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Abstract

Tracking myelination and demyelination in the brain is a crucial part of studies on

neurodegenerative diseases such as Multiple Sclerosis (MS). Classic MRI techniques

are unable to provide enough information about the pathology of tracts and lesions.

Multi-component analysis of multi-echo data has shown promising results in the field

of myelin water imaging (MWI). Such analyses are predicated on the assumption that

multi-echo signal acquired from a specific voxel in the brain can be sourced to various

water compartments, which go through relaxation at different paces independently.

Numerous techniques have been developed to model MRI signals to acquire the pro-

portion of water compartments to track myelin content. This ratio is typically called

the myelin water fraction (MWF) value.

In this thesis, we implemented multi-component analyses for MWF from multi-echo

gradient or spin echo sequences based on past literature. Once implemented, we in-

vestigate advances in analysis for each method. Using multi-echo spin-echo (MESE),

constraining the transmit RF field B1
+ parameter for the process of MWI analysis

was investigated by supplying B1
+ using an independent mapping sequence. This new

approach was compared to the standard MWI method of estimating the B1+ from

the decay curve. Simulations were performed using the same principles and modeling

prescribed for the fitting procedure to analyze our proposition.

By comparing the estimation results and reference data, we found a notable difference

which resulted in significant changes in MWF maps using the proposed method. In

3D MESE data, approximated by a 3D gradient and spin echo (GRASE) sequence,

MWF values were generally underestimated in white matter regions using the stan-

ii



dard method. Similar patterns were observed in 2D MESE data, however, estimations

in the in-vivo results showed major underestimations where B1
+ was more than 1.05;

and we noticed stronger deviation from the reference B1
+ maps in 2D MESE com-

pared to 3D data. The MWF brain maps from the standard method were in align-

ment with estimated maps demonstrated in previous literature. Results were partly

in alignment with simulations, but the in-vivo estimations showed skewness and bias

in the optimization step that is responsible for estimation of B1
+; which could be

due to the artifacts present in MRI data. In short, supplying the B1+ parameter via

an independent flip angle map was found to offer improvements in both 2D and 3D

MWF methods. The major improvement was supplying greater certainty in this key

parameter, rather than attempting estimation from the MWI sequence that may be

limited by SNR, artifacts or duplicate B1
+ solutions.

For MWI from multi-echo gradient echo (MEGRE) data, standard two and three pool

analysis models were implemented and tested in human brain subjects. The effects

of previously-introduced spatial saturation were examined and a non-local filter to

overcome low SNR issues was proposed. The application of a saturation pulse in

ME-GRE data acquisition helped with reducing the physiological noise arising from

the blood inflow as previously suggested by the literature. Using the non-local filter

showed improvements in image quality of MWF maps, and the correlation coeffi-

cient of ME-GRE results compared to the reference method increased when using the

three-pool model.

In conclusion, this thesis work has implemented spin echo and gradient echo-based

analysis methods for myelin water imaging in human brain on a 3T system. Ad-

vances in MESE-type approaches introduced an independent flip angle (B1
+) map

to constrain solutions for both 2D and 3D sequences. MEGRE methods were briefly

studied as well including applying a non-local filter.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) has undoubtedly been proven a very useful tool

for soft tissue imaging in the brain. In addition, many MRI techniques are sensitive to

myelin content in the brain. More specifically, quantitative MRI (qMRI) techniques

have been developed over the years to indirectly study the myelination/de-myelination

in the nervous system in diseases such as multiple sclerosis. One category of these

indirect myelin tracking techniques is commonly described as myelin water imaging

(MWI) methods. These techniques try to estimate myelin content by manipulating

the MRI signal originated from the water trapped in myelin bi-layers, named myelin

water (MW). This thesis focuses on the major subdivision of such methods that use

multi-component transverse relaxation (T2 and T2
*) measurements to calculate the

portion of MW in the brain as a myelin water fraction (MWF).

This introduction covers information about myelin structure and function, along with

some common MWI techniques. It also reviews common practices using T2 or T2
*

parameter to calculate MWF and the underlying considerations, such as modeling

the signal and sequence parameters.
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1.1 Myelin

1.1.1 Myelin function and structure

Neurons or nerve cells are the main components of brain and peripheral nervous

system (PNS), and carry out the responsibility of processing and transmission of

electrical signals. A nerve cell (Figure 1.1) is comprised of the cell body or soma (non-

processing portion that contains the nucleus), dendrites (protoplasmic extensions that

receive electrochemical stimulations), axon or nerve fiber (conducts electrical impulses

known as action potentials), and synaptic terminals (which pass electrochemical sig-

nals to other neurons) [1].

Figure 1.1: A sketch of a typical nerve. From left to right are dendrites, soma,
myelinated axon, and synaptic terminals.

Two major components of the central nervous system (CNS) are gray matter (GM)

and white matter (WM). GM is mostly comprised of cell bodies, while WM contains

relatively few cell bodies and mainly is composed of axons. Axons in WM are gen-

erally covered by a multilayer stack of uniformly thick membranes called myelin [2].

Myelin consists of bilayers composed of roughly 80% lipid and 20% protein, which is

unusual since other membranes are generally 50% lipid and 50% protein [1]. Myelin

fibers act as electrical insulators for neurons and have evolved to increase saltatory

conduction, and reduce energy requirements which may thus help the organism to

withstand low oxygen or starvation periods [3].
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In Figure 1.2, the major dense lines represent myelin sheaths. Between myelin sheaths

are small extracellular spaces [2], that are approximately 30 Å wide and filled with

water which is referred to as myelin water. This myelin water is the primary compo-

nent in all of the indirect methods probing the myelin content, and the definition of

myelin water includes all water that is in close contact with myelin bilayers [4].

There are several neurological diseases such as MS that will cause demyelination in

the WM and create demyelinated areas referred to as lesions. Lesion is a general

pathologic term referring to focal areas of abnormal tissue [1]. MRI is very sensitive

to white matter (WM) abnormalities and detection of lesions in MS with standard

T2-weighted imaging, with or without fluid suppression. However, there are a num-

ber of processes that can lead to changes in the signal intensity (e.g. edema, gliosis,

demyelination); thus conventional MRI techniques have difficulty in detecting the full

pathological state of such lesions [5]. Therefore, over the years, efforts have been made

to produce MRI techniques that are able to probe the state of lesions and quantify

myelin content. These techniques can be generally separated into two categories: di-

rect methods (directly quantify the signal originating from the myelin bi-layers) and

indirect methods (use other means to estimate the myelin content) [5].

1.1.2 Myelin Content via Myelin Water

In MRI, the signal is mainly originated from hydrogen protons. The mobility of these

protons determines the T2 relaxation times. Hydrogen protons in water molecules

have high mobility and display moderate to long T2 times (> 10ms). Hydrogen

protons which are part of macromolecules (e.g. proteins and myelin lipids) are much

less mobile, hence they have a much shorter T2 time (10µs < T2 < 1ms) [5]. In the

direct methods, the main goal is to acquire the signal directly arising from protons in

the myelin sheaths. Therefore, ultra-short echo time sequences are implemented in

these methods, however, very short T2 signals are not specific to myelin bi-layers [7].

Meanwhile, indirect methods like magnetization transfer (MT) and multi-component
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Figure 1.2: Electron micrograph shows a cross-section of a myelinated nerve. The
bar in the bottom right corner represents 0.1 µm × 150000 [6]

transverse relaxation analyses, try to measure the portion of myelin water instead.

MT tries to benefit from the fact that myelin water is in close contact with lipid bi-

layers and implements two different acquisitions; One acquisition adopts a saturating

RF pulse pre-acquisition that has excitation frequency outside of the bandwidth of

free water, and the other one without any saturating pulses. The saturation pulse

excites the protons in macromolecules and thus saturates the magnetization of the

water protons that are in contact with them. Therefore, there would be a difference

between the signals of the two acquisitions proportionate to the protons of the macro-

molecules. Using this principle one can calculate the so-called MT ratio [8]. In theory

when there is more myelin water present in an arbitrary voxel more water would be

saturated, which means there would be a larger MT value. However, myelin bi-layers

are not the only source of bounded protons, which decreases the correlation of myelin

content with the calculated MT ratio.
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Multi-component fitting methods are the main focus here, and the principle idea

behind all these methods is to use transverse relaxation parameter to distinguish

between myelin water signal and other water compartments. All such multi-echo

analyses are based on the underlying assumption that water exchange between the

water compartments is slow enough that it would not affect the T2 relaxometry solu-

tions [9]. Most of these methods are developed on a single voxel basis, which means

that the analysis would be applied to each voxel independently. There have been

attempts to use multi-voxel based algorithms, which assume that myelin content in

the brain varies slowly and applies a smoothness factor accordingly [10]. However,

there are not enough pathological studies that would back results from multi-voxel

analyses. Moreover, the assumption for spatial smoothness might not hold in cases

with demyelinated lesions. Herewith, all the analyses presented in this research are

done on a single voxel basis.

1.2 Multi-component T2 Relaxometry

1.2.1 T2 Relaxation

As the importance of transverse relaxation has been established, it would be benefi-

cial to review the basics of this parameter before getting into the multi-component

analysis. In the presence of an external constant magnetic field, B0
⃗ , the ensembles of

spins will tend to align slightly more in the main magnetic field direction producing a

net magnetic moment, M0
⃗ , at thermal equilibrium [11, 12]. By application of a radio-

frequency (RF) pulse (excitation pulse) the orientation of this magnetic moment may

be altered. The spins tend to return to equilibrium after some time and can be de-

scribed using two processes: longitudinal and transverse relaxation. The longitudinal

relaxation, also known as spin-lattice relaxation, is the process of returning the longi-

tudinal magnetization to thermal equilibrium. The transverse relaxation, also known
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as spin-spin relaxation can be described as the divergence of excited spins precession,

causing loss of transverse magnetization (induced signal) [13]. The T2 parameter

is the decay time constant for the dynamic processes that govern the relaxation of

the transverse magnetization. The effects of the static processes that contribute to

transverse magnetization are refocused in spin-echo acquisitions with an RF pulse

(typically a 180◦ pulse). The static processes are external field induced (e.g. suscep-

tibility sources) and the dynamic processes are thermodynamic in nature [14]. Spin

dynamics can be described using Bloch equations in the rotating frame [15]:

dM⃗

dt
= γM⃗ × B⃗ − Mxx̂+Myŷ

T2

− (Mz −M0)ẑ

T1

(1.1)

Where, B0 is conventionally aligned along the ẑ axis, and consideringMxy = Mx+iMy,

yields the following solutions in the rotating frame:

Mxy = Mxy(0)exp(−t/T2) (1.2)

Mz = M0 + [Mz(0)−M0]exp(−t/T1) (1.3)

Where Mxy(0) and Mz(0) are the initial magnetizations in the transverse plane along

the longitudinal axis, respectively.

Transverse relaxation of a sample is governed by the frequency distribution of the

randomly fluctuating background magnetic field and by static field effects. Low fre-

quency oscillating local dipolar fields can affect the precessional frequency of local

nuclei, contributing to local de-phasing of the transverse magnetization. Such low-

frequency content of local dipolar fields increases monotonically as the molecular

motion decreases, resulting in shortening of the T2. These dipole-dipole interactions

are believed to be the dominant mechanism determining relaxation rates [16]. In

heterogeneous environments (e.g. biological tissues), water protons interact with a

variety of macromolecules (e.g. lipids and proteins) which relatively restrict the mo-

tion of ions; and also membranes that restrict motion of water and bind water protons
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in a smaller area compared to free water; the aftermath of this motion restriction of

protons is shortening of the T2 parameter of the affected water-compartment [13,

14]. Relaxation is also affected by the rate of exchange between water compartments

in multi-component media [13]. If the water exchange rate is faster than the decay

due to relaxation, the sample would assume a relaxation time constant that is the

weighted average of T2 values of the contributing compartments. However, if the

exchange rate is slower, relaxation can be described as multi-exponential relaxation,

which is usually observed in myelinated regions such as WM [1, 14].

1.2.2 Myelin Water Imaging Using T2 Parameter

Prior to the introduction of MWI using multi-component T2 analysis, several in vitro

NMR studies investigated spin-spin relaxation in tissue in the nervous system and

WM. Vasilescu et al. [17] applied relaxation measurements to water in the frog sciatic

nerve and found three distinct relaxation components. Later in 1991, Menon and

Allen [18], applied linear analysis to in-vitro relaxation time measurements and found

up to four reproducible components for the transverse relaxation. Such in-vivo studies

found that about one-sixth of the total WM has a relatively short T2 relaxation time

(ranged from 10ms to 40ms), and they associated this water reservoir with myelin

water [9, 19]. These findings inspired Mackay and his colleagues to replicate the same

experiment in vivo, which lead to a landmark paper that started a chain of future

studies in this field. Mackay et al. [19] carried out a simple experiment, in which they

applied a single slice Carr-Purcell-Meiboom-Gill (CPMG) sequence to acquire multi-

echo T2 signal decay (32 echoes in total). Then they applied a non-negative least

squares (NNLS) method to the multi-echo signal of each voxel and observed three

different peaks in the T2 distribution (Figure 1.3b). The shorter T2 components were

associated with water trapped within myelin sheaths and the longer T2 components

were identified as extra/intra-cellular water (IE water). The third component with a

very long T2 time (> 1 s) was linked to CSF.
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(a) (b)

Figure 1.3: a) Spin-spin relaxation decay curve from a volume of interest in normal-
appearing WM (in vivo). b) T2 relaxation distribution from the decay curve in (a).
The three components are assigned to: i) water compartmentalized in the myelin
sheath with T2 between 10 and 55ms, ii) water in cytoplasmic and extracellular
spaces with T2 between 70 and 95ms, and iii) cerebrospinal fluid with T2 greater
than 1 s [19].

Moreover, Mackay et al. tried to calculate the ratio of myelin water peak to the total

water in the signal decay and defined it as myelin water fraction (MWF). Later in

a study by Beaulieu et al. [20], it was found that the short T2 signal component

was exclusively existent in myelinated nerves. In 2006, Laule et al. [7] scanned

post-mortem brains and then photographed stained samples to acquire Luxol fast

blue (LFB) mean optical densities (OD) to correlate with MWF values (Figure 1.4).

Their studies showed high correlation can be found in several pathological studies in

[7, 21, 22].

1.2.3 Three Dimensional Gradient Echo Spin Echo (3D-GRASE)

Similar to the early days of many other innovative ideas, Mackay’s method had is-

sues and challenges. To name a few: specific absorption rate (SAR) issues for short

echo times (≤ 10ms), noise effect problems for MWF and T2 distribution, and most

importantly long acquisition time (25min) [23]. For a whole-brain acquisition, scan

time would be too long to be even considered practicable for clinical settings [24].

Therefore, over the following years after their paper, many have attempted to create
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Figure 1.4: Comparison of MRI results and histopathology. There seem to be a good
qualitative correlation between (a) TE =10 milliseconds, (b) myelin water image, and
(c) LFB [7].

MWF maps using more feasible methods and sequences, employing the same princi-

ples.

Multi-slice excitation might be contaminated by magnetization transfer (MT) effects,

which may lead to the underestimation of MWF in the affected regions [24]. Thus

to reduce MT effects, a safe approach would be to excite a 3D slab to acquire MESE

data, which would lead to a very long acquisition time. To overcome the long scan

time, Mädler and Mackay in 2007, introduced 3D-GRASE which also has sequence

limitations [24], which we will circle back to later in this chapter.

Figure 1.5, portrays the GRASE pulse sequence. This sequence adopts the same

principles as 3D-MESE. First, a 90◦x RF pulse is applied, and then a train 180◦y re-

focusing RF-pulses. There are two k-space lines with additional T2
* weighting which

are collected around the main echo time, which are the source of acceleration. The

gradient echo weighted k-space lines capture the outer lines of the k-space and main

echoes capture the center lines. This introduces some T2
* weighted artifacts to the

final images.

9



Figure 1.5: Pulse sequence diagram of the 3D GRASE sequence. Gradients Gx, Gy,
and Gz are used for the readout, primary, and secondary phase encoding, respectively.
Details of the readout scheme used for GRASE acquisition (inside the dashed box)
are enlarged and shown on the right (dashed box, right side)

1.2.4 Multi-component Fitting

The first step of fitting for multi-echo data is defining a model that sufficiently de-

scribes and predicts the real data. It is assumed that there is a range of T2 values

present in the multi-echo data. Therefore, the general form of the model could be the

sum of time-domain functions with their corresponding weights:

Yi =
M∑︂
j=1

Sj ×DEC(ti, T 2,j, θ̄), i = 1, 2, . . . , n (1.4)

Where n is the number of echoes, Yi represents the echo signal amplitude acquired

at time ti, M is the number of (usually logarithmically spaced) relaxation time in an

arbitrary range of T2 values, Sj is the corresponding weight, DEC(.) is the decay

function predicting signal decay associated with each T2 value, and θ̄ represents all

other parameters that affect and determine the shape of the signal decay curve. The

simplest form of the model would be multi-exponential decay; in which we would

have:

DEC(t, T2, θ̄) = e−t/T2 (1.5)

This simple model requires perfect 180◦ refocusing pulses. However, in practice, it is

hardly possible to achieve perfect refocusing angles, due to through-plane (slice pro-
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file) variation, B1 calibration errors, and RF inhomogeneity (which gets exacerbated

at higher field strengths) [1, 9, 25]. Therefore, different voxels across the excited

slab would experience a range of refocusing angles that significantly differ from the

intended 180◦. Imperfect refocusing angles produce alternate echo pathways that

contaminate later echoes. This phenomenon is called stimulated echo in literature

and introduces T1 and B1 effects to the decay curve [1, 25, 26].

(a) (b)

Figure 1.6: From basic MR principles, we expect T2 to be observed as (a) exponential
decay (T2 = 80ms, T1 = 1000ms, flip angle = 180◦). However, in practice, (b) multi-
echo sequences are not observed to have pure exponential decay due to contributions
from alternative echo pathways when refocusing pulses are not precisely 180◦ (T2 =
80ms, T1 = 1000ms, flip angle = 140◦).

1.2.5 Extended Phase Graph (EPG) Algorithm

The B1
+ field inhomogeneity effects in multi-echo acquisitions result in signal de-

cays that are contaminated by stimulated echoes. The aftermath is that real data

deviate significantly from a “pure” T2 decay curve. Therefore, in order to have a

realistic model, stimulated echoes need to be accounted for. The EPG algorithm [27]

has been extensively used for multi-component T2 fitting procedures and functions

by iteratively tracking the phase of several populations of spins as they undergo RF

refocusing and exponential relaxation [26].

Total magnetization M⃗ in each voxel can be described by transverse (MX , MY ) and
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longitudinal (MZ) components. Throughout a multi-echo acquisition, M⃗ is calculated

only before and after the application of RF pulses. Computation of the total mag-

netization using “pure” magnetization MX , MY , and MZ requires summation over

a large number of spin ensembles which is usually deemed not feasible as it requires

heavy computations[27]. In order to avoid this in the EPG algorithm, a magnetization

phase state vector (MPSV) is defined with three types of phase states or sub-states:

F states refer to dephasing spins in the transverse plane, F ∗ states refer to re-phasing

spins in the transverse plane, and Z states refer to spins along the longitudinal axis

which retain their phase. Moreover, a subscript is assigned to each state that de-

notes the number of phase increment steps (equals to one TE period) that each spin

population has accrued [26].

MPSV = (F1, F
∗
1 , Z1, . . . , FN , F

∗
N , ZN)

t (1.6)

Where N stands for the number of echoes, superscript t (= transpose) is used for the

convenient representation of the column vectors. In order to predict signal decay, it

is sufficient to calculate sub-states at each echo time.

It is assumed that before excitation, all spins are along the longitudinal axis with

intact phases. After the application of 90◦ RF excitation, all the spins are moved on

to the transverse plane and start dephasing; thus F1 is set to 1 (normalized value).

Now, a series of matrices are employed that account for the effects of RF refocusing,

phase transition, and relaxation.

Assuming that refocusing pulses at each echo are identical, rotation matrix R that

accounts for RF refocusing is as follows:⎡⎢⎢⎢⎣
F+
n

F+
n

Z+
n

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cos2(α/2) sin2(α/2) −i sin(α)

sin2(α/2) cos2(α/2) i sin(α)

−0.5i sin(α) 0.5i sin(α) cos(α)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Fn

F ∗
n

Zn

⎤⎥⎥⎥⎦ (1.7)

Where superscript ”+” indicates the new values after application of the RF refocusing

pulse, α stands for the rotation angle that the magnetization vector experiences.
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Between refocusing pulses, spins go through the following transitions:

Fn → Fn+1

F ∗
n → Fn−1

F ∗
1 → F1

ZN → ZN

(1.8)

These transitions are defined in matrix T and are similar for each phase increments.

An echo is formed when F ∗
1 transitions to F1; because the change from rephasing

to dephasing necessitates a period of coherence when spins are in phase and are

measurable.

The relaxation matrix E quantifies the exponential relaxation for half of the TE

period and is defined as: ⎡⎢⎢⎢⎣
F+
n

F+
n

Z+
n

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
E2 0 0

0 E2 0

0 0 E1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Fn

F ∗
n

Zn

⎤⎥⎥⎥⎦ (1.9)

Where:

E2 = exp(−TE

2T2

), E1 = exp(−TE

2T1

) (1.10)

Using the aforementioned matrices, the magnitude of the nth echo Mn can be defined

using the following iterative equation:

MPSVn = (ETRE)nMPSV0 (1.11)

Mn = MPSVn(1) (1.12)

Where the first part of the right-hand side of Equation (1.11) is the matrix multipli-

cation of relaxation matrix E, transition matrix T , and the rotation matrix R then

multiplied by E again; the entire matrix multiplication is set to the power n which

denotes the echo index, where n = 0 delineates the state of spins right after excitation
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pulse.The value of MPSV0 is set to the normalized value of [1, 0, 0, ...]T .

Using the EPG algorithm, the following model for signal decay can be written:

DEC(t, T2, θ̄) = EPG(t, T2, T1, α) (1.13)

Where T1 is the longitudinal relaxation parameter, which is usually considered a

constant value (= 1s) for all voxels. Since inter-echo spacing is significantly smaller

than T1 values, one can assume a constant value for the generation of a dictionary

matrix for the fitting procedure; and it has been shown that this assumption would

result in negligible effects on the final solution [26]. α denotes the refocusing angle of

the voxel; this parameter can be supplied by getting a B1 map or by implementing

an inverse problem.

1.2.6 Non-Negative Least squared (NNLS) Curve Fitting Al-
gorithm

The NNLS algorithm was initially introduced by Lawson and Hanson (1974) [28],

and later was adopted by Whittall and Mackay (1989) for T2 decay curve analysis

[1]. Thereafter, it has been vastly used in the literature, especially in MWI. In order

to use NNLS for T2 decay analysis, a cost function must be defined:

min
x

∥DX − Y ∥22 (1.14)

Where Y is the observed signal decay, and D is a dictionary matrix containing decay

curves based on the model which is assumed for the signal decay. These decay curves

have similar parameters and differ only by T2 relaxation value. The T2 values used to

calculate the decay curves are usually a set of logarithmically spaced values between

the smallest predicted T2 value (which is associated with myelin water) and the

longest predicted value (CSF or free water). The vector X is the set of weights

associated with T2 distribution and the final solution to the NNLS algorithm. Using

this non-regularized form for the cost function would lead to solutions that are spikes

in the T2 distribution (as in Figure 1.3b).
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In most numerical methods treating ill-posed problems, the problem is replaced with

a nearby solution that approximates the required solution which is considered more

satisfactory. Often this is accomplished by including additional information, e.g. the

calculated solution should be smooth. Such methods are called regularization and

they use a regularization parameter to handle the degree of applied smoothing [29].

This smoothing is to ensure that the final solution would not be too sensitive to

perturbation of D or Y ; and the solution would be more realistic since tissues are

more likely to have a distribution of T2 components as opposed to delta functions

or spikes in the distribution. To apply the regularization cost function would be

re-written as below:

min
x

∥DX − Y ∥22 + µ∥X|22 (1.15)

Where µ is the regularization factor. Commonly, the value of this parameter is

determined such that there would be a 2% increase in the sum of squared residual

of the fitted curve, compared to the non-regularized solution; which is supposed to

deliver the desired level of smoothing [26, 30].

After calculating the T2 distributions, weights corresponding to shorter T2 values

smaller than a certain threshold (usually 40ms) are assumed to be originating from

myelin water. Therefore, to compute myelin water fraction one must calculate the

ratio of the sum of weights smaller than the threshold to the total sum of weights:

MWF =

∑︁T2=Threshold
T2=T2min

X(T2)∑︁
X(T2)

(1.16)

1.3 Multi-echo Gradient Recalled Echo

In gradient-echo acquisitions unlike spin-echo acquisitions, there is no refocusing

pulses after the excitation pulse. Therefore, the acquired signal at echo time will

be affected by mesoscopic field inhomogeneities, which will affect the transverse re-

laxation [31]. In GRE acquisitions, the effective transverse relaxation is delineated
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Figure 1.7: Sample T2 distribution extracted from regularized NNLS solution of in-
vivo data. The smaller components (T2 < 40ms) are associated with myelin water.
The data was acquired from the 3D-GRASE sequence on a Siemens 3T scanner. There
are artifacts in the in-vivo data which affect the NNLS solution in different ways, the
two little peaks in the MW range is the evidence of that.

by T2
* and is related to T2 by [31, 32]:

1

T ∗
2

=
1

T2

+
1

T ′
2

(1.17)

Where T ′
2 is the determined by mesoscopic field inhomogeneities [31]. As the multi-

echo gradient-echo (ME-GRE) acquisition does not need refocusing pulses; it has

multiple advantages over MESE: 1) Reduced SAR, which comes in handy at higher

field strengths; 2) smaller first echo time (TE1) and shorter echo-spacing (TE), thus

increased number of measurements before myelin signal fades away (although T2
*

times are shorter than T2); 3) Reduced acquisition time and increased volume cover-

age with the multi-slice 2D acquisition; 4) relatively simple pulse sequence design [4,

5, 32, 33].

The ME-GRE methods come with many challenges and concerns. There are issues

that contribute to non-white noise [32], such as respiratory cycle effects which intro-
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Figure 1.8: The diagram of the ME-GRE pulse sequence with a train of alternating
readout gradients (Gx) polarity played out immediately after the phase-encoding
(Gy). Only 8 echoes are plotted for simplicity.

duce fluctuations in susceptibility related to the variations in oxygen concentration,

low frequency resting-state signal fluctuation observed in the brain [5, 32], and local

movements caused by pulsation of nearby arteries [32]. Dominant physiological noises

have been reported to increase the noise levels up to three times when comparing in-

vivo to in-vitro data [5]. There is also the contribution of B0 field inhomogeneities

that produce local field gradient effects that will introduce non-exponential decay to

ME-GRE signals [5, 8, 32, 34]. Sequence parameters can also have notable effects

on the outcome of the analysis. For example, using a short repetition time (TR)

with a large excitation flip angle would introduce T1 effects to the proportions of

water compartments. Since myelin water is believed to display relatively shorter lon-

gitudinal relaxation parameter than the other water-compartments; there would be

significant MWF overestimations as myelin water magnetization would recover faster.
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The complex exponential functions that are commonly used to describe ME-GRE de-

cays are not orthogonal which makes the ME-GRE data analysis very sensitive to the

incorporated models [8].

1.3.1 ME-GRE Signal Modeling

Two different approaches have been adopted to analyze ME-GRE data: 1) regularized

NNLS fit for a range of T2
* values to get a pseudo-continuous distribution (the same

process as the MESE data but with different range and threshold) [34], and 2) a

multiple-pool model that contains fewer parameters and usually employs a nonlinear

least squared (NLLS) method to yield the solution [4, 32, 33]. The latter method

was proposed so the distinction of transverse relaxation components would be better

defined (to overcome the misclassification of water compartment weights which the

regularized NNLS method faces) and introduces the possibility of investigation of

water compartments other than myelin water [5, 33]. Here we solely focus on the

three-pool model, in which the water compartments are assumed to be myelin water,

extra-cellular water, and axonal water [4, 5, 8, 33].

In WM, magnetic susceptibility effects of the distribution of myelin lipids and iron

introduce compartment-specific resonance frequency shifts [4]. The frequency shift

effects are believed to be dependent on the angle of the WM fiber bundle with respect

to the main magnetic field (B0) [4, 8, 34]. There have also been studies that claim

compartment-specific frequency shifts at 3 Tesla are small enough to be ignored [34].

However, in order to have a thorough model, the full complex three pool model

equation is written below:

S(t) = {Amy × e−t(R∗
2my+i2πfmy) + Aax × e−t(R∗

2ax+i2πfax) + Aex × e−t(R∗
2ex+i2πfex)} × e−i2πfbkgt+φ0

(1.18)

Where subscripts my, ax, and ex stand for myelin water, axonal water, and extra-

cellular water compartments, respectively. A is the amplitude of each water compart-
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ment contributing to the signal decay. R∗
2 is the transverse relaxation parameter, and

f denotes the compartment-specific frequency shift. The fbkg represents the back-

ground frequency of the entire voxel introduced by the mesoscopic magnetic field

effect and φ0 denotes the receiver coil offset.

In order to solve Equation (1.18) an NLLS method with a proper initial guess for

each parameter is usually applied. One can ignore the frequency shifts to fit for fewer

parameters or only use the magnitude of ME-GRE data to the absolute value of

Equation (1.18) for simplicity [4, 33]. More recent papers utilize both magnitude and

phase data to fit to Equation (1.18), this incorporation is reported to improve MWF

estimation especially where WM bundles are perpendicular to the B0 field [8]. After

fitting the parameters, one can simply calculate MWF by getting the proportion of

myelin water:

MWF =
Am

Am + Aax + Aex

(1.19)

1.3.2 Local Field Inhomogeneity Correction

In practice, the magnetic field inside any system placed into an MRI scanner is always

inhomogeneous. The inhomogeneities in the B0 magnetic field produce local field

gradients (LFG), inducing an additional non-exponential decay to the signal [31]. On

the premise that there exists a constant linear background gradient G′
x parallel to the

read direction, the measured signal can be written as [15]:

S(t′) =

∫︂
dxρ(x)e−iγGxxt′−iγG′

xx(t
′+TE) =

∫︂
dxρ(x)e−iγGxxt′(1+G′

x/Gx)−iγG′
xxTE (1.20)

The first part of the phase term is a scaling factor of the k-space variable which

produces distortion (when G′
x << Gx this term can be ignored) and the other phase

term is a position-dependent term that is linearly related to echo time:

Φ(x) = −γG′
xxTE (1.21)

19



The phase difference over a distance d can be written as:

∆Φ = −γG′
xdTE (1.22)

Assuming that each voxel contains a homogeneous distribution of spins, the phase

difference across the voxel leads to dephasing of the total signal. This dephased signal

is given by [15]:

ρ̂ = ρ0

[︄
1

∆Φ

∫︂ +∆Φ/2

−∆Φ/2

eiΦdΦ

]︄
= ρ0 sinc(∆Φ/2) (1.23)

To compensate for the LFG effects, usually a preparation (prior to the NLLS process)

step is implemented to estimate the local gradients in each direction and then the

”sinc” function correction is applied. There have been studies that include the ”sinc”

function in the signal decay model and fit for the LFG as an extra parameter [35].

1.4 Sequence Optimization

1.4.1 3D-GRASE Optimization

Echo Shifting Method

Compared to EPI imaging, GRASE images manifest much fewer chemical shift effects

and image distortions caused by field inhomogeneities. Such manifestation of effects

is inversely proportional to the number of Hahn spin echoes in the echo train. In

a GRASE sequence, the CPMG sequence is performed with refocusing RF pulses

interlaced with a number of gradient-echo trains (NGE). The CPMG sequence part

from that of the EPI sequence significantly reduces the evolution of the phase errors

due to field inhomogeneity. The remaining small phase errors re-appear periodically

in the gradient-echo train. If this periodicity is not removed from k-space data,

the convolution of the periodic error function with object data results in destructive

replication artifacts in the frequency domain image. One can impose a periodic order

to temporal acquisition of successive data in order to deal with the discontinuity in

the phase function. This necessitates shifting the acquisition times in order to deal
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with the discontinuities in the phase due to the small phase errors [36].

GRASE images of the human brain appear artifact free. However, body images show

artifactual bands of signal parallel to lipid and water interfaces. This is associated

with mentioned phase discontinuities in the k-space [36].

Below is the description of how to incrementally change the temporal position of

echo-train with respect to Hahn echo time in the CPMG sequence, to eliminate the

discontinuities of phase in k-space due to field inhomogeneities. Such echo shifts

permit continuous sampling of phase errors.

The NMR signal can be described as below:

S(t) =

∫︂ ∫︂
M(r)exp[−j(k(t) · r + γE(r)t]dr (1.24)

k(t) = γ

∫︂ t

0

G(t′)dt′ (1.25)

Where M(.) is the magnetization and G(.) is the magnetic field gradient at the po-

sition r. E(.) denotes the field component due to inhomogeneities including chemical

shift and static field.

In the sequence at our local site, we did not have the capability to access and manip-

ulate the source code, thus we performed an experiment where we put a probe inside

the scanner and watched the trace on the oscilloscope screen (Figure 1.9). Usually in

order to accommodate for the delay in the readout gradient the ∆TE (echo spacing)

is increased [37], however in the acquired sequence an alternate scheme was procured.

They keep the timing of the first two pulses (excitation and first refocusing pulse)

constant and gradually increase the echo-spacing to perform the echo-shifting scheme.

Based on our observation the echo spacing in the scheme differs from 10ms to 11.8ms

for different k-space lines.

This creative solution has not been fully analyzed due to its complexity. However,

Piredda et al. released a supplementary document (along with their 2020 paper)
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Figure 1.9: Probed echo train using the Siemens scanner and the Korean 3D GRASE.
The time difference of the first two pulses is 5 ms and first center k-space readout
happens 10.68 ms after the excitation pulse.

that exhibits the results of exploring the classic solution where echo spacing remains

constant throughout the sequence [37]. They stated that their results showed no

discernible differences in magnitude images using the echo shifting method in the

brain, but using the larger echo spacing resulted in the overestimation of MWF values.

Looking at their MWF maps in the supplementary document, one could see the MWF

overestimation when comparing the 10.7 ms echo spacing results to 11.8 ms, however,

if you look closely at the frontal regions (frontal WM) of the maps you can see

qualitatively better-looking WM tracks and MWF contrast in the brain, thus in can

be assumed that there are visible benefits to the echo-shifting method even in the

brain; especially, the ringing artifact pointed out by the authors.

Slice Over-sampling

We usually acquire 32 slices in our experiments using the 3D GRASE sequence, where

some slices on either side (scanning the center region of the brain) contain significant

aliasing artifacts. The aliasing artifact has strong effects on the multi-component
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analysis. This is due to the fact that the MW signal makes up such a small portion

of the signal that even if aliasing is not visible in the magnitude images its effects

can be easily observed in the final MWF maps. One could set FOV such that a few

slices on one side include air, therefore only one side would contain this artifact. The

other solution is to apply slice oversampling method where we excite the same slab

size but acquire data for a few extra slices on each side (which extra slices will be

thrown away). Basically, the slab that the data is acquired from would be larger than

the excited (intended) slab.

We tried to optimize the slice-oversampling factor with the underlying assumption

that the acquisition time must remain constant. The results showed when using the

factor of 33% for oversampling we would achieve the maximum number of unaliased

slices. However, there was a downside to using this method; in order to keep the

acquisition time constant, the size of the slab which data were acquired from, was

supposed to remain fixed as well. Therefore, increasing oversampling meant we should

decrease the excited slab size hence decreasing the overall available signal for acqui-

sition. Thus it resulted in a loss of SNR. Moreover, the number of extra unaliased

slices were small (2 extra slices), and due to the loss of SNR was deemed undesirable

and the sequence parameters was left as it was.

1.4.2 ME-GRE Optimization

Gradient Polarity

In ME-GRE sequences using the bipolar readout scheme allows shorter echo-spacing

compared to the monopolar option. Shorter echo-spacing grants the ability to capture

more echoes containing MW signal (i.e. better temporal resolution of the signal de-

cay). However, using the bipolar scheme introduces phase and magnitude modulation

(on odd and even echoes) based on the polarity of the readout [35]. Shin et al. (2019)

introduced the gradient pairing method to tackle this issue by getting two short term

averages where in the second average all the gradient polarities are reversed; and then
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the final image was calculated by the vector sum of the two images. Their results

showed significant improvements in the MWI analysis results.

We tried to implement the same sequence scheme in the Siemens 3T scanner. Alas,

we could not replicate the same data and this project was left aside; Images from the

two averages required registrations, and also there no settings in the IDEA sequence

programing platform to let the scanner know we are using the reverse polarity, thus

there was even a shift in the k-space as it was saved backward by the scanner.

Nerve Stimulation

Short echo-spacing translates into fast gradient alternating during the scan, which

usually will be flagged by the scanner and requires you to apply certain changes in

order to prevent the subject from twitching during the scan (prevent nerve stimula-

tions). Scanner usually asks for increasing the echo-spacing and changing the BW,

but we tried to resolve this issue by changing the FOV or the resolution of the acqui-

sition. Increasing the FOV seems the best way to go as it increases voxel size, thus

increasing SNR.

1.5 Thesis Outline

This thesis focuses on multi-component transverse analysis in order to perform MWI

analysis. Both T2 and T2
* based methods are explored and the common methods in

the literature are used for comparison. All experiments are performed at 3T Siemens

Prisma.

First, we try to constrain the flip angle parameter in the fitting process using the 3D

GRASE data. The goal in mind is to supply a parameter using a reliable independent

sequence in order to improve the analysis and decrease the variability of results.

Second, Bloch equations will be used to simulate and generate decay curves of the 2D

MESE sequence, in order to enable the same multi-component analysis used for 3D

data. Then using the same principles, we try to supply B1
+ to investigate the effects
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on the fitting results.

Finally, we try to replicate the typical techniques (regularized NNLS method and

three-pool model) used for ME-GRE methods to attain MWF maps, then investigate

the noise and modeling effects facing ME-GRE data analysis. To tackle the SNR

issues of the ME-GRE method, we investigated the effects of non-local filtering on

the MWF maps.
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Chapter 2

Three-Dimensional Myelin Water
Fraction Mapping with
Independent Flip Angle Map

2.1 Introduction

Transverse relaxation (T2) mapping is commonly performed with a multiple spin-echo

technique, though other methods are possible. As shown by MacKay [19], multiple

component analysis of the transverse decay in the in-vivo brain can yield the myelin

water fraction (MWF), identified as the short T2 component. Myelin water is defined

as water trapped between myelin bilayers and constitutes roughly one-sixth of the

human brain white matter water reservoir [19]. MWF has been shown to correlate

with histochemical myelin stains in the postmortem brain [7, 22, 38]. The use of this

method is now widespread in research studies of the brain and spinal cord and has

particular application to multiple sclerosis, a demyelinating disease [7, 22, 38, 39].

Spectrum analysis of the T2 decay data gives an understanding of underlying water

compartments, including myelin water and intra/extra-cellular water [8, 9, 18, 19, 23,

40, 41]. The discrimination of the myelin water component increases the specificity

of T2 mapping to myelin changes, although there may be other short T2 species that

serve as a confound [42, 43]. Multi-echo spin echo (MESE) data are acquired using

an excitation pulse followed by a train of refocusing pulses. Perfect 180◦ refocusing is
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required to generate an exclusively T2 modulated signal decay. In practice, the theo-

retical refocusing stipulation is violated due to: imperfect refocusing profiles, transmit

calibration errors, and RF interference effects [44], which all collude to alter the range

of refocusing angles across the volume of interest [25]. Hence, MESE decay curves are

considerably affected by the refocusing angles, therefore mono- or multi-exponential

fittings of the corresponding T2 times need to account for such effects [25, 26, 45].

Modeling of the MESE signal decay may be performed in many different ways in-

cluding using the extended phase graph (EPG) algorithm [27, 46], which computes

multi-echo signal decay curves given T1, T2, inter-echo spacing time, and the corre-

sponding refocusing angle. For slice selective RF pulses, the analysis is more complex

and requires the accounting of RF slice profile effects [9, 25, 47]. However, the current

trend is to perform MWF imaging in the brain using a 3D sequence with nonselec-

tive pulses, which enables a simplified accounting of RF pulse effects. While 3D

acquisitions avoid incidental magnetization transfer found in 2D methods, 3D scans

generally have long acquisition times. By adding gradient echoes within each inter-

echo spacing, it is possible to collect two gradient echoes and one spin-echo within

each inter-echo time, enabling substantial time savings. This 3D GRASE approach

is often used [8, 10, 24, 26, 30, 48], and has been validated in multi-site multi-vendor

tests [49], and is the method used in this work.

Recent literature performs T2 analysis of 3D GRASE for MWF, including stimulated

echo compensation, using a multi-exponential fit adopting a regularized Non-Negative

Least Squares (NNLS) algorithm to decompose decay curves into T2 distributions

with no prior assumption about the number of contributing T2 components [10, 24,

26, 30, 39, 48]. The NNLS method assumes a range of T2 values to create a dictio-

nary matrix based on a model which determines the best fit for the underlying decay

curve of each voxel which requires correct refocusing angles. Therefore, to produce

proper dictionary matrices for the NNLS process, it is common practice to perform

a flip angle optimization step to estimate the corresponding refocusing angle [10, 24,

30



26, 30, 42, 48]. However, estimation of the flip angle from the decay train is com-

plicated by the oscillating behavior of stimulated echoes and noise and could lead

to increased susceptibility of NNLS fit results to noise [10, 30, 48, 50]. There are

two possible concerns using this flip angle optimization. First, the assumption that

the non-regularized NNLS solution of actual flip angle would result in the smallest χ2

value is not always true, since alternate refocusing flip angles could generate solutions

that fit the noisy signal rather than the ground truth. This assumption would induce

extra susceptibility of the final solution to noise. A second issue is the boundary effect

since the EPG algorithm is symmetrical around 180° (i.e. 190° is the same as 170°).

With the upper limit at 180°, this contributes to further underestimation when true

flip angles are close to this boundary [30].

To overcome these potential concerns, we investigated whether supplying true flip

angle values to the NNLS process would increase the precision of MWF estimations.

This approach eliminates the extra optimization step but requires a flip angle map

which has proven successful for single component T2 mapping [51], and theoretically

analyzed to have a significant effect for the case of low SNR data [50], by reducing the

number of unknowns in the fitting process. We investigate the value of this approach

for MWF in simulations and in-vivo human brain experiments.

2.2 Methods and Procedure

2.2.1 Simulation of T2 Decay Data

Visible water compartments in the brain water pool could be categorized into three en-

vironments: myelin water (MW), intra-extra cellular water (IEW), and cerebrospinal

fluid [18, 19, 23, 40, 41, 52]. Each of these environments shows different relaxation

characteristics. Based on previous analyses on T2 relaxometry of in-vivo data [10, 24,

26, 30, 48, 52, 53], we defined a model for simulations, which only consists of MW

(T2 =∼ 5 to ∼ 25ms, T1 =∼ 500ms) and IEW (T2 =∼ 60 to ∼ 80ms, T1 =∼ 1000ms)
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environments [8, 30, 38, 54, 55], corresponding to healthy WM tissue [8]. Using this

model, simulated T2 decay could be composed as:

S(t) = M0

n∑︂
j=1

∫︂
Dj(T2) · EPG(T2, θ̄)dT2 + ϵ(0, σn) (2.1)

Where S(t) is signal amplitude; M0 represents the initial value (value at TE = 0)

which is equal to the assumed proton density; Dj denotes the piecewise continuous

distribution associated with each water compartment and j is the water compartment

index. In our model, T2 distributions for each water compartment are generated using

a truncated Gaussian distribution with a standard deviation of 10% of the mean and

were truncated to zero for values farther than 2 standard deviations from the mean

[53]. EPG(.) is the output of the extended phase graph algorithm, and θ̄ stands

for all other required parameters. The ϵ(0, σn) function indicates the additive white

Gaussian noise – we used Gaussian instead of Rician distribution as our assumed

SNRs (at least for early echoes) were large enough that Rician would estimate a

Gaussian distribution [30, 48, 56]. We used the SNR definition of [53]:

SNR =
S(0)

σn

=
M0

σn

(2.2)

In order to realize the Gaussian noise. We used M0 instead of signal amplitude at

TE = 10ms since when assuming flip angles smaller than 180 degrees, the amplitude

of the first echo is significantly smaller. All the simulations were analogous to the

in-vivo 32 echo 3D GRASE/MESE sequence with TE = ∆TE = 10ms.

2.2.2 Analysis and T2 Distribution Process

All data (simulation and in-vivo data) were analyzed on a voxel-wise approach using

the regularized NNLS algorithm with stimulated echo estimation (https://mriresearch.

med.ubc.ca/news-projects/myelin-water-fraction/). This method uses the standard
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model for T2 analyses [10, 24, 26, 30, 48, 52], which does not make any underlying

assumptions about the distribution of signal decay [24, 26, 30, 52]:

yi =

nT2∑︂
j=1

Sj × EPG(t, T2, T1, α), i = 1, 2, ..., n (2.3)

Where n is the number of echoes, yi represents the echo signal amplitude acquired

at time ti and nT2 is the number of logarithmically spaced T2 values. Here we assumed

nT2 = 60 as further increasing this value would have negligible effects on the final

distribution [30], and also raises computation time. The T2 range was chosen to be

from 8ms to 2s – we chose T2min (lower limit of the T2 range) to be slightly smaller

than echo-spacing to best capture the MW peak [30]. Sj is the corresponding weight

in the distribution, and EPG(.) denotes the predicted signal decay based on the EPG

algorithm. In the fitting procedure a constant T1 value (= 1s) is used for all decay

curves and voxels since it has been shown to have negligible error [26]. The ”α”

parameter is the refocusing flip angle experienced by the voxel. This parameter needs

to be set or estimated to calculate the final distribution. As per common practice,

a regularization term was added, so that there would be about 2% increase in the

sum of squared residual of the fitted curve, compared to the non-regularized solution;

which would result in the desired level of smoothing and produce a relatively more

stable solution [30, 39, 48]. Finally, after acquiring the solution, myelin water fraction

is determined by applying a threshold (here we used 40ms) on the T2 distribution

maps [9, 18, 19, 23, 26, 30]:

MWF =

∑︁T2=40ms
T2min=8ms X(T2)

ΣX(T2)
(2.4)

Where X(.) denotes the weights corresponding to each T2 in the predefined distri-

bution.
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2.2.3 Flip Angle Estimation

Typically, a number of linearly spaced flip angles – usually 8 flip angles ranging from

100° to 180° [26, 30]– is assumed in order to acquire non-regularized NNLS solutions.

Then by back projecting the solution and comparing it to the experimental decay

curve, the sum of squares measure of residuals or χ2 is computed. Finally, χ2 values

versus flip angles are fed to a cubic spline function to interpolate the 8 data point

curve. The assumption is that the true flip angle would produce the smallest χ2, thus

by calculating the flip angle that corresponds to minimum χ2, we have our estimate

to use for generating the basis decay curves for the NNLS process [10, 24, 26, 30, 48,

52].

2.2.4 Numerical Simulations

The effect of miscalculation of refocusing angle over the range 110° to 180° was consid-

ered by varying the error in the fitted refocusing angle from -20° to 20° in 0.5° steps.

The procedure at each flip angle was repeated 500 times with the aforementioned sim-

ulation relaxation parameters to calculate the mean of MWF estimations. An ideal

SNR of 10000 was used, then repeated with low SNR of 100. The fractions for water

compartments were 85% IE, and 15% MW. The mean MWF estimation versus flip

angle difference from ground truth was examined. For comparison of the estimated

flip angle method to the proposed method, we generated experimental decay curves

for flip angles ranging from 110° to 180°. For each flip angle, different SNR values

of 50, 100, 200, 300, 500, 750, 1000 were applied to add 5000 realizations of white

Gaussian noise to decay curves.

The precision of estimated MWF values was evaluated by comparing the ratio of stan-

dard deviations of MWF estimations. This ratio is investigated for MWF of 15%, as

it is frequently reported in normal appearing WM [24, 48, 57, 58], and also for the

case of MWF = 0 % as a representative of non-myelinated voxels.
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2.2.5 In-vivo Experiments

Human brain data were acquired from eight healthy volunteers (2 females and 6 males,

22-42 years old) at 3 T Siemens Prisma (Siemens Healthcare, Erlangen, Germany)

using a 64-channel head coil. A three-dimensional (3D) 32 echo GRASE sequence

was used for T2 measurement (TE/∆TE/TR = 10/10/1000ms, 32 slices with in-

plane resolution of 1.5 × 1.5mm, slicethickness = 5mm, 5/8ths partial Fourier,

and acquisition time 13 minutes and 23 seconds). A 3D T1 weighted MPRAGE

sequence was collected for region segmentation (1 mm isotropic resolution, 3.6 min). A

Bloch-Siegert flip angle mapping sequence [59], was employed using spatial resolution

1.25× 1.25× 3.0mm3 and 37 seconds acquisition time. Images were registered using

the SPM12 MATLAB toolbox.

Images were analyzed to produce MWF maps using the aforementioned processes.

Comparisons were made between the standard approach using an estimated flip angle

from the echo train, and a supplied flip angle map, using both flip angles and MWF

maps were compared. Region-of-interest (ROI) measures were performed in three

WM areas (genu, splenium, and forceps major) and two deep gray matter territories

(putamen, caudate) using central unaliased slices from the 3D acquisition. ROI values

were compared using the ratio of the inter-subject standard deviation of mean MWF.

An F-test was used to reject the null hypothesis of equal standard deviation.

2.3 Results

2.3.1 Effect of Flip Angle Difference on MWF Estimation

For illustration purposes, in Figure 2.1 the signal decay is examined using 15% MWF

with SNR of 200 and 100 and refocusing angle of 150°. Four decays are plotted:

ground truth (zero noise), signal with noise, and fitted curves from the two ap-

proaches. Differences can be observed in the first few echoes, while fitted curves

converge in later echoes which are not shown. When using the estimated flip angle
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method, the fitted curve is closer to the pattern of the signal, which is affected by

noise. However, the pattern of the fitted curve using the supplied flip angle is closer

to the ground truth rather than to the signal itself. In the two anecdotal cases shown

in Figure 2.1, the estimated flip angle method over-fits the solution to the noisy signal

by mis-estimating the flip angle of the signal decay (147.4° in Figure 2.1.A and 144.9°

in Figure 2.1.B) which in both cases results in further mis-estimations of MWF.

Figure 2.1: Two anecdotal simulated signal decay and the fitted decay curve results
for SNR of 200 (A) and 100 (B), flip angle of 150°, and MWF of 15%. The first 3
echoes of the 32 echo signal decay are depicted to show expanded details. The ground
truth signal is without noise. A) The fitted curve is the result of the estimated flip
angle of 147.4° which estimates an MWF of 17.43% after the NNLS process. And the
supplied flip angle fitted curve produced an MWF of 15.89%. B) The fitted curve is
the result of estimated flip angle of 144.9° which estimates an MWF of 18.73% after
the NNLS process. And the supplied flip angle fitted curve produced an MWF of
17.95%.

Figure 2.2 shows the relationship between MWF and flip angle difference, for an
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ideal and low SNR with similar patterns for both, although different offsets. Generally,

for flip angles less than 180°, over-estimation of flip angle results in under-estimation

of MWF and vice versa. Smaller flip angles are more affected by flip angle errors.

Note that for the true flip angle, there is a slight underestimation of MWF particularly

for the case of SNR = 100 which could be considered as inherent in the nature of the

fitting procedure, as it is shown in previous studies [48]. The slope of the pattern

of MWF underestimation seems to be dependent on SNR levels and amplifies as the

noise level elevates.

Figure 2.2: Simulation of the flip angle difference effects on NNLS fitting results for
a range of flip angles (110° to 180°). Results are symmetric around 180°, so larger
values are not shown. SNR value used for simulation was a) an ideal SNR of 10000
and b) a low SNR of 100.

Figure 2.3 illustrates the effect on the T2 spectrum of using a slightly larger flip

angle than the ground truth for fitting. It shows a pattern of shifted shorter T2

weights towards larger T2 values, while the IE T2 peak does not shift. The short

T2 shift is clearer at smaller flip angles (Figure 2.3.A) and reduces as angles rise

(Figure 2.3.B, C) in alignment with Figure 2.2. All solutions are wider and smoother

than the ground truth due to regularization.
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Figure 2.3: T2 distribution results of the NNLS process for flip angles of A) 130°, B)
150°, C) 170° with MWF of 15% using the distribution in (D) to simulated the decay
curves. Fixed T2 values were used for the simulations (MW T2 15ms, IEW T2 75ms)
and 500 different realizations of noise with SNR of 10000 was added to the decay
curve, in order to get a meaningful average final solution. Three different flip angle
difference error values were shown to give a better understanding of NNLS fit when
there is an overestimation of the flip angle parameter and to observe the solution
when it significantly underestimates MWF.

2.3.2 Flip Angle Estimation

Figure 2.4.A, B show that the mean error of the flip angle estimation is fairly small for

flip angles less than 165°, and the estimation mean seem to deviate significantly from

the ground truth when it reaches the upper boundary. A positive bias of flip angle es-

timation can be observed for values over 165°, which then drops down reaching 180° as

estimation values cannot exceed the upper boundary. Therefore, flip angle estimates

at the upper boundary are either true or underestimated. Standard deviations of flip

angle estimate seem to be pretty almost the same for smaller flip angles and for larger

flip angles there is a sudden rise variance. Histogram of the estimation results of the

smaller flip angle (i.e.150°, Figure 2.4.C) imitates the Gaussian distribution with a
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little skewness to the right side. However, the relatively larger flip angle (i.e. 170°,

Figure 2.4.D) displays a mixture model at smaller SNR values and a skewed (to the

left) distribution at a relatively large SNR value. At smaller SNR values probability

of misestimating the flip angle to 180° significantly rises as the SNR increases and

also when the actual flip angle gets closer to the upper boundary.

Figure 2.4: Flip angle optimization step results: A) mean flip angle estimation error
at SNR of 200 plotted for a range of flip angles and the patches denote twice the size
of standard deviation on each side of the main line, B) is the same as (A), with an
SNR of 500, c) histogram of estimation results when the actual flip angle was 150° at
SNR values of 100, 200, and 500, and D) the same as (C), with the actual flip angle
of 170°. All of the generated signal decays used for this figure had an MWF of 15%.

2.3.3 Effect on MWF Estimation

Comparison of the ratio of MWF S.D. of estimated flip angle method to the supplied

flip angle approach (Figure 2.5.A, B) shows improvement of repeatability and preci-
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sion in MWF estimation, particularly when there is little to no MWF signal available

in the signal decay. This pattern of precision improvement is larger at smaller flip

angles and smaller SNR values. An opposite pattern of ratio of S.D. is observed at

high SNRs (> 500) when the actual refocusing angle is around 170°, in which using

the estimated flip angle parameter leads to higher precision.

Figure 2.5: Ratio of the standard deviation of MWF estimations using estimated flip
angle and supplied flip angle. The MWF values used were A) 15% and B) 0%. Values
over the dotted line (y = 1) are where the precision of supplied flip angle map MWF
estimation is better than estimated flip angle method.

2.3.4 In-vivo Results

An anecdotal example of the flip angle map and reference map is shown in Figure 2.6.

The two maps seem to show overall good consistency, but looking at the percentage

difference of the two maps shown in Figure 2.6.D¸ the underlying difference emerge.

The expectation was to see a uniform map across the brain with a little paper and

sand like noise (except for the CSF region). However, patterns of structure oriented

contrasts are observed in the ratio map. WM regions seem to follow a general over-

estimation in the estimated flip angle map with respect to the reference map.

Calculating the flip angle difference map by subtraction of the two maps provides

a deeper understanding of voxel-wise estimation performance (Figure 2.7). Looking

40



Figure 2.6: An example of flip angle maps from the same data-set. A) Estimated flip
angle map (the result of the optimization step), and B) reference flip angle map of
the same slice. D) Same slice of the magnitude image of the registered MPRAGE
data. C) Percentage difference of the maps in parts A and B. Values over 1.0 denote
where the estimated flip angle map is larger than the reference map.

at the difference maps (acquired from different subjects), in the slice lower in the

brain a pattern of overestimation bias in the white matter regions can be observed.

This positive bias follows the same structure as seen in the percentage difference

map (Figure 2.6.D). However, when moving to slices higher in the brain we see less

difference and more consistency between the two maps.

Figure 2.8, illustrates MWF maps produced by the two methods in three different

subjects. The top row (Figure 2.8.A) depicts the estimated flip angle method results

and the bottom row (Figure 2.8.B) the supplied flip angle results. Both maps are

similar, however, the supplied flip angle MWF maps show elevated contrast in the

WM (arrows point to notable examples) and even darker CSF.
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Figure 2.7: Difference maps (in degrees) of the estimated flip angle and reference
maps. Maps that share a column are from the same subject but different slices.
Three different subjects were chosen for this figure.

Figure 2.8: The results of the 3D GRASE sequence of a single representative subject
after supplying flip angle using: A) estimated flip angle map (top row), and B) ref-
erence flip angle map (bottom row) to the NNLS process. The amplitude calibration
is the same for all MWF maps. Arrows point out the anecdotal notable differences
observed in the contrasts of the two maps.
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ROI analysis of MWF maps illustrates a high correlation (correlation efficient ≈

0.97) between results of the two approaches (the results are summarized numerically

in Table 2.1). The mean of the WM structures has increased in comparison and on

the other hand mean of the GM structure has decreased. In WM structures there are

overestimations of refocusing angle hence a positive flip angle difference is observed

overall. And on the other hand in the ROIs within GM matter territories, we see a

negative flip angle difference mean which would mean that the estimated flip angle

method would overestimate in such areas (supplied flip angle method produces smaller

mean MWF).

Table 2.1: Summary of mean and S.D. of MWF values across all subjects. The flip
angle difference is calculated by subtracting the mean estimated flip angle values by
the mean reference flip angles. P-values show the significance of mean MWF difference
in each ROIs when comparing the two methods, and Pearson’s correlation coefficient
of the mean MWF using the two methods are also brought here. The values in the
table all round to one decimal point except for p-values.

Region of
Interest

Estimated
FA

MWF(%)

Supplied
FA

MWF(%)

FA Dif-
ference

(degrees)

P-value
(t-test)

Correlation
Coeffi-
cient

Splenium 16.9± 3.5 17.7± 3.1 0.4± 3.62 0.092 0.94

Genu 16.8± 2.8 15.8± 2.5 0.6± 2.16 0.047 0.90

Forceps
Major

13.2± 1.8 14.7± 1.4 1.4± 2.7 0.004 0.85

Putamen 10.2± 2.5 9.8± 2.2 −2.2± 2.8 0.070 0.99

Caudate 5± 1.7 3.9± 1.1 −1.5± 2.2 0.016 0.80

Figure 2.8, is the visual representation of the mean MWF results in Table 2.1, which

delineates a trend of decreased variability when supplying the flip angles. MWF values

in the GM territories have also slightly decreased using the proposed method. There

is a generally strong linear relationship between the results of the two methods which

was expected, and the correlation coefficient seems to slightly drop in the forceps

major and caudate ROIs. We should mention that most of the chosen ROIs were
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in the lower regions of the brain, which we saw the largest differences between the

estimated flip angle and the reference map. Consequently, more notable differences

can be observed.

Figure 2.9: Boxplot of mean MWF values in each ROIs for all subjects. Three top
row ROIs are from WM structures and the bottom row ones are deep GM territories.
A slice from an MPRAGE acquisition containing color coded regions representing the
ROIs is also included for the readers’ interest.

2.4 Discussion

We explored effects of flip angle parameter on the final product of NNLS fitting (i.e.

MWF), using ideal signal and for the case of noisy data, which resulted in a similar

pattern that: over (under) -estimation of flip angle parameter would result in under

(over) -estimation of MWF value compared to the ground truth. One theory for this

pattern could be when the flip angle difference is positive (flip angle overestimation),

as MW signal is only present at a few data points (echoes), it is more likely to be

considered as noise by the NNLS process and the solution thrown off a bit; and for

the case of negative flip angle (flip angle underestimation) the opposite takes place
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in the process as the decay pattern comes into the equation, so the difference of the

pattern of signal decay could be filled using decays from shorter T2 values.

Here, the SNR definition was carefully stipulated (using amplitude of TE = 0), so

that it would be calculated independent of the flip angle value assigned for simulation.

Therefore, noise level (noise power) would be the same for all flip angles, considering

the fact that for flip angles smaller (or larger) than 180°, the simulated signal would

contain relatively smaller power. Hence, for a smaller flip angle, we would have a

smaller signal to noise power ratio. However, our simulations (Figure 2.4) with the

assumed definition of SNR, show that the flip angle estimation step produces similar

and consistent results at all flip angles (except when we reach the upper boundary) for

the same SNR, which could be explained by the emergence of the specific signal pat-

terns generated at smaller flip angles, that compensates for the loss of signal power.

The upper boundary effect was very much visible at all SNR values and even though

simulated signal contained relatively larger signal power at such flip angle values, flip

angle estimation near the boundary has the smallest accuracy and precision.

Difference of estimated flip angle map and the reference map calculated for in-vivo

results (Figure 2.7), interestingly marked up WM areas and basically, all areas that

contained signal decays with short T2 component at slices in the middle and lower

regions of the brain, with significantly positive differences. Therefore, this might

thwart the efforts to use a spatial smoothing factor for the flip angle estimation to

result in a better global flip angle fit, due to the structure oriented details observed in

the estimated flip angle map. Moreover, we observed good consistency between the

estimated flip angle map and reference map higher in the brain. This phenomenon

can be due to the larger physiological noise in lower regions of the brain, and T2
*

effects of the GRASE sequence. Based on in-vivo results, there is an underestimation

of flip angle bias where there is little to no short T2 component in the signal decay,

and an overestimation bias for tissue with significant MW signal (i.e. WM regions)

or where short T2 signal is observed, in slices lower in the brain. We should also
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mention the top right region of the brain which seems to deviate from this pattern

and is suspected to be due to the relatively smaller B1 values observed in this region.

In a recent study by Lankford and Does [50], there were predictions of spatial effects

due to inaccuracies and inconsistencies of the presumed model on T2 fitting results,

which could explain the effects observed in the estimated flip angle map; As the opti-

mization step is mainly based on minimization of the T2 fitting solution. In another

study by Wiggermann et al. [30], a good consistency between the estimated flip angle

and the ground truth was found in their simulations, which we repeated and achieved

the same results, but the simulations supposedly lack the artifacts that are present

in the in-vivo results.

Lankford and Does, postulated that in order for the flip angle map to have a re-

ducing effect on variance its SNR must be at least larger than half of the SNR of

multi-echo acquisition, which here was met even though B1 map acquisition time

was much shorter. Moreover, their assumption that high SNR values of multi-echoes

would make it unlikely to have any effect on T2 estimation does not hold, as the

SNR of our acquisition was less than the necessary minimum SNR (=700) that Gra-

ham et al. previously demonstrated [53]. They also demonstrate that constraining

flip angle to 180° (for Flip angle > 150°) would decrease variability, which explains

why we observe an undershoot in the ratio of standard deviations (Figure 2.5) near

the upper boundary. The upper boundary effect mostly affects mean MWF estimate

rather than variance, but we still see improvements in the variance even for larger

flip angles.

Following the patterns of flip angle difference map, we observed (Table 2.1) elevation

of MWF mean in ROIs in the WM and slight drop of MWF mean in deep GM terri-

tories, which was in alignment to simulation results of effects of flip angle difference

to the ground truth on MWF estimation. Most of the chosen ROIs were in the lower

regions of the brain, which we saw the largest differences between the estimated flip

angle and the reference map. Consequently, more notable differences can be observed,
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regions higher in the brain where there is more consistency between the two maps

we would see less difference in the mean MWF values. It should be mentioned that

large MWF values in deep GM territories observed in Figure 2.7, are possibly due

to the iron and calcium concentration effect on shortening IE water T2 values in the

distribution [42, 43], and these areas could be dealt with using a post-processing step

through peak assessment at large SNR values (since we need to be sure MW signal is

not merged with IE due to smoothing of regularization) and adaptive thresholding.

Here, we only focused on flip angle effects in the 3D acquisition and since B1 trans-

mit field is considered to vary slowly across the slab of interest, a single flip angle is

assumed for an entire voxel [26, 30]. However, for 2D acquisition due to the effect of

slice profile, a range of flip angles is considered across each voxel, therefore in order

to generate underlying decay curve for the fitting process, either the Bloch equation

needs to be solved or EPG decay profiles need to be integrated across the slice [25,

51]. This increased complexity makes the results to be reasonably affected by the B1

field, and B1 estimations have been deemed questionable even for single component

T2 fitting [25, 51]. Previous work on 2D multi-echo spin-echo multi-component T2

analysis [47, 60], showed plausible and reproducible results for MWF maps, but the

effects of B1 estimation were not examined thoroughly. Their B1 estimation maps [47],

denote the same structure oriented patterns in the estimated B1 maps which need to

be carefully inspected. We suspect using an independent B1 map on 2D data would

also be beneficial and opens up the possibility of using different refocusing angles

for the echo train to deal with SAR issues or alternate decay models that maintain

myelin water signal longer in the echo train by using smaller refocusing angles.

2.5 Conclusion

This study investigated the effects of the flip angle parameter in a common NNLS

procedure used in the MWI literature. Comparing the estimated flip angle map with a

reference flip angle map (acquired independently), enlightened the fact that there are
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biases observed in the flip angle estimation results lower in the brain, especially where

there is little to no short T2 signal available in signal decay. Moreover, we observed

structure oriented effects in the estimated flip angle maps in the 3D GRASE data,

thus affecting the MWF estimation in such regions. Supplying an independent flip

angle map to the NNLS procedure, proved to be fruitful and somewhat decreased

inter-subject variability of MWF mean in the WM and GM ROIs which were in the

troubled regions. Also, an elevation of mean MWF in the WM regions and a drop

of the mean MWF in the GM territories were observed when supplying the reference

flip angle map values. This proposed approach alleviates further variability that

miscalculation of refocusing angle could introduce to NNLS solution.
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Chapter 3

Constraining the B1
+ Parameter in

2D MESE data for MWI analysis

3.1 Introduction

The 3D MESE sequence could be considered as the gold standard for the acquisition

of MESE data for the purpose of MWI analyses. However, the classic 3D MESE

method is too long to be used in practical scan times. To achieve feasible scan time,

3D GRASE was suggested as an alternative using a three-fold speed up by collecting

2 gradient echoes around each spin echo. While 3D GRASE reduces total scan time

to about a third, it produces data with lower SNR and contains T2
* related artifacts

[37, 47]. Moreover, the echo shift scheme requires the echo spacing to increase which

produces suboptimal data that results in overestimation of MWF values [37]. Two-

dimensional MESE methods have been used historically for MWI, but often with only

a single slice to minimize magnetization transfer (MT) effects. Extending the single

slice 2D sequence to a 2D multi-slice sequence is one way to achieve feasible scan

time and brain coverage as an alternative to 3D methods. As well as MT effects, 2D

also requires more complex modeling owing the slice selective pulses. Complete Bloch

modeling is likely needed due to the very short myelin water T2 time and the need

to exactly account for RF pulse effects. Akhondi-Asl and colleagues have recently

demonstrated this method using full Bloch modeling [47]. Beginning with a similar

approach, we examine the value of an independent B1+ map in the MWI analysis
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pathway.

More specifically, switching from a single slice (or 3D) to a 2D multi-slice MESE ver-

sion requires changing non-selective refocusing pulses (or a selective one with a wide

slice profile) into appropriate slice-selective ones. This introduces another complexity

to the expected signal decay models on top of possible incidental MT effects from

off-resonant slice excitation. Slice profiles in the 2D MESE scheme are not perfectly

rectangular even in the absence of B1
+ inhomogeneities. Therefore, one needs to ac-

count for the slice profiles to predict signal decay curves for multi-component analysis

of multi-echo data. One could broaden the refocusing pulse profile to be more uniform

throughout the excited slice; however, this solution would require a large gap between

slices and limit the number of slices acquired within a single TR.

To predict the signal decay curves for different relaxation times we need to settle on

a method that is the most accurate and reliable. There have been approaches where

the slice profiles are estimated using the Shinnar-LeRoux (SLR) method where re-

laxation times are ignored during the application of RF pulses [14, 61], which could

result in inaccurate decay curves corresponding to shorter T2 values (like myelin wa-

ter). Therefore, here we solved the Bloch equations to be as close to the reality of

the data as we could.

Of course, the issue of B1
+ inhomogeneity in the analysis should also be addressed.

To handle the B1
+ parameter, we used two different methods: First, we applied a

similar scheme to past work [26, 47] that is adopting an optimization step to estimate

B1
+ value using the decay data; and the second novel method was to provide the B1

+

values by employing an independent B1
+ map to supply to the analysis.
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3.2 Methods

3.2.1 Theory

The evolution of magnetization vectors in the presence of magnetic field gradients and

RF fields can be described using the Bloch equations. Let M⃗(t) = [Mx(t),My(t),Mz(t)]

be the magnetization vector, then Bloch equations in the rotating frame read:

dMx(t)

dt
= γ(M(t)×B1(t))x −

Mx(t)

T2

(3.1)

dMy(t)

dt
= γ(M(t)×B1(t))y −

My(t)

T2

(3.2)

dMz(t)

dt
= γ(M(t)×B1(t))z −

Mz(t)−M0

T1

(3.3)

Where γ is the gyromagnetic ratio and B1(t) is the magnetic field experienced

by the magnetization vector in the rotating frame. The B1(t) is defined by the

sequence and can be simulated. We simulated our 2D MESE sequence pulse train

using Siemens’ simulation tool (POET) which produced a protocol file containing

the exact gradients and RF fields as vectors over time. These values are depicted in

Figure 3.1. Afterward, these vectors are processed to be used as direct inputs to a

Bloch simulator. For Bloch simulation, a Bloch simulator toolkit was imported from

the code project of Professor Brian A. Hargreaves (http://www-mrsrl.stanford.edu/

∼brian/blochsim/). This code models the RF pulse axis and one gradient axis (could

handle up to 3-dimensional gradients), which we choose as the slice select dimension.

The Bloch simulator was wrapped by our code to generate the proper signal decay

curves for the corresponding relaxation parameters and B1
+ values. Simulations were

done over a symmetric position vector twice the size of the slice thickness at over

2000 different points, and time spacing in the simulation was set to 5µs.

To generate a dictionary matrix of decay curves as a lookup table for multi-

component analysis, 60 logarithmically spaced T2 values ranging from 8 ms to 2
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Figure 3.1: Simulated protocol of a 32 echoes 2D MESE sequence used in this work.
This Scheme is for a single TR, and the time axis is in milliseconds and the y-axes unit
are the direct output of the POET simulation: mT/m for gradients, RF magnitude
is in mT × 10 , and RF phase is in degrees.

seconds were chosen (within the range used in the literature [23, 24, 30, 47, 48])

alongside normalized B1
+ values over the range of 0.6 to 1.4 with 0.005 spacing. For

the optimization step, the full range of B1
+ values were tested in the multi-component

analysis (non-negative least squares algorithm) and the smallest residual among the

entire spectrum was chosen as the estimated B1
+. After the B1

+ value is settled the

corresponding decay curves from the lookup table are chosen to apply a regularized
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NNLS fitting procedure (same as 3D GRASE analysis in Chapter 2) to calculate a

T2 distribution and then the corresponding MWF value for each voxel.

3.2.2 Numerical Simulation

To simulate the B1
+ estimation using the optimization step, 100 different B1

+ values

ranging from 0.5 to 1.5 were chosen to generate corresponding decay curves. To see the

effect of MWF value on the estimation 15 values from 1% to 30% were adopted. The

base T2 distributions to simulate decay curves were generated by using two truncated

Gaussians (truncated after 2 standard deviations and S.D. was chosen to be 10% of

the mean) centered at 60 ms (intra/extra-cellular water) and 10 ms (myelin water)

and the ratio of the area under the Gaussians was set based on the MWF values.

Then 500 different Rician noise realizations were added to each decay curve. Then

we will plot the estimation results for a range of different SNR levels to investigate

the accuracy of results. The mean absolute error was calculated using the following

equation:

MAE(B) =

∑︁N
n=1 |B −Bn|

N
(3.4)

Where B is the ground truth, Bn is the estimation result of the nth trial, and N

denotes the number of trials (=500). The SNR levels ranging from 100 to 1000 were

assumed here. To investigate the effect of B1
+ error on MWF estimation, a range

of errors (from -0.3 to 0.3) were assumed using a MWF of 15% for multi-component

decay generation to simulate normal appearing WM signal.

3.2.3 In-vivo Experiments

Data were collected from five healthy subjects on a 3T Siemens Prisma (Erlangen,

Germany). A 2D MESE sequence was used with TR 2000 ms, echo-spacing 10 ms,

refocusing/excitation slice-thickness factor 1.26, distance factor 200%, slice thickness

5 mm, in-plane resolution 1.2×1.3mm, 3 averages, and acquisition time of 12 minutes.
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A 40-second Bloch-Siegert B1 mapping sequence was applied to produce a reference

B1
+ map with voxel dimensions of 1.3 × 1.3 × 3mm3. A 3D MPRAGE sequence

with isotropic 1 mm resolution was also collected for the purpose of segmentation.

Data was then registered to 2D MESE images using the SPM12 toolbox on MATLAB

2019a.

3.2.4 In-vivo Analysis

Two methods for computing MWF were tested using either standard fitting [26, 47]

or the same fitting with the B1
+ parameter supplied from the independent flip angle

map. We used a threshold of 40 ms to calculate MWF values from the fitting pro-

cedure. For the fitting we applied the same regularized NNLS for multi-component

T2 analysis commonly used in literature [26, 30, 47], as mentioned in Section 3.2.1.

Finally, WM regions were manually segmented (bilaterally) to calculate mean MWF

for both methods, and a student t-test was applied to see whether there is a signif-

icant difference between the two methods. In addition, to depict the effect of using

the proposed method the scatter-plots of MWF difference of the method versus the

reference B1
+ values were plotted, and linear regression was used to fit lines to the

entire data illustrated in the scatter-plots.

3.3 Results

3.3.1 Simulation

Simulated signal decays using different B1
+ values are shown in Figure 3.2. When

the curves are normalized to the amplitude of their first echoes, decay curves that

have B1
+ values with equal distance to B1

+ of 1 (symmetrical around 1) exhibit very

similar decay patterns.

Histograms of B1
+ estimation results are depicted in Figure 3.3 for B1

+ of 1.1 and

three different MWF of 1% (representative of signal with little to no MW signal),

15% (to simulate normal appearing WM signal), and 25%. B1
+ estimation seems to
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Figure 3.2: Simulated decay curves using different B1
+ illustrating the subtle differ-

ences in decay pattern for values on either side of 1.0. The decay curves were produced
using the POET simulation parameters of the 2D MESE sequence. All curves are
generated using single-component decay using T2 of 75ms and T1 of 1s. Curves in
(B) are the same ones as (A) normalized to the first value of each curve

find a wide range of values for SNR of 100 and starts to separate into two distinct

distributions as SNR levels increase. MWF level somewhat adversely affects the

distribution of B1
+ estimate (Figure 3.3).

Figure 3.4 shows the mean absolute error of estimation in the B1
+ optimization

step. Absolute mean error drops from about 10% to less than 3% when SNR increases

from 100 to 1000. Error is mostly around B1
+ = 0.9 and 1.1 for smaller SNRs and for

larger SNRs it is narrowed around B1
+ of 1. The optimization step has the smallest

errors at the extreme B1
+ values and the MWF levels have a subtle effect on the

mean absolute error.

Now, let’s take a look at the effects of using wrong B1
+ estimates on MWF estima-

tion in Figure 3.5. Both SNR values used for simulations resulted in similar patterns.

The general pattern in Figure 3.5 is that when B1
+ is less (more) than 1, mean MWF

estimation would be over- (under-) estimated if we use larger (smaller) B1
+ value

compared to ground truth; and we would get under- (over-) estimated MWF the
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Figure 3.3: B1
+ estimation results where ground truth is B1

+ = 1.1. Histograms are
plotted for SNRs of 100, 300, 400 for MWF values of 1%, 15%, and 25%. For each of
the histograms, 500 points were simulated and the number of bins was set to 20.

other way around. This pattern would start to take the opposite direction as B1
+

errors exceed 20% of the ground truth. Symmetrical B1
+ values around 1 seem to

take similar yet opposite patterns with respect to the B1
+ error used for the fitting

procedure.

3.3.2 In-vivo Experiments

B1
+ maps from the optimization step results are depicted in Figure 3.6 alongside the

reference map data. There seems to be a good consistency between the reference map

and the estimated map where B1
+ is less than 1 (correlation coefficient for B1

+ < 1 is

r = 0.5 and for B1
+ > 1, r = −0.2 between the estimated and reference values) and

underestimated for the rest. In the difference map, some structure oriented patterns
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Figure 3.4: Mean absolute error of B1
+ estimations for MWF range of 1% to 30%.

Color scales are kept equal in each row; the first row scales to 0.16 and the second
row to 0.03 for illustration purposes.

emerge.

MWF maps are shown in Figure 3.7, where we see some improvements when using

the reference B1
+ map for the multi-component analysis. The estimated B1

+ results

show some MWF underestimations in the WM tracts, compared to the supplied B1
+

method (p-value = 0 using student t-test).

The box plots of the ROIs in Figure 3.8 do not seem to show any general patterns,

however, the splenium which is usually in the region where we observe notable B1
+
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Figure 3.5: The effect of using wrong B1
+ values on MWF estimations using SNR of

A)200 and B)10000. Units on the x-axis show B1
+ value error from the ground truth

and the y-axis is the mean MWF estimation averaging over 500 experiments.

difference between the two maps, the paired t-test showed a significant difference

between the two methods (p = 1.2e-4). Mean MWF over the entire WM (p-value=

4.2 × 10−5) and also the frontal WM region (p-value = 0.02) showed a significant

difference and a general mean MWF elevation in the mean MWF of the entire WM.

Figure 3.9 illustrates the scatter plots of all subjects where B1
+ values and MWF

difference of the two methods for all WM voxels. Methods perform similarly around

B1
+ of 1 and start to deviate for larger and smaller values. We tried linear regression

(∆MWF (%) = mB+
1 + b, where m is the slope and b is the bias of the regression)

for values over B1
+ of 1 and attained slope of 33.3 with a bias of -34.2 (p-values

= 0, r = 0.6), and repeated for values under B1
+ = 1 and reached sloped -14.4 and

bias of 13.7 (p-values = 0, r = −0.4).

3.4 Discussion

Here we replicated previously tested methods to produce MWF maps using a 2D

MESE sequence, with a different approach of incorporating B1
+ maps from an inde-

pendent B1
+ mapping sequence. The purpose was to improve the estimation process
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Figure 3.6: B1
+ mapping results from optimization step (first row), registered B1

+

maps form an independent B1
+ mapping sequence (second row), and the difference

of the two maps (third row).

of multi-component fitting by removing one of the main parameters in the estimation

process. The independent B1
+ map was compared to a standard B1

+ estimation pro-

cess from the decay data itself, as used in past work [24, 47].

Simulation results showed the level of unreliability of the estimation process across a

range of SNRs and MWFs. Generally, the estimation absolute error decreases to less

than 3% for SNR 1000. In the histogram results of the B1
+ estimation, two distinct

peaks appear that notably elevate the probability of mis-estimation. These two peaks

generally seem to assume symmetrical values around B1
+ of 1. However, with more

extreme B1
+ values such as less than 0.7 or greater than 1.3, the simulations show
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Figure 3.7: MWF maps using estimated B1
+ values (top row) and reference B1

+

values from an independent map(bottom row). Results are from a single subject.
Purple arrows point to the areas where we observe improvements when supplying the
B1

+ values from the reference map.

Figure 3.8: Box plots of the mean MWF over each ROIs. Scan and rescan data-sets
were considered independent in the course of plotting. MWF values are displayed in
percentage. The axial magnitude image shows the general placement of segmented
ROIs. The prefixes ”Est.” and ”Sup.” denote the estimated and supplied B1

+ meth-
ods, respectively.
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Figure 3.9: Scatter plot of the reference B1
+ values versus MWF difference of the two

methods (supplied B1
+ minus estimated B1

+ results) of all subjects. The first row is
the scan and the second row is the rescan of each subject respectively. Three central
slices of each subject were used for these plots.

reduced error possibly due to the more easily distinguishable patterns that diverge

from the decay curves generated from the B1
+ values around 1. B1

+ estimation in the

in-vivo data resulted in somewhat smooth maps, where most of the estimations were

around one. Comparing to the reference B1
+ map most voxels were underestimated

and the MWF differences of the two methods were in alignment with the simulation

results (Figure 3.5). Relatively large B1
+ values (B1

+ > 1.05) were underestimated

to the values under B1
+ = 1, which resulted in smaller MWF values compared to the

reference B1
+ values. The misestimations could be easily understood when looking at

Figure 3.2.B where symmetrical values around 1 result in very similar decay patterns.

Supplying the B1
+ maps showed improvements in the MWF maps and there was a

significant difference in the mean MWF estimation of the WM region using the paired

t-test (p-value < 0.005). The difference B1
+ map in the in-vivo data illustrates large

regions of B1 mismatch which could not be solved by further smoothing. Extreme

MWF values in the estimated B1
+ method suggest that B1

+ estimation fails where

there are sharp transitions in the magnitude image.

McPhee and Wilman in 2015 [62] showed the benefits of using B1
+ from an indepen-

dent map for single component T2 fitting from 2D MESE, where simultaneous fitting

of the T2 and B1
+ was found to be insufficient in some cases. With only 3 unknowns
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per voxel (So, T2 and B1
+), an independent B1

+ map would reduce the unknowns by

one-third, thus it is not surprising that single component fitting can benefit. However,

multi-component fitting is an order of magnitude more complex as one needs to fit for

over 60 parameters per voxel (T2 points in the distribution and B1
+). Supplying the

B1
+ map, would only slightly reduce the number of unknowns; however, the B1

+ is a

critical parameter that is required for dictionary matrix generation. Our work showed

notable improvements in the final MWF maps, particularly in areas with B1
+ greater

than 1. We have implemented a similar Bloch simulation for decay curve generation

as Akhondi-Asl et al. [47] did in their 2016 paper, and the estimated B1
+ maps are

fairly similar and comparable. Their maps have the upper boundary of 1.05 which

shows the same pattern of underestimation as in our generated B1
+ estimates. The

MWF maps are also very much comparable.

While the value of an independent B1
+ map for MWF fitting has been demonstrated,

the method does require an additional B1
+ scan. Whole brain B1

+ maps may be ac-

quired in 40 s with adequate spatial resolution as used here. Recent methods suggest

this acquisition time can be substantially reduced to as little as 10 seconds [63], which

is trivial compared to the 10+ minutes for typical MWF scans. The accuracy of the

supplied B1
+ values are determined by the B1

+ mapping sequence and the registration

process. Due to the slow varying nature of B1
+ values, any slight mis-registration is

not that much of a concern.

In this work, we used a 2D MESE sequence rather than a 3D version. 3D MESE is an

extremely slow sequence that is impractical for a large number of slices, without em-

ploying techniques such as compressed sensing [64]. Many groups use a 3D GRASE

for faster imaging, however, this sequence mixes in gradient echoes and often echo

shifting, which both can affect the true MWF results. Furthermore, 3D GRASE is

not available on all scanners. However, 2D MESE also has many limitations including

SAR, MT, and SNR. The number of slices acquired in a single TR is limited by SAR.

Moreover, the incidental MT effects may also affect results. 2D methods must also
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have adequate spacing between interleaved slices to limit cross-talk and reduce MT

effects. 2D methods generally have reduced SNR and SNR has a major impact on

the fitting process. We used 3 averages to increase the SNR levels to ∼300 and the

results are within the acceptable range with plausible tract definitions.

In conclusion, directly supplying the B1
+ value to the fitting process via a B1

+ map

can avoid noise and artifacts in the MESE images which could affect the B1
+ opti-

mization/estimation step, and removes one parameter from the fitting procedure to

attain more reliable solutions.
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Chapter 4

Implementation of Multi-Echo
Gradient Recalled Echo

4.1 Introduction

In this chapter, a multiple echo gradient echo (ME-GRE) sequence is implemented

for myelin water imaging at 3T. Current models for data analysis are implemented

that consider magnitude only or magnitude and frequency multi-component model.

A recently introduced form of nonlocal filter is then applied to the MWI results and

examined both in simulations and human brain experiments.

ME-GRE sequences have been tried in both 2D and 3D configurations for MWI anal-

ysis [4, 8, 32–35, 65]. 3D imaging sequences have an SNR advantage compared to 2D

acquisitions and also the magnetization transfer (MT) effects are not of any concern.

However, 3D acquisition suffers more from slice-select aliasing effects, and is more

susceptible to motion artifacts; moreover, T1 weighted biases due to using reduced

repetition times make 3D results harder to compare and analyze [5, 8, 35]. To cut

down on acquisition time in the 3D ME-GRE, one needs to use smaller repetition

times (∼60ms) [35] and since there are significant differences between the T1 values

of water compartments, excitation flip angle must be chosen accordingly. One could

choose a properly optimized flip angle to maximize the myelin water signal to increase

the SNR of the MW compartment; this obviously leads to MWF overestimations due

to suppression of other components with longer T1. On the other hand, in 2D acqui-
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sitions, TR is commonly appointed to a large enough value to avoid such T1 weighted

biases. Incidental MT effects from off-resonant slices can be mitigated by using long

TRs and low power RF [66]. Moreover, there are no aliasing artifacts, shorter acqui-

sition time, and fewer motion artifacts compared to 3D acquisition. In this work, we

solely use the 2D ME-GRE sequence for acquisitions.

There are also other parameters to consider including echo spacing, number of echoes,

and bipolar or mono-polar readout type. Shorter echo spacing would result in better

temporal efficacy of MW signal, meaning there would be more echoes where MW

signal is available in the signal decay. Alas, the hardware considerations restrain this

parameter due to limits on gradient switching to minimize nerve stimulation, as well

as SNR limits on exceedingly high BW. Echo spacing is also affected by the type

of the readout gradient (monopolar or bipolar). Bipolar readout results in shorter

echo-spacing, but rapid gradient polarity changes in bipolar acquisition induces mag-

nitude and phase modulations between odd and even echoes [33, 35] which introduces

notable artifacts in the final MWI analysis. To overcome this modulation, some have

tried to register odd and even echoes [33], and recently an interesting gradient pair-

ing sequence has been introduced by Shin et al. [35]. They propose to acquire two

measurements of each line in the k-space which the polarities have reversed for the

second one (20 echoes in total). Then calculate the final image using the two complex

image which shows promising improvements in the final MWI analyses.

After the image acquisition, a data preparation/refinement step before the applica-

tion of MWI analysis is common. This refinement usually consists of filtering the

4-dimensional data set (3 spatial dimensions and the 4th is echo time). Low pass

filtering is common practice. Anisotropic diffusion filtering (ADF) has also been used

which assumes magnitude gradients in each region of the brain remain constant and

filters on a local basis [32]. There is also the potential of using nonlocal filters on

ME-GRE data to increase SNR. Non-local filters use multi-spectral images which are

defined as images taken at different flip angles, different echo times, etc. The advan-
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tage of non-local filters is that they don’t use proximity as the criterion of selection of

similar voxels. The problem with using proximity as the selection criterion is twofold:

First, one needs to choose a local kernel and thus limits the number of incorporated

in the filtering process. Second is the inclusion of dissimilar voxels, especially near

the borders of each region which results in blurring the image. A recently introduced

non-local filter called nonlocal estimation of multi-spectral magnitudes (NESMA) has

shown promising results in de-noising MR images [67]. However, in the original paper,

they have not studied the effects of this filter on parameter estimation. One needs to

investigate what is the cost of gaining SNR.

A second step before data analysis is managing local field gradient effects, which are

one of the main artifacts in ME-GRE MWI, especially present near tissue-air inter-

faces. Therefore, there have been notable attempts at modeling it and compensating

for this artifact. Alonso-Ortiz et al. [68], introduced an iterative method to fit for

local field gradient in the slice direction assuming there is negligible loss due to in-

plane gradients. They find initial values for the slice direction gradient from the first

few echoes and assume later echoes contain a single water compartment decay. Then

employing an NLLS algorithm try to fit for T2
* and Gz at the same time. The other

more complex approach is the voxel spread function introduced by Yablonskiy et al.

[69] which tries to model the response of the macroscopic local field difference more

accurately and reverse the effects. One group has even tried incorporating local tis-

sue susceptibility [65], which has not been adopted by other groups. Most common

practices adopt the simple first order LFG estimation or implementing VSF in the

slice direction [70]. However, recent trends show that incorporating this parameter in

the model in order to fit an extra parameter could also be beneficial. These kinds of

literature usually assume that LFG effects can be modeled via a single sinc function,

thus fitting for an extra parameter would be better than just using the values of the

data preparation step, assuming the fit is insufficient due to inaccurate modeling [35].

For the MWI analysis, one must choose a model for fitting for signal decay curves,
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as we know from analyses of MESE data ignoring a simple parameter would result

in notable differences in the results. A lot of literature that have chosen the three

pool models for 3T and four pool models and fit using the NLLS algorithm [32, 33,

35, 71]. However, there are several studies that use the same NNLS approach [5, 34,

68] but fit for an actual T2
* distribution which is predicated on the assumption that

frequency shifts if the water compartments at 3T is negligible.

4.2 Methods

4.2.1 LFG Correction

To calculate local field gradients, one needs to acquire local field shifts (∆B0) first.

There are several ways: fitting a line to unwrap phase of each voxel, simply using the

difference of a couple of later echoes in the train (as the short T2
* water component

has dissipated), or use the first steps of QSM processing code. Here, we used the

simple process of using the phase of two adjacent echoes to estimate local field shifts

by using the following equation:

Gz(r, z) = arg[S(r, z, TE1)S
∗(r, z, TE2)S

∗(r, z + δz, TE1)S(r, z + δz, TE2)]/(γδz∆TE)
(4.1)

Where Gz is the gradient in the z direction, r is in-plane coordinates of a voxel,

δz is the distance between two slices, ∆TE is the difference of echo times, TEi is

the echo time with its corresponding index, the symbol arg denotes the operation

of taking the angle (rad) of a complex value, S(.) denotes the signal at the given

coordinate and time, and gamma is the gyromagnetic ratio. Using this equation one

does not even need to unwrap the phase images. Finally, after estimating the local

gradients, we calculate the magnitude modulation by the following equation:

S(t) = S0(t) · sinc(γGz
∆Z

2
t) (4.2)
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A simple division would result in the intended compensation. There is the pos-

sibility that the sinc function reaches zero where there is strong LFG present with

long echo trains. In such scenarios, one can use the echoes before the sinc function

reaches zero and compensate for the modulation or incorporate the sinc function in

the model. Note that only the z-direction is considered since the z-dimension has the

largest voxel size and also the strongest gradients for brain regions above the sinuses.

4.2.2 Non-local Filtering with NESMA

The assumption is that data consists of a multi-spectral (here multi-echo) set of

images S defined on a discrete grid with the following Rician-distributed conditional

probability density function [67]:

P (Sk|Ak, σ) =
Sk

σ2
exp(−S2

k + A2
k

2σ2
) · I0(

SkAk

σ2
) (4.3)

Where Sk denotes the signal intensity measured at the spectral image k, Ak is true

signal intensity, sigma is the standard deviation of the noise, and I0 is zeroth order

Bessel function. The images include background regions where one can estimate the

standard deviation of the noise, and it is assumed that the noise is stationary and σ

remains constant throughout S.

The criterion to acquire similar voxels here is relative Euclidian distance (RED):

RED(i, j) =

∑︁K
k=1(Sk(i)− Sk(j))

2∑︁K
k=1 S

2
k(i)

(4.4)

Choosing RED as the relative distance on top of being easy to implement and

relatively fast to calculate, simplifies further equations for calculating the correct

threshold levels. In order to set threshold levels, one needs to consider sources of

relative distance. The first source is additive noise. Since we have large SNR in

the MWI sequence one can assume the noise to be white Gaussian noise. Now, let’s
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calculate the expected value of relative distance when the voxels contain the same

signal but different noise realization:

S1(t) = A(t) + n1(t) (4.5)

S2(t) = A(t) + n2(t) (4.6)

E{RED(S1, S2)} = 2(
m× σn∑︁m

i=1A
2
i

) (4.7)

If we assume SNR to be:

SNR =
A

σn

(4.8)

Then we would have:

E{RED(S1, S2)} ≈ 2

(SNR)2
(4.9)

Now, let’s consider the other source of difference which are the compartment spe-

cific parameters (relaxations, frequency shift, and relative amplitudes). This certainly

elevates the level of complexity when it comes to setting a threshold. How we deter-

mine the threshold decides the margin error that we are accepting in the process of

filtering. In order to simplify the process of calculating the margin of error one needs

to sweep over a range of parameters in order to optimize for a threshold that results

on an acceptable margin of error and when comparing to the noise levels would be

plausible compared to the expected value of RED. Since we are doing MWI analysis

most important parameter should be the margin of error in the MWF. Therefore, we

decided our margin for error would be 1% of MWF difference between the two signal

decay and in order to calculate the acceptable difference that would result in an RED
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within the margin, we did a parameter sweep over the range of parameters in the two

pool model (as the focus here is 3 Tesla data, one can recalculate for other models as

well) to calculate the minimum RED with the maximum range of margin error which

is 1% MWF difference. One needs to consider that signal levels drop as we reach later

echoes so here we only used the first 12 echoes (∼34ms) to calculate the threshold of

accepted error in order to have high enough SNR levels.

4.2.3 Curve Fitting

For the curve fitting model, we used the complex three pool model and fit the magni-

tude data. It has been shown that fitting to the complex data shows improvements in

calculating the MW compartment frequency shift but has negligible effects on MWF

estimation [71]. The final model for fitting is brought here:

S(t) = |Amy · e
−(

1

T ∗
2my

+i2π∆fmy)t

+ Aax · e
−(

1

T ∗
2ax

+i2π∆fax)t

+ Aex · e
−(

1

T ∗
2ex

+i2π∆fex)t

|
(4.10)

= |Amy · e
−(

1

T ∗
2my

+i2π∆fmy−ex)t

+ Aax · e
−(

1

T ∗
2ax

+i2π∆fax−ex)t

+ Aex · e
−(

1

T ∗
2ex

)t

|
(4.11)

Where my, ax, and ex subscripts denote myelin, axonal, and extracellular water

compartments, respectively. A is the relative amplitude of each compartment, T2
*

is the relaxation parameter, and deltaf denotes the resonance frequency shift. Since

we are using the magnitude of the signal one of the frequency shifts can be omitted

as the reference, thus there would be 8 parameters in total. These parameters are

fit through an iterative non-linear algorithm. In MATLAB there are two functions

that provide this NNLS process “lsqcurvefit” and “lsqnonlin” which are basically the

same function with different model or cost function definition (TolX =1e-8, TolFun

=1e-8).

We also fitted a T2
* distribution using the same NNLS procedure applied for MESE

data. We chose 60 logarithmically spaced relaxation parameters ranging from 1ms
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to 2seconds to generate exponential decay curves for the dictionary matrix. Then

applied the following regularized cost function using the “lsqnonneg” function of

MATLAB:

χ2 + µ
M∑︂
j=1

s2j , µ ≥ 0 (4.12)

1.02χmin
2 ≤ χ2 ≤ 1.025χmin

2 (4.13)

Where χ2 is the sum of squared residuals of the fit, µ is the regularization pa-

rameter, and sj is the signal at the jth echo. MWF was calculated according to the

following equation:

MWF =

T ∗
2max∑︂

T ∗
2min

(4.14)

Where T ∗
2min and T ∗

2min were 1 ms and 25 ms, respectively.

4.2.4 Numerical Simulations

A 3D phantom using a modified Shepp-Logan test image was employed to generate a

reference MWF map. T2
* of myelin water, axonal water, and extracellular water was

respectively set to 10, 64, and 48 ms. The ratio of axonal water proportion to cellular

water was set to two for the entire phantom. Frequency shifts were incorporated for

MWF of 10% (fmy = 15Hz, fex = 5) and 5% (fmy = −5Hz, fex = 1). SNR was

defined as the amplitude of the first echo divided by the standard deviation of the

noise. For each voxel Rician distributed noise was realized with three different SNRs

(100, 200, and 500). First echo time and echo spacing were both set to 2 ms and

signal decay was simulated for 32 echoes in total. MWI analysis was done for 18, 26,

and 32 echoes.
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4.2.5 In-vivo Experiment

All in-vivo experiments were performed at 3T (Siemens Prisma) using 64 channel head

receive coil. Data were collected from 5 healthy volunteers. We collected a 2D mono-

polar readout gradient multi-echo gradient echo with 36 slices, slice thickness 3mm,

in-plane resolution 1.5 × 1.5mm, repetition time 2seconds, first echo time 2.01ms,

echo spacing of 2.86ms, echo train length 18 echoes, flip angle 85◦, and distance factor

0% with interleaved slice acquisition configuration. The acquisition had one average

taking 3 minutes and 45 seconds.

To check the effectiveness of a spatial saturation pulse on dampening the physiological

noise arising from blood influx, we also conducted experiments with and without the

saturation pulse for comparison. Data were collected using 18 echoes 2D mono-polar

MEGRE with 16 slices, 50% distance factor, 230×230mm FOV, 3mm slice thickness,

1.4 × 1.4 mm in-plane resolution, first echo time 2.01ms, echo-spacing 2.86ms, BW

600Hz/pixel, and TR 2000ms. Acquisition time was 4 minutes and saturation pulse

was applied to a region of 100mm thickness below the slab of interest.

These scans were acquired within the same MRI session as the 2D MESE data in the

previous chapter and the same ROIs were registered to the MEGRE data for a more

comprehensive MWF comparison.

4.3 Results

4.3.1 Numerical Simulations

Using a modified Shepp-Logan test image, we generated a reference MWF map (Fig-

ure 4.1) to simulate an ME-GRE phantom based on the aforementioned parameters.

MWI analysis results are brought in (Figure 4.2). Single component fitting results

are more robust to noise since we are fitting only a single parameter, but nevertheless,

improvements can be observed when SNR levels elevate. Three-pool model seems to

be highly affected by the noise, SNR of levels of 500 and 1000 show plausible MWF
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Figure 4.1: Reference MWF map using a modified Shepp-Logan test image. Values
are 100%, 10%, 5%, and 10−5 %.

values which are qualitatively acceptable as well. The NNLS fit seems a bit more

robust to noise, however, underestimated MWF values all around. Especially areas

in which myelin water compartment has 15 Hz frequency shift, such that estimations

completely fail.

4.3.2 In-vivo Experiment

The final results of the MWI analyses are brought in Figure 4.3. Underestimations of

the T2
* relaxation parameter in the top regions of the relaxation map is an indication

of the local field inhomogeneity effects. There seem to be some left/right asymmetries

in the single component fit. Three-pool model results look very noisy and LFG

artifacts in the top regions are clearly visible. The NNLS fitting MWF maps look

better than the three-pool model, but large artifacts are visible. The estimated SNR
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Figure 4.2: Numerical simulation results of the Shepp-Logan phantom. The first row
is the single component fitting of the T2

* relaxation parameter. The second row is
the three-pool model MWF maps and the third row depicts the MWF maps using
the NNLS fitting procedure.

of the in-vivo data was ∼ 500.

Results after applying the NESMA filter are brought in Figure 4.4. The artifacts

of the LFG have been omitted in the frontal regions of the brain and genu seems

more consistent to the splenium of the corpus callosum. This effect can also be

observed in the single component results, where using the original data we observe

some underestimations in the frontal WM (Figure 4.3). MWF maps look much better

with structural definitions even in deep gray matter. NNLS fit shows smaller MWF

values overall, in alignment with numerical simulations.
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Figure 4.3: MWI analysis result of the 2D ME-GRE data. The first row is the single
component fit of the T2

* relaxation parameter, the second row is the three-pool model
MWF maps, and the third is the NNLS fitting results.

Results of the saturation pulse experiment are illustrated in Figure 4.5. In the

MWF of the data without saturation, we can clearly see underestimations in the final

product of our analysis (i.e. MWF maps). There are also ripple-shaped artifacts ob-

served in the MWF maps that emerge as a pattern of over and underestimations. Such

patterns notably affect MWF estimation variability and decrease SNR of MEGRE

data.

We used the 2D MESE MWF maps acquired using the supplied B1 values (same

data as the previous chapter, Chapter 3) as our reference data and plotted the scatter

plots of the 2D MEGRE MWFs versus the reference data. Two WM regions (Genu

and Splenium of Corpus Callosum) and two GM territories (Caudate and Putamen)

81



Figure 4.4: Fitting results after applying NESMA filter. Same data as Figure 4.3

were used to calculate mean MWFs for the scatter plots and used linear regression

to fit a line to the data. Generally, three-pool model results show a stronger linear

correlation with the reference method (Figure 4.6), and the strongest correlation was

observed between NESMA filtered data using the three-pool model and the reference

method (R = 0.75, p-value = 2e-8), and the normal NNLS data has the largest slope

amongst all the scatter plots.

4.4 Discussion

Here we reviewed the general procedure that is used to perform MWI analysis on

ME-GRE data. Simulation results showed that it is possible to find plausible MWF

maps using the common methods for 2D MEGRE, but it requires high levels of SNR.

We also proposed using a NESMA filter to overcome noise issues of the MEGRE
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Figure 4.5: MWF maps with and without accounting for blood flow using the sat-
uration pulse. The first column shows the MWF maps when there is no saturation
pulse and the second one includes a saturation pulse in the acquisition process. MWF
maps are acquired using the NNLS method. Red arrows point to the areas that we
see notable improvements.

data and found that doing so would produce MWF maps with less artifact and with

high correlation with our reference method, and single component fitting results also

showed improvements.

Simulations showed using the regularized NNLS fitting is more robust to noise but
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Figure 4.6: Scatter plots of the MEGRE MWFs versus the reference method (2D
MESE using supplied B1 values) with fitted lines using linear regression. The target
(x-axis) denotes the mean MWFs in each ROIs using the reference method and the
output (y-axis) is the mean MWF in the MEGRE results. MWF from both meth-
ods (NNLS and 3PM) are shown with and without NESMA filter. R denotes the
correlation coefficient of each scatter.

generally, underestimates MWF value compared to three-pool mode and where there

are significant resonance frequency shifts (> 10Hz) between the water pools, the

NNLS method cannot detect any MW signal. Comparing the MWF results with the

reference method showed a higher correlation with three-pool models compared to the

NNLS method; however, the NNLS method produced larger MWFs in the segmented

ROIs which resulted in a higher slope when using linear regression between the results
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and the reference method. It is possible that this method is working better in regions

where the WM fibers are parallel to the B0 field and starts to fail where there is a

significant angle between the WM bundle and the main magnetic field; As literature

suggests there would be notable resonance frequency shifts between water compart-

ments in such regions [4, 70]. Therefore, we see some notable underestimation data

points in the scatter plot.

Previous research done by Lee and colleagues [66] had shown advantages of employing

a saturation pulse in the acquisition procedure to limit the effects of blood inflow,

which here was reiterated and results showed improvements and were comparable to

previous research. The observed improvements in our results were mostly qualitative

and the quantitative comparison did not show any significant improvements in the

results, as we average the results over a region and the artifacts start to disappear

when averaged over a large enough region.

The NESMA method produces MWF maps with better quality (at least visually) and

quantitatively produced data with higher precision and higher correlation with the

reference method, however, these improvements come at a cost. There is a thresh-

olding dilemma in that using a large value would result in blurring the image and

a very small one would prevent the filter from performing to its full potential (by

incorporating as many voxels as possible). The threshold here is set where the MWF

difference of the various incorporated voxels would be less than 1% and was consid-

ered sufficient. However, this value was set on the naive assumption that there were

no frequency shifts between the water compartments as it would make the threshold

very complex. In order to incorporate the frequency shifts in the thresholding pro-

cess, one can use a registered DTI image to estimate the frequency shifts and add it

to the voxel similarity cost function. But, one needs to consider if using this method

would actually be advantageous to other methods of noise reduction (e.g. acquiring

more averages). Moreover, we observe a dramatic reduction of the slope of NNLS

data compared to the reference data. This is in fact the major effect of our naive
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assumption of little to no frequency shifts between the water compartments. This

allows the amalgamation of voxels with and without frequency shifts that predomi-

nantly impact regularized NNLS method results.

Overall, the MEGRE method produced MWF maps which are comparable to their

MESE based counterpart. The SNR problem of the MEGRE data is a major issue

that needs to be addressed especially if one uses the three-pool model to perform the

MWI analysis. Adopting a saturation pulse to limit the physiological noise seems a

necessary step in the acquisition process which seems to come with no cost in the

process, but one needs to be aware of possible MT effects. The 2D MEGRE sequence

was fast and feasible, and the MT effects were minimized by using a long TR and

a distance factor of 50% also further improved the quality of MWF maps. In short,

we have implemented a starting point for the ME-GRE methods of MWF. Our main

focus was the MESE methods of previous chapters.
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Chapter 5

Conclusions, Limitations, & Future
Directions

5.1 Summary of Findings

It has been more than 25 years since the in-vivo visualization of myelin water using

multi-component analysis of multi-echo data has been introduced [19]. The afore-

mentioned article has sparked a notable train of studies in the field which is called

MWI. Some have introduced creative solutions to facilitate using the same princi-

ples to apply for MWI analysis with alternate sequences to overcome issues dealing

with the shortcomings of the original method [24, 26, 33, 47]. These contributions

in turn spawned quite a few studies to deal with the challenges of alternative solu-

tions. The 3D GRASE sequence was introduced to tackle the slow timings of the

CPMG sequence [72] which itself introduced the challenge of dealing with stimulated

echoes. Prasloski et al. in their 2012 paper introduced an optimization method to

estimate local flip angles to enable using 3D methods which led to quite a few studies

to investigate the feasibility of this solution [30] and even the constraining of this flip

angle parameter [50]. In Chapter 2, we investigated the benefits of constraining the

flip angle parameter in the fitting process and determined not only are there notable

improvements when constraining this parameter using an alternate mapping method,

but also the optimization method in the in-vivo data would be biased and skewed in

the outcome of estimation due to the presence of artifacts. This observation spiked
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the idea to investigate the same effect in 2D MESE data, where the signal generation

is much more complex, owing to slice profile effects across the voxel. In Chapter 3, we

tried to replicate the full Bloch simulation as suggested in previous literature [47], and

detected that the optimization method in the 2D data has even stronger effects/error

and since 2D sequences have smaller SNR compared to 3D, the estimated B1
+ maps

showed stronger deviations when compared to the reference map.

In Chapter 4, we reiterated the common procedures that are being used in the ME-

GRE methods for MWI. These methods seemed less reliable as there were quite a

few issues with the final MWF maps. The low SNR of MEGRE data resulted in

very noisy maps which were dependent on the methods/models that we used. The

three-pool model resulted in larger MWF values, but maps had poor image quality

and variations within similar WM regions were large. The regularized NNLS method

produced somewhat better-looking maps with less variation due to the incorporation

of regularization. However, this method does not incorporate the resonance frequency

shifts of the water compartments, therefore we observed underestimations in the fi-

nal MWF maps. Simulations agreed with our findings, where there was a significant

frequency shift incorporated in the signal generation NNLS method resulted in little

to no MWF value (where in fact there was a significant MW signal in the simulated

decay curve). We addressed the SNR issue of the ME-GRE sequences by employing a

nonlocal filter called NESMA. The MWF maps had much better image quality after

the application of NESMA and analysis showed that the correlation of MWF values

with the reference method increases when using this approach.

5.2 Limitations

MWI methods come with many challenges relating to the analysis itself and to the

pulse sequences used. The SAR limit is one of the issues of the MESE sequences,

particularly for interleaved 2D MESE. In the 2D sequence, SAR limits the number of

slices that are excited during a single TR. The trade-off seems to affect the total ac-
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quisition time as well, which makes parameter tuning a bit more complex. Moreover,

if we put a constraint on acquisition time, it would translate to limiting the number

of slices; and therefore, preventing a whole brain acquisition.

A second limitation of MESE sequences is B1
+ inhomogeneity across the brain, lead-

ing to different flip angles in different regions. For example, the presence of B1
+

inhomogeneities results in a higher flip angle in the middle of the brain than the

edges due to RF interference. Effects from these variations can be minimized by

measuring the B1
+ map.

Even though regularizations are used to achieve better robustness against noise, SNR

is still a major factor in the quality of MWI results. Previous literature has concluded

that the NNLS method requires an SNR of more than 700 (for ∆TE = 10ms and

Nechoes = 32) to produce reliable results [53]. 3D MESE sequence would achieve this

level of SNR, but it requires a long acquisition time, and the common substitute 3D

GRASE does not meet the SNR requirement. 2D MESE has the same issue with SNR

and one needs to acquire multiple averages. Some have tried increasing the number

of echoes (up to 64) [30] and decreasing the echo spacing (down to 9ms) [47], alas the

effects/improvements are not that notable to overcome the SNR requirement.

Another challenge of the MWI analysis is the limited spatial resolution. This is di-

rectly entangled with the SNR and the acquisition time. With a typical goal being

substantial brain coverage, voxel dimensions are strongly limited by the available scan

time. For example, a long acquisition of 13 min was used for 3D GRASE for MWI,

but only achieved a voxel dimension of 1.5 × 1.5 × 5mm3. Certainly, the potential

diagnostic utility of MWI is limited to large regions and fine features such as demyeli-

nation at lesion edges cannot be measured.

The MEGRE methods have even smaller SNR levels (compared to MESE sequences),

and other effects such as B0 inhomogeneities and physiological noise sources exacer-

bate the quality of MWI analysis results. Using higher fields (7 Tesla) helps with the

SNR [8, 35]and even makes spine MWI analysis possible with plausible resolutions,
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but higher fields come with greater effects of physiological motion and susceptibility

effects from air-tissue interfaces that increase dramatically with the field. The B0

inhomogeneity effects must be carefully compensated using accurate models; for ex-

ample, the voxel spread function introduced by Yablonskiy et al. (2013) [69] seems

like a proper solution but increases the post-processing computation time. One must

always consider the application of proper shimming when acquiring MEGRE data. In

the MEGRE sequences echo spacing and first echo time can be much smaller (com-

pared to MESE counterparts) but they are limited by hardware and nerve stimulation

due to fast gradient changes.

Our results showed that regularized NNLS methods that simply use exponential de-

cays without incorporating any frequency shifts in their model, seems to fail when

applied to MEGRE data where there are notable frequency shifts between water

compartments; and multiple-pool models (NLLS) perform better as they include the

frequency shifts in the parameter estimation process. However, the NLLS method

seems to require higher levels of SNR even though seemingly there are fewer param-

eters to fit for. Moreover, the NLLS method could result in suboptimal solutions as

in the fitting process gradients reach zero values in the local extremum of the fit,

which makes final solutions very much dependable on initial values (our initial guess

of parameters). Of course, the dependency on initial values could be overcome by

employing a multi-seed approach, where we use multiple sets of initial values and

choose the solution with the smallest residuals.

5.3 Future Directions

There is only so much that one can do in the parameter estimation side of the MWI

analysis, but it would always come down to the acquisition side to provide large

enough SNRs. Some have tried using deep learning methods to acquire faster MWI

analysis [73]. However, there is the issue that such neural networks are trained using

the same NNLS method that acquires the solution which makes the accuracy of such
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approaches less than the classic solution. One could still try to use machine learning

methods to train neural networks for the recon side, but in the author’s opinion the

only benefit would be faster computation time and perhaps the possibility of real-time

MWI analysis.

Another major factor is the acquisition time of the sequence that directly affects the

clinical feasibility of the analysis. Some have tried compressed sensing on 3D MESE

to achieve more feasible timings for full brain scan [64] which seems a more plausible

route to take when compared to 3D GRASE and its concerning artifacts. One could

see the future of the field in the innovative sequence schemes that tackle the timing

issue side and parameter estimation side at the same time. The resolution and the

voxel sizes should also be considered and perhaps a 3D scheme that could acquire

symmetrical resolution in all directions would be the optimal approach.

Multiple-pool models require initial guesses which directly affects the estimation re-

sults. One could try to constrain the initial values and even parameters by using an

independent sequence. For example, one could try to use DTI images to constrain

the resonant frequency shift parameters and investigate the aftermath.

There has not been enough focus on the characteristics of the myelin water compart-

ment itself and usually, it is overshadowed by other interesting products like MWF. It

could be beneficial to directly investigate and map the transverse relaxation param-

eter of myelin water. The regularization of the fitting procedure and the low SNR of

MW signal hinders such investigations. One possible scheme would be to damp the

other water compartments as it is done in the ViSTa sequence [74] and then acquire

multiple echoes to enable attaining a T2/T
∗
2 map of myelin water.

As well as technical advances in pulse sequence, the MWI methods can continue to

be applied to demyelinating and remyelinating diseases like multiple sclerosis.
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Krebs, J. Haybaeck, and A. Rauscher, “The influence of brain iron on myelin
water imaging,” Neuroimage, vol. 199, pp. 545–552, 2019.

[44] C. M. Collins, W. Liu, W. Schreiber, Q. X. Yang, and M. B. Smith, “Central
brightening due to constructive interference with, without, and despite dielectric
resonance,” Journal of Magnetic Resonance Imaging: An Official Journal of
the International Society for Magnetic Resonance in Medicine, vol. 21, no. 2,
pp. 192–196, 2005.

[45] C Jones, Q Xiang, K. Whittall, and A MacKay, “Calculating t2 and b1 from de-
cay curves collected with non-180 refocusing pulses,” in 11th annual meeting of
the international society of magnetic resonance in medicine. Toronto, Canada,
vol. 1018, 2003.

[46] J. Hennig, “Multiecho imaging sequences with low refocusing flip angles,” Jour-
nal of Magnetic Resonance (1969), vol. 78, no. 3, pp. 397–407, 1988.

99



[47] A. Akhondi-Asl, O. Afacan, M. Balasubramanian, R. V. Mulkern, and S. K.
Warfield, “Fast myelin water fraction estimation using 2d multislice cpmg,”
Magnetic resonance in medicine, vol. 76, no. 4, pp. 1301–1313, 2016.

[48] G. S. Drenthen, W. H. Backes, A. P. Aldenkamp, G. J. Op’t Veld, and J. F.
Jansen, “A new analysis approach for t2 relaxometry myelin water quantifica-
tion: Orthogonal matching pursuit,” Magnetic resonance in medicine, vol. 81,
no. 5, pp. 3292–3303, 2019.

[49] L. E. Lee, E. Ljungberg, D. Shin, C. R. Figley, I. M. Vavasour, A. Rauscher,
J. Cohen-Adad, D. K. Li, A. L. Traboulsee, A. L. MacKay, et al., “Inter-vendor
reproducibility of myelin water imaging using a 3d gradient and spin echo se-
quence,” Frontiers in neuroscience, vol. 12, p. 854, 2018.

[50] C. L. Lankford and M. D. Does, “Propagation of error from parameter con-
straints in quantitative mri: Example application of multiple spin echo t2 map-
ping,” Magnetic resonance in medicine, vol. 79, no. 2, pp. 673–682, 2018.

[51] K. C. McPhee and A. H. Wilman, “Transverse relaxation and flip angle map-
ping: Evaluation of simultaneous and independent methods using multiple spin
echoes,” Magnetic resonance in medicine, vol. 77, no. 5, pp. 2057–2065, 2017.

[52] S. M. Meyers, C. Laule, I. M. Vavasour, S. H. Kolind, B. Mädler, R. Tam,
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