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Abstract 

Metabolomics aims at studying all the small molecules in biological samples. Compared to 

transcriptome and proteome, metabolome is highly sensitive to diverse individuals and 

environmental factors. Thus, metabolomics study has been used to understand individual 

variations caused by genes, exosomes, diseases, and other metabolic activity and became a very 

useful tool in biomarker discovery. In order to detect and quantify certain biomarkers from the 

whole metabolome, high coverage profiling and accurate quantification are essential. 

Conventional approaches combined several complementary methods to improve low coverage. 

Our chemical isotope labeling (CIL) LC-MS stands out because of a simplified platform and an 

overall promoted analytical performance of metabolites. 

My research focuses on utilizing CIL LS-MS methods to profile an amine/phenol 

submetabolome to study the impact of diseases on biofluids such as cell extracts and serum 

samples. In the first part of my thesis, we used CIL LC-MS to evaluate and compare two cell 

harvest methods (physical scraping and trypsinization) and two cell lysis methods (glass-bead-

assisted lysis and freeze-thaw-cycle lysis). In the seconded part, we applied the optimized cell 

harvest protocol to the cell extract, followed by routine LC-MS analysis. By combining the cell 

results and serum results, we found several metabolites that could be potential biomarkers for 

Hyper IgE syndrome. In another biomarker discovery study of metformin treatment of diabetes 

(Chapter 4), CIL LC-MS was applied to reveal the metabolome differences among control, 

obese, diabetes, and metformin treated groups.  
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Chapter 1 

Introduction 

1.1 Metabolomics 

Metabolomics is an emerging science, which studies the chemical processes involving 

metabolites by analyzing their characterization as well as their metabolism in biological systems. 

(http://metabolomicssociety.org). Unlike genomics and proteomics, which focus on 

characterizing the profiles of genes and proteins, respectively, metabolomics mainly emphasize 

profiling small-molecule metabolites (metabolic profiling).1 Compared to genes, transcripts, and 

proteins, metabolites are considered as a “spoken language”; it then combines information from 

both genetics and environmental influences while directly related to the phenotype.2 Metabolites 

as the downstream products of pathways. The difference between metabolites and proteins or 

genes is that metabolites are more species independent, that is they are less varied among 

different organisms. Thus, one established metabolomics methods for a certain organism can be 

applied to another organism.3 In addition, alternations at the genes and transcripts levels may not 

affect the protein translation step. Plus, changes that happen in proteins are not translated always 

into cell biochemistry and phenotype level. Therefore, protein concentrations are not related 

necessarily to activities.4 Compared to the alternations in transcriptome and proteome, 

metabolome changes are amplified, resulting in increased sensitivity.5 Subsequently, a highly 

dynamic metabolome has the ability to reflect continuous fluctuations of both metabolic and 

http://metabolomicssociety.org)/
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signaling pathways. Besides, a metabolome is highly sensitive to diverse individuals and 

environmental factors. All of these advantages enable metabolomics studies to detect subtle 

changes, evaluate a variety of complex pathways simultaneously, and allow invisible changes to 

be measurable (for example, morphological changes).6 

1.2 Metabolomics Profiling and Biomarker Discovery 

Metabolites profiling tries to analyze the whole metabolome, relating to their chemical nature or 

metabolic pathways simultaneously. The huge profile of the large number of metabolites enables 

the possibility of exploring unknown biochemical pathways and biological features.7 By 

profiling the huge number of compounds, metabolites that are dysregulated in a specific 

biological status can be detected and measured.7 This advantage makes untargeted metabolomics 

one of the most powerful methods for the study of biomarker discovery.7 Biomarkers are broadly 

considered as “a characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes or pharmacological responses to a therapeutic 

intervention”.8 The basis of biomarker discovery is that due to the disturbed biochemical 

pathways caused by disease, the concentration of certain metabolites are affected accordingly.9,10 

One of the most well-known biomarkers is glucose, which is a biomarker for type two diabetes 

patients. According to Diabetes Canada, a higher than 7.0 mmol/L of fasting glucose level would 

be considered an indication of diabetes. Furthermore, biomarkers often are related directly to the 

onset of the disease, and studying the biological processes behind them may deepen our 

understanding of the disease mechanisms. Importantly, diagnostic biomarkers sometimes can 

demonstrate detectable changes before the disease symptoms become noticeable, enabling early 
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diagnosis of the disease. With preventive interventions, the onset and progression of the disease 

may be delayed dramatically.11,12 

1.3 Major Metabolomics Platforms for Metabolomics  

Most common platforms used for metabolomics analysis, including Nuclear Magnetic 

Resonance (NMR) spectroscopy and Mass Spectrometry (MS), are chosen due to their relatively 

high metabolome coverage and abundant database resources. NMR has been one of the very first 

platforms for metabolomics studies13 because it can provide detailed structural information14,15 

and requires relatively simple sample preparation.16,17 The NMR technique has been highly 

robust and reproducible because of low instrument drift.18 However, the drawbacks of NMR 

analysis are low sensitivity, typically only detecting metabolites as low as the micromolar range, 

requiring a larger sample volume, plus the complexity of interpreting spectral information for 

complex mixtures.16,19 MS has much more sensitivity than NMR and can provide information 

about the exact mass as well as fragmentation patterns for metabolites.20  

Ion source and mass analyzer are two main parts of a mass spectrometer. Different ionization 

techniques are applied for different purposes. For instance, electrospray ionization (ESI) is used 

often for acquiring molecular information on metabolites, peptides, and proteins with minimal 

fragmentation.21 The major ionization procedures in ESI are: (1) eluent from LC flows through a 

capillary with a high voltage applied and then breaks into highly charged droplets; (2) with 

heated dry gas blowing, the solvent in the droplets is evaporated, further shrinking the droplet; 

(3) the droplet disintegrations are repeated, and small “offspring” droplets are formed; (4) the 

electrostatic force of the droplets becomes high, and the solute ions “escape” from the surface of 

the droplets to the gas phase. 
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Various mass analyzers also can be used for the detection of metabolites, and they mainly 

differed in mass range, sensitivity and resolution. Quadrupole Time of Flight (QTOF) stands out 

due to its high resolution, over 20,000. 

Separation techniques are incorporated usually in a MS-based metabolomics study to reduce 

the complexity of the sample and improve the detection ability. Gas chromatography (GC), 

liquid chromatography (LC), and capillary electrophoresis (CE) are techniques commonly 

incorporated with MS. Among all the platforms, the usage of liquid chromatography mass 

spectrometry (LC-MS) to perform metabolomics studies expanded rapidly due to several unique 

advantages, including high sensitivity, good compatibility with the majority of samples types, 

and accurate quantification ability. With LC-MS, different column chemistries can be used for 

different separation requirements. For instance, reversed phase liquid chromatography (RPLC) 

mainly serves for the separation of non-polar compounds, and hydrophilic interactions liquid 

chromatography (HILIC) mostly serves for the analysis of polar compounds. To obtain better 

coverage, both RPLC and HILIC separation are acquired to avoid losing metabolites 

information. Chemical isotope labeling (CIL) LC-MS is one of the metabolomics platforms that 

uses designed chemical labeling reagents to react with metabolites, forming metabolite 

derivatives.22 By altering the properties of metabolites, higher coverage, less ion suppression, 

and ability for quantities analysis can be achieved. 

1.4 Chemical Isotope Labeling in LC-MS based Metabolomics 

The ultimate goal of metabolomics is to provide qualitative and quantitative information for as 

many metabolites as possible. To achieve this goal, we need methods with high metabolite 

coverage, sensitive detection, accurate quantification, and a confident ability of unknown 
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metabolite identification. However, several obstacles must be solved in order to obtain the 

ultimate goal. First, metabolites in the biological samples have a large diversity in both physical 

and chemical properties. There is no single technique or analytical platform that can be used for 

all these metabolites.23 The complementary use of many platforms for a comprehensive profiling 

of a metabolome is required (such as combining RPLC and HILIC for the separation step). 

Besides, ion suppression is always an issue in the detection of complex mixtures using MS.7 As 

mentioned above, the ionization efficiency is the major factor determining the intensity, thus 

affecting the concentration. In ESI, during the ionization step (4), ions on the surface of the 

shrinking droplet get easier to ionize than those in the center of the droplet. This heterogeneous 

ionization efficiency leads to ion suppression. However, with the help of a proper separation 

method, ion suppression can be reduced. To resolve these two obstacles, a conventional LC-MS 

approach would combine RPLC LC-MS and HILIC LC-MS together; but double instrument time 

will be needed as well as sample preparation. 

In our lab, a strategy called “divide and conquer” is applied to divide the metabolome 

into four major sub-metabolomes, based on functional groups. Chemical Isotope Labeling (CIL) 

is used to target a particular functional group (sub-metabolome) of interest. For a sub-

metabolome containing an amine/phenol functional group, dansyl chloride (5-(dimehylamino)-

napthalene-1-sulfonyl chloride, DnsCl) is chosen as the labeling reagent. With the derivatization, 

the complexity of the metabolome is decreased dramatically. The aromatic naphthyl part 

increases the hydrophobicity of the labeled metabolites, thus only RPLC is needed for the 

separation step. Additionally, its tertiary amine enhances chargeability, further enhancing 

ionization efficiency. DnsCl results in a 10–1000 fold of improvement in sensitivity and better 

retention for hydrophilic compounds on the RPLC column. 
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In addition, the two methyl groups on the tertiary amine of DnsCl can introduce a 13C 

isotope into the labeled metabolite, serving as an internal standard for quantification. In the CIL 

system, experiment samples will be labeled by 12C-DnsCl, whereas an internal reference sample 

will be labeled by 13C-DnsCl. After mixing and LC-MS analysis, peak pairs containing a lighter 

peak and a heavier peak will be observed in the chromatogram. The ratio between the two peaks 

can be used for relative or absolute quantification of metabolites. The protocols of using DnsCl 

for metabolites profiling and biomarker discovery in various samples have been reported, 

including cell extracts, urine, serum, sweat, and cerebrospinal fluid. 

1.5 Workflow for Metabolomics 

1.5.1 Sample Preparation 

In our lab, a typical LC-MS metabolomics study requires sample preparation, chemical isotope 

labeling, normalization by LC-UV, LC-MS analysis, and data processing. Sample preparation is 

heavily dependent on sample types. Common sample types are cell extract, blood, urine, 

cerebrospinal fluid, saliva, etc. For cellular metabolomics, additional sample handling steps, 

including cell harvest and metabolism quenching, are required usually. Other biofluids such as 

blood which is protein enriched, needed to go through protein precipitation using solvents such 

as acetonitrile, methanol, or acetone. Besides protein precipitation, ACN and methanol also can 

be used for metabolites extraction.  
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1.5.2 Chemical Isotope Labeling 

As described above, each individual sample is labeled by the 12C-DnsCl, and the pooled sample, 

which is the mixture of all the sample aliquots, is labeled by the 13C-DnsCl. Then, the mixed 

sample is analyzed by LC-MS. For each metabolite, a peak pair is detected instead of a single 

mass peak. The light peak of the pair represents the 12C-labeled metabolite from the individual 

sample, and the heavy peak of the pair is the 13C-labeled metabolite from the pooled sample. 

The distance between the two peaks equals to 2.00671 Da. The relative concentration is 

measured by calculating the intensity ratio of the two peaks in a pair. Consequently, every 

metabolite has a corresponding internal reference to accurately measure its relative 

concentration. Although the quantification is relative, the information is adequate enough for 

metabolomics analysis to find the metabolites with significant changes. Absolute quantification 

of confirmed biomarker candidates can be conducted afterward. The dansyl-labeling platform 

detects metabolites in forms of peak pairs instead of single mass peaks, making it easier to 

differentiate metabolites from the background noise peaks.  

1.5.3 Sample Normalization 

Sample normalization is an essential step for quantitative analysis. Especially in biomarker 

discovery study, concentration differences between samples should be excluded, and only the 

variation caused by biological differences should be kept. For instance, urine can have large 

concentration differences because of factors such water intake, dehydration, diet, exercise 

activity, and sweating. Thus, injecting the same amount of sample may not give an accurate 

quantitative analysis. Generally, there are two types of sample normalization methods: pre-

acquisition normalization and post-acquisition normalization. In pre-acquisition normalization, 
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the total concentration of metabolites of each sample is determined, and by adjusting the 

injection volume, equal amount of samples will be analyzed by analytical platforms.24–26 In post-

acquisition normalization, samples are loaded on analytical platforms without controlling the 

sample amount and statistical adjustments are done later .27 In most situations, the total signal 

intensity is proportional to the total concentration of the metabolite. Thus, the concentration of 

each individual metabolite is normalized, based on the total intensity of the signal. Creatinine is a 

well-known pre-acquisition normalization reference for adjusting urine concentration.28 

1.5.3 Data Analysis 

Two common statistical strategies for biomarker discovery are: uni-variate analysis and multi-

variate analysis. The uni-variate analysis studies focus on individual metabolites, while the 

emphasis of the multi-variate analysis focus more on the entire sample. The two approaches 

complement each other and usually are used together in biomarker discovery studies. 

In a biomarker discovery study, we usually have a control group and a disease group. In 

order to state that the two groups are different, we need a test to show that the difference between 

disease and control is statistically significant. The t-test is used widely to determine whether the 

two populations are statistically equal by calculating the p-value. In the metabolomics field, if a 

p-value is less than 0.05, it indicates that the two groups are statistically different. However, with 

a large coverage of metabolomics profiling, the false positive (e.g., two groups are not 

statistically different but with a small p-value) issue will be more severe. In this case, a false 

discovery rate (FDR) adjusted p-value is applied to reduce false positive errors. With the gauge 

of q-value, the chance of having false positive is reduced. Volcano plots are used often to 

visualize both the fold change and the p-value. In the volcano plot, -log (FDR-adjusted-p-value) 
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is plotted against log 2 (fold change), making a volcano-shaped scatter plot. Each point in the 

volcano plot represents a metabolite, and those whose fold changes and p-value pass the 

criterion, are referred as “significant metabolites”.  

The limitation of uni-variate analyses is that simply counting the number of significant 

metabolites cannot tell us how different two groups are. Multi-variate analyses, which treat the 

data matrix as a whole, can show us the inter-group differences in a broader perspective. 

Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-

DA) are the most widely used multi-variate tools in metabolomics. PCA is an unbiased, high-

confidence dimensionality reduction method. It finds the principal components (PC) by the linear 

combination of a set of variables and projects the high-dimensional data onto two or three axes. 

PCs are supposed to account for as much of the variability in the data as possible. When there is 

a statistically significant difference between two study groups, there should be a clear spatial 

separation between these two groups on a PCA plot. PLS-DA is a supervised method that 

considers the group assignment of the observations. Due to the group assignment information, 

PLS-DA provides a more focused view on the useful variations. 

1.6 Overview of Thesis 

My research started from developing and optimizing a chemical isotope labeling (DnsCl 

labeling) LC-MS platform for cellular extracts and the analysis of a serum metabolome for 

biomarker discovery.  

Chapter 2 focuses on the development of a simple and rapid method for adherent cell 

harvesting and lysis. In this chapter, the efficiency of different cell harvesting and lysis methods 
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were evaluated by LC-UV. Based on the findings, physical scarping and frozen-thaw cycles were 

suggested to be used for cell harvesting and lysis in CIL LC-MS metabolomics. 

In chapter 3, CIL LC-MS is used to profile the amine and phenol submetabolome of 

serum samples and find a potential biomarker for hyper IgE syndrome.  

In Chapter 4, CIL LC-MS is used to study metabolomics changes in diabetes patients and 

how medical treatments, such as metformin, can change the metabolome. 
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Chapter 2  

Development of a Simple and Efficient Method of 

Harvesting and Lysing Adherent Mammalian Cells for 

Chemical Isotope Labeling LC-MS-Based Cellular 

Metabolomics 

2.1 Introduction 

Cellular metabolomics uses analytical techniques to detect and quantify a whole set of 

metabolites or the metabolome in cells. Even with the analysis of a subset of the metabolome 

using techniques currently available, cellular metabolomics has become an important tool in 

biological research29,30. Compared to analyzing the metabolomes of biofluids such as urine and 

blood, cellular metabolomics requires additional sample handling steps, i.e., cell harvest and 

lysis. In order to profile the metabolome properly, a robust and reproducible method for cell 

harvest and lysis is required. Several studies have shown that improper handling of the cell 

harvest and lysis process could alter the metabolite concentrations artificially due to sample loss 

as well as residual metabolic reactions. For instance, it has been shown that the use of 

trypsinization for cell harvest could cause substantial metabolite leakage30. Other studies have 

illustrated significant differences in metabolomic results produced from different harvest and 

lysis methods29.  
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Because current analytical techniques can cover only a fraction of the entire metabolome 

and metabolite detectability varies from one technique to another, the extent of any effects on the 

metabolome data caused by cell harvest and lysis methods is technique dependent. The reported 

studies are based mainly on the use of NMR, GC-MS, and LC-MS methods for metabolome 

analysis. Among these methods, LC-MS provides higher sensitivity for metabolite detection. 

However, conventional LC-MS techniques, even with the use of multiple methods (e.g., various 

combinations of reversed phase LC separation, hydrophilic interaction LC separation, positive 

ion detection, and negative ion detection), do not offer high-coverage metabolome analysis with 

high quantification accuracy. One alternative approach of metabolome analysis is to use 

chemical isotope labeling (CIL) to alter the chemical and physical properties of the metabolites 

for improving detection sensitivity and quantification accuracy. There are a number of labeling 

reagents that have been reported for targeted and untargeted metabolite analysis with varying 

degrees of success.  

Our laboratory has been involved in developing a “divide-and-conquer” approach based 

on CIL LC-MS for comprehensive and quantitative metabolomics. We have reported four 

rationally designed isotope labeling reagents for analyzing the amine/phenol31, carboxyl32, 

hydroxy33, and carbonyl34 submetabolomes separately. The combined results of the four 

submetabolomes offer a high-coverage analysis of the whole metabolome. In addition, the 

labeled metabolites can be separated efficiently using reversed phase (RP) LC and ionized 

effectively as mainly protonated ions, rendering the possibility of using a single setup, RPLC-

MS with positive ion mode detection for metabolite analysis. We have developed CIL LC-MS 

workflows and demonstrated their applications for metabolomic profiling of various types of 

biological samples. 
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In this study, we report a simple and efficient method of harvesting and lysing adherent 

mammalian cells tailored to CIL LC-MS-based cellular metabolomics. Being able to detect 

thousands of cellular metabolites with high quantification accuracy, 12C-/13C-dansylation LC-

MS was employed to examine the amine/phenol submetabolomes of cell extracts prepared using 

different cell harvest and lysis methods. Using MCF-7 cells and HeLa cells as representatives of 

cultured adherent cells widely used in biological studies, we examined and compared the 

performance of the trypsinization method vs. the physical scrapping method for cell harvest, and 

the glass-bead-assisted method vs. the freeze-thaw-cycle method for cell lysis. 

2.2 Experimental 

2.2.1. Overall Workflow 

Figure 2.1 shows the overall workflow of this study. MCF-7 cells and HeLa cells were cultured 

in 6-well plates in replicates with the same cell number. Cells were harvested by two different 

methods: trypsinization or physical scraping. The cell pellets were then treated by two lysis 

methods: freeze-thaw-cycle lysis or glass-bead-assisted lysis. The cell lysates were extracted and 

subjected to chemical labeling using 12C-dansyl chloride (DnsCl). A pooled sample from 

aliquots of individual samples was prepared and labeled by 13C-dansyl chloride. The total 

concentration of the labeled metabolites in each sample was measured by LC-UV. The 12C-

labeled sample and the 13C-labeled pool were mixed by equal mole amounts. The mixture was 

injected into LC-MS for analysis. The peak pairs detected in MS were extracted by IsoMS, and 

individual peak-pairs from different LC-MS runs were aligned together, based on accurate mass 

and retention time, to produce a metabolite peak ratio table. Multivariate data analysis was  
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Figure 2.1. Workflow for comparing different methods to develop a simple and efficient cell harvest and lysis 

method for CIL LC-MS metabolomics of adherent mammalian cells. 
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performed by MetaboAnalyst (http://www.metaboanalyst.ca). The metabolites were identified by 

searching against MyCompoundID library (http://www.mycompoundid.org). 

2.2.2. Chemicals and Reagents 

The LC-MS grade reagent, including water, acetonitrile, methanol, and formic acid, were 

purchased from Fisher Scientific (Ottawa, ON), and 0.5-mm-diameter glass beads were 

purchased from Biospec Products (Bartlesville, OK). 13C-dansyl chloride was available from the 

University of Alberta (http://mcid.chem.ualberta.ca). 

2.2.3. Cell Culture 

Two types of cell lines, HeLa (ATCC CCL-2) and MCF-7 (ATCC HTB-22), were selected in 

this study. The growth medium for HeLa cell was Hyclone Dulbecco's Modified Eagle Medium 

(DMEM), supplemented with 10% fetal bovine serum (FBS). For the MCF-7 cell culture, 

additional 0.01 mg/mL human recombinant insulin was supplemented, as suggested by the 

American Type Culture Collection (ATCC). The same number of cells was cultured in Falcon 6-

well plates.  The cultures were incubated at 37 °C in a humidified atmosphere with 5% CO2. The 

growth medium was renewed every two days. 

2.2.4. Cell Harvest 

Cells were harvested by either trypsinization or physical scraping. For trypsinization, the cells 

were washed with cold phosphate buffer saline (PBS), and 0.5 mL of 0.25% trypsin/EDTA 

(Hyclone, Logan, Utah) was added and incubated with the cell cultures at 37 °C. The 

trypsinization process was monitored under an inverted microscope and quenched by growth 

http://www.mycompoundid.org)/
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medium when cells appeared rounded. The cultures were then transferred into 15-mL centrifuge 

tubes. The trypsin and growth medium were removed by 7-min 125-g centrifugation at 4 °C. The 

cell pellets were suspended in 5 mL of PBS and centrifuged at 125 g for 7 min at 4 °C. The cells 

were washed three times and were then snap-frozen in liquid nitrogen and stored in a -80 °C 

freezer. For physical scraping, the growth medium was removed, and the cell cultures were 

washed with cold PBS three times, then 1 mL of cold methanol was added for metabolism 

quenching. The cells were detached by scraping and transferred into 1.5-mL vials. After 

methanol was removed using Savant SC110A Speed Vac, the sample vials were stored in a -

80 °C freezer for further use. 

2.2.5. Cell Lysis 

Cell lysis by using the glass-bead-assisted lysis method followed a previously published 

protocol35. In brief, the cell pellets were suspended in 100 μL of 50% MeOH and 50% water, and 

0.5 mL of glass beads were added. Cells were lyzed via five 1-min periods of bead-beating at 

3200 rpm alternated with five 1-min incubations in an ice-water bath. After cell lysis, 800 μL of 

50% MeOH and 50% water were added for metabolite extraction. Glass beads, cell debris, and 

unbroken cells were removed by centrifugation at 16000 g for 10 min at 4 °C. Then, the 

supernatant was transferred into another vial and dried down in Speed Vac.  

For freeze-thaw-cycle lysis, 300 μL of 50% MeOH and 50% water were added into the 

cell pellets. The vial was placed in liquid nitrogen for 2 min and thawed in water for 2 min with 

vortex. The freeze-thaw cycle was repeated for four more times. Then, the vial was centrifuged 

at 16000 g for 10 min, and the supernatant was transferred to another vial and dried down. The 

dried metabolites were re-dissolved in water and stored in a -80 °C freezer.  
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2.2.6. Dansylation Labeling 

The labeling protocol was the same as that previously reported. In brief, 25 μL of cell extract 

were mixed with 12.5 μL of sodium carbonate/sodium bicarbonate buffer and 12.5 μL of 12C-

dansyl chloride (18 mg/mL in ACN) or 13C-dansyl chloride (18 mg/mL in ACN). The reaction 

vial was incubated at 40 °C for one hour, then 5 μL of 250 mM NaOH were added and incubated 

for another 10 min to quench the excess DnsCl. Finally, 25 μL of 425 mM formic acid in 1:1 

ACN/H2O were added to the reaction mixture to acidify the solution.31 

2.2.7. LC-UV 

The total concentration of dansyl labeled metabolites was measured by a step-gradient LC-UV 

method.24 A 5-μL labeled sample was injected into a Phenomenex Kinetex C18 column (2.1 mm 

× 5 cm, 1.7 μm particle size, 100 Å pore size) connected to a Waters ACQUITY UPLC system 

(Waters, Milford, MA).  Mobile phase A was 0.1% (v/v) formic acid in 5% (v/v) ACN, and 

solvent B was 0.1% (v/v) formic acid in acetonitrile. The LC gradient was as follows: t = 0, 0% 

B; t =1 min, 0% B%; t = 1.1 min, 95% B; t = 2.6 min, 95% B; t = 3.1 min 0% B; t = 6.5 min, 0% 

B. The flow rate was 0.45 mL/min. The PDA detector was operated at 338 nm. 

2.2.8. LC-MS 

Each 12C-labeled individual sample was mixed with  a 13C-labeled pool sample by equal mole 

amounts. LC-MS was done using a Thermo Scientific Dionex Ultimate 3000 UHPLC System 

(Sunnyvale, CA) linked to a Bruker Maxis II quadrupole time-of-flight (Q-TOF) mass 

spectrometer (Bruker, Billerica, MA). The LC column was an Agilent reversed phase Eclipse 

Plus C18 column (2.1 mm × 10 cm, 1.8 μm particle size, 95 Å pore size). The mobile phases 
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were the same as those used for LC-UV. The LC gradient was: t = 0 min, 20% B; t = 3.5 min, 

35% B; t = 18 min, 65% B; t = 21 min, 99% B; t = 34 min, 99% B. The flow rate was 0.18 

mL/min. The MS conditions were as follows: polarity, positive; dry temperature, 230 °C; dry 

gas, 8 L/min; capillary voltage, 4500V; nebulizer, 1.0 bar; end plate offset, 500V; spectra rate, 

1.0 Hz. 

2.2.9. Data Analysis 

All the spectra were converted first to .csv files by Bruker Daltonics Data Analysis 4.3 software. 

The peak pairs were extracted from .csv files by IsoMS.36 Data generated from the multiple runs 

were aligned together based on each peak’s accurate mass and retention time. The missing values 

in the aligned file were filled by Zerofill software37. The principal component analysis (PCA) 

and partial least squares discriminant analysis (PLS-DA) were performed by MetaboAnalyst 

(www.metaboanalyst.ca).38 The metabolites were identified positively by searching against 

DnsID Library, which contains retention time, MS, and MS/MS information of 275 unique 

amine/phenol-containing metabolite standards39 (www.mycompoundid.org). Putative 

identification or match was performed by searching the accurate mass against the 

MyCompoundID library, which contains 8,021 known human metabolites and 375,809 predicted 

metabolites40 (www.mycompoundid.org). 
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2.3. Results and Discussion 

2.3.1. LC-UV Quantification for Cell Harvest and Lysis Efficiency Comparison 

Cellular metabolomics involves the comparison of the metabolomes of different groups of cells. 

To compare the concentration differences of individual metabolites in different cell samples, it is 

critical to normalize the sample amounts before performing LC-MS analysis of samples. We 

have reported a step-gradient LC-UV method to measure the total concentration of dansyl 

labeled metabolites in a sample and use the total concentration for sample amount 

normalization.24 In this work, we applied this approach to gauge the relative performance of the 

cell harvest and lysis methods. Briefly, we started with the seeding of the same number of cells 

in individual wells of a 6-well plate for replicate culturing, which ensured that the same number 

of cultured cells was used as the starting material from each well for cell harvest, cell lysis, and 

cell-extract labeling.  We performed the LC-UV analysis of labeled metabolites from the 

processed samples and then compared their LC-UV quantification results, which should reflect 

the differences in efficiencies of cell harvest and cell lysis done by different methods.   

In our study, cells were harvested by trypsinization (abbreviated as T) or physical scraping 

(abbreviated as S) and lysed by glass-bead-assisted lysis (GB) or freeze-thaw cycle lysis (FT). In 

total, there were four combinations for comparison: T-GB, T-FT, S-GB, and S-FT (see Figure 1). 

Two commonly used cell lines in biological studies, HeLa cells and MCF-7 cells, were selected 

for our study to represent adherent mammalian cells. Figures 2.2A and 2.2B show plots of the 

average concentration of labeled metabolites determined in each of the four combination 

methods for HeLa and MCF-7 cells, respectively. For the HeLa cells, the total concentration in 

T-GB, T-FT, S-GB and S-FT was found to be 0.52 ± 0.13, 0.52 ± 0.19, 0.90 ± 0.16 and 1.15 ± 
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0.23 mM, respectively. The standard deviation for each concentration measurement was the 

result of combined variations in biological triplicate and experimental duplicate (n=6). The total 

metabolite concentration in the physical scraping group is about 1.8-fold higher than that of the 

trypsinization group, with either GB lysis or FT lysis. Thus, for the HeLa cells, the scraping 

harvest method was more efficient than trypsinization. The same finding was obtained for the 

MCF-7 cells. In this case, the total metabolite concentration of T-GB, T-FT, S-GB, and S-FT 

was 0.71 ± 0.25, 1.1 ± 0.24, 1.30 ± 0.09 and 1.79 ± 0.20 mM, respectively. The concentration of 

the scraping group was also about 1.8-fold higher than that of the trypsinization group. The 

reduced concentration might be caused by metabolite loss during the trypsinization process 

through cell membrane damage and metabolites leakage. 

The concentration plots shown in Figure 2.2 also can be used to gauge the differences in 

cell lysis efficiencies. For both HeLa and MCF-7 cells, the total metabolite concentrations of the 

FT groups were higher than those of the GB groups, except for the case of T-GB and T-FT 

groups of Hela cells where the total concentrations of the two groups had no significant 

difference. In the GB lysis method, to ensure that we could recover most of the metabolites, a 

relatively larger volume (800 μL) of extract solvent was used to rinse the beads, followed by 

drying. During the drying process, some relatively volatile metabolites might be lost, while other 

metabolites might adsorb onto the container walls and could not be re-dissolved, resulting in 

sample loss. 

The above results obtained from LC-UV measurements of labeled metabolites indicate 

that the combination of physical scraping for the cell harvest and freeze-thaw-cycle for cell lysis 

gave the highest efficiencies. However, the LC-UV data only gauges the total metabolite amount 

difference, not the metabolite composition difference. Moreover, the experimental conditions  
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Figure 2.2. Average concentrations of dansyl labeled metabolites in cell extracts (n=6) prepared using different 

combinations of harvest and lysis methods from (A) HeLa and (B) MCF-7 cells. T-GB = trypsinization cell harvest 

followed by glass-bead lysis; T-FT = trypsinization cell harvest followed by freeze-thaw-cycle lysis; S-GB = 
scraping cell harvest followed by glass-bead lysis; S-FT = scraping cell harvest followed by freeze-thaw-cycle lysis. 
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used in harvest and cell lysis may affect the downstream process and analysis. Thus, from the 

metabolomic profiling point of view, we need to determine which combination method generates 

the optimal metabolomic result. We proceeded to use LC-MS and statistical analysis to examine 

the differences of the metabolome profiles generated from different combination methods. 

2.3.2. LC-MS Results  

In our LC-MS analysis, the 13C-labeled pool served as a global internal standard and was mixed 

with the 12C-dansyl labeled individual sample by equal mole amounts. The same amount of 

mixtures prepared from all individual samples was injected into a LC-MS. On average, for the 

HeLa cells, 3079 ± 50, 3033 ± 71, 3045 ± 68 and 3016 ± 73 peak pairs were detected from T-

GB, T-FT, S-GB, and S-FT, respectively (Figure 2.3A). There was no significant difference 

among the four groups prepared by different harvest and lysis combinations. These results show 

that, if the same injection amount was used in LC-MS, the harvest and lysis methods would not 

affect the number of peak pairs detected. These results were confirmed in the analysis of MCF-7 

cells. An average of 2768 ± 127, 2773 ± 49, 2641 ± 16, and 2604 ± 72 peak pairs was detected 

from T-GB, T-FT, S-GB, and S-FT, respectively (Figure 2.3B). It is interesting to note that we 

detected about 400 peak pairs less from the MCF-7 cell lysates, compared to the HeLa cells. 

Judging from the number of peak pairs or metabolites detected alone, these results indicate that 

the amine/phenol submetabolome profiles of MCF-7 and HeLa cells are different. Nevertheless, 

in both cases, thousands of peak pairs or metabolites were detected, illustrating the high 

metabolomic coverage achievable by the dansylation LC-MS method. 
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Figure 2.3. Average number of peak pairs (n=6) detected from (A) HeLa cell extracts and (B) MCF-7 cell extracts 

prepared using different combinations of harvest and lysis methods. 
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2.3.3. Multivariate Statistical Analysis 

We applied multivariate statistical analysis to the metabolome data set obtained from the samples 

prepared using different harvest and lysis methods in order to examine the overall metabolome 

profile differences and similarities (i.e., the number and type of metabolites detected as well as 

their relative concentration differences in different samples). The score plot from the 

unsupervised PCA analysis is shown in Figure 2.4A. In this plot, 38.8% of the data were 

captured by the first principal component (PC), and 10.6% of the data were captured by the 

second PC. Overall, ~50% of the data could be captured by the 1st and 2nd PCs, indicating an 

excellent model. As Figure 2.4A shows, in both Hela and MCF-7 cells, the samples of the 

trypsinization group (T) were separated from those of the scraping group (S), whiles the glass-

bead-assisted lysis group (GB) and the freeze-thaw-cycle lysis group (FT) overlapped. These 

results suggest that the trypsinization process might cause not only metabolite leakage or sample 

loss but also cause concentration changes for some of the detectable metabolites. The lysis 

method (GB or FT) had minor impact on the cellular metabolome, although the GB group gave a 

lower total metabolite concentration, as was discussed earlier. In the PCA plot, no matter which 

harvest and lysis methods were used, HeLa cells (H) and MCF-7 cells (M) are separated clearly. 

Thus, the metabolomes of the two different cell lines are significantly different. 

Supervised PLS-DA analysis was applied also to the metabolome data set, and the score 

plot is shown in Figure 2.4B. The two cell lines are separated on component 1, and the two cell 

harvest groups are separated on component 2, with R2 = 0.968 and Q2 = 0.932 from cross-

validation test. The high scores of R2 and Q2 confirm the robustness of the model. These PLS-

DA analysis results confirmed the findings of the PCA analysis. 
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Figure 2.4. (A) PCA and (B) PLS-DA plots of the amine/phenol submetabolomes of HeLa and MCF-7 cells from 

cell extracts prepared using different combinations of harvest and lysis methods. H=HeLa cells. M=MCF-7 cells, 

with other abbreviations shown in the Figure 2.4 caption. 
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2.3.4. Impact of Different Harvest Methods on Cellular Metabolome 

To analyze the impact of different harvest methods on cellular metabolome, univariate analysis 

using volcano plots was performed on the metabolome data set (Figure 2.5). In the volcano plot, 

the x-axis is the fold change (FC) of trypsinization/scraping groups, and the y-axis is the p-value 

from the t-test of the two groups. For HeLa cells (Figure 2.5A), there were 429 metabolites with 

significantly higher fold changes and 305 metabolites with significantly lower fold changes using 

the criteria of p-value < 0.01 and FC > 1.5. For MCF-7 cells (Figure 2.5B), there were 131 

metabolites with higher fold changes and 88 metabolites with lower fold changes. These results 

show that there was a large number of metabolites having significantly different concentrations 

in samples prepared using the two different harvest methods. The metabolites with significant 

changes are listed in Tables 2.1 and 2.2, along with the metabolite identification results shown in 

Tables 2.3 and 2.4. 

 

Figure 2.5. Volcano plots of the amine/phenol submetabolomes of (A) HeLa and (B) MCF-7 cells harvested by 

different methods. The p-value of each metabolite was calculated from the t-test, and the fold change (FC) was 

calculated from the peak ratios of the trypsinization group divided by the peak ratios of the scraping group (i.e., 
trypsinization/scraping). Using a cut-off value of p < 0.01 and FC > 1.5 or < 0.67, the red points represent the 

metabolites with higher concentrations in the trypsinization group, and the green points represent the metabolites 

with lower concentrations in the trypsinization group. The black points represent the metabolites with no significant 

differences. 
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Table 2.1. Metabolites with Significantly Different Concentrations in HeLa Cell Extracts Prepared Using Different 

Harvest Methods (trypsinization/physical-scraping). 

 
No. HMDB Compound Name fold change p-value Level 

59 HMDB01397 Guanosine monophosphate 2.93 1.47E-03 1 

68 HMDB00001 1-Methylhistidine 0.46 2.67E-04 1 

101 HMDB00045 Adenosine monophosphate 9.56 1.18E-06 1 

105 HMDB00133 Guanosine 4.96 2.25E-03 1 

107 HMDB12114 (3S)-3,6-Diaminohexanoate 1.92 1.69E-03 2 

144 HMDB00517 L-Arginine 1.77 1.27E-03 1 

146 HMDB00052 Argininosuccinic acid 0.55 7.64E-03 2 

196 HMDB01410 2-Amino-4-oxo-6-(1',2'-dioxoprolyl)-7,8-

dihydroxypteridin 

2.17 5.16E-03 2 

202 HMDB01325 N6,N6,N6-Trimethyl-L-lysine 1.69 7.14E-05 2 

206 HMDB00045 Adenosine monophosphate 9.90 7.91E-07 1 

215 HMDB03331 1-Methyladenosine 2.34 1.15E-04 2 

247 HMDB03276 Hydrogen sulfide 2.83 1.72E-05 2 

255 HMDB00299 Xanthosine 2.55 1.25E-03 2 

256 HMDB00095_2 Cytidine monophosphate - Isomer 4.08 1.85E-06 1 

264 HMDB00195 Inosine 62.38 1.12E-03 2 

275 HMDB03334 Symmetric dimethylarginine 2.64 3.74E-04 1 

364 HMDB00641 L-Glutamine 0.25 1.04E-05 1 

364 HMDB03423 D-Glutamine 0.25 1.04E-05 1 

371 HMDB00904 Citrulline 0.56 6.85E-03 1 

380 HMDB00856 N-a-Acetylcitrulline 1.57 7.65E-03 2 

381 HMDB11737 Gamma Glutamylglutamic acid 0.60 2.57E-03 1 

429 HMDB00187 L-Serine 0.66 7.30E-04 1 

503 HMDB00125 Glutathione 1.83 4.02E-03 2 

515 HMDB02005 Methionine Sulfoxide 0.59 8.66E-03 1 

529 HMDB00187 L-Serine 0.51 1.14E-04 1 

542 HMDB00191 L-Aspartic Acid 2.95 3.24E-06 1 

560 HMDB12326 L-Gulose 6.74 9.64E-04 2 

577 HMDB00288 Uridine 5'-monophosphate 4.81 7.24E-07 2 

581 HMDB00191 L-Aspartic Acid 2.79 6.65E-04 1 

622 HMDB04437 Diethanolamine 0.55 6.81E-03 1 
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707 HMDB02335 Aspartyl-L-proline 0.43 1.47E-05 2 

763 HMDB06555 dIMP 1.51 2.35E-04 2 

811 HMDB01263 Allysine 6.25 3.31E-05 2 

850 HMDB00174 L-Fucose 0.59 2.94E-03 2 

854 HMDB00721 Glycylproline 0.35 8.35E-06 1 

907 HMDB00079 Dihydrothymin 0.29 3.06E-05 2 

978 HMDB00296 Uridine 10.74 1.22E-03 1 

984 HMDB00056 Beta-Alanine 0.64 8.47E-03 1 

986 HMDB00585 Glucosylgalactosyl hydroxylysine 1.82 8.47E-05 2 

1001 HMDB00721 Glycylproline 0.50 3.69E-04 1 

1015 HMDB00323 3-Amino-2-piperidone 1.92 1.66E-04 2 

1138 HMDB02284 N-Acetylcadaverine 1.87 3.17E-03 2 

1155 HMDB00576 Monoethyl malonic acid 4.39 1.62E-04 2 

1202 HMDB00296_2 Uridine - H2O 11.63 7.67E-05 1 

1208 HMDB12136 1-Amino-propan-2-ol 3.18 4.40E-04 2 

1251 HMDB11166 L-beta-aspartyl-L-leucine 2.29 3.11E-04 2 

1268 HMDB00292 Xanthine 2.70 5.17E-03 1 

1310 HMDB11170 L-gamma-glutamyl-L-isoleucine 1.93 9.44E-03 2 

1354 HMDB03911 3-Aminoisobutanoic acid 0.44 7.35E-05 1 

1407 HMDB01080 4-Aminobutyraldehyde 2.85 3.65E-05 2 

1430 HMDB00600 Galactosylhydroxylysin 1.79 3.53E-05 2 

1431 HMDB03609 2-Aminoacrylic acid 0.57 9.40E-04 2 

1435 HMDB01257 Spermidine 2.09 2.43E-03 1 

1492 HMDB00594 Glutamylphenylalanine 2.23 9.90E-03 2 

1549 HMDB02201 N-Carboxyethyl-g-aminobutyric acid 0.15 2.30E-06 2 

1575 HMDB28691 Alanyl-Leucine 4.19 3.02E-05 1 

1661 HMDB00883 L-Valine 0.66 1.94E-03 1 

1677 HMDB00759 Glycyl-L-Leucine 1.99 2.14E-03 1 

1677 HMDB28844 Glycyl-Isoleucine 1.99 2.14E-03 1 

1695 HMDB00300 Uracil 48.47 8.47E-04 1 

1736 HMDB28691 Alanyl-Leucine 7.62 2.64E-05 1 

1799 HMDB28848 Glycyl-Phenylalanine 2.02 2.96E-03 1 

1846 HMDB01545 Pyridoxal 0.49 4.22E-05 1 

1893 HMDB03581 Dethiobiotin 0.53 3.78E-04 2 
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1929 HMDB00159 L-Phenylalanine 0.59 1.40E-03 1 

1959 HMDB00243 Pyruvic acid 2.20 1.45E-03 2 

2034 HMDB02248 Gamma glutamyl ornithine 1.52 4.74E-03 2 

2080 HMDB28937 Leucyl-Proline 0.17 1.97E-05 1 

2084 HMDB00687 L-leucine 0.46 5.70E-04 1 

2091 HMDB00159 L-Phenylalanine 0.57 2.52E-04 1 

2133 HMDB03869 Epsilon-(gamma-Glutamyl)-lysine 0.47 2.98E-04 2 

2151 HMDB01491 Pyridoxal 5'-phosphate 1.93 2.27E-03 2 

2216 HMDB00450 5-Hydroxylysine 2.43 1.68E-04 1 

2451 HMDB11162 L-beta-aspartyl-L-alanine 0.58 6.72E-04 2 

2463 HMDB00339 2-Methylbutyrylglycine 0.26 8.22E-06 2 

2523 HMDB01889 Theophylline 0.24 3.29E-05 1 

2569 HMDB12230 Gamma-glutamyl-L-putrescine 12.15 1.90E-03 2 

2580 HMDB06045 Dityrosine 0.33 5.02E-05 2 

2609 HMDB00656 Cysteineglutathione disulfide 14.81 6.97E-04 2 

2647 HMDB01256 Spermine 2.15 1.02E-05 2 

2667 HMDB00214 Ornithine 3.42 6.98E-07 1 

2733 HMDB03454 4-Pyridoxolactone 0.39 2.28E-06 2 

2760 HMDB00955 Isoferulic acid 0.52 3.46E-03 1 

2819 HMDB02135 S-(3-oxo-3-carboxy-n-propyl)cysteine 1.51 6.19E-03 2 

2827 HMDB02107 Phthalic acid 0.53 1.26E-03 2 

2888 HMDB12134 1,2-Dihydroxy-3-keto-5-methylthiopentene 1.83 6.19E-05 2 

2956 HMDB00500 4-Hydroxybenzoic acid 0.32 7.04E-06 1 

2960 HMDB00701 Hexanoylglycine 0.19 2.87E-07 2 

2993 HMDB00512 N-Acetyl-L-phenylalanine 0.21 2.22E-06 2 

3038 HMDB03227 Methanethiol 1.72 6.52E-03 2 

3041 HMDB01276 N1-Acetylspermidine 1.66 2.58E-03 2 

3097 HMDB11686 p-Cresol glucuronide 4.79 4.07E-03 2 

3106 HMDB00132 Guanine 4.04 2.70E-03 2 

3143 HMDB00177 L-Histidine 0.64 1.28E-03 1 

3266 HMDB06524 3-Indoleacetonitrile 0.55 7.32E-03 2 

3282 HMDB01526 S-Acetyldihydrolipoamide 7.81 5.62E-05 2 

3316 HMDB03320 Indole-3-carboxylic acid 0.50 8.81E-04 1 
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3362 HMDB00209 Phenylacetic acid 0.62 3.76E-03 2 

3528 HMDB29105 Tyrosyl-Glycine 0.50 4.53E-03 1 

3622 HMDB02044 8-Hydroxyguanosine 1.65 1.80E-03 2 

3643 HMDB12286 S-Prenyl-L-cysteine 0.45 6.02E-03 2 

3751 HMDB29098 Tyrosyl-Alanine 2.01 8.69E-03 1 

3793 HMDB01414 1,4-diaminobutane 1.80 1.80E-03 1 

3953 HMDB02043 5-Phenylvaleric acid 2.13 2.04E-03 2 

4027 HMDB02322 Cadaverine 1.91 4.46E-03 1 

4095 HMDB11176 L-phenylalanyl-L-hydroxyproline 0.51 4.39E-03 2 

4097 HMDB00107 Galactitol 0.40 1.91E-03 2 

4101 HMDB00158 L-Tyrosine 0.37 8.20E-04 1 

4127 HMDB00375 3-(3-Hydroxyphenyl)propanoic acid 0.06 8.65E-04 2 

4299 HMDB05809 Eugenol 2.00 6.63E-03 2 

4342 HMDB04586 Perillic acid 1.84 1.94E-03 2 

4558 HMDB04072 4-Hydroxystyrene 0.62 2.09E-03 2 

4612 HMDB00866 N-Acetyl-L-tyrosine 0.10 1.46E-06 2 

4884 HMDB04058 5,6-Dihydroxyindole 0.59 9.77E-04 2 

4926 HMDB01387 N-Methylphenylethanolamine 0.28 2.44E-04 2 

5010 HMDB03905 Imidazole-4-acetaldehyd 0.61 1.00E-04 2 

5024 HMDB11687 Phenylbutyrylglutamine 0.38 2.43E-03 2 

5054 HMDB00226 Orotic acid 0.54 9.36E-03 2 

5104 HMDB00030 Biotin 0.15 6.12E-06 2 

5272 HMDB11718 4-Hydroxybenzaldehyde 0.46 3.83E-03 2 

5341 HMDB12219 Dopamine quinone 0.23 4.07E-05 2 

5503 HMDB06954 2-Methyl-3-hydroxy-5-formylpyridine-4-

carboxylate 

0.18 6.35E-04 2 

5521 HMDB01430 L-Dopachrome 0.60 5.62E-03 2 

5667 HMDB12182 8-Hydroxypurine 0.38 1.35E-04 2 

5791 HMDB00472 5-Hydroxy-L-tryptophan 0.12 3.62E-04 2 

6264 HMDB06779 Indole-5,6-quinone 0.48 5.05E-03 2 

6916 HMDB00175 Inosinic acid 0.49 5.19E-03 2 
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Table 2.2 Metabolites with Significantly Different Concentrations in MCF-7 Cell Extracts Prepared Using Different 

Harvest Methods (trypsinization/physical-scraping). 

 
No. HMDB No. Compound Name Fold change p-value Level 

59 HMDB01397 Guanosine monophosphate 2.75 2.32E-04 1 

83 HMDB01410 

2-Amino-4-oxo-6-(1',2'-dioxoprolyl)-7,8-

dihydroxypteridine 

1.70 6.02E-03 2 

84 HMDB00229 Nicotinamide ribotide 2.00 2.59E-04 2 

101 HMDB00045 Adenosine monophosphate 49.20 4.15E-07 1 

105 HMDB00133 Guanosine 9.73 6.16E-05 1 

114 HMDB01397 Guanosine monophosphate 5.35 9.85E-07 2 

127 HMDB02022 Glycineamideribotide 1.81 2.26E-03 2 

144 HMDB00517 L-Arginine 2.44 9.35E-05 1 

146 HMDB00052 Argininosuccinic acid 0.42 6.48E-03 2 

206 HMDB00045 Adenosine monophosphate 45.43 3.70E-07 1 

264 HMDB00195 Inosine 104.89 4.15E-03 2 

288 HMDB11168 L-beta-aspartyl-L-serine 1.68 7.63E-05 2 

365 HMDB00912 Succinyladenosine 0.66 9.05E-03 2 

380 HMDB00856 N-a-Acetylcitrulline 0.33 3.79E-03 2 

383 HMDB02335 Aspartyl-L-proline 0.48 7.16E-03 2 

392 HMDB00802 Pterin 0.48 7.82E-03 2 

532 HMDB02278 

2-(acetylamino)-1,5-anhydro-2-deoxy-3-O-b-

D-galactopyranosyl-D-arabino-Hex-1-enitol 

3.83 2.01E-03 2 

563 HMDB00167 L-Threonine 0.59 3.93E-03 1 

563 HMDB00719 L-Homoserine 0.59 3.93E-03 1 

568 HMDB05765 Ophthalmic acid 0.57 3.55E-03 2 

577 HMDB00288 Uridine 5'-monophosphate 5.45 1.22E-05 2 

619 HMDB00149 Ethanolamine 10.37 1.70E-06 1 

850 HMDB00174 L-Fucose 0.57 3.31E-03 2 

892 HMDB00854 Formiminoglutamic acid 1.65 6.24E-03 2 

970 HMDB01263 Allysine 3.73 4.27E-06 2 

978 HMDB00296 Uridine 10.71 3.07E-05 1 

983 HMDB00056 Beta-Alanine 0.64 2.79E-03 1 

983 HMDB00161 L-Alanine 0.64 2.79E-03 1 

1034 HMDB03338 Hydroxylamine 1.71 5.83E-03 2 
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1046 HMDB12201 Cis-zeatin-7-N-glucoside 1.78 4.91E-03 2 

1202 HMDB00296_2 Uridine - H2O 14.54 4.01E-06 1 

1407 HMDB01080 4-Aminobutyraldehyde 1.93 1.59E-03 2 

1575 HMDB28691 Alanyl-Leucine 0.37 2.08E-03 1 

1761 HMDB11105 5-Acetylamino-6-formylamino-3-methyluracil 0.50 1.74E-03 2 

1846 HMDB01545 Pyridoxal 0.26 1.93E-03 1 

2080 HMDB28937 Leucyl-Proline 0.22 1.00E-03 1 

2100 HMDB01263 Allysine 0.28 3.10E-03 2 

2216 HMDB00450 5-Hydroxylysine 2.77 2.85E-03 1 

2314 HMDB00130 Homogentisic acid 0.41 7.87E-03 2 

2956 HMDB00500 4-Hydroxybenzoic acid 0.39 6.28E-03 1 

3159 HMDB00195 Inosine 125.60 8.41E-04 2 

3165 HMDB01904 3-Nitrotyrosine 12.29 2.01E-06 2 

3190 HMDB05199 (R)-Salsolinol 0.08 1.95E-03 2 

3192 HMDB01488 Nicotinic acid 3.20 1.78E-04 2 

3928 HMDB12176 5-Aminopentanamide 1.76 9.89E-03 2 

4127 HMDB00375 3-(3-Hydroxyphenyl)propanoic acid 0.16 7.91E-04 2 

4187 HMDB00656 Cysteineglutathione disulfide 1.64 9.15E-03 2 

4303 HMDB01257 Spermidine 2.22 9.17E-04 2 

4382 HMDB03747 Resveratrol 1.91 8.31E-05 2 

4409 HMDB00206 N6-Acetyl-L-lysine 0.31 4.53E-04 2 

4807 HMDB11150 Deoxyhypusine 1.75 4.60E-03 2 

4898 HMDB01084 D-1-Piperideine-2-carboxylic acid 3.92 2.25E-05 2 

4915 HMDB00555 3-Methyladipic acid 0.46 8.04E-03 2 

4926 HMDB03633 N-Methyltyramine 0.57 3.07E-03 2 

5225 HMDB02338 Biochanin A 0.16 5.86E-05 2 

5243 HMDB00132 Guanine 6.47 9.37E-03 2 

5320 HMDB00299 Xanthosine 0.20 4.82E-03 2 

5374 HMDB05199 (R)-Salsolinol 5.24 1.05E-03 2 

5503 HMDB06954 

2-Methyl-3-hydroxy-5-formylpyridine-4-

carboxylate 

0.30 2.16E-04 2 

5719 HMDB04089 Formylanthranilic acid 0.44 6.59E-03 2 

5733 HMDB01314 Cyclic GMP 0.54 4.53E-03 2 
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5791 HMDB00472 5-Hydroxy-L-tryptophan 0.34 3.63E-03 2 

5911 HMDB02393 N-Methyl-D-aspartic acid 0.33 7.17E-04 2 

6442 HMDB00252 Sphingosine 0.35 5.95E-03 2 

6571 HMDB00269 Sphinganine 0.30 1.16E-04 2 

 

Table 2.3. List of Metabolites from Hela Cell Lysates Positively Identified by Searching Against the DnsCl Labeled 

Standard Library. 

 
Peak Pair Information Identification Result 

 

Pea k  Pa i r # 

 

 

TR(min) 

Correct 

ed 

TR(min 

) 

 

 

mz_light 

 

 

mz_heavy 

 

monoisotop

ic mass 

(Da) 

 

 

HMDB.No. 

 

 

Name 

68 2.16 2.12 403.1438 405.1505 169.0854 HMDB00001 1-Methylhistidine 

68 2.16 2.12 403.1438 405.1505 169.0854 HMDB00479 3-methyl-histidine 

101 
2.29 2.24 581.1216 583.1276 347.0632 HMDB00045 Adenosine 

monophosphate 

105 2.30 2.26 517.1504 519.1570 283.0921 HMDB00133 Guanosine 

130 
2.40 2.35 375.0777 377.0843 141.0193 HMDB00224 O- 

Phosphoethanolamin

e 

144 2.42 2.37 408.1702 410.1766 174.1118 HMDB00517 L-Arginine 

153 2.47 2.42 510.1910 512.1973 276.1327 HMDB00279 Saccharopine 

154 2.47 2.43 388.1077 390.1137 154.0494 HMDB00157 Hypoxanthine + 

H2O 

213 2.75 2.68 422.1862 424.1925 188.1279 HMDB00670 Homo-L-arginine 

 

256 

 

2.97 

 

2.89 

 

557.1126 

 

559.1211 

 

323.0543 

           HMDB00095_ 2 Cytidine 

monophosphate - 

Isomer 

275 
3.09 3.01 436.2016 438.2082 202.1433 HMDB03334 Symmetric 

dimethylarginine 

313 3.28 3.19 366.1118 368.1184 132.0535 HMDB00168 L-Asparagine 

364 3.62 3.51 380.1276 382.1342 146.0693 HMDB00641 L-Glutamine 

364 3.62 3.51 380.1276 382.1342 146.0693 HMDB03423 D-Glutamine 
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371 3.79 3.67 409.1545 411.1611 175.0961 HMDB00904 Citrulline 

381 
3.82 3.70 510.1555 512.1616 276.0971 HMDB11737 Gamma 

Glutamylglutamic 

421 
3.94 3.82 501.1551 503.1611 267.0968 HMDB00050 Adenosine 

443 
4.07 3.93 399.1050 401.1111 165.0466 HMDB02005 Methionine 

Sulfoxide 

443 
4.07 3.93 399.1050 401.1111 165.0466 HMDB02005_2 Methionine 

Sulfoxide 

- Isomer 

494 
4.25 4.11 353.1167 355.1234 119.0584 HMDB00719 L-Homoserine 

499 
4.29 4.15 339.1008 341.1078 105.0425 HMDB00187 L-Serine 

574 
4.92 5.06 381.1114 383.1184 147.0531 HMDB00148 L-Glutamic Acid 

579 
5.01 5.11 365.1160 367.1222 131.0577 HMDB00725 Trans-4-Hydroxyl-L- 

Proline 

581 
5.11 5.18 367.0959 369.1027 133.0376 HMDB00191 L-Aspartic Acid 

591 
5.32 5.51 422.1744 424.1816 188.1161 HMDB00206 N6-Acetyl-L-Lysine 

611 
5.40 5.64 492.1806 494.1870 258.1223 HMDB00279_2 Saccharopine - H2O 

616 
5.49 5.78 353.1167 355.1235 119.0584 HMDB00167 L-Threonine 

618 
5.52 5.82 395.1274 397.1339 161.0691 HMDB00510 Aminoadipic acid 

619 
5.63 5.94 295.1111 297.1177 61.0528 HMDB00149 Ethanolamine 

622 
5.65 5.97 339.1375 341.1439 105.0791 HMDB04437 Diethanolamine 

740 
6.19 6.58 309.0912 311.0976 75.0329 HMDB00123 Glycine 

812 
6.49 6.96 364.1693 366.1758 130.1109 HMDB02064 N-Acetylputrescine 

854 
6.60 7.09 406.1435 408.1501 172.0852 HMDB00721 Glycylproline 

862 
6.63 7.13 323.1060 325.1125 89.0476 HMDB00161 L-Alanine 

978 
6.99 7.57 478.1282 480.1348 244.0699 HMDB00296 Uridine 
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984 
7.04 7.64 323.1067 325.1127 89.0484 HMDB00056 Beta-Alanine 

987 
7.08 7.67 337.1219 339.1285 103.0636 HMDB00112 Gamma- 

Aminobutyric acid 

1143 
7.52 8.16 453.1690 455.1754 219.1107 HMDB00210 Pantothenic acid 

1178 
7.64 8.29 492.1444 494.1498 258.0861 HMDB00884_ 

2 

Ribothymidine - 

Isomer 

1202 
7.73 8.38 460.1178 462.1243 226.0595 HMDB00296_ 

2 

Uridine - H2O 

1218 
7.79 8.45 370.0973 372.1040 136.0390 HMDB00157_ 

2 

Hypoxanthine - 

multi-tags 

1268 
7.99 8.67 386.0922 388.0989 152.0339 HMDB00292 Xanthine 

1272 
8.01 8.69 337.1220 339.1286 103.0637 HMDB00452 L-Alpha- 

aminobutyric acid 

4101 
21.48 22.64 324.5955 326.6023 181.0744 HMDB06050 o-Tyrosine 

4112 
21.65 22.81 374.1302 376.1368 280.1437 HMDB29118 Tyrosyl-Valine 

4170 
21.92 23.08 328.1011 330.1073 94.0428 HMDB00228 Phenol 

4221 
22.17 23.33 373.0859 375.0925 139.0276 HMDB01232 4-Nitrophenol 

4331 
22.64 23.80 381.1380 383.1440 294.1593 HMDB29109 Tyrosyl-Leucine 

4525 
23.30 24.46 342.1164 344.1230 108.0581 HMDB01858 p-Cresol 

4525 
23.30 24.46 342.1164 344.1230 108.0581 HMDB02048 m-Cresol 

4525 
23.30 24.46 342.1164 344.1230 108.0581 HMDB02055 o-Cresol 

4601 
23.56 24.72 322.1044 324.1115 176.0922 HMDB00259 Serotonin 

4846 
24.27 25.43 356.1316 358.1383 122.0733 HMDB29306 4-Ethylphenol 

5026 
24.61 25.77 302.6005 304.6074 137.0844 HMDB00306 Tyramine 

5287 
25.55 26.71 289.0790 291.0837 110.0414 HMDB00957 pyrocatechol 
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Table 2.4. List of Metabolites from MCF-7 Cell Lysates Positively Identified by Searching Against the DnsCl 

Labeled Standard Library 

 
Peak Pair Information Identification Result 

Peak Pair 

# 

 

TR 

(min) 

Correcte d 

TR 

(min) 

 

mz_light 

 

mz_heavy 

monoisotopi c 

mass (Da) 

 

HMDB.No. 

 

Name 

68 2.16 2.12 
403.143 

8 

405.1505 169.0854 
HMDB00001 1-Methylhistidine 

HMDB00479 3-methyl-histidine 

101 2.29 2.24 
581.121 

6 

583.1276 347.0632 HMDB00045 
Adenosine 

monophosphate 

105 2.30 2.26 
517.150 

519.1570 283.0921 HMDB00133 Guanosine 

130 2.40 2.35 
375.077 

377.0843 141.0193 HMDB00224 
O- 

Phosphoethanolamin

e 

144 2.42 2.37 
408.1702 

410.1766 174.1118 HMDB00517 L-Arginine 

153 2.47 2.42 
510.1910 

512.1973 276.1327 HMDB00279 Saccharopine 

154 2.47 2.43 
388.1077 

390.1137 154.0494 HMDB00157 Hypoxanthine + 

H2O 

213 2.75 2.68 
422.186 

424.1925 188.1279 HMDB00670 Homo-L-arginine 

 

256 

 

2.97 

 

2.89 

557.1126 
 

559.1211 

 

323.0543 

HMDB00095_ 2 
Cytidine 

monophosph

ate - 

Isomer 

275 3.09 3.01 
436.2016 

438.2082 202.1433 HMDB03334 
Symmetric 

dimethylarginine 

313 3.28 3.19 
366.1118 

368.1184 132.0535 HMDB00168 L-Asparagine 

364 3.62 3.51 
380.1276 

382.1342 146.0693 
HMDB00641 L-Glutamine 

HMDB03423 D-Glutamine 
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371 3.79 3.67 
409.1545 

411.1611 175.0961 HMDB00904 Citrulline 

381 3.82 3.70 
510.1555 

512.1616 276.0971 HMDB11737 
Gamma 

Glutamylglutamic 

acid 

4020 
20.97 22.14 324.5954 326.6024 181.0742 HMDB06050 o-Tyrosine 

4027 
21.00 22.17 285.1164 287.1231 102.1163 HMDB02322 Cadaverine 

4101 
21.48 22.64 324.5955 326.6023 181.0744 HMDB00158 L-Tyrosine 

4112 
21.65 22.81 374.1302 376.1368 280.1437 HMDB29118 Tyrosyl-Valine 

4170 
21.92 23.08 328.1011 330.1073 94.0428 HMDB00228 Phenol 

4221 
22.17 23.33 373.0859 375.0925 139.0276 HMDB01232 4-Nitrophenol 

4331 
22.64 23.80 381.1380 383.1440 294.1593 HMDB29109 Tyrosyl-Leucine 

4525 23.30 24.46 
342.1164 

344.1230 108.0581 HMDB01858 
p-Cresol 

4525 
23.30 24.46 342.1164 344.1230 108.0581 HMDB02048 m-Cresol 

4525 
23.30 24.46 342.1164 344.1230 108.0581 HMDB02055 o-Cresol 

5026 
24.61 25.77 302.600 304.6074 137.0844 HMDB00306 Tyramine 

5287 
25.55 26.71 289.0790 291.0837 110.0414 HMDB00957 pyrocatechol 
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To illustrate the concentration differences of individual metabolites, we selected some of 

the metabolites commonly detected in both HeLa and MCF-7 cells that also were identified 

positively with very large concentration differences between the trypsinization group and the 

scraping group to produce heap maps (Figure 2.6).  

 

Figure 2.6. Heat maps showing 22 selected metabolites with significant concentration differences in cell extracts 

prepared using different harvest methods (scraping and trypsinization) from (A) HeLa and (B) MCF-7 cells. The 

metabolites in (A) are 1. Argininosuccinic acid; 2. N- Methylphenylethanolamine; 3. Homovanillin; 4. Pyridoxal; 5. 

Leucyl-Proline; 6. 4-Hydroxybenzoic acid; 7. Allysine; 8. 5-Hydroxy-L-tryptophan; 9. Homogentisic acid; 10. 2-

Methyl-3-hydroxy-5-formylpyridine-4-carboxylate; 11. Uridine; 12. Uridine-H2O; 13. 3-Nitrotyrosine; 14. 

Guanosine; 15. Inosine; 16. 4-Aminobutyraldehyde; 17. Adenosine monophosphate; 18. Uridine 5'-monophosphate; 

19. Guanosine monophosphate; 20. 5- Hydroxylysine; 21. Arginine; 22. Cysteineglutathion. The metabolites in (B) 

are 1. Homovanillin; 2. Homogentisic acid; 3. 4-Hydroxybenzoic acid; 4. Pyridoxal; 5. 2-Methyl-3-hydroxy-5- 

formylpyridine-4-carboxylate; 6. 5-Hydroxy-L-tryptophan; 7. Argininosuccinic acid; 8. Leucyl- Proline; 9. Allysine; 

10. Inosine; 11. Uridine; 12. Uridine-H2O; 13. 3-Nitrotyrosine; 14. L- Arginine; 15. 5-Hydroxylysine; 16. 

Guanosine monophosphate; 17. Uridine 5'-monophosphate; 18. Adenosine monophosphate; 19. Guanosine; 20. N-
Methylphenylethanolamine; 21. 4- Aminobutyraldehyde; 22. Cysteineglutathion. 
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As Figure 2.6 shows, there is a variety of metabolites with different structures having significant 

differences in concentration in the two groups of samples. The observed concentration 

differences could be attributed to the residual enzyme activity or metabolism in cells harvested 

by trypsinization. In the scraping harvest method, the cellular metabolism should stop 

immediately after MeOH was added in. In contrast, cell metabolism still could take place during 

trypsinization till the three time cell-washing procedure finished (about 30 min). During the 

trypsinization and washing process, cells would have quick and multiple changes in enzyme 

levels and metabolic activities, resulting in changes in concentration of some metabolites.41 Our 

results are consistent with those of a previous study, which concluded that trypsinization is a 

more suitable technique for sub-culturing the cells but not for metabolomics study, as it was 

observed some metabolites related with oxidative stress changed significantly by the 

trypsinization process.29   

To examine the impact of trypsinization on metabolic pathways in our study, we 

uploaded the identified/matched metabolites onto the Pathway Enrichment Analysis tool in 

Metaboanalyst. Figure 2.7 shows the enrichment analysis results. The x-axis represents the 

pathway impact, and the y-axis represents the negative logarithm of the p-value. Figure 2.7 

shows several amino-acid and purine related metabolic pathways were significantly affected by 

trypsinization. One interesting pathway affected was the glutathione pathway. This finding is not 

surprising, as glutathione is an important antioxidant in cells. The arginine and proline pathway 

have the least p-value and the most impact in enrichment analysis. As an example, we mapped 

the detected metabolites into this pathway, and the results are shown in Figure 2.7. In this 

pathway, the levels of some upstream metabolites, such as glutamine, citrulline, and 

argininosuccinate, were decreased, while the downstream metabolite such as arginine, was 
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increased after trypsinization. All the polyamines, including spermine, spermidine and 

putrescine, were increased. Taken together, the above results show that there were metabolite 

level differences observed in cell samples prepared using trypsinization and scraping methods. 

The differences likely were caused by the trypsinization process where cell metabolism was not 

stopped immediately.  

                                      

Figure 2.7. Metabolic pathways enrichment analysis. The x-axis represents the impact of the pathway, and the y-

axis represents the p-value. 
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2.3.5. Impact of Different Lysis Methods on Cellular Metabolome 

The PCA and PLS-DA analyses shown in Figure 2.3 indicate that the cellular metabolomes of 

samples prepared by FT and GB lysis methods do not different as significantly as those from the 

two harvest methods. We used the volcano plots to examine the impact of lysis methods on the 

cellular metabolomes of HeLa and MCF-7 cells (Figure 2.8) further. For the HeLa cells (Figure 

2.9A), there are only 70 metabolites with significantly higher fold changes and 77 metabolites 

with significantly lower fold changes found in the two lysis methods with scraping for cell 

harvest, compared to 429 metabolites with higher fold changes and 305 metabolites with lower 

fold changes found in the two harvest methods. Similarly, for the MCF-7 cells (Figure 2.9B), 

only 85 metabolites with higher fold changes and 37 metabolites with lower fold changes were 

 

Figure 2.8. Metabolite changes in selected metabolic pathways. The box plots show the relative metabolite 

abundances in different harvesting groups. 
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detected with scraping harvest. This observation of smaller impact by the lysis method is not 

surprising, considering that the cellular metabolism had been quenched already in the cell harvest 

step, and the cellular metabolite levels should not change without active enzymes. Some 

differences in metabolite levels were observed in the samples prepared by the GB and FT 

methods. These differences could be attributed to the variations in lysis efficiencies and the 

extent of metabolite loss in these two methods. These results suggest that using the same method 

for cell lysis is important for comparing the metabolomes of different groups of cells. 

 

Figure 2.9. Volcano plots for comparison of the amine/phenol submetabolomes of cell extracts prepared using 

different lysis methods: (A) HeLa and (B) MCF-7 cells harvested by scrapping; (C) HeLa and (D) MCF-7 cells 

harvested by trypsinization. The p-value was from the t-test, and the fold change was calculated from the glass-

bead/freeze-thaw-cycle. The red points represent the metabolites with higher concentrations in glass-bead lysed 

samples, and the green points represent the metabolites with lower concentrations in glass-bead lysed samples and 

the black points represent the metabolites with no significant differences in the two lysis methods. 
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We detected more significantly changed metabolites between the FT and GB lysis 

methods from the cells with trypsinization harvest. For the HeLa cells (Figure 2.9C), 185 

metabolites with higher concentrations and 81 metabolites with lower concentrations metabolites 

were found in the two lysis methods. For the MCF-7 cells (Figure 2.9D), 341 metabolites with 

higher concentrations and 134 metabolites with lower concentrations were detected. This larger 

difference may be caused by the cell membrane damage or metabolite leak during the 

trypsinization process. However, even with a larger number of significantly changed metabolites, 

the cells harvested by trypsinization treated with different lysis methods still could not be 

separated on the PCA and PLS-DA plots, as was shown in Figure 2 and discussed in Section 

2.3.4. Thus, the impact of cell lysis methods was relatively small. 

In choosing the lysis method for cellular metabolomics, both GB lysis and FT lysis use 

physical disruption to lyse the cells with no chemical or surfactant added and thus are compatible 

with the downstream sample processing and analysis in CIL LC-MS. However, based on the LC-

UV quantification results, FT lysis gave higher lysis efficiency. In addition, the freeze-thaw-

cycle is easy to perform, although liquid nitrogen is required for fast processing. We conclude 

that, if liquid nitrogen is readily available, the FT lysis is preferred for lysis of adherent 

mammalian cells. If liquid nitrogen is not available, the GB lysis method can be used. It should 

be noted that for some bacteria cells and yeast cells that have tough cell walls, more aggressive 

lysis such as ultrasonication lysis42 or glass-bead-assisted lysis35 should be applied. 

2.4. Conclusions 

We have examined two cell harvest methods (trypsinization and scraping) and two cell lysis 

methods (freeze-thaw-cycle and glass-bead-assisted) to evaluate the effects of their combinations 
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on cellular metabolome results. Based on the data obtained from LC-UV measurement of the 

total concentration of dansyl labeled metabolites in each cell extract and 13C-/12C-dansylation 

LC-MS analysis of the amine/phenol submetabolome, we concluded that the combination of the 

scraping and the freeze-thaw-cycle methods is a simple and effective method for harvesting and 

lyzing adherent mammalian cells for CIL LC-MS metabolomics. We envisage a wide use of this 

protocol for cellular metabolomics where comprehensive and quantitative analysis of the 

chemical-group-based submetabolomes is done using multiple chemical labeling LC-MS. 
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Chapter 3 

Metabolomics Distinguishes DOCK8 Deficiency from Atopic 

Dermatitis: A Biomarker Discovery 

3.1 Introduction 

Hyper Immunoglobulin E syndrome (HIES), initially known as Job syndrome, now represents a 

constellation of primary immunodeficiency (PID) disorders, resulting in markedly elevated 

serum IgE levels, eczema, and predisposition to Staphylococcal and sinopulmonary infections. 

David et al. (1966) first described Job syndrome in two girls who exhibited atopy, recurrent 

sinopulmonary and Staphylococcal skin infection.43 HIESs are a group of genetic disorders, 

characterized by an increased susceptibility to specific infections, and in severe cases, an 

increased incidence of malignancy, leading to premature death. 

Depending upon the clinical features and genetics, there exist two common forms of 

HIES: autosomal recessive type (AR-HIES) and autosomal dominant type (AD-HIES). AR-

HIES is mainly caused by mutations in the dedicator of cytokinesis 8 (DOCK8) and less likely 

by mutations in phosphoglucomutase 3 (PGM3) and interleukin 6-signalling transducer (IL6ST) 

genes. AD-HIES normally is a mutated signal transducer activator of transcription 3 (STAT3). 43-

46 DOCK8 is a cytoskeletal protein, which contains two related conserved protein domains, 

DHR1 and DHR2 with homozygous and heterozygous DOCK8 mutations; they have been 

reported with frequent large deletions and point mutations, leading to protein loss of 

function.47,48 The production of DOCK8 protein in the immune system, especially in 
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lymphocytes, is elevated. Moreover, its expression also is found in the placenta, kidney, lung, 

and pancreas.49 DOCK8-deficient patients develop atopic dermatitis, asthma, and severe allergies 

to food and environmental antigens in early infancy.50 In addition, chronic viral infections also 

are distinctive features, with the common pathogens being herpes simplex virus (HSV), human 

papillomavirus (HPV) molluscum contagiosum virus (MCV), and varicella-zoster virus (VZV). 

More recently, AR-HIES has been reported in a smaller subset of patients as a result of 

mutations in PGM3 and IL6ST.51,52 In contrast, STAT3 was identified as the only causative gene 

of AD-HIES.53-56 AD-HIES is also a multisystem disorder with skin, skeletal, vascular, 

connective tissue and immune involvement. STAT3 deficient patients develop a distinctive 

craniofacial profile (from childhood towards teenage), which includes facial asymmetry, 

prominent forehead, broad nose, deep set eyes, rough facial skin, and retention of primary teeth. 

They also are prone to developing pulmonary infections complicated by pneumatoceles and are 

at high risk of hematological malignancies.55-57 In general, all HIES patients are susceptible to 

recurrent sinopulmonary infections caused by a wide variety of pathogens, including 

Streptococcus pneumoniae, Haemophilus influenzae, Pneumocystis jirovecii, Histoplasma 

capsulatum, and Legionella pneumophila58. 

Atopic dermatitis (AD) or eczema is a prevalent pediatric skin disease with chronic 

inflammatory, and specific food allergens and nutrients are related closely to the development 

and severity of this disease. AD is characterized by intense pruritus and occurs primarily in 

infants and children, with approximately 70% of cases starting before the age of 5 years. The 

eczematous lesions classically involve the face, scalp, and extensor surfaces of extremities. 

Impaired innate and adaptive immunity, environmental changes, and alterations in genes 

involved in epidermal barrier functions all contribute towards the clinical manifestations of this 
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disease.59 These patients are susceptible to superficial infections with Staphylococcus aureus, but 

deep-seated infections rarely occur in the AD, unlike DOCK8 deficient patients. Treatment of 

AD is directed mainly towards prevention and management of infection and immunomodulation 

to control the associated rash and pruritus. Topical corticosteroids, systemic antibiotics, and 

antifungal agents are used for both prophylactic and symptomatic treatment in conjunction with 

topical therapy. 

Atopic dermatitis and HIES share similar clinical symptoms, including eczema, 

eosinophilia, and characteristic elevated levels of serum IgE. Metabolomics is a rapidly growing 

and promising discipline, which quantifies the group of small molecules involved in 

intermediary metabolism encoded by genomic DNA. Over the last decade, several relevant 

biomarkers have been identified through both targeted and untargeted metabolomics studies, and 

they have been involved in complex clinical phenotypes in diverse biological systems. 

Significant environmental and clinical disturbances can be monitored at the metabolomic level 

by examining an array of different pathways that are crucial for cellular homeostasis.60,61 Since 

the metabolome is complex and very dynamic, newer and more reliable quantitative technologies 

have enabled the discovery of biomarkers specific enough to distinguish patients in various 

health states from healthy subjects.62 Chemical isotope labeling liquid chromatography-mass 

spectrometry (CIL LC-MS) is a robust and emerging analytical platform used in biomarker 

discovery, where different labeling reagents are used to target functional groups based sub-

metabolomes.63,64 

Apart from biomarkers capable of distinguishing DOCK8-deficient from AD patients,65 

definitive metabolomics biomarkers have not been identified yet. Therefore, we aimed to employ 

in-depth metabolomics technologies to study the metabolomics profiles of a cohort of patients 
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with different forms of HIES and explore biomarkers that potentially reflect disease pathogenesis 

and may contribute towards improved disease monitoring and, ultimately, novel clinical 

interventions. We, therefore, applied CIL LC-MS, targeting the amine/phenol sub- metabolomes 

to find novel differentially expressed biomarkers in hereditary HIES (DOCK8, PGM3, STAT3) 

and AD patient groups. 

3.2 Material and Methods 

3.2.1. Chemicals 

The LC-MS grade reagents, including water, acetonitrile (ACN), methanol, and formic acid, 

were purchased from Fisher Scientific (Ottawa, ON) and 13C-dansyl chloride was available from 

the University of Alberta) (http://mcid.chem.ualberta.ca). For the cell culture, Rosewell Park 

Memorial Institute (RPMI) medium, penicillin, and glutamine was obtained from Sigma 

Chemicals,(St. Louis, MO), and Fetal bovine serum (FBS) from Gibco, Life Technologies, 

(Saint-Aubin, France) 

3.2.2. Characteristics of The Study Population 

Through the Allergy/Immunology clinics at KFSHRC, children and adults with a genetically 

confirmed diagnosis of hereditary (DOCK8, PGM3, STAT3) HIES syndrome and atopic 

dermatitis (AD) meeting the Hanifin and Rajka clinical criteria, together with healthy controls, 

were consented to participate in this study.66 Patients who received bone marrow transplantation, 

enrolled in another clinical study, unwilling to provide informed consent, or whose sample 

amount was not sufficient were excluded from the study. A baseline questionnaire, including 
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clinical symptoms, allergies, and family history was collected. This study was approved by the 

Research Ethics Committee at the Office of Research Affairs of King Faisal Specialist Hospital 

and Research Center (KFSHRC) (RAC No. 2160 015). 

3.2.3. Cell Culture 

Lymphoblastoid cell lines were obtained by transformation of peripheral blood mononuclear 

cells (PBMCs) with Epstein-Barr virus through density gradient centrifugation according to the 

manufacturer’s instructions, as published in our previous work.67 

3.2.4. LC-MS 

In this CIL LC-MS metabolomics workflow (Figure 3.1), each sample was labeled by 12C-

dansyl chloride (DnsCl), while a pooled sample was generated by mixing all individual samples, 

then labeled by 13C-DnsCl.63 The 13C-labeled pooled sample served as a reference for all the 

12C- labeled individual samples. Each sample was normalized prior to LC-MS analysis. LC-UV 

quantitation was performed to determine the total concentration of dansyl-labeled metabolites. 

Each 12C-labeled sample was mixed with the same molar amount of 13C-labeled pooled sample 

and injected into the LC-MS. All labeled metabolites were identified as peak pairs on mass 

spectra, and the peak area ratios were used for quantitative metabolomic analysis. 

The serum and cell lysates processed samples were analyzed using a Thermo Fisher 

Scientific Dionex Ultimate 3000 UHPLC System (Sunnyvale, CA) linked to a Bruker Maxis II 

quadrupole time-of-flight (Q-TOF) mass spectrometer (Bruker, Billerica, MA). The LC column 

was an Agilent reversed phase Eclipse plus C18 column (2.1 mm × 10 cm, 1.8-μm particle size, 

95-Å pore size), while the mobile phase A was 0.1% (v/v) formic acid in 5% (v/v) ACN, and 
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solvent B was 0.1% (v/v) formic acid in acetonitrile. The LC gradient was: t = 0 min, 20% B; t = 

3.5 min, 35% B; t = 18 min, 65% B; t = 21 min, 99% B; t = 34 min, 99% B, with a flow rate of 

0.18 mL/min. The MS conditions were as follows: polarity, positive; dry temperature, 230 °C; 

dry gas, 8 L/min; capillary voltage, 4500V; nebulizer, 1.0 bar; end plate offset, 500V; spectra 

rate, 1.0 Hz. 

 

Figure 3.1. Flowchart of metabolomics workflow. 

3.2.5. Data Collection, Processing, and Analysis 

The LC-MS spectra were converted first to .csv files by Bruker Daltonics Data Analysis 4.3 

software. The peak pairs were extracted from .csv files by IsoMS. Meanwhile the redundant 

pairs (e.g., those of Na+, NH3
+ adduct ions and their dimers) were filtered out.68 All data 

generated from multiple runs were aligned together based on the peak’s accurate mass and 
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retention time. The missing values in the aligned file were filled by Zero fill software.69 A 

univariate analysis (volcano plot) was performed for each binary comparison to identify 

significantly differentially expressed metabolites. Here, we used a criterion of fold-change of 

greater than 1.5 or less than 0.67 with a q-value (false discovery rate) less than 0.05. The q-value 

is calculated by R script based on a p-value from a t-test. In the volcano plot, the x-axis 

represents the fold change (FC) between two comparison groups, and the y-axis represents the p-

value. The principal component analysis (PCA) and partial least squares discriminant analysis 

(PLS-DA) were performed using MetaboAnalyst (www.metaboanalyst.ca).70 The metabolites 

were identified positively by searching against DnsID Library (www.mycompoundid.org) using 

retention time and accurate mass.71 Putative identification was performed by searching accurate 

mass against My Compound ID library, which contains 8,021 known human metabolites and 

375,809 predicted metabolites (www.mycompoundid.org).72 

Statistical analysis among the three groups was performed by Analysis of Variance 

(ANOVA) using post-hoc Tukey’s method of analysis, with multiplicity adjusted p-values for 

each comparison. This method was chosen not only because of the unequal group sizes among 

the experimental and the control groups but also because it reduces the probability of making a 

type 1 error and supports testing of pairwise differences. Further analysis was performed on 

GraphPad Prism (version 6.0, Graph Pad software, LA Jolle, CA). 

The Receiver Operating Characteristic (ROC) curves were constructed using random 

forest method MetaboAnalyst software version 3.0 (McGill University, Montreal, Canada) 

(http://www.metaboanalyst.ca) for global analysis. The raw data was normalized, transformed, 

 and scaled by a median, log, and Pareto, respectively, to make sure all the data are visualized 

under Gaussian distribution. 
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3.3. Results 

3.3.1. Clinical Characterizations of DOCK8-Deficient and AD Patients 

The clinical and laboratory characteristics of the study cohorts are represented in Table 3.1. The 

mean age of the DOCK8-deficient and AD cohort were 13.2 ± 5.9 and 10.8 ± 1.4 years, 

respectively, where the Ctrl was 23 ± 1.03 (Table 3.1). Comparatively, the CD4/CD8 ratio in the 

DOCK8 cohort (2.8 ± 0.99) was higher than the PGM3 and STAT3 cohorts, whereas in the AD 

cohort the ratio was 1.43 ± 0.14. Eosinophilia was present in all patients but did not correlate 

with elevated IgE levels. The mean RBCs and WBCs counts in HIES patients were 4.6 ± 0.4(10^ 

12/L) and 6.7 ± 1.7 (10^ 9/L), whereas in AD patients they were 5.3 ± 0.16 (10^ 12/L) and 6.74 

± 0.9 (10^9/L), respectively. The Severity Scoring of Atopic Dermatitis (SCORAD) and the 

Visual Analogue Scale (VAS) pruritus scores were calculated for both DOCK8 deficient and 

atopic dermatitis groups (Table 3.1).73 

The most commonly seen clinical presentations in our HIES cohort were atopic 

dermatitis, food allergies, pneumonia, and staphylococcal infections, whereas in AD patients, 

pneumonia or deep-seated staphylococcus infections were not observed. As anticipated, total IgE 

levels in both HIES and AD groups were elevated when compared to the control group, with 

HIES patients showing significantly higher serum IgE levels (p-value < 0.05) compared to AD 

patients and controls (5-500 KU/L), as shown in Figure 3.2A. Among the HIES, cohort splicing 

mutations were the most common (46%), followed by missense mutations (27%), deletion 

mutations (20%), and stop codon mutations (7%).(Figure 3.2B) 
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Table 3.1. Clinical Scores (VAS and SCORAD) and Laboratory Findings in HIES and Atopic Dermatitis Cohorts. 

Abbreviations: AD atopic dermatitis, DOCK8 dedicator of cytokinesis, F,female, M male, PGM3 

phosphoglucomutase-3, SCORAD (severity scoring of atopic dermatitis), SEM standard error of the mean, STAT3 

signal transducer and activator of transcription 3, VAS (visual analogue score). 

 

 

 

                                       A                                                                  B 

Figure 3.2: Serum IgE levels and mutations in HIES and DOCK8 deficient patients. (A) Serum IgE levels in 

patients with HIES (Hyper IgE syndrome), atopic dermatitis (AD), and healthy controls (Ctrl) measured at collection 

point (One way ANOVA, Post hoc Tukey’s method, ** p-value <0.001). (B) Distribution of mutations in HIES 

patients. 
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3.3.2. Metabolomics Profiling 

Serum metabolomics profiles were generated for HEIS (DOCK8-deficient, PGM3, and 

STAT3deficient), AD, and Ctrl groups that showed cluster separation among these groups 

(Figure 3.3). Pathway analysis (Figure 3.4A) identified nitrogen (global) amino acid metabolism 

pathways to be the most perturbed, followed by an amino acyl-tRNA biosynthesis when DOCK8 

deficiency was compared with AD and Ctrl, as shown in Figure 3.4B. The global metabolomics 

profile was dissected in several binary analyses for a better understanding of the distinctive 

contribution of each gene in the HIES group compared to either the AD or Ctrl groups. Partial 

least square discriminant analysis (PLS-DA) score plot demonstrates a significant separation 

between the DOCK8- deficient and Ctrl groups (Figure 3.4C). The univariate and volcano plot 

analyses also were performed, and a total of 3442 metabolites features were detected, among 

which a group of metabolites (n=481) was expressed differentially and visualized in the volcano 

plot (Figure 3.4C). The cutoff p-value has a corresponding q-value of less than 0.05and a fold 

change cutoff value of 1.5. Among the 481 dysregulated metabolites, 274 metabolites were up-

regulated, while 207 metabolites were down-regulated in the DOCK8-deficient group (Figure 

3.4C). However, only 40 metabolites were identified positively using the dansyl standard library 

based on exact mass and retention time match for the metabolite and its labeled internal standard. 

                                        

Figure 3.3. PCA score plots: HIES vs AD vs Controls. 
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Figure 3.4. Pathway analysis and binary comparisons. (A) Pathway analysis for HIES vs Ctrl comparison. (B) 
DOCK8 (n=10 in duplicates) vs Control (n=33 in duplicates): PLS-DA score plot with a calculated space Q2=0.971 

and R2=0.997. (C) Volcano plots (DOCK8 deficiency vs. control) with fold change >1.5 (up-regulated=274 

metabolites) and <0.67 (down-regulated=207 metabolites); q=0.049, p=0.107, 40 metabolites were positively 

identified. (D) AD(n=9) vs Control(n=33): PLS-DA score plot, with a calculated space Q2=0.962 and R2=0.998. (E) 

Volcano plots with fold change >1.5 (up regulated=232) and <0.67 (down regulated=186), q=0.050, p=0.055, total 

37 metabolites were identified positively. Abbreviations: DOCK8-Dedicator of cytokinesis 8, AD-Atopic dermatitis. 

 

Similarly, the binary comparison between AD patients and Ctrl groups (Figure 3.4D), 

showed a clear cluster separation between the two groups (Q2 = 0.962), and a total of 418 

metabolites were dysregulated, including 232 up-regulated and 186 down-regulated metabolites 

(Figure 3.4E). In this group, only 37 metabolites were identified positively using the dansyl 

standard library. Seven metabolites were positively identified using the dansyl standard library 

after a binary comparison between DOCK8 and AD cohorts (Figure 3.5A, B), while a total of 

147 metabolites were dysregulated (118 and 29 metabolites were up- and down-regulated in the 

DOCK8 deficient group, respectively). The seven positively identified metabolites are presented 
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in Figure 3.5 C–I. Among those, aspartic acid and 3-hydroxyanthranillic acid were elevated 

significantly in DOCK8-deficient patients, whereas the dipeptides leucyl-phenylalanine and 

glycyl- phenylalanine were down-regulated compared to the AD patients. Hypotaurine, 

guanosine, and 2- aminooctanoic acid were not found to be significantly differentially expressed 

in DOCK8- deficiency compared to AD after using one way ANOVA / post-Tukey's method 

(Figure 3.5G-I). The patients PBMC cell line metabolomics profile was generated using the same 

mass spectrometry platform. 

 

Figure 3.5. Positively identified serum metabolites in DOCK8 vs AD vs Ctrls. (A) PLS-DA score plot for binary 

comparison between DOCK8 and AD, with a calculated space Q2=0.758 and R2=0.998. (B) Volcano plot with fold 

change >1.5 (up-regulated=118) and <0.67 (down-regulated=29), total 7 metabolites were positively identified. (C) 

L-Aspartic acid is up-regulated in DOCK8 deficient patients compared to AD patients. (D) 3-Hydroxyxanthranillic 

acid is up-regulated in DOCK8 patients. Dipeptides leucyl-phenylalanine and glycyl-phenylalanine are up-regulated 

in AD patients compared to DOCK8 patients (E, F respectively). (G) Hypotaurine is down-regulated in DOCK8 

compared to Ctrl. Guanosine is up-regulated in DOCK8 and AD patients, while 2-aminooctanoic acid is up-
regulated in AD patients only (I). For paired analysis, a combination of t-test and fold change analyses is represented 

in this volcano plot, where the x-axis (FDR-corrected p-value) and the y-axis is a true positive. Statistical analysis 

was performed using one way ANOVA, post hoc Tukey’s, where * Indicates significance with p-value < 0.05, ** p-

value < 0.001, and otherwise not significant (ns). Abbreviations: DOCK8-Dedicator of cytokines8, AD-Atopic 

dermatitis, Ctrl-healthy controls. 

Pathway analysis revealed some perturbations. PLS-DA analysis showed cluster 

separation in the binary comparisons: DOCK8 (n=7) vs Ctrl (n=4), AD (n=4) vs Ctrl (n=4), 

DOCK8 vs AD (Figure 3.6). 4-Hydroxybenzoic and 3-hydroxymandelic acids were the common 

differentially expressed metabolites in both the PMBC and serum samples of DOCK8 deficient 
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patients when compared with controls. When AD cohort samples were compared to Ctrls, 

glutamic acid, ornithine, serotonin, 1, 4-diaminobutane and aniline (a primary aromatic amine) 

were in common among the serum and cell line samples. No common metabolites were observed 

among the serum and cell lines samples for the binary comparison between DOCK8 and AD 

patients. 

 

                                   

Figure 3.6. Binary comparisons of cell lines lysates metabolomic profiles (run in triplicates)  (A) PLS-DA score plot 

in DOCK8 (n=7) vs Ctrl (n=4). (B) PLS-DA score plot in AD (n=4) vs Ctrl. (n=4) (C) PLS-DA score plot in 

DOCK8 vs AD. Abbreviations: DOCK8-Dedicator of cytokinesis 8, AD-Atopic dermatitis, Ctrl-healthy controls. 
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3.3.3. Biomarker Evaluation 

As a result of the binary comparisons between DOCK8 vs Ctrl, AD vs Ctrl, and DOCK8 vs AD 

groups, receiver operating characteristics (ROC) exploring curves were generated (Figure 3.7A). 

The 95% confidence interval was calculated for these curves using 500 bootstrappings, and the 

optimal cutoff was determined using the furthest to diagonal line (Youden) to evaluate the 

sensitivity and specificity of the potential metabolites for being differentiating potential 

biomarkers mainly between DOCK8 deficient and AD patients. The combination of the top 

metabolites in ROC curves show AUCs ranging from 0.85 to 0.93 (Figure 3.7A). The significant 

features of the positively identified metabolites (Figure 3.7B) show the aspartic acid and 3- 

hydroxyanthranillic acid are being up-regulated whereas hypotaurine, leucyl-phenylalanine, 

glycyl-phenylalanine, guanosine, and 2-aminooctanoic acid were down-regulated in DOCK8 

deficiency. The combination of all seven analytes gave the maximum confidence of 

differentiation and detection of DOCK8 deficiency from the AD with (AUC=0.922). 

   

Figure 3.7. Receiver operating characteristics (ROC) curve and loading plots for positively identified metabolites in 

comparison between DOCK8 vs AD. (A) ROC generated by random forest model shows area under the curve 

(AUC) =0.931. (B) Loading plots with seven positively identified metabolites. (C) Hypotaurine is not significantly 

expressed in DOCK8 patients, AUC-0.597 and p value of 0.41537. (D) 3-Hydroxyxanthranillic acid is up-regulated 

in DOCK8 patients, AUC: 0.884 and p-value of 4.4491E5. (E) Glycyl-phenylalanine is down-regulated in DOCK8 

patients compared to AD patients, AUC: 0.677 and p value of 0.04766. Data was normalized, transformed, and 

scaled by median, log, and Pareto scaling, respectively to make sure all the data are under Gaussian distribution. For 

paired analysis, a combination of t-test and fold change analyses is represented, where the x-axis (FDR-corrected p-

value), and the y-axis is true positive. Abbreviations: DOCK8-Dedicator of cytokines8, AD-Atopic dermatitis, Ctrl-

healthy controls. 
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3.4. Discussion 

It is critical to recognize DOCK8 deficiency and to differentiate its various clinical and 

molecular forms before severe life-threatening complications arise. Differentiating HIES patients 

from AD can be difficult in infants and young children because of overlapping clinical and 

laboratory findings. The DOCK8 protein regulates intracellular signaling networks, proliferation, 

differentiation, migration, synapsis formation, adhesion, and survival of cells affecting innate 

and adaptive immunity reflecting complex function.74-76 

The identification of predictive biomarkers to distinguish DOCK8 deficiency from AD, 

based on serum metabolite changes, requires a highly sensitive platform to allow the detection of 

very low abundant (pmol to fmol) metabolites. Chemical isotope labeling LC-MS represents a 

robust method for metabolomics profiling and biomarker discovery, as the 13C-labeled pool 

served as an internal standard and compensated for the fluctuations in MS response.77 In this 

study, seven metabolic features were found to differentiate significantly between DOCK8 

deficiency and AD. The expression of these potential metabolites biomarkers was studied also in 

PGM3 and STAT3 deficiency for further validation of DOCK8 specificity, as shown in Figure 

3.8 and 3.9, respectively. Taken together, these seven differentially expressed metabolites paint a 

distinctive metabolomics profile in the various HIES and AD (Table 3.2). Up-regulation of 3- 

hydroxyanthranilic acid appears to be specific for DOCK8 deficiency compared to Ctrl and AD, 

while aspartic acid was only up-regulated in DOCK8 and STAT3 compared to Ctrl. Hypotaurine 

was down-regulated in DOCK8 deficiency compared to the AD. 
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Figure 3.8. Binary comparison of positively identified serum metabolites between PGM3 deficient vs AD patients. 

L-Aspartic acid (A), Guanosine (B), and Leucyl-phenylalanine (C) were significantly down-regulated while 2-

aminooctanoic acid (D) was up-regulated in PGM3 deficient compared to AD patients. Hypotaurine (E), 3-
Hydroxyxanthranillic (F) Glycyl-phenylalanine (G) expression was not significant. Statistical analysis was 

performed using student t test, where * indicates significance with p-value < 0.05 and, otherwise, not significant 

(ns). Abbreviations: PGM3-Phosphoglucomutase3, AD-Atopic dermatitis 

 

                      

Figure 3.9. Analysis of seven positively identified metabolites in STAT3 deficient vs AD patients. Only L-aspartate 

(A) was significantly up-regulated while Guanosine (B) was down-regulated in STAT3 deficient compared to AD 

patients. The statistical analysis was performed using a student t-test, where * indicates significance with a p-value < 

0.05 and, otherwise, are not significant (ns). Abbreviations: STAT3-Signal transducer and activator of transcription 

3, AD-atopic dermatitis. 
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Table 3.2. Summary of Metabolomics Profiles in HIES and AD. 

           

                     

 

Metabolite 

   

HMDB # 

   

DOCK8 d f. 

   

PGM3 

def. 

   

STAT3 

def. 

   

                

                

                    

               

                     

 Aspartic acid    HMDB0000191                

                     

 

3OH-anthranilic acid 

   

HMDB0001476 

   

 

   

NS 

   

NS 

   

       

 

        

               

                     

               

 

Hypotaurine 

   

HMDB0000965 

   

 

   

NS 

   

NS 

   

                

               

               

 

Guanosine 

   

HMDB0000133 

   

 

   

 

   

 

   

                

               

               

 

Leucyl-Phenylalanine 

   

HMDB0013243 

   

 

   

 

   

NS 

   

                

               

                     

 

Glycyl-Phenylalanine 

   

HMDB0028848 

   

 

        

          NS    NS    

                     

               

 2-aminooctanoic acid    HMDB0000991    NS    NS    NS    

 



 

 

62 

The binary analyses between DOCK8 deficiency with and without various clinical 

complications (asthma, bronchiectasis, molluscum contagiosum, sclerosing cholangitis, 

candidiasis, warts, sinusitis, or malignancy) failed to demonstrate a secondary role for these 

phenotypes on the overall DOCK8 deficiency specific metabolites (Figure 3.10), which suggests 

that these metabolites are due primarily to the underlying genetic deficiency, rather than its 

secondary medical complications. 

                      

Figure 3.10. PLS-DA loading plots based on binary comparisons in DOCK8 deficient patients with/without various 

clinical phenotypes including (A) asthma, (B) bronchiectasis, (C) molluscum contagiosum, (D) sclerosing 

cholangitis, (E) candidiasis, (F) warts, (G) sinusitis, (H) malignancy. 
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Mammals oxidize hypotaurine to taurine using trace amounts of hydrogen peroxide 

(H2O2) produced by cellular metabolism, which is likely to be more frequent in the brain than the 

liver.78 Holopainen et al.(1982) demonstrated the rapid uptake of hypotaurine into neuroblastoma 

cells suggesting that hypotaurine may have a function in the regulation of neuronal activity.79 

Other studies suggested a role for hypotaurine as an antioxidant and protective agent under 

physiological conditions.73,80 Peng et al. (2016) also showed that under hypoxic signaling, 

hypotaurine behaves as an oncometabolite, promoting tumor progression.81 

  3-Hydroxyanthranillic acid (3-HAA), a tryptophan catabolism molecule produced 

through the kynurenine pathway, suppresses antitumor immunity in human malignancy82. It can 

inhibit Th1 and Th2 cells as an immune regulator, by increasing the percentage of regulatory T- 

cells, and regulate leucocyte infiltration and plaque formation.83 It is found in the human 

epidermis where it participates in multiple enzymatic reactions.84,85 Also, 3-HAA appears to play 

an essential role in the pathogenesis of several inflammatory, infectious, and degenerative 

diseases.86 The increased tryptophan catabolism in relation to infections during the course of the 

disease, may lead to the increased levels of 3HAA, as seen in our DOCK8 patients (Figure 3.5B). 

More recently, Hongjun et al. (2017) showed that homozygous germline deficiency in 3- 

hydroxyanthranilic acid 3,4-dioxygenase (HAAO) causes niacin deficiency, responsible for a 

complex human multiple congenital (cardiac, vertebral, renal) anomalies syndrome, which can 

be averted in affected mice via prenatal niacin supplementation.87 

Perturbations in amino acid metabolism also had been observed in some cancers as well 

as neurodegenerative disorders, such as Parkinson diseases and Alzheimer disease.88-90 Aspartic 

acid, one of the major excitatory neurotransmitters, decreased in patients with depression and 

brain atrophy yet was found to have an elevated level in some epileptic and stroke patients. In 
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contrast, guanosine, a nucleoside that exerts important neuroprotective and neuromodulatory 

roles in the central nervous system, became a leading role to inhibit the glutamatergic 

neurotransmission activity. Glycyl-phenylalanine, a dipeptide produced by incomplete protein 

catabolism, consists of glycine and phenylalanine and is known to play an essential role in cell 

signaling by impacting specific amino acid degradation pathways.91 It is transported intact by a 

cation independent facilitative diffusion mechanism during which the dipeptide is hydrolyzed to 

its component amino acids.91 Some dipeptides, although they have not been detected in human 

tissues or biofluids, are simply short-lived intermediates involved in specific amino degradation 

pathways and proteolysis, later on affecting cell-signaling. These dipeptides also are classified as 

an 'expected' metabolites. 2-Aminooactanoic acid is shown to be perturbed in human colorectal 

cancers.92 Taken together, these findings call for further analysis of the perturbed amino acid 

pathways for additional insight into its significance. 

3.5. Conclusion 

DOCK8 deficiency appears to be associated with a distinctive metabolomics profile 

characterized by significant differential overexpression of 3-HAA and aspartic acid coupled with 

underexpression of hypotaurine, guanosine, leucyl-phenylalanine, glycyl-phenylalanine, which 

together seem to contribute to some of the immune and malignancy related phenotypes observed 

in this disease. The complex nature of these diseases suggests that no single biomarker will be 

sufficient to meet the clinical needs of such patients; instead a larger panel of biomarkers will be 

required. 
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Chapter 4  

Untargeted Metabolomics Profile of Metformin Effect on 

Type 2 Diabetes in Obese Patients 

4.1. Introduction 

Diabetes mellitus is a chronic condition that occurs when the blood glucose raises because of the 

inefficient hormone insulin production or ineffective insulin usage.93 In 2017, diabetes affected 

more than 420 million people worldwide and became one of the leading causes of cardiovascular 

disease (CVD), blindness, kidney failure, and lower-limb amputation.94 There are three major 

types of diabetes: type 1, type 2, and gestational diabetes. Among them, type 2 diabetes (T2D) is 

the most common diagnosis, accounting for around 90% of all cases.93-95 In type 2 diabetes, 

insulin resistance is the leading cause of hyperglycemia, mainly blamed on the resistance to poor 

insulin production and on the inefficiency of the body’s response to insulin. The onset of T2D is 

relatively long, and symptoms of T2D can occur at a very late stage without acute metabolic 

disturbance, making it difficult for diagnosis.96 Most of the T2D patients are coupled with 

obesity issues, and obesity itself leads to some degree of insulin resistance but is not severe 

enough to cause hyperglycemia.97 However, obesity is considered the most crucial factor in the 

growth of metabolic diseases. Obesity's prevalence in the Middle East is increasing; for people 

above 20, 70% of men are overweight in Saudi Arabia, while 74% of females have the same 

issue.98 Obesity-associated metabolic conditions, including diabetes, cardiovascular diseases, 
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sleep apnea, and idiopathic intracranial hypertension (IIH), have not been studied explicitly in 

the Middle East. 

In obese individuals, increased amounts of non-esterified fatty acids (NEFAs) have been 

released by adipose tissue, resulting in insulin resistance and β-cell dysfunction.99 An acute 

increase of plasma NEFA levels will initiate glucose transport/phosphorylation inhibition and 

further reduce the rate of muscle glycogen synthesis and glucose oxidation. Together, insulin 

resistance is developed.100 Researchers also reported that an activation of serine/threonine kinase 

cascade resulted in phosphorylation of insulin receptor substrates.101 This could be caused by the 

NEFA delivery enhancement or reduced intracellular metabolism of fatty acids.101 Further, the 

phosphorylated substrates caused diminished activity in the downstream of insulin-receptor 

signaling.101  

In addition to elevated NEFAs, excess body weight also affects insulin resistance. 

Researchers found that body fat distribution is one of the important factors that affect insulin. 

Individuals with more peripherally distributed body fat tend to be more sensitive to insulin than 

individuals with more central fat distribution.99 Compared to subcutaneous fat, abdominal fat is 

more lipolytic, and its response to the antilipolytic action of insulin is less sensitive. Therefore, 

intra-abdominal fat is considered one of the causes for insulin resistance and, thus, diabetes.102  

Metformin, the drug of choice for T2D treatment that reduces glucose levels during the 

hyperglycemia, has other phenotypic effects, such as reduces insulin resistance, improving the 

tissue glucose uptake, and lowering the LDL cholesterol.103 Lowering the LDL cholesterol is due 

to activation of the AMPK in the liver disturbing several pathways, including nitric oxide 

production by endothelial Nitric oxide synthase (eNOS). NOS is stimulated by metformin, where 

the mechanism of action is not understood completely.104 Metformin suppresses hepatic 
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gluconeogenesis, and reduces the glucose absorption in the intestine, which alternates the 

composition of gut microbiota and controls the muscle glucose metabolism.105,106 Metformin has 

shown associations with cancer such as breast107, prostate108, colorectal109, endometrial110, and 

ovarian1, 2. Mitochondria utilizes glucose, amino acids, and fatty acids for ATP production, redox 

balance, and biomass production. Metformin is believed to play a role in disrupting 

mitochondrial function by partially inhibiting NADH dehydrogenase or by inhibiting the hepatic 

glycerol phosphate dehydrogenase.113 A metabolomics based study on tumors from ovarian 

cancer patients (stage III/IV) on metformin compared to patients non-exposed to metformin 

reveals that TCA intermediates and short-chain acylcarnitines (mitochondrial metabolism) were 

suppressed in the tumor of metformin-treated patients.114 As metformin selectively kills breast 

cancer stem cells, a metabolomic study showed its role in depleting the TCA and glycolytic 

intermediates during the cell transformation, showing the evidence of inhibiting complex I of the 

mitochondria in cancer cell lines115. The metabolomics profile of Li-Fraumeni Syndrome (LFS) 

patients showed an increase in TCA  cycle intermediates (i.e., aconitate, malate, and fumarate), 

and signature of fatty acid oxidation (i.e., acylcarnitines, long chain fatty acids, and 3 hydroxy 

fatty acids) due to metformin treatment.116 

BCAA, aromatic amino acids (AAA), Glu/Gln, Met, and C3 and C5 acylcarnitines were 

found to be associated strongly with insulin resistance in a targeted metabolomics platform.117,118 

HF/BCAA feeding induced insulin resistance was accompanied by chronic phosphorylation of 

mTOR, JNK, and IRS1Ser307, as well as multiple acylcarnitines accumulation in muscle. Leu, 

Ile, Val, Phe, and Tyr levels in plasma were found to be associated with future development of 

Type 2 diabetes.118,119 A dramatic drop in BCAA and C3and C5 acylcarnitines was observed in 

obese cases with type 2 diabetes had surgical (i.e. gastric bypass (GBP), gastric sleeve) versus 
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dietary interventions, which suggests, that the glucose homeostasis improvement is more 

dramatic in surgical than life stile methods.120,121 The plasma levels of BCAA and AAA were 

found to be lowered in insulin-sensitive compared to insulin-resistant subjects treated with a 

sulfonylurea drug. For the same subjects, the profile was switched when they were treated with 

metformin.122 

A population-based targeted metabolomics study reported decreased levels of three amino 

acid clusters, phenylalanine/tyrosine, citrulline/arginine, and lysine/α-aminoadipic acid in 12 

metformin-treated patients as an effect of insulin sensitizer therapy.123 The non targeted 

metabolomics studies on the effect of metformin on T2D patients reveals only two metabolites: 

citrulline and an unknown compound coded X-21365, where they were down- and up-regulated 

in patient groups, respectively.124 Triglycerols (TGs) were found to be associated with diabetes 

risk, whereas the TGs containing fatty acids with a lower number of carbon and double-bonds 

lowered the risk of diabetes.125 2-Amino adipic acid (2-AAA) was thought to be derived from 

lysine metabolism. However, in diabetes, it was found to be correlated with incidents of type 2 

diabetes and in agreement with an amino acid profile, which strongly suggests an independent 

diseases risk mechanism to produce 2-AAA.126 Glycine was found to be a negatively-associated 

metabolite in a relationship of insulin sensitivity to cardiovascular risk study, compared to 

BCAA using a combined approach between GCMS and LCMS.127 Oleic acid, linoleoyl-

glycerophosphocholine, and α-hydroxybutyrate were correlated with impaired glucose tolerance 

and with a better insulin resistance state than BCAAs or glycine.127,128 

An integrated-network between transcriptomics and metabolomics profiles generated from 

H295R cells treated with metformin reveals the effect of metformin in energy metabolism, sex 

steroid biosynthesis, the cell cycle, and immunity.129  
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However, due to the limitation of current tools for detecting a large number of metabolites, 

the above studies only analyzed a small fraction of the metabolites, for example, the 

conventional LC-MS method detected a few hundreds of metabolites semi-quantitatively. In 

order to identify the metabolomics profile of metformin in diabetic obese human individuals, 

high-performance chemical isotope labeling (CIL) liquid chromatography-mass spectrometry 

(LC-MS) was used in this study. CIL is used to alter the chemical and physical properties of 

metabolites for much-improved separation and enhanced detection sensitivity, thereby increasing 

the number of detectable metabolites31. Also, using differential isotope labeling, accurate and 

precise quantification of metabolite concentration differences in comparative samples (i.e., 

relative quantification) can be achieved31. 

4.2. Methodology 

4.2.1. Metabolomics Profiling Workflow 

Supplemental Figure S1 shows the schematic of the overall workflow. In this study, each sample 

was labeled by 12C-Dansyl Chloride (DnsCl), while a pooled sample, which was generated by 

mixing aliquots of all the individual samples and was labeled by 13C-DnsCl. The 13C-labeled 

pool served as an internal standard for all the 12C-labeled individual samples. Each sample 

amount of each individual sample was normalized using the LC-UV method25. The 12C-labeled 

individual sample was mixed with the same mole amount of 13C-labeled pool sample, and the 

mixture was injected onto a LC-MS. All the labeled metabolites were detected as peak pairs on 

mass spectra. The peak area ratios were used for quantitative metabolomic analysis; the same 

13C-labeled pool was spiked into all 12C-labeled individual samples, thus the peak ratio values 

of a labeled metabolite in different samples reflected the concentration differences of this 
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metabolite in these samples. In other words, every 12C-labeled metabolite from an individual 

sample had its corresponding 13C-labeled metabolite in the pooled sample as a reference, 

resulting in high accuracy for relative quantification. 

4.2.2. Chemicals and Reagents 

The LC-MS grade reagents, including water, acetonitrile, methanol, and formic acid, were 

purchased from Fisher Scientific (Ottawa, ON). 13C-dansyl chloride was available from 

NovaMT Inc. (http://www.novamt.com) with the procedures published previously31. 

4.2.3. Serum Samples and Dansylation Labeling 

Serum samples, including control (n=30), obese (n=26), and T2D (n=16) were collected and 

stored at -80℃. A 15-μL aliquot was taken out from each sample and serum metabolites 

extracted, followed by protein precipitation with 45 μL of methanol. After two hours incubation 

in a -20 ℃ freezer, 45 μL of supernatant were taken out and dried down, then mixed with 25 μL 

of water, 12.5 μL of ACN, 12.5 μL of sodium carbonate/sodium bicarbonate buffer, and 25 μL of 

12C-dansyl chloride or 13C-dansyl chloride (18 mg/mL in ACN). After vortex and spinning 

down, the mixture was incubated at 40 ℃ for 45 min. A 5-μL sample of 250 mM NaOH was 

added to quench the reaction for 10 min at 40 ℃. A 25-μL aliquot of 425 mM formic acid in 1:1 

ACN/H2O was added to consume excess NaOH. 

4.2.4. LC-UV 

Before LC-MS injections, sample normalization was performed to minimize variations in the 

total sample amount of individual samples when comparing samples. A step-gradient LC-UV 
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method24 measured the total concentration of dansyl labeled metabolites. In brief, 5 μL of labeled 

sample were injected into a PhenomenesKinetes C18 column (2.1 mm×5 cm, 1.7 μm particle 

size, 100 Å pore size) connected to a Waters ACQUITY UPLC system (Waters, Milford, MA). 

Mobile phase A was 0.1% (v/v) formic acid in 5% (v/v) acetonitrile, and mobile phase B was 

0.1% (v/v) formic acid in 5% (v/v) ACN. The 6.5-min LC gradient was: t = 0 min, 0% B; t = 1 

min, 0% B; t = 1.1 min, 95% B; t = 2.6 min, 95% B; t = 3.1 min, 0% B. The flow rate was 0.45 

mL/min. The PDA detector was operated at 338 nm. The peak area, which represents the total 

concentration of dansyl-labeled metabolites, was integrated using the Waters Empower (6.00). 

4.2.5. LC-MS 

Each sample was labeled by 12C-DnsCl and mixed in equal amounts with a 13C-labeled pool 

sample, based on the quantification results from LC-UV analysis. The mixtures were analyzed 

by a Thermo Scientific Dionex Ultimate 3000 UHPLC System (Sunnyvale, CA) linked to a 

Bruker Maxis II quadrupole time-of-flight (Q-TOF) mass spectrometer (Bruker, Billerica, MA). 

The LC column was an Agilent reversed phase Eclipse Plus C18 column (2.1 mm × 10 cm, 1.8 

μm particle size, 95 Å pore size). The mobile phase A was 0.1% (v/v) formic acid in 5% (v/v) 

ACN, and solvent B was 0.1% (v/v) formic acid in acetonitrile. The LC gradient was: t = 0 min, 

20% B; t = 3.5 min, 35% B; t = 18 min, 65% B; t = 21 min, 99% B; t = 34 min, 99% B. The flow 

rate was 0.18 mL/min. The MS conditions were as follows: polarity, positive; dry temperature, 

230 °C; dry gas, 8 L/min; capillary voltage, 4500V; nebulizer, 1.0 bar; end plate offset, 500V; 

spectra rate, 1.0 Hz. 
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4.2.6. Data Analysis 

Bruker Daltonics Data Analysis 4.3 software was used first to convert MS spectra information 

into .cvs files. An in-house software IsoMS36 was used to process the raw data generated from 

multiple LC-MS runs by peak picking, peak pairing, and peak-pair filtering to remove redundant 

peaks. IsoMS files from each injection were aligned together based on the peak’s accurate mass 

and retention time to generate the aligned files. The missing peak pair information in aligned file 

were re-extracted from raw data by Zerofillsoftware.37 The final metabolite-intensity data file 

can be used for statistical analysis after normalization and/or scaling. The principal component 

analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed by 

MetaboAnalyst (www.metaboanalyst.ca). The metabolites were identified positively by 

searching against DnsID Library, which contains retention time, MS, and MS/MS information of 

311 amine/phenol-containing metabolite standards (www.mycompoundid.org).39 Putative 

identification or match was performed by searching accurate mass against MyCompoundID 

library, which contains 8,021 known human metabolites and 375,809 predicted metabolites 

(www.mycompoundid.org).40 

4.3 Results and Discussion 

4.3.1. Metabolomics Results 

In this study, based on our unique characteristics of peak pair detection offered by the CIL LC-

MS method, we detected a total of 3632 peak pairs. The IsoMS software filtered out redundant 

peak pairs, such as those from adduct ions, dimers, multimers, etc., to retain only one peak pair 

for each metabolite. By removing redundant information, the number of peak pairs detected 
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represents the number of metabolites detected. From the detected peak pairs, 216 metabolites 

were identified positively using both retention time and accurate mass searching against the 

MycompoundID (MCID) database, and 611 and 1296 metabolites were identified putatively with 

the zero-reaction and the one-reaction library, respectively, using accurate mass only. Thus, 

62.2% of the 3632 peak pairs detected were either identified or matched, which shows the 

significant coverage of the submetabolome using the dansylation labeling LC-MS method for the 

serum samples analyzed in this study.  

4.3.2. Obese versus Lean 

Multivariate statistical analysis was performed to analyze the serum metabolome dataset. Figure 

4.1A shows the PCA plot of three groups and quality controls (QC), while in Figure 4.1B, the 

QCs were excluded. In the plots, the clustered QC data ensured the reproducibility as well as the 

robustness of the CIL technique.  

Partial least squares discriminant analysis (PLS-DA) was performed first to reveal the 

distinct separation between groups visually. We first analyzed the metabolome dataset to see the 

separation between lean and obese (Obs (-T2D/-Met)); from Figure 4.1A, the clusters of both 

groups were separated with Q2 = 0.737.  

To analyze the metabolome change further, univariate analysis using volcano plots was 

performed on the metabolome set. In the volcano plot, the x-axis is the fold change (FC) of obese 

group over control group, and the y-axis is the p-value from the t-test comparing two groups. To 

determine metabolites with significance, we used the criteria of q-value (false discovery rate) 

less than 0.05, and FC > 1.5 (or FC < 0.67). The q-value is calculated by R script based on the p-

value from the t-test. The fold-change criterion chosen was based on the technical accuracy and 
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reproducibility, i.e., for dansylation LC-MS, the errors and RSD values are less than ±25%. 

Thus, we conservatively used a ±5 0% change as the criterion. In Figure 4.1B, a total of 189 

metabolites were dysregulated. Among them, 78 metabolites were up-regulated (FC > 1.5) and 

111 metabolites were down-regulated (FC < 0.67) comparing obese to lean groups. By searching 

against our dansyl standard library using these 189 metabolites, 30 of them were identified 

positively. The identification results of significantly changed metabolites with their FC and p-

value information are shown in Table 4.1. 

 

Figure 4.1. Healthy lean control and obese patients’ metabolomics profile was evaluated using PLSDA analysis (A), 

where the clusters of both groups were separated (Q2=0.737). (B) Volcano plot of obese versus lean group. 78 
metabolites were up- and 111 were down-regulated in the obese group, with fold change and FDR adjusted p-value 

at the cut-off 1.5(or 0.67) and 0.05, respectively.   
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Table 4.1 Positive Identification Results of Significantly Changed Metabolites between Lean and Obese Groups. 

 

ID No rt mz fc p 

Asparaginyl-Asparagine 46 125.6503 246.0956 0.423058 3.86E-05 

Glutaminyl-Asparagine 75 131.6984 260.1113 0.476398 0.000198 

Glutaminyl-Glutamine 83 134.51 274.1275 0.489987 0.031774 

L-Ornithine 119 152.6878 132.0893 0.494231 5.58E-05 

Asparaginyl-Aspartic acid 164 168.4914 247.08 0.498545 5.03E-06 

Guanidine 197 180.641 59.04718 0.529743 0.000905 

Gamma-Glutamylglutamic acid 272 225.1985 276.0951 0.559242 1.24E-06 

Alanyl-Serine 359 267.6916 176.0793 0.565238 0.009574 

Glutamic Acid 398 287.0138 147.0529 0.589568 2.66E-09 

Aspartic Acid 401 290.9654 133.037 0.606353 4.97E-06 

Valyl-Asparagine 443 312.7338 231.1216 0.609659 1.19E-05 

Tryptophyl-Asparagine 610 385.7995 318.1317 0.612233 0.000199 

1-Aminocyclopropane-1-carboxylate 756 440.0404 101.0473 0.633118 1.37E-06 

5-Hydroxyectoine 889 479.2398 158.0692 0.634187 3.55E-06 

Phenylalanyl-Glutamate 891 479.7834 294.121 0.636742 1.99E-05 

Glycyl-Valine 918 489.5974 174.0999 0.637195 0.03186 

prolyl-proline 944 504.7034 212.116 0.658986 0.002969 

Glutamic Acid - H2O 956 509.0195 129.0421 1.514919 4.01E-10 

Serinyl-Leucine 957 511.2347 218.1264 1.547097 3.46E-08 

2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate 970 519.9122 181.036 1.550853 0.000322 

S-Glutathionyl-L-cysteine 1027 542.6186 426.088 1.556174 1.25E-06 

Leucyl-Alanine 1183 570.0081 202.1313 1.56327 5.01E-07 

Isoleucyl-Valine 1929 727.3233 230.1647 1.578142 1.13E-08 

4,6-Dihydroxyquinoline 2520 901.2758 161.0503 1.626598 2.23E-11 

Phenylalanyl-Phenylalanine 2527 911.921 312.1467 1.626791 0.010808 

Tyrosyl-Glutamine 2597 933.646 309.1324 1.631172 0.005273 

N-Acetylindoxyl 3100 1032.785 175.0663 1.648656 2.23E-05 

1,4-Diaminobutane 4205 1175.911 88.1003 1.761737 7.08E-05 

Serotonin 6129 1410.734 176.0947 1.765138 3.52E-09 

3,4-Dihydroxybenzoate 6321 1454.165 154.0265 1.848377 1.42E-06 

 



 

 

76 

With the known identification information, these 30 metabolites were studied further to 

find a potential biomarker for obese groups. Metaboanalyst 4.0 was used to generate receiver 

operating characteristics (ROC) curves analysis to differentiate obese from leans. The Random 

Forest method was used to establish the classification model based on five metabolites with 

highest areas under the ROC curve (AUC) values. In Figure 4.2A shows the ROC of a model 

consisting of: 2-Methyl-3-hydroxyl-5-formylpyridine-4-carboxylate, S-Glutathionyl-L-cysteine, 

Phenylalanyl-Glutamate, Serotonin, and Glycyl-Valine. Among them, 2-Methyl-3-hydroxyl-5-

formylpyridine-4-carboxylate and S-Glutathionyl-L-cysteine are identified putatively. This 

model gave an AUC value equal to 0.934, indicating a strong discrimination power between 

obese and lean groups. The AUC values of each metabolite individually are shown in Figure 

4.2B. We also combined unidentified significant metabolites into the model to test if the 

differentiation power would be improved. However, after adding a few unidentified metabolites, 

no significant increase in performance was obtained. (Figure 4.3) 

          

Figure 4.2. (A)The ROC curve build up by Random Forest using the top five AUC identified metabolites panel with 

AUC = 0.934. (B) AUC values of individual metabolites, among them, 2-Methyl-3-hydroxyl-5-formylpyridine-4-
carboxylate and S-Glutathionyl-L-cysteine are putatively identified. Phenylalanyl-Glutamate, Serotonin, and Glycyl-

Valine are identified positively. 
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Figure 4.3. (A) The ROC curve build up by the top three unidentified metabolites and two identified metabolites 

with AUC = 0.936. (B)The individual AUC of each metabolites. 2-Methyl-3-hydroxyl-5-formylpyridine-4-

carboxylate is identified putatively and Phenylalanyl-Glutamate is identified positively. 

4.3.3 Diabetes versus Obese 

A clear separation was observed with Q2 = 0.885 from the PLS-DA score plot of diabase and 

obese groups from Figure 4.4A. The clear separation illustrates that diabetes and obese groups 

experienced some significant metabolome alternation. From the volcano plot shown in Figure 

4.4B, 459 metabolites were up-regulated (FC > 1.5) and 166 metabolites were down-regulated 

(FC < 0.67) in comparing diabetes to obese groups. The cut-off of p-value here is 0.038 (when q-

value = 0.05). 

 

Figure 4.4. obese and diabetes patients’ metabolomics profile was evaluated using PLSDA analysis(A), where the 

clusters of both groups were separated (Q2=0.885). (B) Volcano plot of diabetes versus obese group. 459 
metabolites were up- and 166 were down-regulated in diabetes group with fold change and FDR adjusted p-value at 

the cut-off 1.5(or 0.67), and 0.038, respectively.   
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The large number of dysregulated metabolites reconfirmed the observation from PLS-DA that 

the metabolome of diabetes and obese patients was altered. Out of 625 metabolites, 67 were 

identified positively using the Dnsyl library. These 67 metabolites were studied further by ROC 

analysis. Their detailed information was provided in Table 4.2. 

Table 4.2 Positive Identification Results of Significantly Changed Metabolites between Obese and Diabetes Groups. 

 

Name NO rt mz fc p 

O-Phosphoethanolamine 37 124.185 141.0186 2.869162 6.84E-07 

Asparaginyl-Asparagine 46 125.6503 246.0956 0.389027 3.10E-05 

Glutaminyl-Asparagine 75 131.6984 260.1113 0.376805 0.001062 

Glutaminyl-Glutamine 83 134.51 274.1275 1.628483 1.57E-10 

Carnosine 128 155.1351 226.1058 0.618315 0.015118 

Asparaginyl-Aspartic acid 164 168.4914 247.08 0.635139 0.000597 

Gamma-Glutamylglutamic acid 272 225.1985 276.0951 0.39748 1.26E-15 

Glycyl-Serine 299 237.1 162.0629 0.579695 4.07E-05 

Alanyl-Serine 359 267.6916 176.0793 2.180799 1.46E-08 

Cytidine 367 273.4085 243.0841 2.111074 7.65E-05 

Aspartic Acid 401 290.9654 133.037 0.636463 3.83E-10 

N-Formimino-L-glutamate 411 299.3845 174.0647 2.563758 8.67E-12 

N-Formimino-L-aspartate 425 307.881 160.0504 0.608945 7.85E-06 

Valyl-Asparagine 443 312.7338 231.1216 0.390149 2.72E-07 

2-Amino-5-oxohexanoate 453 320.7825 145.0735 1.577619 0.012272 

7-Carboxy-7-carbaguanine 517 356.2334 194.0421 1.935685 1.00E-09 

L-Aspartate 573 379.7011 133.037 0.639808 0.000252 

Tryptophyl-Asparagine 610 385.7995 318.1317 2.037326 0.001512 

2-Hydroxyethylenedicarboxylate 665 405.1094 132.0057 1.644719 3.78E-06 

Asparaginyl-Isoleucine 681 407.8613 245.1369 0.518395 0.005272 

Leucyl-Glutamine 690 408.5738 259.1524 0.512163 0.0016 

Phenylalanyl-Serine 714 423.775 252.1102 1.515672 0.001417 

1-Aminocyclopropane-1-carboxylate 756 440.0404 101.0473 1.615413 0.002409 

3,4-Dihydroxymandelate 786 447.7319 184.0336 2.089459 2.90E-09 

Glutaminyl-Leucine 805 451.388 259.1529 0.576654 0.000187 

4-Amino-4-deoxychorismate 809 451.999 225.0617 2.000493 4.54E-09 
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Isoleucyl-Threonine 865 470.3305 232.1418 0.222311 2.55E-09 

5-Hydroxyectoine 889 479.2398 158.0692 3.161868 1.04E-12 

Phenylalanyl-Glutamate 891 479.7834 294.121 0.640988 2.38E-09 

Glycyl-Valine 918 489.5974 174.0999 0.312201 2.24E-12 

Phenylalanyl-Threonine 919 490.3167 266.1262 1.527314 0.002392 

Alpha-aminobutyric acid 934 499.3752 103.0629 1.525817 0.000974 

prolyl-proline 944 504.7034 212.116 2.430371 1.27E-07 

Serinyl-Leucine 957 511.2347 218.1264 0.295113 8.04E-09 

Phenylalanyl-Glycine 964 517.8332 222.1005 2.040276 8.00E-10 

Aspartyl-Leucine 968 518.9159 246.121 1.795577 0.001115 

Alanyl-Valine 989 524.5014 188.1156 0.434684 4.93E-09 

S-Glutathionyl-L-cysteine 1027 542.6186 426.088 2.725341 7.83E-13 

Aspartyl-Phenylalanine 1029 545.2254 280.1055 1.880958 2.52E-07 

Leucyl-Alanine 1183 570.0081 202.1313 1.682599 1.68E-05 

Aspartyphenylalanine 1257 575.9494 280.1055 1.533361 0.000884 

Glycyl-Leucine 1482 606.5119 188.1149 0.427325 1.32E-06 

5-Amino-6-(5'-phospho-D-ribitylamino)uracil 1549 610.519 356.0649 2.481777 2.79E-08 

Cysteinyl-Glycine dimer 1553 610.9304 354.0672 3.325434 2.02E-10 

Lysyl-Glutamine 1718 652.7676 274.1636 1.81367 7.01E-05 

Histidinyl-Glutamine 1892 710.7142 283.1275 0.256539 9.12E-08 

Glutamyl-Lysine 1983 756.999 275.1479 2.047569 8.85E-10 

Histidinyl-Serine 2098 786.4957 242.1009 0.553656 0.00046 

Histidinyl-Glutamate 2145 798.8732 284.1114 0.400831 3.02E-06 

Theophylline 2269 847.2595 180.0642 1.899354 0.017689 

Histidinyl-Glycine 2320 859.7841 212.0906 0.254922 1.19E-09 

Leucyl-Leucine 2359 872.5397 244.1783 0.420306 3.16E-08 

Phenylalanyl-Leucine 2413 875.3997 278.1626 2.157993 1.23E-09 

Tyrosyl-Glutamine 2597 933.646 309.1324 3.954746 6.54E-11 

Histidinyl-Alanine 2608 934.9733 226.1061 0.448789 0.001355 

Pyrimidodiazepine 2840 990.1734 221.0896 1.934437 1.26E-08 

Tyrosyl-Serine 2981 1016.983 268.1052 1.964086 1.47E-05 

Seryl-Tyrosine 3487 1092.128 268.1051 1.825555 2.26E-05 

1,4-Diaminobutane 4205 1175.911 88.1003 2.151932 1.16E-10 

3,4-Dihydroxybenzoate 6321 1454.165 154.0265 3.05642 0.000122 

Hydroquinone 7213 1575.759 110.0371 2.031765 1.16E-08 
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Five metabolites of Gamma Glutamylglutamic acid, Serinyl-Leucine, Isoleucyl-

Threonine, Leucyl-Leucine, and Histidinyl-Glycine were chosen to build up a ROC model with 

AUC = 0.997 (Figure 4.5A). The high AUC value indicated the strong discrimination power of 

the classification model. Their individual AUC values are provided in Figure 4.5B. Unidentified 

metabolites also were tested to replace metabolites with smaller AUC from above. But no model 

with significant increasing in discrimination power was found (Figure 4.6). 

 

Figure 4.5. (A)The ROC curve build-up by Random Forest using the top five AUC identified metabolites panel with 

AUC = 0.997. (B) AUC values of individual metabolites. All five metabolites are identified positively. 

 

 

Figure 4.6. (A) The ROC curve build-up by the top three unidentified metabolites and two identified metabolites 

with AUC = 0.936. (B)The individual AUC of each metabolites. 2-Methyl-3-hydroxyl-5-formylpyridine-4-

carboxylate is identified putatively and Phenylalanyl-Glutamate is identified positively. 
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4.3.4 Metformin Treated versus Diabetes 

A PLS-DA plot of metformin treated and diabetes patients is shown in Figure 4.7A, with 

diabetes patients clustered on the left and metformin treated patients clustered on the right; a 

clear separation between these two groups was observed with Q2 = 0.752. As shown in Figure 

4.8B, 48 metabolites were up- and 174 were down-regulated in the metformin treated group with 

a FDG adjusted p-value = 0.016, indicating that metformin affected the metabolome of diabetes 

patients. Out of 222 metabolites, 12 were identified positively, and their detailed information is 

provided in Table 4.3. 

 

Figure 4.7. Diabetes and metformin treated patients’ metabolomics profile was evaluated using PLSDA analysis 

(A), where the clusters of both groups were separated (Q2=0.752). (B) Volcano plot of metformin treated versus 

diabetes group, with 48 metabolites up- and 174 down-regulated in metformin treated group, with a fold change and 

FDR adjusted p-value at the cut-off 1.5(or 0.67) and 0.016, respectively.  

 

 

 

 

 

 



 

 

82 

Table 4.3. Positive Identification Results of Significantly Changed Metabolites between Diabetes and Metformin 

Treated Groups. 

 

Name  rt mz fc p 

Gamma-Glutamylglutamic acid 272 225.1985 276.0951 1.588964 0.0017 

Valyl-Asparagine 443 312.7338 231.1216 1.797321 0.003039 

Isoleucyl-Threonine 865 470.3305 232.1418 2.671899 0.000648 

Glycyl-Valine 918 489.5974 174.0999 2.028194 0.00093 

Serinyl-Leucine 957 511.2347 218.1264 1.77051 0.001698 

Aspartyl-Leucine 968 518.9159 246.121 0.501274 0.000268 

S-Glutathionyl-L-cysteine 1027 542.6186 426.088 0.576978 0.000324 

5-Amino-6-(5'-phospho-D-ribitylamino)uracil 1549 610.519 356.0649 0.652347 0.004825 

Cysteinyl-Glycine dimer 1553 610.9304 354.0672 0.610015 0.005231 

Histidinyl-Glutamate 2145 798.8732 284.1114 1.559797 0.009398 

Histidinyl-Glycine 2320 859.7841 212.0906 2.28754 0.012256 

Leucyl-Leucine 2359 872.5397 244.1783 1.707704 1.64E-05 

 

Figure 4.8A shows the ROC curve with AUC = 0.913 consisting of: Leucyl-Leucine, 

Isoleucyl-Threonine, and S-Glutathionyl-L-cysteine. Among them, S-Glutathionyl-L-cysteine is 

identified putatively. Figure 4.8B shows the individual AUC of those three metabolites. After 

adding three unidentified metabolites to the current model, a better classification panel with 

AUC = 0.99 was obtained (Figure 4.9). 

 

Figure 4.8. (A)The ROC curve build up by Random Forest using the top five AUC identified metabolites panel with 

AUC = 0.913. (B) AUC values of individual metabolites. S-Glutathionyl-L-cysteine is identified putatively, and 

leucyl-Leucine and Isoleucyl-Threonine are identified positively. 
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Figure 4.9. (A) The ROC curve build up by the top three unidentified metabolites and two identified metabolites 

with AUC = 0.99. (B)The individual AUC of each metabolites. Two identified metabolites were identified 

positively. 

4.3.5. Pathway Analysis  

Based on the identified metabolites, pathway analysis was performed by MetaboAnalyst to 

reveal the pathways related to these metabolites. There three potential pathways were affected 

mostly. These three pathways were: alanine, aspartate and glutamate metabolism; glycine, serine 

and threonine metabolism; and arginine and proline metabolism (Figure 4.10). 

                                   

Figure 4.10: Pathway analysis generated using all identified metabolites. Three important pathways were selected 

based on the p-value and impact number. (A)Alanine, aspartate and glutamate metabolism. (B) Glycine, serine and 

threonine metabolism. (C) Arginine and proline metabolism. 
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The alanine, aspartate, and glutamate metabolism represented in Figure 4.10 appeared to 

be affected strongly by diabetes. The box plots for the detected metabolites related to this 

pathway, presented in Figure 4.11, revealed there their concentration differences. The significant 

metabolites related to the arginine, aspartate and glutamate metabolism include but are not 

limited to L-Aspartic acid, L-Asparagine, L-Alanine, L-Glutamine, L-Glutamic acid, and 

Gamma-Aminobutyric acid.  

                  

Figure 4.11. Affected metabolites and their box plots for alanine, aspartate, and glutamate metabolism, including L-

Aspartic acid, L-Asparagine, L-Alanine, L-Glutamine, L-Glutamic acid, and Gamma-Aminobutyric acid. 

Based on the box plots, we observed that alanine was elevated considerably for the 

diabetes group. Meanwhile, with the metformin treatment, the concentration of alanine is even 

higher. Alanine plays an important role in the glucose-aniline cycle in liver, as it acts as a 

gluconeogenic substrate via its metabolism to pyruvate.130 The alanine level is usually high in 

diabetes patients’ due to insulin deficiency, as insulin is known to possess a suppression effect on 

tissue proteolysis. Increased alanine concentration in the metformin treated group, suggesting 

that less alanine was converted under the conditions of metformin treatment. One possible 

explanation is that metformin may lower aminotransferase (ALT) concentrations, resulting in 
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building up the serum alanine level. In addition, alanine regulates the expression of genes related 

to β-cell signal transduction, metabolism, and apoptosis chronically131,132. 

4.4 Conclusions 

In this study, our CIL LC-MS technique was applied to analyze serum samples and detected a 

total of 3632 peak pairs, indicating the high coverage of this method. To reveal the influence of 

metformin treatment, both uni-variate and multi-variate analyses were carried out to find 

significantly affected metabolites by metformin in type 2 diabetes patients. From the PLS-DA 

plot, a clear separation between two groups is observed. Among all the metabolites that could 

possibly cause the separation, 12 metabolites with significant fold changes were identified. These 

metabolites could be used for a further study on the influence of metformin. From pathway 

analysis, we found out that alanine, asparagine, and glutamine levels are affected by metformin.  
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Chapter 5 

 Conclusions 

The CIL LC-MS technique is applied widely in metabolomics study because of its high coverage 

and quantification ability. In Chapter 2, CIL LC-MS was used to examine four combinations of 

cell harvest and lysis methods in order to build a simple and efficient platform for adherent 

mammalian cells. Physical scraping and trypsinization were treated as cell harvest methods, 

while glass-bead-assisted and freeze-thaw-cycle were tests for lysis efficiency. HeLa and MCF-7 

cells, as common mammalian cells, were tested to cross-validate the findings. Results showing 

that scraping combined with freeze-thaw-cycle lysis gave the highest total metabolite 

concentration. Comparing to scraping, trypsinization caused more significant metabolome 

changes likely due to metabolite leakage and metabolite level changes. The cellular metabolomes 

obtained from the two lysis methods were found to be similar; however, freeze-thaw-cycle lysis 

gave a higher lysis efficacy, compared to the glass bead method. We concluded that the 

combination of scraping and freeze-thaw-cycle was optimal for harvesting and lysing adherent 

mammalian cells for CIL LC-MS metabolomics. 

In Chapter 3, CIL LC-MS was involved in comparative profiling the metabolome of 

serum and cell line from HIES and AD patients and in identifying potential biomarkers. In this 

study, two sample types: serum and cell extract were analyzed, and their results were compared 

and combined. Multi-variate analysis results suggested that there is a significant difference in 

metabolome between HIES and AD patients, although they share very a close syndrome. Uni-

variate analysis was carried out to find metabolites that possibly could cause the metabolome 
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alternation. Seven metabolites commonly showed up in cell and serum samples and were 

positively identified in a binary comparison between DOCK8 and AD: Aspartic acid and 3-

hydroxyanthranillic acid were up regulated in DOCK8 deficiency, whereas hypotaurine, leucyl 

phenylalanine, glycly-phenylalanine, and guanosine were down-regulated. Hypotaurine, 3-

hydroxyanthranillic acid, and glycyphenyalanine were found to be potential biomarkers for 

DOCK8 deficiency. The significantly altered metabolites can be used to differentiate DOCK8 

deficiency from atopic dermatitis, thus contributing towards improved understanding of HIES. 

Further validation of these biomarkers in larger cohorts can be used for both discrimination and 

establishing prognosis. 

In Chapter 4, CIL LC-MS was applied for an untargeted metabolomics profile in order to 

study the metformin effect on type 2 diabetes in obese patients. Binary comparisons were carried 

out among control, obese, diabetes, and metformin treated samples. From the multi-variate 

analysis, the metabolome difference between diabetes and metformin treated groups is very 

clear. Further, volcano analysis reveals dysregulated metabolites that could be responsible for the 

metabolome differences. Several metabolites were identified for potential biomarker discovery. 

Metformin affects need to be studied further through pathway analysis. 
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