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Abstract

Background: Accurately quantifying the signature information of chemical shifts provides a foundation for

accurate and complete sequential resonance assignment in protein NMR spectroscopy. A nearly complete

assignment is a prerequisite for three dimensional protein structure calculation.

Methods: A number of filtering steps are applied to construct two training datasets using known protein NMR

data for learning scoring schemes to quantify the signature information. The scoring schemes are learned

through a naive Bayesian method to use both intra-residue and inter-residue chemical shifts and to use the

intermediate neural network output from the secondary structure predictor PsiPred.

Results: Two training datasets ALL and HOMO for scoring scheme learning were carefully constructed. Based

on these two datasets, a total of 16 scoring schemes were proposed and examined. An extensive simulation

study was set up to validate these scoring schemes and the one that performed the best was implemented into a

web server, which is publicly accessible.

Conclusions: Through the extensive simulation study we found that the currently known protein NMR data is

quite evenly distributed in terms of protein homology, and therefore homology removal in training dataset

construction wouldn’t gain a lot in the overall performance of the resultant scoring schemes. Also, we conclude

that in general a naive Bayesian learning is better than a trivial distribution assumption. We believe this

conclusion holds not just in our care but also for similar applications where the training data size is large.

Another conclusion is that in applications where PsiPred prediction results are used as intermediate input, using
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its intermediate neural network output could be a better choice than using its the final prediction result.

Background

Nuclear Magnetic Resonance (NMR) spectroscopy and X-ray crystallography are two key technologies that

experimentally determine protein three dimensional structure. In protein NMR, structural restraints

recorded in the NMR spectra have to be mapped to the target amino acid sequence and corresponding

neighboring protons (via NOEs) in order to calculate the three dimensional structure. Such a mapping

could theoretically be done directly, but in practice, due to the low accuracy and redundant of NOE data,

the mapping is done through guidance from the backbone resonance sequential assignment, whose goal is

to associate multiple spectral peaks of backbone chemical shifts to their corresponding amino acid residues.

It is recognized that a nearly complete assignment is a prerequisite to the three dimensional structure

calculation, where “complete” means that all true spectral resonance peaks must be identified and must

find their corresponding amino acid residues.

A spectral resonance peak may be recorded as a two dimensional vector of chemical shifts, such as an

HSQC peak, or a three dimensional vector of chemical shifts, such as a CBCA(CO)NH peak, where the

chemical shift values have a one-to-one correspondence to the nuclei being measured in the NMR

experiment. Typically, these interacting nuclei are at most three bonds away and reside in either a

common amino acid residue or two adjacent residues. Ideally, it is expected that each peak corresponds to

a unique nucleus or a unique amino acid. In practice, however, because some nuclei have very close

chemical shift values and because of varying experimental conditions and instrumental errors, matching

specific peaks to specific nuclei becomes non-trivial. Sequential assignment is formally defined as the

process of mapping the resonance peaks to their corresponding nuclei, mostly through using individual

chemical shift signature information. For each individual chemical shift value, whose corresponding nucleus

type is easily known, the signature information it contains generally refers to the chemical and structural

environment that its corresponding nucleus is in.
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Besides the amino acid residue types inferred by the chemical shift values, there are two pieces of signature

information that can be useful in an accurate (heteronuclear) sequential assignment. One is to correlate

the chemical shift values to the secondary structure types that their corresponding residues are in. The

observation underlying this correlation is that, for a common type of nuclei, their chemical shift values are

affected not only by the corresponding amino acid residue types, but also by the types of secondary

structure that the residues are in [1]. In other words, both residue type and secondary structure type are

structural factors that affect the chemical shift values. Such an observation has also been validated by the

new training datasets ALL and HOMO constructed in this work, to be detailed in the “Training Datasets”

section, in which, for example, the means of carbon alpha (CA) chemical shifts in Alanines differ

significantly across three different types of secondary structure. In dataset ALL, the means in coils (C),

alpha helices (H), and beta sheets (E) are 52.506ppm, 54.806ppm, and 50.811ppm, respectively. The

second fundamental part is to collectively use all available individual chemical shift signature information,

an idea similar to boosting in machine learning that combines the individual chemical shift signature

information to make better inferences. To this purpose, the common practice in (heteronuclear) sequential

assignment is to map multiple spectral peaks to the HSQC peaks, such that peaks sharing common

hydrogen (HN) and nitrogen (N) chemical shifts are grouped together to form super-vectors of chemical

shifts. These super-vectors are generally referred to as spin systems. Note that a spin system contains

some chemical shifts for nuclei in the same residue to which the hydrogen and the nitrogen nuclei belong,

as well as other chemical shifts for nuclei in the preceding residue. For convenience, in this paper we refer

to them as intra-residue and inter-residue chemical shifts, respectively [2]. Through the identification of

spin systems, resonance sequential assignment becomes a mapping of spin systems to their corresponding

residues in the target amino acid sequence. This paper is on effective mining the signature information for

spin systems, where the signature information is the collective sum of the signature information of the

chemical shifts in the spin system and it contains both the residue type information and the secondary

structure type information.

There are a number of existing studies on how to group multiple spectral peaks into spin systems.

Interested readers might refer to [3, 4] for more detailed descriptions. This paper is centered around

designing scoring schemes to effectively quantify the chemical shift signature information for mapping spin

systems to amino acid residues. Therefore, we do not intend to get into the issues of detailed peak

grouping. Nonetheless, we will use three NMR spectra HSQC, CBCA(CO)NH, and HNCACB to briefly

3



address how peak grouping is done. Subsequently, we will use the spin systems formed out of these three

spectra to demonstrate the scoring scheme design. We point out that the stated scoring scheme design

procedure is not limited to this typical combination of NMR spectra (or equivalently, chemical shifts), but

is applicable to any combinations as long as they are theoretically sufficient for sequential assignment.

We assume the ideal case, in which an HSQC spectrum contains one peak (HN, N) for every pair of amide

nitrogen (N) and its directly attached hydrogen (HN). That is, there is one peak for every amino acid

residue, except Prolines (which don’t have HN). The CBCA(CO)NH spectrum contains resonance peaks

(HN, N, CA) and (HN, N, CB), where N is the amide nitrogen and HN is the directly attached hydrogen,

CA and CB are the carbon alpha and the carbon beta residing in the residue that precedes the residue to

which HN and N belong. For convenience, they are denoted as (HNi, Ni, CAi−1) and (HNi, Ni, CBi−1) to

reflect the fact that if HN and N are in the i-th residue, then CA and CB are in the (i − 1)-th residue.

Using similar notations, the HNCACB spectrum contains four types of resonance peaks (HNi, Ni, CAi−1),

(HNi, Ni, CAi), (HNi, Ni, CBi−1), and (HNi, Ni, CBi). It should be noted that there are no

CBCA(CO)NH or HNCACB peaks for Prolines and there are no (HN, N, CB) peaks for Glycines (which

don’t have CB). After peak grouping, a typical spin system would be in the form of (HNi, Ni, CAi, CBi;

CAi−1, CBi−1), while some might be missing the CB chemical shifts, either the intra-residue or the

inter-residue one or both.

In some existing works, the observed chemical shift ranges for different amino acid residue types are used

to infer the possible residue types that could correspond to a spin system, a process referred to as residue

typing. These works include TATAPRO [5], Mapper [6], PACES [3], and RIBRA [7]. In TATAPRO, for

example, when CB chemical shift value falls into range [24ppm, 36ppm] and CA chemical shift value is less

than 64ppm, then it restricts the residue to be one of Lys, Arg, Gln, Glu, His, Trp, Cysred, Val, and Met.

Usually, the number of candidate residue types inferred this way for a spin system is large (> 6), and

consequently the subsequent assignment involves a very large search space and requires extra knowledge so

as to be performed efficiently.

Realizing that the above use of chemical shift signature information is rough since only several chemical

shift value cut-offs are used and only residue types are determined, several efforts seek to quantify the

signature information by assuming that for one residue type, the chemical shift values of a nucleus follow a
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normal (Gaussian) distribution. BioMagResBank (BMRB, http://www.bmrb.wisc.edu/), which is a

repository for known protein NMR data, collects the means and standard deviations for HN, N, CA, CB,

C, and HA (and more) chemical shifts in all 20 types of amino acid residues. With these means and

standard deviations at hand, a typical procedure is to use the density functions of the corresponding

normal distributions to estimate a probability for mapping a specific spin system to a specific residue,

using the intra-residue chemical shifts in the spin system. Taking this one step further, since secondary

structure is another important structural factor that affects the chemical shift values, the means and

standard deviations of chemical shifts can be collected for every combination of a residue type and a

secondary structure type. Subsequently, one can predict the secondary structures for the target protein,

and then estimate a probability for mapping a specific spin system to a specific residue coupled with its

predicted secondary structure. Mathematically, for every intra-residue chemical shift cs in a spin system,

we use the density function of the corresponding normal distribution to estimate a probability p(cs | aa, ss)

that the corresponding nucleus is in residue aa residing in secondary structure ss, where

p(cs | aa, ss) =
1

σ
√

2π
e−

(cs−µ)2

2σ2 , (1)

µ(aa, ss) is the mean, and σ(aa, ss) is the standard deviation of the normal distribution for the (aa, ss)

couple. The product of the probabilities for all the intra-residue chemical shifts in the spin system is taken

as the probability that the (aa, ss) couple corresponds to the spin system. In our experiments, we have also

implemented this method and used the logarithm of the probability to be the score. In more details, for

spin system (HNi, Ni, CAi, CBi; CAi−1, CBi−1), the score of mapping it to couple (aa, ss) is

− 100 × 1

4

∑

cs∈{HNi,Ni,CAi,CBi}

log
(

p(cs | aa, ss)
)

, (2)

where the factor 100 is solely for computational precision purposes and taking the average is for score

normalization purposes. Clearly, a smaller score indicates a higher probability mapping. Such an

estimation that quantifies the mappings between spin systems and amino acid residues coupled with

secondary structures, is generally referred to as a scoring scheme. Existing studies adopting the above type

of scoring schemes include QUASI [8] and MARS [2], where MARS does slightly differently by using

z-scores rather than probabilities of the normal distributions.

Assuming normal distributions is one way to the signature information quantification, and has been widely

adopted. However, we have performed substantial experiments to verify such an assumption and found
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that more than one third of couples do not convincingly follow normal distributions (cf. Supplementary

Materials). In fact, this assumption was suspected in [1], where the authors proposed a CBM model for

sequential assignment, to be detailed in the “Results” section, and a log odd like scoring scheme.

Essentially, the log odd like scoring scheme 1) partitions the chemical shift range for a nucleus in every

couple (aa, ss) into exactly 5 bins of equal size, 2) counts for the observed chemical shift cs the number of

chemical shifts in the collected dataset that fall in the same bin to which cs belongs, and 3) uses the ratio

of this number divided by the total number of chemical shifts associated with couple (aa, ss) in the

collected dataset, to be the probability of mapping cs to couple (aa, ss). A refinement on this log odd

scoring scheme, called a histogram-based scoring scheme, is proposed in [9]. In the histogram-based scoring

scheme, the bin size is set to be one-tenth of the chemical shift range, and the bins are no longer fixed but

centered around the observed chemical shift cs. In both scoring schemes, the estimated probability is again

transformed into a score by taking the logarithm, similarly done as in Equation (2).

From machine learning point of view, the histogram-based scoring scheme is trained through a naive

Bayesian learning, and it is thus called a Bayesian scoring scheme in this paper. Nevertheless, Bayesian is

regarded as a learning method in this paper, and there are in total 8 Bayesian scoring schemes, among

which one is identical to the above histogram-based scoring scheme and the others take in some more

factors into the probability estimation and the estimation is based on two better constructed datasets than

the ones in previous studies. These two datasets are ALL and HOMO, to be detailed in the “Training

Datasets” section. Recall that, assuming A and B are two events, the Bayes rule says

p(A | B) = p(B | A)p(A)/p(B).

Therefore, to estimate a probability for mapping a specific chemical shift cs to a specific couple (aa, ss),

• let N denote the total number of the same type of chemical shifts to cs in the training dataset;

• let N(aa, ss) denote the number of chemical shifts associated with couple (aa, ss) (which is typically

in the thousands) within N ;

• let N(cs) denote the number of chemical shifts in N that are close to cs, using a pre-learned

threshold ǫ (cf. the “Methods” section);

• let N(cs | aa, ss) denote the number of chemical shifts in N(aa, ss) that are close to cs, using the

same threshold ǫ.
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Then, the Bayes rule says that the probability of mapping is

p(cs | aa, ss) =
N(cs | aa, ss)

N(cs)
× N(cs)

N
/

(

N(aa, ss)

N

)

=
N(cs | aa, ss)

N(aa, ss)
. (3)

Such an estimation integrates the distribution assumption by replacing the assumed distribution with the

actual counting and is expected to perform better than the log odd scoring schemes since the chemical shift

window is dynamic rather than static. For simplicity, we call the scoring schemes assuming normal

distributions Normal scoring schemes, while the others Bayes scoring schemes.

Note that in the residue typing schemes such as in TATAPRO, only intra-residue chemical shifts are used

to restrict the corresponding residue types, while inter-residue chemical shifts are used mostly for

connectivity/adjacency determination, that is, which two spin systems should match to two adjacent

residues. Inter-residue chemical shifts can be used to restrict the preceding residue types following the

same principles. Therefore, according to the same boosting idea in collectively using all available chemical

shifts’ signature information, it would be beneficial to also use these inter-residue chemical shifts’ signature

information in the scoring schemes. For this purpose, suppose the residue preceding aa is aa′ and aa′ is in

secondary structure ss′, then mapping spin system (HNi, Ni, CAi, CBi; CAi−1, CBi−1) to couple (aa, ss)

gets a score of

− 100 × 1

6

(

∑

cs∈{HNi,Ni,CAi,CBi}

log
(

p(cs | aa, ss)
)

+
∑

cs′∈{CAi−1,CBi−1}

log
(

p(cs′ | aa′, ss′)
))

. (4)

Depending on whether or not the inter-residue chemical shifts are used, scoring schemes are classified into

Intra where only intra-residue chemical shifts are used, and Both where both intra-residue and inter-residue

chemical shifts are used. In this work, we adopted PsiPred [10] as our secondary structure predictor to get

the secondary structure ss for each residue aa in the target protein. If the PsiPred final prediction results

are used, then the scoring schemes are classified into category 1. Note that PsiPred uses a neural network

for prediction and the last layer in the network contains three nodes each corresponds to a secondary

structure type. The intermediate neural network output is a triple of predictions, which are used for final

decision. In half many of the scoring schemes we chose to use this intermediate output rather than the final

prediction, and subsequently these scoring schemes are classified in category 2. For example, suppose the

intermediate prediction results for aa is (q1, q2, q3), which basically mean that aa gets a probability q1 (q2,

q3, respectively) in α-helix (β-sheet, coil, respectively). Then for an observed chemical shift cs, the
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probability of its corresponding residue being aa should be the expected probability calculated as follows:

p(cs | aa) =
1

q1 + q2 + q3

(

q1 × p(cs | aa,H) + q2 × p(cs | aa,E) + q3 × p(cs | aa,C)
)

, (5)

which may replace p(cs | aa, ss) in the above score calculations (Equations (2) and (4)). Using the above

set of notations, a scoring scheme HOMO-Bayes-Both-2 is the one that is learned based on dataset HOMO,

uses both intra-residue and inter-residue chemical shifts, and uses the intermediate neural network output

from PsiPred to score the mappings.

Results

All the above scoring schemes are built on top of known protein NMR data. For example, for the log odd

like scoring scheme and its improved version Bayesian scoring schemes, the entire distributions of known

chemical shift values have to be ready; and for the scoring schemes assuming normal distributions, the

means and standard deviations have to be collected beforehand. In the previous studies, several datasets

have been assembled for these purposes. In our work, we re-composed two datasets to train the scoring

schemes, to take the most advantage of all known protein NMR data. Essentially, one training dataset,

called ALL, contains all known protein NMR data that have associated secondary structure information in

Protein Data Bank (PDB), the other one is a subset of ALL, called HOMO, with homologous proteins

removed. The detailed descriptions of these two training datasets ALL and HOMO, including a number of

data filtering processes, are provided in the “Training Datasets” section. In each of these two datasets, the

chemical shift values for a nucleus nu (in { HN, N, CA, CB }) in each combination of an amino acid aa

and a secondary structure ss are organized into a separate text file for scoring scheme training purpose.

Since we have two training datasets ALL and HOMO, and there are options in the scoring schemes, i.e., to

assume normal distributions or to apply the Bayesian learning, to use only intra-residue chemical shifts for

residue typing or to use both, to use PsiPred final predictions or to use its intermediate neural network

outputs, a total of 16 scoring schemes have been trained and examined, which are denoted as

ALL/HOMO-Normal/Bayes-Intra/Both-1/2. To test the quality of each training dataset and the

performance of each scoring scheme, we employed in our experiments an NMR backbone resonance

sequential assignment model called Constrained Bipartite Matching (CBM) [1]. We remark that there are a

number of other assignment models can be used for this purpose, such as AutoAssign [4], Mapper [6],

MARS [2], and QUASI [8]. Nonetheless, since our focus is the quality of scoring schemes, we chose the
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CBM model because CBM matches to our focus the best. In fact, after the scores for the mappings

between spin systems and residues are calculated, the CBM model targets at optimal matchings, which

completely depend on the scoring scheme. In this sense, the accuracy of the assignments output by CBM

directly measures the quality of the scoring scheme.

An instance of CBM consists of an edge-weighted bipartite graph G = (A,S,E), where A consists of the

amino acid residues linearly ordered as they show up in the target protein, S consists of the spin systems,

and every edge (ai, sj) indicates a mapping between residue ai and spin system sj , with its weight

recording the mapping score. Given A and S, every one of the above 16 scoring schemes can be bound to

the CBM model to score the edges. Without any extra information for spin systems, the above CBM

instance expects a minimum-weight perfect matching, which can be computed efficiently [11]. In the

output matching, i.e. assignment, the number of correctly assigned spin systems divided by the total

number of assigned spin systems is defined as the assignment accuracy. Clearly, if the scoring scheme

quantifies the signature information effectively, then the assignment accuracy should be high. Therefore,

we use the assignment accuracy to measure the quality of the corresponding scoring scheme.

We have included a total of 14 protein NMR data in our experiments. These 14 proteins were not included

in either of the training datasets and thus did not bias the scoring schemes. The detailed information on

these 14 proteins are summarized in Table 1 [1, 9]. We remark that these proteins do not have solved

structures except three of them have related PDB entries. We chose to use only HN, N, CA, and CB

chemical shifts in the current study such that only CA and CB chemical shifts are used as inter-residue

chemical shifts. (This is similar to residue typing schemes as in TATAPRO and the scoring scheme in

MARS [2]. But, note that we have also collected statistics for C and HA chemical shifts and therefore C

and HA chemical shifts can be included in the experiments too.) Two of them, 4309 and 4393, do not

contain CB chemical shifts and thus only CA chemical shifts are used as inter-residue ones (as we will see

later, that these two proteins are harder than the others). The detailed CBM instance generating

procedure is as follows: For every protein, the primary sequence was retrieved, and the secondary structure

was predicted using PsiPred. Note that both the final prediction and the intermediate neural network

output were saved. For every amino acid residue, the chemical shifts for HN, N, CA, and CB were

retrieved from the BMRB entry, which formed an initial spin system containing only intra-residue chemical

shifts. Subsequently, the chemical shifts for CA and CB in the preceding residue were appended to form
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the second spin system, now containing both intra-residue and inter-residue chemical shifts. Note that

simulations of Proline and Glycine spin systems were a bit special since one doesn’t have an HN nucleus

and the other doesn’t have a CB nucleus. We chose to set the corresponding chemical shifts to 0 (a similar

treatment for CB has been done in [7], while most other programs including [3] choose not to simulate

these values). We remark that such a simulation doesn’t quite map to what is being done in practice, since

for example there wouldn’t be HSQC peaks for Prolines. Nonetheless, since the current work is centered at

the evaluation and comparison of the scoring schemes, the adopted simulation procedure still provides a

common foundation for fair comparison. In fact, one of our on-going projects is to place the scoring

schemes in existing automated sequential assignment tools, including CBM, and to evaluate their

performance on real protein NMR datasets.

For every chemical shift in a second spin system, we perturbed it by adding to it an “error” that follows a

zero-mean normal distribution, for which the standard deviation was set to the standard deviation

collected in the dataset. Note that such a perturbation step is to make the resultant spin systems more like

real data, in which true chemical shifts are slightly altered by errors and noises. The result is a third spin

system, which was finalized by randomly throwing away some CA and CB chemical shifts. The probability

of throwing away chemical shifts was set to a very small value, i.e. 5% in our case. After that, using each

of the 16 scoring schemes to score the mappings between the thus created spin systems and the residue and

secondary structure couples in the target protein, a CBM instance was created and the assignment

accuracy of its optimal solution was collected. The second column in Table 2 records the average

assignment accuracies over all 14 proteins.

Note that there are 20 types of amino acid residues and 3 types of secondary structures, and therefore in

total 60 distinct (aa, ss) couples. The tested proteins have length from 66 to 215 (cf. Table 1). It follows

that there are multiple copies of an (aa, ss) couple in one protein. All the above scoring schemes, and those

residue typing schemes too, signify the residue and secondary structure couple, but not the sequential

position of the couple in the target protein. In this sense, the CBM model would not be effective without

extra information for the spin systems — since there would be too many equivalent optimal assignments

but there is only one correct assignment. Indeed, without extra information, the assignment accuracies are

low (cf. the second column in Table 2) and the assignments are hardly useful for subsequent structure

calculation. The extra information that makes CBM an effective sequential assignment model is the
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connectivity, or adjacency, between spin systems [1]. Recall that in the “Background” section where peak

grouping was introduced, a resonance peak such as (HNi, Ni, CAi−1) has the CA entry appearing as an

inter-residue chemical shift in one spin system sj = (HNi, Ni, CAi, CBi; CAi−1, CBi−1) and as an

intra-residue chemical shift in another spin system sk = (HNi−1, Ni−1, CAi−1, CBi−1; CAi−2, CBi−2),

though its values could differ slightly. This indicates that spin systems sj and sk must be mapped to

adjacent residues in the target protein, that is, if sj is mapped to ai then sk must be mapped to ai−1.

Depending on the quality of the spectral data, varied abundance of connectivity can be inferred using the

inter-residue chemical shifts, and the connectivity connects the spin systems into strings (see for example, a

step in TATAPRO [5]). The CBM model uses the connectivity as hard constraints on the feasible

matchings and asks for a minimum-weight perfect constrained matching to respect all the connectivity.

Clearly, “without extra information” is exactly the extreme case where there is no connectivity inferred

from the spectral data. In another extreme case where all connectivity is achieved, all the spin systems are

chained together into a single string and the assignment can be trivially done. In the general case, however,

the CBM problem is NP-hard [1].

In our simulation study, since we have all connectivity for every protein, we randomly removed some

portion to generate a few instances for every protein, which have different levels of connectivity abundance.

In more details, an instance of k% connectivity is obtained by removing (100 − k)% connectivity. We have

set k in tens and we are interested in reasonable amounts of connectivity, namely, k = 50, 60, 70, 80, 90,

since in practice about 70% connectivity can be obtained. To solve the CBM instances, we adopted an

exact algorithm based on IDA* search, so as to compute a minimum-weight perfect constrained matching.

Note that the CBM problem is NP-hard and this IDA* based algorithm, though it is the currently fastest

exact algorithm, could run in exponential time in the worst case [12]. We didn’t record the running time of

the algorithm as it is not the current focus, but the algorithm is expected to run very fast when the quality

of the scoring scheme is high enough to make the optimal matching stand out. Depending on the scoring

schemes, the actual running time for IDA* varied dramatically from less than a second to minutes to days,

but it follows the general tendencies that instances with more connectivity take less time and instances by

Bayes scoring schemes take less time than the corresponding instances by Normal scoring schemes.

Typically, for example, using Bayes scoring schemes, the running times on instances with 70% connectivity

and up were seconds, but using Normal scoring schemes it took hours to days. In our experiments, we have

set a 2-day limit for running IDA*. We note that when applying the IDA* algorithm on real instances,
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normally a number of heuristics can be set up to speedup dramatically the search process. The 2-day limit

is set for collecting as much statistics as possible to evaluate the scoring schemes. The numbers in the

parentheses in Table 2 are the numbers of time-out instances, where we see that

ALL/HOMO-Bayes-Both-2 has the least time-out instances (three 50% instances and two 60% instances,

none of which was solved using any other scoring scheme). Our experiments were done on computers with

2.2GHz processors and a 2.5GB main memory (though in fact some easier ones were done on computers

with lower specifications — recall that we have more than 1, 120 instances). About the running time, we

should remark that, in some sense, the more time-out instances there are, the lower the quality of the

scoring scheme is since a low quality scoring scheme makes the solution space for the instance too large to

be searched over by the IDA* algorithm. In the reported average assignment accuracies, the time-out

instances were set to have their assignment accuracies equal to the least assignment accuracy in the same

category. Table 2 summarizes the average assignment accuracies of the 16 scoring schemes, where the

average was taken over 14 instances in the same category.

We believe that setting time-out instances to have the least assignment accuracy in the same category is a

reasonable treatment since time-out doesn’t necessarily mean lower (than the least) assignment accuracy.

Nonetheless, this is only a heuristic treatment and the true assignment accuracy might differ.

Consequently, as the tables show, some scoring schemes that are expected to be better have slightly worse

average assignment accuracies. For example, in Table 3, among the eleven solved HOMO-Normal-Both-2

60% instances, the least assignment accuracy is 0.859 and therefore those 3 unsolved instances were set to

have an assignment accuracy of 0.859; however, twelve HOMO-Bayes-Both-2 60% instances were solved

and the least assignment accuracy was 0.731. Setting the assignment accuracy to 0.731 for the two

time-out instances pulls the average assignment accuracy of HOMO-Bayes-Both-2 below that of

HOMO-Normal-Both-2, though HOMO-Bayes-Both-2 performs better than HOMO-Normal-Both-2 on all

solved instances except 4144.

We have also fully examined the effectiveness of the HOMO-Bayes-Both-2 scoring scheme through testing

it on all levels of adjacency on three proteins 4316, 4752, and 4929. These three proteins have the best

NMR data quality. From Table 4 we can see that without any “forced” adjacency, the assignment

accuracies have already reached 77%, and with a typical amount of adjacency, 60%, the assignment

accuracies reach 100%. The IDA* algorithm took seconds on each of these instances.

12



Discussions

We mentioned inter-residue chemical shifts can be used to infer the connectivity among the spin systems.

This is done in many sequential assignment programs. However, when typing the amino acid residues or

quantifying the mapping between spin systems and residues, usually only intra-residue chemical shifts are

used. For example, TATAPRO [5], Mapper [6], PACES [3], and RIBRA [7] use intra-residue chemical shifts

to do the residue typing; and CBM [1], QUASI [8], and MARS [2] use them to quantify the mapping scores.

We have designed scoring schemes that explicitly use both intra-residue and inter-residue chemical shifts to

quantify the mapping scores. From the experimental results in Table 2, we have seen that inter-residue

chemical shifts can play a significant role to improve the scoring scheme performance. To quantify its

significance, we took the average over the assignment accuracies of eight scoring schemes that do not use

inter-residue chemical shifts and the average over those do. The differences between these two average

assignment accuracies are 12.1%, 9.5%, 1%, 0.2%, and 0% on 50%, 60%, 70%, 80%, and 90% instances,

respectively. In the extreme case where no connectivity is used, using inter-residue chemical shifts can

improve the average assignment accuracy by as much as 34.5%. These differences indicate that using

inter-residue chemical shifts in the scoring scheme (or equivalently residue typing), besides using them in

the connectivity determination, can boost the assignment accuracy significantly, typically when the amount

of connectivity is small. When the connectivity is abundant, which says that inter-residue chemical shifts

have already been fully taken advantage of, then they provide only little extra information for residue

typing. Figure 1 plots the average assignment accuracies of scoring schemes using both intra-residue and

inter-residue chemical shifts and scoring schemes using only intra-residue chemical shifts, respectively.

Regarding training dataset construction, theoretically, a good dataset should not contain bias on any

typical fraction of the known protein NMR data and thus the NMR data for homologous proteins should

be removed. Our training datasets ALL and HOMO both contain good quality protein NMR data (cf. the

“Training Datasets” section), before and after the homology removal. We have detected that a large

portion of the proteins in ALL have homologous ones and to remove the homologous ones to obtain

HOMO. Consequently, the sizes of ALL and HOMO vary a lot in both the numbers of proteins and the

numbers of chemical shift values. Nonetheless, the percentage of each type of chemical shift values,

corresponding to a triple of a nucleus, an amino acid residue, and a secondary structure, doesn’t vary much

from ALL to HOMO (cf. Supplementary Materials). As a result, the effectiveness of a scoring scheme

trained on ALL and its counterpart trained on HOMO do not seem to differ (cf. Table 2). Figure 2 plots
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their average assignment accuracies of the 8 scoring schemes trained on ALL and the 8 scoring schemes

trained on HOMO, respectively. The differences between them are only 1.1%, 0.1%, 1.2%, 0.4%, 0%, and

0.5% on 50%, 60%, 70%, 80%, 90%, and the extreme 0% instances, respectively. With NMR spectroscopy

becoming an increasingly employed high-throughput technology for protein structure determination, we

foresee many more structures determined via NMR. If this is the case and if the balance among chemical

shifts is significantly altered, we believe that homology removal would be a necessary process in good

quality training dataset construction.

Results in Table 2 also tell us that Bayesian scoring schemes uniformly performed significantly better than

Normal scoring schemes. The average assignment accuracies of Bayesian scoring schemes and Normal

scoring schemes are plotted in Figure 3, where each average is taken over 8 scoring schemes. The

differences between them are 5.1%, 5.3%, 6.1%, 2.8%, 0%, and 3.9% on 50%, 60%, 70%, 80%, 90%, and the

extreme 0% instances, respectively. We interpret these differences as no surprise, for at least three reasons:

one reason is that the assumption of normal distributions for chemical shifts is probably rough, though

commonly adopted, for example, only two thirds of them can pass the normality testing (cf.

Supplementary Materials); secondly, there might be other structural factors that affect the chemical shift

values, for example, the residue solvent accessibility; and thirdly, even if the normal distribution

assumption makes sense, the estimate of means and standard deviations could differ from the true values.

Therefore, we believe in similar applications that involve empirical parameter estimations, a naive Bayesian

learning could perform better than naive distribution assumptions on the involved parameters.

Regarding the way to use predicted secondary structures, since we know ahead of time that the secondary

structures predicted by PsiPred come from a neural network where the secondary structures with only the

largest “probability” are reported, using the final prediction results naively might introduce extra errors to

the sequential assignment. We conjectured that using the accompanied “probabilities” by PsiPred for all

three secondary structures for each residue might be helpful in reducing the prediction errors. We have

implemented a scheme to take advantage of the probabilities and the experimental results demonstrated

that using them indeed can improve the assignment accuracy significantly. We again calculated the average

assignment accuracies of the 8 scoring schemes that take advantage of the accompanied “probabilities” and

of the other 8 scoring schemes that use the final prediction results. The differences between them are 5.9%,

2.9%, 1.6%, 0.6%, 0.1%, and 3.3% on 50%, 60%, 70%, 80%, 90%, and the extreme 0% instances,
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respectively. Figure 4 plots these average assignment accuracies, where we can see that using the

accompanied probabilities is always a better choice.

To summarize, from the results in Table 2, we are able to claim that using the known protein NMR data to

learn a scoring scheme for quantifying the spin system signature information, probably homology removal

doesn’t matter. However, a naive Bayesian learning definitely outperforms the assumption of normal

distributions; Secondly, using inter-residue chemical shifts in the scoring scheme will boost the quality,

besides using them in the spin system connectivity determination; Thirdly, using the intermediate PsiPred

neural network outputs on all three types of secondary structure is always a better choice than using the

final prediction results naively.

The two scoring schemes ALL-Bayes-Both-2 and HOMO-Bayes-Both-2 perform equally the best among all

16 scoring schemes. Note that ALL-Normal-Intra-1 and HOMO-Bayes-Intra-1 are exactly the scoring

function used in QUASI [8] and the histogram-based scoring scheme in [9], except that the training

datasets in our work differ from the training datasets used in QUASI [8] and [9], respectively. Figure 5

plots the assignment accuracies of these 4 scoring schemes, ALL-Bayes-Both-2, HOMO-Bayes-Both-2,

ALL-Normal-Intra-1, and HOMO-Bayes-Intra-1. It can be seen that (cf. Table 4) scoring schemes

ALL-Bayes-Both-2 and and HOMO-Bayes-Both-2 are so effective that their assignment accuracies can

reach as high as 80% without any given connectivity and the accuracies easily go beyond 90% with the

help of a typical amount of (that is, 70%) connectivity. The HOMO-Bayes-Both-2 scoring scheme is

provided freely as a web server that is accessible through

http://www.cs.ualberta.ca/∼ghlin/src/WebTools/score.php, where the HOMO training dataset is also

available. The web server contains two main functions: one is “single testing” that returns a score for

mapping an input spin system to an amino acid residue and a secondary structure couple, and the other is

“batch function” that accepts a protein sequence together with its secondary structures in PsiPred format

and a file containing spin systems, and returns an edge-weighted bipartite graph file, which can be readily

fed to the IDA* algorithm, or any other algorithms designed for the CBM problem, together with some (or

empty) connectivity information. Figure 6 shows a snapshot of the web server.

Finally, we want to remark that our current work focuses mainly on scoring scheme training for backbone

resonance assignment. This is only a step towards one of our objectives to develop a fully automated tool
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for protein NMR backbone resonance assignment that will be both robust and efficient. The scoring

schemes we have developed here can be adopted in any existing assignment frameworks besides the CBM

model, such as AutoAssign [4], Mapper [6], PACES [3], MARS [2], QUASI [8], and RIBRA [7]. We expect

the automated assignment tool to considerably speed up the protein structure determination process via

NMR spectroscopy and to transform it from a time-consuming method to a high-throughput technology.

As far as the scoring scheme itself is concerned, it could be extended into a more general framework,

oriented more towards full protein structure determination, by including side-chain nuclei into the

backbone assignment, as well as J-coupling constants and residual dipolar coupling constants. We note

that such an integration not only fulfills the assignment of other structural factors, but could also improve

the assignment accuracy altogether as they can be used to cross validate each other.

Methods
Training Datasets

The initial set of protein NMR data was obtained from the BMRB and included all protein entries present

in the database as of May 30, 2005. We applied several steps of filtering to remove potential noise and bias

from the dataset to make it as clean as possible. Firstly, proteins containing less than 50 amino acids or

containing amino acids not part of the standard twenty were eliminated. Secondly, corrected NMR protein

entries were obtained from the RefDB and these proteins overwrote any BMRB proteins present in the

dataset. In the resultant dataset, every protein entry (which is a single file) was parsed in order to obtain

the primary amino acid sequence, the chemical shift value for each nucleus, as well as the PDB accession

number(s). The PDB accession number was used to retrieve sequence and secondary structure information

related to that protein and to apply the third filtering step. To this purpose, the proteins that made into

the final dataset were those that contain PDB accession numbers where the corresponding PDB protein

sequence is a subsequence of the BMRB protein sequence or the other way around. Next, the secondary

structure information from the PDB protein entry was obtained for that protein. The PDB secondary

structure notation has eight different letters, which we translated into a notation of three letters to match

up with the PsiPred secondary structure format (namely, G, H, and I from PDB became H in PsiPred, E

from PDB remained as E, and S, T, B, and non-annotated positions in PDB became C in PsiPred). We

note that such a translation is necessary since we will be using PsiPred as the secondary structure

predictor in our testing. Nonetheless, suitable adjustment can always be made if other secondary structure
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predictors are employed.

A total of 1, 493 protein entries and 165, 122 amino acid residues were obtained in the final dataset,

denoted as ALL (an excel sheet containing the detailed statistics on the numbers of residues in different

types of secondary structure is provided in Supplementary Materials); 456 of these proteins and 45, 964

amino acid residues were from the RefDB corrected data. A total of 6 files were created each corresponding

to a nucleus from HN, N, CA, CB, C, and HA. For those protein entries in the final dataset, chemical shifts

were placed into these 6 files. Each chemical shift is represented as a triplet of an amino acid residue type,

a secondary structure type, and the chemical shift value.

In order to apply the scoring schemes effectively, we examined carefully the chemical shifts in every triple

combination: nucleus, amino acid residue, and secondary structure. We observed that there are a tiny

amount of chemical shift values should be treated as outliers since they diverse significantly from the main

stream. Since the abnormal behavior of a single outlier could disrupt the scoring scheme, an efficient

statistical method, namely “boxplot” [13] (with the relevant parameter set at 1.5), was applied to remove

the outliers — this constitutes the fourth and the last filtering in dataset ALL construction.

In order to reduce the potential bias that could be caused by multiple homologous protein entries, a second

dataset was generated out of dataset ALL. “BLAST 2 sequences (bl2seq)” [14] was run between every pair

of sequences. Any protein having greater than 50% homology against another protein already included was

removed (note that this is order dependent). The resulting dataset, denoted as HOMO, contained 822

proteins and 91, 382 residues, among which 336 proteins and 34, 225 residues were from the RefDB (the

excel sheet containing the detailed statistics for dataset ALL in Supplementary Materials also contains the

statistics for dataset HOMO). “boxplot” was also applied on HOMO to get rid of chemical shift outliers.

For example, the chemical shift values for nucleus CA in Alanines residing in α helices range from

52.947ppm to 56.900ppm. Subsequently, the corresponding threshold used in Bayesian scoring schemes is

set as (56.900 − 52.947)/20 = 0.19765ppm.

Score Generation

In each dataset (ALL or HOMO), every one of the six files that corresponds to a nucleus in {HN, N, CA,

CB, C, HA} (note that we focus on backbone resonance sequential assignment) was further partitioned
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into 60 subfiles, each of which corresponds to an amino acid residue type and a secondary structure type

couple. Exceptions are: the HN-file was only partitioned into 57 subfiles since Proline doesn’t have the HN

nucleus and the CB-file was only partitioned into 57 subfiles because of Glycine.

For every triplet of nucleus nu, amino acid residue aa, and secondary structure ss, let N(aa, ss) denote the

total number of chemical shift values collected in the corresponding subfile. Let µ(aa, ss) denote the

chemical shift mean and σ(aa, ss) denote the chemical shift standard deviation. These means and standard

deviations were used in the scoring schemes assuming normal distributions on chemical shifts.

The Bayesian scoring schemes using the collected chemical shift values directly, as described in the

“Background” section. In these scoring schemes, chemical shift thresholds have to be learned in order to

estimate probabilities. They were set as follows: For triplet (nu, aa, ss), let ǫnu denote the window-size

associated with this triplet such that exactly 20 intervals of length ǫnu cover the whole range of the

chemical shifts. The value 20 was set in such a way that these window-sizes map closely to the standard

deviations collected in the dataset. For every observed chemical shift value cs for nucleus nu, using cs as

the midpoint, the number of chemical shifts in the (nu, aa, ss)-subfile that fall into the window of size ǫnu

is N(cs | aa, ss), which is used in Equation (3) to calculate the probability.

We adopted PsiPred [10] to predict the secondary structures for the target protein. The PsiPred secondary

structure format consists of three notations, H for alpha helix, E for beta sheet, and C for coil. Besides the

predicted secondary structure for each residue, PsiPred also provides a confidence value, which is a single

digit in the range of 0 to 9. We note that such a confidence value is a post-treatment of the neural network

output, which consists of three values associated with the three output units (helix, sheet, and coil). These

three values for a residue in the target protein are stored in an intermediate PsiPred output file with suffix

“ss2”. These values can be regarded as the “prediction probabilities” for individual secondary structures

and can be integrated into scoring schemes. In more details, when one residue aa is predicted to be in helix

with probability 0.55, to be in sheet with probability 0.25, and to be in coil with probability 0.40, then

0.55
0.55+0.25+0.40

= 45.8% of the final score comes from mapping the spin system to (aa,H),

0.25
0.55+0.25+0.40

= 20.8% from mapping the spin system to (aa,E), and 0.40
0.55+0.25+0.40

= 33.4% from mapping

the spin system to (aa,C) (cf. Equation (5)).
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With the probability p(cs | aa, ss) estimated for the chemical shift value cs associated with the nucleus in

(aa, ss) couple, the absolute logarithm of p(cs | aa, ss) was taken as a score in our scoring schemes.

Furthermore, for a spin system, the average of all the individual chemical shift scores multiplied by 100,

was taken to be the score for mapping the spin system to an (aa, ss) couple. For example, for spin system

(HNi, Ni, CAi, CBi; CAi−1, CBi−1), when only intra-residue chemical shifts were used in the scoring

scheme, the score of mapping it to couple (aa, ss) is calculated by Equation (2), and when both

intra-residue and inter-residue chemical shifts were used, the score of mapping it to couple (aa, ss) is

calculated by Equation (4). We remark that the factor 100 is solely for computational precision purposes

and taking the average is for score normalization purposes. Clearly, the smaller the score, the higher the

confidence we have for the mapping.

Finally, there are a few special features of the chemical shifts that were utilized in all the scoring schemes

developed above. To name a few, since there is no CB nucleus in Glycine, no CB chemical shift can be

observed for a Glycine spin system. Consequently, when a spin system does contain a non-zero CB

chemical shift value, it should not be mapped to Glycine. In this case, we associated with the mapping a

score of maximum, which was set to 9999.99 and tells the assignment algorithm that such a mapping is

illegal. Similarly, since Proline doesn’t have an HN nucleus, a spin system containing a non-zero HN

chemical shift value gets a score of maximum when mapping to Proline.

Conclusions

We have constructed two training datasets from known protein NMR data with and without homology

removal, for scoring scheme training purpose. Through the extensive simulation study we found that the

scoring schemes trained using them only differ marginally. Therefore, we might be able to conclude that

currently known protein NMR data is quite evenly distributed in terms of protein homology, and therefore

removing homology to construct a smaller training dataset wouldn’t gain a lot in term of overall

performance. We may also be able to conclude that in general a naive assumption on data distribution is

inferior to a naive Bayesian learning. This is typical when the size of the known dataset is large. The

inter-residue chemical shifts are mainly used for spin system connectivity determination in most of the

existing works. We have demonstrated that using them in the scoring scheme explicitly, or equivalently

residue typing, could improve the assignment accuracy significantly, typically when the amount of inferred

connectivity is small. Regarding the secondary structure predictor PsiPred, since the prediction is used as
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an intermediate step, we believe that using its intermediate neural network output is a better choice than

using its final prediction result naively.

Supplementary Materials

The web server implementing one of the best scoring schemes HOMO-Bayes-Both-2 can be accessed

through http://www.cs.ualberta.ca/∼ghlin/src/WebTools/score.php. The webpage also contains dataset

HOMO and an excel sheet containing the detailed statistics on the numbers of amino acid residues in

different secondary structures in both datasets HOMO and ALL. The normality testing results are also

included. The reader may contact the correspondence author (ghlin@cs.ualberta.ca) for standalone web

application and the above supplementary materials.
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Figures
Figure 1 - Both versus Intra

A comparison between using both intra-residue and inter-residue chemical shifts and using only

intra-residue chemical shifts: each assignment accuracy is taken as the average of 8 scoring schemes,

namely, ALL/HOMO-Normal/Bayes-1/2, respectively.

Figure 2 - ALL versus HOMO

A comparison between the two training datasets, HOMO and ALL: each assignment accuracy is taken as

the average of 8 scoring schemes, namely, Normal/Bayes-Intra/Both-1/2, respectively.

Figure 3 - Bayes versus Normal

A comparison between the Bayesian scoring schemes and the scoring schemes based on normal distribution

assumptions: each assignment accuracy is taken as the average of 8 scoring schemes, namely,

ALL/HOMO-Intra/Both-1/2, respectively.

Figure 4 - Predicted Secondary Structures 1 versus 2

A comparison between using the intermediate neural network prediction results by PsiPred and using the

final prediction: each assignment accuracy is taken as the average of 8 scoring schemes, namely,

ALL/HOMO-Normal/Bayes-Intra/Both, respectively.
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Figure 5 - Comparison among 4 Scoring Schemes

A plot of the assignment accuracies of 4 scoring schemes ALL-Bayes-Both-2, HOMO-Bayes-Both-2,

ALL-Normal-Intra-1 (which is used as the score function in QUASI [8]), and HOMO-Bayes-Intra-1 (which

is the histogram-based scoring scheme in [9]).

Figure 6 - A Snapshot of Score Webserver

A snapshot of the Score web server using “batch function”. Top left: two windows expecting a file of

protein sequence together with secondary structures in PsiPred format and a file of spin systems. Bottom

left: a window showing the score matrix (the complete bipartite graph). Top right: a bipartite graph with

one side containing the spin systems and the other containing the linearly ordered amino acid residues in

the target protein, where edges indicate the best mappings for the residues found in a greedy way (not

IDA* output). Bottom right: a graphical view of the score matrix (VRML viewer

http://www.parallelgraphics.com/products/cortona/), where the heights of the colored bars are

proportional to the inverse of the scores.

Tables
Table 1 - Proteins Used in the Experiments

Detailed information of the 14 proteins included in the experiments. ‘Related pdbID’ records the PDB IDs

of the related PDB entries; ‘Length’ records the number of amino acid residues in the protein;

‘#Proline/#Glycine’ records the number of Proline/glycine residues in the protein; ‘Accuracies’ refer to

the assignment accuracies under the CBM model using scoring schemes HOMO-Normal/Bayes-Both-2.

Note that entries 4309 and 4393 do not contain CB chemical shifts and thus their simulated spin systems

contain only three intra-residue chemical shifts and one inter-residue chemical shifts. This might explain

partially why timeout happened.

22

http://www.parallelgraphics.com/products/cortona/


bmrbID Related pdbID Length #Proline #Glycine Accuracies

4027 — 158 8 11 0.962/0.987
4144 1hmj 78 5 3 0.859/0.731
4288 — 105 10 5 0.924/0.933
4302 1mek 115 5 9 0.904/0.922
4309∗ 1dk0, 1dkh, 1b2v 178 3 27 timeout/timeout
4316 — 89 3 13 1.000/1.000
4318 — 215 12 9 timeout/0.963
4353 — 126 10 8 1.000/1.000
4391 — 66 1 6 0.879/0.924
4393∗ — 156 3 6 timeout/timeout
4579 — 86 2 5 1.000/1.000
4670 — 120 2 10 0.967/1.000
4752 — 68 1 6 1.000/1.000
4929 — 114 2 5 1.000/1.000

Table 2 - Assignment Accuracies of 16 Scoring Schemes

Assignment accuracies of all the 16 scoring schemes, where the numbers in parentheses record the number

of time-out instances.

0% 50% 60% 70% 80% 90%

ALL-Normal-Intra-1 0.125 0.641(7) 0.742(5) 0.855(3) 0.949 0.997
ALL-Normal-Intra-2 0.150 0.736(5) 0.769(4) 0.943(3) 0.962 1.000
ALL-Normal-Both-1 0.455 0.783(3) 0.875(2) 0.893(1) 0.958 0.998
ALL-Normal-Both-2 0.484 0.864(3) 0.941(2) 0.900(1) 0.957 1.000
ALL-Bayes-Intra-1 0.151 0.731(5) 0.864(3) 0.962(3) 0.985 0.999
ALL-Bayes-Intra-2 0.189 0.809(5) 0.891(3) 0.955(3) 0.985 0.999
ALL-Bayes-Both-1 0.510 0.845(3) 0.898(3) 0.964(1) 0.988 0.998
ALL-Bayes-Both-2 0.541 0.873(3) 0.926(2) 0.967 0.989 0.998

HOMO-Normal-Intra-1 0.124 0.648(7) 0.758(5) 0.888(3) 0.949 0.997
HOMO-Normal-Intra-2 0.165 0.734(5) 0.783(4) 0.870(3) 0.978 1.000
HOMO-Normal-Both-1 0.456 0.781(3) 0.893(3) 0.899(1) 0.965 0.998
HOMO-Normal-Both-2 0.474 0.844(3) 0.934(3) 0.901(1) 0.963 1.000
HOMO-Bayes-Intra-1 0.139 0.711(5) 0.862(4) 0.917(3) 0.985 0.999
HOMO-Bayes-Intra-2 0.166 0.740(5) 0.858(3) 0.965(3) 0.989 0.999
HOMO-Bayes-Both-1 0.495 0.857(3) 0.898(3) 0.948(1) 0.988 0.998
HOMO-Bayes-Both-2 0.550 0.874(3) 0.923(2) 0.958 0.991 0.998

Table 3 - Assignment Accuracies of HOMO-Bayes-Both-2 on 60% Instances

Assignment accuracies of HOMO-Normal/Bayes-Both-2 on fourteen 60% instances, where ‘—’ indicates

time-out after the 2-day limit.
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Instance 4027 4144 4288 4302 4309 4316 4318 4353 4391 4393 4579 4670 4752 4929

Normal-Both-2 0.962 0.859 0.924 0.904 — 1.000 — 1.000 0.879 — 1.000 0.967 1.000 1.000
Bayes-Both-2 0.987 0.731 0.933 0.922 — 1.000 0.963 1.000 0.924 — 1.000 1.000 1.000 1.000

Table 4 - Assignment Accuracies of HOMO-Bayes-Both-2 on 3 Proteins

Assignment accuracies of HOMO-Bayes-Both-2 on all levels of adjacency for three proteins 4316, 4752, and

4929.
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

4316 0.775 0.865 0.933 1.000 0.911 1.000 1.000 1.000 1.000 1.000
4752 0.809 0.838 0.912 0.971 1.000 1.000 1.000 1.000 1.000 1.000
4929 0.781 0.798 0.860 0.965 0.877 0.965 1.000 1.000 1.000 1.000
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