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1- Objective 
 

This project aims to test and optimize the performance of the YottaYotta distributed 
storage system over two geographically separated sites. 
 
The setup for the actual tests will consist of two sites with two YottaYotta systems in 
each site. It is envisioned that the two sites are connected via DummyNet for WAN 
emulation. The bandwidth and latency connecting the two sites will be adjusted 
according to the test requirements. 
 
The project can be summarized through the following steps: 
 

• Familiarization with product: 
- Introduction to YY CLI commands. 
- Introduction to YY firmware commands. 
- Fiber Channel switch configuration. 

 
• Block level testing 

- Long sequential reading. 
- Long sequential writing. 
 

• Data analysis 
- Front-end (this term will be explained later on this report) throughput. 
- WAN traffic throughput. 
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2- Goals 
 
After a familiarization with the products and technologies involved in the testing 
environment, the proposed setup using the YottaYotta network storagers (GSX 3000) was 
implemented and the first performance tests could be started. 
 
We were able to implement and gather throughput measurements for the following 
performance tests1: 
 

Test Configuration Involved 
Default Settings 
Pre-fetch 
Volume Stripe 
TCP settings 

Large Sequential Read 

COM window 
Default Settings 
WOF (Write Order Fidelity) 

Large Sequential Write 

COM window 
 
All the tests were implemented using a T3 link under 0, 50 100 and 150 ms of round trip 
time latency. 
 
In addition, we were able to optimize our YottaYotta network storage system setup while 
under low bandwidth regime (T3 link) to archive higher performance when compared 
with the same setup under default configuration. The tuning strategies used to optimize 
performance under low bandwidth regime consist mostly in adjusting optimal values for 
some key parameters (e.g. pre-fetch, network interface buffer size, etc) and maximizing 
WAN throughput over the T3 link by tuning COM2 port parameters to avoid TCP 
window collapsing. 
 
It was defined that to proceed with testing with PolyServe, a YottaYotta setup 
configuration that yields WAN reading and writing performance of at least 70% of the 
full T3 bandwidth over 5000 km of distance (50 ms of round trip time latency) should be 
archived. Therefore, this project does not cover performance testing with PolyServe 
stretch file system interacting through the YottaYotta layer with DR1 (distributed RAID 
1) as proposed in the former project plan because block-level performance across the 
WAN at this point was still unacceptably low. 

                                                
1 The performance tests mentioned above will be explained with more details in the next sections of this 
report. 
2 COM is the YottaYotta proprietary protocol for inter node communication and will be explained later 
with more details. 
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3- Methodology 
 
 
3.1- YottaYotta Network Storager 
 
YottaYotta’s GSX 3000 is a storage network appliance that resides between the data 
paths between servers and storage, providing scalable geographic storage replication, 
continuous data availability, and geographic SAN (storage area network) clustering. 
 
GSX 3000 nodes can be clustered, with each additional GSX 3000 providing additional 
bandwidth resources, cache memory and performance. Our setup consists of a 2X2 
distributed clustered system which means two GSX 3000 nodes on both two sites. 
 
3.2- Network Configuration 
 
The figure below represents our logical network topology: 
 

 
 
The block level workload servers are used to implement block level writing and reading 
operations. 
 
On both sites, the block level workload server is connected to the YottaYotta network 
storage nodes via fibre channel and each node is connected, also via fibre channel, to 
locally attached storage. 
 
The communication between sites is performed by the YottaYotta network storage nodes 
through their Gigabit Ethernet interfaces. 
 

 

Block Level  
Workload Server 

DR1

  

DummyNet
  

Switch Switch

  

T3 Link = 45 Mbps
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DummyNet is used between the sites for WAN emulation (T3 link) and the network 
storagers are configured to create a distributed RAID 1 (DR1). 
 
DummyNet is a flexible tool for bandwidth management and for testing networking 
protocols. It works with IPFW (IPFW is one of the FreeBSD firewalls) to simulate the 
effects of network bandwidth limitations, propagation delays and packet loss by 
intercepting packets using IPFW rules. 
 
A DR1 is a RAID 1 which spans sites in geographically distributed (multi-site) system; it 
is not limited to one site. It is created with previously local RAIDs on each desired site as 
shown in the figure below: 
 

 
 
 
3.3- Large Sequential Read Testing 
 
The throughput performance for reading operations will depend on the network storagers 
cache state: 
 
- Cold cache: Cache is empty and the disk is being hit. Tests on this state essentially 

measure how quickly the index data can be located and read from the disk 
- Warm cache: Local network storage node cache contains the data which will be 

read in memory. It essentially tests how quickly the index data can be located and 
read from the local network storage node cache. 

- Remote warm cache: The network storage nodes on the remote site contains the 
data which will be read cached in memory. It essentially tests how quickly the index 
data can be located and read over the WAN (T3 link) from the remote network 
storage node cache. 

 
If the workload server of a site is reading data through the network storage nodes, the 
nodes of the site where the reading operation is being performed will, first of all, check 
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for this data on their own cache, and then if this data is not cached there, they will do the 
same on the remote cache (network stogeragers’ cache of the other site). Finally, if the 
data is not there either, it will be read from the locally attached storage. 
 
Therefore, the implemented large sequential reading tests were executed under cold, 
warm and remote warm cache state. To be able to do so and to collect the whole reading 
operation performance behavior, the following procedure was performed: 
 

(1) Clean the cache of the servers and netstoragers (YottaYotta GSX 3000). 
(2) Enable I/O performance monitoring3 on netstoragers. 
(3) Reset I/O performance monitoring statistics on all network storage nodes. 
(4) In one of the sites, run dd4 (single-threaded) on the workload server to read 1GB 
of data. Once the reading operation is completed, collect throughput statistics from dd 
output. That should represent the cold cache throughput performance. 
(5) Collect I/O performance monitoring from netstoragers. This should provide the 
statistics referent to the cold cache reading cycle. 
(6) Clean the cache on the workload server. 
(7) Execute dd on the same server again to read the same 1 GB of data that was 
read in Step-4. This should give the warm cache throughput performance. 
(8) Collect I/O performance monitoring from netstoragers. This should provide the 
statistics referent to the warm cache read cycle. 
(9) On the other site’s workload server, execute dd to read 100 MB of data.  
(10) On the DummyNet machine, capture the WAN traffic using tcpdump. 
(11) Once the reading operation is completed, collect throughput statistics from dd 
output. That should represent the remote warm cache throughput performance. 
(12) Collect I/O performance monitoring from netstoragers. This should provide the 
statistics referent to the remote warm cache reading cycle. 
 
The above process is performed three times to ensure that data results are consistent. 

 
In addition, remote cache testing will depend on the network round trip time (RTT) 
latency. Consequently, all remote cache tests are implemented under 0, 50, 100 and 150 
ms of RTT latency. 
 
This large sequential testing is implemented initially using the GSX 3000 default settings. 
However, to archive enhanced throughput, some parameters and configuration were 
tuned to optimize performance. These parameters and configuration are summarized 
below: 
 

                                                
3 The network storager can generate statistics by creating “performance monitors” to monitor various 
aspects of the system‘s performance. This feature allows us to determine how a given port or volume is 
being used, how much I/O is being processed, CPU usage, and so on. 
4 dd is a common UNIX utility whose primary purpose is to copy a input to a output, applying any 
specified conversions. 
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Pre-fetch: It is a parameter that can be set on the network storage nodes to determine the 
amount of data pages to be loaded ahead from either the disk or remote cache to the local 
cache and improve large sequential operations. 
 
Volume stripe: Using Linux MD, four exported YottaYotta volumes (single accessible 
storages created from the DR1) are striped to form a single MD RAID 0 and provide 
improved performance. 
 
TCP buffer size and number of connection: A suitable number of TCP connection and an 
optimal buffer size, which depends on the RRT latency in use, can improve the traffic 
throughput over the T3 link. 
 
COM window: COM bandwidth management is a YottaYotta dynamic tuning mechanism 
that supports throttling the number of outstanding messages for busy links and expanding 
the number of messages sent when response times for message acknowledgements are 
met. Provided messages are acknowledged within an acceptable time limit, the number of 
messages sent can be increased until link saturation is achieved (similarly to the TCP 
flow control mechanism).  Fixing a static optimal COM window size can limit the 
amount of data transmitted by the sender providing a stable WAN throughput and 
avoiding the TCP window to collapse. In addition, it will avoid the sender to be 
increasing its sending rate until it exceeds the capacity of the network and packet loss 
occurs. 
 
3.4- Large Sequential Write Testing 
 
In opposite to reading operation performance, the writhing performance does not depend 
on the network storage nodes’ cache state. The process of writing on asynchronous cache 
mode (default mode) start with the workload server writing data to the network storage 
nodes’ cache of a site. Then, acknowledgements are returned immediately upon data 
receipt by the GSX 3000s of this site and the cached data is written to the disks (local and 
remote storage systems) later. The “dirty” data is kept in cache and periodically (each 60 
seconds by default) flushed to the disks. 

 
The throughput performance for writing operations will depend on whether the Write 
Order Fidelity (WOF) functionality is in use or not. 
 
The following example (from a YottaYotta document, USPTO Performance 
Investigation, prepared by Gary Oikawa, Greg Czarniewski and Andrew Feldman) will 
clarify the process involved when implementing writing operations with WOF:  
 
“The diagram below shows a two site system, with one leg of a DR1 at each site. 
Initially, each site is collecting writes into the currently open delta D1, shown below by 
the open box at the top of each site. The writes are collected locally at each network 
storage node at a site, subject to the usual cache coherency protocols.  
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Eventually the system decides to close the current delta. It may do so for several different 
reasons: 
 

- A user-configurable timer has expired. The administrator could use such a knob to 
bind the amount of data that will be lost in the event of a failure. 

 
- Running out of resources on one or more network storage nodes. One of the nodes 

collecting the delta may decide it needs to close the delta early. 
 
The system synchronizes the closing of the current delta across the sites so that the 
boundary of the delta respects dependent write ordering consistency. That is, the edge of 
each delta defines a consistent view of storage. Once the current delta is closed, a new 
delta is immediately opened to collect new writes from the application. 
 
The system now begins to exchange the partial deltas collected at each site across the 
inter-site link so that each site has a complete copy of the closed delta. This step is shown 
below: 
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As each site is accumulating a complete delta, it also ensures that the delta is protected 
against local failure before it can be written to storage, or during writing to storage. Once 
both sites have exchanged their partial deltas, and made their local copies of the delta safe 
against failure, each site begins applying the delta to the local leg of the DR1 
independently. When both sites agree to apply the delta to local storage, the delta 
becomes the next recovery point in case of failure. 
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Applying the delta to each leg of the DR1 is not an atomic operation, which means it can 
be interrupted by various kind of failure. Depending on the failure, it may be necessary to 
restart the process of applying the delta. 
 
The final issue to discuss is the behavior of this WOF implementation in the presence of 
split brain. The term “split brain” refers to a distributed system losing communication 
across a WAN link, such that one or more sites is unable to communicate with one or 
more other sites.  Subsequently, complete system knowledge is no longer completely 
distributed amongst all blades and sites.  The key problem associated with split brain is 
the handling of the situation in terms of continuing operation, avoiding data loss, and re-
establishing data consistency upon site recovery or link recovery. 
 
The figure below shows all the processes described above proceeding concurrently when 
a link failure happens. Writes are being collected, a closed delta is being exchanged, and 
a committed delta is being applied to disk. 

 
 
When the link fails, front-end5 I/O will be suspended as usual, so no more writes are 
collected into D3. Fragments of D2 cannot continue being exchanged, and each site will 
continue to hold dirty data for that delta until the link heals or the administrator declares 
one site the “winner”. However, the committed delta D1 can continue being applied to 
the legs. Note that the legs of the DR1 will be identical after this completes, even if the 
link is down. 

                                                
5 Between workload server and network storage nodes. 
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If the link failure is temporary, then normal operation resumes when the link heals. The 
figure above shows what happens when administrator declares site A the “winner”. In 
this case, we have lost dirty data because site B holds the only copies of some writes that 
the system has acknowledged. Site A now discards the contents of deltas D2 and D3 and 
resumes servicing application I/O. The contents of storage, as seen from site A, are 
consistent as of the last successfully exchanged and committed delta D1. While writing 
only to the local leg of the DR1, site A is updating the bitmap logs so that the two legs of 
the DR1 can be synchronized when the link heals. 
 
The WOF implementation is a substantial change to the flow of the workload server 
writes from the front-end through to back-end6 physical storage. Several aspects of the 
implementation affect the net performance of the system as perceived by the host: 
 

- Delta closure: All blades servicing a WOF group must synchronize to close the 
current delta. This has obvious performance implications, especially for multi-site 
configurations. However, it should be noted that during this synchronization 
interval, reads will carry on normally, and incoming writes will receive data from 
the host, but will not be acknowledged until the delta closure is complete. 
 

- Efficient use of WAN link: By collecting changes into a delta, we should be able 
to stream these changes across the WAN link more efficiently than the smaller 
individual write operations. 
 

- Fault-tolerance of committed deltas: Applying a committed delta to storage is not 
an atomic operation, which means it is vulnerable to failures. We must decide the 

                                                
6 Between network storage nodes and locally attached storage system. 
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failures against which we protect committed deltas not yet applied to storage 
against. This is equivalent to choosing how strong we make our consistency 
guarantee. There are several implementation options in this area, each with 
different performance tradeoffs.” 

 
 
During large sequential write testing, the following procedure was executed to obtain 
throughput performance information: 
 

(1) Clean the cache of the servers and netstoragers (YottaYotta GSX 3000). 
(2) Enable I/O performance monitoring on netstoragers. 
(3) Reset I/O performance monitoring statistics on all network storage nodes. 
(4) In one of the sites, run dd (single-threaded) on the workload server to write 100 
MB of data. 
(5) On the DummyNet machine, capture the WAN traffic using tcpdump. 
(6) Once the writing operation is completed, collect throughput statistics from dd 
output. 
(7) Collect I/O performance monitoring from netstoragers. This should provide the 
statistics referent to the writing cycle before dirty data is fully flushed to disks. 
(8) Wait around 5 minutes while dirty data is flush to disks (local and remote storage 
systems). 
(9) On the DummyNet machine, stop the WAN traffic capturing using tcpdump. 
(10) Collect I/O performance monitoring from netstoragers. This should provide the 
statistics referent to the writing cycle after dirty data is fully flushed to disks. 
 
The above process is performed three times to ensure that data results are consistent. 

 
This large sequential testing is implemented initially using the GSX 3000 default settings. 
However, to archive enhanced throughput, the COM window size was set statically to 
optimize performance as will be shown later on this report. 
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4- Results and Analysis 
 
The following performance tests were implemented and I/O and WAN traffic throughput 
measurements were collected and analyzed: 
 

Test Configuration Involved 
Default Settings 
Pre-fetch 
Volume Stripe 
TCP settings 

Large Sequential Read 

COM window 
Default Settings 
WOF (Write Order Fidelity) 

Large Sequential Write 

COM window 
 
The above tests were implemented using a T3 link under 0, 50 100 and 150 ms of round 
trip time latency and will be explained in detail the next sections. 
 
 
4.1- Large Sequential Read Testing 
 
The first large sequential read testing were performed using the default configuration on 
the YottaYotta network storage nodes and following the procedure described previously 
on the Methodology chapter.   
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In the above graph for cold cache results, it is possible to notice that throughput 
performance maintains the same as a single site setup (non-distributed storage system) 
and do not vary with inter-site distance. This means that data is read from local storage 
disks, independently of the other site’s system. Therefore, there is no inter-site 
communication (no data traffic on the network storage node’s  TCP ports - Gigabit 
Ethernet interfaces) during this phase of the testing as shown on the  I/O performance 
monitoring output extracted from the YottaYotta netstorager:  
 
 
Node  
front-end 
operations 

Node 
front-end 
read 

Node 
front-end 
write 

Node TCP 
port 
received 

Node TCP 
port sent 

Node  
back-end 
operations 

Node  
back-end 
read 

Node  
back-end 
write 

6704 
 

976 MB 
 

0 MB 
 

0 MB 
 

0 MB 
 

31768 
 

977 MB 
 

0 MB 
 

 
 
Analyzing this same table it is possible to confirm that the data is being read from locally 
attached disks because the amount of data from node’s front-end (between workload 
server and node) reading and back-end (between node and local disks) reading are 
approximately the same. This means that all read data was supplied by local disks 
avoiding the necessity of inter-site communication. 
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The above graph shows the performance results for local warm cache. They still stay as 
same as single site setup throughput performance and do not vary with inter-site distance. 
However, the performance is improved if compared with cold cache result since the 
process of reading data directly from cache is faster than reading from disks. 
 
The table below shows the I/O performance monitoring output extracted from the 
YottaYotta node for local warm cache. In this case, there is no back-end reading because 
the whole data was supplied by network storager’s cache.  
 
 
Node  
front-end 
operations 

Node 
front-end 
read 

Node 
front-end 
write 

Node TCP 
port 
received 

Node TCP 
port sent 

Node  
back-end 
operations 

Node  
back-end 
read 

Node  
back-end 
write 

6000 976 MB 0 MB 
 

0 MB 
 

0 MB 
 

0 
 

0 MB 
 

0 MB 
 

 
 
As explained before, the reading process occurs in the following way: if the workload 
server of a site is reading data through the network storage nodes, the nodes of the site 
where the reading operation is being performed will, first of all, check for this data on 
their own cache, and then if this data is not cached there, they will do the same on the 
remote cache (network stogeragers’ cache of the other site). Finally, if the data is not 
there either, it will be read from the locally attached storage. 
 
Therefore, if the procedure described in the Methodology chapter is followed, it is 
possible to collect the remote warm cache results. These results are shown below: 
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The results show that the performance is negatively affected during remote warm cache 
and with round trip latency increase because read data is obtained over the WAN (T3 
link) from remote network storage nodes as shown in table below: 
 
Node  
front-end 
operations 

Node 
front-end 
read 

Node 
front-end 
write 

Node TCP 
port 
received 

Node TCP 
port sent 

Node  
back-end 
operations 

Node  
back-end 
read 

Node  
back-end 
write 

787 
 

97 MB 
 

0 MB 
 

103 MB 
 

2 MB 
 

0 
 

0 MB 
 

0 MB 
 

  
 
Even though the performance is degraded in remote warm cache state, it is really 
important to obtain data from remote site’s cache before getting it from local disks 
because data on local disks could be out-of-data if there is dirty data not flushed to disks 
on remote cache. Therefore, it is necessary to check remote cache to provided data 
consistency between sites. 
 
In the remote warm cache graph, the theoretical maximum performance is calculated 
considering an average receiver’s TCP window size of 32 KB during the read testing 
using the following formula: 
 

 
 
Where Throughput is the T3 link bandwidth (around 45 Mbps), RTT the round trip time 
latency and RWIN is the receiver’s TCP window size. This formula is based in the fact 
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that TCP transmits data up to the window size before waiting the packets’ acknowledge 
and because of that, full bandwidth of the network may not always get used.  
 
For 0 ms of RTT latency, there is considerable discrepancy between theoretical 
maximum and measured performance. This is due an issue with the COM window and it 
will be covered in detailed during the large sequential read testing with fixed COM 
window size analysis. 
 
In order to improve remote cache state reading performance, we implemented large 
sequential read testing using a range of pre-fetch settings (8, 16, 32 and 64 pages). Pre-
fetch is the netstorager action of getting data well before ahead of the requested in a 
single operation. In this way, the netstorager will not need to always wait for the TCP to 
get its next operation’s request. 
 
The graph below represents the results for large sequential read testing using pre-fetch 
equals to 8, 16, 32 and 64 pages with RTT latency varying among 0, 50, 100 and 150 ms 
which correspond to the following distance between sites respectively 0, 5000, 10000, 
15000 km: 
 
 

 
 
These results are for remote warm cache only because for cold cache and local warm 
cache the high performance presented previously while using default setting was really 
satisfactory and it is not a concern.  
 
Increasing pre-fetch improves read performance over the WAN, but the improvement is 
non-linear.  An 8-fold increase in pre-fetch only improves WAN performance by a factor 
of 2.2. 
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It was expected that an increase in pre-fetch would result in a comparable improvement 
in warm remote cache read performance. However, an eight-fold increase in pre-fetch 
improving remote read performance by little more than a factor of 2 wasn’t expected.  
We decided to leave this issue unresolved momentarily as we explore other strategies to 
improve performance. 
 
The next correspond to the large sequential read testing using Linux MD to stripe four 
exported YottaYotta volumes (single accessible storages created from the DR1) and form 
a single MD RAID 0 and provide improved performance. 
 

 
 
 
These results are for remote warm cache only because, as mentioned before, for cold 
cache and local warm cache the high performance presented previously while using 
default setting was really satisfactory and it is not a concern.  
 
The four YottaYotta volumes are striped by 4, 64 and 128 KB as shown above. The 
performance improvement is due to smaller stripes of the entire chunk allowing data to be 
read off the volumes in parallel, giving this type of arrangement higher bandwidth. 
However, RAID 0 does not implement error checking so any error is unrecoverable. 
More volumes in the array means higher bandwidth, but greater risk of data loss. 
 
Striping the volumes by 128 KB seems to improve the performance more efficiently 
because the 128 KB stripes flow more suitable over TCP avoiding fragmentation for most 
transmitted segments. 
 
To improve WAN traffic throughput and consequently improve reading throughput 
performance in remote warm cache state, the number of TCP connections per node 
between each node was set to one instead of two (default value).  
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At first, it might seem that increasing the number of TCP connections should 
theoretically improve performance. However, most of the TCP connections are not really 
transferring "reading data" during the testing; they are mostly transmitting Heartbeat 
information between nodes. For example, for two TCP connection per node between each 
node (default setting), six connections out of eight will be used to transfer Heartbeat 
information between nodes and just two connections will be used to transfer “reading 
data” as shown below: 
 
Node1Site1 Node2Site1 Node1Site2 Node2Site2 
192.168.20.2 192.168.20.3 192.168.30.2 192.168.30.3

 
Address A Port A Address B Port B Packets Bytes Packets A->B Bytes A->B Packets A<-B Bytes A<-B 
192.168.20.2 11000 192.168.30.3 1029 1139 92094 521 43242 618 48852 

192.168.30.3 11000 192.168.20.2 1026 1139 92094 618 48852 521 43242 

192.168.30.3 11000 192.168.20.3 1028 2015 164150 1001 81642 1014 82508 

192.168.20.3 11000 192.168.30.3 1028 2015 164150 1013 82462 1002 81688 

192.168.20.3 11000 192.168.30.2 1027 2287 186434 1158 94044 1129 92390 

192.168.30.2 11000 192.168.20.3 1029 2292 186928 1131 92534 1161 94394 

192.168.20.2 11000 192.168.30.2 1028 249734 72623877 126760 62785061 122974 9838816 

192.168.30.2 11000 192.168.20.2 1027 254275 72772011 124281 9940510 129994 62831501 
 
 
The information above is collect from the WAN traffic capture using tcpdump during 
testing under default setting and were processed using Wireshark. 
 
The highlighted node and the highlighted connections are the ones that are transferring 
“reading data”. The other connections are just transferring Heartbeat information between 
nodes. 
 
The performance will for sure improve if we can increase just the number of TCP  
connections which are transferring "reading data" and not the number of connection per  
node between each node on all blades because TCP adapts to share network bandwidth 
with other connections  even if these connections are not transferring large amounts of 
data. 
 
However, if we use only one TCP connection per node between each node as shown 
below: 
 

Address A Port A Address B Port B Packets Bytes Packets A->B Bytes A->B Packets A<-B Bytes A<-B 
192.168.30.3 11000 192.168.20.2 1025 953 76494 475 37686 478 38808 

192.168.20.4 11000 192.168.30.3 1026 2145 175278 1034 85140 1111 90138 

192.168.20.3 11000 192.168.30.2 1026 2266 186756 1146 93784 1120 92972 

192.168.20.2 11000 192.168.30.2 1027 335933 133757414 137519 117408974 198414 16348440 
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We will obtain better WAN traffic throughput since there will be less connections 
transferring “non-reading data” even though just one connection will be transferring 
“reading data”. 
 
In addition, the TCP buffer size on the Gigabit Ethernet interfaces was adjusted to a tuned 
value, which depends on the RRT latency in use and is calculated using the following 
formula: 
 

 
 
Where Throughput is the T3 link bandwidth (around 45 Mbps) and RTT is round trip 
time latency. 
  
To get maximal throughput it is critical to use optimal TCP buffer sizes for the link in 
using, in our case, T3 link. If the buffers are too small, the TCP congestion window will 
never fully open up. If the receiver buffers are too large, TCP flow control breaks and 
sender can overrun the receiver, which will cause the TCP window to shut down. 
 
Below are the front-end throughput testing results for 1 TCP connection per node 
between each node and optimal buffer size (this value depends on the latency in use). In 
addition, for comparison reasons, the same results for default settings:  
 
 
 

RTT 0 ms   Buffer 
size Prefetch 

TCP 
connections 

       
Cache state 1M 64 2Iteration 

cold   
remote 
warm    

1 72.6  2900    
2 72  3400    
3 73.1  3500    

Average 72.5666667   3266.666667    
 MB/s  KB/s    
       
       

Cache state 128k 64 1Iteration 
cold   

remote 
warm    

1 71.9  3200    
2 72.6  3200    
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3 71.2  3400    
Average 71.9   3266.666667    

 MB/s  KB/s    
 
 

RTT 50 ms   Buffer 
size Prefetch 

TCP 
connections 

       
Cache state 1M 64 2Iteration 

cold   
remote 
warm    

1 73.2  1300    
2 73.6  1300    
3 74.6  1300    

Average 73.8   1300    
 MB/s  KB/s    
       
       

Cache state 256k 64 1Iteration 
cold   

remote 
warm    

1 70.6  2100    
2 70.9  2300    
3 71  2100    

Average 70.83333   2166.666667    
 MB/s  KB/s    

 
 

RTT 100 ms   Buffer 
size Prefetch 

TCP 
connections 

       
Cache state 1M 64 2Iteration 

cold   
remote 
warm    

1 75.8  683    
2 72  643    
3 73.4  644    

Average 73.73333   656.6666667    
 MB/s  KB/s    
       
       

Iteration Cache state 512k 64 1
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 cold   
remote 
warm    

1 71.1  1400    
2 69.7  1400    
3 69.1  1400    

Average 69.96667   1400    
 MB/s  KB/s    

 
 

RTT 150 ms   Buffer 
size Prefetch 

TCP 
connections 

       
Cache state 1M 64 2Iteration 

cold   
remote 
warm    

1 71.6  442    
2 71.5  478    
3 74.1  478    

Average 72.4   466    
 MB/s  KB/s    
       
       

Cache state 768k 64 1Iteration 
cold   

remote 
warm    

1 68.5  1000    
2 70  883    
3 70  914    

Average 69.5   932.3333333    
 MB/s  KB/s    

 
 
It is possible to notice a clear front-end performance improvement while using enhanced 
TCP settings (one TCP connection and optimal buffer size). This is due to the WAN 
traffic throughput performance improvement as we can see by analyzing the WAN 
throughput over time captured using tcpdump (where the y axis is in Bytes and x is in 
seconds): 
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Even though the performance is improved while using enhanced TCP setting, the T3 link 
bandwidth (around 45 Mbps) is not being fully utilized. 
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If we analyze the tcpdump captures, we can notice that the receiver's window size never  
goes higher than 65k even if we use enhanced TCP settings, unlimited bandwidth and no 
latency (0 ms). 
 
This might be happening because the YottaYotta firmware does not have RFC 1323 
turned on. In traditional TCP, the window size cannot be larger than 65,535 bytes 
(because the unsigned integer field that holds it on the TCP header is only 16 bits wide). 
Normally, applications for data replication need a larger window than 64KB. This is 
achieved by turning on TCP extensions specified in RFC1323, `TCP Extensions for High 
Performance', published in 1992 and now supported by most operating systems. The TCP 
window scaling option allows one to use TCP window sizes of up to 1,073,741,823 bytes. 
 
However, RFC 1323 is turned on in the YottaYotta firmware. The issue is that if Ethereal 
or Wireshark do not witness the connection negotiation, they will not display the right 
receiver's window size, because it is during the connection  negotiation that the hosts 
advertise whether RFC1323 is turned on or off and if Ethereal  doesn't witness that, it will 
calculate the receiver's window size assuming that RFC1323  is off. 
 
After capturing the WAN traffic making sure that the connection negotiation was 
included, the receiver's window size showed on Ethereal started to make sense. It 
normally starts with the same value as the buffer size and it doesn't seem to change much 
over time (it is always around the buffer size value). Therefore, the receiver's window 
size doesn't seem to be limiting the WAN bandwidth utilization. 
 
However, the algorithms that prevent a sending TCP peer from overwhelming the 
network  known as slow start and congestion avoidance increase the sender's window (the 
number of  segments that the sender can send) when initially sending data on the 
connection and when  recovering from a lost segment seem to be limiting the WAN 
bandwidth utilization. 
 
These algorithms work well for small bandwidth links with low latency and smaller  
receiver's window sizes. However, when you have a TCP connection with a large receive  
window size and a large BDP (bandwidth-delay product), such as replicating data 
between two servers located across a high-speed WAN link (e.g. T3) with a 100ms 
round-trip time, these algorithms do not increase the sender's window size fast enough to 
fully utilize the bandwidth of the connection as we can see in the picture below from an 
Intel's white paper "Optimizing WAN Performance for the Global Enterprise": 
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To better utilize the bandwidth of TCP connections in these situations, the Next  
Generation TCP/IP stack includes Compound TCP (CTCP). CTCP more aggressively 
increases the sender's window size for connections with large receiver's window sizes and 
BDPs.  CTCP attempts to maximize throughput on these types of connections by 
monitoring delay variations and losses. In addition, CTCP ensures that its behavior does 
not negatively impact other TCP connections. 
 
As mentioned before, even though the WAN throughput performance is positively 
influenced while using enhanced TCP setting, we can observe that the TCP window is 
still periodically collapsing (impact becomes increasingly severe at greater latencies) and 
T3 link bandwidth is not being well utilized. To maximize WAN bandwidth utilization, 
we optimized the COM bandwidth management settings. 
 
COM bandwidth management is a YottaYotta dynamic tuning mechanism that supports 
throttling the number of outstanding messages for busy links and expanding the number 
of messages sent when response times for message acknowledgements are met. Provided 
messages are acknowledged within an acceptable time limit, the number of messages sent 
can be increased until link saturation is achieved (similarly to the TCP flow control 
mechanism).   
 
Below are shown the COM window size over the time graph overlapped by WAN traffic 
throughput over time for default settings: 
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Fixing a static optimal COM window size (62 messages for 50 ms of latency and 8 
messages for 0 ms) can limit the amount of data transmitted by the sender providing a 
stable WAN throughput and avoiding the TCP window to collapse. In addition, it will 
avoid the sender to be increasing its sending rate until it exceeds the capacity of the 
network and packet loss occurs as shown by the graphs (WAN throughput over time) 
below: 
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If we analyze the tcpdump captures for optimal fixed COM window size (62 messages 
for 50 ms of latency and 8 messages for 0 ms), we can notice that we still have indication 
of TCP window being collapsing because of the presence of TCP duplicate acknowledge 
and TCP retransmission packets as shown below: 
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However, those packets are either: indicators of the receiver's window size being opened 
after previously being shrunk. This is a normal TCP behavior, resending a just-sent ACK 
with a different window size to indicate that the receiver's window size has changed (this 
will explain TCP Dup ACK). Or the sender is transmitting a packet and keeping a timer 
from when the packet was sent.  Even if the receiver gets this packet and acknowledges 
it, this acknowledged packet sent by the receiver might take a while to get back to the 
sender, depending on link congestion, latency and other factors. Therefore, if this 
acknowledged packet comes after the sender's timer expires, the sender will retransmit 
(TCP Retransmission) this packet and the receiver will re-acknowledge it (TCP Dup 
ACK). 
 
So, it make sense to see a bunch of TCP Dup ACK and TCP Retransmission together for 
the second case mentioned above since this period will represent the peaks on the 
throughput over time graphs where the WAN link is more congested and the 
acknowledge packet sent by the receiver might take longer to get back to the sender 
forcing the sender to decrease the amount of data sent per second and causing the dips on 
the throughput over time graphs. 
 
In addition, if you take a look on the tcpdump captures for the cases where the  
throughput over time graphs are almost a square (stable WAN throughput), you will 
notice that there isn't TCP Retransmission and TCP Dup ACK packets because we are 
limiting the amount of data sent to the COMTCP port through COM window size 
avoiding the link to get congested. 
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4.2- Large Sequential Write Testing 
 
The first large sequential write testing were performed using the default configuration 
(no-WOF) on the YottaYotta network storage nodes and following the procedure 
described previously on the Methodology chapter.   
  

 
 
 
In the above graph, the RTT latency is varying among 0, 50, 100 and 150 ms which 
correspond to the following distance between sites respectively 0, 5000, 10000 and 15000 
km. The green line represents to bandwidth of the T3 link used (around 45 Mbps which is 
equivalent to 5.625 MB/s) and FE-Writes means front-end writes. 
 
As mentioned before, in opposite to the reading operation performance, the writhing 
performance does not depend on the network storage nodes’ cache state. The process of 
writing on asynchronous cache mode (default mode) start with the workload server 
writing data to the network storage nodes’ cache of a site. Then, acknowledgements are 
returned immediately upon data receipt by the GSX 3000s of this site and the cached data 
is written to the disks (local and remote storage systems) later. The “dirty” data is kept in 
cache and periodically (each 60 seconds by default) flushed to the disks (local and remote 
storage systems. 
 
The throughput performance for writing operations will depend on whether the Write 
Order Fidelity (WOF) functionality is in use or not because of the way WOF algorithm 
(this algorithm was explained earlier in the Methodology chapter) works to ensure that 
the order of writes to a particular storage volume are preserved all the way to the physical 
medium. 
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The above results are for the same testing but using WOF. It is clear that performance is 
degraded while using WOF because data is transmitted over the WAN to the other site at 
the same that front-end operations still are being performed. This happens to maintain 
same order of writes on both sites.  
 
During no-WOF write operations, data is stored in cache during front-end operations and 
sent over WAN to the other site after front-end operations are done. This is the reasons 
because no-WOF writing present better performance. 
 
To improve performance while using WOF, the same strategy of fixing the COM window 
size used during the read testing was implemented and the same kind of results and 
improvement obtained during the read testing were obtained during the write testing with 
WOF. Those results are shown in the APPENDIX A. 
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5- Conclusion 
 
For the large sequential read testing on a DR1 (Distributed RAID1), testing achieves 
local (as a single site setup, i.e. non-distributed storage system) read performance for 
most data access:   
 
- Cold cache block-level reads around 45 MB/s. 
- Warm cache block-level reads approximately 77MB/s  
 

However, read performance across the WAN is sub-optimal. At 50 ms of inter-site RTT 
latency and the default 8-page pre-fetch setting, YottaYotta network storager achieves 
only about 10% utilization of the available T3 bandwidth and even with no distance (RTT 
equal 0ms), netstorage achieves only approximately 50% of available bandwidth. 
 
Our analysis suggests that this issue may be related to buffer management within TCP 
setting on netstorager’s Gigabit Ethernet interfaces which are responsible for inter-site 
communication and COM bandwidth management for both reading operations. 
 
We partially solve this performance issues by adjusting some non-exposed TCP COM 
settings (COM window size) and adjusting the number of TCP connections and buffer 
size. We partially solved this issue because part of it is related to the algorithms that 
prevent a sending TCP peer, using standard TCP stack, from overwhelming the 
network known as slow start and congestion avoidance. 
 
Increasing pre-fetch improves WAN read performance, but the improvement is non-
linear. An 8-fold increase in pre-fetch only improves WAN performance by a factor of 
2.2. In addition, volume striping also improves performance due to the fact that smaller 
stripes of the entire chunk allows data to be read off the volumes in parallel, giving this 
type of arrangement higher bandwidth. 
 
For large sequential write testing, front-end write performance is significantly better than 
WAN write throughput. Nonetheless, front-end write performance is still limited by 
WAN write performance. 
 
WOF front-end write performance is below T3 bandwidth even at 0 ms of RTT latency. 
No-WOF WAN-write throughput at 50 ms latency is only around 60% of full T3 
bandwidth and WOF WAN-write throughput at 50 ms latency is only approximately 35% 
of full T3 bandwidth. 
 
As for the read testing, WAN write performance for both with and without WOF are also 
sub-optimal and this issue is solved in the same way as for the read testing by adjusting 
some non-exposed COM window size, the number of TCP connections and buffer size. 
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APPENDIX A: Large sequential writing results with WOF and 
fixed COM window size 
 
 

- Fixed COM window size equal to 12 messages and no latency (0 ms): 
 

 
 
 

- Fixed COM window size equal to 16 messages and no latency (0 ms): 
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- Fixed COM window size equal to 17 messages and no latency (0 ms): 

 
 
 
 
 

- Fixed COM window size equal to 22 messages and no latency (0 ms): 

 


