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Abstract

Hydrodynamic forces on a sphere attached to a plane wall and an infinite circular 

cylinder oriented normal to the streamwise direction and also attached to a plane 

wall are examined using computational fluid dynamics. The flow over the plane 

wall is considered to be a fully-developed Blasius boundary layer, and the flow 

about the geometries is limited to the steady case. Coefficient of lift and drag 

results are generated for sphere Reynolds numbers in the range 0.01 -  250 and in 

the cylinder Reynolds number range 0.06 -  49, valid at a Reynolds number with 

respect to plate length of 32 400. Empirical fits to the data using exponential 

functions are presented, which are valid in the sphere Reynolds number range 0 -  

250, and in the cylinder Reynolds number range 0.06 -  49. Comprehensive grid 

and boundary placement convergence studies were used to confirm the simulation 

accuracy. In addition, the results of the sphere were validated against existing low 

Reynolds number analytical results and high Reynolds number experimental data. 

Experimental and analytical results do not exist for the cylindrical geometry.
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Chapter 1

Introduction

In fluid dynamics, two of the most widely examined external flows are 

the flow around a sphere, as well as its two dimensional counterpart, flow 

around a circular cylinder. The flow around a spherical body has been well 

studied partly because of its orientation-nonspecific geometry and consequent 

simplicity, but also from the physical relevance of this geometry. 

Experimental, computational, and analytical methods have yielded many 

results for varied flow conditions. A sphere in a uniform flow is an example of 

a straightforward problem from which much information can be extracted, 

such as dimensionless relationships between the coefficient o f drag, Reynolds 

number, and surface roughness, the Reynolds number at which the Navier- 

Stokes equations are nearly linear, the Reynolds number at which the flow 

becomes unsteady, the relationship between hairpin vortex shedding frequency 

and other dimensionless parameters, the Reynolds number at which turbulent 

flow develops, insight into boundary layers, and a host o f other interesting

1
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information.1,2 J The solutions to these inquiries have been gained over many 

decades, and just as science should, the results have yielded not only a better 

understanding of nature, but a host o f new problems.

The present research adds to the body of knowledge concerning flow 

about a sphere and a circular cylinder. Specifically, numerical analysis was 

used to examine laminar, steady flow about a sphere attached to a planar, flat 

wall when the external flow is a fully-developed Blasius boundary layer. 

Additionally, the 2-dimensional equivalent of the spherical problem was 

examined, which is an infinite circular cylinder attached to a planar wall. A 

schematic of the problem is shown in Figure 1.1. The objective of this work is 

to obtain empirical relationships that can be utilized to calculate the lift and 

drag forces acting on a sphere or cylinder attached to a plane over which flows 

a Blasius boundary layer.

y u=u(y)

x

Figure 1.1: A schematic displaying the geometry and flow configuration
examined in the present research. The velocity profile u(y) is a 
fully-developed Blasius boundary layer. The obstacle is a sphere 
or cylinder o f radius a.

2
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1.1 Background

An approximately spherical particle attached to a nearly planar surface 

with a fluid flowing parallel to the wall occurs in many situations. Examples 

include sediment on a riverbed, pollen in a boundary layer, contaminant 

particle removal in microfabrication, or entrance duct flow with dust particles 

adhering to the surfaces.4,5,6 An example of a cylinder attached to a wall in a 

boundary layer is a pipeline in an atmospheric boundary layer.7

The applications which spurred this work exist in the field of 

pharmaceutical aerosols. A class o f pharmaceutical aerosol that is gaining in 

popularity is the dry powder inhaler.8,9 Small (~< 10 pm), drug-laden, roughly 

spherical particles are delivered to a patient’s respiratory tract when air is 

inhaled through the device which contains the particles. The particles may or 

may not migrate into the patient’s air stream depending on the aerodynamic 

forces on the particles. Powder particles produced from a spray-freeze-drying 

manufacturing method are shown in Figure 1.2, which demonstrates that a 

spherical geometric approximation is appropriate. It should be noted that the 

surface roughness will alter the flow field and aerodynamic force predictions. 

A necessary function of the inhaler is to generate the flow conditions required 

to entrain the powder particles from a blister packet or powder storage area 

into the patient’s inhalational flow. A boundary layer develops in the inhaler 

and over the bed of particles. The first step in predicting if the particles will

3
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aerosolize is to understand the aerodynamic forces on individual, idealized 

particles. This work is aimed at achieving that goal for a simple boundary 

layer flow.

Figure 1.2: An agglomeration of powder particles from a pharmaceutical 
application produced using spray-freeze-drying that show an 
approximately spherical geometry.

In general, knowledge of the forces on a sphere or cylinder attached to a 

wall in a Blasius boundary layer allows more accurate and wide-ranging 

impending motion models to be developed. Figure 1.3 shows a particle, which 

could be spherical or cylindrical, attached to a realistic wall. Complete 

knowledge of the forces and geometry as well as the dynamics (if the particle 

is rocking about an asperity) allow accurate prediction of the particle 

acceleration, whether it be by vertical motion, rolling, slipping, or some

4
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combination. The forces in a generalized model include: electrostatic forces 

(electric double-layer, if aqueous, and van der Waals), weight, contact force, 

friction, drag, lift, and possible mechanical force (if the particle is attached to 

the wall, as occurs in micromachining applications). Electrostatic forces can 

and have been characterized using a centrifugal test and/or atomic force 

microscopy.10,11 Aerodynamic forces have been analysed for very few external 

flows that are relevant in this context, and only under specific circumstances 

(typically very low Reynolds number).

Y1 u=u(y)

F"lift

Figure 1.3: Schematic representing a sphere or cylinder on a real surface.
The forces acting on the body are hydrodynamic (lift and drag) 
and particle weight, and electrostatic forces. Contact and friction 
forces are omitted for clarity.

A variety o f models exist that predict spherical particle entrainment 

rates for a turbulent boundary layer.12 These models assume that the particles

5
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are small enough in diameter to exist in the viscous sublayer o f a turbulent 

boundary layer and use either analytical results from laminar shear flow about 

a free sphere or experimental relationships for predicting the aerodynamic 

forces. To the author’s knowledge, no particle entrainment model exists solely 

for predicting particle movement in a laminar flow situation nor do models 

exist that predict cylindrical body entrainment in any type of boundary layer. 

The results from this research could be used in the creation of such a model. 

The primary applicability of this research is in impending motion models of 

particles attached to a wall in a boundary layer.

1.2 History

Currently, all analytical solutions for flow about a sphere attached to a 

wall consider the velocity profile to be a linear shear flow, and the Reynolds 

number of the sphere to be low enough to neglect the non-linear convective 

terms in the Navier-Stokes equations. This is an acceptable approximation to 

small spheres in many flow profiles, but has serious accuracy limitations when 

the flow curvature is non-negligible. Saffman derived a celebrated result for

13lift on a spherical particle in shear flow. However, it is known that the 

accuracy of the result is greatly compromised when the sphere approaches a 

wall. Cherukat and McLaughlin extended the analysis to include the effects of 

a wall.14 O’Neill analysed the drag force on a sphere attached to a wall in 

shear flow at low Reynolds number, but did not obtain a result for the

6
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coefficient of lift.15 The problem was revisited by Leighton and Acrivos who 

included first order inertia effects in a perturbation analysis to obtain a lift 

result.16 The generalized results of Cherukat and McLaughlin decompose to 

the lift result first presented by Leighton and Acrivos when the sphere touches 

the plane. Shear flow analyses are important because, as sphere diameter 

decreases, many laminar flows appear to be shear flows (e.g. viscous sublayer 

of a turbulent boundary layer, Poiseuille flow). However, as the sphere 

diameter increases, the relationships become less accurate.

Experiments in mineral oil were completed by Willets and Naddeh 

(1987) who examined the lift force on a sphere in a laminar boundary layer and 

the force variation with perpendicular distance from the wall.17 They presented 

results for a sphere Reynolds number of ~ 100. A low sphere Reynolds 

experiment (~0.1) in shear flow was recently reported which utilized methods 

from atomic force microscopy to examine both lift and drag on a sphere 

touching a wall.18 The technique admittedly needs refinement to achieve 

results with substantial accuracy. To the author’s knowledge, there exist no 

experimental results for the coefficient of drag with laminar flow in the present 

geometry at high sphere Reynolds numbers.

Laminar to turbulent boundary layer transition induced by a spherical

roughness element was examined by Mochizuki.19,20 Smoke from paraffin and

stereographic photography were used to examine the various flow regimes. At

low velocities, and sphere Reynolds number (Re~250), a steady horseshoe
7
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vortex was observed about the sphere as well as a pair o f trailing vortices that 

originate in the wake of the sphere. As the velocity was increased, the trailing 

vortices become unsteady and oscillate. Upon further increase in fluid 

velocity, the slight oscillations in the trailing vortices are transformed to 

hairpin vortices, which are shed behind the sphere in a periodic manner. The 

horseshoe vortex is close to the wall and steady at low Reynolds number 

(Re~250), but becomes unsteady when the trailing vortices become unsteady. 

Increased fluid velocity causes the flow about the sphere to become turbulent.

Curiously enough, there exist no analytical results for the case of 

creeping shear flow past a cylinder attached to a plane surface. Additionally, 

there are no experimental results for lift and drag forces on a cylinder in low 

Reynolds number flow and there is no experimental or computational evidence 

that indicates at which Reynolds number the flow about the cylinder becomes 

unsteady. To be sure, the cylindrical geometry has been examined 

experimentally in a boundary layer, but often the boundary layer is turbulent

9  t 0 9
and the Reynolds number of the cylinder is of the order 10000. ' The 

experimentalists are almost exclusively interested in the changes and/or 

suppression of vortex shedding due to the presence of the boundary layer and 

plane wall.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3 Computation

The solution of a fluid flow problem involves two broad stages. The 

first is selecting an appropriate mathematical model to characterize the 

problem of interest, and the second is exploiting analytical or computational 

methods to solve the problem. In this research, a commercially available 

computational package, ANSYS CFX, was utilized to solve the Navier-Stokes 

equations for laminar flow about a sphere and cylinder attached to a wall. 

Paramount to any computational study is determining the source of error and 

uncertainty and controlling or minimizing it. The terms verification and 

validation arise often when using computational methods in fluid mechanics. 

Broadly, validation is a demonstration that the physical model matches reality, 

and verification is determining how reliably and accurately the computational 

code solves the physical model under consideration.23 Validation of a 

computational model is achieved through comparison of numerical results to 

accurate and reliable experimental measurements. Verification of a model 

involves examining a variety of sources of error, primarily discretization error. 

The following list outlines the errors typically examined in verification of a 

model.24

• Discretization error: an error arising from the transformation of

differential or integral operators to algebraic relationships.

9
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•  Iteration error: an error arising from the iterative, inexact solution of the 

set of algebraic equations.

•  Round-off error: an error that arises in conjunction with iteration error. 

It is inexact electronic algebraic operations arising from the limited 

precision of a computer.

• User errors: errors that occur from the neglect or inattention of a user.

• Code errors: programming mistakes.

• Model error/uncertainty: the error associate with imprecise knowledge 

of boundary conditions as well as errors in boundary condition 

implementation and placement, approximation or inadequate knowledge 

of the geometry being modeled, and sometimes inaccurate knowledge of 

fluid properties.

Both verification and validation were utilised in this research to ensure 

accurate, credible, and physically applicable results.

1.4 Summary o f Thesis

A detailed explanation of the theory and methods of this work is 

presented in Chapter 2. Specifically, information is given on the precise 

mathematical models solved, the method of solution, and the method for 

checking accuracy. Chapter 3 presents the solution results, and a discussion is 

followed in Chapter 4. Chapter 5 gives an overview of the work.

10
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The appendices include preliminary boundary layer numerical studies 

and auxiliary computer programs, such as a Blasius equation solver and curve- 

fitting program, used in this research.

11
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Chapter 2 

Methods and Theory

2.1 Introduction

The objective of this research is to develop relationships that can be 

utilized to predict the lift and drag forces on a sphere attached to a wall in a 

fully-developed Blasius boundary layer. A cylinder attached to a wall oriented 

perpendicular to the free-stream direction is also examined. This chapter 

discusses the methods utilized to produce those results, including the 

mathematical models and numerical method used.

2.2 Mathematical Models

The Navier-Stokes equations and continuity, coming from the

conservation of linear momentum and mass, are the physical models utilized in

this research. Beyond assuming the fluid being modeled is a continuous

medium, the primary assumption used to generate the Navier-Stokes equations

is that the fluid is Newtonian. A Newtonian fluid demonstrates a linear

relationship between viscous stress tensor and the strain rate tensor. This is the
12
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simplest friction law, outside o f assuming negligible friction, that can be 

implemented. Additionally, the fluid is assumed to be isotropic. The 

Newtonian model has proved to be a reliable and well-used model for the most 

common fluids under most conditions. In this research, the fluid is assumed 

incompressible and the viscosity is assumed constant. This limits the 

applicability o f the results to subsonic flow and flow with negligible 

temperature gradients. Furthermore, unsteady effects are not examined in this 

research. The resulting equations are:

Mass conservation: div(u) = 0 (1)

Momentum conservation: p(u • V)u = pg -  Vp + //V2u (2)

Where p is pressure, u is the velocity vector, p. is the dynamic viscosity and g 

is the gravitational constant in vector form.

The equations are often non-dimensionalized prior to numerical solution 

to produce generalized results. However, an alternative method is to solve the 

dimensional form of the equations and non-dimensionalize the results, similar 

to experimental fluid dynamics. The latter method was adopted in this work.

2.3 Numerical Method and Grid Generation

2.3.1 Discretization

The numerical method adopted in this research is the control volume 

technique, where the conservation laws are used in their integral form, 

assuming steady state. The governing equations are then as follows.

13
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Mass conservation: j ^ni = ^ (3)

Momentum conservation: jpUjU'drij = -  JPdrij +
f dU, d U j '  
\  dXj + dx, ;

dn (4)

All integrals are surface integrals and drij represents the outward normal 

vectors o f the surfaces. The commercial software utilized for this research 

uses a single cell, co-located grid for variable storage and calculation. All 

variable information is stored at nodal locations.

An important component of an incompressible Navier-Stokes solver is 

the method by which the pressure and velocity fields are coupled. A Poisson 

equation is typically derived by taking the divergence of the momentum 

equation and simplifying the resulting equation with the continuity 

relationship. In this way, a velocity field is generated through the solution of 

the momentum equations. The velocity field is updated, and forced to obey 

continuity, by solving the Poisson equation for the pressure field. This method 

is the framework for the SIMPLE family of pressure-velocity coupling. The

commercial package used in this research uses a method based upon the work

26of Rhie and Chow. A fourth-order pressure derivative is added to continuity 

to distribute the pressure influence. The continuity equation remains consistent 

despite this modification because a third-order grid spacing term is multiplied 

by the pressure derivative. Hence, the inconsistent term approaches zero as the

14
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grid is refined. The first-order derivatives are discretized using a second-order 

central difference approximation.

Velocity and pressure field data as well as other variational quantities 

(temperature, density, concentration, etc.) are stored at nodal points (co

located). To determine a variable value at a point in an element other than at a 

node, interpolation with shape functions is used. The shape functions are 

parameterized with a local coordinate system attached to a given element, and 

vary linearly with these parameters. The formulas used for interpolation are as 

follows, where (f> is the variable under consideration.

^ n o c k -

(5)
/=1

where Nj is parameterized in terms of a local coordinate system attached to 

each element.

The pressure gradient term is calculated as the linearly interpolated 

pressure value multiplied by the area o f the volume face under consideration. 

The diffusion term is slightly more difficult to discretize, but the accuracy of 

both the pressure and diffusion terms is determined by the interpolation 

scheme.

The nonlinear advection term is the most difficult term to discretize and 

there are three options within the computational software used. The upwind 

difference scheme is a well-known, first-order accurate option that provides

15
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stable solutions, but suffers from the large amount of numerical or artificial 

diffusion it generates in the solution.

Upwind: = <j>upmnd (6)

A second-order central difference scheme can be utilized, and is 

produced by interpolating from the values at surrounding nodes to obtain 

variable under consideration. The software manufacturer recommends against 

using this discretization due to issues of pressure-velocity decoupling.

The convective discretization used in this research is based on the 

upwind scheme with a corrective factor.

<t> = + W  • r (7)

where r is the vector from the upwind node to the integration location under 

consideration. If  the constant (3 is set to unity, the discretization is second- 

order accurate. However, in order to increase stability, the value of (3 is 

allowed to vary within the domain during the solution. At points in the domain 

where the gradient o f the variable § is small the P is forced to approach zero so 

that the scheme becomes upwind. Otherwise, the value of P is calculated to be 

as close to unity as possible. The algorithm used to calculate P is based on the

27work of Barth and Jesperson.

2.3.2 Algebraic Solution o f Discretized Equations

The set o f non-linear equations obtained from the finite volume are

solved simultaneously and iteratively using the incomplete lower/upper

16
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factorization technique. In addition, an algebraic multigrid method, additive 

correction, is used to enhance convergence rate. In steady state simulations, 

false time-stepping is used to generate a solution.

The accuracy to which the system of linear equations is solved is 

monitored through normalized residuals. The raw residual for a given variable 

or quantity for a given finite volume is a measure o f imbalance in a 

conservation equation for a given volume. It is normalized through 

representative variable and coefficient values.

In this work, the residuals monitored were mass and the three 

components o f momentum. The solution of the linear equations was deemed 

complete when the normalized residuals, mass and the three momentum 

quantities, reached a steady value with respect to iteration level.

2.3.3 Mesh Generation

The mesh is generated in two steps. First, a 2-dimensional surface mesh 

is created on the domain faces using a Delaunay Surface Mesher. 

Subsequently, the surface mesh is used to produce the volume elements using 

an advancing front technique. Tetrahedral and prism elements are used in the 

meshing process. The prism elements are high aspect ratio elements which are 

used to resolve the wall-normal velocity gradients in a boundary layer while 

maintaining a coarse streamwise resolution. The majority o f the domain was

17
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filled with tetrahedral elements. Grid information was stored in double

precision format.

2.3.4 Force Calculation

The general force on a surface is given by Eqn. 8.

Where n is the unit vector designating the direction of the force and ns is the 

surface unit normal vector of the sphere surface, S. The shear stress and 

pressure are represented by the terms t  and p, respectively. In this research,

n with the vectors <0,0,1> and <0,1,0>, correspondingly The pressure and 

shear terms are calculated and outputted in the solution stage of the problem.

2.4 Boundary Conditions

Correct choice of boundary conditions and their placement plays an 

important role in numerical studies. There are three basic categories of 

boundary conditions available for use with a system of partial differential 

equations: Neumann, Drichlet, or mixed. The appropriate choice o f boundary 

condition for a particular location depends upon the physical system being 

modeled and also on the nature of the partial differential equation (or system of 

equations); whether they are elliptic, hyperbolic, or parabolic, and where their 

characteristic lines run. However, the Navier-Stokes equations are nonlinear

(8)

the lift and drag forces acting on the sphere surface are calculated by replacing

18
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due to the convection terms, and such linear analysis holds under simplifying 

assumptions (Stokes flow, high Reynolds number flow, etc.). One such flow is 

boundary layer flow, which is parabolic with the characteristic line being the 

streamwise direction. In this equation, an outlet boundary condition is not 

needed as the solution can be marched forward in space; upwind solutions are 

solely dependent on the downwind conditions. Placing a spherical or 

cylindrical obstacle in the boundary layer possibly invalidates the parabolic 

characterization of the defining partial differential equations. Hence, 

determining the boundary conditions necessary for a well-posed problem 

becomes problematic. The computational code used in this research places 

boundary conditions on every boundary, which potentially leads to an 

overdetermined system of equations, such as the case with laminar boundary 

layer flow without the spherical obstacle present. However, the program 

produces correct Blasius boundary layer predictions, even when the system is 

overdetermined (Appendix A). The offending boundary condition is an 

opening-type boundary condition; one that allows flow into and out of the 

domain. This type of boundary condition remains incompletely understood, 

and it seems that in some situations, by converting a system of partial 

differential equations to a nonlinear system of algebraic equations a degree of

98rigidity in the well-posedness of a problem is lost. Viable numerical 

solutions can be achieved for seemingly ill-posed mathematical problems.

19
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Reference 28 conjectures that the open boundary condition works due to 

truncation effects, but more research is needed in this regard.

The computational domain is shown in Figure 2.1. The surface of the 

sphere as well as the wall utilize the no-slip boundary condition, as follows.

u,v,w = 0 (9)

The inlet utilized a fully-developed Blasius velocity profile. The Reynolds 

number with respect to plate length at the location of the sphere was kept 

constant throughout the study at a value of 32 400. This is sufficiently greater 

than the minimum fully-developed constraint o f Rex > 1000 and is also well 

beneath the turbulent transition Reynolds number o f 3 000 000.29 The 

remaining boundaries are nonphysical and numeric approximations. The 

analytical boundary condition for the top boundary, Eqn (10), can only be 

implemented exactly by transforming the domain so as to have infinite 

boundary placement possible. As is most often the case, Eqn (10) is 

approximated by placing the boundary at some finite distance and testing the 

influence of its placement on the solution. The latter method was adopted in 

this research. It is unclear what the analytical boundary conditions should be 

on the two remaining opening boundaries. However, the ideal numerical 

scheme should have some features, including allowing passive inflow/outflow 

along with anything the flow carries (e.g. prevents non-physical reflection of 

waves), and most importantly they would produce identical solutions in the 

computational domain for any boundary placement .
20
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u = U at z = oo (10)

All openings in the domain shown in Figure 2.1 are treated with the following 

boundary conditions:

^  = 0
dn (11)
P = P =0opening specified

Opening (top) Opening (outflow)

Symmetry

Opening (side)

Wall

Inlet Opening Opening (outflow)

Inlet

Wall

Figure 2.1 A schematic showing the computational domains utilized to
model a spherical particle and a cylindrical particle attached to a 
wall. The domains utilize opening-type boundaries, a symmetry 
boundary, an inlet, the sphere surface and the wall.

The specified pressure is taken to be relative to total pressure when the flow is 

into the domain and relative to static pressure when the flow is out of the 

domain. The no-slip boundary conditions as well as the prescribed velocity
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profile at the inlet are exact boundary conditions. The boundary conditions 

displayed in Eqn (11) are widely used and mostly successful; however, they do 

not satisfy the ideal opening boundary traits. Boundary placement influences 

the solution in the domain. As outlined in Reference 28, the disturbance to the 

domain is typically localized near the opening.

If one were to take a Blasius boundary layer and slice it with an 

imaginary plane perpendicular to both the stream wise direction and the wall, 

the streamlines never achieve zero slope in the range 0 < S < oo; the velocity 

slope is non-zero everywhere and varies with distance. This is evidence 

enough that the boundary conditions are not physical, but can they produce 

accurate results? Since the boundary layer equations are parabolic, the outlet 

boundary conditions need not exist; and consequently the error in the boundary 

conditions is confined to an area near the boundary. This was examined and 

confirmed in preliminary boundary layer simulations (without the presence of a 

sphere), and the results are shown in Appendix A.

Boundary conditions that are more physical would allow streamline 

slope at the opening boundary to vary across the boundary. This could be 

implemented with a higher order normal derivative, as shown in Eqn (12).

This option was not available for use in the commercial code utilized for this 

research.

22
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2.5 Dimensional Analysis & Study Range

A sphere in a general, not necessarily similar, boundary layer has 

coefficients o f lift and drag that are functions of sphere Reynolds number and 

the ratio o f sphere diameter to boundary layer thickness, as well as the ratio of 

sphere diameter to height above the surface. An example would be a sphere in 

the developing stages of a Blasius boundary layer, where the coefficients of lift 

and drag could be expected to be functions of both the sphere Reynolds 

number and the plate Reynolds number. In this study, the ratio o f sphere 

diameter to height is specified. Also, in a Blasius boundary layer the boundary 

layer thickness is dependent upon the Reynolds number with respect to plate 

length. Consequently, the sphere diameter to boundary layer thickness ratio 

can be replaced with the Reynolds number of the plate length. The Reynolds 

numbers are defined as follows:

sphere

Re, = PU i n f *

" (13)

P

Here is the velocity in the boundary layer absent of a sphere at a height of 

half a sphere diameter, <f>/2, x  is the location along the plate at which the sphere 

is located and Uinf  is the freestream velocity. The aerodynamic force 

coefficients are functions of Reynolds numbers described in Eqn. (13): 

C ^ /C R e^ .R e ,)
(14)

CD = g(Rejy)/rere,R eJ
23
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A cylinder attached to a wall is complicated by the fact that the lift and drag 

relationships are not independent of cylinder orientation. However, in this 

study the cylinder orientation is specified as perpendicular to the freestream 

direction and parallel to the wall. In this research the Reynolds number with 

respect to plate length is set at an intermediate value, 32 400. Under this 

constraint, the objective of this research was to determine the single-variable 

functional relationships for/ and g.

The first aspect of the study is to specify the range of sphere Reynolds 

number for simulation. At the low Reynolds number end of the spectrum, the 

study is bounded by analytical results valid at Resphere->0. Determining the 

upper bound in Reynolds number is more challenging. This study is concerned 

with steady, laminar flow about a sphere attached to a wall in a fully-developed 

Blasius boundary layer. To determine the upper bound is to find the sphere 

Reynolds number at which hairpin vorticies start shedding. This can be 

accomplished numerically at great cost and questionable accuracy, but is better 

determined from experimental results. Mochizuki examined the influence a 

spherical roughness element had on boundary layer transition through smoke 

wire visualization.18'19 From that work, the transition from steady to unsteady 

flow about a sphere is clear; however, sphere Reynolds numbers for various 

flow regimes were not explicitly reported nor were the fluid transport 

properties. Assuming air properties at standard condition, the sphere

transitioned from steady to unsteady flow at a sphere Reynolds number of 250.
24
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It should be noted that the transitional particle Reynolds number is likely 

dependent upon the diameter to boundary layer thickness ratio; however, this 

effect is not examined in this work. The upper Reynolds number bound of the 

study is considered to be Resphere = 250.

Few analytical and experimental results exist for a cylinder attached to a 

wall in a Blasius boundary layer. It is not known at what Reynolds number the 

flow about the cylinder becomes unsteady, so the upper Reynolds number limit 

was selected as the Reynolds number at which the flow about a cylinder in 

uniform flow far from a wall becomes unsteady, which is approximately 50.30 

The presence of the wall inhibits the onset o f unsteady flow, as seen with the 

sphere for which unsteadiness is delayed from a Reynolds number of 130 for 

uniform flow to ~ 250 when attached to the wall. The inhibiting effect o f the 

wall was also observed for Poiseuille flow, where unsteady flow was delayed 

from a Reynolds number of 75 to 250 when the sphere was placed at the wall

T1compared to at the symmetry plane. Hence, choosing the upper Reynolds 

number of the cylinder study to be the Reynolds number at which the cylinder 

undergoes steady to unsteady transition in uniform flow likely ensures steady 

flow about the cylinder when attached to a wall in a Blasius boundary layer.

2.6 Convergence

An important aspect of any numerical study is determining the influence 

of the various sources o f error, as stated in section 1.3, on the accuracy of the

25
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solution. In this research, the leading source of error arises from inexact 

boundary conditions, approximated geometry, and discretization error. Three 

convergence studies were undertaken to characterize and band the errors, 

consisting of a grid convergence, geometry convergence, and boundary 

placement convergence studies.

2.6.1 Grid Convergence

The discretization scheme used to convert the Navier-Stokes equations 

to a system of nonlinear algebraic equations attempts to treat the majority of 

the domain with a second-order scheme. A coarse grid will produce significant 

discretization error, and refinement should reduce this error in a nearly second- 

order fashion. Two simulations were run at each sphere Reynolds number data 

point to determine if grid convergence had been met. A change in lift or drag 

coefficient less than 3% was deemed grid convergent when the number of 

nodes was increased by 50% or more. In addition, at a sphere Reynolds 

number of 1, a detailed, systematic grid convergence study was completed.

2.6.2 Geometric Convergence

The modeling of a perfectly rigid sphere on a perfectly flat wall 

involves contact at a single point. This geometric configuration presents great 

difficulty in the grid generation stage of numerical simulation. The two 

outcomes of meshing such geometry are either grid generation failure or 

acceptance of poor quality grid elements (high aspect ratio, low/high internal

26
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angles). To overcome this issue, the geometry at the point where the sphere or 

cylinder contacts the wall must be changed. The two methods available to 

modify the contact point geometry are presented in Figure 2.2. In both cases, 

as x 0 the computational geometry approaches the analytical geometry. In 

this study the case on the left was chosen as the modifying technique, as it does 

not shift the entire geometry vertically in the velocity gradient. The influence 

of geometry modification is expected to be related to the ratio o f x to (j>; at 

some small finite value of the ratio, the coefficients o f lift and drag will 

asymptote to a constant value. This value is the point at which the solution has 

reached geometric independence. An alternative route to represent the ratio of 

x to <|>, in the case of spherical geometry, is to report the ratio o f the removed 

surface area to the total surface area. For the cylindrical, 2-dimensional case, 

the ratio becomes one truncated perimeter to total perimeter. Analogously, as 

the area or perimeter truncation ratios approach zero, the computational 

geometry approaches the analytical geometry. The influence of the area 

truncation for the sphere was examined at a Reynolds number of 250. The 

influence of perimeter truncation for the cylinder was examined at a Reynolds 

number of 49. The truncation area ratio at which the coefficients o f lift and 

drag changed less than 3% was deemed a geometrically converged result.

27
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Figure 2.2 Possible modifications to the sphere or cylinder geometry to 
remove the contact point.

2.6.3 Boundary Placement Convergence

With ideally chosen and implemented boundary conditions, the 

placement of the boundaries would not affect the solution in the domain. 

However, given that the opening boundary conditions are inexact, their 

placement has an effect on the solution. Indeed, even the placement o f the 

inlet boundary condition could alter the solution because the sphere has an 

upstream influence, which varies with sphere Reynolds number, and the 

boundary placement may interfere with this upstream influence. In this 

research, the effect o f the placement of the inlet and openings, except for the 

top boundary, were studied simultaneously at sphere Reynolds numbers o f 0.1, 

10, and 250, which are the bounding and midpoint Reynolds numbers o f the 

study. The placement o f the top boundary was set to fully resolve the 

boundary layer. At the highest sphere Reynolds number (250), where the ratio 

of sphere diameter to domain height is highest, the influence of the top
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boundary placement was examined. In all cases, boundaries were moved until 

the coefficients o f lift and drag became independent of the placement, 

displaying successive variation less than 3%.

A method to enhance confidence in the results of a numerical study is to 

compare the calculations at specific, perhaps simplified conditions to available 

experimental or analytical results. When considering a sphere attached to a 

wall in a laminar boundary layer, analytical results for lift and drag exist at 

creeping flow conditions and experimental results for lift are available at high 

sphere Reynolds number. However, no such experimental or analytical results 

exist for a cylinder attached to a wall.

2.7.1 Low Reynolds Number Validation

At low sphere Reynolds number, the flow about a sphere attached to a 

wall takes on the simpler form of shear flow about a sphere, which is a 

problem that has an analytical solution. Consider the Blasius equation:

2.7 Validation

r+-ff=o
f  =  f ( v )

(15)

with boundary conditions:

29
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/ ( ° ) - / ( ° ) - 0
/ ( » )  = !

To determine the flow about a sphere at low Reynolds number, consider a 

series solution to (15) about r|=0.

m  = ± f ^ L  (17 )

If the ordinary differential equation in (15) is systematically differentiated with

respect to r| and the boundary conditions (16) are utilized, the following

relationships are obtained.

/ ' (0 )  = /"(0) = / ,v(0) = / v/(0) = 0 

/ v(0) = - / ' ( 0 )

Substitute these derivative values into the McClaurin series (17) to obtain a 

relationship valid for small p.

(i9)

To determine the stream wise velocity for small p, take the derivative of (19).

u = Uf (O)  ̂+ UO(tj4) (20)

The vertical velocity in a boundary layer is nonzero and a relationship can be 

found through application of the conservation of mass.

v f ' v - f
U 2^/Re

(21)

The series expansion (19) can be substituted into (21) to obtain a result for 

vertical velocity in a Blasius boundary layer for small p.

30
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Since the series solution is valid for r| ~ 0, and also because the Blasius 

equation comes from the boundary layer equations which are valid for high 

Reynolds number (/?cx>1000), the stream wise and vertical velocities in a 

Blasius boundary layer for small r| can be written as follows.

u = Uf"( 0)77 (23)
v =  0

Consequently, when considering a sphere at low Reynolds number attached to 

a wall in a Blasius boundary layer, a velocity field simplification occurs. The 

problem reduces to linear shear flow about a sphere attached to a wall. 

O’Neill15 solved the problem of a sphere attached to a wall in shear flow at low 

Reynolds number. He first considered the Stokes equation:

Vp: f ‘u (24)
div(u) - 0

O’Neill used the tangent-sphere coordinates as well as Fourier-Bessel 

transforms to obtain the force on the sphere.

F = (67rjuuaf,0,0) (25)

Where a is the sphere radius, u is the shear rate, p is the dynamic viscosity, and 

/  is a dimensionless force coefficient. The value of f  was evaluated 

numerically to be 1.7009. The sphere Reynolds number may be introduced to 

yield:
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/ \

F =
1.7009-24

,0,0 (26)
/

The reversibility characteristic of the Stokes equation does not allow for a lift 

force on the sphere in the analysis. However, vertical migration of spheres in a 

packed bed was observed experimentally and a Saffman analysis, although 

incorrect near a wall, predicts a lift force. The analysis of O’Neill thus needs 

to be expanded to allow lift force at low sphere Reynolds number.

To calculate the lift force, Leighton and Acrivos16 utilized O’Neill’s 

solution in a perturbation analysis expanding the dimensionless velocity field 

with respect to Reynolds number. They included first-order inertia effects by 

expanding the velocity in a series form.

Then, upon expressing the lift as a double-integral, and utilizing O’Neill’s 

solution in the integrand, they obtained a result for lift. In dimensional form:

This can be rendered dimensionless using the definitions of coefficient o f lift 

and sphere Reynolds number to give:

fa ya ya
(27)

L = 9.22{y/ua2 ) (^ —) (28)
v

C, =5.8696 (29)

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



At low sphere Reynolds number, the Blasius velocity profile collapses to the 

simpler shear flow about a sphere form, whereby the force on a sphere is given

Experimental results have been generated for sphere Reynolds number

small Reynolds number represents a linear shear flow about a sphere. The 

measurement method utilizes apparatus and technique from atomic force 

microscopy. However, as the author admits, the technique needs further 

refinement to produce reliable and accurate measurements.

2.7.2 High Reynolds Number Validation

At high Reynolds number, the nonlinear convective terms of the Navier- 

Stokes’ equations contribute greatly to the solution, and make analytical 

solution prohibitively difficult. In this range, only experimental results exist. 

Willets and Naddeh17 examined the lift force on a sphere in a Blasius boundary 

layer. Specifically, they examined how the lift force varies with gap distance 

(the ratio o f sphere diameter to sphere height off the wall) and the Reynolds 

number o f the sphere and compared the results to predictions from Saffman’s 

analysis. Their results, at a gap ratio of zero, are applicable to this study and 

are presented in Table 1

as:

(C ,. ,C „ ,C „ ) =  5.8696,1.7009-24
/ \

V

24/
/ R e sphere j

,0 (30)

in the range 0.04 < Re < 0.1 by Muthanna18 in Poiseuille flow, which at such
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Table 2.1 Experimental results for high Reynolds number flow about a 

sphere attached to a wall in a Blasius boundary layer.

Velocity at Sphere Sphere Reynolds Coefficient of Force

Midpoint (m/s) Number Lift (mN)

0.138 43 -  100 0.4 1.009

0.288 83 -  140 0.05 0.552

0.488 140-230 0.1 3.173

2.8 Curve-Fitting

The simulation data spans the sphere Reynolds number range 

0.1<Re<250, and the cylinder Reynolds number range 0.06</?e<49. 

Exponential functions were chosen as the model curves purely from a visual 

perspective. Nonlinear regression was utilized to fit the curves to the data 

utilizing the Gauss-Newton algorithm for optimization. The program starts 

from an initial guess o f the parameters in the curve and calculates the sum of 

the squares of the vertical error at each point. At the initial guess, a quadratic 

hyper-surface is generated through a Taylor series expansion to second order 

terms. The minimum of the quadratic surface is found through equating the 

gradient of the quadratic function to zero. The Gauss-Newton method 

estimates the minimum point of the quadratic surface by disregarding the
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second order partial derivatives o f the function. The resulting estimate of 

extreme value is utilised as a revised guess for the minimum of the sum of the 

square of the error. The algorithm is iterated until a specified level o f error is 

reached. The Gauss-Newton method converges rapidly but is strongly 

dependent on the quality of the initial guess.

The functions fitted to the data for the sphere attached to a wall were 

forced to match the low Reynolds analytical results. This was achieved with 

the coefficient o f drag by defining the following function.

CD = —  (31)
0 - Q , iITO,)

Where the function CD curve is fit with an exponential function and tends to zero 

as the sphere Reynolds number tends to zero. For the coefficient of lift, 

exponential functions that tended to zero at low Reynolds number were added 

to the analytical expression for lift coefficient.
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Chapter 3

Results

3.1 Introduction

In this chapter, the results of the numerical study are presented. The 

numerical studies are broken into two main categories: model data and 

accuracy determination, and are presented in this order. At the end of the 

chapter, some flow field images are presented.

The model data contains simulations which give accurate 

prediction of drag and lift variation with sphere Reynolds number at a constant 

Reynolds number with respect to plate length of 32 400. The model accuracy 

sections contain convergence studies of geometry, grid refinement, and 

boundary placement. In addition, the validation of the model predictions to 

analytical and experimental results is presented.

3.2 Simulation Results

A total o f 23 simulations were utilized to capture the variation of

coefficient of lift and drag over the Reynolds number range 0.1 -  250 for the
36
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sphere and 16 simulations to cover the cylinder Reynolds number range 0.06 -  

49. The simulations used the results from the convergence and accuracy 

testing to produce accurate data points. Variation of lift and drag coefficient 

with Reynolds number are displayed in Figures 3.1 and 3.2 for the sphere and 

Figures 3.3 and 3.4 for the cylinder. In the dimensional model, the inlet 

velocity profile and sphere or cylinder diameter were varied to change particle 

Reynolds number. At low Reynolds number, the analytical behavior of the 

coefficients, for both spherical and cylindrical geometry, can be seen as the 

coefficient o f lift is beginning to asymptote to a constant value and the 

coefficient of drag displays inverse proportionality to sphere Reynolds number.

6

5

□
o+*
£  3
o
£
®oO 2

0
0.1 1 10 100 1000

Sphere Reynolds Number

Figure 3.1 Numerical simulation data points displaying the variation of lift 
coefficient with sphere Reynolds number for the case of a sphere 
attached to a wall.
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Figure 3.2 Numerical simulation data points showing the variation of drag 
coefficient with sphere Reynolds number for the case of a sphere 
attached to a wall.
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100

Figure 3.3 Numerical simulation data points showing the variation of lift 
coefficient with cylinder Reynolds number for the case of a 
cylinder attached to a wall.
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Figure 3.4 Numerical simulation data points showing the variation of drag 
coefficient with cylinder Reynolds number for the case of a 
cylinder attached to a wall.

3.3 Grid Convergence

Discretization error is an obvious and conceptually simple error to

examine in numerical simulations. It is dependent on the discretization scheme

as well as the level o f grid refinement. To examine discretization error,

different meshes need to be produced to examine the influence level of

refinement has on solution variation.

To begin, a boundary layer absent of a sphere and cylinder was

simulated at various grid refinement levels to determine the necessary

conditions to accurately resolve a Blasius boundary layer. The results are

$
displayed in Appendix A. The integral quantities 8 and 0 reached grid
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convergence using 30 - 4 0  high aspect ratio prismatic elements near the wall. 

These elements are designed to provide fine mesh resolution perpendicular to 

the wall, but remain relatively coarse in the streamwise direction. A total o f 60 

nodes were used to resolve the boundary layer.

For the geometry containing a sphere, at a sphere Reynolds number of 

1, a detailed grid convergence study was undertaken. The nodal density was 

left low at distances far from the wall, but was increased at the wall and about 

the sphere. Grids were systematically refined while attempting to maintain the 

relative nodal density variation. The domain for the study had a top far field 

boundary placement of 30 sphere diameters and all other boundaries were two 

diameters from the sphere. The influence of the number of nodes, which is 

equal to the number of control volumes in the discretization, on the coefficients 

o f lift and drag is shown in Figure 3.5. The percent change in coefficient o f lift 

and drag in the most refined simulations is 0.8% and 0.04%, respectively. For 

the case of a cylinder attached to a wall, the domain under consideration had an 

equally placed inlet and outlet boundary at 5 cylinder diameters and a domain 

height o f 2*599. The results o f the grid convergence study are presented in 

Figure 3.6. At the highest level of refinement, the coefficient o f lift and drag 

changed by less than 0.05% and 0.1%, respectively.

Each of the final data points was checked for grid convergence by 

creating a mesh with ~ 30 -  40% fewer nodes and observing a change in 

coefficient of lift and drag less than 3 %.
40
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Figure 3.5 Grid convergence study for a sphere attached to a wall at a 
Reynolds number o f 1.
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Figure 3.6 Grid convergence study for a cylinder attached to a wall at a 
Reynolds number o f 1.
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3.4 Geometric Convergence

A sphere or cylinder contacting a flat surface presents great difficulties 

for meshing at and near the point o f contact. The method adopted in this 

research to overcome the difficulty is to replace the point o f contact with an 

alternate geometry. In the case of a sphere attached to a wall, a vertical 

cylinder intersecting the plane and the sphere was utilized. As the cylinder 

diameter approaches zero, the simulation geometry approaches the true 

geometric configuration.

At a sphere Reynolds number of 250, the effect of cylinder diameter on 

the coefficients o f lift and drag was examined. The results are reported as a 

percentage of sphere surface area removed due to the fact that forces are 

proportional to surface area. Variation of lift and drag with truncation is 

shown in Figure 3.7. At a truncation below 0.45%, the force coefficient o f lift 

and drag varied less than 1.1 and 2.3%, respectively.

Considering the case of a cylinder attached to a wall in a boundary 

layer, the point o f contact was modified by placing a rectangle at the point of 

contact. The results are reported as percentage of perimeter removed. The 

results are presented in Figure 3.8. Increasing the truncation from 3.2% to 

4.8% results in lift and drag coefficient changes o f 0.07% and 0.14%, 

respectively.
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Figure 3.7 Geometric convergence results for a sphere contacting a plane at 
a sphere Reynolds number of 250.

12.00

11.80

11.60

11.40

®  11.20 o
® 11.00oo
jC 10.80

10.60

10.40

10.20

10.00

Lift Coefficient 
Drag Coefficient

42.0

41.0

40.0

c0)
39.0 1

oo
38.0 o)

37.0

36.0

35.0
12 140 2 4 6 8 10

Perimeter Truncation, %

Figure 3.8 Geometric convergence results for a cylinder contacting a plane 
at a cylinder Reynolds number of 50.
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3.5 Boundary Placement Convergence

The placement o f boundaries, specifically the inlet and openings, was 

examined for its influence on the coefficients of force. Boundary placement 

convergence studies were undertaken at the Reynolds endpoints and midpoint 

of the studies. The placement o f the top opening was examined separately 

from the inlet and other opening boundaries. Figures 3.9, 3.10, and 3.11 

display the convergence results for the case of a sphere attached to a wall at 

sphere Reynolds numbers of 0.1, 10, and 250, respectively. They indicate a 

slightly decreasing trend of boundary placement importance with increasing 

Reynolds number. Consequently, the results of the Resphere= 0.1 boundary 

placement study were used for simulations in the range O.KRespftere<lO, and 

the Resphere= 10 study were used for simulations in the range \0<Resphere<250.

The top far-field boundary placement influence on the solution was 

examined at the sphere Reynolds number of 250. At this Reynolds number, 

the ratio o f the sphere diameter to the domain height, or blockage ratio, is 

highest. Consequently, the top boundary placement is expected to have the 

largest influence at the largest Reynolds number in the study. The height of 

the domain was varied from 8  to 28, where 8  was arbitrarily chosen to be 

I.9 8 9 9 , and the coefficient o f lift and drag changed by 1.9% and 3.3%, 

respectively. This indicates that resolving 8  for the remainder o f the 

simulations will produce accurate results.
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Boundary convergence studies are presented for the case o f a cylinder 

attached to a wall in Figures 3.12, 3.13, and 3.14, for the cylinder Reynolds 

numbers 0.1, 10, and 49. At a cylinder Reynolds number of 49, the domain 

height was changed from 21 diameters to 29 diameters and a change of 0.24% 

and 0.23% for coefficient of drag and lift, respectively.
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Figure 3,9 Boundary convergence study for the sphere geometry at sphere 
Reynolds number o f 0.1. Inlet, opening (side), and opening 
(outflow) were moved simultaneously.
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Figure 3.10 Boundary convergence study for the sphere geometry at sphere 
Reynolds number o f 10. Inlet, opening (side), and opening 
(outflow) were moved simultaneously.
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Figure 3.11 Boundary convergence study for the sphere case at a sphere 
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(outflow) were moved simultaneously.
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Figure 3.12 Boundary convergence study for the cylinder study at a Reynolds 
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moved simultaneously.
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Figure 3.14 Boundary convergence study for the cylinder study at a Reynolds 
number o f 49. Inlet, opening (side), and opening (outflow) were 
moved simultaneously.

3.6 Validation

There are many sources of error in a numerical solution to the Navier- 

Stokes equations. To further enhance the reliability o f the results, a critical 

component o f a numerical study is comparing predicted results to experimental 

or analytical data. In the subject under consideration, there exist analytical 

results for Resphere -> 0 and experimental results on lift at high sphere Reynolds 

number. The numerical results for the case of a cylinder attached to a wall in a 

Blasius boundary layer can not be validated due to the lack of experimental 

and analytical results.
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17At high Reynolds number, Willets and Naddeh produced some 

experimental results. In the Reynolds range of 43 -  100, they measured a 

coefficient of lift of 0.4 ± 0.08. In the numerical study, the coefficient o f lift 

varies between 0.47 -  0.67 for the Reynolds range 43 -  100, which overlaps 

the experimental range of values for the data point. Willets and Naddeh report 

two more values o f lift coefficient for two more ranges of Reynolds number, as 

shown in Table 1. These measurements do not correlate well with the 

simulation predictions. The largest discrepancy is in the Reynolds number 

range 83 -  140 where the experimental coefficient of lift was measured to be 

0.05 ± 0.02 and the corresponding numerical predictions for lift coefficient is 

0 .51-0 .39 .

At low sphere Reynolds number, the flow about the sphere becomes 

linear shear, and the analytical results for lift and drag coefficient are known. 

At the lowest sphere Reynolds number simulated, Resphere= 0.1, the coefficient 

of lift was calculated to be 5.4017, which is 7.79 % lower than the analytical 

result. It is clear from Figure 3.1 that the coefficient of lift is asymptotically 

approaching the analytical result and the difference in lift coefficient at 

Resphere= 0-1 is likely physical. The coefficient o f drag at Resphere= 0.1 was 

calculated to be 409.5 in the simulation and the analytical value is 408.2, which 

represents a 0.3% error. In addition, the coefficient of drag values from the 

simulation in the range 0.\<Resphere<QJ\ were curve-fitted with a power 

function and the resulting formula follows.
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(32)
Re

The coefficient the curve-fit from Eqn (32) is 0.6% higher than the analytical 

value.

3.7 Curve Fitting

The results of this research were fitted into a functional form using 

nonlinear regression. The data was fitted using the Gauss-Newton method of 

optimization. The base functions were chosen as exponentials due to the wide 

range of Reynolds number considered as well as to force the functions to 

display analytical asymptotic properties at low sphere Reynolds number. The 

coefficient of drag was broken into two functions, the analytical function CD ana 

(valid at low Reynolds number) and the relative difference between the 

analytical data and simulation results, i.e.

The data for y (R e sphereX f°r the case of a sphere attached to a wall, is shown in 

Figure 3.15. The trend was fitted adequately with the following exponential.

The absolute relative error between the drag coefficient curve-fit and the 

simulation data is shown in Figure 3.16, with the maximum error being 4.3%. 

This error is of the same order as the simulation.

l - X R e , ^ )
(33)

s p h e r e ) = 0.2817 Re ~°0826 «sinh(0.238Re) (34)
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For the case of a circular cylinder attached to wall, an analytical 

expression for drag in creeping flow conditions does not exist. The low 

Reynolds number results o f the simulation, in the Reynolds number range 

0.06</?e<0.47, were used to fit a function similar to CDana for the sphere. The 

function was generated with nonlinear regression and is as follows.

c  -33 .187 / n51
D ,ana  ~  / R e ° 9'75

An equation just like Eqn (33) was then used but with the cylinder replacing 

the sphere. The data for y(Recyi,nc/er), generated using Eqn. (35), for the case of 

a cylinder attached to a wall, is shown in Figure 3.17. The trend was fitted 

with the following exponential function.

X R e ^ J  = 0.1363 Re'0 0993 asinh(1.0643Re'9112) (36)

The absolute relative error between the drag coefficient curve-fit and the

simulation data, for the case of a cylinder attached to a wall, is shown in Figure

3.18, with the maximum error being 4.05%

A sum of two hyperbolic tangent functions was used to fit the lift

coefficient data for the case of a sphere attached to a wall.

C, = 5.811 -4.339 Re00429 tanh(o.9395 Re03531- 0.2966)
+ 0.0589tanh(-0.1137Re+2.5386)

The absolute relative error compared to the simulation data is shown in Figure 

3.16, with a maximum of 3.7%.
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Both the fitted coefficient of lift and drag functions, Eqns (33) and (37), 

are valid for the sphere Reynolds number range 0 < R e sphere< 2 5 0 .

The coefficient of lift for a cylinder attached to a wall was fitted with a 

simplified version of Eqn (37).

CL = -7.5863+ 35.6496Re0 008024 tanh(0.5561Re-°l85) (38)

The absolute relative error compared to simulation data for is shown in Figure

3.18, with the maximum error being 1.64%. The empirical functions, Eqns 

(36) and (38), describing the evolution of drag and lift acting on a cylinder 

attached to a wall are valid in the cylinder Reynolds number range 

0.06<Recyinder<49.2.
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Figure 3.15 The ratio of difference between the simulated drag force (actual) 
and the analytical drag force to the numerical drag force for a 
sphere attached to a wall.
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Figure 3.16 The absolute relative error between the curve-fitted functions for 
lift and drag and the simulated values for the case of a sphere 
attached to a wall.
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Figure 3.17 The ratio o f difference between the simulated drag force (actual) 
and the analytical drag force to the numerical drag force for a 
cylinder attached to a wall.
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Figure 3.18 The absolute relative error between the curve-fitted functions for 
lift and drag and the simulated values for the case of a cylinder 
attached to a wall.

3.8 Flow Field Visualization

Contour plots and streamline plots are shown for the cylindrical 

geometry at a Reynolds number of 0.06 in Figures 3.19 and 3.20, respectively. 

Low Reynolds number symmetry is apparent from these plots. At a Reynolds 

number of 49, similar plots are presented in Figures 3.21 and 3.22. For the 

case of a sphere attached to a wall, contour and streamline plots are presented 

for Reynolds numbers o f 0.1 and 250 in Figures 3.23 through 3.26.
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Figure 3.19 A velocity contour plot of a cylinder attached to a wall at a 
cylinder Reynolds number o f 0.06.
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Figure 3.20 A streamline plot of a cylinder attached to a wall at a cylinder 

Reynolds number o f 0.06.
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Figure 3.21 A velocity contour plot of a cylinder attached to a wall at a 
cylinder Reynolds number o f 49.
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Figure 3.22 A streamline plot of a cylinder attached to a wall at a cylinder 
Reynolds number of 49.
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Figure 3.23 A contour plot on the streamwise symmetry plane of the sphere 
showing velocity variation at a Reynolds number of 0.1.
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Figure 3.24 A plot on the streamwise symmetry plane of the sphere showing 
streamline variation at a Reynolds number o f 0.1.
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Figure 3.25 A contour plot on the streamwise symmetry plane of the sphere 
showing velocity variation at a Reynolds number of 250.
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Figure 3.26 A plot on the streamwise symmetry plane of the sphere showing 
streamline variation at a Reynolds number o f 250.
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Chapter 4 

Discussion

4.1 Model Accuracy

A great deal o f effort was expended to ensure the simulation produced 

accurate results. A benefit of studying laminar flow is that no modeling 

approximations beyond those used to derive the Navier-Stokes equations are 

utilized. Thus, the mechanics equations are solved directly and precise field 

information does not have to be blurred through the process o f time-averaging, 

and the additional approximate closure models do not need to be introduced. 

Consequently, the error in this study is due to boundary conditions, the 

domain, the method the equations are solved, and machine limitation. As 

discussed in Chapter 2, the largest sources of error are discretization error, 

boundary placement error, and geometric convergence error.

4.1.1 Convergence Studies

The boundary conditions used in this model, besides the inlet and no

slip wall conditions, are not exact. However, they satisfy a critical condition,
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which is to allow mass and momentum transfer both into and out o f the 

domain. Setting the first derivative with respect to boundary normal equal to 

zero is a widely used, inexact, and an incompletely understood boundary 

condition. Utilizing this boundary condition is the primary reason the 

placement and orientation of the boundaries have an influence on the simulated 

sphere lift and drag forces. However, judicious usage of the outflow boundary 

condition can yield accurate results, as was shown in the boundary placement 

studies. The boundary placement convergence studies indicated a decreasing 

importance of boundary placement with increasing Reynolds number. This is 

expected because, as Reynolds number shrinks, the influence of the sphere on 

the velocity and pressure field solutions grows. An analogy can be drawn 

against the solutions o f uniform flow about a sphere with no wall present. In 

the creeping flow solution of uniform flow about a sphere, the stream-wise 

velocity is retarded 3.75% at a distance of 10 sphere diameters. The potential 

flow solution for uniform flow about a sphere (high Reynolds number)

•5
indicates a 6.25 x 10' % change in velocity at an identical number of sphere 

diameters. Clearly, it is expected that approximate boundary conditions must 

be placed further away at low Reynolds number to obtain accurate numerical 

calculations.

In this study, an atypical geometry convergence study was needed to

ensure model accuracy. The domain itself was modified to be an

approximation to the exact geometry under consideration. This was
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implemented to overcome meshing difficulties encountered when considering 

the singular point that arises at the contact position of a sphere and plane. An 

alternative solution to geometric modification could be to map the domain into 

a different domain using a transformation. One such transformation that could 

be used, and was utilized in the low Reynolds number analytical shear flow 

solution to the problem, is the tangent-sphere transformation.

//cos^
X

11 +  V 2

y  = (39 )

/ L I  +  V

z -
JJ.2 +  V 2

A sphere tangent to the x-y plane is generated by holding v constant.

<40)

This method removes the necessity of geometric approximation from the 

analysis, yet introduces difficulty in the numeric approximations of differential 

operators. This type of transformation was not possible in the commercial 

code used. Consequently, using a domain modification via geometric 

approximation was the practical solution. Two methods of geometric 

approximation exist. The method adopted in this study was to place a small 

diameter cylinder vertically from the contact point to the sphere. An alternate 

geometric modification would be to truncate the sphere and place it on the 

plane. In this method, the solution is more sensitive to geometry change
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because the entire sphere is shifted vertically in the boundary layer whereas 

with the cylinder-truncation method only a small area near the base o f the 

sphere is affected. However, both methods have the potential to model the 

idealized geometry.

The geometry convergence study showed that the lift and drag on the 

sphere at a Reynolds number of 250 were relatively unaffected by the 

truncation. At 4.17% truncation of the sphere area, the lift and drag 

coefficients changed by only 5.69% and 1.52%, respectively, from the surface 

area truncation level o f 0.11%. For the case circular cylinder case, a perimeter 

truncation change from 13.1% to 3.19% resulted in lift and drag coefficient 

changes of 0.07% and 0.14%, respectively. This is important from a physical 

perspective because it indicates that the lift and drag coefficients have low 

sensitivity to the geometry of the point o f contact. A real sphere or cylinder 

contacting a real planar surface results in a complicated geometry which 

depends upon the material properties o f the sphere and the wall as well as the 

various forces acting on the bodies. The convergence study indicates that the 

lift and drag coefficient results are applicable to moderately deformable 

spheres and cylinders without a great loss in accuracy.

The geometric convergence results are more important at a high 

Reynolds number than at low. This result can be inferred from analytical 

solutions involving a sphere and a disk in creeping, uniform flow. A sphere in 

creeping, uniform flow has the following formula for drag coefficient.
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Fd = (i7ijj.Ua (41)

While a disk with a surface normal parallel to the flow has the following drag 

formula.

A disk with a surface normal perpendicular to the flow has the following drag 

formula.

In the above formulas a is the disk radius. The difference between the disk 

formulas and the sphere formula for drag force, as pointed out by White29, is 

only 15% and 43% for the disk surface vector parallel and perpendicular to the 

flow, respectively. Despite the tremendous difference in geometry and 

orientation, the drag forces remain similar. Hence, the geometry convergence 

would be expected to have a less pronounced effect at low Reynolds number 

than at high.

The largest source of error in the simulation of a sphere attached to a 

wall was discretization error. Due to restrictions on computational capacity, 

grid convergence was deemed complete when the lift or drag coefficient 

changed less than 3%. This error could be reduced with increased 

computational capacity. The detailed grid convergence test showed monotonic 

convergence of lift and drag coefficient on the three most refined meshes, 

which according to Ferziger and Peric32 is a necessary result for obtaining grid

Fd -  \6jiUa (42)

(43)
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convergence on unstructured meshes. This contrasts the case of a cylinder 

attached to a wall, where sufficiently fine grids were used to drive changes in 

coefficient of lift and drag under 0.25%.

Another source of error arises from the iterative solution of the set of 

nonlinear algebraic equations. The maximum mass and momentum residuals

n

of the solution were driven to a steady value of -10 ' in the solution of all 

models. The residual level could be reduced by orders of magnitude if double 

precision were used. The effect of double precision solution on the sphere 

simulation was checked on a coarse and refined grid. Double precision was 

found to have negligible influence on lift and drag coefficient when the grid 

size was greater than 400 000 nodes. At a sphere Reynolds number of 1, a grid 

with 23 826 nodes showed a change of 0.78% and 3.22% for coefficient of 

drag and lift, respectively, when solved with double precision. With a grid of 

102 736 nodes, the coefficient of drag and lift changed by 0.28% and 2.09%, 

respectively. When refinement was changed to 400 000 nodes, the changes in 

both coefficients were less than 0.5%. In the cylinder simulations, the 

residuals were driven to a value of 10'6. Upon comparison to identical

o

simulations driven to a residual of 10' , the coefficients o f lift and drag 

changed less than 0.98% and 0.14%, respectively, indicating algebraic 

convergence.
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4.1.2 Validation

Validation in this study solely considers the case of a sphere attached to 

a wall due to the lack of analytical or experimental results for a cylinder. At 

high sphere Reynolds number, the simulation predicts a lift coefficient that 

matches within experimental error one measurement of three provided by

| n
Willetts and Naddeh. Such disagreement between experiment and simulation 

should not detract from the perceived accuracy of the computational results. 

Due to the low magnitude of the forces involved, the experiment is difficult. 

Actual force measurements are not stated in the results of Willets and 

Naddeh17, but instead state dimensionless results without any indication of 

error, except perhaps the awkward reporting of Reynolds number range for 

which the force is valid. They used a force measuring device (capacitance 

changing with deflection) that was gravimetrically calibrated and had a force 

resolution of 0.2 mN. They utilized mineral oil (SG 0.931) in a rectangular 

duct and report boundary layer velocity measurements. At a sphere Reynolds 

number of 200, the numerical results o f this study predict a coefficient o f lift of 

~ 0.3. At the sphere midpoint, 10 mm, they measured a velocity of ~ 0.5 m/s. 

From this data the lift force is calculated to be 11.8 mN. If  the accuracy of the 

force measuring device is taken to be its resolution, a liberal approach, the 

measurement error is ~ 2%. If the experimental lift coefficient is used in the 

error analysis, the error increases to 6%, and becomes 29% for the
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measurement range 83</?e^/,ere<140. The difficulty of the experiment was also 

reiterated by Muthanna et al. who adopted techniques from atomic force 

microscopy for measurement of lift and drag on a sphere in a low Reynolds

i o
number shear flow study. The experimental apparatus is promising, yet 

difficulties arise in instrument calibration and sensitivity. In addition to the 

measurement difficulties, the experiment does not predict the monotonic trend 

of coefficient o f lift variation with increasing Reynolds number. Certainly, 

small increases in Reynolds number are not expected to produce nearly an 

order of magnitude leap in coefficient of lift. Further experimental work needs 

to be completed to validate the results presented in this work.

At low sphere Reynolds number, the validation results strongly support 

the accuracy of the simulation. The coefficient of lift is asymptotically 

approaching the analytical value, as shown in Figure 3.1. At the lowest sphere 

Reynolds number considered in the study, the analytical value differs by 7.79% 

from the simulation value. However, this difference can be partially attributed 

to various sources of error within the simulation, such as discretization error, 

but is most likely a physical difference. At lower sphere Reynolds numbers, it 

is expected that the coefficient of lift would match the analytical result. When 

considering the coefficient of drag, the simulation at low sphere Reynolds 

number matches the analytical value to a high degree of accuracy. At 

Resphere=0.11, the analytical and simulation values match within 0.3%. These 

results lend a great deal of confidence in the simulation results.
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The overall accuracy, or order, of the study can not be stated 

definitively due to the nature of unstructured grid simulations (i.e. Richardson 

extrapolation can not be used). However, a crude estimation of error can be 

generated by considering the errors in the convergence testing. The maximum 

grid convergence error accepted was 3% on a grid with 30% -  40% fewer 

nodes. The error arising from boundary placement is ~ 2%, and is ~ 2% from 

sphere truncation. A conservative estimation of error is created by assuming 

the errors are dependent and additive, which leads to a general simulation error 

of ± 1%

4.2 Model Results

The simulation results for a spherical body attached to a planar wall, 

along with empirical relationships and low Reynolds number analytical 

behavior are shown in Figures 4.1 and 4.2. The hydrodynamic results for a 

circular cylinder attached to a wall are displayed in Figures 4.3 and 4.4. The 

curve fitted functions relating hydrodynamic force to sphere Reynolds number, 

Eqns (34) and (37), are valid through the range 0<Resphere<250. Above 

Resphere=250, the coefficients o f lift and drag are expected to have a mean 

component in addition to a fluctuating component due to the shedding of 

hairpin vorticies.19 The relationships developed for the lift and drag on a 

cylinder, Eqns (36) and (38), are valid in the range 0.06<Re< 49.
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The lift and drag trends, for the sphere and cylinder results, are similar 

over the Reynolds range examined. The defining difference between the two 

occurs at low Reynolds number where drag asymptotes to an infinite value and 

the lift asymptotes to a constant value. An important result o f this work in 

addition to determining the lift and drag characteristics of a sphere attached to 

a wall in a Blasius boundary layer is determining the sphere Reynolds number 

at which the low Reynolds analytical results become inaccurate. Simulation 

data for coefficient of drag deviates by 10% from the analytical result a sphere 

Reynolds number o f 1.6, and for coefficient o f lift the analytical relationship 

deviates by less than 10% at a sphere Reynolds number o f 0.11.

It is known that the coefficients of lift and drag presented in this work

are functions of some measure of boundary layer thickness, such as the ratio of

boundary layer thickness to sphere or cylinder diameter or the Reynolds

number based on plate length and the particle Reynolds number. The

empirical equations presented were generated at a Reynolds number with

respect to plate length of 32 400. However, at close vertical distances to the

wall, the Blasius boundary layer becomes a shear flow. Under the conditions

of shear flow, the Reynolds particle number and the Reynolds number with

respect to plate length are dependent and the force coefficients become single

variable functions. Consequently, at low particle Reynolds number, the

empirical functions become accurate for Blasius boundary layers at all

Reynolds number with respect to plate length. As the particle Reynolds
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number increases, the particle occupies a larger portion of the boundary layer 

and the functions developed in this study become less accurate and more 

dependent on the Reynolds number with respect to plate length. Considering 

the highest cylinder and sphere Reynolds numbers in this study, the particle 

Reynolds number which is most influenced by plate Reynolds number, 

boundary layer velocity profiles can be generated to show the influence of 

increasing plate Reynolds number. Figures 4.5 and 4.6 display various 

velocity profiles for a constant cylinder Reynolds number of 49 and for a 

constant sphere Reynolds number of 250. It is clear that as particle Reynolds 

number is decreased from the maximum values considered in this study that 

the various velocity profiles collapse into a shear profile. Since the velocity 

profiles differ very little at the maximum particle Reynolds number considered, 

especially for the cylindrical geometry, the empirical functions generated for 

both lift and drag coefficient can be used to predict lift and drag at plate 

Reynolds number other than 32 400. The accuracy of the prediction increases 

as the particle Reynolds number is decreased.

Should an experimentalist be interested in verifying the results 

presented in this study, insight into the experimental design can be gained 

through the empirical relationships developed in this study. The selection 

materials and geometry such that the forces on the sphere are maximized for a 

given experimental rig could be calculated, and would allow an accuracy 

prediction of the given force measurement system.
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Figure 4.1 The variation of coefficient o f lift for a sphere attached to a wall 
in a Blasius boundary layer in the Reynolds number range 0.1 -  
250. Simulation and analytical results are shown as well as the 
empirical fit.
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Figure 4.2 The variation of coefficient of drag on a sphere attached to a wall 
in a Blasius boundary layer for the Reynolds number range 0.1 -  
250. Simulation and analytical results are shown as well as the 
empirical fit.
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Figure 4.3 The variation of coefficient o f lift for a circular cylinder attached 
to a wall in a Blasius boundary layer in the Reynolds number 
range 0.06 -  49. Simulation results are shown as well as the 
empirical fit.
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Figure 4.4 The variation of coefficient of drag for a sphere attached to a 
wall in a Blasius boundary layer in the Reynolds number range 
0.06 -  49. Simulation results are shown as well as the empirical 
fit.
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Figure 4.5 Velocity profile variation holding Recylinder constant at 49. The 
height is normalized against cylinder diameter and the velocity against the 
velocity at the midpoint o f the cylinder.
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Figure 4.6 Velocity profile variation holding Resphere constant at 250. The 
height is normalized against sphere diameter and the velocity against the 
velocity at the midpoint of the sphere.
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4.3 Physical Applicability

The relationships generated in this work are primarily useful for 

predicting impending motion of a sphere or cylinder attached to a wall in a 

Blasius boundary layer. Examples of such a scenario include drug particles in 

a dry powder inhaler in the pharmaceutical industry, removal o f dust particles 

in a ventilation system, and incipient pollen motion. The models allow the 

prediction of particle movement for a boundary layer flow, or conversely the 

calculation of flow conditions necessary to cause particulate impending 

motion. Incipient motion models are typically created through the 

consideration of moment and force balances on a characteristic particle, or 

atypically by considering the energy of the system. For both sets o f models to 

be successful, the forces acting on the sphere must be well-characterized. 

Knowledge of the hydrodynamic forces is but one aspect o f the solution. A 

notable obstacle in such a model is the characterization of the electrostatic 

interaction between the wall and the particle. Electrostatic interactions are 

known to be highly dependent upon the geometry near the point o f contact. 

Consequently, highly detailed geometric information must be known to 

accurately predict electrostatic forces. It is clear from this discussion that 

statistical analysis lends itself to resuspension or impending motion models. In 

realistic situations, particles with a range of sizes lie on a flat plate with a given 

roughness. This scenario gives rise to a distribution of lift and drag forces, for
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which there is a corresponding distribution of electrostatic forces, gravitational 

forces, and geometric information. The model will not be developed in this 

work, as that is not the objective, but this work has direct consequences in such 

analysis.

4.4 Extension o f Work

A simple extension of this work would be to characterize the unsteady 

lift and drag forces on a circular cylinder or sphere attached to a plate in a 

Blasius boundary layer prior to turbulent transition. Further, experimental 

evidence could be generated to either support or modify the results presented in 

this work. Analytical results for creeping shear flow past a cylinder attached to 

a wall could be generated to extend the low Reynolds number validity of the 

lift and drag functions.

In physical situations, rarely does a single, approximately spherical or 

cylindrical object stand alone on a plate. There are often many objects, and 

such is the case with dry powder inhalers in the pharmaceutical industry. It 

would be practical to examine the variation in lift and drag coefficients of a 

sphere or cylinder attached to a wall due to the varying proximity of other 

particles. Also, realistic particles often have rough surfaces and an 

investigation of the influence of average asperity size on the lift and drag 

trends as well as the Reynolds number at which the flow regime becomes 

unsteady would be interesting.
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Possibly the most important extension of this work is to determine how 

sensitive the empirical relationships developed in this study are to the 

Reynolds number with respect to plate length.
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Chapter 5

Summary

Determining the forces on a solid body is a fundamental and important 

task in fluid mechanics. It is a difficult undertaking that most often does not 

yield to existing analytical methods, which makes computational or 

experimental characterization necessary. An object and flow condition that 

lends itself to computational analysis is laminar flow about a sphere, or a 

circular cylinder in the two-dimensional case, attached to a planar wall in a 

Blasius boundary layer. This model represents an approximation to many 

physical situations, including flow in a dry powder inhaler, flow over 

substrates containing contaminants in microelectronics fabrication, and 

atmospheric flows over roughly planar surfaces holding roughly spherical 

particles (pollen, sand, etc.). The aim of this research was to characterize the 

lift and drag forces on a sphere and a circular cylinder attached to a wall in a 

Blasius boundary layer under the constraint o f laminar, steady flow about the
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sphere. Additionally, the Reynolds number with respect to plate length was 

held constant at 32 400.

A commercially available computational fluid dynamics software 

package was used to model the two geometries over a sphere Reynolds number 

range of 0.1 -  250 and a cylinder Reynolds number range of 0.06 -  49. 

Detailed convergence testing was completed to ensure model accuracy, 

including grid convergence and boundary placement testing. The 

computational domain utilized a modified geometry, where the contact point 

singularity of the sphere was removed through the placement o f a vertical 

cylinder intersecting the wall and the sphere. For a cylinder placed tangent to a 

planar surface, the singular line was removed through the placement o f a 

rectangular box at the point of intersection. Convergence testing was also 

completed on the geometry to determine the influence of geometric 

modification on coefficient o f lift and drag. The sphere simulation was 

validated at low Reynolds number with analytical solutions and at high 

Reynolds number with experimental data for coefficient o f lift. The problem 

consisting of a circular cylinder placed tangent to a wall and normal to the 

freestream direction has yet to be examined, either experimentally or 

analytically, in the scientific community. Thus, the cylindrical results 

generated in this study were not validated.

The convergence results indicated that accurate results could be

obtained if the top boundary was placed such that the boundary layer, 8, was
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completely resolved. Additionally, the influence of the remaining boundaries 

was studied simultaneously at the sphere Reynolds numbers 0.1, 10, and 250, 

and at cylinder Reynolds numbers o f 0.06, 10, and 49. The results indicated 

that convergence was obtained at distance to sphere diameter ratios o f 7, 6, and 

6, respectively, and at distance to cylinder diameter ratios of 60, 50, and 30. 

The geometry convergence study indicated a relative insensitivity of the force 

coefficients to the amount of sphere truncated. At 0.25 % truncation of sphere 

surface area, the lift and drag coefficients were 1.08% and 1.00% different 

from the 0.11% truncation. The cylinder perimeter truncation displayed a 

0.14% and 0.07% change in coefficient of drag and lift when the surface area 

truncation was reduced from 4.8% to 3.2%. Validation results at high sphere 

Reynolds number for the coefficient of lift match within experimental error 

one of three data points generated by Willets and Naddeh.17 At low sphere 

Reynolds number, the coefficient of lift is 7.79% different from the analytical 

result, but this is likely a physical difference, and as sphere Reynolds number 

decreases the analytical and computational results are expected to match. The 

coefficient of drag calculated by the simulation at Resphere = 0-1 was 0.3 % 

different from the analytical result. The results o f the convergence studies 

were used to produce 23 data points in the sphere Reynolds range 0.1 -  250 

and 16 results in the cylinder Reynolds number range 0.06 - 49. The resulting 

data points were curve-fitted with exponential functions which were forced to

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



match the low Reynolds number analytical solutions for the case of a sphere 

attached to a wall.

The results of the sphere simulations show the particle Reynolds 

number at which the analytical results deviate appreciably (10%) from the 

physical, thus giving limits on usage of the low Reynolds number analytical 

relationships. For a coefficient of drag, the analytical results should be used 

below a sphere Reynolds number of 1.6 and for the coefficient o f lift the 

analytical expression is accurate up to a Reynolds number o f 0.11. The 

physical applicability o f these results lies in the domain of impending motion 

prediction of spherical or cylindrical particles in a Blasius boundary layer. 

Knowledge of the forces acting on the particle, including gravimetric, 

electrostatic, contact, and hydrodynamic, along with detailed geometric 

information at the point where the particle contacts the wall, allows calculation 

of the conditions necessary for rolling, sliding or vertical motion of the sphere. 

This research contributes understanding and insight into the hydrodynamic 

forces acting on the sphere and the cylinder.
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Appendix A 

Blasius Boundary Layer Simulations
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A simple, rectangular prismatic geometry was selected to examine the influence of 

grid refinement on straightforward Blasius boundary layer simulations. The domain 

size was selected to be 5mm deep by 50 mm wide by 25 mm high. The Reynolds 

number with respect to plate length was selected to be 32 360. The grids consisted of 

an inflation layer adjacent to the solid boundary, which consists of high aspect ratio, 

stacked, triangular prisms, and tetrahedral elements for the remainder of the domain. 

A total of 6 grids were considered, with the total number of inflation layers being 5, 

10, 20, 30, 40, and 50, corresponding to grids 1 through 6, respectively. The 

momentum thickness, displacement thickness, and wall friction coefficient were 

examined. At the midpoint of the domain, the variation of momentum thickness and 

displacement thickness is shown in Figures A.l and A.2. The variation of wall 

friction coefficient with streamwise direction is shown in Figure A.3.
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Figure A.l The variation of displacement thickness with grid refinement.
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Figure A.2 The variation of momentum thickness with grid refinement.
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Appendix B 

Code
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The inlet boundary utilised in this research consists of a supplied velocity profile.

The velocity profile is a fully-developed Blasius boundary layer. The code presented 

in this appendix solves the Blasius equation using a shooting method and linearly 

interpolates the velocity profile to match a given node distribution on an inlet 

boundary.

%This program solves the Blasius flat-plate laminar Eqn (ODE)
%using a shooting method with Runge-Kutta. The boundary layer is outputed 
%to a text file.

clear

tspan=[0 10]; 
maxerr=0.000001; 
error=l; 
maxit=100; 
n=0;
options = odeset('RelTol',le-9,'AbsTor,[le-9 le-9 le-9]); 

yold0=[0 0 1];
[t,yold]=ode45(@rhs,tspan,yold0,options); 
ynew0=[0 0 0.5];
[t,ynew]=ode45(@rhs,tspan,ynew0,options);

while (n<maxit) & (error>maxerr) 
error=(abs(ynew(length(ynew),2)- 

yold(length(yold),2)))/abs(ynew(length(ynew),2)); 
n=n+l;
m=(ynew(length(ynew),2)-yold(length(yold),2))/(ynew0(3)-yold0(3));

yold=ynew;
yold0=ynew0;
ynew0(3)= (l-yold(length(yold),2) + m*yold0(3))/m;

[t,ynew]=ode45(@rhs,tspan,ynew0, options); 
end

function rhs=rhs(t,y) 
rhs=[y(2);y(3); -0.5*y(l)*y(3);]; 
end

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



%...........—COMPARISON of ACTUAL to NUMERICAL
ada=[0:0.5:8];
fprime=[0 0.1659 0.3298 0.4868 0.6298 0.7513 0.8460 0.9130 ...

0.9555 0.9795 0.9915 0.9969 0.999 0.9997 0.9999 1 1]; 
figure(l) % plotoff 
plot(t,ynew(:,2)); 
hold
plot(ada, fprime, 'ro');
M=[t,ynew(:,2)];
MM=[t.*ynew(:,2)-ynew(:,l)]; 
dlmwrite('blasius.dat',M,'precision', 12); 
dlmwrite('vertvel.dat',MM,'precision', 12);

% The following program interpolates a Blasius velocity profile onto a supplied file 
%of node heights.

uinf=input('enter freestream velocity, m /s:'); 
xpos=input('enter the x-position, m :'); 
nu=0.01; %1.83 le-5/1.185;
M=dlmread('blasius. dat');
I=dlmread('height.txf);
MM=dlmread('vertvel. dat');

scale = sqrt(nu*xpos/uinf); 
z=M(:,l)* scale; 
uana=M(:,2)*uinf; 
ada=I./sqrt(nu*xpos/uinf); 
adaAN=M(:,l);

% Interpolate to find horizontal velocity-----------------
for i =1 :length(I) %loop for all I values 

a=find(z>I(i)); 
a=a(l);
u(i)=(I(i)-z(a-l ))/(z(a)-z(a-1 ))*(uana(a)-uana(a-1 ))+uana(a-1); 

end

% Interpolate to find vertical velocity---------------------
for i = 1 :length(I)

b=find(adaAN>ada(i));
b=b(l);
v(i)=(ada(i)-adaAN(b-1 ))/(adaAN(b)-adaAN(b-1 ))*(MM(b)-MM(b-1 ))+MM(b-1); 

end
V=uinf. * 0.5/sqrt(uinP xpos/nu). * v;
%---------------------------------------------------------------------------------

figure(l)
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plot(uana,z);
hold
plot(u,I,'o')
axis([0 1.05*uinf0 1.05*max(I)]);

figure(2) 
plot(V,I,'o') 
format long

%--------------Write files used for inlet velocity
dim write('inletBCu.txt',u','precision', 12); 
dlmwrite('inletBCv.txt', V','precision', 12);
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