
Representation Analysis of Deep Reinforcement
Learning algorithms in Robotic Environments

by

Mehran Taghian Jazi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Mehran Taghian Jazi, 2022

Abstract

The rise of Deep Learning (DL) and its assistance in learning complex feature

representations significantly impacted Reinforcement Learning (RL). Deep Re-

inforcement Learning (DRL) made it possible to apply RL to complex real-

world problems and even achieve human-level performance. One of these prob-

lems is related to robotics. Recently, DRL agents successfully learned optimal

behavior in a range of robotic environments. The policy can provide much

information from its learned representation. However, this policy is approxi-

mated using a neural network and, therefore, is a black box.

Explainable Artificial Intelligence (XAI) is a new AI subfield focusing on in-

terpreting Machine Learning models’ behavior. A large part of XAI’s literature

has emerged on feature relevance techniques to explain a deep neural network

(DNN) output processing on images. These techniques have been extended to

explain Graph classification tasks using Graph Networks (GN). Nevertheless,

these methods haven’t been exploited to analyze the DRL agent’s behavior

learned to perform in a robotic environment.

In this work, we proposed to analyze the representation learned by a DRL

agent’s policy in a robotic environment. We use graph structure to represent

the robot’s observation in an entity-relationship manner and graph neural

networks as function approximators in DRL. For the interpretation phase,

an explainability technique called Layer-wise Relevance Propagation (LRP),

a feature relevance technique that had been successfully applied to explain

image and graph classification tasks, is used to interpret the learned policy.

ii

We evaluate the information provided by the LRP on two simulated robotic

environments on MuJoCo. The experiments and evaluation methods were

delicately designed to effectively measure the value of knowledge gained by

our approach to analyzing learned representations in the Deep Reinforcement

Learning task.

iii

Preface

Part of this thesis has been submitted to ICLR 2023 conference with minor

changes in the experiments and Introduction; however, the hypothesis and the

method is the same.

iv

To the victims of Flight PS752

Who were flying to their dreams, but ...

v

There are no incurable diseases – only the lack of will.

There are no worthless herbs – only the lack of knowledge.

– Avicenna, 1037

vi

Acknowledgements

First and foremost, praises and thanks to the Almighty for the showers of

blessing and attention throughout my whole life.

I would like to express my deepest gratitude to my supervisor, Prof. Osmar

Zaiane, for giving me the opportunity to prove my talents, providing invaluable

guidance, encouraging me, and believing in me to be successful in my research

path.

I would like to thank Dr. Johannes Gunther for his excellent advice on

every part of my research, whose challenging questions shed light on the dark

path of my research.

I also want to thank my dearest friend, Sheila Schoepp, for kindly helping

and supporting me during some challenging moments of my research.

I would like to thank Mitsubishi Electric Co. for providing financial support

for this research. I also want to thank amazing people from Mitsubishi Electric

Co., Shotaro Miwa and Yoshihiro Mitsuka, for expressing interest in my work,

providing helpful feedback, and supporting me throughout this research.

vii

Contents

1 Introduction 1
1.1 Problem and Motivation . 1
1.2 Deep Reinforcement Learning 2
1.3 Explainability in Deep Reinforcement Learning 3

1.3.1 Layer-wise Relevance Propagation 4
1.4 Graph Neural Networks in DRL 5
1.5 Graph Representation for Robots 6

2 Related Work 8
2.1 Explanation by Analyzing Components of the Environment . . 9
2.2 Explanation by Analyzing Experience and History of Interactions 10
2.3 Explanation via Behavior Prediction 11
2.4 Explanation by Developing an Augmented Model 11
2.5 Explanation by Training a Transparent Policy 12
2.6 Explanation through Representation Analysis 13

3 Background 16
3.1 Graphs and Graph Neural Networks 17

3.1.1 Graphs . 17
3.1.2 Relational Inductive Biases 17
3.1.3 Graph Neural Networks and Relational inductive bias . 18
3.1.4 Computation in Graph Neural Networks 19
3.1.5 Motivation to our Problem 21

3.2 Graphs in Robotics . 23
3.2.1 Mujoco Physics Engine 23
3.2.2 OpenAI gym structure 23
3.2.3 Change observation to Graph 24

3.3 Environments . 26
3.3.1 HalfCheetah-v2 . 26
3.3.2 Walker2D-v2 . 30

3.4 Layer-wise Relevance Propagation 34
3.4.1 Conservation property of LRP 34
3.4.2 LRP in Neural Networks 35
3.4.3 Motivation to our problem 37

3.5 Deep Reinforcement Learning 39
3.5.1 Reinforcement learning setting 39
3.5.2 Maximum entropy reinforcement learning 39
3.5.3 Soft Policy Iteration 40
3.5.4 Soft actor-critic . 41

viii

4 Proposed Method 43
4.1 Explainability for DRL in Robotics 44

4.1.1 Deep reinforcement learning with graph neural networks 44
4.1.2 Graph neural network architecture 45
4.1.3 Explainability through Layer-wise Relevance Propagation 48
4.1.4 Implementation and Summary of the XRL process . . . 50

5 Experimental Analysis 53
5.1 Experimental Setup . 53
5.2 Results and Discussion . 54

5.2.1 Train and Explanation Phase 54
5.2.2 Explanation Evaluation Phase 57

6 Conclusion and Future work 68
6.1 Conclusion . 68
6.2 Future directions . 69

References 70

Appendix A FetchReach-v1 Results 78
A.1 Train and Explanation Phase 78
A.2 Explanation Evaluation Phase 80

Appendix B Mujoco physics engine 82
B.1 HalfCheetah-v2 . 82
B.2 Walker2D-v2 . 84

ix

List of Tables

3.1 HalfCheetah-v2 action space 28
3.2 HalfCheetah-v2 observation space 29
3.3 Walker2D-v2 action space . 32
3.4 Walker2D-v2 observation space 33

x

List of Figures

3.1 Joint connection in robot’s model 25
3.2 Welded connection in robot’s model 25
3.3 HalfCheetah-v2 robot and graph 26
3.4 Walker2D-v2 robot and graph 30
3.5 Forward and backward pass in LRP 36

4.1 The CommonGraph structure 48
4.2 The architecture of the Q-function in graph mode 49
4.3 The policy network’s architecture in graph mode 49

5.1 LRP heat-map for the HalfCheetah-v2 56
5.2 LRP heat-map for the Walker2D-v2 58
5.3 Evaluating entity importance score for HalfCheetah-v2 . . . 62
5.4 Evaluating action importance score for HalfCheetah-v2 . . . 63
5.5 Evaluating entity importance score for Walker2D-v2 66
5.6 Evaluating action importance score for Walker2D-v2 67

A.1 The LRP heat map for action-entity relevance score. The y-
axis and x-axis show elements of the action and entities of the
observation, respectively. Since joints have different character-
istics and possible amounts of torque, the actions have different
ranges. Therefore, we normalize the relevance scores for each
action across all the observation entities by dividing by the max-
imum score given by that action. 78

A.2 Evaluating explanation for the FetchReach-v1 . Upper-left:
entity importance in the observation, upper-middle: final be-
havior performance after occluding each entity, upper-right: sig-
nificancy test for the final behavior after occlusion, lower-left:
joint importance in the action, lower-middle: final behavior per-
formance after blocking each joint, lower-right: significancy test
for the final behaviors after blocking. 80

xi

Chapter 1

Introduction

Deep reinforcement learning has plenty of applications in a variety of fields,

including training agents to play Atari games [58], [59], board games [74], [75],

complex real-world robotics problems [4], [43], other real-world applications

such as resource management in computer clusters [56], network traffic signal

control [5], chemical reactions optimization [95], or recommendation systems

[93]. Despite the extensive application of DRL in the real world, especially in

robotics, it lacks an efficient explainability framework for providing interpre-

tation for the agent’s actions. In this work, we decide to fill this hole with

the help of Graph Neural Networks (GNNs) and Layer-wise Relevance Prop-

agation (LRP). In the following sections, we first present our hypothesis and

then discuss our method and research ideas that form the foundation of our

approach.

1.1 Problem and Motivation

In this work, our target is to demonstrate that LRP, which was originally

proposed to highlight the most contributing pixels to the image classification,

can be used alongside GNNs to identify the contribution of each part of the

robot to the decision making by a Deep Reinforcement Learning algorithm.

Knowing the contribution of each entity in the robot to the decision-making

process is highly important. One application is to provide a visualization

for explaining the training process, which can be done by identifying the

robot’s entities contributing to learning a task during the training process.

1

To get an intuition, assume a child is learning to stand up. During the first

stages of learning, they use their hands as assistance; however, in later stages,

they can stand up easily without using their hands. Therefore, during the

early stages of training, the contribution score of both hands and legs would

be high, while during later stages, the contribution of hands drops. Another

application is during a malfunction, where part of a robot is broken. Knowing

the importance of the broken part helps us figure out how severe the

damage is and whether the agent can recover from that malfunction or not.

This recovery can be in the form of learning a new policy from scratch for

the new dynamics or transferring the policy trained in the previous dynamics.

If we choose to adapt to the new dynamics after a malfunction, this method

can explain the adaptation process. To have better intuition, imagine the

human’s writing task. A right-handed human breaks their right hand; after

that, they start using their left hand instead. In the first dynamics, we would

say that the contribution of its right hand is the highest in the writing task.

In contrast, in the second one, after adaptation to the new dynamics, the

importance of its left hand escalates while the right hand’s importance drops.

To the best of our knowledge, this is the first work to interpret the pol-

icy trained in a robotic environment by identifying each part of the robot’s

contribution without changing the observation’s dimensionality. In the exper-

iments, we try to prove this claim that LRP, along with GNNs, is a practical

tool to satisfy this purpose. No prior work has focused on highlighting the

contribution of components of a robot to the decision-making in a compact

representation of the observation space, in which all the components are impor-

tant and removing any of them would lead to a drop in performance. Hence,

there is no past method to compare our work. This explanation targets expert

people dealing with robots.

1.2 Deep Reinforcement Learning

Artificial Intelligence has become an essential part of everyday life. In the

past few years, with the emergence of deep learning and high-performance

2

computing, AI agents’ capability and accuracy has significantly developed.

One branch of AI which applied deep learning successfully to its algorithms

is Reinforcement Learning [30], [31], [51], [59], [68], [69]. Many complex real-

world tasks that have been previously done by humans are now possible with

the application of Deep Reinforcement Learning (DRL). Recently DRL could

achieve a human-level and even better performance in Atari games [59], and is

able to be applied successfully to a range of simulated and real-world robotic

and control challenging tasks [30], [31]. In order for deep learning, specifically

DRL methods, to be applied to the real world, one needs to be able to interpret

the agent’s behaviour. Otherwise, there would be no trust between the user

and the system.

1.3 Explainability in Deep Reinforcement Learn-

ing

Explainable Artificial Intelligence (XAI), as an emerging field, has the respon-

sibility to interpret the behaviour of the agent to the end-user [29]. In order

to confidently use a system, its behaviour should be transparent and justifi-

able [64]. In the past few years, there have been plenty of works focusing on

transportation [12], [32], healthcare [13], [14], [37], [44], law [10], [38], [78],

military [35], [45], cybersecurity, education, entertainment, government [1],

and image classification [7], [70], [76], [90], [92], [94]. As a branch of Artificial

Intelligence, Reinforcement Learning agents need their behavior to be inter-

pretable. As a branch of XAI, Explainable RL (XRL) has recently emerged to

focus on the RL problem specifically. These works aim at interpreting different

parts of the RL problem such as reward [42], goal [18], history of interactions

[71], [72], and observation and representation analysis [50]. This work aims

to analyze representations learned by a DRL algorithm focusing on robotic

environments. One method focused on interpreting the agent’s representation

is State Representation Learning (SRL) [20], [21], [49], [65], [66], [81]. SRL

is a feature learning method that learns a low-dimensional representation of

the state from high-dimensional raw observations (like pixels of an image)

3

by capturing the variation in the environment caused by the agent’s actions.

While SRL methods identify the most relevant features of a high-dimensional

observation for learning to act and compact the observation accordingly, we

still require highlighting the most relevant features in low-dimensional com-

pact observation space robotic environments. In a compact observation space,

all the components are critical to learning the task and removing each would

lead to a drop in performance. Our target is to rank these components based

on their importance.

1.3.1 Layer-wise Relevance Propagation

Convolutional Neural Networks have been widely applied to images, achieving

excellent performance in computer vision tasks. Since these networks train

end-to-end on large amounts of data, they form a black box, making it chal-

lenging to interpret them. There has been an increasing number of works

studying the inner structure and behaviour of CNNs to explain the decisions

made by these networks [7], [70], [76], [90], [92], [94]. However, CNNs are

designed for grid structured data, such as images, and operate on Euclidean

spaces. In many applications, one must deal with data of arbitrary structures,

such as graphs. Inspired by the past work in explainability of deep CNNs,

Baldassarre et al. [8], and Pope et al. [63] apply these explainability methods

to non-Euclidean space of graphs in Graph Neural Networks. Pope et al. [63]

analyze the explainability of GNNs using five methods that has been originally

applied to CNNs. These 5 methods include gradient-based saliency maps [76],

Class Activation Mapping (CAM) [90], Excitation Backpropagation (EB) [90],

gradient-weighted CAM (Grad-CAM) [70], and contrastive EB. They evaluate

these explainability methods on two graph classification problems: visual scene

graphs and molecules. Baldassarre et al. [8] study two main classes of explain-

ability techniques: gradient-based and decomposition-based on a toy dataset

and a chemistry task. For the gradient-based methods, they use Sensitivity

Analysis [26], and Guided Backpropagation [77]. For the decomposition-based

method, they use Layer-wise Relevance Propagation (LRP) [7].

Some work extended the application of saliency methods from classification

4

to RL, focusing on environments with visual data as states. One example of

this application is explaining the DRL agent’s behavior in Atari games by

visualizing its decisions [28], [40], [41], [86]. Nevertheless, saliency methods in

RL have only been applied to RL problems with visual input states.

Our purpose is to identify the participation of each part of a robot in

the decision-making process in low-dimensional sensory input robotic environ-

ments. LRP, as discussed by Baldassarre et al. [8] has proved to be effective

in highlighting the contribution of each part of the graph to the classification

task. In order to use LRP in our task to identify contributions, we need to use

GNNs as function approximators and use graph representation of the robot

in the input. As far as we know, this is the first work focused on applying a

saliency method to the decision making in a robotic environment to highlight

the importance of each part.

1.4 Graph Neural Networks in DRL

Due to the strong relational inductive bias of the GNNs, Sanchez-Gonzalez et

al. [67] propose to apply graph architectures to robots and learnable physics

engines. In this work, the robot’s bodies are represented using graph nodes and

joints using graph edges. During learning, knowledge about body dynamics is

encoded in the GNN’s node update function, interaction dynamics are encoded

in the edge update function, and global system properties are encoded in

the global update function. Similar to this work, Wang et al. [84] propose

Nervenet to learn a policy structured using graph nets to operate on robots

represented as graphs. The difference between this graph representation and

the one propose by Sanchez-Gonzalez et al. [67] is that in this work, they

use joints as nodes of the graph and physical dependencies between joints as

edges. Furthermore, Wang et al. study the transferability and generalizability

of their model to new dynamics.

Similar to Wang et al. [84], and Sanchez-Gonzalez et al. [67], we use

GNNs as function approximators in the DRL algorithm to learn from graph

representations of the robot and apply LRP to the non-Euclidean space of

5

graphs.

1.5 Graph Representation for Robots

Graphs are used to represent different entities and relationships among them.

This flexibility in defining arbitrary shapes of relationships makes them pow-

erful tools for relational reasoning. Inductive bias allows a learning algorithm

to prioritize one solution over another (independent of the observed data) in

a problem having multiple optimal solutions. Since graph neural networks use

graph structure and operations, they possess a strong relational inductive bias

that imposes constraints on relationships and interactions among entities [9].

Due to this property, they have a better generalization ability than other types

of networks.

In addition to the generalization power of GNNs, one can break the input

observation of an RL agent into entities and relations, each having specific

features. This entity-relation representation supports a better interpretation

of the agent’s observation space – in our case, robots. The reason is that not

only does it consider the features and state of each component for the decision-

making, but it also takes into account the position of that component in the

whole structure relative to other entities. Then we can apply the explainabil-

ity techniques of GNNs to interpret the behaviour of the RL agent using its

observation space.

The organization of this work is as follows: In Chapter 3, Graphs and

Graph Neural Network structures are discussed in Section 3.1, the details of

the robot simulator used for our experiments and how to convert its observa-

tion space into graphs are explained in Section 3.2, the Layer-wise Relevance

Propagation (LRP) is discussed in Section 3.4, the details of Soft Actor-Critic

which is the DRL algorithm used in our problem is described in Section 3.5,

and at the end of Chapter 3 we depicted our approach. In Chapter 2 we

cover the past work in the XRL, create a taxonomy, and then locate our posi-

tion among the past work. In Chapter 5 we analyze our approach empirically

using two well-known robotic problems. Finally, we discuss our approach’s

6

conclusion and future directions in Chapter 6.

7

Chapter 2

Related Work

In Chapter 1, we introduced the problem we focus on and the scope of this

work. There are plenty of works focusing on providing a reasonable explanation

for the Deep Reinforcement Learning tasks. In this chapter, we categorize the

past work to locate our problem among similar works.

Reinforcement learning is a complex learning process. In order to suc-

cessfully learn to operate, many factors can influence the performance. En-

vironment, as a factor, has a number of sub-factors like designing the reward

function and how to encode observations. Another factor is the experiences

and history of interactions with the environment. The choice of the RL algo-

rithm can be counted as another factor. One branch of RL algorithms develops

a model of the environment, which can act as another factor affecting the per-

formance. It even makes it more complicated when combining RL with the

representation learning power of Deep Learning (DL) models. Some other fac-

tors like policy and value-function networks in policy gradient and actor-critic

methods add more complexity to the learning process. In addition, DL models

are black-box, and analyzing the representations learned by these models is

another challenge [36].

To tackle the challenge of interpreting RL algorithms, recently, many works

have been proposed focusing on interpretation using one or more components

of the RL algorithm. In the following sections, we cover the category of works

based on parts of an RL algorithm they focused on.

8

2.1 Explanation by Analyzing Components of

the Environment

One group of work focuses on the components of the environment such as

reward and goal. Juozapaitis et al. [42] propose to decompose the reward

function into different meaningful components. Based on the value of those

reward types, the agent can explain its behaviour. Wang et al.[83] propose

to solve the global reward games in which multiple agents aim to maximize

a global reward. Their algorithm can distribute the global reward among

multiple agents solving the problem. This distributed reward reflects precisely

the contribution of each agent to the global reward.

For goal-oriented interpretation, some work in explainability of RL algo-

rithms with a focus on robotics propose to interpret the agent’s decision based

on its goal rather than the state’s specifications. Cruz et al. [18] is an ex-

ample that, unlike past work that dedicates its attention to data-driven ap-

proaches for the reinforcement learning’s explanation, they focus on providing

an interpretation of the agent’s actions based on its goal. Inspired by the

idea of Hindsight Experience Replay (HER) [3], Beyret et al. [11] propose

to apply a hierarchical structure to complex multi-step robotic tasks such

as Mujoco’s FetchPickAndPlace-v1 robotic environment. They consider a

high-level agent, which divides the entire task into smaller ones, and a low-

level agent, which is trained to fulfill those smaller tasks. The high-level agent

serves as an interpreter between the human, the environment, and the low-level

agent controlling the robot’s position. Another work that does not have em-

pirical results in robotic environments but can be applied to robotics as well

extends HER to the language setting and proposed Textual HER (THER)

[16]. In this setting, the agent will receive a textual description of its goal and

is rewarded when achieving it. This way, the language generates a level of

semantics and interpretability for humans.

9

2.2 Explanation by Analyzing Experience and

History of Interactions

This research category focuses on analyzing the agent’s experience and how

it interacts with the environment during the learning process. Reinforcement

learning agents decide and take actions according to the current situation and

do not pay attention to the future or history (Markov property). Moreover,

RL agents learn from delayed rewards – the reward received after executing

some action should be “propagated” back to the states and actions leading to

that situation. These two situations make it hard to explain the behaviour of

an RL agent. Sequeira et al. [71], [72] propose a framework that uses intro-

spection analysis of an agent’s history of interactions with the environment to

extract interestingness elements regarding its behaviour. Then, an explanation

framework uses these interesting elements to expose the agent’s behaviour to

a human user. Dao et al. [19] propose snapshot images, a monitoring model to

record the most important moments from experience. With this, one can di-

agnose the most influential transition tuples for a policy’s individual decisions.

Gottesman et al. [27] identify the observations in the data whose removal will

significantly affect the estimation of Q-values, thus highlighting the important

experiences.

One subcategory of this line of work focuses on influential trajectories

rather than important individual transition tuples. Amir and Amir [2] develop

a method to produce a summary of an agent’s behavior by extracting impor-

tant trajectories from simulations of the agent and, therefore, help choose

between agents or determine the level of autonomy the agent can operate.

Huang et al. [39] propose to diagnose the critical states in which it is crucial

to take a certain action. To identify these states, they select states where the

chosen action has a much higher Q-value than another. Lage et al.[46] explore

the effect of using different policy summarization methods on the ability to

reconstruct a policy. These policy summarization methods are used to extract

subsets of state-action pairs that best characterize the agent’s behavior.

10

2.3 Explanation via Behavior Prediction

Some work wants to explain the decisions made by an RL agent by knowing

what the expected behavior of an agent is based on current and history of

interactions. Cruz et al. [17] propose a memory-based explainable RL, using

which the agent can explain its decisions in terms of the probability of success

and the number of transitions to reach the goal. In a later work by Cruz et al.

[18] they add two other approaches to the memory-based method: learning-

based and introspection-based. These methods are different in terms of space

complexity, where the two latter methods have a reduced space complexity

making them suitable for domains requiring a continuous state representation.

Lin et al. [53] propose an embedded self-prediction model to learn action-

values directly represented via human-understandable properties of expected

futures. The authors claim that by contrasting these properties predicted for

each action, the action preferences could be explained. Yau et al. [87] propose

a method to obtain a projection of predicted future trajectories from a current

observation and propose action. In other words, this method explains what

outcomes are expected by RL agents.

2.4 Explanation by Developing an Augmented

Model

In this line of research, a model is trained simultaneously with the agent to

explain its behavior. Chen et al. [15] put forward an interpretable deep RL

method for end-to-end autonomous driving. This method employs a latent

space (with a sequential latent environment model) to encode a complex urban

driving environment into which historical high-dimensional raw observations

are compressed. This model is learned jointly with the maximum entropy

RL process. Madumal et al. [55], inspired by causal relationships, introduce

an action influence model for model-free RL agents, which approximates the

causal model of the environment relative to the actions taken by the agent.

Their approach learns a structural causal model during reinforcement learning

11

and encodes causal relationships between variables of interest. Then it gener-

ates explanations for why and why not questions by counterfactual analysis.

Volodin et al. [82] define the simplicity of causal explanations via the sparsity

of the causal model that describes the environment. They propose a frame-

work containing a learned mapping from observations to latent features—a

model predicting latent features at the next time steps given ones from the

current time-step. A sparse causal graph is trained jointly with the RL agent.

2.5 Explanation by Training a Transparent Pol-

icy

Transparent algorithms in machine learning are known to be explainable by

themselves, e.g., decision trees (DTs) and rule-based methods. Based on this

idea, some authors present methods for training an inherently interpretable

policy using decision trees and other transparent algorithms. Since DTs are

not differentiable, Silva et al. [73] propose to learn a soft DT, in which sigmoid

activation functions replace the boolean decisions in classic DTs. Liu et al.

[54] apply mimic learning to make a trade-off between the performance and

interpretability of the DRL model. In order to make the DRL neural net

interpretable, they propose Linear Model U-Tree (LMUT), a version of U-tree

which contains a linear model at each leaf node to strengthen the generalization

ability. Topin et al. [80] introduce CUSTARD to maintain the interpretability

advantage of a DT policy while using a non-interpretable neural network for

training. Additionally, They present a new MDP representation for learning

a DT policy for a base MDP. Other methods providing transparent policies

include the usage of symbolic expressions [47], basic algebraic equations [34],

and logic expressions [91] to provide an inherently interpretable policy.

12

2.6 Explanation through Representation Anal-

ysis

One group of work propose techniques to analyze the representations learned

by a policy using which the decisions made by an RL agent could be explained.

Garnelo et al.[25] combine the representation power of deep learning models

with symbolic AI to learn a representation that is easily comprehensible to

humans. Another point of view in providing interpretable representation is

considering Relational RL, which advocates the use of relational state, ac-

tion, and policy representation. Zambaldi et al. [89] propose a method that

uses a self-attention mechanism to iteratively reason about the relations be-

tween entities in a scene. To do that, they combine RL with Inductive Logic

Programming by representing states, actions, and policies using a first-order

(relational) language. Another sub-group of this kind focuses on State Rep-

resentation Learning (SRL) which aims at learning compact representations

from raw observations that help speed up policy learning, make it easier to

interpret the learned policy, and improve performance [49]. SRL is especially

useful in RL for robotic and control, which helps agents learn an interpretable

policy by reducing the high-dimensional observation, allowing them to analyze

the representations learned by the RL agent [50]. The SRL has been applied

to improve the performance in robotic tasks [20], [21], [65], [66], [81]. By

applying SRL techniques, an interpretable representation of the observations

learned by the agent can be provided. However, there is a trade-off between

the performance and interpretability of the model.

While the works mentioned above try to learn an interpretable representa-

tion by the RL agent that is easily understandable by humans, most of them

cannot be generalized to other tasks because of the trade-off between learning

an interpretable representation and performance. Therefore, separating the

explanation phase from the learning phase is crucial. Post hoc methods in

explainability are techniques applied to models after the learning phase has

finished extracting useful interpretable information from the learned model.

Some works use natural language to provide explanations for an agent’s be-

13

havior [22], [33], [85]. However, these explanations are task-specific. Another

approach to post hoc analyzing the learned representation is the work by Za-

havi et al. [88] in which they explore the features extracted by the DQN

algorithm. They discuss that features learned by DQN belong to different

clusters, among which they identify hierarchical structures. Using this, they

could explain the successful performance of DQN in Atari games. One group

of powerful methods to analyze learned representations that have proven their

efficiency in explaining image classification tasks is saliency methods. Recently

in deep RL, some works apply this approach to interpreting the agent’s decision

based on its state, where the states are represented using images. Weitkamp

et al. [86], Greydanus et al. [28], and Iyer et al. [41] focus on providing

explainability for the behaviour of DRL agents on Atari games and visualize

the decision process using saliency map methods. Huber et al. [40] which

apply Layer-wise Relevance Propagation (LRP) to create a saliency map of

the most relevant pixels in the states of an Atari game used by a dueling DQN

algorithm to generate actions. Their focus is on explaining the Atari games

environment. A complete list of saliency methods applied to RL can be found

in the work by Atrey et al. [6].

Our work locates in the last category, which means it focuses on analyzing

representations learned by the policy in a policy gradient algorithm. Specifi-

cally, we focus on robotic environments, extracting the necessary information

from the learned policy in a robotic environment to find the most contributing

components of the robot to both observing and acting phases. Our method

is different from the SRL technique, which learns a low-dimensional represen-

tation of the state from high-dimensional raw observations (like pixels of an

image) by capturing the variation in the environment caused by the agent’s

actions. While SRL methods identify the most relevant features of a high-

dimensional observation for learning to act and compact the observation ac-

cordingly, in our work, we propose to highlight the most relevant features in

low-dimensional compact observation space robotic environments. In a com-

pact observation space, all the components are critical to learning the task

and removing each would lead to a drop in performance. Our target is to rank

14

these components based on their importance.

In order to decompose the robot into its components and analyze the con-

tribution of each one separately, we use graphs as a representation method

for observations. Then, inspired by the explainability techniques proposed

for graph classification tasks [8], [63], we proceed to analyze representations

learned by a DRL agent in a robotic environment. We apply the most efficient

technique in the graph classification task, as discussed by Baldassarre et al.

[8] to our work. This technique is Layer-wise Relevance Propagation [7]. Our

approach is discussed in Chapter 4.

15

Chapter 3

Background

The general approach to analyze the representations learned by a Deep RL

algorithm is inspired by the explainability of graph neural networks in a graph

classification task. One method that was successfully applied to interpret the

graph classification was Layer-wise Relevance propagation [8]. The LRP is

a decomposition-based method, originally proposed to explain image classifi-

cation by decomposing the output probability given to a specific class by the

classifier and back-propagate that probability to the input image. On the other

hand, a robot’s structure is a graph, connecting nodes (limbs) to each other

using edges (joints). Combining the idea of explainablity of graph neural net-

works using LRP, and similarity of robots’ structures to graphs, our method

aims to analyze the representations learned by a policy in a Deep RL algo-

rithm. The structure of this chapter is as follows: the details of Graph Neural

Network’s operations are explained in section 3.1, the conversion of a robot’s

observation space to a graph of observation is introduced in 3.2, the layer-

wise relevance propagation is explained in 3.4, the Deep RL algorithm used in

our problem is described in 3.5, and the general framework for representation

analysis is provided in 4.1.

16

3.1 Graphs and Graph Neural Networks

3.1.1 Graphs

A graph is a structure made of vertices that are connected through edges. In

computer science, a graph is used to represent structured entities with relations

between each pair. Each node of the graph can be considered to be an entity.

The relations between those entities can be shown using an edge between a

pair of nodes (entities). Therefore, a graph is used to represent those kinds of

data that are able to be expressed in an entity-relationship manner.

3.1.2 Relational Inductive Biases

As discussed by Battaglia et al. [9] relational reasoning involves manipulating

structured representations of entities and relations, using rules for how they

can be composed. An entity is an element with attributes, such as Atoms in a

molecule that have mass and specific atomic properties related to their nuclear

structure and electron configuration. A relation is a property between entities.

Some relations have attributes as well. In the molecule example, different

atoms connect using various chemical bonds depending on their properties.

Therefore, each bond (relation) can have specific attributes. Sometimes, the

form of relations between entities can affect the global context, such as a

molecule’s properties that depend upon its structure (bonds between atoms).

A rule is a function (like a non-binary logical predicate) that maps entities

and relations to other entities and relations. An example of a unary rule is

like “is entity X large” or binary like “is entity X larger than entity Y ”.

Learning is the process of finding a solution that best explains the current

state of the world. In many cases, there are multiple good solutions. In

this situation, the inductive bias of a learning algorithm allows selecting one

solution among different options, independent of the observed data [57]. For

machine learning approaches with a capacity for relational reasoning, Battaglia

et al. [9] introduced relational inductive bias, which refers to inductive biases

that impose constraints on relationships and interactions among entities in a

learning process.

17

3.1.3 Graph Neural Networks and Relational inductive
bias

In deep learning, there are different relational inductive biases based on type of

the neural network architecture. For each specific type of neural network, we

must specify entities, relations, and rules for composing entities and relations.

For example, in a fully connected layer building block of a neural network, if

we consider layer i with N neurons and layer j with M neurons, each neuron

x(n,i) (unit n in layer i) and x(m,j) (unit m in layer j) is considered entities of

the network. The relations between entities are all-to-all (all units in layer i

are connected to all units in layer j). The rules are specified as follows:

x(m,j) = ϕ

(
N∑

n=1

x(n,i).w(n,m) + bm

)

where w(n,m) is the weight between neuron n of layer i and neuron m of layer

j, bm is the bias term for neuron m of layer j, and ϕ is a non-linearity such as

a rectified linear unit (ReLU). Since all units in layer i interact to determine

the units in layer j, the implicit relational inductive bias is weak in a fully

connected layer.

The same thing is true for the Convolutional Neural Network [24][48], ex-

cept that the weights are in the form of a kernel being convolved to some part

of the input. Due to this process, each output unit involves convolving some

part of the input with a kernel, adding a bias term and applying a non-linearity.

The convolving process imposes two types of relational inductive bias. First,

entities in close proximity interact to produce the output unit (consider pixels

of an input image inside a kernel), called locality. Second, the same kernel is

being convolved to different parts of the input, causing translation invariance.

Therefore, convolutional layers have some spatial relational inductive bias.

For the recurrent layer [23], the entities are inputs and hidden states at

each processing step. The relations are the dependence of the current hidden

state on the previous hidden state and current input. The rule for composing

entities and relations takes input at time-step t and the previous hidden state

to update the current hidden state. This rule is reused across steps, reflecting

18

a relational inductive bias of temporal invariance (the rule is similar across

time steps, similar to CNN in which kernel is similar spatially).

While these deep learning models contain some relational inductive biases,

we seek deep learning building blocks for representing various kinds of entity

relationships and their rules. In other words, we want to specify the relational

inductive bias of the deep learning architecture. Graph Neural Network is such

a tool to satisfy this requirement. Using this tool, we can explicitly represent

entities and their relations, along with learning algorithms that find rules for

computing the interactions. Therefore, GNNs enjoy a solid relational inductive

bias beyond what is offered by CNNs and RNNs.

3.1.4 Computation in Graph Neural Networks

The internal structure of a GNN and the computation steps are adapted from

the work by Battaglia et al. [9].

Internal structure of a GN block

The main unit of computation in a GN is a GN block, which takes as input

a graph, performs computation over the structure, and returns a graph as

output. Entities in a GN are represented as graph’s nodes and relations as

graph’s edges and system-level properties as global attributes. Each graph is

defined as a 3-tuple G = (u, V, E), where u is the global attribute; V = {vi}N
v

i=1

is the set of vertices where N v is the number of nodes and vi is a node’s

attribute; E = {(ek, rk, sk)}N
e

k=1 is the set of edges where N e is the number of

edges, rk is the index of the receiver node, sk is the index of the sender node,

and ek is an edge’s attribute.

The update and aggregate functions within a GN block, denoted by ϕ and

ρ respectively, are as follows:

e′k = ϕe(ek,vrk ,vsk ,u) e′i = ρe→v(E ′i)

v′i = ϕv(e′i,vi,u) e′ = ρe→u(E ′)

u′ = ϕu(e′,v′,u) v′ = ρv→u(V ′)

(3.1)

where E ′i = {(e′k, rk, sk)}rk=i,k=1:Ne is the updated set of edges whose receiver is

19

node i, V ′ = {v′i}N
v

i=1 is the set of updated nodes, E ′ =
⋃

i E
′
i = {(e′k, rk, sk)}N

e

k=1

is the set of all the updated edges. The ϕe is an update function that updates

the edge’s attribute given the edge’s previous attribute, receiver node, sender

node, and global system attributes. We can specify whether it updates the

edge’s attribute by considering sender, receiver, or global attributes or non of

them. The ϕv is an update function which updates node i’s attribute given

node i’s previous attribute, aggregation of the updated edge features whose

receiver node is node i, and current global attributes of the system. Again one

can specify whether to consider edge or global attributes or only consider the

current node’s features to do the update. ϕu operates in the same way as ϕe

and ϕv in that, given the aggregation of the updated node and edge attributes,

along with current global features, it updates the global attributes. The ρ

functions are aggregated functions that take a set as input and reduce it to a

single element representing the aggregated information. ρe→v aggregates edge

attributes of the edges whose receiver node is the same, ρe→u aggregates edge

attributes of all the edges, ρv→u aggregates node attributes of all the nodes.

These aggregate functions can be either a sum-, mean-, or max-pooling over

the set of inputs.

Computation steps in GNNs

The computation steps of a GN block is summarized in algorithm 1. These

steps comprise of 3 main updates:

1. The first part relates to edge updates. The algorithm updates edge

attributes in lines 2-4 using the ϕe function.

2. The second part is dedicated to updating node attributes (lines 5-9). In

this part, first, we select the set of edges whose receiver node is node i

denoted by E ′i (line 6). Then the edge features of the edges in E ′i would

be aggregated using ρe→v to be used in the update function ϕv to update

attributes of node i in line 8.

3. The last part is updating global attributes (lines 10-14). V ′ and E ′

denote sets of updated node and edge attributes, respectively. Firstly,

20

the updated edge attributes are aggregated using ρe→u and called e′.

Secondly, the updated node attributes are aggregated using ρv→u and

called v′. Then these aggregated node and edge attributes are used in

updating global attributes using ϕu.

The order of steps in algorithm 1 is irrelevant. One can change this order to

update global attributes, per-node attributes, then per-edge attributes.

Algorithm 1 Steps of computation in a GN block

1: function Graph Neural Network(E, V,u)
2: for k ∈ {1 . . . N e} do
3: e′k ← ϕe(ek,vrk ,vsk ,u) ▷ Compute updated edge attributes
4: end for
5: for i ∈ {1 . . . N v} do
6: let E ′i = {(e′k, rk, sk)}rk=i,k=1:Ne

7: e′i = ρe→v(E ′i) ▷ Aggregate edge attributes per node
8: v′i = ϕv(e′i,vi,u) ▷ Compute updated node attributes
9: end for
10: let V ′ = {v′i}N

v

i=1

11: let E ′ = {(e′k, rk, sk)}N
e

k=1

12: e′ = ρe→u(E ′) ▷ Aggregate edge attributes globally
13: v′ = ρv→u(V ′) ▷ Aggregate node attributes globally
14: u′ = ϕu(e′,v′,u) ▷ Compute updated global attribute
15: return (E ′, V ′,u′)
16: end function

3.1.5 Motivation to our Problem

A robot’s structure is composed of different parts having specific attributes.

The communication of all these parts leads to the movement of the robot

to pursue a specific goal. Therefore, each part of the robot contributes to

the decision-making process. In this problem, the purpose is to analyze the

contribution of each part as an element of a system. Therefore, we require to

break the robot to separate components that communicate with each other.

To satisfy this requirement, we make use of graphs. In order to learn how to

make decisions given the robot’s observation graph at each time step, we apply

Deep Reinforcement Learning algorithms with GNNs. The following sections

will discuss the details of decomposing a robot to separate components and

21

converting it to a graph, how to use DRL algorithms with graphs, and how

graphs can help explain an agent’s decisions.

22

3.2 Graphs in Robotics

In the previous chapter, we discussed graph neural networks, operations inside

a GN block, and the goal of using graphs in our problem. One primary step

in providing explanation for a robot is to decompose its structure into sep-

arate components. To satisfy this requirement, we take advantage of graphs

and their properties. This chapter explains the steps of converting a robot’s

vector of observation into a graph. Specifically, we used robots in the Ope-

nAI gym simulator to run experiments. Therefore, all the methods here are

described according to the OpenAI gym API but can be extended to other

robotic environments.

3.2.1 Mujoco Physics Engine

Mujoco [79] is a widely used simulation environment and a standard bench-

mark for testing reinforcement learning strategies and algorithms. Mujoco is

a C/C++ library with a C API. OpenAi gym is a toolkit that exerted the

Mujoco library to generate a python interface for application in research. For

our experiments, we are going to use 2 different environments from OpenAI

gym, namely HalfCheetah-v2 and Walker2D-v2 . The following sections will

explain the structure of the OpenAI gym environments’ files. Then the strat-

egy to change the original observation space of the OpenAI gym environments

to a graph is discussed.

3.2.2 OpenAI gym structure

For each environment, the files are categorized into two groups: one for defining

the static structure and another for the dynamic behaviour of the robot.

The static structure of a robot is stored in a XML format that includes

joints, links, and how they are attached to form the robot. In addition, there

are some specific attributes related to each part of the robot. The XML tags

are used to represent the robot’s components. The XML attributes are used

to represent the features of a specific limb. The only parts (XML tags) that

we are dealing with are <body> and <joint> tags. We will discuss further how

23

we use these tags and their attributes to manipulate the original observation

space to a graph of observation in section 3.2.3.

Each environment also has python files that define its dynamic behavior

at run-time. This file should at least contain reset() and step(action)

functions. The process of the agent’s interaction with the environment starts

by calling reset() function, which returns an initial observation s0 ∈ S. Then

at each time step t, the predicted action at based on the current observation st

would be given to the step function as step(at). This step function returns

4 different values [60]:

• Observation (st+1): an environment-specific object representing the ob-

servation of the environment. For example, pixel data from a camera,

joint angles and joint velocities of a robot, or the board state in a board

game.

• Reward (float): amount of reward achieved by the previous action. The

scale varies between environments, but the goal is to increase the total

reward.

• Done (boolean): whether it’s time to reset the environment again.

Most (but not all) tasks are divided up into well-defined episodes, and

done being True indicates the episode has terminated.

• Info (dict): diagnostic information useful for debugging. It can some-

times be useful for learning (for example, it might contain the raw prob-

abilities behind the environment’s last state change). However, official

evaluations of your agent are not allowed to use this for learning.

3.2.3 Change observation to Graph

The general idea of shifting from a vector of observation to a graph of obser-

vation is similar to the work by Sanchez-Gonzalez et al. [67] with some minor

differences. Sanchez-Gonzalez et al. considered each body to be a node and

each joint to be an edge that connects body parts. In our work, we treat

bodys in the same way; however, the edges are either moving joints or welded.

24

The robot’s graph representation forms a tree with no cycles; otherwise, the

robot would not be able to move its edges (joints).

Kinematic tree

The main model of the robot is an XML tree created by nested body elements.

The top level body is special and is called worldbody. When a body <body

name="body1"> is connected to another body <body name="body2"> in the

robot, then <body name="body2"> would be a child element of the parent

body <body name="body1"> in the sense of XML.

When a joint is defined inside a body, its function is to create motion

degrees of freedom between them – e.g. figure 3.1. If no joints are defined

within a given body, that body is welded to its parent – e.g. figure 3.2.

Figure 3.1: A joint connection defined in the robot’s kinematic tree. In this
connection, the child body “body 2” is connected to the parent body “body 1”
through “ankle” joint.

Figure 3.2: A welded connection in the robot’s kinematic tree. In this connec-
tion, the “camera body” contains a camera and is welded to the “camera base”
body.

Other elements can be defined within the tree created by nested body

elements, in particular geom, site, camera, light. We do not consider these

elements for our graph of observation. When an element is defined within a

body, it is fixed to the body’s local frame and always moves with it. Elements

25

that refer to multiple bodies or do not refer to bodies at all, are defined in

separate sections outside the kinematic tree [52].

Each node and edge in the observation graph has a feature vector. Since

we have two types of edges, we need to specify feature vectors specific to each

type. For the welded edges, the feature vector is all zeros. For joints, the

feature vector contains information about the joint’s positions (joint’s qpos)

and joint’s velocities (joint’s qvel). We have no features selected for nodes

because only edges matter to create movements. Although nodes of the graph

have no features, we still take advantage of them in graph operations.

3.3 Environments

3.3.1 HalfCheetah-v2

(a) HalfCheetah-v2 robot in MuJoCo sim-
ulator.

(b) Graph representation of the
HalfCheetah-v2 robot

Figure 3.3: HalfCheetah-v2 robot and graph

The HalfCheetah is a 2 dimensional robot, consisting of 9 links and 8 joints

(as depicted in Figure 3.3a). In this environment, the goal is to apply actions

(torques) to the group of joints to make the cheetah run forward as fast as

possible. The reward is positive for moving forward and negative for moving

backward. The cheetah’s torso and head are fixed, and the torques can only

be applied on the other 6 remaining joints: front and back thighs (connecting

to the torso), shins (connecting to the thighs) and feet (connecting to the

26

shins). All the details of the HalfCheetah-v2 environment are acquired from

the Gym documentation [61].

• Action Space The action space is a vector of length 6, and each element

can have values of type float32 in range [−1.0, 1.0]. Table 3.1 reflects

the details of each action element.

• Observation Space Observations consist of positional values of differ-

ent body parts of the cheetah, followed by the velocities of those individ-

ual parts (their derivatives) with all the positions ordered before all the

velocities. In the documentation, it mentions that the x-coordinate of

the center of mass is excluded from the observation space. However, we

added that element to our observation space, which is part of the torso.

Therefore, our observation is a ndarray with shape (18,). The details

of the observation space are reflected in table 3.2

• Reward The reward consists of two parts:

– forward reward: A reward of moving forward which is measured

as follows:

forward reward =forward reward weight×

(x coordinate(before action)−

x coordinate(after action)) /dt

where dt is the time between actions and is dependent on the

frame skip parameter (fixed to 5), where the frametime is 0.01

– making the default dt = 5 ∗ 0.01 = 0.05. This reward would be

positive if the cheetah runs forward (right).

– ctrl cost: A cost for penalising the cheetah if it takes actions that

are too large. It is measured as ctrl cost weight × sum(action2)

where ctrl cost weight is a parameter set for the control and has a

default value of 0.1.

The total reward returned is reward = forward reward− ctrl cost and

info will also contain the individual reward terms

27

The XML model of the HalfCheetah-v2 is in Section B.1.

Table 3.1: Details of the action space in the HalfCheetah-v2 environment.

Num Action Control Control Name (In Joint Unit
Min Max corresponding XML Type

file)
0 Torque applied on -1 1 bthigh hinge torque

the back thigh rotor (Nm)
1 Torque applied on -1 1 bshin hinge torque

the back shin rotor (Nm)
2 Torque applied on -1 1 bfoot hinge torque

the back foot rotor (Nm)
3 Torque applied on -1 1 fthigh hinge torque

the front thigh rotor (Nm)
4 Torque applied on -1 1 fshin hinge torque

the front shin rotor (Nm)
5 Torque applied on -1 1 ffoot hinge torque

the front foot rotor (Nm)

28

Table 3.2: Details of the observation space in the
HalfCheetah-v2 environment.

Num Observation Min Max Name (In Joint Unit
corresponding XML Type

file)
0 z-coordinate of the −∞ +∞ rootz slide position

front tip (m)
1 angle of the −∞ +∞ rooty hinge angle

front tip (rad)
2 angle of the −∞ +∞ bthigh hinge angle

second rotor (rad)
3 angle of the −∞ +∞ bshin hinge angle

second rotor (rad)
4 velocity of the tip −∞ +∞ bfoot hinge angle

along the x-axis (rad)
5 velocity of the tip −∞ +∞ fthigh hinge angle

along the y-axis (rad)
6 angular velocity of the −∞ +∞ fshin hinge angle

front tip (rad)
7 angular velocity of the −∞ +∞ ffoot hinge angle

second rotor (rad)
8 x-coordinate of the −∞ +∞ rootx slide velocity

front tip (m/s)
9 y-coordinate of the −∞ +∞ rootz slide velocity

front tip (m/s)
10 angle of the −∞ +∞ rooty hinge angular

front tip velocity
(rad/s)

11 angle of the −∞ +∞ bthigh hinge angular
second rotor velocity

(rad/s)
12 angle of the −∞ +∞ bshin hinge angular

second rotor velocity
(rad/s)

13 velocity of the tip −∞ +∞ bfoot hinge angular
along the x-axis velocity

(rad/s)
14 velocity of the tip −∞ +∞ fthigh hinge angular

along the y-axis velocity
(rad/s)

15 angular velocity of the −∞ +∞ fshin hinge angular
front tip velocity

(rad/s)
16 angular velocity of the −∞ +∞ ffoot hinge angular

second rotor velocity
(rad/s)

29

3.3.2 Walker2D-v2

(a) Walker2d-v2 robot in Mu-
JoCo simulator.

(b) Graph representation of the Walker2d-v2 robot

Figure 3.4: Walker2D-v2 robot and graph

The walker is a two-dimensional two-legged figure that consists of four main

body parts (as depicted in Figure 3.4a) – a single torso at the top (with the

two legs splitting after the torso), two thighs in the middle below the torso,

two legs in the bottom below the thighs, and two feet attached to the legs on

which the entire body rests. The goal is to make coordinate both sets of feet,

legs, and thighs to move in the forward (right) direction by applying torques

on the six hinges connecting the six body parts [62]. Now we will cover the

details of each components of the environment according to the OpenAI Gym

documentation [62].

• Action Space The action space is a vector of length 6, and each element

can have values of type float32 in range [−1.0, 1.0]. Table 3.3 reflects

the details of each action element.

• Observation Space Observations consist of positional values of differ-

ent body parts of the walker, followed by the velocities of those individual

parts (their derivatives) with all the positions ordered before all the ve-

locities. In the documentation, it mentions that the x-coordinate of the

top is excluded from the observation space. However, we added that

30

element to our observation space, which is part of the torso. There-

fore, our observation is a ndarray with shape (18,). The details of the

observation space are reflected in table 3.4.

• Reward The reward consists of three parts:

– healthy reward: Every timestep that the walker is alive, it receives

a fixed reward of value healthy reward,

– forward reward: A reward of walking forward which is measured

as follows:

forward reward =forward reward weight×

(x coordinate(before action)−

x coordinate(after action)) /dt

where dt is the time between actions and is dependent on the

frame skip parameter (default is 4), where the frametime is 0.002

- making the default dt = 4 ∗ 0.002 = 0.008. This reward would be

positive if the walker walks forward (right) desired.

– ctrl cost: A cost for penalising the walker if it takes actions that are

too large. It is measured as ctrl cost weight ∗ sum(action2) where

ctrl cost weight is a parameter set for the control and has a default

value of 0.001.

The total reward returned is reward = healthy reward+forward reward−

ctrl cost.

The XML model of the Walker2D-v2 is in Section B.2.

31

Table 3.3: Details of the action space in the Walker2D-v2 environment.

Num Action Control Control Name (In Joint Unit
Min Max corresponding XML Type

file)
0 Torque applied on -1 1 thigh joint hinge torque

the thigh rotor (Nm)
1 Torque applied on -1 1 leg joint hinge torque

the leg rotor (Nm)
2 Torque applied on -1 1 foot joint hinge torque

the foot rotor (Nm)
3 Torque applied on -1 1 thigh left joint hinge torque

the left thigh rotor (Nm)
4 Torque applied on -1 1 leg left joint hinge torque

the left leg rotor (Nm)
5 Torque applied on -1 1 foot left joint hinge torque

the left foot rotor (Nm)

32

Table 3.4: Details of the observation space in the Walker2D-v2 environment.

Num Observation Min Max Name (In Joint Unit
corresponding XML Type

file)
0 z-coordinate of the top −∞ +∞ rootz (torso) slide position

(height of walker) (m)
1 angle of the top −∞ +∞ rooty (torso) hinge angle

(rad)
2 angle of the −∞ +∞ thigh joint hinge angle

thigh joint (rad)
3 angle of the −∞ +∞ leg joint hinge angle

leg joint (rad)
4 angle of the −∞ +∞ foot joint hinge angle

foot joint (rad)
5 angle of the −∞ +∞ thigh left joint hinge angle

left thigh joint (rad)
6 angle of the −∞ +∞ leg left joint hinge angle

left leg joint (rad)
7 angle of the −∞ +∞ foot left joint hinge angle

left foot joint (rad)
8 velocity of the x-coordinate −∞ +∞ rootx slide velocity

of the top (m/s)
9 velocity of the z-coordinate −∞ +∞ rootz slide velocity

(height) of the top (m/s)
10 angular velocity of −∞ +∞ rooty hinge angular

the angle of the top velocity
(rad/s)

11 angular velocity of −∞ +∞ thigh joint hinge angular
the thigh hinge velocity

(rad/s)
12 angular velocity of −∞ +∞ leg joint hinge angular

the leg hinge velocity
(rad/s)

13 angular velocity of −∞ +∞ foot joint hinge angular
the foot hinge velocity

(rad/s)
14 angular velocity of −∞ +∞ thigh left joint hinge angular

the left thigh hinge velocity
(rad/s)

15 angular velocity of −∞ +∞ leg left joint hinge angular
the left leg hinge velocity

(rad/s)
16 angular velocity of −∞ +∞ foot left joint hinge angular

the left foot hinge velocity
(rad/s)33

3.4 Layer-wise Relevance Propagation

Layer-wise Relevance Propagation (LRP) is a saliency map method originally

proposed to provide interpretation for the image classification task [7]. In the

case of images, the idea of LRP is based on pixel-wise decomposition. The

purpose of pixel-wise decomposition is to understand the contribution of a

single-pixel of an image x to the prediction f(x) made by a classifier f in an

image classification task [7]. However, the purpose of our work has nothing

to do with images and pixels; rather, it focuses on graphs. Baldassarre et

al. [8], and Pope et al. [63] proposed the idea of explainability for Graph

Networks. The idea is based on the explainability methods originally designed

for CNNs, such as LRP or CAM. Baldassarre et al. [8] specifically focused

on the explainability of GNs using LRP. In the case of graphs with LRP,

unlike images, we are interested to understand the contribution of each node

or edge to the final decision. This chapter will introduce layer-wise relevance

propagation in a simple neural network.

3.4.1 Conservation property of LRP

As discussed above, we want to know the contribution of each part of the

input to the final prediction. Let f : RV → R1 be an arbitrary classifier that

maps the input of size V to a single output. The output is thresholded at

zero. Therefore f(x) > 0 denotes the presence of the learned structure. We

are interested to find out the contribution of each part of the input x(d) of an

input x to a particular prediction f(x). One possible way is to decompose the

prediction f(x) as a sum of terms of the separate parts of the input x(d):

f(x) ≈
V∑

d=1

Rd (3.2)

The qualitative interpretation is that Rd < 0 contributes evidence against

the presence of a structure which is to be classified while Rd > 0 contributes

evidence for its presence. The purpose of layer-wise relevance propagation is

to achieve a decomposition as in equation 3.2. LRP assumes that the classifier

(here a neural network) can be decomposed into several layers of computation.

34

The first layer is the input consisting of different parts and the last layer is the

real-valued prediction output of the classifier f . The l-th layer is modeled as a

vector z =
{
z
(l)
d

}V (l)

d=1
with dimensionality V (l). LRP assumes that we have a

relevance score R
(l+1)
d for each dimension z

(l+1)
d of the vector z at layer (l+1).

The idea is to find a relevance score R
(l)
d for each dimension z

(l)
d of the vector

z at the next layer l which is closer to the input layer such that the following

equation holds.

f(x) = · · · =
∑

d∈(l+1)

Rl+1
d =

∑
d∈l

R
(l)
d = · · · =

∑
d

R
(1)
d (3.3)

Applying equation 3.3 and iterating from the output layer (classifier output

f(x)) to the input layer x consisting of the input parts yields the desired

decomposition in equation 3.2.

3.4.2 LRP in Neural Networks

Now we want to explain calculating relevance scores in a neural network. Fig-

ure 3.5 shows both forward pass for classification and backward pass for cal-

culating relevance scores. In order to facilitate the calculation of relevance

scores for each neuron, the relevance scores from higher layers are introduced

as messages sent from those layers. Therefore, the relevance of a neuron i at

layer l (except the last layer) is computed as follows:

R
(l)
i =

∑
k: i is input for neuron k

R
(l,l+1)
i←k (3.4)

The relevance of the last layer is defined as the classification score f(x). Equa-

tion 3.4 checks the sum of relevance scores with respect to the output neurons

from the input neuron. We can consider the other way and check the sum of

relevance scores of the input neurons for the output neuron:

R
(l+1)
k =

∑
i: i is input for neuron k

R
(l,l+1)
i←k (3.5)

Equations 3.4 and 3.5 are the main constrains of defining Layer-wise Relevance

Propagation.

35

Figure 3.5: This figure is adapted from the original LRP paper [7]. In the
forward pass on the left side, wij are connection weights, ai is the activation of
neuron i. In the backward pass for calculating relevance scores on the right,
R

(l)
i is the relevance of neuron i at layer l, R

(l,l+1)
i←j are relevance scores that

are expressed as messages from neuron j in layer l + 1 to neuron i in layer l.
These messages are used to check whether equation 3.2 holds.

Multi-layer networks are commonly built as a set of interconnected neurons

organized layer-wise. We denote neurons from layer l by xi and neurons form

layer l + 1 by xj. In the same manner, the summation over all neurons of

layers l and l+1 are denoted by
∑

i and
∑

j respectively. A common mapping

from one layer to the next one consists of a linear projection followed by a

non-linear function:

zij = xiwij , (3.6)

zj =
∑
i

zij + bj , (3.7)

xj = g(zj) (3.8)

where wij is the weight connecting neuron xi to neuron xj, bj is the bias

term, and g is a non-linear activation function. Common non-linear functions

can be Rectified Linear Unit (ReLU) or hyperbolic tangent (tanh). One pos-

sible choice of relevance decomposition for messages from layer j to layer i is

as follows:

R
(l,l+1)
i←j =

zij
zj

.R
(l+1)
j (3.9)

This type of formalization guarantees the conservation properties of equation

3.3. One drawback of the equation 3.9 is that for small values zj, Ri←j can

take unbounded values. Two solutions provided to overcome this drawback

are ε-stabilizer and αβ-stabilizer.

36

For the ε-stabilizer, let ε ≥ 0, then the relevance scores would be as follows:

R
(l,l+1)
i←j =

{
zij
zj+ε

.R
(l+1)
j zj ≥ 0

zij
zj−ε .R

(l+1)
j zj < 0

(3.10)

One problem with this method is that the relevance can be fully absorbed if

the stabilizer ε becomes very large. For this case, we use the alternative αβ-

stabilizer, which treats negative and positive pre-activations separately. Let

z+j =
∑

i z
+
ij + b+j and z−j =

∑
i z
−
ij + b−j be negative and positive part of pre-

activation respectively, where “+” and “−” denote the negative and positive

values of zij and bj. The relevance scores are then calculated as follows:

R
(l,l+1)
i←j = R

(l+1)
j

(
α.

z+ij
z+j

+ β.
z−ij
z−j

)
. (3.11)

where α+ β = 1. This method can also control the importance of positive

and negative evidence by changing the values of α and β. The complete layer-

wise relevance propagation procedure for neural networks is summarized in

algorithm 2.

Algorithm 2 Layer-wise relevance propagation for neural networks

1: let R(L) = f(x)
2: for l ∈ {L− 1 . . . 1} do
3: R

(l,l+1)
i←j as in equation 3.10 or 3.11

4: R
(l)
i =

∑
j R

(l,l+1)
i←j

5: end for
6: return ∀d : R

(l)
d

3.4.3 Motivation to our problem

The LRP algorithm was initially proposed to explain image classification tasks.

The output probability given by the classifier to each class is considered the rel-

evance score in the output layer. This relevance score is then back-propagated

to the input, generating a heat-map showing the most important pixels of the

input image.

In our problem, we need to apply the same procedure, except that there is

neither classifier nor image. The goal is to explain the policy learned by the

37

DRL algorithm in a robotic environment. Therefore, there are two differences

between our problem and the LRP paper. First, we have a policy network

instead of a classifier network. The output of the policy network is not the

probability of each class. Rather it is the mean of the probability distribution

from which the action is sampled. Second, our inputs are not images but

graphs. Thus, the input decomposition shows the relevance of each node or

edge (rather than the relevance of pixels). The following sections focus on the

application of LRP to graphs in a deep reinforcement learning problem.

38

3.5 Deep Reinforcement Learning

In the previous sections, we discussed the graph neural networks and their

necessity to our problem, how to convert a physical system to a graph, and

how to use Layer-wise Relevance Propagation to provide explainability in a

black box neural network. This chapter will discuss the Deep Reinforcement

Learning algorithm. The algorithm used here is the state-of-the-art deep RL

algorithm in robotics, Soft Actor-Critic [30], [31].

3.5.1 Reinforcement learning setting

The reinforcement learning problem can be defined as a policy search in a

Markov decision process (MDP), defined by a tuple (S ,A, p, r). The state

space S and action space A are assumed to be continuous, and the state

transition probability p : S × S ×A → [0,∞) represents the state transition

probability of the next state st+1 ∈ S , given the current state st ∈ S and

current action at ∈ A. The environment emits a reward r : S × A → R on

each transition. The state and state-action marginals of the trajectory distri-

bution induced by a policy π(at|st) are also denoted by ρπ(st) and ρπ(st, at)

respectively.

3.5.2 Maximum entropy reinforcement learning

The standard objective function of reinforcement learning agent is the expected

sum of rewards, and the optimal policy is defined to maximize this objective.

If we denote the optimal policy as π∗, then

π∗ = argmax
π

∑
t

E(st,at)∼ρπ [r(st, at)] (3.12)

The soft actor-critic algorithm’s objective function is based on Maximum en-

tropy, meaning that this algorithm, unlike traditional RL algorithms, adds an

entropy term to the cumulative reward and maximizes the expectation of both

cumulative reward and entropy term. This way, the policy is incentivized to

explore more widely and does not converge to sub-optimal behaviours in the

early stages of training. Another advantage of this entropy term is to find all

39

the optimal behaviours in a multi-modal environment where more than one

optimal policy exists. The maximum entropy objective function would be as

follows:

π∗ = argmax
π

∑
t

E(st,at)∼ρπ [r(st, at) + αH(π(.|st))] (3.13)

where α is the temperature parameter determining the relative importance of

the entropy term versus the reward, which controls the stochasticity of the

optimal policy. The standard RL objective can be recovered by setting α close

to zero.

3.5.3 Soft Policy Iteration

Starting in the tabular case, which is a simple setting for theoretical analysis,

we will discuss the policy iteration in the maximum entropy setting, which is

called soft policy iteration. The policy iteration alternates between evaluating

current policy and improving it.

In the policy evaluation step of soft policy iteration, the soft Q-value is

computed iteratively, starting form any function Q : S×A→ R and applying

Bellman backup operator T π repeatedly as follows:

T πQ(st, at) ≜ r(st, at) + γEst+1∼p [V (st+1)] (3.14)

Where the soft state value function in the above equation is calculated as

follows:

V (st) = Eat∼π [Q(st, at)− α log π(at|st)] (3.15)

In the policy improvement step, the policy is updated towards the expo-

nential of the new soft Q-function. For this purpose, a class of policies Π is

selected so that the improved policy stays in this class. For example, the class

of policies can be a parameterized family of distributions like Gaussian distri-

butions. The updated policy would be calculated using the Kullback-Leibler

divergence as a projection function as follows:

πnew = argmin
π′∈Π

DKL

(
π′(.|st)

∣∣∣∣∣
∣∣∣∣∣exp

(
1
α
Qπold(st, .)

)
Zπold(st)

)
(3.16)

40

The Zπold(st) is just for the purpose of normalizing the distribution, and since

it does not depend on the action, it does not affect the gradient. The soft

policy iteration alternates between policy evaluation and improvement steps

until convergence to the optimal maximum entropy policy.

3.5.4 Soft actor-critic

For large problems, we need function approximation. Therefore, soft actor-

critic algorithm with neural networks as function approximator is discussed.

The algorithm makes use of two soft Q-functions, parameterized by θ1 and θ2,

to mitigate positive bias in the policy improvement step. These Q-functions

are trained to optimize JQ(θ1) and JQ(θ2), where JQ(θ) is as follows:

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st, at)−

(
r(st, at)

+ γEst+1∼p,at+1∼π

[
Qθ̄(st+1, at+1)

− α log(πϕ(at+1|st+1))
]))2] (3.17)

In this equation, the policy is a Gaussian where the mean and the standard

deviation are outputs of a neural network parameterized by ϕ, and D is the

replay buffer to store transitions. For each pair of Q-functions with parameters

θ1 and θ2, we have target Q-functions parameterized by θ̄1 and θ̄2 respectively.

These two Q-functions are trained independently to optimize 3.17. The min-

imum of the two soft Q-functions is chosen for stochastic gradient descend in

equation 3.17 and also the policy gradient update using Jπ(ϕ). The policy

gradient loss function Jπ(ϕ) would be as follows:

Jπ(ϕ) = Est∼D,at∼πϕ
[α log(πϕ(at|st))−Qθ(st, at)] (3.18)

In addition to updating the actor and critic parameters, the temperature pa-

rameter α is tuned specifically to the environment. The gradient for α is

calculated using the following objective function:

J(α) = Eat∼πt

[
−α log πt(at|st)− αH̄

]
(3.19)

41

The soft actor-critic is summarized in algorithm 3. It generates samples

from the environment, stores them in the replay buffer, and updates neural

network parameters using batches sampled from the replay buffer. The algo-

rithm is off-policy because the policy used for generating samples and the one

used for updating the parameters are not the same.

Algorithm 3 Soft Actor-Critic algorithm

1: Initialize networks parameterized by θ1, θ2, ϕ
2: Initialize target networks parameterized by θ̄1 ← θ1 and θ̄2 ← θ2
3: Initialize empty replay buffer D
4: for each iteration do
5: for each time-step t in the episode do
6: Sample current state st of the environment
7: at ∼ πϕ(at|st) ▷ Sample action from the policy
8: st+1, rt ∼ p(st+1, rt|st, at) ▷ Sample reward and next state from the

environment
9: D ← D ∪ {(st, at, rt, st+1)} ▷ Store the transition into the replay

buffer
10: if D has enough samples then
11: update parameters using a batch of samples from D as follows:
12: θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2} ▷ Update the Q-function

parameters
13: ϕ← ϕ− λπ∇̂ϕJπ(ϕ) ▷ Update policy weights

14: α← α− λα∇̂αJ(α) ▷ Adjust temperature
15: θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2} ▷ Update target network

weights
16: end if
17: end for
18: end for
19: return θ1, θ2, ϕ

42

Chapter 4

Proposed Method

In the previous Chapter, we cover the necessary background for our method-

ology. We explain the structure of a graph neural network in Section 3.1 and

how to convert the structure of a robot into a graph in Section 3.2. Then,

we describe the Layer-wise Relevance Propagation algorithm to highlight the

most relevant elements of the input to a neural network in Section 3.4. Finally,

Section 3.5 explains the DRL algorithm used in this work. In this Chapter, we

aim to propose our framework for interpreting the agent’s policy. The general

idea is to convert the observation space of a robot into a graph, use graph

neural networks as function approximators in the DRL algorithm, and train

the agent until convergence. After that, the LRP algorithm is applied to the

learned policy network to highlight the most relevant components of a robot.

This chapter covers the details of the implementation of our method.

43

4.1 Explainability for DRL in Robotics

In the previous chapters, we sporadically discussed the method for explaining

the policy learned by a DRL agent in a robotic environment. Inspired by the

explainability methods applied to graph classification tasks by Baldassarre

et al. [8] and Pope et al. [63], we want to interpret the behaviour of the

robot trained by a DRL algorithm. The idea is based on the similarity of the

structure of a robot to graphs. In particular, the robot’s observation is altered

to a graph. This graph is fed to the neural network function approximators

of the Soft Actor-Critic and used to output actions and update networks.

After the agent is trained and the performance converged, we apply layer-wise

relevance propagation to the policy network to interpret the actions. This

chapter describes the details of each step.

4.1.1 Deep reinforcement learning with graph neural
networks

In the reinforcement learning framework, the agent must interact with the

environment, observe and get the current state st of the environment. It

should decide what action to take based on the current state and using the

policy π.

The first step toward graph operation in reinforcement learning is to con-

vert the observation space from a vector to a graph of observations. The

details of converting a robot’s observation space to a graph have been argued

in chapter 3.2. The observation would be in the form of:

st = G(Vt, Et, ut) (4.1)

Vt = {v(i)
t }N

v

i=1 is the set of node features where v
(i)
t is the vector of node

features for node i at time-step t, Et = {(e(k)t , rk, sk)}N
e

k=1 is the set of edge

features where e
(k)
t is the feature vector of the edge k between the sender node

sk and receiver node rk at time-step t, and ut is the vector of global features

of the system.

The agent applies the soft actor-critic algorithm, which comprises an actor

44

and a critic. Both the actor and critic use neural networks as function ap-

proximators for large state and action space environments. The second step

towards applying graph neural networks to a DRL algorithm is to migrate

from fully-connected neural networks (with a weak relational inductive bias)

as function approximators for the policy and Q-functions to graph neural net-

works (with a strong relational inductive bias). For a detailed discussion on

graph neural networks’ operations, please refer to chapter 3.1.

4.1.2 Graph neural network architecture

According to the second step of the problem, we must describe the networks’

architectures for both the policy and Q-function. For creating the graph neural

network architecture, we used the torchgraph1 library developed by Baldas-

sarre et al. [8] for their work.

In this library, there are three types of graph neural network layers. These

layers are according to graph operations discussed in chapter 3.1. Here we are

going to explain each layer. Note that each layer receives a complete graph as

input, operates on some part of the graph, and submits a graph as output. For

example, the EdgeLinear receives a graph as input, updates its edge features

and outputs a graph.

• EdgeLinear : This layer receives a graph as input, updates its edge fea-

tures and outputs a new graph. It corresponds to the ϕe(ek,vrk ,vsk ,u)

function as discussed in section 3.1. When we want to initialize this

layer, we need to provide 5 arguments as follows (assume for each edge

the triple (e
(k)
t , rk, sk) for k ∈ 1 : N e):

1. out features: the length of the output graph’s edge feature vector

e′
(k)
t .

2. edge features: the length of the input graph’s edge feature vector

e
(k)
t .

3. sender features: the length of the input graph’s node feature

vector v
(i)
t where i = rk.

1https://github.com/baldassarreFe/torchgraphs

45

https://github.com/baldassarreFe/torchgraphs

4. receiver features: the length of the input graph’s node feature

vector v
(i)
t where i = sk.

5. global_features: the length of the input graph’s global feature

vector ut.

• NodeLinear : This layer receives a graph as input, updates its node fea-

tures, and outputs a new graph. It corresponds to two graph operations

ρe→v(E ′i) and ϕv(e′i,vi,u) as discussed in section 3.1. In other words, it

first aggregates edge features incoming or outgoing from a specific node;

it then updates the node features. The arguments are as follows (let

{v(i)
t }N

v

i=1 be the set of node features, and (e
(k)
t , rk, sk) for k ∈ 1 : N e be

the set of edge features with their nodes specified):

1. out features: the length of the output graph’s node feature vector

v′
(i)
t .

2. node features: the length of the input graph’s node feature vector

v
(i)
t .

3. incoming features: the length of the input graph’s edge feature

vector e
(k)
t in (e

(k)
t , rk, sk) where i = rk.

4. outgoing features: the length of the input graph’s edge feature

vector e
(k)
t in (e

(k)
t , rk, sk) where i = sk.

5. global_features: the length of the input graph’s global feature

vector ut.

6. aggregation: the type of ρe→v function. This aggregation can have

3 different kinds: sum, avg, and max.

• GlobalLinear : This layer receives a graph as input, updates its global

features, and outputs a new graph. This layer corresponds to ρe→u(E ′),

ρv→u(V ′), and ϕu(e′,v′,u) functions in the graph operations (refer to

section 3.1). The arguments are as follows:

1. out features: the length of the output graph’s global feature vec-

tor u′t.

46

2. global_features: the length of the input graph’s global feature

vector ut.

3. node_features: the length of the input graph’s node features.

4. edge_features: the length of the input graph’s edge features.

5. aggregation: the type of aggregation functions ρe→u and ρv→u.

This type can be sum, avg, or max.

Using these graph layers, we design a graph neural network architecture

commonly being used by the policy network and Q-networks of the DRL

agent. This architecture is used to extract features from the observation graph.

This architecture comprises two graph layers. Each layer has edge operations,

node operations, and global operations. Therefore, each graph layer has one

EdgeLinear , one NodeLinear , and one GlobalLinear layer. This architec-

ture is summarized in figure 4.1

The architecture of the policy network and Q-Networks would be as follows:

• Q-function: The input to the Q-function is both a state and an action.

First, the state, which is a graph, is fed to the CommonGraph . Then a

GlobalLinear is applied to the CommonGraph ’s output graph. The final

graph’s global features would be considered the feature vector of the

input state. Then a three-layered fully-connected network would be used

to combine the global feature vector output of the GlobalLinear layer

with the action, resulting in the action-value function.

• Gaussian Policy: For this architecture, we fed the state graph to

CommonGraph . Then, there are two GlobalLinear layers, one for the

mean and another for the standard deviation of the Gaussian policy.

The CommonGraph ’s output graph is fed to mean and standard deviation

GlobalLinear layers, producing two different graphs. The global fea-

tures of the mean GlobalLinear ’s and standard deviation GlobalLinear ’s

output graphs would be the policy distribution’s mean and standard de-

viation, respectively.

47

Figure 4.1: The CommonGraph architecture. This architecture is designed ac-
cording to the algorithm 1. Only past edge features are used to update edge
features during edge operations. However, for node feature update, we use
edges connected to a specific node, in addition to that node’s past features, to
update the node’s features. For global feature updates, we use both node and
edge features in the update process in addition to past global features.

4.1.3 Explainability through Layer-wise Relevance Prop-
agation

In this section, we want to explain the agent’s behavior via LRP, but first,

we need to break down the algorithm and analyze its parts. The agent is a

soft actor-critic algorithm that comprises an actor and a critic. Therefore, it

has a performance element and a learning element. A performance element

converts input observation into output decisions. Thus, the actor (policy net-

work) is the performance element of the agent. A learning element improves

the performance of a performance element during the training process. The

critic (Q-networks) would be the learning element of an actor-critic agent. The

explanation, therefore, should be provided for the performance element, which

is the learned model that performs in the environment. After the agent is

trained to perform successfully in a robotic task, the LRP is applied to the

policy network to project back the value of each action into the input obser-

vation, calculating relevance scores. These relevance scores can be used to

analyze the impact of the robot’s components on the decision-making process.

48

Figure 4.2: The architecture of the Q-function. The state graph is fed to
the CommonGraph , then a GlobalLinear layer is applied to the output graph
(note that this GlobalLinear layer does not have any activation function and
its purpose is feature extraction). The resulting graph’s global features would
be used as the feature vector of the input state. This feature vector and current
action are concatenated and fed into a fully connected network. The output
of this fully connected network would be the Q-value.

The explanation phase starts after the training ends when the DRL algo-

rithm has converged to the optimal policy. Unlike the training phase, where

the action is sampled from a Gaussian probability distribution whose mean and

standard deviation are produced by the policy net, in the evaluation phase,

the actions are equal to the mean of the policy distribution. Suppose that the

action at time-step t is a vector of length h,

at = [a
(1)
t , a

(2)
t , . . . , a

(h)
t] (4.2)

Figure 4.3: The policy network’s architecture. The state is fed into the
CommonGraph architecture. Then the output graph is fed into two separate
GlobalLinear layers (note that these GlobalLinear layers do not have any
activation function and their purpose is feature extraction). One of these 2
GlobalLinear layers is for mean and another is for the standard deviation of
the policy, which is a Gaussian distribution.

49

In the explanation phase, at each step, the observation graph st is fed to

the policy network πϕ, which outputs the action corresponding to the mean of

the Gaussian distribution.

at = πϕ(st) (4.3)

The action is the global feature vector of the output graph of the Mean

GlobalLinear layer in the policy net. To calculate the relevance of each action

a
(i)
t where i ∈ {0, . . . , h − 1}, to the input graph components, we zero out all

the elements in the action vector except the element at index i, which forms

the relevance score of the action i at time step t, r
(i)
t in the output graph’s

global features. If ei ∈ Rh denotes one hot vector whose elements are zero

except the one at index i (which equals 1), then

r
(i)
t = at · ei (4.4)

This relevance score is set to the global features of the output graph, then back-

propagated to the input. If we denote the layer-wise relevance propagation

operation on a neural network with LRP (), then

R
(i)
c,t = LRP (r

(i)
t) for c in {0, . . . , C − 1} (4.5)

Where C is the number of components of the input graph, R
(i)
c,t is the relevance

of the action i to the component c of the input graph at time-step t given by

the LRP. The LRP back-propagates the vector r
(i)
t , which is the global features

of the output graph, to the input graph’s components. Then, the relevance of

each action to a corresponding component of the input is averaged across time

steps. The evaluation phase is summarized in algorithm 4.

4.1.4 Implementation and Summary of the XRL pro-
cess

The entire XRL process consists of two phases. The agent is trained on a

specific environment during the first phase using the SAC algorithm with graph

nets. The learning continuous until convergence to the optimal policy. At the

50

Algorithm 4 Calculating relevance scores for the components in the obser-
vation space.

1: let R
(i)
c = 0 for c ∈ {0, . . . , C − 1} and i ∈ {0, . . . , h− 1}

2: let N denote the number of episodes
3: for each episode n in {0, . . . , N − 1} do
4: for each time-step t in {0, . . . , T − 1} do
5: Sample current state st of the environment
6: at = πϕ(st) ▷ at equals the mean of the policy distribution
7: for each element i of the action vector do
8: r

(i)
t = at · ei

9: R
(i)
c = R

(i)
c + LRP (r

(i)
t)

10: end for
11: end for
12: end for
13: return ∀c, i : R(i)

c /(T ×N) ▷ Average of the relevance across time-steps

end of this phase, we have a learned policy network, which will be used in the

explanation phase.

The second phase is the explanation phase. In this phase, the actions taken

by the learned policy network are explained through layer-wise relevance prop-

agation. The global features of the output of the Mean GlobalLinear layer

of the policy network are used as the relevance score in the output layer.

Then, this relevance score is back-propagated through graph layers to the in-

put graph. The relevance scores from the output layer are decomposed and

distributed across the input graph’s nodes, edges, and global components,

showing each unit’s contribution to the current policy’s performance.

As discussed, we used the GitHub repository developed by Baldassarre et

al. [8] to build graph neural networks. In this repository, they also provided

a process for calculating relevance scores. For this purpose, after training

the agent using graph layers, we create the exact same network architec-

ture with layer names shifting from NodeLinear to NodeLinearRelevance ,

EdgeLinear to EdgeLinearRelevance , and GlobalLinear to GlobalLinearRelevance .

We call the network built using relevance layers the RelevanceNetwork . Then

the weights of the trained policy network are loaded into the RelevanceNetwork for

evaluation purposes and calculating relevance scores. The architecture of the

51

RelevanceNetwork is exactly the same as the original policy network, except

it uses relevance layers.

52

Chapter 5

Experimental Analysis

In the previous chapters, we were mostly focused on introducing the idea be-

hind our method and essential background knowledge for understanding the

technique. Finally, we proposed our approach for analyzing the policy learned

by a Deep Reinforcement Learning algorithm in a robotic environment. This

chapter provides the results of experiments on robotic environments. Specif-

ically, we explore the results provided by the Layer-wise Relevance Propaga-

tion on a learned policy from which we extract valuable explanations. Then

in another set of experiments, we evaluate these explanations. This chapter is

organized as follows: First, the setting in which we designed our experiments

are explained, then the two phases of our experiments are discussed. The

first phase consists of training the agent until convergence and providing a

representation analysis on the observation space. Then the correctness of this

analysis is evaluated in the second phase of our experiments.

5.1 Experimental Setup

The experiments are run across two simulated robotic environments in Mu-

JoCo [79] OpenAI Gym [60]. We have two phases of experiments. In the first

phase, we will train the agent until convergence using graphs as input obser-

vations and graph neural networks as function approximators for the DRL

algorithm. At the end of this phase, we apply the LRP algorithm to provide

a heat-map over the most important entities of the observation space with re-

spect to each element of the action space. Using this heat-map, we will extract

53

the most important entities in the observation space and the most important

action elements in the decision-making process. In the second phase, the im-

portance scores calculated at the end of the first phase will be evaluated by

running more experiments.

We selected HalfCheetah-v2 and Walker2D-v2 environments for our ex-

periments because of the simplicity of their structure and training purposes.

Nevertheless, this method can also be extended to more complex robotic set-

tings. For the details about these environments, we refer the reader to Section

3.3. We also prepared results for the robot arm FetchReach-v1 environment

in the Appendix A. To validate the importance of each part of the robot iden-

tified by the LRP, we assume that the part is isolated from other parts. In

other words, when some malfunction occurs, only one part breaks at a time.

Therefore, without loss of generality, the analysis focuses only on one part at

a time rather than considering a group of malfunctioning parts. Limiting the

evaluation to one part at a time is sufficient because we are able to extend

the analysis to more complex malfunctions, such as a group of broken parts.

If the group of malfunctioning parts contains one or more important parts, in

the best case, the situation would no longer be better than when only one of

the important parts in that group is broken. The non-important parts would

have no negative influence on the regular performance of the policy, although

they can be used as a replacement for the broken part after adapting to the

new dynamics.

5.2 Results and Discussion

5.2.1 Train and Explanation Phase

In this phase, we train the Soft Actor-Critic agent using Graph Networks.

We run the experiments for 10 different seeds. For a detailed structure of

each component of SAC, please refer to Section 4.1. After the training, we

apply LRP to the learned policy to calculate the relevance scores. These

scores represent the relevance of each action to each entity in the observation

space at each time step. Each seed runs for 20 episodes, then the relevance

54

scores calculated at each time step are averaged across time steps within 20

episodes for the ten seeds. Then, these results are normalized across each

action element (since the range of values for each action element at each time-

step is different, hence can affect the range of relevance scores given by each

action to each entity). The result is shown using a heat map indicating the

relevance of each action element to each part of the observation space.

HalfCheetah-v2

Figure 5.1 represents the heat map for the HalfCheetah-v2 environment gen-

erated by the LRP. As discussed, these scores are averaged across 20 episodes

for 10 seeds. According to the HalfCheetah-v2 documentation, the goal is

for the robot to run forward as fast as possible. Therefore, the features of

the torso entity must be critical to the policy since the goal is to increase the

speed of the torso. This claim has been nicely shown by the heat-map in

Figure 5.1, as the relevance score given by each action element to the torso

entity is the highest across all the entities (except for the action applied to

bthigh). Furthermore, we expect that the weight of relevance scores should

be high around the diagonal since, naturally, the amount of torque applied to

each joint should correspond to the state of that joint. However, in this heat

map, we can only see this incident happened for the bthigh joint. There is

also some relevance given by the fshin action to the fthigh in the observation.

The reason is that since fshin and fthigh are neighbours, the state of fthigh can

affect the amount of torque for fshin . This case proves one of the reasons we

selected the graph structure: not only do we take into account the effect of

features of each entity on the decision-making process, but we also consider

their position in the structure.

From this heat map we would extract two other important information,

depicted in Figures 5.3b and 5.4b. The first plot indicates the importance

score given to each entity of the observation space, and the second one shows

the importance of each joint in the action space provided by the LRP.

Figure 5.3b says that the most important entities to the policy are torso and

bthigh , respectively. Furthermore, Figure 5.4b shows that the most critical

55

Figure 5.1: The heat-map generated by the LRP for the
HalfCheetah-v2 environment. The action elements (torques) applied to
each joint are shown on the y-axis. The entities in the observation space are
represented on the x-axis. The scores indicate the amount of relevance that
exists between each action and each entity of the observation. These scores
are averaged across 10 seeds, and each seed ran for 20 episodes. Then the
scores are normalized across actions since the range of values is different for
each action.

joints in the action space are bthigh , bshin , bfoot , and fthigh respectively.

The correctness of these claims is evaluated in the Explanation Evaluation

phase in Section 5.2.2.

Walker2D-v2

Figure 5.2 represents the heat-map produced for the Walker2D-v2 environment

by the LRP. Again these scores are calculated and averaged across 10 seeds,

each running for 20 episodes. Similar to the heat map in Figure 5.1 for the

HalfCheetah-v2 , the scores given to the torso are the highest across all the

elements in the action space. The reason is the same as HalfCheetah-v2 – the

56

goal of the environment is to increase the speed of the torso. Unlike the heat-

map generated for the HalfCheetah-v2 , we can see that the relevance scores

around the diagonal are the highest after the scores given to the torso entity

for each action element. For example, for the action (torque) applied to the

thigh joint, it depends not only on the position and velocity of the torso but

also on the state of the thigh joint at each time-step. The same is true for leg ,

thigh left , and leg left . In addition to the leg left action, the state of the leg

left entity in the observation space highly affects the thigh left action. Again,

it can be explained through the vicinity of the two entities in the robot.

From this heat map, we would extract two other important information,

depicted in Figures 5.5b and 5.6b. The first figure reflects the importance of

each entity in the observation space, and the second shows the importance of

joints in the action space.

Figure 5.5b says that the most important entity to the policy is torso .

The importance score for the other joints is pretty small; however, the score

of thigh and thigh left are higher than the remaining. Moreover, Figure 5.6b

indicates that the critical joints for moving the robot faster are foot left and

foot joints, respectively. The correctness of these claims is evaluated in the

Explanation Evaluation phase in Section 5.2.2.

5.2.2 Explanation Evaluation Phase

In this phase, we want to evaluate the explanations provided by the LRP in

each environment. Each joint plays two roles in an RL algorithm. First, its

features are represented to the agent as the state of the robot at each time

step. Second, an action in the form of torque is applied to that joint to move

it. Therefore, there are two kinds of information extracted by the LRP:

1. Entity Importance in the Observation Space: Each action element

gives a relevance score to each entity of the observation space. These

relevance scores are averaged for each entity across actions to yield the

importance of each entity to the whole decision-making process.

2. Joint Importance in the Action Space: The relevance scores given

57

Figure 5.2: The heat-map generated by the LRP for the
Walker2D-v2 environment. The action elements (torques) applied to
each joint are shown on the y-axis. The entities in the observation space are
represented on the x-axis. The scores indicate the amount of relevance that
exists between each action and each entity of the observation. These scores
are averaged across 10 seeds, and each seed ran for 20 episodes. Then the
scores are normalized across actions since the range of values is different for
each action.

58

by each action to entities of the observation space are averaged for each

action element across input entities to yield the importance of each joint

in the action space.

Note that for elements of the observation space, we use the term “Entity”,

but for the elements of the action space, we use the term “Joint”. The reason

is that not all the elements of the observation space are “Joints”, unlike the

elements of the action space. For each environment, the evaluation targets the

two kinds of information provided above.

For the importance of the entities in the observation space, we occlude

the features of that entity in the observation space and then rerun the exper-

iments in the new (partially observable) environment. The occlusion process

corresponds to sensor failure in a joint, which causes the robot to fail to show

the state of that joint at each time. Based on the amount of drop in the perfor-

mance, we can evaluate the correctness of the importance scores. We expect

that the amount of drop in the performance is proportional to the importance

scores.

For the importance of the joints in the action space, we block each joint

so that no torque can be applied to that joint. In other words, we remove

the joint from the action space. Again, based on the amount of drop in the

performance, we can measure the correctness of the importance scores for

each joint in the action space. We expect that the amount of drop in the

performance is proportional to the importance scores.

To ensure that the results provided by the LRP are neural network ar-

chitecture independent and only depend on the policy learned by the DRL

algorithm, we use fully-connected networks in this phase of experiments.

HalfCheetah-v2

Figure 5.3 analyzes the importance scores given to each entity of the obser-

vation space in the HalfCheetah-v2 environment. Figure 5.3b depicts the

importance scores for each entity, and Figure 5.3a represents the learning

curves after occluding each entity in Figure 5.3b in the observation space.

59

In Figure 5.3b we can see that the most important entities in the observa-

tion space are torso and bthigh . We expect that the learning curves after

occluding these joints from the observation space drop significantly compared

to the standard setting. This drop is evident in Figure 5.3a. Furthermore, a

high drop in performance can be seen for the fshin during the early stages of

training. However, eventually, it could recover from that and converge to the

learning curves of other entities, including bshin , bfoot , and fthigh . For the

part where the learning curves of bshin , bfoot , fthigh , fshin seem to overlap,

we perform a statistical t-test with a confidence interval of 95%. Figure 5.3c

reflects the P-values for the significance test between each pair of learning

curves. For P < 0.05 the learning curves are significantly different. It can

be deducted from this t-test that the learning curves of fshin and bshin , and

fshin and fthigh are not significantly different. However, for fshin the drop in

performance during the early stages of training is higher than in the other two.

Although their learning curves are significantly different for bshin and fthigh ,

the P-value is close to 0.05, so their performance is close to each other (as it

can be deducted from their importance scores). For ffoot we can say that the

importance score is unexpectedly higher than bshin , bfoot , and fthigh .

Figure 5.4 analyzes the importance of each joint in the action space ac-

cording to the scores provided by the LRP. Figure 5.4b says that the most

important joints are bthigh , bshin , bfoot , and fthigh respectively. These re-

sults are evaluated in Figure 5.4a in which each joint in Figure 5.4b is blocked,

and the performance in the new setting is analyzed. It is clear that the drop

in performance in bthigh is proportional to its importance score. The same is

true for bshin , bfoot , and fthigh . However, we expected that the importance

score of bfoot would be higher than the other two, but it is negligible since

the learning curves of these three joints are pretty close to each other, as their

importance scores are. The three joints fthigh , fshin , and ffoot having the

least importance scores have learning curves that are not significantly differ-

ent. This claim can be deduced from the statistical t-test analysis in Figure

5.4c.

It should be noted that the learning curves in Figures 5.3a and 5.4a are

60

averaged across 10 seeds, and the shaded parts reflect the standard error of

each curve.

61

(a)

(b) (c)

Figure 5.3: Evaluating the importance scores given by LRP to each entity of
the HalfCheetah-v2 robot. a) shows learning curves of training on the new
environment after occluding features of each entity in the observation space.
The color of learning curves corresponds to the color of bar plots in (b). b)
reflects the entity importance score in the observation space calculated by LRP.
c) indicates whether each pair of curves in (a) are significantly different or not
via statistical t-test. Learning curves are significantly different For P < 0.05)

62

(a)

(b) (c)

Figure 5.4: Evaluating the importance scores given by LRP to each element of
the action space in HalfCheetah-v2 robot. a) shows learning curves of training
on the new environment after blocking each joint. The color of learning curves
corresponds to the color of bar plots in (b). b) reflects the importance score of
the joints in the action space calculated by LRP. c) indicates whether each pair
of curves in (a) are significantly different or not via statistical t-test. Learning
curves are significantly different For P < 0.05)

63

Walker2D-v2

Figure 5.5 reflects the results of experiments evaluating the entity’s importance

in the observation space for the Walker2D-v2 environment. Figure 5.5b says

that the most important entity in the observation space is the torso . The

scores for entities other than torso are pretty low and close to each other,

with thigh and thigh left having equally the highest score among them. As

expected, by occluding the torso from the observation space, the agent could

not learn a policy at all, therefore had the most significant drop in performance

in Figure 5.5a. The learning curves overlap for the thigh and thigh left , which

can be shown by Figure 5.5c. Figure 5.5c reflects the result of statistical

t-test with 95% confidence interval between each pair of learning curves in

Figure 5.5a. The highest importance score after thigh and thigh left belongs

to the leg joint. The learning curves of the thigh , thigh left , and leg are not

significantly different, as shown in Figure 5.5c. The foot and foot left have

the least drop in performance compared to the standard setting, which can

be deduced from their importance score as well. Nevertheless, the importance

score for the leg left is unexpected because, based on its learning curve, we

expect its score to be noticeable, similar to thigh , thigh left , and leg .

Figure 5.6 shows the results of evaluating importance scores for each joint

in the action space for the Walker2D-v2 environment. As indicated by Fig-

ure 5.5b, foot left and foot joints are the most important ones. Figure 5.6a

proves the correctness of this claim by showing that the amount of drop in

performance after blocking foot left and foot joints is proportional to their im-

portance scores. For leg and leg left the amount of drop in performance is close

to each other, as their importance scores are. The unusual thing here is that

the importance score for thigh left is high, but after blocking this joint, the

performance became even better than the standard setting. This irregularity

says that LRP fails to give a correct importance score to joints having unex-

pected behavior, or redundant to learning a good policy. The same conclusion

can be applied to the thigh joint.

It should be noted that the learning curves in Figures 5.5a and 5.6a are

64

averaged across 30 seeds, and the shaded parts reflect the standard error of

each curve.

65

(a)

(b) (c)

Figure 5.5: Evaluating the importance scores given by LRP to each entity
of the Walker2D-v2 robot. a) shows learning curves of training on the new
environment after occluding features of each entity in the observation space.
The color of learning curves corresponds to the color of bar plots in (b). b)
reflects the entity importance score in the observation space calculated by LRP.
c) indicates whether each pair of curves in (a) are significantly different or not
via statistical t-test. Learning curves are significantly different For P < 0.05)

66

(a)

(b) (c)

Figure 5.6: Evaluating the importance scores given by LRP to each element of
the action space in Walker2D-v2 robot. a) shows learning curves of training
on the new environment after blocking each joint. The color of learning curves
corresponds to the color of bar plots in (b). b) reflects the importance score of
the joints in the action space calculated by LRP. c) indicates whether each pair
of curves in (a) are significantly different or not via statistical t-test. Learning
curves are significantly different For P < 0.05)

67

Chapter 6

Conclusion and Future work

6.1 Conclusion

We propose a novel technique for interpreting the deep reinforcement learn-

ing black box modules in robotic environments. The idea is to find the most

contributing elements of the observation space to the decision-making process.

To do so, we first decompose the robot into entities with a relationship be-

tween each pair. Therefore, we selected graphs to represent the observation

to take advantage of the strong relational inductive bias of graph neural net-

work architectures and consider each entity’s position relative to other entities

for the interpretation phase. To find the most contributing components of

the robot to the decision-making process, we apply the Layer-wise Relevance

Propagation algorithm.

We aim to evaluate our approach on two well-known MuJoCo robotic envi-

ronments, namely HalfCheetah-v2 and Walker2D-v2 . Our empirical results

prove that our approach can successfully find the most important entities of

the robot’s observation space in the decision-making process. Moreover, this

method could successfully identify the most critical joints for the action space

to reach the target of the environment.

The results provided by our technique can be used for debugging purposes.

Using this method, one can analyze which components in the robot are being

used more often and what entities in the robot play an important role in taking

action. Another application is in machine maintenance, where our method,

after diagnosing which part of the robot malfunctions, can tell whether the

68

RL agent can recover from that fault or the malfunctioning part needs to be

replaced. In other words, it tells us about the severity of the damage. Similarly,

suppose one chooses the machine to adapt to the new dynamics. In that case,

it can give us some intuition about the adaptation process by comparing the

relevance scores before and after adaptation. Furthermore, this method can

answer questions about how the behavior of two policies is different and the

reason that one policy performs better than the other.

6.2 Future directions

One future approach is to use the LRP scores as information for data-driven

machine maintenance or informed adaptation to the new dynamics. When a

robot malfunctions and we diagnose the broken part, using the importance of

that part in both the observation and the action spaces, the RL agent can

find a better way to recover from that fault. In addition, one can explain the

adaptation process in a group of tasks dealing with robot maintenance.

Another direction is to visualize and analyze the LRP scores during train-

ing. This can give us intuition about how the RL agent finds the optimal

behavior by analyzing the change in the importance of each entity every num-

ber of time steps.

One important future work can focus on informed transfer learning. Know-

ing how important a component is to the RL agent, we can decide whether the

policy learned in a normal environment can be applied in another environment

with different dynamics.

69

References

[1] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey on
explainable artificial intelligence (xai),” IEEE access, vol. 6, pp. 52 138–
52 160, 2018.

[2] D. Amir and O. Amir, “Highlights: Summarizing agent behavior to peo-
ple,” in Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, 2018, pp. 1168–1176.

[3] M. Andrychowicz, F. Wolski, A. Ray, et al., “Hindsight experience re-
play,” Advances in neural information processing systems, vol. 30, 2017.

[4] O. M. Andrychowicz, B. Baker, M. Chociej, et al., “Learning dexterous
in-hand manipulation,” The International Journal of Robotics Research,
vol. 39, no. 1, pp. 3–20, 2020.

[5] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement learning-
based multi-agent system for network traffic signal control,” IET Intel-
ligent Transport Systems, vol. 4, no. 2, pp. 128–135, 2010.

[6] A. Atrey, K. Clary, and D. Jensen, “Exploratory not explanatory: Coun-
terfactual analysis of saliency maps for deep reinforcement learning,”
arXiv preprint arXiv:1912.05743, 2019.

[7] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W.
Samek, “On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation,” PloS one, vol. 10, no. 7, e0130140,
2015.

[8] F. Baldassarre and H. Azizpour, “Explainability techniques for graph
convolutional networks,” arXiv preprint arXiv:1905.13686, 2019.

[9] P. W. Battaglia, J. B. Hamrick, V. Bapst, et al., “Relational inductive bi-
ases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261,
2018.

[10] R. A. Berk and J. Bleich, “Statistical procedures for forecasting criminal
behavior: A comparative assessment,” Criminology & Pub. Pol’y, vol. 12,
p. 513, 2013.

70

[11] B. Beyret, A. Shafti, and A. A. Faisal, “Dot-to-dot: Explainable hierar-
chical reinforcement learning for robotic manipulation,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2019, pp. 5014–5019.

[12] M. Bojarski, D. Del Testa, D. Dworakowski, et al., “End to end learning
for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.

[13] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad,
“Intelligible models for healthcare: Predicting pneumonia risk and hos-
pital 30-day readmission,” in Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, 2015,
pp. 1721–1730.

[14] Z. Che, S. Purushotham, R. Khemani, and Y. Liu, “Interpretable deep
models for icu outcome prediction,” in AMIA annual symposium proceed-
ings, American Medical Informatics Association, vol. 2016, 2016, p. 371.

[15] J. Chen, S. E. Li, and M. Tomizuka, “Interpretable end-to-end urban au-
tonomous driving with latent deep reinforcement learning,” IEEE Trans-
actions on Intelligent Transportation Systems, 2021.

[16] G. Cideron, M. Seurin, F. Strub, and O. Pietquin, “Self-educated lan-
guage agent with hindsight experience replay for instruction following,”
2019.

[17] F. Cruz, R. Dazeley, and P. Vamplew, “Memory-based explainable rein-
forcement learning,” in Australasian Joint Conference on Artificial In-
telligence, Springer, 2019, pp. 66–77.

[18] F. Cruz, R. Dazeley, P. Vamplew, and I. Moreira, “Explainable robotic
systems: Understanding goal-driven actions in a reinforcement learning
scenario,” Neural Computing and Applications, pp. 1–18, 2021.

[19] G. Dao, I. Mishra, and M. Lee, “Deep reinforcement learning monitor
for snapshot recording,” in 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), IEEE, 2018, pp. 591–598.

[20] S. Doncieux, N. Bredeche, L. L. Goff, et al., “Dream architecture: A de-
velopmental approach to open-ended learning in robotics,” arXiv preprint
arXiv:2005.06223, 2020.

[21] S. Doncieux, D. Filliat, N. Dıéaz-Rodrıéguez, et al., “Open-ended learn-
ing: A conceptual framework based on representational redescription,”
Frontiers in neurorobotics, vol. 12, p. 59, 2018.

[22] U. Ehsan, B. Harrison, L. Chan, and M. O. Riedl, “Rationalization:
A neural machine translation approach to generating natural language
explanations,” in Proceedings of the 2018 AAAI/ACM Conference on
AI, Ethics, and Society, 2018, pp. 81–87.

[23] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

71

[24] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition,” in Com-
petition and cooperation in neural nets, Springer, 1982, pp. 267–285.

[25] M. Garnelo, K. Arulkumaran, and M. Shanahan, “Towards deep sym-
bolic reinforcement learning,” arXiv preprint arXiv:1609.05518, 2016.

[26] M. Gevrey, I. Dimopoulos, and S. Lek, “Review and comparison of meth-
ods to study the contribution of variables in artificial neural network
models,” Ecological modelling, vol. 160, no. 3, pp. 249–264, 2003.

[27] O. Gottesman, J. Futoma, Y. Liu, et al., “Interpretable off-policy evalua-
tion in reinforcement learning by highlighting influential transitions,” in
International Conference on Machine Learning, PMLR, 2020, pp. 3658–
3667.

[28] S. Greydanus, A. Koul, J. Dodge, and A. Fern, “Visualizing and under-
standing atari agents,” in International Conference on Machine Learn-
ing, PMLR, 2018, pp. 1792–1801.

[29] D. Gunning, M. Stefik, J. Choi, T. Miller, S. Stumpf, and G.-Z. Yang,
“Xai—explainable artificial intelligence,” Science Robotics, vol. 4, no. 37,
2019.

[30] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning, PMLR, 2018,
pp. 1861–1870.

[31] T. Haarnoja, A. Zhou, K. Hartikainen, et al., “Soft actor-critic algo-
rithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[32] J. Haspiel, N. Du, J. Meyerson, et al., “Explanations and expectations:
Trust building in automated vehicles,” in Companion of the 2018 ACM/IEEE
international conference on human-robot interaction, 2018, pp. 119–120.

[33] B. Hayes and J. A. Shah, “Improving robot controller transparency
through autonomous policy explanation,” in 2017 12th ACM/IEEE In-
ternational Conference on Human-Robot Interaction (HRI, IEEE, 2017,
pp. 303–312.

[34] D. Hein, S. Udluft, and T. A. Runkler, “Interpretable policies for rein-
forcement learning by genetic programming,” Engineering Applications
of Artificial Intelligence, vol. 76, pp. 158–169, 2018.

[35] A. Henelius, K. Puolamäki, and A. Ukkonen, “Interpreting classifiers
through attribute interactions in datasets,” arXiv preprint arXiv:1707.07576,
2017.

[36] A. Heuillet, F. Couthouis, and N. Dıéaz-Rodrıéguez, “Explainability
in deep reinforcement learning,” Knowledge-Based Systems, vol. 214,
p. 106 685, 2021.

72

[37] A. Holzinger, C. Biemann, C. S. Pattichis, and D. B. Kell, “What do
we need to build explainable ai systems for the medical domain?” arXiv
preprint arXiv:1712.09923, 2017.

[38] C. Howell, “A framework for addressing fairness in consequential ma-
chine learning,” in Proc. FAT Conf., Tuts., 2018, pp. 1–2.

[39] S. H. Huang, K. Bhatia, P. Abbeel, and A. D. Dragan, “Establish-
ing appropriate trust via critical states,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), IEEE,
2018, pp. 3929–3936.

[40] T. Huber, D. Schiller, and E. André, “Enhancing explainability of deep
reinforcement learning through selective layer-wise relevance propaga-
tion,” in Joint German/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), Springer, 2019, pp. 188–202.

[41] R. Iyer, Y. Li, H. Li, M. Lewis, R. Sundar, and K. Sycara, “Transparency
and explanation in deep reinforcement learning neural networks,” in Pro-
ceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society,
2018, pp. 144–150.

[42] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez, “Ex-
plainable reinforcement learning via reward decomposition,” in IJCAI/E-
CAI Workshop on Explainable Artificial Intelligence, 2019.

[43] D. Kalashnikov, A. Irpan, P. Pastor, et al., “Scalable deep reinforcement
learning for vision-based robotic manipulation,” in Conference on Robot
Learning, PMLR, 2018, pp. 651–673.

[44] G. J. Katuwal and R. Chen, “Machine learning model interpretability
for precision medicine,” arXiv preprint arXiv:1610.09045, 2016.

[45] W. Knight, “The us military wants its autonomous machines to explain
themselves,” Retrieved February, vol. 23, p. 2018, 2017.

[46] I. Lage, D. Lifschitz, F. Doshi-Velez, and O. Amir, “Exploring computa-
tional user models for agent policy summarization,” in IJCAI: proceed-
ings of the conference, NIH Public Access, vol. 28, 2019, p. 1401.

[47] M. Landajuela, B. K. Petersen, S. Kim, et al., “Discovering symbolic
policies with deep reinforcement learning,” in International Conference
on Machine Learning, PMLR, 2021, pp. 5979–5989.

[48] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation applied to
handwritten zip code recognition,” Neural computation, vol. 1, no. 4,
pp. 541–551, 1989.

[49] T. Lesort, N. Dıéaz-Rodrıéguez, J.-F. Goudou, and D. Filliat, “State rep-
resentation learning for control: An overview,” Neural Networks, vol. 108,
pp. 379–392, 2018.

73

[50] T. Lesort, M. Seurin, X. Li, N. Dıéaz-Rodrıéguez, and D. Filliat, “Deep
unsupervised state representation learning with robotic priors: A ro-
bustness analysis,” in 2019 International Joint Conference on Neural
Networks (IJCNN), IEEE, 2019, pp. 1–8.

[51] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continuous control with
deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[52] D. T. Limited, Modeling, https : / / mujoco . readthedocs . io / en /

latest/modeling.html, Accessed: 2022-01-29, 2022.

[53] Z. Lin, K.-H. Lam, and A. Fern, “Contrastive explanations for reinforce-
ment learning via embedded self predictions,” arXiv preprint arXiv:2010.05180,
2020.

[54] G. Liu, O. Schulte, W. Zhu, and Q. Li, “Toward interpretable deep re-
inforcement learning with linear model u-trees,” in Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2018, pp. 414–429.

[55] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, “Explainable rein-
forcement learning through a causal lens,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, 2020, pp. 2493–2500.

[56] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proceedings of the 15th ACM
workshop on hot topics in networks, 2016, pp. 50–56.

[57] T. M. Mitchell, The need for biases in learning generalizations. De-
partment of Computer Science, Laboratory for Computer Science Re-
search . . ., 1980.

[58] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing atari with deep
reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.

[59] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through
deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533,
2015.

[60] OpenAI, Getting started with gym, https://gym.openai.com/docs/,
Accessed: 2022-01-29, 2021.

[61] ——, Half cheetah, https :/ / www .gymlibrary . ml /environments /
mujoco/half_cheetah/, Accessed: 2022-08-16, 2022.

[62] ——,Walker2d, https://www.gymlibrary.ml/environments/mujoco/
walker2d/, Accessed: 2022-08-16, 2022.

[63] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann,
“Explainability methods for graph convolutional neural networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2019, pp. 10 772–10 781.

74

https://mujoco.readthedocs.io/en/latest/modeling.html
https://mujoco.readthedocs.io/en/latest/modeling.html
https://gym.openai.com/docs/
https://www.gymlibrary.ml/environments/mujoco/half_cheetah/
https://www.gymlibrary.ml/environments/mujoco/half_cheetah/
https://www.gymlibrary.ml/environments/mujoco/walker2d/
https://www.gymlibrary.ml/environments/mujoco/walker2d/

[64] E. Puiutta and E. M. Veith, “Explainable reinforcement learning: A sur-
vey,” in International Cross-Domain Conference for Machine Learning
and Knowledge Extraction, Springer, 2020, pp. 77–95.

[65] A. Raffin, A. Hill, R. Traoré, T. Lesort, N. Dıéaz-Rodrıéguez, and D.
Filliat, “S-rl toolbox: Environments, datasets and evaluation metrics for
state representation learning,” arXiv preprint arXiv:1809.09369, 2018.

[66] ——, “Decoupling feature extraction from policy learning: Assessing
benefits of state representation learning in goal based robotics,” arXiv
preprint arXiv:1901.08651, 2019.

[67] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, et al., “Graph net-
works as learnable physics engines for inference and control,” in Inter-
national Conference on Machine Learning, PMLR, 2018, pp. 4470–4479.

[68] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust re-
gion policy optimization,” in International conference on machine learn-
ing, PMLR, 2015, pp. 1889–1897.

[69] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[70] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D.
Batra, “Grad-cam: Visual explanations from deep networks via gradient-
based localization,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 618–626.

[71] P. Sequeira and M. Gervasio, “Interestingness elements for explainable
reinforcement learning: Understanding agents’ capabilities and limita-
tions,” Artificial Intelligence, vol. 288, p. 103 367, 2020.

[72] P. Sequeira, E. Yeh, and M. T. Gervasio, “Interestingness elements for
explainable reinforcement learning through introspection.,” in IUI work-
shops, vol. 1, 2019.

[73] A. Silva, T. Killian, I. D. J. Rodriguez, S.-H. Son, and M. Gombolay,
“Optimization methods for interpretable differentiable decision trees in
reinforcement learning,” arXiv preprint arXiv:1903.09338, 2019.

[74] D. Silver, T. Hubert, J. Schrittwieser, et al., “Mastering chess and shogi
by self-play with a general reinforcement learning algorithm,” arXiv
preprint arXiv:1712.01815, 2017.

[75] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the game of
go without human knowledge,” nature, vol. 550, no. 7676, pp. 354–359,
2017.

[76] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
arXiv preprint arXiv:1312.6034, 2013.

75

[77] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for simplicity: The all convolutional net,” arXiv preprint arXiv:1412.6806,
2014.

[78] S. Tan, R. Caruana, G. Hooker, and Y. Lou, “Detecting bias in black-box
models using transparent model distillation,” arXiv preprint arXiv:1710.06169,
2017.

[79] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IEEE, 2012, pp. 5026–5033.

[80] N. Topin, S. Milani, F. Fang, and M. Veloso, “Iterative bounding mdps:
Learning interpretable policies via non-interpretable methods,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021,
pp. 9923–9931.

[81] R. Traoré, H. Caselles-Dupré, T. Lesort, et al., “Discorl: Continual rein-
forcement learning via policy distillation,” arXiv preprint arXiv:1907.05855,
2019.

[82] S. Volodin, “Causeoccam: Learning interpretable abstract representa-
tions in reinforcement learning environments via model sparsity,” Tech.
Rep., 2021.

[83] J. Wang, Y. Zhang, T.-K. Kim, and Y. Gu, “Shapley q-value: A local
reward approach to solve global reward games,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 7285–7292.

[84] T. Wang, R. Liao, J. Ba, and S. Fidler, “Nervenet: Learning struc-
tured policy with graph neural networks,” in International Conference
on Learning Representations, 2018.

[85] X. Wang, S. Yuan, H. Zhang, M. Lewis, and K. Sycara, “Verbal expla-
nations for deep reinforcement learning neural networks with attention
on extracted features,” in 2019 28th IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN), IEEE, 2019,
pp. 1–7.

[86] L. Weitkamp, E. van der Pol, and Z. Akata, “Visual rationalizations in
deep reinforcement learning for atari games,” in Benelux Conference on
Artificial Intelligence, Springer, 2018, pp. 151–165.

[87] H. Yau, C. Russell, and S. Hadfield, “What did you think would happen?
explaining agent behaviour through intended outcomes,” Advances in
Neural Information Processing Systems, vol. 33, pp. 18 375–18 386, 2020.

[88] T. Zahavy, N. Ben-Zrihem, and S. Mannor, “Graying the black box:
Understanding dqns,” in International Conference on Machine Learning,
PMLR, 2016, pp. 1899–1908.

[89] V. Zambaldi, D. Raposo, A. Santoro, et al., “Relational deep reinforce-
ment learning,” arXiv preprint arXiv:1806.01830, 2018.

76

[90] J. Zhang, S. A. Bargal, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff, “Top-
down neural attention by excitation backprop,” International Journal of
Computer Vision, vol. 126, no. 10, pp. 1084–1102, 2018.

[91] L. Zhang, X. Li, M. Wang, and A. Tian, “Off-policy differentiable logic
reinforcement learning,” in Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, Springer, 2021, pp. 617–632.

[92] Q. Zhang, Y. N. Wu, and S.-C. Zhu, “Interpretable convolutional neural
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 8827–8836.

[93] G. Zheng, F. Zhang, Z. Zheng, et al., “Drn: A deep reinforcement learn-
ing framework for news recommendation,” in Proceedings of the 2018
World Wide Web Conference, 2018, pp. 167–176.

[94] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2921–
2929.

[95] Z. Zhou, X. Li, and R. N. Zare, “Optimizing chemical reactions with deep
reinforcement learning,” ACS central science, vol. 3, no. 12, pp. 1337–
1344, 2017.

77

Appendix A

FetchReach-v1 Results

A.1 Train and Explanation Phase

Figure A.1: The LRP heat map for action-entity relevance score. The y-
axis and x-axis show elements of the action and entities of the observation,
respectively. Since joints have different characteristics and possible amounts of
torque, the actions have different ranges. Therefore, we normalize the relevance
scores for each action across all the observation entities by dividing by the
maximum score given by that action.

78

Figure A.1 shows the heat map generated by the LRP for FetchReach-v1 .

The position of the goal receives a high score across all (except wrist roll)

actions. This is because all the torques should be adjusted in a way to po-

sition the end-effector at the goal . Ignoring the goal column, similar to

Walker2D-v2 ’s heat map, we can see a diagonal pattern. The highest scores

for shoulder pan , elbow flex , forearm roll , wrist flex , and wrist roll actions

belong to their corresponding joint entities in the observation space as ex-

pected. Although for shoulder lift and upperarm roll actions the scores on the

diagonal are unexpectedly not the highest, still the scores given to their cor-

responding joint entities in the observation space are relatively high. This

unexpected result might be explained using the graph structure and the vicin-

ity of joints: for shoulder lift and upperarm roll actions, the relevance scores

are distributed across multiple entities in the observation space.

According to the entity importance plot (top-left bar plot in Figure A.2),

the most important entity to the policy is goal . Other than goal , shoul-

der pan , forearm roll , wrist roll , and upperarm roll have relatively high im-

portance respectively. Other entities have pretty small importance scores.

Moreover, the action importance plot (bottom-left bar plot in Figure A.2) in-

dicates that the critical joints for positioning the robot’s end-effector to the

goal are elbow flex , wrist flex , and forearm roll joints, respectively.

79

A.2 Explanation Evaluation Phase

Figure A.2: Evaluating explanation for the FetchReach-v1 . Upper-left: en-
tity importance in the observation, upper-middle: final behavior performance
after occluding each entity, upper-right: significancy test for the final behavior
after occlusion, lower-left: joint importance in the action, lower-middle: final
behavior performance after blocking each joint, lower-right: significancy test
for the final behaviors after blocking.

First, we focus on analyzing the observation entity importance in the upper-

row plots of Figure A.2. The upper-left bar plot indicates that the most

important entity is the goal . As expected, when occluding the goal , the

performance drops significantly, as indicated in the upper-middle plot. After

goal , shoulder pan and forearm roll entities have the highest scores. Their

corresponding performance bars show a proportional amount of drop in perfor-

mance after occlusion. We expect the wrist roll joint to receive a relatively low

importance score based on its performance bar. Although the wrist roll joint

seemed to be critical according to its importance score, if we look at the heat

map of the FetchReach-v1 in Figure A.1, the action applied to this joint gave

a relatively low score to the goal . Thus, we can conclude that this joint

does not contribute to reaching the goal. That is why after occluding it, the

80

performance did not change. The high score of wrist roll entity is only be-

cause of the score given by the wrist roll action. The importance score of the

upperarm roll entity can also be verified by its performance bar. However,

since the upperarm roll and elbow flex performance bars are approximately

equal, we expect a high score for the elbow flex , unlike its current importance

score. It remains shoulder lift and wrist flex entities that, as clear from their

performance bars, the amount of drop in their performance can imply their

importance score.

The joint importance in the action space evaluation is reflected in the lower-

row plots of Figure A.2. As indicated on the lower-left bar plot, the most crit-

ical joints to the actions are elbow flex , wrist flex , and forearm roll joints,

respectively, and are highly strategic for reaching the goal. The noticeable

drop in the performance after blocking these three joints, shown in their per-

formance bar in the lower-middle plot, implies their importance. As discussed,

the wrist roll joint does not contribute to reaching the goal. Therefore neither

its occlusion nor its blockage affects the performance. For upperarm roll and

shoulder lift joints, the drop in their performance bar compared to the stan-

dard setting can be correctly explained by their importance score. Neverthe-

less, the LRP fails to explain the performance improvement after the shoul-

der lift joint’s blockage. For shoulder pan joint, we expect that LRP gives an

importance score approximately equal to the forearm roll joint because their

performance is nearly the same.

81

Appendix B

Mujoco physics engine

This section contains the XML models representing the kinematic tree of the

robots in the Ant-v2 and FetchReach-v1 environments.

B.1 HalfCheetah-v2

<mujoco model="cheetah">

<compiler angle="radian" coordinate="local" inertiafromgeom="

true" settotalmass="14"/>

<default>

<joint armature=".1" damping=".01" limited="true"

solimplimit="0 .8 .03" solreflimit=".02 1" stiffness="8"/

>

<geom conaffinity="0" condim="3" contype="1" friction=".4 .1

.1" rgba="0.8 0.6 .4 1" solimp="0.0 0.8 0.01" solref="

0.02 1"/>

<motor ctrllimited="true" ctrlrange="-1 1"/>

</default>

<size nstack="300000" nuser_geom="1"/>

<option gravity="0 0 -9.81" timestep="0.01"/>

<asset>

<texture builtin="gradient" height="100" rgb1="1 1 1" rgb2="

0 0 0" type="skybox" width="100"/>

<texture builtin="flat" height="1278" mark="cross" markrgb="

1 1 1" name="texgeom" random="0.01" rgb1="0.8 0.6 0.4"

rgb2="0.8 0.6 0.4" type="cube" width="127"/>

<texture builtin="checker" height="100" name="texplane" rgb1

="0 0 0" rgb2="0.8 0.8 0.8" type="2d" width="100"/>

<material name="MatPlane" reflectance="0.5" shininess="1"

specular="1" texrepeat="60 60" texture="texplane"/>

<material name="geom" texture="texgeom" texuniform="true"/>

82

</asset>

<worldbody>

<light cutoff="100" diffuse="1 1 1" dir="-0 0 -1.3"

directional="true" exponent="1" pos="0 0 1.3" specular="

.1 .1 .1"/>

<geom conaffinity="1" condim="3" material="MatPlane" name="

floor" pos="0 0 0" rgba="0.8 0.9 0.8 1" size="40 40 40"

type="plane"/>

<body name="torso" pos="0 0 .7">

<camera name="track" mode="trackcom" pos="0 -3 0.3" xyaxes

="1 0 0 0 0 1"/>

<joint armature="0" axis="1 0 0" damping="0" limited="

false" name="rootx" pos="0 0 0" stiffness="0" type="

slide"/>

<joint armature="0" axis="0 0 1" damping="0" limited="

false" name="rootz" pos="0 0 0" stiffness="0" type="

slide"/>

<joint armature="0" axis="0 1 0" damping="0" limited="

false" name="rooty" pos="0 0 0" stiffness="0" type="

hinge"/>

<geom fromto="-.5 0 0 .5 0 0" name="torso" size="0.046"

type="capsule"/>

<geom axisangle="0 1 0 .87" name="head" pos=".6 0 .1" size

="0.046 .15" type="capsule"/>

<!-- <site name=’tip’ pos=’.15 0 .11’/>-->

<body name="bthigh" pos="-.5 0 0">

<joint axis="0 1 0" damping="6" name="bthigh" pos="0 0 0"

range="-.52 1.05" stiffness="240" type="hinge"/>

<geom axisangle="0 1 0 -3.8" name="bthigh" pos=".1 0 -.13

" size="0.046 .145" type="capsule"/>

<body name="bshin" pos=".16 0 -.25">

<joint axis="0 1 0" damping="4.5" name="bshin" pos="0 0

0" range="-.785 .785" stiffness="180" type="hinge"/

>

<geom axisangle="0 1 0 -2.03" name="bshin" pos="-.14 0

-.07" rgba="0.9 0.6 0.6 1" size="0.046 .15" type="

capsule"/>

<body name="bfoot" pos="-.28 0 -.14">

<joint axis="0 1 0" damping="3" name="bfoot" pos="0 0

0" range="-.4 .785" stiffness="120" type="hinge"/

>

<geom axisangle="0 1 0 -.27" name="bfoot" pos=".03 0

-.097" rgba="0.9 0.6 0.6 1" size="0.046 .094" type

="capsule"/>

</body>

83

</body>

</body>

<body name="fthigh" pos=".5 0 0">

<joint axis="0 1 0" damping="4.5" name="fthigh" pos="0 0

0" range="-1 .7" stiffness="180" type="hinge"/>

<geom axisangle="0 1 0 .52" name="fthigh" pos="-.07 0

-.12" size="0.046 .133" type="capsule"/>

<body name="fshin" pos="-.14 0 -.24">

<joint axis="0 1 0" damping="3" name="fshin" pos="0 0 0

" range="-1.2 .87" stiffness="120" type="hinge"/>

<geom axisangle="0 1 0 -.6" name="fshin" pos=".065 0

-.09" rgba="0.9 0.6 0.6 1" size="0.046 .106" type="

capsule"/>

<body name="ffoot" pos=".13 0 -.18">

<joint axis="0 1 0" damping="1.5" name="ffoot" pos="0

0 0" range="-.5 .5" stiffness="60" type="hinge"/>

<geom axisangle="0 1 0 -.6" name="ffoot" pos=".045 0

-.07" rgba="0.9 0.6 0.6 1" size="0.046 .07" type="

capsule"/>

</body>

</body>

</body>

</body>

</worldbody>

<actuator>

<motor gear="120" joint="bthigh" name="bthigh"/>

<motor gear="90" joint="bshin" name="bshin"/>

<motor gear="60" joint="bfoot" name="bfoot"/>

<motor gear="120" joint="fthigh" name="fthigh"/>

<motor gear="60" joint="fshin" name="fshin"/>

<motor gear="30" joint="ffoot" name="ffoot"/>

</actuator>

</mujoco>

B.2 Walker2D-v2

<mujoco model="walker2d">

<compiler angle="degree" coordinate="global" inertiafromgeom="

true"/>

<default>

<joint armature="0.01" damping=".1" limited="true"/>

<geom conaffinity="0" condim="3" contype="1" density="1000"

friction=".7 .1 .1" rgba="0.8 0.6 .4 1"/>

84

</default>

<option integrator="RK4" timestep="0.002"/>

<worldbody>

<light cutoff="100" diffuse="1 1 1" dir="-0 0 -1.3"

directional="true" exponent="1" pos="0 0 1.3" specular="

.1 .1 .1"/>

<geom conaffinity="1" condim="3" name="floor" pos="0 0 0"

rgba="0.8 0.9 0.8 1" size="40 40 40" type="plane"

material="MatPlane"/>

<body name="torso" pos="0 0 1.25">

<camera name="track" mode="trackcom" pos="0 -3 1" xyaxes="

1 0 0 0 0 1"/>

<joint armature="0" axis="1 0 0" damping="0" limited="

false" name="rootx" pos="0 0 0" stiffness="0" type="

slide"/>

<joint armature="0" axis="0 0 1" damping="0" limited="

false" name="rootz" pos="0 0 0" ref="1.25" stiffness="0

" type="slide"/>

<joint armature="0" axis="0 1 0" damping="0" limited="

false" name="rooty" pos="0 0 1.25" stiffness="0" type="

hinge"/>

<geom friction="0.9" fromto="0 0 1.45 0 0 1.05" name="

torso_geom" size="0.05" type="capsule"/>

<body name="thigh" pos="0 0 1.05">

<joint axis="0 -1 0" name="thigh_joint" pos="0 0 1.05"

range="-150 0" type="hinge"/>

<geom friction="0.9" fromto="0 0 1.05 0 0 0.6" name="

thigh_geom" size="0.05" type="capsule"/>

<body name="leg" pos="0 0 0.35">

<joint axis="0 -1 0" name="leg_joint" pos="0 0 0.6"

range="-150 0" type="hinge"/>

<geom friction="0.9" fromto="0 0 0.6 0 0 0.1" name="

leg_geom" size="0.04" type="capsule"/>

<body name="foot" pos="0.2 0 0">

<joint axis="0 -1 0" name="foot_joint" pos="0 0 0.1"

range="-45 45" type="hinge"/>

<geom friction="0.9" fromto="-0.0 0 0.1 0.2 0 0.1"

name="foot_geom" size="0.06" type="capsule"/>

</body>

</body>

</body>

<!-- copied and then replace thigh->thigh_left, leg->

leg_left, foot->foot_right -->

<body name="thigh_left" pos="0 0 1.05">

<joint axis="0 -1 0" name="thigh_left_joint" pos="0 0

85

1.05" range="-150 0" type="hinge"/>

<geom friction="0.9" fromto="0 0 1.05 0 0 0.6" name="

thigh_left_geom" rgba=".7 .3 .6 1" size="0.05" type="

capsule"/>

<body name="leg_left" pos="0 0 0.35">

<joint axis="0 -1 0" name="leg_left_joint" pos="0 0 0.6

" range="-150 0" type="hinge"/>

<geom friction="0.9" fromto="0 0 0.6 0 0 0.1" name="

leg_left_geom" rgba=".7 .3 .6 1" size="0.04" type="

capsule"/>

<body name="foot_left" pos="0.2 0 0">

<joint axis="0 -1 0" name="foot_left_joint" pos="0 0

0.1" range="-45 45" type="hinge"/>

<geom friction="1.9" fromto="-0.0 0 0.1 0.2 0 0.1"

name="foot_left_geom" rgba=".7 .3 .6 1" size="0.06

" type="capsule"/>

</body>

</body>

</body>

</body>

</worldbody>

<actuator>

<!-- <motor joint="torso_joint" ctrlrange="-100.0 100.0"

isctrllimited="true"/>-->

<motor ctrllimited="true" ctrlrange="-1.0 1.0" gear="100"

joint="thigh_joint"/>

<motor ctrllimited="true" ctrlrange="-1.0 1.0" gear="100"

joint="leg_joint"/>

<motor ctrllimited="true" ctrlrange="-1.0 1.0" gear="100"

joint="foot_joint"/>

<motor ctrllimited="true" ctrlrange="-1.0 1.0" gear="100"

joint="thigh_left_joint"/>

<motor ctrllimited="true" ctrlrange="-1.0 1.0" gear="100"

joint="leg_left_joint"/>

<motor ctrllimited="true" ctrlrange="-1.0 1.0" gear="100"

joint="foot_left_joint"/>

<!-- <motor joint="finger2_rot" ctrlrange="-20.0 20.0"

isctrllimited="true"/>-->

</actuator>

<asset>

<texture type="skybox" builtin="gradient" rgb1=".4 .5 .6"

rgb2="0 0 0"

width="100" height="100"/>

<texture builtin="flat" height="1278" mark="cross"

markrgb="1 1 1" name="texgeom" random="0.01" rgb1="

86

0.8 0.6 0.4" rgb2="0.8 0.6 0.4" type="cube" width="

127"/>

<texture builtin="checker" height="100" name="texplane"

rgb1="0 0 0" rgb2="0.8 0.8 0.8" type="2d" width="100"

/>

<material name="MatPlane" reflectance="0.5" shininess="1"

specular="1" texrepeat="60 60" texture="texplane"/>

<material name="geom" texture="texgeom" texuniform="true"

/>

</asset>

</mujoco>

87

	Introduction
	Problem and Motivation
	Deep Reinforcement Learning
	Explainability in Deep Reinforcement Learning
	Layer-wise Relevance Propagation

	Graph Neural Networks in DRL
	Graph Representation for Robots

	Related Work
	Explanation by Analyzing Components of the Environment
	Explanation by Analyzing Experience and History of Interactions
	Explanation via Behavior Prediction
	Explanation by Developing an Augmented Model
	Explanation by Training a Transparent Policy
	Explanation through Representation Analysis

	Background
	Graphs and Graph Neural Networks
	Graphs
	Relational Inductive Biases
	Graph Neural Networks and Relational inductive bias
	Computation in Graph Neural Networks
	Motivation to our Problem

	Graphs in Robotics
	Mujoco Physics Engine
	OpenAI gym structure
	Change observation to Graph

	Environments
	HalfCheetah-v2
	Walker2D-v2

	Layer-wise Relevance Propagation
	Conservation property of LRP
	LRP in Neural Networks
	Motivation to our problem

	Deep Reinforcement Learning
	Reinforcement learning setting
	Maximum entropy reinforcement learning
	Soft Policy Iteration
	Soft actor-critic

	Proposed Method
	Explainability for DRL in Robotics
	Deep reinforcement learning with graph neural networks
	Graph neural network architecture
	Explainability through Layer-wise Relevance Propagation
	Implementation and Summary of the XRL process

	Experimental Analysis
	Experimental Setup
	Results and Discussion
	Train and Explanation Phase
	Explanation Evaluation Phase

	Conclusion and Future work
	Conclusion
	Future directions

	References
	Appendix FetchReach-v1 Results
	Train and Explanation Phase
	Explanation Evaluation Phase

	Appendix Mujoco physics engine
	HalfCheetah-v2
	Walker2D-v2

