

when the information is not lost, the value of y − yF can divide the estimation space into

two zones:

• Zone 1: ε is a reliable signal with a bounded small error.

• Zone 2: ε is unreliable.

Since y − yF is not available, we need to translate ‖y − yF ‖ ≥ τbnd/2 into a condition on

‖ε‖. To this end, we can rewrite (5.5) by applying the norm operator to both sides as

follows,

‖ε‖ =

 0 if the packet is lost

‖y − yF + ∆yq‖ otherwise
(5.6)

Since ‖ε‖ ≥ 0, based on (5.6) the following inequality holds true:

‖ε‖ ≤ ‖y − yF ‖+ ‖∆yq‖
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≤ ‖y − yF ‖+
τbnd

2

It is easy to see that if ‖ε‖ ≥ τbnd then ‖y − yF ‖ ≥ τbnd/2. Therefore we can redefine the

aforementioned zones as follows,

• if ‖ε‖ ≥ τbnd then we’re in zone 1.

• if ‖ε‖ < τbnd then we’re in zone 2.

Our approach is to design a separate filter in every zone. In the first zone, where the

network-induced uncertainty of ε is minor, we design a filter to estimate the states as well

as the unknown disturbance d. In the second zone, where the effects of the network are

major, we will design a filter to estimate the states as well as the error signal introduced

via the network.

Remark 5.1. Note that the significance of the dual-zone treatment for the problem of

robust filter design with unknown disturbances and limited information lies in the active

compensation of the effects of the unknown disturbances as well as the network-induced

errors.

5.2 Filter Design in Zone 1

In this section we intend to employ the Approach II design method, introduced in the last

chapter, to design our zone 1 filter. We assume that we enter zone 1 at k = h1
s and exit it

towards zone 2 at k = h2
s, where s is a counter solely defined to distinguish between the

multiple entrances into the zones. All the results of this section are assumed to be valid

in h1
s ≤ k < h2

s. We define the new state variable x̄ as

x̄(k + 1) = x(k + 1)−
σ∑
i=0

AiB2d(k − i) (5.7)

where σ can be easily calculated as follows:

σ = min j

s.t. rank
(∑j

i=0CA
iB2

)
= rank(B2) j = 0, 1, . . . (5.8)

Using (5.7), we can rewrite (5.1) as

x̄(k + 1) = Ax̄(k) +B1u(k) +Aσ+1B2d(k − σ − 1)
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y(k) = Cx̄(k) +Du(k) +
σ∑
i=0

CAiB2d(k − i− 1)

z(k) = Hx̄(k) +
σ∑
i=0

HAiB2d(k − i− 1). (5.9)

Based on the revised plant model given in (5.9), we introduce the following filter model,

x̄F (k + 1) = Ax̄F (k) +Aσ+1B2dF (k − σ − 1)

+B1u(k) + L1(yrec(k)− yF (k))

dF (k − σ) =?

yF (k) = Cx̄F (k) +Du(k)

+
σ∑
i=0

CAiB2dF (k − σ − 1)

zF (k) = Hx̄F (k) +
σ∑
i=0

HAiB2dF (k − σ − 1) (5.10)

where x̄F is the n×1 state vector of the filter; dF is the m2×1 estimated disturbance vector,

which will follow an stable adaptive law to track the unknown disturbance; yF represents

the p× 1 estimated measurement vector; yrec represents the received measurement and is

given by (5.4); zF is the r× 1 estimated vector; and L1 is the static filter parameter to be

designed.

As discussed earlier, when a packet dropout occurs our filter will operate in open-

loop. Consequently, for the remainder of this chapter we only discuss the closed-loop

characteristics of our filters when yrec = yq, which is when the packet reaches the filter.

From last chapter, we choose the adaptation law as follows,

dF (k − σ) = dF (k − σ − 1) + Γd

σ∑
i=0

BT
2 A

iTCT ε(k) (5.11)

Now, using the above equation along with the revised plant model in (5.9) and the filter

model (5.10), the filtering error system can be written as follows,

ē(k + 1) = A11ē(k) + A12d̃(k − σ − 1)

+ B11∆yq(k) + B12∆d
k−1
k−σ

d̃(k − σ) = A21ē(k) + A22d̃(k − σ − 1)

+ B21∆yq(k) + B22∆d
k−1
k−σ
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ε(k) = z(k)− zF (k)

= C1ē(k) + C2d̃(k − σ − 1)

+ D1∆yq(k) + D2∆d
k−1
k−σ (5.12)

where

A11 = A− L1C

A12 = Aσ+1B2 − L1CAΣB2

A21 = −Γd(CAΣB2)TC

A22 = I − Γd(CAΣB2)TCAΣB2

B11 = −L1

B12 = −L1C
[
B2 AB2 . . . Aσ−1B2

]
B21 = −Γd(CAΣB2)T

B22 =
[
0 0 . . . I

]
− Γd(CAΣB2)TC

[
B2 AB2 . . . Aσ−1B2

]
C1 = H

C2 = HAΣB2

D2 = H
[
B2 AB2 . . . Aσ−1B2

]
AΣ =

σ∑
i=0

Ai

and

∆d
k−1
k−σ =


∆d(k − 1)

∆d(k − 2)
...

∆d(k − σ)

 .

Augmenting ē and d̃ as X(k) =
[
ē(k)T d̃(k − σ − 1)T

]T
and defining ω =

[
∆yTq ∆d

T
]T

,

the augmented error model can be written as:

X(k + 1) = AX(k) + Bω(k)

ε(k) = CX(k) + Dω(k) (5.13)
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where

A =

A11 A12

A21 A22


B =

B11 B12

B21 B22


C =

[
C1 C2

]
D =

[
0 D2

]
(5.14)

The following theorem formulates the design approach for the zone 1 filter.

Theorem 5.1. Consider the linear system in (5.1) with its measurements quantized by the

linear quantizer given in (5.2). Then the linear filter given in (5.10) with the disturbance

estimator given in (5.11) generate stable estimates of z and d with minimum H∞ gains µq

and µd, which respectively bound the effects of networked-induced errors and disturbance

variations, if there exist matrices Pe1, Pd, Gd > 0 and Ge1, and scalars µ̄q, µ̄d > 0 which

can solve the following optimization problem:

min µ̄q + w1µ̄d (5.15)

s.t.


Ξ1 Ξ2 Ξ3

? −Pe1 0

? ? −Pd

 < 0 (5.16)

where w1 ≥ 0 is an arbitrary weighting coefficient and

Ξ1 =

Ξ11
1 Ξ12

1

? Ξ22
1


Ξ11

1 =

HTH − Pe1 HTHAΣB2

BT
2 A

T
ΣH

TH BT
2 A

T
ΣH

THAΣB2 − Pd


Ξ12

1 =

0 HTD2

0 BT
2 A

T
ΣH

TD2


Ξ22

1 =

−µ̄qI 0

0 DT2 D2 − µ̄dI
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Ξ2 =



ATPe1 − CTGTe1
BT

2 (Aσ+1TPe1 −ATΣCTGTe1)

−GTe1
−BT

2 C
TGTe1

−BT
2 A

TCTGTe1
...

−BT
2 A

σ−1TCTGTe1



Ξ3 =



−CTCAΣB2Gd

Pd −BT
2 A

T
ΣC

TCAΣB2Gd

−CAΣB2Gd

−BT
2 C

TCAΣB2Gd

−BT
2 A

TCTCAΣB2Gd
...

Pd −BT
2 A

σ−1TCTCAΣB2Gd


D2 = H

[
B2 AB2 . . . Aσ−1B2

]
(5.17)

Once solved, µq =
√
µ̄q, µd =

√
µ̄d, and the filter parameters are calculated as L1 =

P−1
e1 Ge1 and Γd = P−1

d Gd.

Proof. To analyze the stability of the filtering error system given in (5.13), the following

Lyapunov function is used,

V (k) = X(k)TP1X(k) (5.18)

where P1 = diag{Pe1, Pd}. The forward difference of this Lyapunov function can be

written as

∆V (k) = V (k + 1)− V (k)

= X(k)TATP1AX(k) + ω(k)TBTP1Bω(k)

+X(k)TATP1Bω(k) + ω(k)TBTP1AX(k)

−X(k)TP1X(k). (5.19)

Defining ξ =
[
XT ωT

]T
, (5.19) can be simplified as follows:

∆V (k) = ξ(k)T {

AT
BT

P1

AT
BT

T +

−P1 0

0 0

}ξ(k). (5.20)
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In order to establish attenuation bounds on the effects of the network-induced error ∆yq

and also effects of the variations of the unknown disturbance i.e. ∆d, we define

J ,
h2s−1∑
k=h1s

{ε(k)T ε(k)− ω(k)TµTµω(k)} (5.21)

where µ = diag{µq, µd}. Adding (5.18) to the right hand side of (5.21), we get

J <

h2s−1∑
k=h1s

{ε(k)T ε(k)− ω(k)TµTµω(k) + ∆V (k)} =

h2s−1∑
k=h1s

J̃k (5.22)

Designing our filter such that J̃k ≤ 0, we conclude that J ≤ 0, which implies that in the

time interval [h1
s, h

2
s − 1], the second norm of the estimation error is bounded by factors

of the second norms of quantization errors and disturbance variations. In other words,

(5.22) establishes an H∞ bound on the filtering error system. Using (5.13) εT ε can be

simplified as follows:

εT ε = ξ(k)T

CTC CTD

DTC DTD

 ξ(k) (5.23)

Substituting (5.23) and (5.20) in (5.22), we have

J̃k ≤ ξT (Ω1 + Ω2P−1
1 ΩT

2 )ξ (5.24)

where

Ω1 =

CTC− P1 CTD

DTC DTD− µTµ


Ω2 =

ATP1

BTP1

 (5.25)

Defining µ̄q = µ2
q , µ̄d = µ2

d, Ge1 = Pe1L1 and Gd = PdΓd, we can rewrite (5.24) as follows:

J̃k ≤ ξT (Ξ1 + Ξ2P
−1
e1 ΞT2 + Ξ3P

−1
d ΞT3 )ξ (5.26)

where Ξ1,Ξ2,Ξ3 are as given in (5.17). Using Schur’s Complement one can show that

(5.26) holds true if the LMI given in (5.1) is satisfied.
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5.3 Filter Design in Zone 2

In this section, we employ the design approach introduced in chapter 3 to design a filter

that is robust to errors induced by the network. We assume that we enter zone 2 at k = h2
s

and exit it towards zone 1 at k = h1
s+1. All the results of this section are assumed to be

valid in h2
s ≤ k < h1

s+1. Consider the following discrete-time linear filter:

xF (k + 1) = AxF (k) +B1u(k) +B2DF

+ L2(yq(k)− yF (k)− θF (k))

yF (k) = CxF (k) +Du(k)

zF (k) = HxF (k) (5.27)

where xF ∈ Rn, yF ∈ Rp and zF ∈ Rr are, respectively, the state vector, measurement

vector, and estimate vector of the filter; DF = cte. is an estimate of the unknown distur-

bance d; L2 is the filter gain to be designed, and θF ∈ Rp is an adaptive parameter for

estimation of the quantization error.

Define the parameter θ
∆
= ∆yq. Substituting this into (5.3) we can write:

yq(k) = y(k) + θ(k) (5.28)

The goal of this filter is simultaneous estimation of the states and θ when the quantization

error is fairly large. The following theorem formulates the design approach for the filter.

Theorem 5.2. Consider the linear system (5.1), with its measurements quantized by the

linear quantizer given in (5.2), and the linear filter in (5.27) with θF updated as follows:

θF (k + 1) = θF (k) + Γθε(k) (5.29)

where ε(k) = yq(k) − yF (k) − θF (k). Then the filtering error system is stable with min-

imized H∞ bounds µD, µθ, which respectively bound the effects of the disturbance input

and network-induced errors, if there exist matrices Pe2, Pθ, Gθ > 0 and Ge2, and scalars

µ̄D, µ̄θ > 0 that can solve the following optimization problem:

min µ̄D + w2µ̄θ (5.30)

s.t.


Ξ4 ΞT5 ΞT6

? −Pe2 0

? ? −Pθ

 < 0 (5.31)
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where w2 ≥ 0 is an arbitrary weighting coefficient and

Ξ4 = diag{HTH − Pe2,−Pθ,−µ̄DI,−µ̄θI}

Ξ5 =
[
Pe2A−Ge2C −Ge2 Pe2B2 0

]
Ξ6 =

[
−GθC Pθ −Gθ 0 Pθ

]
(5.32)

Once solved, µD =
√
µ̄D, µθ =

√
µ̄θ, and the filter parameters L2 and Γθ can be calculated

via L2 = P−1
e2 Ge2, and Γθ = P−1

θ Gθ, respectively.

Proof. Defining the state error as e = x − xF and the estimation error of the adaptive

parameter as θ̃ = θ − θF , the filtering error system can be written as follows

e(k + 1) = (A− L2C)e(k) +B2∆D(k)− L2θ̃(k)

θ̃(k + 1) = −ΓθCe(k) + (I − Γθ)θ̃(k) + ∆θ(k)

ε(k) = z(k)− zF (k) = He(k) (5.33)

where Γθ > 0 is the diagonal adaptation gain; ∆θ(k+1) = θ(k+1)−θ(k) is the variation of

θ between the sampling instants k and k+ 1; and ∆D(k) = d(k)−DF represents the error

between the unknown disturbance d and its last estimated value (provided by the filter of

zone 1). In the rest of the chapter, we will refer to ∆D as the unknown disturbance offset.

Both ∆θ and ∆D are bounded and therefore belong to `2e. To analyze the properties of

the error system, we introduce the following Lyapunov function candidate:

V (k) = e(k)TPe2e(k) + θ̃(k)TPθθ̃(k) (5.34)

where Pe2, Pθ > 0. The forward difference of this Lyapunov function can be written as

∆V (k) = ξ(k)T (Ξ′4 + Ξ′
T
5 Pe2Ξ′5 + Ξ′

T
6 PθΞ

′
6)ξ(k) (5.35)

where ξ(k) =
[
e(k)T θ̃(k)T ∆d̄(k)T ∆θ(k + 1)T

]T
, and

Ξ′4 = diag{−Pe2,−Pθ, 0, 0}

Ξ′5 =
[
A− L2C −L2 B2 0

]
Ξ′6 =

[
−ΓθC I − Γθ 0 I

]
. (5.36)

Substituting Ge2 = Pe2L2 and Gθ = PθΓθ in (5.35) yields

∆V (k) = ξT (Ξ′4 + ΞT5 P
−1Ξ5 + ΞT6 Q

−1Ξ6)ξ (5.37)
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where

Ξ5 =
[
Pe2A−Ge2C −Ge2 Pe2B2 0

]
Ξ6 =

[
−GθC Pθ −Gθ 0 Pθ

]
. (5.38)

To show that the error system satisfies the desired H∞ performance, we need to estab-

lish attenuation bounds on the effects of the unknown disturbances and network-induced

errors in any finite time interval. To this end, J is defined as follows:

J ,

hs+1
1∑
i=hs2

{ε(i)T ε(i)− µ̄2
d∆d̄(i)T∆d̄(i)− µ2

θ∆θ(i)
T∆θ(i)} (5.39)

where µD, µθ > 0 are, respectively, upper bounds on the effects of unknown disturbance

offset, and variations of the quantization error on the estimation error. Since ∆D,∆θ are

both `2e, negative J implies limited effects of these unwanted signals on the estimation

error in any finite time interval [hs2, h
s+1
1 ]. Since V (k) is a positive definite function,

under zero initial conditions, V (hs+1
1 ) − V (hs2) =

∑hs+1
1
i=hs2

∆V (i) is positive semi-definite

and therefore adding it to the right hand side of (5.39) results in J ≤
∑hs+1

1
i=hs2

J̃(k) where

J̃(k) = ε(k)T ε(k)− µ2
d∆d̄(k)T∆d̄(k)− µ2

θ∆θ(k)T∆θ(k)

+ ∆V (k) (5.40)

Defining now µ̄D = µ2
D, µ̄θ = µ2

θ, and substituting (5.37) in (5.40), we get

J̃ = ξT (Ξ4 + ΞT5 P
−1Ξ5 + ΞT6 Q

−1Ξ6)ξ (5.41)

where Ξ4 = Ξ′4+diag{HTH, 0,−µ̄DI,−µ̄θI}. Therefore, the estimation error ε is bounded

with H∞ performance if J̃ < 0, which is guaranteed if the LMI given in (5.31) holds

true.

5.4 The Dual-Zone Filter

In this section we propose our dual-zone filter by summarizing the results of the last two

sections into the following theorem.

Theorem 5.3. Consider the following linear system:

x(k + 1) = Ax(k) +B1u(k) +B2d(k)
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y(k) = Cx(k) +Du(k)

z(k) = Hx(k) (5.42)

and the following two-zone filter:

• Zone 1: (εz(k) ≥ τ ⇒ hs1 ≤ k < hs2)

x̄F (k + 1) = Ax̄F (k) +Aσ+1B2dF (k − σ − 1) +B1u(k) + L1ε1(k)

dF (k − σ) = dF (k − σ − 1) + Γd

σ∑
i=0

BT
2 A

iTCT ε1(k)

zF (k) = Hx̄F (k) +
σ∑
i=0

HAiB2dF (k − σ − 1)

ε1(k) = yq(k)− Cx̄F (k)−
σ∑
i=0

CAiB2dF (k − σ − 1)

εz(k) = ε1(k) (5.43)

with the initial condition: x̄F (hs1) = xF (hs1)−
∑σ

i=0A
iB2dF (hs1 − 1− i).

• Zone 2: (εz(k) < τ ⇒ hs2 ≤ k < hs+1
1 )

xF (k + 1) = AxF (k) +B1u(k) +B2DF + L2ε2(k)

θF (k + 1) = θF (k) + Γθε2(k)

yF (k) = CxF (k) +Du(k)

zF (k) = HxF (k)

ε2(k) = yq(k)− yF (k)− θF (k)

εz(k) = yq(k)− yF (k)

dF (k) = DF (5.44)

with the initial conditions: xF (hs2) = x̄F (hs2) +
∑σ

i=0A
iB2dF (hs2 − σ − 1) and DF =

dF (hs2 − 1).

where σ can be calculated by

σ = min j, j = 0, 1, . . .

s.t. rank
(∑j

i=0CA
iB2

)
= rank(B2)
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Then the two-zone filtering error system is stable and satisfies the following H∞ perfor-

mance inequality:

‖z − zF ‖2 ≤ µ2
d‖∆d‖2 + µ2

q‖∆yq‖2

+ µ2
D‖∆D‖2 + µ2

θ‖∆θ‖2 (5.45)

if there exist matrices Pe1, Pe2, Pd, Pθ, Gθ, Gd > 0 and Ge1, Ge2, and scalars µ̄q, µ̄d, µ̄D, µ̄θ >

0 which can solve the following multi-objective optimization problem:

min µ̄q + w1µ̄d

min µ̄D + w2µ̄θ (5.46)

s.t.


Ξ1 Ξ2 Ξ3

? −Pe1 0

? ? −Pd

 < 0 (5.47)


Ξ4 ΞT5 ΞT6

? −Pe2 0

? ? −Pθ

 < 0 (5.48)

where w1 ≥ 0 and w2 ≥ 0 are arbitrary weighting coefficients and

Ξ1 =

Ξ11
1 Ξ12

1

? Ξ22
1


Ξ11

1 =

HTH − Pe1 HTHAΣB2

BT
2 A

T
ΣH

TH BT
2 A

T
ΣH

THAΣB2 − Pd


Ξ12

1 =

0 HTD2

0 BT
2 A

T
ΣH

TD2


Ξ22

1 =

−µ̄qI 0

0 DT2 D2 − µ̄dI
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Ξ2 =



ATPe1 − CTGTe1
BT

2 (Aσ+1TPe1 −ATΣCTGTe1)

−GTe1
−BT

2 C
TGTe1

−BT
2 A

TCTGTe1
...

−BT
2 A

σ−1TCTGTe1



Ξ3 =



−CTCAΣB2Gd

Pd −BT
2 A

T
ΣC

TCAΣB2Gd

−CAΣB2Gd

−BT
2 C

TCAΣB2Gd

−BT
2 A

TCTCAΣB2Gd
...

Pd −BT
2 A

σ−1TCTCAΣB2Gd


D2 = H

[
B2 AB2 . . . Aσ−1B2

]
(5.49)

and

Ξ4 = diag{HTH − Pe2,−Pθ,−µ̄DI,−µ̄θI}

Ξ5 =
[
Pe2A−Ge2C −Ge2 Pe2B2 0

]
Ξ6 =

[
−GθC Pθ −Gθ 0 Pθ

]
(5.50)

Once solved, µq =
√
µ̄q, µd =

√
µ̄d, µD =

√
µ̄D, µθ =

√
µ̄θ, and the filter parameters can

be calculated as

L1 = P−1
e1 Ge1

L2 = P−1
e2 Ge2

Γd = P−1
d Gd

Γθ = P−1
θ Gθ

Proof. The proof is easy to establish using the proofs of theorems 5.1 and 5.2.
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5.5 Simulation Results

In this section, we present an illustrative example of the dual-zone filter and compare the

results to those of the following filters:

Filter 1: a filter which is designed for zone 1 but operates in the whole space.

Filter 2: a filter which is designed for zone 2 but operates in the whole space.

Consider the following linear system,

x(k + 1) =


0.8 0 0

2.1 −1.3 −0.6481

0 0.6481 0

x(k) +


1

1

1

u(k) +


1

0

0

 d(k)

y(k) =
[
0 0 1.543

]
x(k)

z(k) =
[
0 0.1 0

]
x(k) (5.51)

where u(k) = sin(5k) is an exogenous input, and d is an unknown disturbance. This

example does not satisfy rank(CB2) = rank(B2), which is a very common assumption in

the majority of the unknown-input filters.

We set the quantizer in a way that it covers the range of [−20, 20] with τ = 2. We

assume that the unknown disturbance d is zero until t = 3 sec and then it jumps to 3

where it remains steady.

The Designed Filter : Choosing the weighting parameters as w1 = w2 = 0.1, the filter

parameters are calculated as

L1 =
[
0.2097 0.8085 −0.3301

]T
L2 =

[
0.0006 0.0087 −0.0065

]T
Γd = 0.142

Γθ = 0.9864

and the corresponding optimized attenuation bounds are µq = 0.2183, µd = 0.488, µD =

0.9725 and µθ = 0.1242.

Figures 5.1 and 5.2 illustrate the estimated signals zF , dF by filter 1. This filter shows

good capability in tracking the system states in the presence of the unknown disturbance d.

However, since it treats all the received information as reliable packets, the estimates are
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Figure 5.1: z and zF for Filter 1
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Figure 5.2: d and dF for Filter 1

affected by the errors induced via quantization. These effects can be seen in the estimates

as a considerably large additive noise signal. Figures 5.3 and 5.4 illustrate the estimated

signals zF , θF by filter 2. This filter, despite its capability to handle unreliable information,

has poor performance in the presence of the unknown disturbance. The reason for this

performance is the fact that this filter treats any changes in the received information as

an error caused by the network and therefore tries to compensate it through θF .

Figures 5.5, 5.6 and 5.7 illustrate the estimated signals zF , dF , θF by the dual-zone

filter. As seen from these figures, this filter shows good tracking performance in the

presence of the unknown disturbance as well as network-induced errors. Due to the dual

zone nature of this filter, the small noise-like errors which are imposed by the network do

98



0 2 4 6 8
−1

0

1

2

3

4

Time (sec)

 

 
z
z

F

Figure 5.3: z and zF for Filter 2
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Figure 5.4: θ and θF for Filter 2
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Figure 5.5: z and zF for the proposed filter
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Figure 5.6: d and dF for the proposed filter

not accumulate on the estimates provided by this filter, and at the same time, any changes

in the states can be recognized and tracked.

5.6 Summary

In this chapter, the robust filtering problem of discrete-time linear systems in a networked

setup was addressed. It was assumed that the system states were disturbed by an unknown

input, which could be time-varying and unbounded. We also assumed that the sensory

information are transmitted via a communication channel and therefore are subject to

network-imposed imperfections such as quantization and packet dropouts. To solve the

problem, a two-zone filter design approach was proposed. Based on the reliability of the
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Figure 5.7: θ and θF for the proposed filter

residual error, two zones were defined and two different filters with two different approaches

were designed. Then the two designed filters were combined to form the overall two-zone

filter. In the end it was shown through simulation that the proposed filter provides good

tracking of the system states, the unknown disturbance and the network-induced errors.
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Chapter 6

Fault-Tolerant Filter Design with

Quantized Measurements

In this chapter, a novel approach is proposed for designing fault-tolerant filters for linear

discrete-time systems whose measurements undergo quantization. Two types of faults are

considered: internal faults which are modelled by uncertainties in state space parameters;

and actuator faults such as offset and stuck which are modelled by an unknown disturbance

on the states. The proposed filter consists of two robust filters which operate in two

different zones. These zones are defined based on the effects of the quantization on the

residual signal between the quantized measurement and the one generated by the filter.

Using an LMI-based approach with prescribedH∞ performance, stability LMIs are derived

for the proposed two-zone filter and finally the results are validated through simulation

examples.

The rest of the chapter is organized as follows. Section 6.1 discusses the system and

fault models. In sections 6.2 and 6.3 separate fault-tolerant filters are designed for each

zone. Section 6.4 discusses the fault-tolerant two-zone filter design. In section 6.5, simu-

lation results are given and finally section 6.6 summarizes the results of this chapter.

6.1 System and Fault Models

Consider the following linear fault-free system:

x(k + 1) = Ax(k) +B1u(k)
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y(k) = Cx(k) +Du(k)

z(k) = Hx(k) (6.1)

where x ∈ Rn is the state vector; y ∈ Rp represents the measured outputs; z ∈ Rr is

the vector to be estimated; u ∈ Rm1 is the known input; and A, B1, C, D, H are the

state space matrices of the model. We assume that (A,C) is an observable pair and the

measurements are quantized via a linear quantizer as given below

yq(k) = Qlin(y) =

 sτ if |y(k)− sτ | ≤ τ/2

−Qlin(−y) if y(k) < 0
(6.2)

where s = 0, 1, 2, . . ., and τ is the range of each quantization level. For this quantizer, the

real measurement is related to its quantized version by the following equation,

yq = y + ∆yq |∆yq| ≤
τ

2
(6.3)

Now consider the following linear faulty system:

x(k + 1) = (A+ ∆A)x(k) + (B1 + ∆B1)u(k) +B2f(k)

y(k) = (C + ∆C)x(k) +Du(k)

z(k) = Hx(k) (6.4)

where B2 ∈ Rn×m2 ; and ∆A ∈ Rn×n, ∆B1 ∈ Rn×m1 , ∆C ∈ Rp×n model the internal faults

of the system such as changes in gains or movement of poles and zeros. Other faults such

as actuator offset or stuck faults can be modelled using a signal f ∈ Rm2 , where m2 ≤ p.

Our goal is to design a fault-tolerant filter which guarantees stability in the presence

of system faults, and is also robust to quantization errors.

Based on the dual-zone idea introduced in the last chapter, we need to design different

filters for our two operational zones, which will be discussed in the next two sections.

6.2 Fault-Tolerant Filter in Zone 1

In this section we design a filter which estimates both the states and the actuator offset

or stuck fault and establishes an H∞ bound on the effects of the quantization error.

The basic idea of this filter parallels with the Approach I design method introduced in
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chapter 4. However, in this chapter the errors caused by quantization as well as the

uncertainties introduced through internal faults are taken into account, which in the end

lead to a different design approach. We assume that the results of this section are valid

in h1
s ≤ k < h2

s, where h1
s, h

2
s represent the entrance and exit instants to and from zone 1,

respectively.

6.2.1 Filter Model

We define the new state variable x̄ as

x̄(k + 1) = x(k + 1)−
σ∑
i=0

AiB2f(k − i) (6.5)

where σ can be easily calculated as follows:

σ = min j

s.t. rank
(
CAjB2

)
= rank(B2) j = 0, 1, . . . (6.6)

Substituting (6.5) in (6.4), we rewrite the faulty system model as:

x̄(k + 1) = (A+ ∆A)x̄(k) + (B1 + ∆B1)u(k)

+Aσ+1B2f(k − σ − 1)

+ (∆A)

σ∑
i=0

AiB2f(k − i− 1)

y(k) = (C + ∆C)x̄(k) +Du(k)

+ (C + ∆C)
σ∑
i=0

AiB2f(k − i− 1)

z(k) = Hx̄(k) +
σ∑
i=0

HAiB2f(k − i− 1) (6.7)

Based on the revised system model given in (6.7), the following filter model is introduced:

x̄F (k + 1) = Ax̄F (k) +Aσ+1B2fF (k − σ − 1)

+B1u(k) + L1(yq(k)− yFc(k))

yF (k) = Cx̄F (k) +Du(k)

+
σ∑
i=0

CAiB2fF (k − i− 1)
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zF (k) = Hx̄F (k) +
σ∑
i=0

HAiB2fF (k − i− 1) (6.8)

where x̄F is the n × 1 state vector of the filter; fF is the m2 × 1 estimated fault signal,

which will follow a stable adaptive law to track the fault signal f ; yF is the p×1 estimated

measurement vector; zF is the r×1 estimated vector; and L1 is the static filter parameter

to be designed.

6.2.2 The Design Approach

In this section, we propose an LMI-based filter design procedure for discrete-time linear

systems with quantized measurements which are subject to internal and actuator faults.

Before stating the main theorem of this section, we first introduce the following lemma

which will later be used in the proof of the theorem.

Lemma 6.1. Let A, E, F , Λ and P be real matrices of appropriate dimensions with P > 0

and Λ satisfying ΛTΛ ≤ I. Then for any scalar η > 0 satisfying P−1 − η−1EET > 0, we

have ( [97]):

(A+ EΛF )TP (A+ EΛF ) ≤ AT (P−1 − η−1EET )−1A

+ ηF TF. (6.9)

The following theorem, formulates the proposed robust approach.

Theorem 6.1. Consider

• the linear system in (6.4),

• the actuator fault estimator (for i = 0, . . . , σ) given by

fF (k − i) = fF (k − σ − 1) + Γf

σ∑
j=i

BT
2 A

jTCT ε(k) (6.10)

where ε = y − yq is the measurement estimation error and Γf > 0 is the fault

adaptation gain,

• the `2 gains µq, µδf , µf , µu, which respectively bound the effects of networked-induced

errors, actuator fault variations, actuator fault and the known input on the estima-

tion error, and

105



• the weighting matrices Wa1,Wa2,Wb1,Wb2,Wc1,Wc2 > 0 which satisfy W−1
a1 ∆AW−1

a2 ≤

I, W−1
b1 ∆B1W

−1
b2 ≤ I and W−1

c1 ∆CW−1
c2 ≤ I.

Then the linear filter given in (6.8) will generate stable estimates of z with guaranteed H∞

performance if there exist matrices Pe1, Pf , Px1 > 0 and Ge1, and also scalars η1, η2 > 0

satisfying the following LMI:

Ξ1 Ξ2 0 Ξ3 0

? −P1 E1w 0 0

? ? −η1I 0 0

? ? ? −I ΩWc1

? ? ? ? −η2I


< 0 (6.11)

where

P1 = diag{Pe1, Pf , Px1}

Ξ1 =

Ξ11
1 Ξ12

1

? Ξ22
1


Ξ11

1 = diag{−Pe1,−Pf ,−Px1 + η1W
T
a2Wa2

+ (η1 + η2)W T
c2Wc2}

Ξ12
1 =


0 0 0 0

0 0 0 0

0 0 [η1W
T
a2Wa2 + (η1 + η2)W T

c2Wc2]Ψf 0


Ξ22

1 = diag{−µ2
qI,−µ2

δfI,−µ2
fI + ΨT

f [η1W
T
a2Wa2 + (η1 + η2)W T

c2Wc2]Ψf ,

− µ2
uI +W T

b2Wb2}

Ξ2 = [Ξ1
2,Ξ

2
2]

Ξ1
2 =



ATPe1 − CTΦ−TGTe1

BT
2 (Aσ+1TPe1 −ATΣCTΦ−TGTe1)

0

−Φ−TGTe1

−ΨT
δfC

TΦ−TGTe1

0

0
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Ξ2
2 =



−CTΦ−TCAσB2ΓfPf 0

(I −BT
2 A

T
ΣC

TΦ−TCAσB2Γf )Pf 0

0 ATPx1

−Φ−TCAσB2ΓfPf 0

−ΨT
δfC

TΦ−TCAσB2ΓfPf 0

0

 0

BT
2 A

σ+1TPx1


0 BT

1 Px1



Ξ3 =



HT − CTΦ−TΩT

BT
2 A

T
Σ(HT − CTΦ−TΩT )

0

−Φ−TΩT

ΨT
δf (HT − CTΦ−TΩT )

0

0



E1w =


Pe1Wa1 Pe1Wb1 −Ge1Φ−1Wc1

0 0 −PfΓf (CAσB2)TΦ−1Wc1

Px1Wa1 Px1Wb1 0


Ω =

σ∑
i=0

HAiB2Γf

σ∑
j=i+1

BT
2 A

jTCT

AΣ =

σ∑
i=0

Ai

Φ = I +

σ∑
i=0

CAiB2Γf

σ∑
j=i+1

BT
2 A

jTCT

Ψδf =
[
B2 AB2 . . . Aσ−1B2

]
Ψf =

[
B2 AB2 . . . AσB2

]
(6.12)

Once solved, the filter parameter is calculated as L1 = P−1
e1 Ge1.

Proof. The first step in the proof is calculating the measurement estimation error ε. By

substituting (6.10) in the second equation of (6.8) we get

yF (k) = Cx̄F (k) +
σ∑
i=0

CAiB2fF (k − σ − 1)
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+
σ∑
i=0

CAiB2Γf

σ∑
j=i+1

BT
2 A

jTCT εc(k). (6.13)

Using this equation in ε = y − yF , we get

ε(k) = y(k)− Cx̄F (k)−
σ∑
i=0

CAiB2fF (k − σ − 1)

−
σ∑
i=0

CAiB2Γf

σ∑
j=i+1

BT
2 A

jTCT ε(k).

Solving this equation for ε, we obtain

ε(k) = Φ−1y(k)− Φ−1Cx̄F (k)− Φ−1
σ∑
i=0

CAiB2fF (k − σ − 1) (6.14)

where

Φ = I +
σ∑
i=0

CAiB2Γf

σ∑
j=i+1

BT
2 A

jTCT . (6.15)

Note that for a small enough Γf > 0, Φ is always positive-definite and thus invertible.

If we define ē = x̄− x̄F , f̃ = f − fF , ε = z − zF and use the second equation of (6.4),

we can rewrite (6.14) as follows:

ε(k) = Φ−1Cē(k) + Φ−1
σ∑
i=0

CAiB2f̃(k − σ − 1)

+ Φ−1
σ−1∑
i=0

CAiB2∆f(k − i− 1) + Φ−1∆yq(k)

+ Φ−1∆Cx̄(k) + Φ−1∆C
σ∑
i=0

AiB2f(k − i− 1) (6.16)

where ∆f(k − i) = f(k − i) − f(k − σ − 1). Now we use this equation along with (6.7),

(6.8) and (6.10) to write the filtering error system as follows:

ē(k + 1) = A11ē(k) + A12f̃(k − σ − 1)

+ ∆A13x̄(k) + B11∆yq(k) + B12∆f
k
k−σ

+ ∆B13f
k−1
k−σ−1 + ∆B1u(k)

f̃(k − σ) = A21ē(k) + A22f̃(k − σ − 1)

+ ∆A23x̄(k) + B21∆yq(k) + B22∆f
k−1
k−σ

+ ∆B23f
k−1
k−σ−1
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ε(k) = z(k)− zF (k)

= C1ē(k) + C2f̃(k − σ − 1)

+ ∆C3x̄(k) + D1∆yq(k) + D2∆f
k−1
k−σ

+ ∆D3f
k−1
k−σ−1 (6.17)

where

A11 = A− L1Φ−1C

A12 = Aσ+1B2 − L1Φ−1CAΣB2

A21 = −Γf (CAσB2)TΦ−1C

A22 = I − Γf (CAσB2)TΦ−1CAΣB2

∆A13 = ∆A− L1Φ−1∆C

∆A23 = −Γf (CAσB2)TΦ−1∆C

B11 = −L1Φ−1

B12 = −L1Φ−1CΨδf

B21 = −Γf (CAσB2)TΦ−1

B22 =
[
0 0 . . . I

]
− Γf (CAσB2)TΦ−1CΨδf

∆B13 = ∆AΨf − L1Φ−1∆CΨf

∆B23 = −Γf (CAσB2)TΦ−1∆CΨf

C1 = H − ΩΦ−1C

C2 = (H − ΩΦ−1C)AΣB2

∆C3 = −ΩΦ−1∆C

D1 = −ΩΦ−1

D2 = (H − ΩΦ−1C)Ψδf

∆D3 = −ΩΦ−1∆CΨf

Ψδf =
[
B2 AB2 . . . Aσ−1B2

]
Ψf =

[
B2 AB2 . . . AσB2

]
Ω =

σ∑
i=0

HAiB2Γf

σ∑
j=i+1

BT
2 A

jTCT
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AΣ =
σ∑
i=0

Ai

and

∆f
k−1
k−σ =


∆f(k − 1)

∆f(k − 2)
...

∆f(k − σ)

 , f
k−1
k−σ−1 =


f(k − 1)

f(k − 2)
...

f(k − σ − 1)

 .

Augmenting ē, f̃ and x̄ as X(k) =
[
ē(k)T f̃(k − σ − 1)T x̄(k)T

]T
and defining B33 =

[0, Aσ+1B2] and ω =
[
∆yTq ∆f

T
f
T

uT
]T

, the augmented error model can be written

as:

X(k + 1) = (A + ∆A)X(k) + (B + ∆B)ω(k)

ε(k) = (C + ∆C)X(k) + (D + ∆D)ω(k) (6.18)

where

A =


A11 A12 0

A21 A22 0

0 0 A

 , ∆A =


0 0 ∆A13

0 0 ∆A23

0 0 ∆A



B =


B11 B12 0 0

B21 B22 0 0

0 0 B33 B1

 , ∆B =


0 0 ∆B13 ∆B1

0 0 ∆B23 0

0 0 ∆AΨf ∆B1


C =

[
C1 C2 0

]
, ∆C =

[
0 0 ∆C3

]
D =

[
D1 D2 0 0

]
, ∆D =

[
0 0 ∆D3 0

]
. (6.19)

To analyze the stability of the augmented system, we consider the following Lyapunov

function candidate:

V (k) = X(k)TP1X(k) (6.20)

where P1 > 0 = diag{Pe1, Pf , Px1}. The forward difference of this Lyapunov function can

be written as

∆V (k) = V (k + 1)− V (k)
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= X(k)T (A + ∆A)TP1(A + ∆A)X(k)

+ ω(k)T (B + ∆B)TP1(B + ∆B)ω(k)

+X(k)T (A + ∆A)TP1(B + ∆B)ω(k)

+ ω(k)T (B + ∆B)TP1(A + ∆A)X(k)

−X(k)TP1X(k). (6.21)

Defining ξ =
[
XT ωT

]T
, (6.21) can be simplified as follows:

∆V (k) = ξ(k)T {

(A + ∆A)T

(B + ∆B)T

P1

(A + ∆A)T

(B + ∆B)T

T

+

−P1 0

0 0

}ξ(k). (6.22)

In order to establish an `2 gain on the effects of the network-induced error ∆yq, variations

of the actuator fault ∆f , the actuator fault f and the known input u, we define

J ,
h2s−1∑
k=h1s

{ε(k)T ε(k)− ω(k)TµTµω(k)} (6.23)

where µ = diag{µq, µδf , µf , µu}. Adding (6.20) to the right hand side of (6.23), we get

J <

h2s−1∑
k=h1s

{ε(k)T ε(k)− ω(k)TµTµω(k) + ∆V (k)}

=

h2s−1∑
k=h1s

J̃k. (6.24)

Now, if we design our filter such that J̃k ≤ 0, we conclude that J ≤ 0, which implies that

in the time interval [h1
s, h

2
s − 1], the second norm of the estimation error is bounded by

factors of the second norms of quantization errors and actuator fault variations. In other

words, (6.24) establishes an H∞ bound on the filtering error system. Using (6.18) εT ε can

be simplified as follows:

εT ε = ξ(k)T

(C + ∆C)T

(D + ∆D)T

(C + ∆C)T

(D + ∆D)T

T ξ(k). (6.25)

Substituting (6.25) and (6.22) in (6.24), we have

J̃k = ξT {

(A + ∆A)TP1

(B + ∆B)TP1

P−1
1

(A + ∆A)TP1

(B + ∆B)TP1

T
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+

(C + ∆C)T

(D + ∆D)T

(C + ∆C)T

(D + ∆D)T

T +

−P1 0

0 −µTµ

}ξ. (6.26)

In order to be able to use the results of lemma 6.1, we need to factorize the uncertain

terms in (6.26) as follows, [
P1∆A P1∆B

]
= E1ΛF 1

1[
∆C ∆D

]
= Ω∆CF 2

1 (6.27)

where

Λ = diag{∆A,∆B1,∆C}

E1 =


Pe1 Pe1 −Pe1L1Φ−1

0 0 −PfΓf (CAσB2)TΦ−1

Px1 Px1 0



F 1
1 =


0 0 I 0 0 Ψf 0

0 0 0 0 0 0 I

0 0 I 0 0 Ψf 0


F 2

1 =
[
0 0 I 0 0 Ψf 0

]
. (6.28)

Since Λ may not satisfy ΛTΛ ≤ I, which is a necessary condition in lemma 6.1, we define

the waiting matrices Wa1,Wa2,Wb1,Wb2,Wc1,Wc2 such that

∆A = Wa1ΛaWa2

∆B1 = Wb1ΛbWb2

∆C = Wc1ΛcWc2 (6.29)

where Λa,Λb,Λc are the normalized uncertain terms which satisfy the following inequali-

ties:

ΛTaΛa ≤ I

ΛTb Λb ≤ I

ΛTc Λc ≤ I.

Substituting (6.29) into (6.27) and defining Ge1 = Pe1L1, we can rewrite (6.27) as follows:[
P1∆A P1∆B

]
= E1wΛwF

1
1w

112



[
∆C ∆D

]
= ΩWc1ΛcF

2
1w (6.30)

where

Λw = diag{Λa,Λb,Λc}

E1w =


Pe1Wa1 Pe1Wb1 −Ge1Φ−1Wc1

0 0 −PfΓf (CAσB2)TΦ−1Wc1

Px1Wa1 Px1Wb1 0



F 1
1w =


0 0 Wa2 0 0 Wa2Ψf 0

0 0 0 0 0 0 Wb2

0 0 Wc2 0 0 Wc2Ψf 0


F 2

1w =
[
0 0 Wc2 0 0 Wc2Ψf 0

]
. (6.31)

Using the results of lemma 6.1 we can rewrite (6.26) as follows,

J̃k ≤ ξT {

ATP1

BTP1

 (P1 − η−1
1 E1wE

T
1w)−1

ATP1

BTP1

T

+

CT
DT

 (I − η−1
2 ΩWc1W

T
c1ΩT )−1

CT
DT

T

+ η1F
1
1w
T
F 1

1w + η2F
2
1w
T
F 2

1w +

−P1 0

0 −µTµ

}ξ (6.32)

Finally, using Schur’s Complement it follows that (6.32) holds true if the LMI given in

(6.11) is satisfied.

6.3 Fault-Tolerant Filter in Zone 2

In this section, we intend to design a filter which actively reacts to quantization errors

while being robust to system faults. Taking advantage of the design approach introduced

in chapter 3, we will propose a fault-tolerant filter that will provide robust and stable

estimates of the system states in the presence of both internal and actuator faults. We

assume that we enter zone 2 at k = h2
s and exit it towards zone 1 at k = h1

s+1. All the

results of this section are valid in h2
s ≤ k < h1

s+1.
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6.3.1 Filter Model

Consider the following discrete-time linear filter:

xF (k + 1) = AxF (k) +B1u(k) +B2f̄F

+ L2(yq(k)− yF (k)− θF (k))

yF (k) = CxF (k) +Du(k)

zF (k) = HxF (k) (6.33)

where xF ∈ Rn, yF ∈ Rp and zF ∈ Rr are, respectively, the state vector, output vector,

and estimate vector of the filter; f̄F = cte. is an estimate of the actuator fault f ; L2 is

the filter gain to be designed, and θF ∈ Rp is an adaptive parameter for estimation of the

network-induced errors.

Define the parameter θ
∆
= ∆yq. Substituting this into (6.3) we can write:

yq(k) = y(k) + θ(k) (6.34)

Defining now the state estimation error e(k)
∆
= x(k)− xF (k) and using (6.4), (6.33) and

(6.34), we can express the filtering error system as follows,

e(k + 1) = (A− L2C)e(k) + (∆A− L2∆C)x(k)

− L2θ̃(k) + ∆B1u(k) +B2∆F (k)

ε(k) = z(k)− zF (k) = He(k) (6.35)

where ε is the estimation error, ∆F (k) = f(k)− f̄F , and θ̃ = θ − θF .

6.3.2 The Design Approach

In this section we introduce an adaptive approach to handle the filtering problem of linear

systems subject to quantization.

The following theorem formulates the proposed adaptive approach for linear systems.

Theorem 6.2. Given

• the linear system in (6.4) whose measurements are quantized via a linear quantizer,

• the quantization error estimator given by

θF (k + 1) = θF (k) + Γθε(k) (6.36)
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where ε = y − yq − θF is the measurement estimation error, and Γθ > 0 is an

adaptation gain to be calculated.

• the `2 gains µu, µF , µθ, µ̄f , which respectively bound the effects of the known input,

actuator fault variations, variations of the quantization errors, and the actuator fault

on the estimation error, and

• the weighting matrices Wa1,Wa2,Wb1,Wb2,Wc1,Wc2 > 0 which satisfy W−1
a1 ∆AW−1

a2 ≤

I, W−1
b1 ∆B1W

−1
b2 ≤ I and W−1

c1 ∆CW−1
c2 ≤ I.

Then the linear filter given in (6.33) with the quantization error estimator given in (6.36)

generate stable estimates of z and θ with guaranteed H∞ performance if there exist matrices

Pe2, Pθ, Px2.Gθ > 0 and Ge2, and also a scalar η3 > 0 satisfying the following LMI:
Ξ4 Ξ5 0

? −P2 E2w

? ? −η3I

 < 0 (6.37)

where

P2 = diag{Pe2, Pθ, Px2}

Ξ4 = diag{HTH − Pe2,−Pθ,−Px2,

− µ2
uI,−µ2

F I,−µ2
θI,−µ̄2

fI}

Ξ5 =



ATPe2 − CTGTe2 −Gθ 0

−GTe2 Pθ −Gθ 0

0 0 ATPx2

0 0 BT
1 Px2

BT
2 Pe2 0 0

0 Pθ 0

0 0 BT
2 Px2



E2w =


Pe2Wa1 Pe2Wb1 −Ge2Wc1

0 0 −GθWc1

Px2Wa1 Px2Wb1 0

 . (6.38)

Once solved, the filter parameters L2 and Γθ can be calculated via L2 = P−1
e2 Ge2, and

Γθ = P−1
θ Gθ, respectively.
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Proof. using (6.35) and (6.36), the filtering error system can be written as follows

e(k + 1) = (A− L2C)e(k) + (∆A− L2∆C)x(k)

− L2θ̃(k) + ∆B1u(k) +B2∆F (k)

θ̃(k + 1) = −ΓθCe(k) + (I − Γθ)θ̃(k)− Γθ∆Cx(k)

+ ∆θ(k + 1)

ε(k) = He(k) (6.39)

where Γθ is the diagonal adaptation gain; and ∆θ(k+ 1) = θ(k+ 1)− θ(k) is the variation

of θ between the sampling instants k and k + 1. Since ∆θ(k) is bounded for all k, then

∆θ(k) ∈ `2e. Now if we augment the plant states and the error system states as X(k) =

[e(k)T , θ(k)T , x(k)T ]T , and also define the input vector as ω(k) = [u(k)T ,∆F (k)T ,∆θ(k+

1)T , f(k)T ]T , the augmented model can be written as follows,

X(k + 1) = (A + ∆A)X(k) + (B + ∆B)ω(k)

ε(k) = CX(k) (6.40)

where

A =


A− L2C −L2 0

−Γθ I − Γθ 0

0 0 A



∆A =


0 0 ∆A− L2∆C

0 0 −Γθ∆C

0 0 ∆A



B =


0 B2 0 0

0 0 I 0

B1 0 0 B2



∆B =


∆B1 0 0 0

0 0 0 0

∆B1 0 0 0


C = diag{H, 0, 0}. (6.41)
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To analyze the stability of the augmented system, we introduce the following Lyapunov

function candidate:

V (k) = X(k)TP2X(k) (6.42)

where P2 = diag{Pe2, Pθ, Px2} with Pe2, Pθ, Px2 > 0. The forward difference of this Lya-

punov function can be written as

∆V (k) = ξ(k)T {

AT + ∆AT

BT + ∆BT

P2

AT + ∆AT

BT + ∆BT

T

+

−P2 0

0 0

}ξ(k) (6.43)

where ξ(k) =
[
X(k)T ω(k)T

]T
. In order to use the results of lemma 6.1, we need to

factorize the uncertain terms in (6.43) as follows,[
P2∆A P2∆B

]
= E2ΛF2 (6.44)

where

Λ = diag{∆A,∆B1,∆C}

E2 =


Pe2 Pe2 −Pe2L2

0 0 −PθΓθ
Px2 Px2 0



F2 =


0 0 I 0 0 0 0

0 0 0 I 0 0 0

0 0 I 0 0 0 0

 (6.45)

Since Λ may not satisfy ΛTΛ ≤ I, which is a necessary condition in lemma 6.1, we define

the waiting matrices Wa1,Wa2,Wb1,Wb2,Wc1,Wc2 such that

∆A = Wa1ΛaWa2

∆B1 = Wb1ΛbWb2

∆C = Wc1ΛcWc2 (6.46)

where Λa,Λb,Λc are the normalized uncertain terms which satisfy the following inequali-

ties:

ΛTaΛa ≤ I
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ΛTb Λb ≤ I

ΛTc Λc ≤ I.

Substituting (6.46) into (6.44)and also defining Ge2 = Pe2L2 and Gθ = PθΓθ, we can

rewrite (6.44) as follows: [
P2∆A P2∆B

]
= E2wΛwF2w (6.47)

where

Λw = diag{Λa,Λb,Λc}

E2w =


Pe2Wa1 Pe2Wb1 −Ge2Wc1

0 0 −GθWc1

Px2Wa1 Px2Wb1 0



F2w =


0 0 Wa2 0 0 0 0

0 0 0 Wb2 0 0 0

0 0 Wc2 0 0 0 0

 . (6.48)

Using the results of lemma 6.1 we can rewrite (6.43) as follows,

∆V (k) ≤ ξ(k)T {

ATP2

BTP2

 (P2 − η−1
3 E2wE

T
2w)−1

ATP2

BTP2

T

+

−P2 0

0 0

+ η3F
T
2wF2w}ξ(k). (6.49)

To show that the error system satisfies the desired H∞ performance, we need to es-

tablish attenuation gains on the effects of the noise signals and network-induced errors in

any finite time interval, under zero initial conditions. To this end, J is defined as follows:

J ,

hs+1
1∑
i=hs2

{ε(i)T ε(i)− ω(i)TµTµω(i)} (6.50)

where µ = diag{µu, µF , µθ, µ̄f}. Since u,∆F,∆θ, f are all assumed to be bounded and

therefore belong to `2e, negative J implies limited effects of these signals on the estimation

error in any finite time interval [hs2, h
s+1
1 ]. Since V (k) is a positive definite function, under

zero initial conditions, V (hs+1
1 ) − V (hs2) =

∑hs+1
1
i=hs2

∆V (i) is positive semi-definite and
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therefore adding it to the right hand side of (6.50) results in J ≤
∑hs+1

1
i=hs2

J̃(k) where

J̃(k) = ε(k)T ε(k)− ω(k)TµTµω(k) + ∆V (k) (6.51)

Now, substituting (6.49) in (6.51), we get

J̃(k) ≤ ξ(k)T {

ATP2

BTP2

 (P2 − η−1
3 E2wE

T
2w)−1

ATP2

BTP2

T

+

diag{HTH, 0, 0} − P2 0

0 −µTµ


+ η3F

T
2wF2w}ξ(k). (6.52)

Finally, using Schur’s Complement, it follows that the above inequality holds if the LMI

given in (6.37) is satisfied.

6.4 The Proposed Two-Zone Fault-Tolerant Filter

In this section we first propose the design approach, and then investigate the behaviour

of the filter in the absence of faults.

6.4.1 The Design Approach

The following theorem lays out the design platform for our proposed two-zone fault-

tolerant filter.

Theorem 6.3. Consider the following faulty linear system:

x(k + 1) = (A+ ∆A)x(k) + (B1 + ∆B1)u(k) +B2f(k)

y(k) = (C + ∆C)x(k) +Du(k)

z(k) = Hx(k) (6.53)

whose measurements are quantized by (6.2), and the following two-zone filter:

• Zone 1: (εz(k) ≥ τ ⇒ hs1 ≤ k < hs2)

x̄F (k + 1) = Ax̄F (k) +Aσ+1B2fF (k − σ − 1) +B1u(k) + L1ε1(k)
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fF (k − i) = fF (k − σ − 1) + Γf

σ∑
j=i

BT
2 A

jTCT ε1(k)

zF (k) = Hx̄F (k) +
σ∑
i=0

HAiB2fF (k − i− 1)

ε1(k) = Φ−1yq(k)− Φ−1Cx̄F (k)− Φ−1
σ∑
i=0

CAiB2fF (k − σ − 1)

εz(k) = Φε1(k) (6.54)

with the initial condition: x̄F (hs1) = xF (hs1)−
∑σ

i=0A
iB2fF (hs1 − 1− i).

• Zone 2: (εz(k) < τ ⇒ hs2 ≤ k < hs+1
1 )

xF (k + 1) = AxF (k) +B1u(k) +B2f̄F + L2ε2(k)

θF (k + 1) = θF (k) + Γθε2(k)

yF (k) = CxF (k) +Du(k)

zF (k) = HxF (k)

ε2(k) = yq(k)− yF (k)− θF (k)

εz(k) = yq(k)− yF (k)

fF (k) = f̄F (6.55)

with the initial conditions: xF (hs2) = x̄F (hs2) +
∑σ

i=0A
iB2fF (hs2 − 1 − i) and f̄F =

fF (hs2 − 1).

where Φ and σ can be calculated by

Φ = I +

σ∑
i=0

CAiB2Γf

σ∑
j=i+1

BT
2 A

jTCT

σ = min j, j = 0, 1, . . .

s.t. rank
(
CAjB2

)
= rank(B2)

Then for given

• Γf > 0,

• `2 gains µδf , µf , µ̄f , µF , µq, µθ, µu > 0, and

• the weighting matrices Wa1,Wa2,Wb1,Wb2,Wc1,Wc2 > 0 which satisfy W−1
a1 ∆AW−1

a2 ≤

I, W−1
b1 ∆B1W

−1
b2 ≤ I and W−1

c1 ∆CW−1
c2 ≤ I.
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the two-zone filtering error system is stable and satisfies the prescribed H∞ performance if

there exist matrices Pe1, Pe2, Pf , Pθ, Px1, Px2, Gθ > 0, Ge1, Ge2, and scalars η1, η2, η3 > 0

such that the following LMIs are feasible.

Ξ1 Ξ2 0 Ξ3 0

? −P1 E1w 0 0

? ? −η1I 0 0

? ? ? −I ΩWc1

? ? ? ? −η2I


< 0 (6.56)


Ξ4 Ξ5 0

? −P2 E2w

? ? −η3I

 < 0 (6.57)

where

P1 = diag{Pe1, Pf , Px1}

Ξ1 =

Ξ11
1 Ξ12

1

? Ξ22
1


Ξ11

1 = diag{−Pe1,−Pf ,−Px1 + η1W
T
a2Wa2

+ (η1 + η2)W T
c2Wc2}

Ξ12
1 =


0 0 0 0

0 0 0 0

0 0 [η1W
T
a2Wa2 + (η1 + η2)W T

c2Wc2]Ψf 0


Ξ22

1 = diag{−µ2
qI,−µ2

δfI,

− µ2
fI + ΨT

f [η1W
T
a2Wa2 + (η1 + η2)W T

c2Wc2]Ψf ,

− µ2
uI +W T

b2Wb2}

Ξ2 = [Ξ1
2,Ξ

2
2]
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Ξ1
2 =



ATPe1 − CTΦ−TGTe1

BT
2 (Aσ+1TPe1 −ATΣCTΦ−TGTe1)

0

−Φ−TGTe1

−ΨT
δfC

TΦ−TGTe1

0

0



Ξ2
2 =



−CTΦ−TCAσB2ΓfPf 0

(I −BT
2 A

T
ΣC

TΦ−TCAσB2Γf )Pf 0

0 ATPx1

−Φ−TCAσB2ΓfPf 0

−ΨT
δfC

TΦ−TCAσB2ΓfPf 0

0

 0

BT
2 A

σ+1TPx1


0 BT

1 Px1



Ξ3 =



HT − CTΦ−TΩT

BT
2 A

T
Σ(HT − CTΦ−TΩT )

0

−Φ−TΩT

ΨT
δf (HT − CTΦ−TΩT )

0

0



E1w =


Pe1Wa1 Pe1Wb1 −Ge1Φ−1Wc1

0 0 −PfΓf (CAσB2)TΦ−1Wc1

Px1Wa1 Px1Wb1 0


Ω =

σ∑
i=0

HAiB2Γf

σ∑
j=i+1

BT
2 A

jTCT

AΣ =
σ∑
i=0

Ai

Φ = I +

σ∑
i=0

CAiB2Γf

σ∑
j=i+1

BT
2 A

jTCT
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Ψδf =
[
B2 AB2 . . . Aσ−1B2

]
Ψf =

[
B2 AB2 . . . AσB2

]
(6.58)

and

P2 = diag{Pe2, Pθ, Px2}

Ξ4 = diag{HTH − Pe2,−Pθ,−Px2,

− µ2
uI,−µ2

F I,−µ2
θI,−m̄u2

fI}

Ξ5 =



ATPe2 − CTGTe2 −Gθ 0

−GTe2 Pθ −Gθ 0

0 0 ATPx2

0 0 BT
1 Px2

BT
2 Pe2 0 0

0 Pθ 0

0 0 BT
2 Px2



E2w =


Pe2Wa1 Pe2Wb1 −Ge2Wc1

0 0 −GθWc1

Px2Wa1 Px2Wb1 0

 (6.59)

Once solved, the filter parameters can be calculated as

L1 = P−1
e1 Ge1

L2 = P−1
e2 Ge2

Γθ = P−1
θ Gθ

6.4.2 Filter Performance in the Absence of Faults

Under fault-free conditions, the system can be modelled by (6.1) and therefore it is ideally

expected that fF would converge to zero in the filter. However, in the proposed two zone

filter fF is only updated in zone 1 and as soon as εz enters zone 2, f̄F = fF will remain

constant. This means that even under fault-free conditions, f̄F can be nonzero and cause

steady state error in our estimates. For better performance in the absence of faults, we
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need to reset f̄F to zero and to do so, we have to find the largest f̄F whose effects on the

residual error εz will be mistaken for the effects of quantization. We already know that in

zone 2 εz is given as follows,

εz = Ce(k) + θ(k) (6.60)

where e is the state estimation error in zone 2 and θ is the quantization error. εz is affected

by f̄F through Ce and since the quantization error is bounded by τbnd/2, any f̄F which

satisfies the following inequality, will have an effect smaller or equal to the quantization

error.

‖Cef̄ (k)‖ ≤ 0.5τbnd (6.61)

where ef̄ is the part of e which is affected by f̄F . In order to calculate the effect of f̄F on

e(k), we need to obtain the time response of Ce(k) in the absence of faults. Using (6.39)

and basic linear systems theory, we can write

Ce(k) = CAk−h2s [e(h2
s)
T θ̃(h2

s)
T ]T

+ C
k−h2s−1∑
i=0

Ai(B1f̄F + B2∆θ) (6.62)

where k ≥ h2
s and

A =

A− L2C −L2

−Γθ I − Γθ

 , B1 =

B2

0


B2 =

0

I

 , C =
[
C 0

]
.

Using (6.62), Cef̄ (k) can be written as

Cef̄ (k) = C
k−h2s−1∑
i=0

AiB1f̄F . (6.63)

Substituting (6.63) into (6.61), we get,

‖C
k−h2s−1∑
i=0

AiB1f̄F ‖ ≤ 0.5τbnd. (6.64)
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Then we can claim that the above inequality is satisfied if

‖f̄F ‖ ≤
1

2
‖C

k−h2s−1∑
i=0

AiB1‖−1τbnd. (6.65)

As a result we can say that any f̄F which satisfies the above inequality has an effect,

smaller than or equal to the maximum quantization error and therefore it can indicate a

practically fault-free system.

Definition: A system in a networked setting is called practically fault-free if the

effects of the occurred faults (if any) are small enough to be mistaken for the effects of

the quantization.

Using the results of this section, the two-zone filter introduced in theorem 6.3 can be

modified in a way that the steady state error, which is induced by a nonzero f̄F in a

practically fault-free case, is eliminated. To this end, one only needs to add the following

rule to the filter operating in zone 2:

• If ‖f̄F ‖ ≤ 1
2‖C

∑k−h2s−1
i=0 AiB1‖−1τbnd, then f̄F = 0.

6.5 Simulation Results

In this section, we simulate the proposed fault-tolerant filter for an example system under

two fault scenarios. In the first scenario we assume that the system experiences different

internal faults plus actuator offset fault, both independently and simultaneously, and in

the second scenario we simulate the system with the actuator stuck fault.

Example. Consider the following linear system with x(0) = [1, 1, 1]T :

x(k + 1) =


0.8 0 0

2.1 −1.3 −0.6481

0 0.6481 0

x(k) +


1

0

0

u(k)

+


1

0

0

 f(k)

y(k) =
[
0 0 1.543

]
x(k)

z(k) =
[
0 0.1 0

]
x(k) (6.66)
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where u(k) = 5 + sin(0.2kTs) with Ts = 0.1 representing the sampling time. We assume

that the quantizer parameter is chosen as τ = 1. Now if we choose the weighting matrices

as Wa1 = Wa2 = Wb1 = Wb2 = Wc1 = Wc2 = 0.1, the actuator fault adaptation gain as

Γf = 0.15, and the `2 gains as µf = µδf = µF = µu = 1, µq = 0.8, µθ = 0.5, µ̄f = 0.9,

then the filter parameters are calculated as follows

L1 =
[
0.1132 0.6162 −0.3225

]T
L2 =

[
0.0121 0.1765 −0.1314

]T
Γθ = 0.7319

The considered fault scenarios are as follows,

Fault Scenario I.

• System is fault-free in t ∈ [0, 10]
⋃

[15, 20]
⋃

[25, 30]
⋃

[35, 40]
⋃

[45, 50], where
⋃

rep-

resents the union of the intervals,

• f = 3 in t ∈ (10, 15),

• ∆A =


0.1 0 0

0 −0.1 0

0 0 −0.1

 in t ∈ (20, 25),

• ∆B1 =
[
−0.1 −0.1 −0.1

]T
in t ∈ (30, 35),

• ∆C =
[
0.1 0 0.1

]
in t ∈ (40, 45),

• all of the above faults are present in t ∈ (50, 60].

This hypothetical fault scenario helps us see how the proposed filter works in the presence

of individual faults as well as all of them together.

Fault Scenario II. Actuator gets stuck, i.e. u = 0, after t = 20 sec. This can be

easily modelled by f(k) = −5− sin(0.2kTs) for k > 200.

Figures 6.1 and 6.2 show the estimated signals zF and fF in the first scenario, respec-

tively. As seen in these figures, the proposed dual-zone filter demonstrates smoother and

better results than the individual filters designed for each zone. The designed filter for

zone 2 shows barely any sensitivity to the changes in the measurement which are caused
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by the faults and as a result its operation is only desired when there are either no faults

present or only sensor faults exist (nonzero ∆C). The exact opposite of this filter is the

filter designed for zone 1 which is highly sensitive to any changes in the measurement.

This filter reflects these changes onto its estimates and as a result appearance and disap-

pearance of any fault can easily be seen in both zF and θF . However, this also leads to

the appearance of the quantization error in the estimates. Our proposed dual-zone filter

takes the best of the two filters and stays sensitive to the actual faults without showing

any sensitivity to the errors caused by quantization.

Figures 6.3 and 6.4 illustrate the operation of the proposed filter in the second scenario.

6.6 Summary

In this chapter, a dual-zone fault-tolerant filter was proposed for discrete-time linear sys-

tems with quantized measurements. The considered faults were modelled as either model

uncertainties representing the internal faults or an unknown disturbance representing ac-

tuator faults. Based on the significance of the quantization effects on the residual between

the quantized measurements and the ones estimated by the filter, two different zones were

defined and a robust filter was designed for each zone. Using a Lyapunov-based approach

with H∞ performance, the design problem was transformed into solving two LMIs feasi-

bility problem, and finally simulation results were employed to verify the applicability of

the proposed approach.
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Figure 6.1: Scenario I: (a) zF estimated by the filter designed in zone 1, (b) zF estimated
by the filter designed in zone 2, (c) zF estimated by the proposed dual-zone filter
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Figure 6.2: Scenario I: (a) fF estimated by the filter designed in zone 1, (b) fF estimated
by the proposed dual-zone filter

129



0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

2.5

(c
)

Time (sec)

 

 

z
z

F

Figure 6.3: Scenario II: zF estimated by the proposed dual-zone filter
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Figure 6.4: Scenario II: fF estimated by the proposed dual-zone filter
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Chapter 7

Conclusions and Future Works

In this thesis, the filter design problem was investigated in the presence of unknown dis-

turbances, model uncertainties and network-induced errors. The problem was motivated

by the growing interest and practical application of communication networks in control

and monitorng. In real-life systems, presence of unknown disturbances, noise inputs and

model uncertainties are quite common and proposing a solution without considering the

significant effects of these imperfections is not very helpful from a practical point of view.

Throughout this research, we looked into the different problems that can be caused by

communication over networks, and then focusing on the quantization errors and packet

dropouts, we proposed an active approach to robust filter design.

7.1 Concluding Remarks

The main contributions of this research can be listed as follows:

• A filter design methodology was proposed for discrete-time Lipschitz nonlinear sys-

tems under network-induced problems such as quantization effects, uncertain delays

and communication constraints. To this end, first the filter design problem was stud-

ied under the errors caused by a logarithmic quantizer for which the quantization

error was modeled as a bounded uncertainty multiplied by the actual measurement.

This uncertainty was later translated into uncertainties in the plant parameters and

then a Lyapunov-based approach was employed to derive the stability LMI’s for the

filter. The design process was repeated for filtering under uncertain delays, with
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the difference that there were no uncertainties present and the stability LMI’s were

extracted using a Lyapunov-Krasovskii function. Having an individual solution for

each problem, the filter design problem was then tackled considering all network-

induced issues and an LMI-based solution was proposed in the form of an optimiza-

tion problem to maximize the Lipschitz constant while ensuring both stability and

H∞ performance.

• Unlike the existing approaches, which deal with the network-induced issues such

as quantization from a passive point of view, an active method was proposed as a

better alternative to filter design with limited information. In the static point of

view, the error caused by quantization is usually modeled as either measurement

noise or model uncertainty. This in return, gives way to conservative designs and

poor performance, specially in the case of coarse quantization. In order to avoid

all of this, the proposed approach employed an estimator for the errors caused by

quantization and used the estimated errors for producing better estimates of the

system states.

• Motivated by the fact that unknown disturbances can considerably influence the

effectivity of any state observer, two novel unknown input filters were introduced.

Both of the proposed approaches employed a modified version of the plant model,

which was derived by finding out how many samples later, the effects of the un-

known disturbance would appear in the measurements. Based on this modification,

a very important and restrictive assumption which is very common in the literature,

was circumvented and in return replaced by more relaxed assumptions. The first

design approach used an exact equivalent of the modified plant model as the filter

model and consequently involved an internal prediction-correction loop for produc-

ing its estimates. The second approach, however, employed a practical equivalent of

the modified model as its filter model and therefore provided a simlpler and more

straight forward solution. Through simulation it was shown that the first approach

provided slightly smoother results which came at the expense of heavier computa-

tional burden.

• Trying to propose a novel approach to robust filter design with limited information, a
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unified filtering approach was introduced assuming that the measurements undergo

quantization and packet dropouts, and an unknown disturbance is affecting the

state trajectories. The unified approach brought together two distinct filters: the

one designed for the rejection of unknown disturbances and the one designed for

eliminating the effects of quantization. Taking advantage of the fact that the errors

caused by quantization are only effective when the estimation error is small, a two-

zone filter, which consisted of the two aforementioned filters, was proposed. In

zone 1, assuming that the received measurements are reliable, the proposed filter

tracked the states as well as the unknown disturbances, and bounded the minor

effects of the quantization errors. In zone 2, it produced estimates of the states

and the network-induced errors knowing that the received measurements could be

considerably erroneous.

• With the intention of designing a fault-tolerant filter under quantized measurements,

the proposed two-zone approach was extended to systems with model uncertainties.

The unknown disturbance was used to account for the actuator faults such as offset

and stuck, and the uncertainties in the model parameters were employed to model

the internal faults. Entering the uncertainties into the design equations, new sets of

LMI’s were derived and then a performance-improving modification was added for

the fault-free case.

7.2 Future Research

The results of this research can further be extended in the following areas:

• As most of the contributions of this work in the network area are focused on quan-

tization and packet dropouts and issues such as delay haven’t been considered, the

active approach given in chapter 3 can be extended by taking the network-induced

delay into account.

• Bringing the uncertain delay into the equations, the two-zone filter given in chapter

5 can be modified and redesigned.

• The proposed unknown-input filters can be extended to different classes of nonlinear

systems such as Lipschitz nonlinear systems.
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• The unknown-input filters can be integrated with different control schemes to form

active fault-tolerant control systems.

• The fault-tolerant two-zone filter can be integrated with different networked control

systems to result in active fault-tolerant control architectures with robustness to

network-induced errors.
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