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Abstract 

When fragmentation occurs, function and spatial structure in the landscape are 
affected. existing critical points were those changes are irreversible.  Percolation 
thresholds in the landscape are critical points were the spatial connectivity is lost.  In this 
paper, we created, under different occupation densities, five types of neutral landscapes 
(“random”, “ortho”, “anneal”, “block” and “patches”) using cellular automata.  We then 
used these neutral landscapes, to find the percolation thresholds of patterned landscapes.  
We then measured landscape structure of these landscapes using measures like number of 
patches, total edge, mean patch size, weighted mean patch size, contagion, adjacency, 
mean fractal dimension, lacunarity, spatial block entropy, mass entropy and landscape 
division to establish the ability of these measures to characterize patterns in the landscape 
and their sensitivity to percolation thresholds.  We also developed a new index called 
“class division” based on landscape division.  Our results show that percolation 
thresholds of patterned landscape differ form those of random maps, and that many 
measures do not show a geometric phase transition or relation with critical percolation 
values.  We argue that critical spatial percolation values are always going to be less than 
or equal to functional percolation threshold, therefore they are a good parameter to 
establish conservation strategies.  We conclude that identifying critical values in such 
quantities is important in order to establish conceptual models for forest management and 
conservation policies. 
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Introduction 
Landscapes can be considered complex dynamic systems, whose internal dynamics 

create non-random spatial and temporal patterns. Space-time changes in landscape 
structure result from ecological and socio-economic pressures on the landscape. Forman 
(1995) explains and conceptualizes land transformation as a dynamic process consisting 
of five phases:  a) perforation: making holes in the landscape, b) dissection: subdivision 
of landscape with lines of equal width, c) fragmentation: breaking into small areas, d) 
shrinkage: decrease in size and e) attrition or disappearance of objects.  Landscape 
fragmentation is not seen as an independent phenomenon, but as the result of the 
interaction of two forces, perforation and dissection.  Jaeger (2000) states that 
fragmentation is the main land transformation process, and all the phases are part of 
them.    Therefore, what Forman defines a fragmentation phase, is just a dissipation phase 
for Jaeger.  The notion proposed by Jaeger is that landscape fragmentation occurs only 
when one or more subunits of habitat, ecosystems or land-use in the landscape suffer 
from spatial breaking, leaving areas without physical connection. 

 
Understanding landscape fragmentation is affected by our ability to quantify and 

to relate pattern to forces driving the spatial transformation.  Many quantitative measures 
have been developed to measure landscape structure and dynamics, but they all seem to 
fail to establish links between pattern and process, and many configurations can produce 
the same value (Gustafson 1998). As shown by Riitters (1995), many of the current 
landscape fragmentation and structure measures are related, resulting in a few metrics 
that can accurately measure different aspects of landscape structure.  

 
In general, spatial fragmentation of landscapes is measured as the change in 

landscape heterogeneity over time.  Metrics considering patch structure (number, types, 
shapes, edges and arrangement), functional structure (class proportions) and local 
structure (neighboring, proximity of classes, connectivity) are the most broadly used (Li 
& Reynolds 1994, Riiters et al 1995, McGarigal & McComb 1995, Gustafson 1998).  In 
addition to using these three types of metrics, gaining a clear understanding of the spatial 
configuration of the landscape is crucial to determining the effects of landscape 
restoration or aggregation (reversal of fragmentation).  In this approach, certain landscape 
configurations, with a critical density of classes, would facilitate the natural reversal of 
the fragmentation process.  Percolation theory helps to explain this reversal process when 
considering that geometric connectivity of a system changes (e.g. from no-connectivity to 
high connectivity) at a certain critical threshold (Stanley et al. 1999).  A critical threshold 
is defined as a sudden change in the general behavior of the system (Turner & Gardner 
1991, Stanley et al 1999).  In terms of landscape dynamics, complex spatial patterns 
change with an increase in density, allowing small-scale interactions to propagate over 
long distances (Milne et al 1996), therefore understanding the critical percolation value is 
crucial to understanding landscape dynamics.  

 
We think that a good set of landscape measures should not only be sensitive to 

changes in landscape structure, but also to changes in the percolation threshold.   We 
consider that landscape fragmentation metrics must be sensitive to sub-critical and 
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supercritical behaviors, as they are apparent when percolation is analyzed as a function of 
occupation density. The strongest case of this approach is when a sharp geometric phase 
transition appears.   We consider the percolation threshold to be a good point of 
reference, since percolation is a phenomenon related to the pattern of the landscape and 
the underlying dynamics of land cover change (With & Crist 1995, With & King 1997, 
Plotnick & Gardner 1993).  We also think that the determination of percolation thresholds 
for different landscape patterns would help us to establish minimum density requirements 
to prevent habitat degradation or irreversible changes in the landscape. The most 
frequently reported percolation threshold value is 0.59, and it is generally restricted to 
random spatial distributions, the type of lattice, and the definition of neighborhood (With 
1997). Evidently, real landscapes are not random, and their spatial organization is the 
result of internal dynamics and pressures from a combination of socioeconomic and 
biophysical forces.   

 
The development of artificial landscapes using neutral models has been widely 

used for testing landscape metric behavior (Gardner & O’neil 1991, Milne 1992, Li & 
Reynolds 1994, Li & Archer 1997, Hargis et al 1998, He et al 2000, Jaeger 2000, Saura 
& Martinez 2000).  The widespread use of neutral models is the result of their ability to 
control the structural complexity necessary to explain metrics behavior (With & King 
1997). However, none of these studies relate spatial structure to process (Schumaker 
1996, With & King 1997).  Identifying the link between spatial structure and process is 
fundamental in order to develop sound theories in landscape ecology (Krummel 1987).  
Artificial landscapes (neutral landscapes) are used to define a set of possible non-random 
landscape structures, ranging form over-dispersed (regular) to clumped landscapes, and 
using random maps as a null model for significance testing.  Several methods have been 
developed to create neutral landscapes (With & King 1997).  These methods use random 
maps and random clumps, including binary, non-binary and hierarchical structures.  

 
Cellular automata (CA) provide a general system to develop neutral landscapes, 

and to establish a link between dynamics and patterns. CA can model complex behaviors 
analogous to those found in systems of differential equations or iterated mappings 
(Wolfram 1984, 1988; Toffoli 1984).  In this paper, we use landscapes derived from CA 
to analyze the sensitivity of landscape metrics to characterize landscape structure under 
different densities. We extend the use of neutral landscape to incorporate “neutral” 
dynamics to explain the changes in pattern due to local dynamics. We measure the 
sensitivity to changes in structure due to internal dynamics, and to percolation thresholds, 
of some of the common measures of landscape structure, such as contagion (Li & 
Reynolds 1993), mean fractal dimension (McGarigal & Mark 1995), number of patches 
and total edge.  We also explore the use of landscape division (Jaeger 2000), weighted 
mean patch size (Stauffer 1985, Li & Archer 1997), spatial entropy (Wolfram 1983, 
1984, and mass entropy (Tsang 1999) to account for changes in landscape structure.   

Methods 
 
A cellular automata (CA) matrix approach was selected as the main tool to simulate 

landscape patterns. The dynamics of the landscape were modeled using a transition 
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function.  The transition function provides specific rules for all of the state transitions 
(class changes).  Since we are interested in testing landscape metrics, we limited our 
simulation to occupied/empty classes (e.g. Forest/Non-Forest). We consider the state 0 to 
be empty, and the state 1 to be occupied.  Four CA rules were used in the construction of 
the 350x350 pixels landscape patterns: “anneal”, “ortho”, “block” and “patches”. 
Sequences of 50 landscapes were created for each type of landscape (totaling 250 
landscapes) ranging form 0.05 to 0.95 occupation density.  An additional set of 50 
random landscapes was created using percolation maps, with occupation densities 
ranging from 0.05-0.95.  Each landscape was created starting with an initial configuration 
of pixels randomly distributed with a given occupation density (percolation maps). The 
CA rule was then applied interactively for a fixed number of time steps. Every landscape 
in the set is independent, so the final occupation density and pattern, after applying the 
CA rule, is related to the initial random configuration and is independent of other 
landscapes of the same type. 

 

Cellular Automata 
A CA consists of a matrix of sites and a transition function that defines the changes of 

state at each site.  The transition function takes into consideration the configuration of the 
surrounding neighborhood. Let Z2 be a 2-dimensional matrix.  For a î Z2, t

jia ,  is the state 

of a site at position i,j in the time step t.  We have defined the change of state of a site as: 
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Where F is an arbitrary function called transition function. F defines the CA 
deterministic rule and r is the range of F, and defines the neighborhood (Packard & 
Wolfram 1985). The neighborhood N is the set of surrounding sites.  There are two N 
configurations, which are commonly used (Figure 1).  The von Neumann Neighborhood 
considers  only the 4 orthogonal contiguous sites plus the middle site, and the Moore 
neighborhood which considers the 4 diagonal sites  in addition to the 4 orthogonal sites 
(Langton 1990, Packard &Wolfram 1985). 

 

Random  Maps and Cellular Automata generated landscapes  

A. Random Maps 

Let Z2  stand for a two dimesional artificial landscape, and a = {0,1} a specific site (0 
being non-forest and 1 being forest).  Let  ]1,0[→Γ  be a random number generator and 
δ  a random number.  Let p be the probability that a site a is in state 1.  In a percolation 
map construction, for each  a e Z2,  the state of a, is going to be 1, if p≤δ , and 0 
otherwise. 

 
A set of 50 percolation maps was created with 10 << p .  We called this landscape a 

random pixel-landscape, since it contains a random distribution of pixels with density of 
⋅p Z2.  Percolation maps were also used as the initial landscape before running the CA 

rules. Figure 2a shows a percolation map with p = 0.5. 
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B. Annealing Rule 

This is a voting and totalistic rule in which the number of sites in the neighborhood 
that have a value of 0 or 1 determines the state of each site.  In this rule, we use a Moore 
Neighborhood. Let ρ0 be the number of sites with the value 0 in N, and ρ1 the number of 
ones. If  ρ 0 < ρ 1 then a will change to 1, otherwise if ρ0 > ρ1 then the value of a changes 
to 0.   The landscape with initial p=0.5 is shown in figure 2c. 

C. Ortho Rule 

This rule is based on a simple CA created to simulate a digital computer (Toffoli & 
Margolus 1986). It uses the von Neumann Neighborhood.  Let ρ1 be the sum of cells with 
value 1 in N.  Then, if  ρ1 > 1 then a stays the same, if ρ1 ò 3 then a changes to 1. In the 
case of ρ1 = 2, only if the upper and lower neighbor are different, the value of a changes 
to 0.  In this rule, the corner sites always change to 0. We called this rule ortho, because 
the pattern generated looks like agricultural landscapes in boreal/mid-temperate regions 
with linear and orthogonal structures (figure 2g). 

D. Block Rule 

The block rule is a probabilistic non-uniform rule that uses a Moore neighborhood. A 
non-uniform probabilistic rule means that the rule applied in a site can be different than 
the one applied in another site.  In this rule, the transition function is a set of functions F 
= {f1, f2, … ,fm} with fixed probabilities qi of being applied in a site. Note that: 

1
1

=∑
=

m

i
iq  ,  m e N 

The rule uses two functions: a) If a =1 or 0, and there is any site with a value of 1 in 
the diagonal or orthogonal neighborhood, then the site a stays or changes to 1. Otherwise, 
it changes to 0; and b) If a =1 or 0, and there is any site with a value of 1 in the 
orthogonal neighborhood, then the site a stays or changes to 1. Otherwise, it changes to 0.  
The probabilities of the rule occurring are 0.9 and 0.1 respectively.  Note that the only 
difference is that the neighborhood is considered for the change of state.  The result of 
this rule is a pattern with square shaped blocks with irregular edges (Figure 2e) 

E. Patches Rule 

This is a non-uniform probabilistic rule, as defined in  the  block rule. If the site a is 1, 
then it does not change. If the site a = 0, then it will choose a neighbor from a von 
Neumann neighborhood randomly with a probability  of q = 0.2 each. If the site chosen 
has a value of 1, then a changes to 1. This creates irregular random clusters around the 
landscape. (Figure 2i) 

 

Landscape statistics 
The following landscape metrics were calculated for each artificial landscape: Mean 

patch area, number of patches, total edge, mean fractal dimension, Lacunarity, landscape 
division, class division, weighted mean patch size, spatial block entropy, mass entropy,  
contagion and adjacency. 
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The perimeter area fractal dimension (perimeter–area relation) is estimated using the 
following equation: 
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4

ln2

i

i

A

P

D








=  

We used this equation to calculate the perimeter area ratio of every patch.  Mean 
fractal dimension D  was calculated the same way as FRAGSTAS (McGarigal & Marks 
1995) using the function: 
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where Ai and Pi are the area and perimeter of patch i. We have also divided the 
perimeter by 4 to correct for the effect of square shapes.  The value of D is 1, as the 
shapes of patches tend to be round or square, and approaches 2 for highly convoluted 
surfaces. 

 
Lacunarity was developed to describe fractal properties (Mandelbrot, 1983), but as 

shown by Plotnick (1996) and Dale (2000), it can be extended to the description of scale-
dependent spatial heterogeneity.  We used the “Gliding Box” algorithm proposed by 
Allain and Cloitre (1991).  Let ai be a site in the landscape Z2.  Then for each a î Z2, the 
mass s is determined (mass is the number of pixels of forest class) by counting the sites 
with forest cover inside of a box of size b.  The probability of mass distribution would be 
Q(s,b). Then the lacunarity )(bΛ  is calculated as: 

 

( )2
1

2)(
M

M
b =Λ  

 
 
where the first moment ∑= ),(1 bssQM , and the second moment is 

∑= ),(2
2 bsQsM .  Given a class density and b, higher )(bΛ  indicates greater clumping. 

The algorithm was used varying b from 5 to 145 in steps of 10. 
 
The spatial block entropy Hb , a metric useful in determining the organization or 

randomness of a landscape, is calculated as: 
 

i
i

b pp
b

H
i
log

1 ∑=  

where pi is the probability of configuration i in 3x3 window  in the landscape, and b is 
the block size.  Higher values of Hb mean a higher degree of randomness in the landscape 
(all the possible configurations of blocks b on the landscape have the same occurring 
probability).  This type of metric is widely used in the description of CA configurations 
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(Wolfram, 1983; 1984).  Mass entropy H (Tsang, 1999) is a function of the probability w 
that an occupied site is part of a cluster size s. It is calculated as: 

s
s

s wwH log∑−=  

Contagion is a measure of the adjacency of cover types. Using the modification of Li 
and Reynolds (1993): 

∑∑+= )ln()ln(2 ijij ppqC  

Where pij is the probability of a class i being adjacent to a class j, and q is the number 
of classes.  Lower values of C mean that there are many small patches, and as C 
approaches 1, there are large continuous patches in the landscape (Frohn 1998). 

 

Movement in the Landscape 

One simple way to define the possibility of movement in the landscape is estimating 
the probability that two sites taken randomly from the landscape belong to the same 
patch.  Jaeger (2000) used this concept to define a degree of landscape division (D).  We 
modified D to measure division within a class (class division LD ) segmented into n 

patches.  Let L be a set of n patches of a certain class, so that { }nAAAL ,,, 21 K=  and 

∑
=

=
n

i
iAL

1

 is the total class area.  The total landscape area is LLAt ′+= , where L′  is 

the set of patches in the landscape or region that do not belong to L (note that the whole 
landscape or region LLR ′∪= ).  Now, the probability pi that a random site LLa ′∪∈  
taken from the entire region belongs to a patch LAi ∈  is: 

t

i
i A

A
p =  

Coherence (C) (as called by Jaeger) is the probability that two sites taken randomly 
from the region belong to the same patch, so C = 2)(∑ ip , and Landscape division 

D ∑−= 2)(1 ip  is defined as the probability that two random places do not belong to the 

same patch.  As D approaches 1, the landscape is highly divided (the probability of two 
patches being unconnected is high). Class division is calculated the same way as D, but pi 
is the probability that a random site, La ∈ , belongs to a path, LAi ∈ , and is calculated 

as: 

L

A
p i

i =  

As class division approaches 1, the class is highly divided.  That is, the total mass of 
the class is segmented into a large number of patches. As class division approaches 0, the 
class is distributed in a single large patch. 

 
Weighted mean patch size (S), is calculated as: 

∑∑
=

sn

sn
S

s

s
2
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where ns is the number of patches of size s.  This measure is not static as is the mean 
patch size, and it varies as the frequency distribution of patch sizes changes (Stauffer 
1985, Li & Archer 1997). 

 

Percolation Simulation 
To estimate the percolation threshold with higher precision, an additional set of 50 

sequences (0.3-0.8) was created for each type of landscape, totaling 100 landscapes for 
each type of CA rule and percolation map.   Percolation was measured simulating flow 
throughout each landscape using the following CA rule:  Let Z2 be the landscape. In the 
percolation rule, a site a can be in any of 3 states: 0 (empty), 1 (occupied) or 2 
(percolated). If a = 1, and there is at least one site in the neighborhood in state 2, then a 
changes to 2.  In any other case, the site stays the same.  The percolation simulation was 
applied to each of the artificial landscapes, starting with all sites at the top of the 
landscape in state 2, and it was iterated until an equilibrium condition was reached, where 
the density of sites in state 2, stayed the same from one generation to the other. We 
applied the percolation simulation using the 4N and 8N neighborhood (figure 1) to 
estimate the pc (

4
cp  and 8

cp  respectively) under both neighboring rules. The probability of 

percolating cluster ps is then calculated: 

1

2

ρ
ρ

≈sp  

where 2ρ  and 1ρ  are the density of sites in state 2 and 1, respectively.  To obtain an 
approximation of the percolation threshold (pc) for each type of landscape, ps as a 
function of occupation density (p) was adjusted to a Gaussian distribution to estimate the 
probability of a percolation cluster (Hori 1989). 

Results 

Landscape Spatial Organization  
As seen in Figure 4a-b, the number of patches and total edge in non-random landscape 

is less than that seen in the random maps, as a consequence of spatial organization and 
aggregated structures.  The “ortho” landscape is initially similar to a random landscape 
(for p less than 0.2).  These differences indicate that the CA rule starts to have an effect 
on the landscape when a certain initial density is reached.  Figure 3f-j shows the 
standardized number of patches and the fitted curve.  There are clear differences in the 
maximum value and in the shape of the curve. Starting from low densities, the number of 
patches increases quickly with density until the space is filled.  At this stage, patches start 
to aggregate, slowly decreasing the number of patches.  Results indicate that dynamic 
processes modeled using the “anneal” and “ortho” rules, tend to aggregate pixels and drift 
the peak of the curve to the left as a consequence of fast aggregation of patches. The 
patches and block rule however, tend to reach a maximum number of patches at higher 
densities than a random map.   

 
Results regarding entropy (Figure 5a) indicate that this measure increases with density 

until a maximum is reached, and then it decreases again. This change is a consequence of 
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the change in the dominant class, from an empty landscape to a completely occupied one.  
Results indicate that  the random landscape reaches a higher value of spatial entropy, 
meaning a higher degree of disorder in spatial organization, which is consistent with its 
own nature (random generation).  The other 4 types of landscapes (anneal, block, ortho 
and patches) are the result of dynamic processes.  The spatial organization from low to 
high disorder is as follows:  block (0.28), anneal (0.3), patches (0.50), ortho (0.62), 
random (0.69).  The lowest entropy is obtained in the block landscape, suggesting that 
this type of landscape has the highest level of order (see figure 2e).   

 
In random maps, it is expected that the highest mass diversity and mass entropy will 

be reached just before the percolation threshold (Tsang & Tsang 1999).  When high mass 
entropy is reached (i.e. high diversity of cluster sizes), and occupation density increases, 
patches start to connect quickly, therefore rapidly decreasing the mass entropy (figure 
5b).  Because the CA rule changes the way different patches are aggregated as a function 
of local configuration, it is expected that the maximum mass entropy will change under 
different landscape dynamics.  Figure 5b indicates that random landscapes have their 
highest mass entropy just before 4

cp , and this is also true  for the ortho, anneal and 

patches landscapes.  The block landscape shows a different trend. At low densities, the 
landscape consists of block patches of equal size (see figure 2e).  This results in  low 
mass entropy.  As occupation density increases, because the density of seeds (initial sites) 
increases and the block patches grow, they start to aggregate to form long patches of 
connected blocks,  increasing the variety of patch sizes and mass entropy.   

 

Landscape Shape and Connectivity (Fractal Dimension and Percolation) 
When aggregation was measured with the contagion metric, our results indicated that 

the four CA landscapes were shown to be  more aggregated than the random map (Figure 
6a).  The minimum degree of contagion is reached at p = 0.5.  At this point, the lowest 
contagion, hence, the smaller patches, occurred in the random landscape followed by 
ortho, patches, anneal and block.  These results were consistent with spatial entropy 
(Figure 5a) and adjacency probability (Figure 6b).  An interesting trend is shown by the 
ortho landscape. Since the ortho CA rule starts with a random initial configuration of 
seeds, the CA rule does not have any effect at low densities, showing a “shift” in 
behavior when a critical density is reached and the CA rule starts to change the landscape 
structure.  This behavior is more evident with Lacunarity (Figure 9b).  When occupation 
density increases and this critical density (pì0.2) is reached, the quantity of holes 
suddenly starts to increase again, due to the aggregating dynamics of the ortho rule. 

 
Lacunarity results indicate that the four CA rules have structures that are non-random 

(Figure 9a-e).  It is also evident with Lacunarity, that block and patches landscapes have 
a clumped and more regular structure, and that anneal and ortho have clumps with a less 
regular distribution.  Results of our Lacunarity analysis (at p = 0.5) for all the landscapes 
(Figure 9f) show how this measure can account for the density of holes in any given 
landscape. For example, at p=0.5 (Figure 2a-i), block and anneal have higher Lacunarity 
values than ortho and patches.   The lowest Lacunarity at this occupation density is for 
random landscapes.  The smallest holes are found in the random landscape, resulting in a 
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small Lacunarity value, followed by ortho, patches, anneal and block (see figure 2). This 
trend is consistent with the spatial entropy results (Figure 5a). Lacunarity does not show 
any sensitivity to percolation thresholds.   

  
Our results, from analyzing the mean fractal dimension ( D ) under increasing 

occupation density, reveal the limitation of this measure to account for changes in 
landscape structure.  Figure 7a shows D  as a function of occupation density in all of the 
types of landscapes.  Except for the block rule, D  first increases as patches start to 
aggregate at low densities (in the sub-critical region).  The maximum maxD  value is 

between 8
cp  and 4

cp  and then D  decreases. maxD  is obtained in the transition between 

the sub-critical and super-critical regions, because as a large convoluted patch with high 
fractal dimension forms, a large number of small patches with low fractal dimension still 
exist on the landscape with high mass entropy (Figure 5b). The block landscape shows a 
different pattern in which D  fluctuates with smaller amplitude as occupation density 
increases (Figure 7b).  This indicates that changes in the general structure of the 
landscape ranging from more square-like shapes to long convoluted shapes, and the mean 
value is pulled down strongly by an increase in the number of small patches with less 
fractal dimension (see Figure 5b).  However, D  results must be interpreted with care, 
since its mean value and mass distribution are not equal as occupation density increases.  
For example, in figure 7a,the line marks the 0.5 occupation density.  At this point, anneal, 
random and block landscapes have the same D  value.  However, as seen in figure 2 a-e, 
the general structure is significantly different (also see results in spatial and mass entropy 
above).   It is also evident that D  fluctuates as the percolation cluster becomes bigger 
with high occupation densities (see figure 7a for densities higher than 0.8).  An additional 
problem is that the common method used to calculate fractal dimension has a weak 
relationship with the real estimation of fractal dimension (Schumaker 1996). 

 
Plotting every patch‘s fractal dimension D as a function of occupation density (figure 

8 a-e), reveals the relationship between percolation and the formation of percolation 
clusters.  When  cpp ≥  (super-critical region), it is expected that a large convoluted 

patch will form (Stauffer, 1985).  This fact is confirmed in our landscapes.  For all of the 
types of landscapes, a discontinuity (gap) forms at 4

cp , showing that a structure with high 

D formed, which is the percolating cluster.  For the block landscape, the gap forms, 
however, it is not very clear, since it seems to consist of different gap formations due to 
fluctuations in shape from regular to less regular. 

 

Landscape Division, Class Division and Weighted Mean Patch Size 
Our results reveal that D is sensitive to pc (figure 3k-o).  In all the types of landscapes 

created, when p < pc (sub-critical region), D is close to 1.    As seen in the figure, when 

cpp ≥   (super-critical region), D < 1since a big patch forms covering a high percentage 

of the landscape and the remaining areas are distributed in a low number of small 
patches.  Class division (DL) and weighted mean patch size (S) are also sensitive to pc 
(Figure 4c-d).   The formation of a large patch is clear in S, since the majority of the 
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weight in the mass distribution of the landscape is located in the percolating cluster, 
resulting in a geometric phase transition.  For DL, a clear example of its sensitivity is 
shown in the figure.  The small boxes show a 50x50 sample of the patches landscape.   In 
the first box (read from left to right), only a small number of patches exist, so the DL 
value is lower than that of the second box, where the density is higher, but it is distributed 
in more patches so its division is higher.  The measures S and D do not show this 
sensitivity to class division.  The percolation threshold estimated using the CA rule for 
4N is confirmed using DL and S. 

 

Estimation of Percolation Thresholds 
As seen in figure 3a-e, a geometric phase transition forms where the density equals the 

pc for that particular landscape.  As expected, patterned landscapes (non-random 
landscapes) have a higher or lower pc than random maps (Table 1) due to patchiness or 
over-dispersion.  Our pc estimation for random maps is ≈0.589, which is a close 
approximation to the expected value of ≈0.592 (Stauffer 1985, Grimmett 1999).  Patterns 
that resulted from CA rules that force sites to aggregate (segregate), like anneal and 
ortho, resulted in a lower pc for the 4N neighborhood.    However, patterns where the 
neighborhood local density are not considered in the transition function, tend to form 
structures whose aggregation depended only on the total initial occupation density, 
having higher percolation thresholds (block landscapes). When percolation was simulated 
using 8N, for each type of landscape, pc was lower than using 4N.  Because in an 8N 
neighborhood the possibility of connection is higher than in a 4N neighborhood, 
therefore, 8

cp  � 4
cp for any landscape structure.  The empirical relation 8

cp = 1 - 4
cp  

(Stauffer 1985), was shown to be valid only for random structures.  The S metric shows a 
clear geometric phase transition when the percolation threshold is reached and a big 
cluster is formed, for all the types of landscapes analyzed (Figure 4b).  These results are 
consistent with the estimation of pc using the explicit flow simulation with CA. 

 

Discussion 

Our results confirmed that patterned landscapes have different pc values and that their 
critical value is related to the general dynamics of the landscape.  The four neutral 
landscapes generated (anneal, ortho, block and patches) have a different non-random 
geometry that is the result of the dynamic of the CA, and each landscape showed a 
distinctive percolation threshold. The reported percolation threshold value of 0.59 is 
restricted to random maps on a square lattice (Stauffer 1985, With 1997, Grimmett 1999). 
Our results are consistent with this, and the use of this percolation threshold does not 
apply to non-random maps.  It is generally believed that pc in non-random maps would 
have a lower value, due to the coalescence of space (With 1995).  This was confirmed for 
the anneal, ortho and patches landscapes (Table 1), but not for the block landscape, which 
forms a random block aggregation of pixels (Figure 2). In fact, this landscape not only 
has a higher degree of aggregation (Figure 4b, 5a, 6a-b, 9f), but also a higher pc value.  
The formation of denser block aggregations with large gaps that dissect the landscape is 
the main reason for this difference.  These results are confirmed by figure 9f, where the 
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block landscape shows a higher lacunarity value, meaning that the size of the holes is 
bigger than the holes in the rest of the landscapes.   Furthermore, landscape and class 
division values show that for occupation densities higher than 0.59 (Figure 4d), all the 
landscapes except block have reached percolation.  Therefore, class division and 
landscape division are low, but block landscapes have a high value.  Hence, even though 
aggregation is high, the landscape is still divided. Consequently, the percolation threshold 
is going to be related to the landscape pattern of aggregation and division, in addition to 
the pattern and density of the gaps.   

Our results differ from those of Gardner & O’Neill (1991). Their results show that if 
the adjacency (contagion) is higher than random maps, the pc will be lower, and with 
lower adjacency, the pc will be higher.  We constructed the landscapes to have the same 
structure under different densities, so adjacency changed as a function of density (Figure 
6b), in contrast to Grader & O’Neill who kept adjacency constant under different 
densities.   For three of the CA landscapes (anneal, patch and ortho), adjacency was 
always higher than in random maps, but opposite to Gardner & O’Neill’s (1991) results, 
the pc value was lower. The only case where the pc was higher with a higher adjacency 
was the block landscape.  Given these results, we suggest that it is not possible to 
generalize the relationship between adjacency and percolation thresholds. 

Our estimation of the percolation threshold for 8N confirms that the percolation 
threshold is smaller if more neighbor connectivity is allowed.  However, the metrics that 
were sensitive to pc show sensibility to 4

cp  and not to 8
cp , because to estimate patch 

indices a raster-vector method (Douglas-Peuker algorithm) was used in which diagonals 
are not considered a part of the same patch.  The results indicate that there is a change in 
the geometrical behavior of a landscape,  given  a structuring dynamic, with an increase 
in occupation density.  This change  allows percolation to occur throughout the 
landscape.   In a real landscape   which experiences a decrease in  forest cover over time, 
certain types of geometrical structures form  as the result of  internal non-random 
dynamics, such as deforestation.  There is a critical  point where the  connectivity of  the 
system  is  going to rapidly decrease and where movement across landscape is not 
possible.    Near the percolation threshold, if a landscape is left for restoration, it would 
have a higher possibility of recovering because there will be a percolating cluster that has 
a very convoluted shape, making an aggregation process possible. For example, if we 
look at the anneal landscape (Figure 2c) at the pc point (Figure 8a), it can be seen that 
there is a large percolating patch that has a high perimeter area fractal dimension.  The 
rest of the patches are smaller and are surrounded by the big percolating patch (Figure 
10).  A good estimation of the percolation threshold in landscapes can be calculated using 
S. Our results show that this measure is useful in  detecting structural changes in the 
landscape that cannot be detected by mean patch size, which is a commonly used 
measure. This measure can also be used to monitor functional changes in structure due to 
disturbances in the landscape (Li & Archer 1997). 

Some authors have suggested that a single threshold value is not enough to describe 
the responses of all species in a community to changes in the landscape (With 1995).  
Others report that it is impossible for any landscape measure to account for scale-
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dependent variation, suggesting that landscape metrics do not have any ecological 
meaning (Vos et al 2001).  We agree with this, but, based on our findings, we also 
believe that if we were able to measure a functional percolation threshold (fc), the point 
where the system functionality is lost due to fragmentation, is going to be greater than or 
equal to spatial pc.    Therefore, this pc threshold could be a useful caution principle.  The 
reason for this is that habitat discontinuity is common in natural systems, and that species 
in an ecosystem have the  ability to move in discontinuous aggregations of resources. For 
example, Keitt et al (1997) found using graph analysis and percolation applied to conifer 
forests, that species with low dispersion capabilities are affected by landscape 
configuration near percolation threshold, and that high dispersion capabilities increase 
connectivity in the landscape.  This would support our theory that cc pf ≥ . 

 
Contagion and adjacency were not sensitive to percolation threshold since these 

metrics are not based on the geometrical properties of the landscapes.    Although our 
results show that contagion can be useful for determining aggregation in binary maps, 
Frohn (1998) has shown empirically how this measure is sensitive to resolution, effects of 
raster orientation, and the number of classes. In addition, contagion does not distinguish 
class aggregation, but summarizes the configuration of all classes (Gustafson 1998).  Our 
landscapes have the same resolution (350x350), number of classes and orientation, 
making contagion results relatively easy to interpret.  However, in real landscapes the 
problems mentioned are critical, and since it is possible to obtain aggregation information 
with other indices, our suggestion is to use spatial entropy, mass entropy and lacunarity.  
Adjacency shows an interesting trend, related with the dynamic of the CA rule.  For the 
block landscapes, adjacency changes linearly with occupation density, which is consistent 
with the block CA rule, which creates constant structures starting from random seeds.  
Landscapes like random maps, however, produce a quadratic variation of adjacency as a 
function of occupation density.   

 
Although D  seems to be sensitive to pc, since the maximum D  is reached close to the 

pc value, its value seems to be meaningless in terms of landscape structure or space 
filling.  These measures provide some insight into the general complexity of the 
landscape in terms of spatial pattern, but as explained by Li (2000), such fractal measure 
cannot be used to characterize the nature of space filling of ecological objects such as 
forest expansion.  Another problem with D  is that because it is a mean value, it is 
sensitive to the frequency of patches (Figure 7b), making it hard to interpret and use in 
comparative studies.  It also has the same value even under different landscape structures 
(Figure 7a). By averaging fractal dimension, the information about individual patch 
shapes is lost (Hargis 1998).  Therefore, instead of using mean fractal dimension, we 
suggest using every patch fractal dimension (perimeter / area relation) plotted against the 
occupation density, because it shows the formation of percolating patches.  Our results 
also indicate that a patch with higher fractal dimension forms when the percolation 
threshold is reached (Figure 8a-e). This is useful in determining the possibilities of 
landscape restoration. 

 
Lacunarity is a multi-scale method used to analyze a system’s heterogeneity 

(Gustafson 1998).  It has been shown (Dale 2000) that although lacunarity considers a 
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range of different scales in one landscape, this measure does not detect patterns at 
different scales.  Therefore, lacunarity is not a good measure of multi-scale patterns.  
Lacunarity is related to transnational invariance, which makes it possible to distinguish 
between geometries that may have the same fractal dimension, but are different (Allain & 
Cloitre 1991). If we look at the landscapes at approximately 0.5 occupation density 
(Figure 2a,c,e), the mean fractal dimension is the same for the random, anneal and block 
landscapes (Figure 7a), but the lacunarity value (Figure 9f) is different, making it 
possible to  distinguish between these landscapes. Lacunarity could be a useful tool to 
determine the density of holes or coalescence of the landscape. However, we agree with 
Dale (2000) that degree of ‘hole-iness’ is not enough to quantify and describe the 
landscape.  Therefore, we suggest that lacunarity should be used to complement fractal 
dimension measures. 

 
For the indices that describe the general characteristics of the landscapes such as 

number of patches and total edge, our results are similar to results obtained for real maps 
(Gardner et al 1991) and clumped neutral maps (Saura & Martinez 2000), showing that 
non-random landscapes have less total edge and a smaller number of patches.  These 
results are not surprising, because any process of aggregation will cause these two 
measures to decrease, and highly regular landscapes, such as a chessboard landscape, 
would cause these values to increase. This does not mean that these basic measures are 
not useful.  They are good and simple measures that characterize a landscape and can be 
good indicators of change over time for a particular region, but they have a restricted role 
in comparing different regions or changes in structural pattern.    

 
Total edge results have a strong relationship with spatial entropy.    Spatial entropy 

and mass entropy were shown to be useful in the quantification of the spatial organization 
generated under the different CA dynamics. Although spatial entropy did not show a 
strong  sensitivity to pc, this measure can be useful to establish the degree of order in a 
landscape, and the change of organization over time.  As the results show (Figure 5a), 
spatial entropy is very sensitive to pattern changes.  For example, the ortho landscape at 
low densities, showed a structure equal to the random maps, but when occupation density 
reached a critical value, the CA rule started to “rule” the dynamics of the landscape.  This 
caused change to occur by lowering the spatial entropy and organizing space.  In real 
landscapes, land transformation and forest fragmentation processes change the 
landscape’s spatial organization.  These changes would reflect an increase of mass and 
spatial entropy, if the initial density of forest is high (the forest is the matrix).   As soon 
as another land use class starts to dominate, mass and spatial entropy decrease again.   It 
has been shown for random maps that the probability of maximum cluster size diversity 
and the percolation threshold, which is the point of geometric phase transition, are 
statistically the same (Tsang 1999). Our empirical study confirms these results for 
random landscapes, and shows that this relationship holds for anneal, ortho and patches 
landscape, but not for block landscapes, where there is an increase of the mass entropy 
after the percolating clusters have formed.  We think that this finding is the result of the 
low number of patches that the block landscape has compared to the random landscape 
(Figure 4a). Mass entropy is a useful tool to understand system complexity (Tsang 1999) 
and the change of complexity over time.  
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The sensitivity of landscape division, class division and weighted mean patch size to 

percolation thresholds demonstrates how important it is to establish a landscape threshold 
point, since there is a major change in the geometry of the landscape, changing the 
possibility of movement at local scale.  As described by Jaeger (2000), landscape division 
has some limitations, since it is only comparable within landscapes that have the same 
area.  Therefore, it would be useful in comparing one region over time, but not in 
comparing two different regions.  Class division corrects this problem.  It measures the 
segmentation of a particular class, so that regions with different areas can be compared.  
For class division, if the class under analysis consists of only one patch, regardless of the 
total landscape area, the value for class division will be equal to 0.  In real landscapes, 
this would mean that if a land cover class, such as forest, consists of only one patch in the 
total landscape, this class is not divided, even if the forest is a small proportion of the 
landscape.  If we think of an animal moving in the landscape, from the perspective of 
class division, we assume that the best environment for movement would be the forest.  
Therefore, we are interested in how the animal would move across the forest, not the 
whole landscape, as we would be concerned with the landscape division index. Class 
division also shows a stronger sensitivity to pc, compared to landscape division (Figure 
3k-o, 4d). 

 
The use of neutral models of landscape is important for the establishment of critical 

values of landscape structure.  In neutral models, we can incorporate heterogeneity in a 
controlled way, allowing us to understand the links between index behavior and pattern 
(Gustafson 1998).  We extended the use of neutral models to models were the structure of 
the pattern in the landscape was created with a dynamical process embedded in a CA 
rule.  These “Dynamical Neutral Models” have neutral processes that are general 
abstractions of natural systems dynamics.  They can be used to incorporate and test 
general landscape principles, and the behavior of landscape measures under different 
patterning dynamics.  These types of models will help to study the behavior of indirect 
measures of structure, and perhaps to define a set of patterns that are common in real 
landscapes. Shumaker (1996) indicated that systems are too complex to reduce to a 
simple equation, suggesting that using metrics such as fractal dimension and contagion to 
quantify landscape properties is an impossible task. Although it might be true for 
contagion and fractal dimension, this generalization cannot be extended to other 
measures. Our study shows to give meaningful information about the structure, give 
different dynamics and landscape patterns.  However, it is important to incorporate 
analysis of heterogeneity at different scales (Gustafson 1998), and to incorporate 
dynamics of mosaics of different habitat or classes (Wiegand et al. 1999).  In addition, 
binary landscapes are considered “elementary landscapes” that can provide a sound base 
for the interpretation and quantification of landscape heterogeneity.  

 
The heterogeneity of resources and disturbances results in patches of diverse size, 

shape, type and boundary conditions (Li 2000). There is a need not only to quantify 
change, but to relate change to dynamics.  We think that given a certain dynamic, there 
will be a specific landscape pattern, and as a consequence of pattern, there will be a 
particular percolation threshold.  The pc value will be important in determining when 
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fragmentation really occurs and in identifying the critical point at which the restoration 
process is difficult.  Percolation threshold can be used as a critical point of fragmentation, 
and in conjunction with measure like landscape division, weighted mean patch size, 
lacunarity, mass and spatial entropy, some decisions can be made based on that 
information. Measures such as mean patch size, number of patches, total edge and others 
are descriptive measures of landscape structure, but they could also  be the result of a 
large set of possible dynamic processes.  Because their meaning is limited, interpretation 
and use of those measures must be restricted.  As a result, they cannot be used to define 
fragmentation. 

 
Landscape ecology depends completely on the development of measures of spatial and 

temporal heterogeneity at the landscape level.  Such measures should embrace a whole 
meaning in order to create a meaningful theory.  After a series of statistical and numerical 
analyses of landscape metrics, it can be seen clearly that correlation between metrics 
exists, since the same basic information is used, and that many measures can give the 
same value under different structures, or that certain measures are not sensitive to critical 
values. It has been suggested that the quantification of landscapes should be based on 
fundamental components of spatial structure, and that a set of such measures should be 
established.  We extended this idea, and suggest that we should think of ecological 
quantities that have meaning in terms of landscape dynamic. Identifying critical values in 
such quantities is important in order to establish conceptual models for forest 
management and conservation policies. 
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Figure 1. Neighborhood configurations commonly used in 2 
dimensional lattices. a) the 4 nearest neighborhood (4N) or von 
Neumann neighborhood, b) the 8 nearest neighborhood (8N) or the 
Moore neighborhood.  In both configurations the center site is 
considered as part of Neighborhood. 
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Figure 2. Artificial landscapes, with ≈ 0.5 occupation density, and percolation cluster (in Gray) 
in the same landscape. a,b) Random landscape, c,d) Anneal landscape, e,f) Block Landscape, g,h) 
Ortho landscape and i,j) Patches landscape. 
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Figure 3. Percolation probability, number of patches and landscape division of 
under different occupation density for each artificial landscape. a-e) Percolation 
threshold estimation using the flow simulation.  The continuous line represents the 
4N and the dashed line the 8N percolation. f-j) Number of patches and adjusted 
curve. k-o) Landscape division showing (dashed line) the pc value estimated for 4N. 
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Table 1. Landscape percolation thresholds for each artificial landscape. Results are 
shown with the von Neumann Neighborhood (4N) and the Moore neighborhood (8N). 

 

Landscape Type 4N 8N 

Ortho 0.426 0.350 

Anneal 0.524 0.446 

Patches 0.545 0.469 

Random 0.589 0.398 

Block 0.633 0.560 
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Figure 4. Results for the artificial landscapes, a) Number of 
patches b) Total edge.  c) Weighted mean patch size (S) d) Class 
Division 
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Figure 6. Results for: a) Contagion under different occupation 
densities for each of the artificial landscapes created.  The dashed line 
indicates that p= 0.5; b) Occupied cells adjacency probability as a 
function of occupation density. 
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Figure 7. a) Mean fractal dimension.  The dashed line, located at 0.5 occupation density, 
corresponds to the landscapes shown in figure 2. b) Block landscape mean fractal dimension D
as a function of occupation density.  The embedded boxes show a 100x100 window of 350x350 
landscape, showing the structure of the landscape at different densities and its respective D
value.  The patches that define D  are shown in gray. 
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Figure 8.  a-e) Perimeter area fractal dimension for every 
patch, as a function of occupation density. The line shows the 
mean Fractal dimension commonly used to describe the whole 
landscape.   
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Figure 9. Logarithm of Lacunarity (Λ) as a function of the logarithm 
of box size (r) and occupation density for the artificial landscapes: a) 
random, b) ortho, c) anneal, d) block and e) patches, f) Lacunarity (log) 
as a function of box size with 0.5 occupation density. 
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Figure 10. A sample 50x50 window of the anneal landscape at 
percolation density (around 0.52).  The small black patch, although 
it is disconnected from the percolating cluster, is surrounded by it, 
increasing the probability of restoration of connectivity. 


