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Abstract

Boolean Satisfiability (SAT) is a well-known NP-complete problem. Despite the

theoretical hardness of SAT, backtracking search based Conflict Directed Clause

Learning (CDCL) SAT solvers can solve very large real-world SAT instances with

surprising efficiency. The high efficiency of CDCL SAT solving is due to the careful

integration of its key ingredients: preprocessing, inprocessing, decision heuristics,

learning of clauses from conflicts, intelligent backtracking, and restarts.

Clause learning from conflicts helps a CDCL solver to prune its search space

and achieve solving efficiency. Since finding conflicts is the only way to learn

clauses, generating conflicts at a high rate is crucial for CDCL SAT solving.

A key component of CDCL SAT is the decision step, which heuristically selects

an unassgined variable to make a boolean assignment during the search. Standard

CDCL heuristics for branching are designed based on a look-back principle that

uses information of past search states. Examples are Variable State Independent

Decaying Sum (VSIDS) and Learning Rate Based (LRB). Both of these heuristics

are conflict guided and prioritize selection of variables that are likely to lead to the

discovery of conflicts.

These decision heuristics play a crucial role for CDCL. However, there is a lack

of empirical understanding of how these branching heuristics work. This has been

regarded as an important open problem in SAT research.

In this thesis, we study state-of-the-art CDCL decision heuristics empirically

and design extensions of these heuristics based on the insights obtained from our
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empirical studies. First, we present a study on two types of decision variables: glue

and non-glue variables. These are named depending on their appearance in a spe-

cial type of learned clause called glue-clause. We demonstrate that decisions with

glue variables are more conflict efficient than decisions with non-glue variables.

Based on this insight, we develop a decision strategy named glue bump, which

prioritizes selection of glue-variables. We show that the glue bumping strategy im-

plemented on top of state-of-the-art CDCL SAT solvers improves the performance

of these solvers. Secondly, we present a study of the conflict generation patterns

in CDCL with two leading CDCL branching heuristics. We discovered that con-

flicts in CDCL are generated in phases of short bursts, often followed by longer

conflict depression phases, where the search does not find any conflicts for a num-

ber of consecutive decisions. We developed a CDCL algorithmic extension named

expSAT that performs random exploration during substantial conflict depression

phases. We demonstrated that expSAT improves the performance of state-of-the-art

CDCL SAT solvers on two years of SAT competition benchmarks and on a set of

hard cryptographic instances from Bitcoin mining benchmarks. Thirdly, we study

conflict producing decisions in CDCL, where we distinguish two types of decisions:

single conflict (sc) and multi-conflict (mc) decisions. We present a characterization

of sc and mc decisions, based on the quality of learned clauses that each produces.

With this characterization, we propose a decision strategy named Common Reason

Variable score Reduction (CRVR). CRVR de-prioritizes selection of those variables,

which contribute to the generation of lower quality learned clauses in poor mc deci-

sions. Our empirical evaluation of CRVR demonstrates performance improvement

of state-of-the-art CDCL SAT solvers on Satisfiable instances.
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If there really were a machine with Φ(n) ≈ k.n (or even ≈ k.n2), this would
have consequences of the greatest importance. Namely, it would obviously mean
that in spite of the undecidability of the Entscheidungsproblem, the mental work of
a mathematician concerning Yes-or-No questions could be completely replaced by
a machine1.

- Kurt Gödel

The SAT problem is at the core of arguably the most fundamental question in com-
puter science: What makes a problem hard?

- Stephen Cook

The SAT problem is evidently a killer app, because it is key to the solution of so
many other problems.

- Donald Knuth

1In the year of 1956, when he was in his deathbed, Kurt Gödel, one of the most brilliant minds
in the history of Mathematical Logic, wrote a letter to John von Neumann, the icon of genius
in many fields of intellectual inquiry including computer science. In that letter, Gödel hinted
about the possibility of an efficient algorithm for solving the decidable fragment of the famous
Entscheidungsproblem (i.e., the Decision Problem), which this quote embodies. We still do not
know if there exists an easy solution to decision problems, in general (i.e., the question P

?
= NP).

The SAT problem is the most intensely studied decision problem and has central importance in
resolving the above question.
A copy of that letter can be found in: https://www.anilada.com/notes/
godel-letter.pdf
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Chapter 1

Introduction

1.1 Prologue

Given a formula F of boolean variables, the problem of Boolean Satisfiability

(SAT) is to either determine variable assignments that satisfy F , or report UN-

SAT in case no such assignment exists [11]. SAT is known to be NP-complete [19],

which implies that solving SAT is considered intractable.

Complete SAT solvers based on the Davis-Putnam-Logemann-Loveland (DPLL)

framework [20] employ a heuristics-guided strategy of backtracking tree search. At

each node in the search tree, the DPLL algorithm selects a variable and searches two

branches that correspond to the two boolean values of that variable. Solvers such as

GRASP [72] and Chaff [49] substantially enhanced the DPLL framework by adding

conflict analysis and clause learning. They are called conflict directed clause learn-

ing (CDCL) SAT solvers. Despite the theoretical hardness of SAT, modern CDCL

SAT solvers have become the enabling technology for many real-world problems,

such as hardware design verification [30], software debugging [15], classical plan-

ning [60] and encryption [48, 74]. This is the result of a careful combination of its

key components, such as preprocessing [22, 34] and inprocessing [35, 46], robust

branching heuristics [42, 43, 49], efficient restart policies [4, 55], intelligent conflict

analysis [72], and effective clause learning [49].

The key decision-making step in a CDCL SAT solver is the selection of a vari-

able from the current set of unassigned variables using a decision heuristic. Variable

State Independent Decaying Sum (VSIDS) [49] and as well as its variants Learning

1



rate Branching (LRB) [43] and Conflict History Branching (CHB) [42] are im-

portant state-of-the-art decision heuristics. A decision step is followed by a value

assignment step, which assigns a boolean value to the decision variable using a po-

larity selection heuristic. Most state-of-the-art CDCL solvers use phase-saving as

their predominant polarity selection heuristic [56]. It assigns the value to which a

variable was last assigned.

Clause learning prunes the search space. Since discovery of conflicts is the only

way to learn clauses, fast conflict discovery is critical for CDCL SAT solvers. The

design of state-of-the-art CDCL decision heuristics conform to this goal. For exam-

ple, the VSIDS, LRB and CHB heuristics reward and prioritize selection of vari-

ables that are involved in recent conflicts. The intuition is that selection of these

variables is likely to generate further conflicts, leading to learned clauses that effec-

tively prune the search space.

Conflict guided decision heuristics play a crucial role in allowing CDCL solvers

to solve large real-world problems. As efficient as these decision heuristics are, un-

derstanding the inner-workings of these heuristics remains an open research issue.

In the Theoretical Foundations of Applied SAT Solving workshop, the lack of em-

pirical understanding of how CDCL decision heuristics work, was highlighted as

an important open research problem in SAT [3] .

This thesis improves the understanding of the innerworkings of two leading

CDCL decision heuristics VSIDS and LRB with respect to their conflict generation

patterns. This led to the discovery of a series of important insights. For each insight,

we develop algorithmic extensions of the standard CDCL algorithm. Some of these

extensions have improved state-of-the-art SAT solvers on multiple years of SAT

competition benchmarks.

In the following, we summarize the contributions of this thesis.

2



1.2 Contributions of this Thesis
Chapter 3: Characterization of Glue Variable and GB Method

A state-of-the-art criterion to measure the importance of a learned clause in CDCL

SAT solving is called literal block distance (LBD), the number of distinct deci-

sion levels in the clause. The lower the LBD score of a learned clause, the better

is its quality. Learned clauses with a LBD score of 2 are called glue clause and

possess high pruning power. In this Chapter, we relate glue clauses to decision vari-

ables. We show experimentally that branching decisions with variables appearing

in glue clauses, called glue variables, are more conflict efficient than those with

nonglue variables. This observation motivates the development of a CDCL variable

bumping scheme, which increases the heuristic score of a glue variable based on its

appearance count in the glue clauses that are learned so far by the search. Empirical

evaluation shows the effectiveness of the new method on the main track instances

from SAT Competitions 2017 and 2018 with four different state-of-the-art CDCL

SAT solvers. Finally, we show that the frequency of learned clauses that are glue

clauses can be used as a reliable indicator of solving efficiency for instances for

which the standard performance metrics fail to provide a consistent explanation.

Chapter 4: Conflict Depression Phases

In this Chapter, we analyze how conflicts are generated over the course of a CDCL

SAT search. Our study of the VSIDS and LRB branching heuristics shows that

they typically generate conflicts in short bursts, followed by what we call a conflict

depression (CD) phase in which the search fails to generate any conflicts for a

number of consecutive decisions. Our analysis shows a weak correlation between

solving hardness and the average length of a CD phase. In this Chapter, we also

show a correlation between backjumping length and average CD phase length.

Chapter 5: Search Guidance with Random Exploration amid CD Phases

The lack of conflict during CD phases indicates that the variables which are cur-

rently ranked highest by the branching heuristic fail to generate conflicts. We pro-

pose an exploration strategy called expSAT, which randomly samples variable se-
3



lection sequences in order to learn an updated heuristic from the generated con-

flicts. The goal is to escape from conflict depressions expeditiously. The branching

heuristic deployed in expSAT combines these updates with the standard activity

scores of VSIDS and LRB. An extensive empirical evaluation with five state-of-

the-art CDCL SAT solvers demonstrates good-to-strong performance gains with

the expSAT approach for benchmark instances from SAT Competitions 2017 and

2018, and impressive gains over a set of hard bitcoin mining instances.

Chapter 6: Conflict Bursts Phases

In this Chapter, we study conflict-generating decisions in CDCL in detail. We inves-

tigate the impact of single conflict (sc) decisions, which generate only one conflict,

and multi-conflict (mc) decisions which generate two or more. We empirically char-

acterize these two types of decisions based on the quality of their learned clauses.

We also show an important connection between consecutive clauses learned within

the same mc decision, where one learned clause triggers the learning of the next

one forming a chain of clauses. We formulate the notion of conflict proximity as

a similarity measure and show that conflicts in mc decisions are more closely re-

lated than consecutive conflicts generated from separate sc decisions. We develop

a new decision strategy named Common Reason Variable Reduction (CRVR) that

reduces the selection priority of some variables from the learned clauses of mc de-

cisions. Our empirical evaluation of CRVR implemented in three leading solvers

demonstrates performance gains in satisfiable instances from the main track of SAT

Competition-2020.

1.3 Other Related Contributions

During the course of this thesis, we have developed a new SAT benchmark which

entails some query on life in a cellular automaton, where evolution of life follows

certain rules. The description of the benchmark is available in Appendix A.
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1.4 Publications and SAT Competition Results

1.4.1 Publications

This dissertation is based on the following first-authored peer-reviewed/under-preparation

publications:

Chapter 3

• Md Solimul Chowdhury, Martin Müller, and Jia You: Exploiting Glue Clauses

to Design Effective CDCL Branching Heuristics. In Proceedings of 25th In-

ternational Conference on Principles and Practice of Constraint Programming

(CP-2019): 126-143.

Chapter 4 and 5

• Md Solimul Chowdhury, Martin Müller, and Jia You: Guiding CDCL SAT

Search via Random Exploration amid Conflict Depression. In Proceedings of

34th AAAI conference on artificial intelligence (AAAI-2020): 1428-1435.

• Md Solimul Chowdhury, Martin Müller, and Jia-Huai You: Preliminary Re-

sults on Exploration-Driven Satisfiability Solving. In Proceedings of 32nd

AAAI Conference on Artificial Intelligence (AAAI-2018, Student Abstract):

8069-8070.

Chapter 6

• Md Solimul Chowdhury, Martin Müller, and Jia You. A Deep Dive into

Conflict Generating Decisions. (https://arxiv.org/abs/2105.04595)

Links to the source codes related to these publications are available in Appendix

B.
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1.4.2 SAT Competition Results

1. In SAT Competition-2021,1

• (Bronze Medal in the SAT and the Main Track) Our solver kissat_gb im-

plements GB method on top of kissat_sat (the winner of SAT Competition-

2020). It won the third place (second runnerup) in the SAT track (out of 48

participants), the Main track (out of 48 participants), and the NoLimits track

(out of 57 participants) of the competition.

• Our solver kissat_CRVR_gb combines CRVR and GB method in the kissat_sat.

It took the 2nd place(first runner up) in the Nolimits track (out of 57 partic-

ipants) of the competition.

• Our solver cms_expV_gbL combines the expSAT and the GB method on top

of the solver CryptoMiniSAT. It was ranked 5th (out of 48 participants) in

the Crypto Track of the competition.

2. In SAT Race-2019 2, our solver expMaple_CM_GCBumpOnlyLRB, which com-

bines the expSAT and the GB method was

• 2nd (first runner-up) in the UNSAT track of the competition (based on solv-

ing speed).

• and 3rd (second runner-up) in the SAT+UNSAT track of the competition

(based on solution count).

1.5 Organization

The remainder of this dissertation is organized as follows: The next Chapter presents

preliminary background material. In Chapter 3, we present a conflict efficiency

based characterization of decisions with glue variables, a decision scheme named
1The results of the SAT competition-2021 are available at: https://satcompetition.

github.io/2021/slides/ISC2021-fixed.pdf. The detailed results are available at:
https://satcompetition.github.io/2021/results.html.

2The results of the SAT Race-2019 are available at : http://sat-race-2019.ciirc.
cvut.cz/downloads/satrace19slides.pdf. The detailed results of the competition are
available at: http://sat-race-2019.ciirc.cvut.cz/index.php?cat=results.
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the GB method and an empirical evaluation of the GB method. Chapter 4 introduces

and formalizes the novel concept of the conflict depression phase and presents a se-

ries of empirical results that reveals a series of important insights. In Chapter 5,

we present expSAT, an algorithmic extension of the CDCL framework that guides

CDCL search via random exploration amid conflict depressions. We present ex-

tensive experimental evaluations of expSAT and detailed performance analysis of

our experiments. Chapter 6 presents the detailed study of conflict generating deci-

sions in CDCL, the novel branching strategy CRVR, and its experimental evalua-

tion. Chapter 7 presents our conclusions, discusses the impact of this thesis, and

points toward potential future directions.
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Chapter 2

Preliminaries

In this Chapter, we review preliminary materials for this thesis. Here, we present

relevant concepts from SAT, CDCL SAT solving, Random Walks, and Statistics.

2.1 The Boolean Satisfiability (SAT) Problem

SAT Formula A Boolean variable v takes two values: true and false. A literal is

either a variable (v) or its negation (¬v). A clause is a disjunction of literals. A SAT

formula is a conjunction of clauses. For example, F below is a SAT formula with 5

variables, 9 literals and 4 clauses.

F = (x1 ∨ ¬x5) ∧ (¬x2 ∨ ¬x1) ∧ (x3 ∨ x4) ∧ (¬x3 ∨ ¬x1 ∨ x5)

The Task of SAT Solving Given a SAT formula F , the SAT solving task is to

either determine a variable assignment that satisfies F (i.e, a proof that F is satis-

fiable or SAT) or reports the unsatisfiability of F in case no such assignment exists

(i.e, a proof thatF is unsatisfiable or UNSAT). For example, given the SAT formula

F , a SAT solver may find the solution x1 = false, x2 = true, x3 = true, x4 =

true, x5 = false, which satisfies F .

SAT is a decision problem and well-known to be NP-Complete [19]. In general,

we do not have an efficient procedure to decide SAT.
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2.2 SAT Solvers

2.2.1 Davis-Putnam (DP) SAT Solvers

The first generation of SAT solvers were Davis-Putnam (DP) solvers [21]. DP em-

ploys an inference rule called resolution to decide a given SAT formula F . Given

two clauses C = C1 ∪ a and C ′ = C2 ∪¬a, the resolution operation Ra applied on

C and C ′ produces a new clause C ′′ = C1 ∪ C2 by removing the clashing literals a

and ¬a. The clause C ′′ is called the resolvent of Ra, applied to C and C ′.

DP applies resolution iteratively to eliminate variables of F . Each iteration i

produces formula Fi which is equisatisfiable to F . At iteration i, if an empty clause

is derived as a resolvent, then F is UNSAT, and F is SAT, if Fi does not contain an

empty clause after performing all possible resolution steps.

The Figure 2.1 show examples of how a DP based SAT solver decides a SAT

and UNSAT problem.

Figure 2.1: Examples of DP procedure. Ra denotes the resolution operation on
variable a.
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2.2.2 Davis–Putnam–Logemann–Loveland (DPLL) SAT Solvers

The resolution operation in DP may produce a large numbers of resolvents, causing

an exponential blow up in the size of the formula in the worst case. A backtracking

search based algorithm named DPLL [20] was proposed to solve this problem of

exponential memory blow up. DPLL requires only a linear amount of memory of

the size of the input formula in the worst case.

DPLL solvers build a heuristics-guided backtracking search tree to solve a given

SAT formula by extending an initially empty partial assignment, a set of literals

representing how the corresponding variables are assigned. In each branching de-

cision, the solver extends the current partial assignment by selecting a variable v

from the current set of unassigned variables, and assigns a boolean value p to v. v

is called a branching variable. A branching decision is associated with a decision

level ≥ 1, which denotes the depth of the search tree where the branching decision

has taken place. After the assignment of v, unit propagation (UP) simplifies F by

deducing a new set of implied variable assignments, which are added to the current

partial assignment. After UP, the search moves down to the next decision level to

make another branching decision.

UP may lead to a conflict due to a falsified or conflicting clause, which cannot

be satisfied under the current partial assignment. In case of a conflict, DPLL back-

tracks upto the current decision level by undoing assignments made in the current

decision level. It then assign ¬p to v. After both values of v have been tried the

search backtracks to the previous level and continues from there by assigning the

complementary value to the decision variable at that level. Algorithm 1 shows a

high-level pseudocode of DPLL, which is a simplified version of the DPLL proce-

dure presented in [11].

2.2.3 CDCL SAT Solvers

In the late 1990s, much more powerful Conflict Driven Clause Learning (CDCL)

SAT solvers such as GRASP [72] and Chaff [49] emerged. SAT solving in the

CDCL framework is fundamentally inspired by the DPLL framework, but differs
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Algorithm 1: Pseudocode of the DPLL Algorithm
Input: A CNF SAT formula: F
Output: Satisfiability of F

1 while unsolved do
2 if conflict then
3 Backtrack()
4 end
5 else if found_an_unit_clause then
6 UnitPropagate()
7 end
8 else
9 Decide()

10 end
11 end

substantially in the way it performs search. CDCL is still the state-of-the-art frame-

work of SAT solving with structured real-world instances. CDCL alters the DPLL

framework by adding sophisticated conflict-guided variable selection and clause

learning, intelligent backtracking, and restarts.

Algorithm 2 shows the high-level pseudocode for the CDCL procedure. This

procedure is a simplified version of the CDCL procedure presented in [11].

Once a conflict is reached by UP, CDCL performs conflict analysis. This step

determines the root cause of a conflict and generates a learned clause (lc) that pre-

vents the same conflicts from reappearing in the future, thereby pruning the search

space. A backjumping level (bl) is computed from lc. If bl is 0 then the formula is

UNSAT1, otherwise, the search backtracks to bl and continues from there by making

an assignment to a variable that appears in lc. At any given state, if all the clauses

in F are satisfied by the assignments in assign(F), then F is SAT with respect to

assign(F).

A CDCL SAT solver can learn clauses at a very fast rate. Keeping all the learned

clauses in a clause database can quickly exhaust memory, and can lead to poor

speed. Therefore, a solver routinely manages the clause database by deleting learned

clauses that it considers unimportant.

1The decision made at the decision level bl is the root cause of the current conflict. If bl is 0, then
it indicates that the current conflict is not caused by any decision and the formula is unsatisfiable.
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Algorithm 2: Pseudocode of the CDCL SAT Algorithm
Input: A CNF SAT formula: F
Output: Satisfiability of F

1 while unsolved do
2 if conflict then
3 Analyze_Conflict()
4 Learn()
5 Backtrack()
6 end
7 else if found_an_unit_clause then
8 UnitPropagate()
9 end

10 else if restart_needed then
11 Restart()
12 end
13 else
14 Decide()
15 end
16 end

A CDCL SAT solver performs many restarts with an empty partial assignment.

All other aspects of the current state of the search, such as the learned clauses,

the heuristic scores and various parameter values are preserved at a restart. After a

restart, the search starts building a new partial assignment.

The Process of Conflict Analysis and Clause Learning

Most state-of-the-art CDCL SAT solvers employ the first Unique Implication Point

(fUIP) scheme to learn a clause [11]. Starting with conflicting clause C, fUIP

continues to resolve literals from the current decision level until it finds a clause

L = R ∨ {¬f} such that the literal f was assigned in the current decision level,

while all literals in R were assigned earlier. f is called the fUIP literal for the cur-

rent conflict. The fuip literal f is contained in every path from the current decision

variable to the current conflict. The literals in {r | literal r ∈ R} ∪ {f} are called

reason literals for the current conflict, since their assignments caused the current

conflict. We call R the reason clause for the current conflict with conflicting clause

C.
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L is learned and search backjumps to a backjumping level blwhich is computed

fromL2. Before backtracking, the clauseL = R∨¬f is unsatisfied under the current

partial assignment. After backtracking to bl, ¬f is the only unassigned literal in L.

The search proceeds by unit-propagating ¬f from L. The assignment of ¬f avoids

the conflict at C, but may create further conflicts within the same decision. Please

see [11] for a detailed overview of CDCL SAT Solving.

The Importance of Fast Conflict Generation

Whenever a conflict occurs during the search, a CDCL SAT solver learns a clause

from that conflict. The learned clauses help to prune the search space, which has

a huge impact on solving efficiency. In [57], Pipatsrisawat et al. showed that for

UNSAT formulas, the shortest refutation proofs found by the CDCL SAT solving

process with clause learning are only polynomially longer than shortest refutation

proofs produced by general resolution, a powerful proof system.

In [41], Liang et al. showed that more efficient branching heuristics have the

following empirical properties: on average, (a) they generate more conflicts per

branching decision and (b) learned clauses from those conflicts are of higher quality.

Therefore generating conflicts at a fast rate and learning high quality clauses from

those conflicts are very important aspects of efficient CDCL SAT solving.

CDCL Branching Heuristics

The standard CDCL SAT branching heuristics are designed following the look-back

principle. They prioritize the selection of variables which have been involved in re-

cent conflicts. The intuition is that such variables will continue to generate more

conflicts, if assigned again. Here, we briefly discuss VSIDS and LRB as represen-

tative CDCL branching heuristics.

VSIDS The Variable State Independent Decaying Sum (VSIDS), introduced by

Moskewicz et al. in [49], is a popular family of dynamic branching heuristics.

2If bl is too far from the current decision level, then performing chronological backtracking
results in better solving efficiency [50]. Most of the leading CDCL solvers employ a combination of
chronological and non-chronological backtracking.
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We focus on exponential VSIDS as a representative member, as presented in [49].

VSIDS maintains an activity score for each variable in a given SAT formula. Dur-

ing conflict analysis, VSIDS increases the activity score of each variable that is

involved in conflict resolution, by a variable bumping factor gz, where g > 1 is a

constant and z is the count of the number of conflicts in the search so far. VSIDS

puts a strong focus on variables that participated in the most recent conflicts.

LRB: In the Learning Rate Branching (LRB) branching heuristic [43], a variable

v is regarded to become alive when it is assigned by a branching decision or prop-

agation, and becomes dead when it is unassigned by backtracking. When v gets

assigned (resp. unassigned), let z (resp. z′ > z) be the count of number of conflicts

in the search so far. z (resp. z′) marks the birth (resp. death) of v. LRB tracks the

participation count P (v) of v in generation of learned clauses within the conflict in-

terval I(v) = z′−z. When v is unassigned, LRB computes the reward R(v) = P (v)
I(v)

,

which is the rate of its participation in learned clause generation. An activity score

for v is computed from R(v). In search, the variable with maximum activity score

is selected for branching.

CDCL Polarity Heuristics

Once a variable is decided by the decision heuristics, a CDCL SAT solver uses a

polarity heuristic to assign a boolean value to the decided variable. The state-of-

the-art polarity heuristic is the phase-saving heuristic, which we review below.

The Phase Saving Heuristic: Assume that v+ and v− are the two literals where

variable v is assigned true and false, respectively. Also assume that at decision step

i, a variable u is assigned, which creates a propagation with vx, where x ∈ {+,−}

and that this propagation is followed by a conflict. After conflict analysis, during

backtracking, the phase saving heuristic saves this last assigned polarity x of v in

polarity[v]. At decision step j > i, assume that the CDCL decision heuristic selects

v again. Then the phase saving heuristic selects the literal vx [56].

In CDCL SAT solvers, such as Glucose [6] and Maple [44], polarity[v] is ini-
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tialized to− for each variable v of a given SAT formula. This initialization to nega-

tive polarity is an artifact of the encoding of most SAT benchmarks, which generally

produce formulas with more positive than negative literals [31].

Learning Rate, Learned Clause Quality and Glue Clauses

Here we review three relevant conflict metrics:

Global Learning Rate The Global Learning Rate (GLR) [41] is defined as nc
nd

,

where nc is the number of conflicts generated in nd decisions. GLR measures the

average number of conflicts that a solver generates per decision.

The Literal Block Distance (LBD) Score The LBD score of a learned clause c

[8] is the number of distinct decision levels in c. If LBD(c) = n, then c contains n

propagation blocks, where each block has been propagated within the same branch-

ing decision. Intuitively, variables within a block are closely related, and learned

clauses with lower LBD score tend to have higher quality [8, 41].

Glue Clauses Glue clauses [8] have a LBD score of 2. They are the most im-

portant types of learned clauses. A glue clause connects a literal from the current

decision level with a block of literals assigned in a previous decision level. Glue

clauses have more potential to reduce the search space more quickly than other

learned clauses with higher LBD scores.

Glue to Learned (G2L) This measure represents the fraction of learned clauses

that are glue clauses [18]. It is defined as g
c
, if there are g glue clauses among c

learned clauses.

State of the Art CDCL Solver Systems In recent years, three families of solvers

dominated the SAT competitions.

• The Glucose Family: Glucose [6] and its numerous extensions use VSIDS

and variants of VSIDS as their branching heuristic. Solvers from this fam-
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ily also use rapid restart strategies and maintain aggressive clause database

cleaning schedules.

• The Maple Family: MapleCOMSPS [44] and its numerous variants use a

hybridization of various branching heuristics, such as VSIDS, LRB and Dist

[80]. Solvers from this family use less aggressive clause database reduction

and restart policies than the Glucose family.

• The CaDiCaL and Kissat Family: CaDiCaL [12] and its descendant Kissat

[13] are another family of high performance CDCL SAT solvers. In both

solvers search and inprocessing are interleaved. Inprocessing is a power-

ful technique that simplifies the current clause collection. Both solvers use

VSIDS and Variable Move To Front (VMTF) [62] as their branching heuris-

tics. Both solvers perform ultra-rapid restarts during the search.

2.3 Exploration Methods

Nakhost et al. [51] proposed Monte Carlo Random Walk (MRW) in the context

of deterministic planning. MRW determines the best possible action from a set of

available actions by employing random walks in the local neighborhood of the cur-

rent search state. The random exploration in expSAT presented in Chapter 5 is in-

spired by MRW. We review this algorithm below:

Monte Carlo Random Walk At a given state s of the search, MRW performs

a fixed number of random walks in the local neighborhood of s. A walk consists

of a fixed number of steps. The goal of exploration in MRW is to find a state s∗,

with best heuristic score among the explored states. Search selects the sequence of

actions that leads to s∗ and repeats the process from there.

2.4 Statistical Correlationships

Here we review some elementary concepts from statistics, which are relevant for

this thesis. For detailed overview of these concepts see [36].

16



Mean and Median

Given a population sample X = (X1, . . . , Xn) of size n, the sample mean µX or

expected value E[X] is defined as the arithmetic average of the population.

E[X] = µX =
X1 + · · ·+Xn

n

The median of a population sample is a number that is exceeded by at most half

of the numbers and is preceded by at most half of the numbers in that population

sample.

Variance, Standard Deviation and Covariance

The variance VAR(X) of a population sample is defined as the expected squared

deviation from the mean.

VAR(X) = E[X − µx]2

The standard deviation σX of a population sample is the square root of its vari-

ance.

σX =
√
VAR(X)

Pearson Correlation Coefficient

Given two population samples X and Y , the covariance COV(X, Y ) between X

and Y is the expected product of deviations of X and Y from their respective mean

values.

COV(X, Y ) = E[(X − µX)(Y − µY )]

The bi-variate correlation coefficient, also called the Pearson Correlation Co-

efficient ρX,Y between two population samples X and Y is defined as

ρX,Y =
COV(X, Y )

σXσY

ρX,Y measures the statistical association between two samples X and Y .
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2.5 SAT Solvers, Hardware, and Test Sets

We used the following SAT solvers, test sets and hardware environments to conduct

the experiments for this thesis:

• Chapter 3:

– SAT Solvers: We used 4 state-of-the-art CDCL SAT solvers as baseline:

glucose 4.1 [6], MapleCOMSPS_Pure_LRB [44], Maple_LCM_Dist [64],

and MapleLCMDistChronoBT [65].

– Test Sets: We used a single test set in this Chapter.

* Test Set 1 (TS1) contains a total of 750 SAT instances: 350 in-

stances from the main track of SAT Competition 2017 [63] and

400 instances from SAT-2018 [66]. We used a time limit of 5,000

seconds per instance.

– Hardware: All experiments reported in this Chapter were run on a

Linux workstation with 64 Gigabytes RAM and processor clock speed

of 2.40 GHZ.

• Chapters 4 and 5:

– SAT Solvers: In Chapter 4, we used the CDCL solvers glucose 4.2.1

[65] and MapleCOMSPS_Pure_LRB [44]. In Chapter 5, we added three

more solvers: MapleCOMSPS [44] (winner of SAT Competition 2016),

MapleCM [65] (3rd in SAT Competition 2018) and MapleLCMDistChronoBT

[65] (winner of SAT Competition 2018).

– Test Sets: In both Chapter 4 and 5, we used TS1 as the primary test

set. Unless specified otherwise, we used a timeout of 5,000 seconds for

TS1.

In Chapter 5, we also used the following test set:

* Test Set 2 (TS2) consists of 52 hard instances from the SATCoin

(bitcoin mining) cryptographic benchmark, which are generated
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with the instance generator from [47]. We generated these instances

by varying the range parameter, which determines the difficulty of

a SATCoin instance. For experiments with TS2, we set the time

limit to 36,000 seconds per instance 3.

– Hardware: All experiments in this Chapter were run on a Linux work-

station with 48GB RAM and a processor clock speed of 2.93 GHz.

• Chapter 6:

– SAT Solvers: We used 3 state-of-the-art CDCL SAT solvers in this

Chapter: MapleLCMDiscChronoBT-DL-v3 [69] (the winner of SAT Race-

2019), and the top two solvers in the main track of SAT Competition-

2020, Kissat-sc2020-sat and Kissat-sc2020-default [67].

– Test Set: The test set TS3 consists of 400 benchmark instances from

the main track of SAT Competition-2020 [67]. The timeout is 5,000

seconds per instance.

– Hardware: Experiments were run on a Linux workstation with 64 Gi-

gabytes of RAM and a processor clock speed of 2.4GHZ.

2.6 Solver Evaluation Criteria

For evaluating the baseline solvers and their extensions, we used the following two

metrics:

Solution Count

The number of solved instances that a given solver solves from a fixed test set.

Penalized Average Runtime (PAR2) Score

A metric used in SAT competitions, the PAR2 score is defined as the sum of all

runtimes for solved instances + 2 ∗ timeout for unsolved instances; lower is better.

3TS2 instances are available in https://figshare.com/articles/
TS2Instances/12579143.
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Chapter 3

Characterization of Glue Variables

3.1 Introduction

In CDCL a learned clause helps a solver to avoid search in a space, which does not

contain any solution. As finding conflicts is the only way to learn a clause, fast con-

flict discovery is pivotal to the efficiency of SAT solving with CDCL. However, a

large amount of learned clauses reduces the overall performance. The management

of the learned clause database is also a key component of a modern CDCL SAT

solver [49, 72]. A CDCL SAT solver routinely reduces the learned clause database

during search by deleting learned clauses that it considers irrelevant.

In earlier CDCL SAT solvers, the size and recent activities of learned clauses

were the dominant criteria for determining the relevance of learned clauses [23].

Glucose [8] was the first to apply a new measure called literal block distance

(LBD), which indicates the number of distinct decision levels in a learned clause.

glue clauses with a LBD score of 2, are of particular interest [8, 55] because they

connect a block of closely related variables, and thus a relatively small number of

decisions are needed to create a unit clause (i.e., a clause that has all but one literal

assigned under the current partial assignment). Since a glue clause has potential to

create unit clauses faster, it also has potential to generate conflicts faster with fewer

numbers of decisions, which leads to pruning of the search space. For this reason,

all modern CDCL SAT solvers permanently store glue clauses.

Inspired by these advantages of glue clauses, we study whether glue clauses can

be used to help re-rank decision variables to improve search efficiency. We call the
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decision variables that have appeared in at least one glue clause up to the current

search state glue variables, and all other variables nonglue variables.

The main contributions of this chapter are:

• We conduct an experiment using the 750 instances from the test set TS1

(instances from SAT competition 2017 and 2018) with four state-of-the-art

CDCL SAT solvers: glucose 4.1 (Glucose) [6], MAPLECOMSPS_PURE_LRB

(MapleLRB) [44], Maple_LCM_Dist (MLD) [64] and MapleLCMDistChronoBT

(MLD_CBT) [7]. Our experiment shows that decisions with glue variables

are more conflict efficient than those with nonglue variables. Furthermore,

glue variables are picked up by CDCL branching heuristics disproportion-

ately more often.

• We design a variable score bumping method called Glue Bumping (GB),

which dynamically bumps the activity score of a glue variable based on its

current activity score and (normalized) glue level. The glue level counts the

glue clauses in which the variable appears.

• We implemented and evaluated the GB method on top of the four SAT solvers

mentioned above. For the 750 instances from TS1, all GB extensions solve

more instances than their baseline and achieve lower PAR-2 scores. One of

our extended solver solves 9 additional instances over the instances from SAT

Competition 2017. According to [4], this level of performance gain closely

resembles the introduction of a critical feature, which is remarkable, given

the simplicity of the new method.

• We provide evidence that the frequency of glue clauses in learned clauses is a

reliable indicator of solving efficiency. In [41], the authors reported correla-

tions between solving efficiency of branching heuristics and standard metrics

based on the global learning rate (GLR) and average LBD (aLBD) scores.

Higher solving efficiency is indicated by higher average GLR and lower av-

erage aLBD. We show that these two measures do not provide a consistent

explanation of solving efficiency for some subsets of TS1. However, a new
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measure G2L based on the fraction of learned clauses that are glue, we are

able to provide a consistent explanation.

3.2 Notations

Let F be a SAT formula. Suppose a CDCL solver Ψ is solving F and is in current

search state s. At s, Ψ has already taken d > 0 decisions and has learned a set of

glue clauses. A glue decision is the branching decision that selects a glue variable

and a nonglue decision is the branching decision that selects a nonglue variable.

Suppose that until s, Ψ has taken gd glue decisions (resp. ngd nonglue decisions)

which generated gc conflicts (resp. ngc conflicts).

• Learning Rate (LR): In contrast to the global learning rate GLR, the rate of

conflict generation is over all decisions, we define learning rates over glue

decisions only or over nonglue decisions only. The LR with glue decisions is

defined as gc
gd

, while LR with nonglue decisions is defined as ngc
ngd

.

• Average LBD (aLBD): We define the average LBD score per conflict gener-

ated solely by glue decisions, or solely by nonglue decisions. Let sumLBDgc

(resp. sumLBDngc) be the sum of LBD scores of the learned clauses de-

rived from those gc (resp. ngc) conflicts. The aLBD with glue decisions (resp.

nonglue decisions) is defined as sumLBDgc

gc
(resp. sumLBDngc

ngc
).

3.3 Conflict Efficiency of Glue Variables

In this section, we report an experiment that studies the role played by glue variables

in CDCL SAT solving. We show that glue decisions are more conflict efficient (i.e.,

typically achieve higher average LR and lower average aLBD) than nonglue deci-

sions. Additionally, we show that the branching heuristics of modern CDCL SAT

solvers exhibit bias towards the selection of glue variables over nonglue variables.

The solvers in this experiment are Glucose, MapleLRB, MLD, and MLD_CBT.

The branching heuristics used in the first two solvers are, respectively, VSIDS [49]

and LRB [43]. In MLD, and MLD_CBT, the branching heuristics are based on
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a combination of three heuristics, VSIDS, LRB, and Dist [80], each of which is

activated at different state of the search in these two solvers.

We run all 750 instances from TS1 with 5,000 seconds timeout per instance.

We instrumented the four solvers to collect the following statistics for each instance:

(i) the number of glue and nonglue decisions, (ii) LR and aLBD for both glue and

nonglue decisions, and (iii) the number of glue and nonglue variables. For each

instance, all the measurements are taken at the final search state (i.e., either after

satisfiability/unsatisfiability is determined or after timeout).

3.3.1 Conflict Generation Power of Glue Variables

Table 3.1 shows a comparison of average LR and average aLBD for glue and

nonglue decisions, grouped by satisfiable, unsatisfiable and unsolved instances.

Comparing columns D1 and D2, all solvers achieve significantly higher average

LR with glue decisions. Columns E1 and E2 show that for all three categories of

instances, MLD and MLD_CBT achieve significantly lower average LBD for glue

decisions. For Glucose and MapleLRB, these values are roughly the same.

Table 3.1: Comparison of average LR (higher is better) and average aLBD (lower
is better) for glue and nonglue decisions.

(A)
Systems

(B)
Type

(C)
#Inst

(D)
Average of Learning Rate (LR)

(E)
Average of aLBD

(D1) Glue Decisions (D2) Nonglue Decisions (E1) Glue Decisions (E2) Nonglue Decisions

Glucose
SAT 180 0.55 0.41 18.44 18.18

UNSAT 191 0.56 0.44 11.2 11.4
Unsolved 379 0.57 0.48 24.76 25.48

MapleLRB
SAT 194 0.47 0.38 20.18 19.25

UNSAT 190 0.58 0.46 11.92 12.39
Unsolved 366 0.48 0.44 34.86 33.39

MLD
SAT 235 0.47 0.19 31.76 40.55

UNSAT 207 0.59 0.27 12.8 30.1
Unsolved 308 0.52 0.37 24.23 34.09

MLD_CBT
SAT 238 0.51 0.21 32.1 41.9

UNSAT 215 0.61 0.27 13.17 24.74
Unsolved 297 0.53 0.37 25.25 36.7

Figure 3.1 plots the actual distribution of LR values for the 750 instances for all

four solvers. For all solvers and for a large majority of the instances, glue decisions

achieve higher LR than nonglue decisions.

Figure 3.2 shows per instance aLBD scores in log scale for the 750 instances

for glue and nonglue decisions.
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Figure 3.1: Comparison of LR values for glue and nonglue decisions. Instances
are sorted by the LR values of glue decisions. The number at the top of each plot
represents the percentage of instances, for which LR of glue decisions are higher
than LR of nonglue decisions.

Figure 3.2: Comparison aLBD scores (in Log Scale). Instances are sorted by the
aLBD of glue decisions. The number at the top of each plot represents the percent-
age of instances, for which aLBD of glue decisions are lower than aLBD of nonglue
decisions.
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• For Glucose and MapleLRB (first and second plots in Figure 3.2), for more

than half of the instances, the aLBD score of the learned clauses by nonglue

decisions is lower than the aLBD score of the learned clauses by glue deci-

sions. The average values of aLBD under columns E1 and E2 in Table 3.1 for

Glucose and MapleLRB reflect these ground data.

• MLD and MLD_CBT (third and fourth plots in Figure 3.2) show quite a

different behavior. The aLBD scores of the learned clauses by glue decisions

are lower for the large majority of instances. Again, the average values of

aLBD in columns E1 and E2 in Table 3.1 for MLD and MLD_CBT reflect

this ground data.

Overall, glue decisions are more conflict efficient than nonglue decisions for all

the tested solvers. For the average aLBD metric, glue decisions in the winners of

the last two SAT competitions, MLD and MLD_CBT, generate substantially lower

(better) values.

3.3.2 Selection Bias towards Glue Variables in CDCL

We are interested in the question: Do conflict guided CDCL branching heuristics

exhibit any bias towards glue variables over nonglue variables?

Given a SAT formula F and a solver Ψ, we define the glue fraction (GF) (resp.

nonglue fraction (NF)) as the fraction of variables in F that are glue (resp. nonglue)

variables, after Ψ completes its run with F . GF (resp. NF) measures the pool size

of glue (resp. nonglue) variables in F as a fraction of the total number of variables

in F .

Table 3.2 shows results over the 750 instances of TS1. Column B lists the av-

erage GF and average percentage of glue decisions, while Column C shows the

average nonglue fraction and the average percentage of nonglue decisions. For all

four solvers, on average, the number of glue variables is significantly smaller than

the number of nonglue variables (columns B1 and C1). For all the four solvers, on

average, glue decisions relative to glue variables pool size are higher (Column B2)

than nonglue decisions (Column C2) relative to the nonglue variables pool size.
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Table 3.2: Biased Selection of Glue Variables

(A)
Systems

(B)
Average for Glue Variable

(C)
Average for Nonglue Variables

GF (B1) Glue Decisions % (B2) NF (C1) Noglue Decisions % (C2)
Glucose 0.25 65.43% 0.75 34.57%
MapleLRB 0.21 63.14% 0.69 36.86%
MLD 0.22 47.60% 0.78 52.60%
MLD_CBT 0.22 48.76% 0.78 51.24%

In summary, the four state-of-the-art CDCL SAT solvers make a much larger

percentage of glue decisions against relatively smaller pools of glue variables. This

shows the bias of these solvers towards selecting glue variables in branching deci-

sions.

3.4 Activity Score Bumping for Glue Variables

From the above analysis, it is clear that decisions with glue variables generate con-

flict at faster rate than decisions with nonglue variables. How can we exploit this

empirical characteristic for more efficient SAT solving? We present a score bump-

ing method, called Glue Bump (GB), which bumps the activity score of glue vari-

ables. The amount of bumping for a glue variable depends on the appearance count

of that variable in glue clauses and its current activity score.

Definition 1: (Glue Level) Let G be the set of learned glue clauses until search

state s. The glue level gl(v) of a glue variable v, is the number of glue clauses in G

in which v appears.1

A higher glue level indicates higher potential to create conflicts.

3.4.1 The GB Method

By using the current activity scores and (normalized) glue levels of glue variables

(we will comment on normalization shortly), the GB method bumps the activity

1We omit the parameter s since the glue level of a variable is always computed w.r.t. a underlying
search state by default, without confusion.
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scores of glue variables. This gives higher preference to recently active glue vari-

ables with high glue levels. The GB method is simple to implement and conve-

niently integrates with activity based standard CDCL heuristics.

The GB method modifies a baseline CDCL SAT solver Ψ, creating its GB ex-

tension Ψgb, by adding the following two procedures, which are called at different

states of the search.

Alg. 1: Increase Glue Level Alg. 2: Bump Glue Variable
Input: A newly learned glue clause θ Input: A glue variable v
1 Foreach variable v in θ
2 gl(v)← gl(v) + 1
3 End

1 b← activity(v) ∗
(gl(v)
|G|

)
2 activity(v)← activity(v) + b

Increase Glue Level

Whenever Ψgb learns a new glue clause θ, the glue level of variable v in θ is in-

creased by 1 (Alg. 1 , line 2).

Bump Glue Variable

Alg. 2 bumps a glue variable v. It computes the bumping factor b for v (line 1), from

the current activity score and the normalized glue level (is explained below) of v.

The bumping is performed by adding the bumping factor of v to the activity score

of v, which becomes the new activity score for v (line 2).

Glue Level Normalization

The glue level of a glue variable can grow unboundedly with the discovery of more

and more glue clauses. The activity score of a glue variable also grows, but at a

different rate. Thus scaling the glue level is necessary.

At a given state of the search, a given glue variable v appears in at least one glue

clause. So, range of glue level of v is: 0 < gl(v) ≤ |G|. Hence, the normalized glue

level gl(v)
|G| is in the range (0,1].

The normalization scales the glue levels of glue variables by the total number

of glue clauses discovered by the search so far.
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Delayed Bumping of Glue Variables

Ψgb does not perform the bumping of v right after its hosting clause θ is discovered.

It delays the bumping, until v is unassigned by backtracking. This is a subtle point

which we explain below.

Figure 3.3: Delayed Bumping of Glue Variables. Let v be a glue variable that ap-
pears in the glue clause θ, which is learned at decision ds. At ds, all variables in θ
including v are assigned. At decision de > ds, assume that v gets unassigned via
backtracking. Within the decision window T = de − ds, possibly, (i) more glue
clauses are learned. (ii) v gets involved in more conflicts. For these two events, bds ,
the bumping factor computed at ds will be different from bde , where bde is the more
recent bumping factor for v.

• Let glue clause θ be the latest learned clause, such that all the variables in θ

including v are assigned at the current search state. Any score bumping that

v receives at this stage is not used until v gets unassigned.

• Let T = de − ds > 0 be the decision window starting from the decision ds

that generates θ and ending at the decision de in which v gets unassigned.

Within T , the search may generate more glue clauses which may contain v

as well. v may also be involved in several conflicts during T , which increases

its activity score. bde , the bumping factor of v computed at de reflects a more

recent measure than bds , the one which is computed at ds. By delaying the
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bumping of v until the decision de, when v is just unassigned and become a

candidate variable for branching, the GB method boosts the activity score of

v by a more recent bumping factor.

Figure 3.3 illustrates the difference of impact on computing the bumping factor for

Glue variables with immediate and delayed bumping.

3.5 Implementation of GB and Experiments

3.5.1 Implementation of GB

We implemented the GB method on top of the CDCL SAT solvers Glucose, Maple

LRB, MLD, and MLD_CBT and call the extended solvers Glucosegb, MapleLRBgb,

MLDgb, and MLD_CBTgb, respectively. The baseline solvers do not distinguish be-

tween glue and nonglue variables, except Glucose, which bumps the activity scores

of variables that are propagated from a glue clause.

In Glucosegb and MapleLRBgb, on the unassignment of a glue variable, the GB

method updates the activity score of that glue variable in VSIDS and LRB, re-

spectively. These are the heuristics used in their baselines. As remarked earlier, the

baseline solvers MLD and MLD_CBT employ three heuristics, DIST, VSIDS and

LRB, which are activated at different phases of the search. In any given phase, on

the unassignment of a glue variable, MLDgb and MLD_CBTgb update the activity

score of that glue variable for the currently active heuristic.

3.5.2 Experiments

We conduct experiments with our four extended solvers with TS1 instances. We

compare the extended solvers and their baselines in terms of number of solved

instances, solution time and PAR-2 scores.

Solved Instances Comparison

Table 3.3 compares the four extended solvers with their baselines. Both MapleLRBgb

and MLDgb solve 13 more instances (9 SAT, 4 UNSAT for the former and 11 SAT,
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Table 3.3: Comparison of the four baseline solvers with their GB extensions for the
instances from TS1. The PAR-2 scores are scaled by 10−4.

Systems SAT Comp-17 SAT Comp-18 SAT Comp-2017 and 2018
SAT UNSAT Total PAR-2 SAT UNSAT Total PAR-2 SAT UNSAT Total PAR-2

Glucose 83 96 179 1893 97 95 192 2274 180 191 371 4167
Glucosegb 86 (+3) 96 (+0) 182 (+3) 1868 96 (-1) 97 (+2) 193 (+0) 2273 182 (+2) 193 (+2) 375 (+4) 4141
MapleLRB 80 95 175 1897 114 95 209 2069 194 190 384 3966
MapleLRBgb 87 (+7) 97 (+2) 184 (+9) 1824 117 (+3) 96 (+1) 213 (+4) 2027 204 (+10) 193 (+3) 397 (+13) 3851
MLD 99 106 205 1635 136 101 237 1807 235 207 442 3442
MLDgb 103 (+4) 107 (+1) 210 (+5) 1593 143 (+7) 102 (+1) 245 (+8) 1725 246 (+11) 209 (+2) 455 (+13) 3318
MLD_CBT 103 113 216 1565 135 102 237 1800 238 215 453 3365
MLD_CBTgb 102 (-1) 114 (+1) 216 (+0) 1539 138 (+3) 101 (-1) 239 (+2) 1756 240 (+2) 215 (+0) 455 (+2) 3295

2 UNSAT for the latter). Glucosegb solves 4 more instances (2 SAT, 2 UNSAT), and

MLD_CBTgb solves 2 additional instances (both SAT).

According to Audemard and Simon [4], solving 10 or more instances on a fixed

set of instances from a competition by using a new technique generally shows a

critical feature. MapleLRBgb solves 9 more instances over the instances from SAT

Competition 2017 and and MLDgb solves 8 additional instances over the instances

from SAT Competition 2018. The gains with MapleLRBgb and MLDgb are signifi-

cant and come close to the introduction of a critical feature.

Solution Time Comparison

Figure 3.4 compares the performance of Glucosegb (blue line), MapleLRBgb (red

line), MLDgb (yellow line) and MLD_CBTgb (purple line) against their baselines.

This figure plots the difference in the number of instances solved as a function

of time used. At most points in time, MapleLRBgb, MLDgb, and MLD_CBTgb

each solves more problems than their baseline. This is particularly pronounced for

MLDgb (yellow line) at earlier time points, for MLD_CBTgb (purple line) on mid

range time points. The improvement for MapleLRBgb (red line) remains steady,

with a brief downward slope in the middle. Glucosegb performs slightly worse than

Glucose in between 500 to 1500 seconds, but gains a small advantage later.
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Figure 3.4: Solve time comparisons for TS1. For any point above 0 in the vertical
axis, our extensions solve more instances than their baselines at the time point in
the horizontal axis.

PAR-2 Score Comparison

Table 3.3 shows that all our extended versions achieve a lower PAR-2 score than

their baselines for all the problem sets. Overall, the percentage of PAR-2 score re-

ductions (computed from the last Column of Table 3.3) with MLDgb, MapleLRBgb

and MLD_CBTgb are 3.73%, 2.98% and 2.12%, respectively, which are significant

with respect to SAT competition. For example, in SAT Competition 2018 the win-

ning solver was ahead in PAR-2 score by only 0.81%.2

Glucosegb also lowers the PAR-2 score over Glucose but by only 0.60%. The

improvement is less impressive than with the other three GB extensions. In Section

3.7, we will discuss the reason and show that this performance does not indicate

that the GB method is ineffective.

Effectiveness of the GB Method on Benchmark Families

Many benchmarks in TS1 are of industrial problems. Table 3.4 lists those bench-

mark families, for which our GB method is particularly efficient. For these bench-

mark families our GB extended solvers solve at least 2 more instances than their
2http://sat2018.forsyte.tuwien.ac.at/
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baselines.

Table 3.4: Benchmark families for which the GB extended solvers solve at least
two more instances than their baselines. The Column Baseline and GB show the
number of problem solved.

GB Extensions Benchmarks/SAT Comp Baseline GB % Improvements

Glucosegb
Integer Prefix/2017 28 32 (+4) 14.32%

Soos/2018 8 11 (+3) 37.5%
Ofer/2018 9 11 (+2) 18.18%

MapleLRBgb

T/2017 28 31 (+3) 9.67%
Integer Prefix/2017 27 30 (+3) 10.00%

Klieber/2017 17 19 (+2) 10.52%
Chen/2018 2 4 (+2) 50.00%
Ofer/2018 5 7 (+2) 28.57%

Scheel/2018 18 20 (+2) 10.00%

MLDgb ak128/2017 11 13 (+2) 15.38%
Heule/2018 16 20 (+4) 20.00 %

MLD_CBTgb
Xiao/2018 7 9 (+2) 22.22%

Collatz/2018 7 10 (+3) 30.30%

3.6 G2L: A New Measure of Solving Efficiency

In [41], Liang 2017 et al. show that on average, better branching heuristics achieve

higher average GLR values and lower average LBD (aLBD) scores of their learned

clauses. In Table 3.5, we compare our extended solvers and their baselines in these

terms. All the solvers with GB extension generate conflicts at about the same rate

as their corresponding baselines and achieve slightly smaller average aLBD scores.

These results are largely consistent with [41].

Table 3.5: Comparison of average GLR and aLBD score for GB extension solvers
and baselines over the 750 test instances.

Systems Glucose Glucosegb MapleLRB MapleLRBgb MLD MLDgb MLD_CBT MLD_CBTgb

avg. GLR 0.49 0.49 0.48 0.48 0.40 0.40 0.40 0.41
avg. aLBD 20.09 19.93 24.88 24.79 27.73 27.36 27.59 27.26

Of course, these are rough measures. One can often find some subset of the

benchmarks for which average GLR and average aLBD are not good performance

indicators. However, for some subsets of benchmarks it may be highly expected

that these metrics should be re-enforced. In this section, we select two subsets of

this kind, but surprisingly the standard metrics do not provide a consistent explana-

tion; they even lead to opposite conclusions. However, we show that a simple new
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measure, based on the fraction of learned clauses that are glue clauses, provides a

consistent explanation of solving efficiency.

3.6.1 The G2L Measure

We define a new performance metric called Glue to Learned (G2L). Then we

present an analysis with all three metrics, aLBD, average GLR and average G2L

on two different sets of instances, where the baseline heuristics and their GB exten-

sions show opposite performance.

Definition 2: Glue to Learned (G2L) G2L denotes the fraction of learned clauses

that are glue clauses. More precisely, it is defined by #glue_clauses
#learned_clauses , where our

solver Ψ has learned #learned_clauses clauses for a given run on a given formula,

among which #glue_clauses are glue clauses.

3.6.2 Relating G2L to Solving Efficiency

The performance of branching heuristics correlates well with average GLR and the

average aLBD scores at large scale. However, these two metrics fail to explain the

performance of the baseline heuristics and their GB extensions for two specially

designed subsets of instances from TS1:

• GBexclusive : Instances solved by Ψgb but not by Ψ.

• Baselineexclusive : Instances solved by Ψ, but not by Ψgb.

Table 3.6 compares the four baseline solvers and their GB extensions in terms

of average GLR, aLBD, and G2L separately for the two sets GBexclusive and

Baselineexclusive instances. We expected that the solving efficiency positively (resp.

negatively) correlates with average GLR and G2Ls (resp. average aLBD).

We observe the following:

• Average GLR: For instances from GBexclusive (Column C) and Baselineexclusive

(Column D), the better branching heuristics have lower average GLR values.

This is surprising since the performance of branching heuristics is negatively
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Table 3.6: Comparison between baselines and their GB extensions for aver-
age GLR, average aLBD and average G2L for instance sets GBexclusive and
Baselineexclusive; In Column B, {x}gb is the GB extension of baseline heuristic
x. Column C (resp. Column D) shows three metrics: avg. GLR, avg. aLBD and
avg. G2L for instance category GBexclusive (resp. Baselineexclusive), where the
sub-column #inst shows the number of GBexclusive (resp. Baselineexclusive) in-
stances for which we are comparing the heuristics in Column B.

(A)
Systems

(B)
Employed Heuristics

(C)
GBexclusive

(D)
Baselineexclusive

#inst avg. GLR avg. aLBD avg. G2L #inst avg. GLR avg. aLBD avg. G2L
Glucose {VSIDS}

33
0.56 28.60 0.0005

29
0.59 18.52 0.0015

Glucosegb {VSIDS}gb 0.53 24.69 0.0016 0.62 20.14 0.00078
MapleLRB {LRB}

27
0.50 26.06 0.00073

14
0.47 30.75 0.00046

MapleLRBgb {LRB}gb 0.46 20.38 0.00126 0.48 32.02 0.00037
MLD {Dist/VSIDS/LRB}

28
0.55 23.60 0.00029

15
0.53 26.70 0.0011

MLDgb {Dist/VSIDS/LRB}gb 0.51 26.04 0.00032 0.58 23.21 0.0009
MLD_CBT {Dist,VSIDS,LRB}

26
0.49 26.08 0.0006

24
0.51 29.64 0.00065

MLD_CBTgb {Dist/VSIDS/LRB}gb 0.43 36.24 0.0011 0.55 25.42 0.00037

correlated with average GLR values. This is highly inconsistent with the re-

sults reported in [41].

• Average aLBD: In both GBexclusive and Baselineexclusive, the better heuris-

tics have lower average aLBD in Glucose and MapleLRB based systems. This

is consistent with the results from [41]. However, in MLD and MLD_CBT

based systems, the better branching heuristics have higher average aLBD,

which is inconsistent with the results of [41].

• Average G2L: For both GBexclusive and Baselineexclusive, the better heuris-

tics always achieve higher average G2L values. The biggest difference in G2L

is 220% (0.0016 - 0.0005) for VSIDSgb in Glucosegb and VSIDS in Glucose

for the subset of instances GBexclusive (Column C). We observe a signifi-

cantly larger average G2L values for the better solvers in all the other cases

as well by comparing the bold values in avg. G2L subcolumn with the values

not in bold, for both columns C and D in Table 3.6.

To summarize, for instances for which one heuristic works better than the other,

the correlation between the performance of branching heuristics and average GLR

and average aLBD is not always consistent with the results of [41]. However, the

average value of the new metric G2L positively correlates with the performance in

34



each case.

3.7 Effect of Glue Level Normalization

Earlier, we noticed that Glucosegb showed less improvement than the other GB ex-

tensions. Compared to its baseline, Glucosegb solves 4 additional instances, lowers

the PAR-2 score only by 0.60% (Table 3.3), and solves instances at a slower rate

than its baseline at most time points (Figure 3.4).

Unlike the other 3 baseline solvers used in our experiments, the baseline solver

Glucose already bumps variables that are propagated from glue clauses by using

VSIDS [8]. These variables are a subset of what we call glue variables. Thus in

Glucosegb, these variables get bumped from two sources: from GB bumping and

from VSIDS. We hypothesize that the relatively weak performance of Glucosegb

comes from this imbalance.

We tested this hypothesis by changing the glue level normalization method in

GB to decrease the bumping factor in Alg. 2. For a given glue variable v, instead of

dividing gl(v) by |G|, we divide by a bigger factor: gl(v)∑
θ∈G len(θ)

, where len(θ) is the

number of variables in the glue clause θ. The sum is the total number of the glue

variables discovered so far in the search. If the average length of the glue clauses in

G is n, then in this version, gl(v) is scaled down by n.

We repeated our experiment with this version. Over the 750 instances from

TS1, Glucosegb now solves 11 more instances than Glucose and lowers the PAR-2

score by 2.86%. For the other three GB extensions, this reduction does not work

well.

3.8 Experiment with Immediate Bumping

We performed a smaller scale experiment with MLD over the 350 instances from

SAT competition-2017, where we bump the score of the glue variables as soon as

their hosting glue clause is learned (i.e., without delaying the bumping). MLD, with

this version of glue variable bumping, solves 2 more UNSAT instances, but 2 fewer

SAT instances than the baseline. As this immediate bumping did not appear to be
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promising with MLD, we did not perform any further experiment.

3.9 Related Work

Glucose [8] increases the activity scores of variables of the learned glue clauses.

This bumping is based on the VSIDS score bumping scheme. In contrast, we in-

crease the activity scores of all variables that appear in glue clauses based on their

normalized glue level.

In [37], Katsirelos 2012 et al. studied the behavior of Glucose with respect to

eigencentrality3, a precomputed static ranking of the variables in industrial SAT

instances. The branching and propagated variables in Glucose have a high degree

of eigencentrality and compared to the variables in conflict clauses, the variables

that appear in learned clauses are more eigencentral. In contrast, we dynamically

characterize glue and nonglue variables within the course of a search and show that

decisions with glue variables are more conflict efficient than decisions with nonglue

variables.

In [45], Liang 2015 et al. show that the VSIDS heuristic branches dispropor-

tionately more often on variables that are bridges4 between communities. Here, we

have shown that CDCL heuristics branch disproportionately more often on glue

variables.

3.10 Conclusions

In this work, we showed experimentally that decisions with variables appearing in

glue clauses are more conflict efficient than decisions with other variables, and that

state-of-the-art CDCL SAT solvers tend to make glue decisions more often. Mo-

tivated by these observations, we developed a CDCL variable bumping scheme,

3Intuitively, eigencentrality of a node n in a given graph G measures the importance of n in G,
which is computed based on the importance of the neighbours of n.

4Given a SAT formula F , one can construct a Variable Incidence Graph (VIG) GF , where two
nodes v, v′ ∈ GF have an edge between them if v and v′ both appears in a clause C ∈ F . For
many industrial SAT formulas, their VIG can be decomposed into different communities (as shown
in [1]), where a community is a sub-graph that has more internal edges than outgoing edges. In [45],
a variable which connects such two sub-graphs/communities is defined as bridge variables.

36



which increases the heuristic score of glue variables based on the frequency of its

appearance in glue clauses. Our empirical evaluation showed the effectiveness of

the new method on the main track instances from SAT Competition 2017 and 2018

with four state-of-the-art CDCL SAT solvers. For some subsets of SAT Competi-

tion 2017 and 2018 benchmarks, our experimental data are surprisingly inconsis-

tent with the standard performance metrics based on GLR and average LBD. We

showed that for these subsets of benchmarks, the G2L measure based on the frac-

tion of learned clauses that are glue clauses provides a consistent explanation of our

experimental data.
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Chapter 4

Conflict Depression Phases in Search
using CDCL

4.1 Introduction

In CDCL, a single decision may generate zero or more conflicts. The Global Learn-

ing Rate (GLR) [41] measures the number of conflicts per branching decision.

State-of-the-art branching heuristics, such as VSIDS, LRB or CHB, have average

GLR values of about 0.5, i.e., they produce on average one conflict per two deci-

sions [41].

In this Chapter, we perform an empirical study on the conflict generation pat-

tern in CDCL search. We discover that there are clear patterns of short bursts of

conflicts, called conflict bursts (CB), followed by longer phases of what we call

conflict depression (CD), in which the search fails to generate any conflicts for a

consecutive number of decisions.

Contributions of this Chapter are as follows:

• We introduce and formulate the notions of CD and CB phases and then

present an empirical study of CD and CB phases in CDCL, using the VSIDS-

based solver glucose 4.2.1 (abbreviated as gLCM)1 [7] and the LRB based

solver MapleCOMSPS_Pure_LRB(abbreviated as MplLRB) [44] on the TS1

test set. Our analysis shows that CD phases occur at a high rate, and often

have long duration.

1glucose 4.2.1, which implements the Learned Clause Minimization (LCM) [46] technique on
top of glucose 4.1.
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• We demonstrate a weak correlation between average length of CD phases and

solving hardness.

• We study the correlation between the backjumping in CDCL and CD. On

average, longer (resp. shorter) CD phases follow longer (resp. shorter) back-

jumps. However, as the general tendency, longer (resp. shorter) CD phases

occasionally follow longer (resp. shorter) backjumpings.

• We characterize the new notion of CD as a novel pathological phase for

CDCL SAT solving, and present a thorough discussion on various aspects

of CD phases, which reveal interesting insights for CDCL SAT solving.

The next section presents relevant notions and definitions for this Chapter.

4.2 Notions and Definitions

Consider a run of a CDCL SAT solver Ψ which makes a total of d > 0 decisions.

In each decision, a variable is selected according to a branching heuristic. Each

decision i (0 < i ≤ d) leads to some number ci ≥ 0 of conflicts.

Definition 3: (Conflict History) Let H = 〈c1, . . . , ci, . . . , cd〉 be the conflict history

of the search up to the dth decision. Here, ci ≥ 0 denotes the number of conflicts

generated by the ith decision.

By 〈ci〉kj , we denote 〈cj, . . . , ck〉, a sub-sequence of H , where 1 ≤ j ≤ i ≤ k ≤

d.

Definition 4: (CD Phase) A conflict depression (CD) phase is a sequence of one or

more consecutive decisions with no conflict. The subsequence 〈ci〉kj is a CD phase

if ci = 0 for every i, where j ≤ i ≤ k.

Definition 5: (CB Phase) A conflict burst (CB) phase is a sequence of one or more

consecutive decisions with at least one conflict. The subsequence 〈ci〉kj is a CB

phase if ci > 0 for every i, where j ≤ i ≤ k.

Definition 6: (Length of CD Phase) The length of a CD phase 〈ci〉kj is len(〈ci〉kj ) =

k − j + 1, the number of decisions in that CD phase.
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Example 1: The conflict history H = 〈1,0,0,0,0, 4, 2, 1,0, 1,0,0〉 contains 3

CD phases shown in bold: 〈ci〉52, 〈ci〉99, and 〈ci〉12
11, whose lengths are 4, 1 and 2,

respectively. H also contains 3 CB phases shown in non-bold: 〈ci〉11, 〈ci〉86, and

〈ci〉10
10, whose lengths are 1, 3 and 1, respectively.

Definition 7: Suppose the solver Ψ takes a total of d decisions, performs p propa-

gations, makes r restarts and encounters u CD phases with length 〈l1 . . . li . . . lu〉,

where li is the length of the ith CD phase. We define

• the Propagation Rate (PR) as p
d
, the number of propagations per decision.

• the Decision Rate (DR) as d
r
, the number of decisions per restart.

• the CD phase Rate (CDR) as u
r
, the number of CD phases per restart.

• the average CD phase length (aCDPL) as
∑u
i=1 li
u

Let d′ ≤ d be the number of decisions that generate at least one conflict. Let d′ =

ds + dm, where ds is the number of decisions that generate exactly one conflict and

dm is the number of decisions that generate more than one conflict.

Definition 8: We define

• The Fraction of Decisions with Conflicts (FDC) as d′

d
, which measures the

fraction of decisions that produce at least one conflict. This measure is related

to but different from GLR in that it only considers decisions with conflicts, not

number of conflicts. We further divide FDC=FDOC+FDMC as follows:

– Fraction of Decisions with One Conflict (FDOC) = ds
d

.

– Fraction of Decisions with Multiple Conflicts (FDMC)= dm
d

.

4.3 CD Phases in CDCL Branching Heuristics

We study conflict depression with the VSIDS and LRB heuristics, and with the

CDCL solvers gLCM (which implements VSIDS exclusively) and MplLRB (which

implements LRB exclusively). In TS1, 4 instances out of 750 have only a single
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CD phase, each of which is exceptionally long. We discarded these 4 instances as

outliers, since the aCDPL of these instances are based on only one CD phase.

We collect the following statistics from the search for each remaining instance

from TS1: DR, CDR, aCDPL, GLR, FDC, FDOC and FDMC.

Figure 4.1: aCDPL, CDR and DR for VSIDS in gLCM for TS1 instances. Each
measures are shown in Log (natural) scale.

Conflict Depression in VSIDS

Figure 4.1 shows the Decision Rate (DR), CD Phase Rate (CDR) and average CD

phase length (on a natural log scale) for instances in TS1 for VSIDS. The instances

are sorted by average CD phase length. The average CD phase length (blue line) is

short for most instances, but still consists of multiple decisions. Irrespective of their

average CD phase lengths, for almost all instances CD phases (orange data points)

occur at a high rate given the decision rates (yellow data points).

Figure 4.2 shows the distribution of average lengths of CD phases. This average

ranges from 2 to 11,348. 263 instances have a very short length of at most 3. The

distribution is heavy-tailed, with 69 instances of average length greater than 25

shown in the rightmost bin in Figure 4.2.
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Figure 4.2: Distributions of aCDPL for TS1 instances for VSIDS in gLCM

Figure 4.3: aCDPL, CDR and DR for LRB in MplLRB for TS1 instances. Each
measures are shown in Log (natural) scale.
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Figure 4.4: Distributions of aCDPL for TS1 instances for LRB in MplLRB

Conflict Depression in LRB

Figures 4.3 and 4.4 show the corresponding results for LRB in the solver MplLRB

for the instances in TS1. Similar to VSIDS, as shown in Figure 4.3, LRB undergoes

conflict depression phases at a fast rate with respect to the decision rate. As shown

in Figure 4.4, the distribution of instances by CD phase length is also similar to

VSIDS: a high number (279) of instances have small average CD phase length of

at most 3. The distribution is heavy-tailed, with 79 instances of CD phase length

greater than 25.

Overall, the data indicates that for both VSIDS in gLCM and LRB in MplLRB,

conflict depressions occur frequently and often last over multiple decisions, leading

to a high average CD phase length.

4.3.1 Propagation Depression amid a CD Phase

During a CD phase, the activity scores of VSIDS and LRB are not a good predictor

of a variable’s future performance, since branching decisions fail to produce any

conflict and perform only truth value propagations. Are there any differences in the

pattern of unit propagations between CD and CB phases?

Table 4.1 compares the average PR values over the decisions in CD and CB
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Table 4.1: Average Propagation Rate (PR) for CD and CB Phases for VSIDS in
gLCM

1: Type 2: #Inst 3: Propagation Rate
3.1 CD Phase 3.2 CB Phase

SAT 177 153.43 1560.40
UNSAT 195 404.40 3445.40
Unsolved 378 173.18 1718.51
Combined 750 229.51 2136.73

Table 4.2: Average PR for CD and CB Phases for LRB in MplLRB

1: Type 2: #Inst 3: Propagation Rate
3.1 CD Phase 3.2 CB Phase

SAT 189 89.86 808.61
UNSAT 186 135.55 991.95
Unsolved 375 107.18 1179.10
Combined 750 109.82 1039.40

phases for VSIDS, and Table 4.2 compares the same measures for LRB, for the

instances from TS1. On average, for both VSIDS and LRB, the PR values dur-

ing a CD phase are almost 10 times lower than in CB phases. This demonstrates

that during a CD phase, branching decisions of both VSIDS and LRB go through

propagation depression as well.

4.4 Comparing the Average CD Phase Length in gLCM
and MplLRB

In Figures 4.2 and 4.4 for gLCM and MplLRB, respectively, we showed the dis-

tribution of instances from TS1 in 24 bins (starting from bin 2 to 25), where an

instance i is put in a bin if the average CD phase length of i falls into the range that

the bin represents. Here, we present an analysis to find if these instances change

their bins when running with two different solvers.

Let Ψ be a solver and I be a set of instances.We define the set

I2BI,Ψ = {b | b is the bin for an instance i ∈ I , when running with Ψ}

which contains the bins for all instances of I , when running with Ψ.
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Figure 4.5: Comparing the average CD phase length for gLCM and MplLRB over
TS1 instances

We are interested in the change in distribution of instances over bins, when run

with different solver on a fixed collection of instances. Figure 4.5 plots I2BTS1, gLCM

and I2BTS1,MplLRB for TS1, where the instances are sorted by bin values in

I2BTS1, gLCM. This plot shows that when solved with MplLRB, about 51.60%

of the instances (red dots, which are not on the blue line) in TS1 locate at different

bins, compared to their bins with gLCM.

This analysis demonstrates the variation of conflict generation patterns between

different solvers over a fixed set of instances in terms of average CD phase length.

An instance that has a low average CD phase length with one solver, can have a

dramatically high average CD phase length with another solver and vice versa.

4.5 Conflict Bursts with VSIDS and LRB

How long are the CB phases compared to CD phases? For VSIDS, the average

length of CB and CD phases over the TS1 instances is 1.67 and 20.63, respectively.

For LRB, these values are 1.89 and 18.25. For both of these branching heuristics,

shorter CB phases are separated by much longer CD phases.
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Table 4.3: Average values of GLR, FDC, FDOC and FDMC for VSIDS in gLCM

1: Type 2: #Inst 3: GLR 4. FDC 5: FDOC 6: FDMC
SAT 177 0.4644 0.2394 0.0980 0.1414
UNSAT 195 0.5070 0.2492 0.0927 0.1565
Unsolved 378 0.5099 0.2568 0.0992 0.1576
Combined 750 0.4984 0.2507 0.0972 0.1535

Table 4.4: Average values of GLR, FDC, FDOC and FDMC for LRB in MplLRB

1: Type 2: #Inst 3: GLR 4: FDC 5: FDOC 6: FDMC

SAT 189 0.4371 0.2294 0.0957 0.1337
UNSAT 186 0.5363 0.2677 0.0958 0.1719

Unsolved 375 0.4899 0.2484 0.0932 0.1531
Combined 750 0.4881 0.2473 0.0945 0.1528

Bursts of Conflict Generation

Tables 4.3 and 4.4 show the average values of GLR, FDC, FDOC and FDMC for

VSIDS and LRB, respectively. The TS1 instances are grouped into three categories:

SAT, UNSAT and Unsolved. Column 3 in both tables shows that the average GLR

values for all three types of problems are close to 0.5. In contrast, the average FDC

values in Column 4 in both tables are much lower, close to 0.25. Only 25% of all

the decisions produce at least one conflict. The majority of the conflict producing

decisions produce more than 1 conflict: FDMC (Column 6 of Table 4.3 and 4.4) is

much larger than FDOC (Column 5 of Table 4.3 and 4.4) in all three categories.

We have the following conclusion:

• The typical search behavior of CDCL contains short CB phases followed by

longer CD phases, in which the search does not find any conflicts.

• During a CD phase, the search goes through propagation depression as well.

• The short CB phases are conflict intense: within a few decisions, many con-

flicts are generated.
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Figure 4.6: Performance of gLCM on TS1 instances and their average CD phase
length

4.6 Average CD Phase Length and Performance of
Solvers

Our analysis shows that for many TS1 instances, the average CD phase length

(aCDPL) is very high for both gLCM and MplLRB. Since a faster rate of conflict

discovery (high GLR) is correlated with solving efficiency [41], the question arises:

How does CD correlate with the performance of CDCL solvers?

In this section, we study if there is any correlationship between solving hardness

of CDCL solvers for a fixed set of benchmarks and their average CD phase length

for the instances of that fixed set of benchmarks. We use gLCM and MplLRB as the

CDCL SAT solvers and TS1 as the test sets.

4.6.1 Grouping of Instances by Increasing CD Phase Length

Figures 4.6 and 4.7 show aCDPL (in natural log scale) for TS1 instances with

gLCM and MplLRB, respectively. The instances are sorted by their aCDPL and are

divided into four quarters. In both figures, points representing solved instances are

colored in blue and points representing unsolved instances are colored in red.
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Figure 4.7: Performance of MplLRB on TS1 instances and their average CD phase
length

Observations for gLCM

For gLCM (Figure 4.6),

• The second (106) and third (109) quarter have the most unsolved instances.

• The instances solved in these two quarters have higher solving time than the

other two quarters on average.

• Among these four quarters, the first and the fourth quarters have instances

with lowest and highest average CD phase length, respectively. Compared to

the second and the third quarters, where average CD Phase length is moderate-

to-high, the first and fourth quarter have more solved instances with lower

solve time.

Hence, for gLCM, many instances with very low (quartile 1) and very high (quartile

4) CD phases are easier to solve than instances with moderate-to-high (quartile 2

and 3) average CD phase length.
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Observations with MplLRB

For MplLRB, we observe the opposite behavior with respect to aCDPL for these

instances. In Figure 4.7, we see that

• more unsolved instances are in the first and last quarters, where instances have

lowest and highest average CD phase lengths. There are more hard instances

in the first (instances with low aCDPL) and last quarters (instances with very

high aCDPL).

From this analysis we cannot draw any general conclusions on how aCDPL

correlates to a solver performance.

4.6.2 Grouping of Instances by Benchmark

We further analyzed the performance of solvers with respect to aCDPL for a set of

selected benchmarks from TS1. We compare the aCDPL of solved and unsolved

instances to relate solving hardness with aCDPL. We performed this analysis for

both gLCM and MplLRB and observed similar results.

We identified 61 different benchmarks in TS1. For each benchmark β and

solver ψ, we categorize the instances of β into two types:

• Eψβ : easy instances in benchmark β are solved by ψ before timeout.

• Hψβ : hard instances in benchmark β, which ψ is unable to solve before time-

out.

For a benchmark β and a solver ψ, if | Eψβ | or |Hψβ | is too small, then the compar-

ison of aCDPL between Eψβ and Hψβ will not be robust. Therefore, we consider

only those benchmarks for which both Eψβ and Hψβ contain more than 25% of the

instances in β.

• Out of 61 benchmarks, only 15 are robust for gLCM: |EgLCMβ | > |β| ∗ 0.25

and |HgLCMβ | > |β| ∗ 0.25.

• Out of these 61 benchmarks, only 15 are robust for MplLRB: |EMplLRBβ | >

|β| ∗ 0.25 and |HMplLRBβ | > |β| ∗ 0.25.
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Figure 4.8: aCDPL of gLCM on TS1 instances and their average CD phase length

Here |β| denotes the number of instances in the benchmark β. Given a set of

robust benchmarks for ψ, we define its two subsets:

• Hψ
hg: a set of robust benchmarks for which the median values of aCDPL for

unsolved instances with ψ are higher than solved instances.

• Hψ
lw a set of robust benchmarks, for which the median values of aCDPL for

unsolved instances with ψ are lower than the solved instances.

Observations with gLCM

Figure 4.8 shows the aCDPL of the instances from 15 benchmarks which are robust

for gLCM. Each of these benchmark are identified by their Benchmark ID (or Bench

ID, shown in top in black numbers) and are separated by vertical dotted bars. Here,

solved instances are colored in blue and unsolved are colored in red.

Our observations are:

• There are few benchmarks for which solved instances have higher aCDPL

than unsolved instances (for example, Benchmarks with Bench ID 2 and 13).

• For some other benchmarks, all the unsolved instances have higher aCDPL
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Figure 4.9: aCDPL of MplLRB on TS1 instances and their average CD phase
length

than unsolved instances (for example, Benchmarks with Bench ID 25 and

60).

Table 4.5 compares the median aCDPL values of solved (Column I) and un-

solved (Column II) instances for both HgLCM
hg (top 8 entries) and HgLCM

lw (bottom 7

entries) for gLCM. We have the following observation:

• The median of a slight majority of the robust benchmarks (8/15) for gLCM

correlate well with its solving hardness.

Observations with MplLRB

The results for MplLRB are shown in Figure 4.9 and Table 4.6. We have similar

observations with MplLRB as gLCM.

To summarize, the median of the measure aCDPL has positive correlation with

solving hardness for a slight majority of the benchmarks that we have considered.

Hence, there is a weak correlation between aCDPL and solving hardness.
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Table 4.5: Comparison of median of aCDPL for solved and unsolved instances of
15 robust benchmarks from TS1 with gLCM; The top 8 rows show the results for
HgLCM

hg and the bottom 7 rows show the results for HgLCM
lw instances.

Entry Bench ID Instance
Count

Solved Unsolved
Instance
Count I: Median aCDPL Instance

Count II: Median aCDPL

1 4 41 26 6.35 15 19.96
2 9 40 21 27.43 19 70.63
3 20 20 8 2.35 12 2.6
4 23 20 8 2.5 12 3.27
5 25 19 9 2.66 10 5.1
6 30 20 5 2.89 15 3.19
7 31 20 9 2.5 11 2.58
8 60 19 11 4.44 8 25.83
9 2 26 9 26.54 17 10.47

10 13 59 25 9.48 34 8.52
11 28 21 7 4.9 14 2.86
12 41 20 13 2.9 7 2.78
13 43 20 12 15.06 8 15.01
14 55 8 4 14.49 4 13.49
15 59 20 10 9.18 10 8.54

4.7 Correlation of CD Phases and Backjumping Length

Consider a run of a given CDCL solver with a given instance. After learning a clause

from the latest conflict and backjumping to a previous level, the search continues

by assigning the opposite of the fUIP literal of that last conflict. After backjumping,

if the search enters into a space, which is different than the space it was in before

the backjumping, then the variable ranking of the currently active decision heuristic

may be an inaccurate estimation of the conflict generation potential, and may lead to

conflict depression. Based on this intuition, here we study the correlation between

conflict depressions and backjumps.

Assume a run of a given CDCL solver with a given instance.

• Following the discovery of a conflict and learning of a clause, assume that

the search has just backjumped to level b from the current level c. We define

the backjumping length of this backjump as bl = c − b. Assume that during

the whole run, the search finds n conflicts and backjumps n times. We define

average of Search Backjumping Length or sbl as the average of bl over those
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Table 4.6: Comparison of median of aCDPL for solved and unsolved instances of
15 robust benchmarks from TS1 with MplLRB; The top 8 rows shows the results
for HMplLRB

hg and bottom 7 rows shows the results for HMplLRB
lw instances.

Entry Bench ID Instance
Count

Solved Unsolved
Instance
Count I: Median aCDPL Instance

Count II: Median aCDPL

1 9 39 27 20.27 12 45.68
2 14 20 12 4.44 8 4.67
3 17 19 5 4.95 14 14.95
4 25 19 9 2.43 10 3.09
5 31 20 8 2.52 12 2.54
6 43 20 12 13.26 8 15.36
7 58 6 3 2.73 3 3.16
8 60 19 11 4.47 8 63.95
9 2 28 8 18.95 20 15.64

10 13 59 25 17.54 34 16.95
11 20 20 13 2.25 7 2.23
12 27 20 9 9.84 11 5.94
13 28 21 8 3.9 13 2.59
14 30 20 5 2.85 15 2.63
15 55 8 3 16.15 5 10.57

n backjumps.

• Assume that the search has just finished a CB phase. We denote the last con-

flict in a CB phase as the rearmost conflict (RC) for that CB, the backjump-

ing that follows RC as the rearmost backjumping (RB), and the backjumping

length of the RB as the rearmost backjumping length (RBL). The RB of a CB

phase is followed by a CD phase. In Figure 4.10, the conflicts C2,2 and C6,1

are the RCs of the CB phases that start at decisions d2 and d5, respectively,

both with RBL of 5. The CB phases are followed by CD phases of length 2

and 5, respectively.

Let the search encounter m CB and m CD phases. These m CB phases have

m RCs. We define rbl as the average backjumping length of those m RCs,

each of which is followed by a CD phase.

4.7.1 Longer Backjumps before CD Phases

Figure 4.11 compares sbl (red), the average backjumping length over all conflicts

during a run and rbl (blue), the average rearmost backjumping length over the
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Figure 4.10: Examples of Rearmost Conflicts and Rearmost Backjumping Length

conflicts for instances from TS1 with gLCM (left plot) and MplLRB (right plot) in

natural log scale. For both solvers, for almost all of the instances, rbl is larger than

sbl. Hence, on average a CD phase follows a conflict for which the backjumping

length is higher than average.

4.7.2 Correlation between length of CD phase and RBL

Is a longer RB in a CB phase followed by a longer CD phase? In this section we

study this question.

Let L = 〈lcd1, . . . , lcdi, . . . , lcdm〉 be the length of m CD phases. Let B =

〈rbl1, . . . ,rbli, . . . , rblm〉 be the sequence of m RBLs, where rbli is the RBL of

the RB, which is followed by the CD phase with length lcdi.

Let ρB,L be the Pearson Correlation Coefficient [36] between B and L for a run

of a given instance with a given solver. Figure 4.12 shows the ρB,L values for TS1

instances with gLCM (left plot) and MplLRB (right plot). In both of these plots, we

divide the instances into four types (similar to the categorization in [59]) based on

their correlation. Instances with

• negative correlation (ρ < 0) are marked as red cross.
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Figure 4.11: Comparisons between search backtracking length sbl and rbl for TS1
instances.

• low positive correlation (0 < ρ < 0.29) are marked as black stars.

• moderate positive correlation (0.30 ≤ ρ ≤ 0.75) are marked as blue circles.

• high positive correlation (ρ ≥ 0.75) are marked as green pluses.

Our observations are as follows. For both solvers,

• A small percentage (9.47% for gLCM and 13.15% for MplLRB) of TS1

instances have small negative ρB,L values (red crosses).

• For the majority of instances, the value of ρB,L is low (black stars) to moder-

ately (blue circles) positive.

• Only a very small percentage of the instances have high positive correlation

(green pluses).

The low to moderate positive values ρB,L for the majority of the instances indi-

cate that during the course of the search with these instances, occurrences of longer

(resp. shorter) CD phases occasionally follow longer (resp. shorter) rearmost back-

jumps. Now, during the course of a search, many rearmost backjumps can have the

same length, for which their corresponding CD phase length can vary. A variation
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Figure 4.12: The correlation ρB,L between the sequences B and L for TS1 in-
stances with gLCM (left plot) and MplLRB (right plot)

in CD phase lengths for a fixed RBL could explain the low-to-moderate positive

value of ρB,L.

Next, we study the correlation between the average length of CD phases that

follow the rearmost backjump of a fixed length, and that fixed length.

Assume that out of m RBLs, m′ RBLs are unique. Let

U = 〈rbl1, . . . , rbli, . . . , rblm′〉

be the tuple of those unique m′ RBLs.

For any RBL, rbl∈ U , we define lcdrbl as the average length of CD phases that

follows the RBs with length rbl. For example, In Figure 4.10 two RCs with RBL

5 are followed by 2 CD phases of lengths 2 and 5, respectively. In this example

lcd5 = 2+5
2

= 7
3

= 3.5.

Assume another tuple

L = 〈lcd1, . . . , lcdi, . . . , lcdm′〉

where lcdi is the average length of CD phases that follows the RBs with length

rbli.

Figure 4.13 shows the Pearson Correlation Coefficient ρU,L between U and L

for TS1 instances with gLCM (left plot) and MplLRB (right plot). For both solvers,
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Figure 4.13: The correlation ρU,L between U and L for TS1 instances with gLCM
(left plot) and MplLRB (right plot).

• A very small percentage (1.75% for gLCM, 1.88% for MplLRB) of the in-

stances have negative correlation ρU,L < 0 (red cross).

• A higher percentage of instances (9.01% for gLCM and 8.59% for MplLRB)

have low positive correlation ρU,L ≤ 0.29 (black stars).

• The high majority of instances have moderate (blue circles, 0.30 < ρU,L ≤

0.75) to high (green pluses, ρU,L ≥ 0.75) positive correlation between U and

L.

Hence, on average, longer CD phases are followed by longer backjumps.

Summary of observations

We summarize our observations as follows:

(i) On average, the length of rearmost backjumps (which are followed by CD

phases) is higher than average (Figure 4.11).

(ii) Observations about ρB,L : For a good majority of the TS1 instances (around

50% for both solvers), the correlation between backjumping length of rear-

most conflict and length of CD phase that follows the conflict is low-to-
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moderate positive (Figure 4.12). For the large majority of instances, the length

of rearmost backjumps are weakly correlated with the length of its CD phase.

(iii) Observations about ρU,L : When CD phases are grouped by the length of the

RB, which the CD phases follow, the correlation between the average length

of CD phases in a group, and the length of the rearmost backjump of that

group is high. On average, longer CD phases are followed by longer rearmost

backjumps.

4.8 Longer CD Phases Occur Just after a Restart

Gomes et al. [29] observed that the distribution of solution time for a given in-

stance with DPLL-like solvers is heavy-tailed under the assumption of a random-

ized branching heuristic. A heavy tail indicates that mistakes occur frequently in

early branching decisions. Initially, restarts in DPLL based solvers were employed

as an effective way to combat these early mistakes in branching decisions. In state-

of-the-art CDCL SAT solvers, restarts function as a mechanism to rescue the search

from an area, where the search is not learning useful clauses [4].

A CDCL solver usually performs many restarts during a run, where it abandons

the current partial assignment and starts the search from scratch. However, other

information such as activity scores and saved phases are preserved. Hence after

a restart, the search moves back near the area where it was searching before the

restart. The question arises if CDCL search undergoes a longer CD phase right after

a restart, compared to later CD phases following the first conflict after the restart.

We analyze this question with gLCM and MplLRB for the instances from TS1.

Suppose that a given run of solver Ψ performs n restarts: r1 . . . rn. In the search

period between restarts ri and ri+1, we distinguish two types of CD phases as fol-

lows:

• Before First Conflict (BFC) CD Phase: The single CD phase that occurs

before the first conflict following restart ri.

• After First Conflict (AFC) CD Phases: All the other CD phases in the same
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period.

Figure 4.14: Comparing BFC and AFC CD Phases. Longer CD phases occur right
after restarts. Instances are sorted by average CD phase length over AFC CD phases

We run gLCM and MplLRB for each instance of TS1 until the instance is

solved, or the search encounters 10,000 restarts, or 1,000 seconds CPU time is

reached. For each run we separately collect: Average CD phase length in BFC and

AFC CD phases. The left and right plots of Figure 4.14 compare these numbers

for VSIDS (in gLCM) and LRB (in MplLRB). The plots are in Log scale, with

instances sorted by AFC. The figure clearly shows that for the overwhelming ma-

jority (95.56% for VSIDS and 99.04% for LRB) of instances, the average CD phase

length in AFC (blue lines in Figure 4.14) is significantly lower than in BFC (orange

dots in Figure 4.14) for both VSIDS and LRB.

On average, search undergoes much larger CD phases right after a restart.

4.9 CD Phase: a Pathological Phase for CDCL SAT
Solving

Heuristics guided search algorithms often exhibit pathological phases. For exam-

ple, local search for SAT frequently encounters movement through plateau regions,

where a sequence of states that the search visits are of equal heuristic value [27].
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Similar pathological behaviors occur in deterministic planning, where heuristic val-

ues of states do not improve within a plateau region [33].

While the CDCL branching heuristics such as VSIDS and LRB have different

heuristic values for each selected variable amid a CD phase, none of these selected

variables generate any conflicts. In this sense, the lack of progress of CDCL SAT

search amid a CD phase is similar to the lack of progress of local search algorithms

in a plateau region. However, in some special cases, occurrence of substantially long

CD phases may be useful to achieve search efficiency. For example, for UNSAT

instances, sometimes it may be useful for search to undergo a substantially long

CD phase to find a conflict which is relevant for the proof of unsatisfiability. While

occurrences of such substantial CD phases are important for constructing a proof,

in general CD phases are unproductive.

Therefore, we characterize CD as a pathological phase for CDCL.

4.10 Conclusions

In this Chapter, we have formulated two novel notions for CDCL SAT search: con-

flict depression phases, a sequence of decisions that do not lead to any conflict

and conflict burst phases, a sequence of decisions with at least one conflict each.

With two high-performance CDCL SAT solvers and recent SAT competition bench-

marks, we have shown empirically that the typical CDCL search behavior consists

of short but intense conflict burst phases, followed by longer conflict depression

phases.

We have demonstrated that there is a weak correlation between average CD

phase length and solving hardness. We have presented an empirical study that re-

veals correlation between backjump length and CD. We also showed that on av-

erage, a CDCL solver undergoes longer CD phases just after restarts. Finally, we

characterize CD as a pathological phase for CDCL SAT search.

In the next chapter, we present an algorithmic extension of CDCL that performs

randomized exploration amid substantial CD phases, with the goal of swift escape

from those CD phases.
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Chapter 5

Guiding CDCL via Exploration amid
Conflict Depression

During a CD phase, the search does not produce any conflict for a sequence of

consecutive decisions. In a substantial CD phase, the lack of conflicts is problematic

for the search.

• It spends a considerable amount of resources to perform a sequence of deci-

sions and unit propagations, without learning any clauses that could lead to

future pruning. In Chapter 4, we have observed a weak positive correlation

between average CD phase length and solving hardness.

In this Chapter, we propose our new CDCL solver extension expSAT to perform

random exploration amid substantial CD phases. This extension applies random

walks amid substantial CD phases to learn an updated variable selection heuristic,

with the goal of escaping from CD phases quickly. Such exploration visits possible

future search states, while the standard CDCL branching heuristics rely on conflicts

generated from past search states.

The SAT community was one of the first to embrace randomized exploration

methods, which are a key ingredient of the local search methods of GSAT [71] and

WalkSAT [70]. Modern CDCL SAT solvers also utilize exploration methods. Ex-

amples are random variable selection in the solver MiniSAT [23] and the trigger of

local search episodes at regular intervals in the solver CaDiCal [12]. Randomized

exploration was shown to be useful in many related search paradigms. For exam-

ple, exploration can potentially make a search more robust by mitigating “early
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mistakes” caused by inaccurate heuristics [82]. Examples of exploration methods

are Monte Carlo Tree Search (MCTS) [14] and random walk techniques, which

have been successfully applied to both classical [51, 81] and motion planning [39].

MCTS-based search methods were also shown to be effective in automated the-

orem proving [24] and in puzzle domains [61]. Perhaps the best-known example

which combines many of the recent advances in both MCTS and machine learning

of heuristics is the super-human strength Go-playing program AlphaGo [73].

The contributions of this Chapter are:

1. A formulation of the expSAT algorithm, an exploration-driven extension of

CDCL. As soon as a substantial CD phase is detected, an expSAT solver

performs random exploration to identify more conflict potent variables for

branching. The heuristic score of variables that cause conflicts during explo-

ration is boosted. We extend both VSIDS and LRB with this technique.

2. An extensive empirical evaluation of expSAT implemented on top of five

state-of-the-art SAT solvers, gLCM [7], MplLRB [44], MapleCOMSPS (MplCOM-

SPS) [44], Maple_CM (MplCM) [65], and MapleLCMDist_ChronoBT (MplCBT)

[65]. Among these five solvers, gLCM implements VSIDS exclusively and

MplLRB uses LRB exclusively. The other three solvers employ a combina-

tion of VSIDS and LRB, which are used at different states in their search. Our

implementation resulted in a total of 11 expSAT extended solvers.

We perform three sets of experiments using two instance sets: TS1 and TS2

(See Chapter 2 for the details of TS1 and TS2).

i. In the first set of experiments, we evaluate the expSAT extension of

VSIDS in gLCM, MplCOMSPS, MplCM, and MplCBT.

ii. In the second set of experiments, we evaluate the expSAT extension of

LRB in MplLRB, MplCOMSPS, MplCM and MplCBT.

iii. In the last set of experiments, we evaluate a combination of the expSAT

extensions of VSIDS and LRB in MplCOMSPS, MplCM, and MplCBT.

62



Summary of Results: On the benchmarks from the SAT-2017 and SAT-

2018 maintrack (TS1), most expSAT extensions (9/11) solve more instances

and achieve a lower (better) PAR-2 score than their respective baseline. The

best performing expSAT solver solves 16 more instances than its baseline,

which is a strong performance gain. On the 52 hard instances from SATCoin

cryptographic benchmarks (TS2), most of our expSAT extensions show very

strong gains over their respective baselines.

3. An analysis of the experimental results shows that our results are consistently

explained by two standard performance metrics, GLR and average LBD [41].

We also show that exploration reduces the average length of CD phases in

instances where expSAT is effective.

4. An adaptive algorithm to update exploration parameters during the search and

an experimental comparison of this adaptive version of VSIDS extension of

expSAT with the non-adaptive one.

5.1 Exploration Guided CDCL Solving

Is it possible to correct the course of the search in a CD phase by identifying other

promising variables that are currently under-ranked by VSIDS/LRB? In this work,

we address this question by formulating the expSAT solver framework, which per-

forms random explorations that probe into the future search space. The goal of this

exploration is to discover branching variables that are likely to lead to conflicts from

which clauses are learned.

Given a CDCL SAT solver, expSAT modifies it as follows:

• Before each branching decision, if a substantial CD phase is detected, then

with probability pexp, expSAT performs an exploration episode, which con-

sists of a fixed number nW of random walks. Each walk consists of a limited

number of random steps. Each such step consists of the uniform random se-

lection of an unassigned step variable, followed by unit propagation (UP).

A walk terminates either when a conflict occurs during UP, or after a fixed
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Figure 5.1: The 20 adjacent cells denote 20 consecutive decisions starting from the
dth decision, with d > 0. A green cell denotes a decision with conflicts and a black
cell denotes a decision without conflicts. After a CD phase [d + 2 . . . d + 8], just
before taking decision d+9, expSAT performs an exploration episode via 3 random
walks each limited to 3 steps. The second walk ends after 2 steps, due to a conflict.
A triplet (v, i, j) represents that the variable v is randomly chosen at the jth step of
the ith walk.

number lW of random steps have been taken. After each walk, the search

state is restored and the next walk begins. Figure 5.1 illustrates an exploration

episode with 3 walks and a maximum of 3 random steps per walk.

• An exploration score exp(v) is computed for each step variable v.

• In the CDCL search, branching variables are chosen that maximize the expB

heuristic. expB combines the exploration score of a variable and its activity

score for the base heuristic B, where B ∈ {VSIDS,LRB}. Ties are broken

randomly.

• All other elements, such as unit propagation, conflict analysis, restarts, and

backjumping, remain the same as in the underlying CDCL SAT solver.

5.1.1 Algorithm Details
Input and Parameters

Given a SAT formula F , let uV ars(F) be the set of currently unassigned vari-

ables in F and assign(F) be the current partial assignment. The input to expSAT

consists of F and four exploration parameters nW, lW, pexp, ω, where 1 ≤ nW ,
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lW ≤ uV ars(F), 0 < pexp, ω ≤ 1. All these parameters are explained above,

except ω, which we explain below. When a random walk ends in a conflict after

a series of random steps, some combination of the assigned variables has caused

the conflict. In expSAT, we assign the most credit to the most recently assigned

variable, and exponentially decay the credit for the variables assigned earlier in the

walk, by a factor of ω per decision step. This approach is patterned on reward decay

in reinforcement learning [76].

Algorithm 3: Exploration Based CDCL Solver: expSAT
Input: A CNF SAT formula: F

Exploration Parameters: nW, lW, pexp , ω
Output: Satisfiability of F

1 Preprocess F and return result if it is solved;
2 while true do
3 explore ←substantial_CD_Phase() and random() ≤ pexp;
4 if explore then
5 exploration_episode(nW, lW, pexp , ω);
6 end
7 decide_and_assign_branching_variable();
8 while true do
9 Perform Unit Propagation;

10 Break, if no new deductions are made;
11 Return SAT, if no more unassigned variables;
12 If a conflict is found, perform conflict analysis;
13 cl← obtain_learned_clause() ;
14 bl← obtain_backjumping_level(cl) ;
15 if bl is 0
16 Return UNSAT
17 Perform backtracking to bl;
18 Assign the asserting literal from the learned clause cl
19 end
20 end

Exploration in expSAT

Now we present the details of our expSAT algorithm. First, we define some notions

used in the algorithm.

Definition 9: (Exploration Episode) An exploration episode consists of nW walks,

65



each containing a maximum of lW random steps. Each such step consists of two

parts:

• Choose a step variable v ∈ uVars(F) uniformly at random, and assign a

boolean value to v using a polarity selection heuristic.

• After the assignment of v, run unit propagation. While performing unit prop-

agation, any conflict ends the walk immediately.

Definition 10: (Walk Scores) Each variable v that participates in a walk during

an exploration episode receives a walk score ws(v), computed as:

I. ws(v) = 0, if (i) the walk ended without a conflict, or (ii) the walk ended

with a conflict and lbd(c), the LBD score of the clause c derived from the

current conflict, is greater than aLBD, the average LBD of learned clauses

by the search (i.e., the quality of the derived clause c is below the search

average). In case c is of lower quality than the search average, by assigning

0 to ws(v), we prevent the prioritization of v, since this prioritization could

result in learning a lower quality clause (such as c) during the search.

II. Otherwise, ws(v) = ωd

lbd(c)
, with decay factor ω, and d ≥ 0 the decision

distance between variable v and the conflict which ended the current walk:

If v was assigned at some step j during the current walk, and the conflict

occurred after step j′ ≥ j, then d = j′ − j. This score computation scheme

provides more (resp. less) credit to the variable, which is closer (resp. further)

to the current conflict.

Definition 11: (Exploration Scores) The exploration score of a variable v, denoted

exp(v), is the average of the walk scores, ws(v), of all random walks within the same

episode in which v was one of the randomly chosen decision variables.

The values of ws(v) and exp(v) for any variable v are always in the interval [0, 1].

Example 2: Using the three random walks of Figure 5.1, we show how to compute

ws and exp. Only the second walk produces a conflict. Let c be the derived clause

from this conflict, with lbd(c) = m < aLBD.
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The walk and exploration scores for all variables participating in the first and

third random walk are 0. As lbd(c) < aLBD, the variables x and y which participate

in the second walk receive non-zero walk and exploration scores: ws(y) = ω0

m
= 1

m

and ws(x) = ω1

m
. Since y only appears in this walk, but x appears in two walks, the

exploration scores of y and x are, respectively, 1
m

and ( ω
m

)/2.

The overhead of exploration must be balanced against its benefits. Hence, we

perform exploration only amid substantial CD phases. We define a substantial CD

phase as follows.

Definition 12: (Substantial CD Phases) Let the ratio

R =
#decisions_without_conflicts

#decisions_with_conflicts

That is,R+1 is the average number of decisions taken until one generates a conflict.

A CD phase 〈cs〉kj is substantial if len(〈cs〉kj ) ≥ R.

Algorithm 3 for expSAT algorithm is based on the standard CDCL algorithm.

The changes are in lines 3-7. Line 3 checks whether an exploration episode should

take place - it is triggered with probability pexp within a substantial CD phase. Line 5

runs an exploration episode as described above. Line 7 selects a branching variable

with maximum expB score, as described below.

Deciding the Branching Variable

Algorithm 4 shows the branching procedure for the expSAT framework. In expSAT,

the branching variable is chosen by maximizing the expB score, that combines the

exploration score and the activity score of an unassigned variable. To make both

activity and exploration scores comparable, the raw exploration score is scaled by a

factor f (Line 4, Algorithm 4), which depends on the currently active base heuristic

B ∈ {LRB,VSIDS}.

Here, we present the expSAT extensions expVSIDS and expLRB of the base

branching heuristics VSIDS and LRB. They use different values of f .
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Algorithm 4: Decide the Branching Variable
Input: None

1 foreach v ∈ uV ars(F) do
2 exp(v)← compute_exp_score(v);
3 f ← scale_factor(B) ;
4 expB(v)← activity(v) + f * exp(v);
5 end
6 v∗ ← argmaxv∈uV ars(F) expB(v);
7 assign(F)← assign(F) ∪make_assignment(v∗)

The expVSIDSBranching Heuristic At any given search state, VSIDS increases

the activity score of a given variable by using a bumping factor gz, where z > 0 is

the count of conflicts until that search state and g > 1 is a constant. This bumping

factor is the same for all the variables at a given state of the search. With VSIDS,

we use a scaling factor f = gz in line 3 of Algorithm 4.

The expLRB Branching Heuristic In contrast to VSIDS, the activity score in-

crement method of LRB does not use an explicit bumping factor. Instead, it uses

unique reward values for each variable derived from past conflict history. With LRB,

we use f = max
v∈uV ars(F)

activity(v).

5.2 Experimental Evaluation of expSAT

5.2.1 Extension of Base Solver Systems with expSAT

We evaluate expSAT by extending the five baseline solvers gLCM, MplLRB, MplCOM-

SPS, MplCM, and MplCBT. While gLCM and MplLRB exclusively employ VSIDS

and LRB, respectively, the other three systems use a combination of both.We sum-

marize below how VSIDS and LRB are employed in these three systems:

• Both MplCOMSPS and MplCM employ VSIDS for the first 10,000 conflicts

(PhaseVSIDS1), then switch to LRB for 2,500 seconds (PhaseLRB), and then

switch back to VSIDS for the rest of the execution (PhaseVSIDS2).

• MplCBT employs VSIDS for the first 10,000 conflicts (PhaseVSIDS1), then

switches to DIST for the next 40,000 conflicts (PhaseDIST), then switches to
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LRB until 2,500 seconds have passed (PhaseLRB), and finally switches back to

VSIDS for the rest of the execution (PhaseVSIDS2).

We implemented a total of 11 expVSIDS and expLRB extensions on top of

these 5 baseline solvers1. We categorize these 11 solvers into three types:

• expVSIDSExtensions (4 solvers): We implemented expVSIDS for gLCM,

MplCOMSPS, MplCM and MplCBT, which resulted in the solvers gLCMeV,

MplCOMSPSeV, MplCMeV, and MplCBTeV, in which VSIDS is replaced by

expVSIDS only in PhaseVSIDS2.

• expLRBExtensions (4 solvers): We implemented expLRB on top of MplLRB,

MplCOMSPS, MplCM and MplCBT, which resulted in solvers MplLRBeL,

MplCOMSPSeL, MplCMeL, and MplCBTeL. In these expSAT solvers, LRB is

replaced by expLRB only in PhaseLRB.

• Combined expLRB+expVSIDS Extensions (3 solvers): We implemented

both expVSIDS and expLRB in 3 systems MplCOMSPS, MplCM, and

MplCBT, resulted in MplCOMSPSeLV, MplCMeLV, and MplCBTeLV, where

LRB is replaced by expLRB in PhaseLRB and VSIDS is replaced by expVSIDS

in PhaseVSIDS2.

5.2.2 Implementation Details

Three of our baseline solvers have PhaseVSIDS1, where VSIDS is run for a relatively

short time (for the first 10,000 conflicts) for seeding these systems with clauses

learned with VSIDS. To keep this setting unaltered, none of our extended solvers

use expVSIDS in PhaseVSIDS1.

Our implementations are faithful to the expSAT algorithm described in the pre-

vious section, except for the following deviation that is induced by implementation

features of the baseline solvers:

• For selecting a variable for making a decision, the base solvers use the follow-

ing strategy: if the selected variable is currently unassigned, then it is selected.
1Source code for all of our expSAT systems are available at: https://github.com/

solimul/expSAT_SourceCode .
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Otherwise, the random step is skipped. For efficiency, the baseline solvers do

not explicitly maintain the set uVars(F). We have adopted the same strategy

to implement random walks in all of our expSAT extensions. That is, for a

given random step, if the randomly selected variable is already assigned, then

we skip the selection, otherwise, we proceed with that random step.

For executing a random step while performing an exploration episode, all of our

expSAT extensions use procedures such as, unit-propagation and conflict-analysis,

which are already implemented in their corresponding baselines. In the expSAT

solvers, these procedures are called by both search and exploration. This sharing

may leave some side-effects of exploration in some data structures and may change

the state of the search. We have instrumented our extensions to prevent most of the

side-effects of performing exploration that we were able to detect. However, some

of these side-effects were very complicated to remove.

A particular difficulty arose in the 2-watched literal scheme, which is used for

efficient handling of clauses of a given formula2. Visitation in a clause while per-

forming a random step may change the watched-literals in that clause. At the end

of an exploration episode, we avoided restoring the watched literals (in the clauses

visited during that exploration episode) back to the previous state because of im-

plementation complexity and efficiency issues. It is important to note that this side

effect does not affect the correctness of the expSAT solvers. At the end of a walk, we

backtrack to the state where the walk started, and as a result, the clauses which were

satisfied by the last walk becomes unsatisfied. The backtracking process assigns two

literals in each of these unsatisfied clause as watched, although the watched literals

in some of these unsatisfied clauses may get changed due to exploration. Since each

of these unsatisfied clause has at least two watched literals after backtracking, the

correctness of expSAT holds.

To set the values of the exploration parameters, we performed a small scale grid

search with gLCMeV: we took one instance at random out of each of the 23 bench-

mark families in SAT-2018. We ran gLCMeV on this subset of the 23 instances for

2In unit propagation, to avoid visiting all literals in clauses all time, a scheme called the 2-
watched literal scheme has been proposed[49]
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Table 5.1: Comparison between expVSIDS extensions and their baselines on TS1.
The PAR-2 scores (lower is better) are scaled down by the factor of 1

10,000
.

System
2017 2018 Combined

SAT UNSAT SAT+UNSAT SAT UNSAT SAT+UNSAT SAT+UNSAT PAR-2

gLCM 82 98 180 95 97 192 372 4133
gLCMeV 84 95 179 103 97 200 379 (+7) 4068
MplCOMSPS 104 98 202 116 94 210 412 3701
MplCOMSPSeV 106 101 207 125 96 221 428 (+16) 3442
MplCM 103 111 214 128 100 228 442 3456
MplCMeV 104 111 215 128 100 228 443 (+1) 3445
MplCBT 97 110 207 133 102 235 442 3498
MplCBTeV 98 113 211 138 102 240 451 (+9) 3400

small parameter ranges, lW and nW in [4, 5, 6] and pexp in [0.01, 0.02, 0.03]. From

this grid search, we chose our default parameter setting of (mW,mS, pexp) =(5,

5, 0.02). We set the value of the exponential decay parameter ω to 0.9 based on

intuition. These values were used in all further experiments.

Next, we present three groups of experiments for each of these solvers on all

instances from TS1 and TS2. We compare each baseline with its corresponding

extension in terms of number of solved instances, PAR-2 score, and solution time.

5.2.3 Experiments with expVSIDS Extensions

In our first set of experiments, we evaluate the expVSIDS heuristic by comparing

the performance of the four baseline solvers gLCM, MplCOMSPS, MplCM, and

MplCBT with their respective expVSIDS extensions gLCMeV, MplCOMSPSeV,

MplCMeV, and MplCBTeV.

Comparison on TS1

Table 5.1 shows the results for TS1 instances for the four expVSIDS extensions

and their baseline solvers. Each expVSIDS extension solves more instances and

has a lower PAR-2 score than its baseline.

For each of the Maple based systems, for a given instance, the runs with a base-

line and its expVSIDS extension are identical prior to PhaseVSIDS2. For these sys-

tems, only instances solved in PhaseVSIDS2 show the impact of the expVSIDS ap-

proach.
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Figure 5.2: Difference in solved instances over time for expVSIDS extensions and
their baselines on TS1. The solid vertical line at 2500 seconds marks the start of
phaseVSIDS2

The best performing expVSIDS extension, MplCOMSPSeV, solves 16 more

instances than its baseline. MplCBTeV and MplCMeV solve 9 and 1 more instances.

gLCMeV solves 7 more instances.

Figure 5.2 compares gLCMeV (blue line), MplCOMSPSeV (red line), MplCMeV

(yellow line) and MplCBTeV (purple line) against their baselines in terms of number

of instances solved as a function of time. For any time point above 0 on the vertical

axis, our extensions solve more instances. The left side of the vertical solid line

shows the instance difference that occurs before the starting of PhaseVSIDS2 and the

right side shows the same measure that occurs at PhaseVSIDS2.

For the Maple based systems, expVSIDS is only used in PhaseVSIDS2. The

solver MplCOMSPSeV (red line) outperforms its baseline for all of this Phase.

MplCBTeV (purple line) and MplCMeV (yellow line) outperform their baseline for

most of this phase. For gLCMeV (blue line), where expVSIDS is always active, the

system performs slightly worse early on, but beats its baseline consistently from

about 700 seconds.
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Table 5.2: Results for expVSIDS extensions for TS2

System SAT UNSAT Total
gLCM 3 4 7
gLCMeV 4 8 12 (+5)
MplCOMSPS 2 2 4
MplCOMSPSeV 6 7 13 (+9)
MplCM 0 1 1
MplCMeV 6 4 10 (+9)
MplCBT 21 20 41
MplCBTeV 23 20 43 (+2)

Comparison on TS2

SAT-2018 includes 17 SATCoin instances. In the experimental results reported in

Table 5.1, compared to their baselines, MplCMeV and MplCBTeV solve an equal

number of instances over these 17 instances. However, over this subset of SAT-

2018 instances, we observe strong performance gains with expVSIDS extensions

gLCMeV (+5) and MplCOMSPSeV (+6). We further evaluate expSAT on a SATCoin

benchmark by generating 52 hard instances (TS2), which differ from the SAT-2018

instances.

Table 5.2 evaluates expVSIDS extensions for TS2. The best performing expVSIDS

extensions, MplCMeV and MplCOMSPSeV, solve 10 and 13 instances respectively,

beating their baselines by 9. gLCMeV and MplCBTeV solve 5 and 2 additional in-

stances. Figure 5.3 shows the difference in solved instances for these 8 solvers on

TS2. All of our expVSIDS extensions solve these problems more quickly at most

time points.

5.2.4 Experiments with expLRB Extensions

This set of experiments evaluates four expLRB extensions MplLRBeL, MplCOMSPSeL,

MplCMeL, and MplCBTeL against their respective baselines MplLRB, MplCOM-

SPS, MplCM, and MplCBT for both TS1 and TS2.
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Figure 5.3: Difference in solved instances over time for expVSIDS extensions and
their baselines on TS2

Table 5.3: Comparison between expLRB extensions and their baselines on TS1

System
2017 2018 Combined

SAT UNSAT SAT+UNSAT SAT UNSAT SAT+UNSAT SAT+UNSAT PAR-2

MplLRB 79 95 174 111 93 204 378 4028
MplLRBeL 84 89 173 129 91 220 393 (+15) 3879
MplCOMSPS 104 98 202 116 94 210 412 3701
MplCOMSPSeL 103 100 203 124 96 220 423 (+11) 3615
MplCM 103 111 214 128 100 228 442 3456
MplCMeL 103 111 214 125 99 224 438 (-4) 3482
MplCBT 97 110 207 133 102 235 442 3498
MplCBTeL 101 110 211 138 100 238 449 (+7) 3414

Results for TS1

Table 5.3 evaluates our four expLRB extensions on TS1. Three solvers MplLRBeL

(+15), MplCOMSPSeL(+11), and MplCBTeL (+7) show strong gains, solving many

additional instances, and achieving significantly lower PAR-2 scores. MplCMeL

solves 4 fewer instances compared to its baseline. However, despite being penal-

ized heavily for the 4 unsolved instances, it solves quite a few instances faster than

its baseline and the PAR-2 scores are fairly close.

Figure 5.4 compares the solving speed of the expLRB extensions with their

baselines. The three expLRB extensions that achieve overall improvement, solve

more problems at most time points, except for the first 1,000 seconds for MplCBTeL
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(purple line in Figure 5.4).

MplCMeL (yellow line, Figure 5.4) performs better than its baseline before

2,500 seconds, while expLRB is active before the start of PhaseVSIDS2. However,

it slows down after 2,500 seconds in PhaseVSIDS2. Hence, when active, expLRB

does not have a bad effect on MplCMeL, however, the combination of expLRB and

VSIDS does not work well for MplCMeL.

Figure 5.4: Difference in solved instances over time for expLRB extensions and
their baselines on TS1

Results for TS2

Table 5.4 compares our expLRB extensions with their respective baselines. Re-

markably, MplLRBeL, in which expLRB is active over the whole run of the solver

(timeout is 36,000), solves 46 out of 52 hard SATCoin instances, while the baseline

solves none. Thus for this test set and this solver, expLRB scales extremely well.

Both MplCMeL and MplCBTeL solve more problems than their baselines. The

extension MplCOMSPSeL solves an equal number of problems as its baseline.

Figure 5.5 shows that for TS2, MplLRBeL solves many instances quickly, solv-

ing 40 instances within 5,000 seconds, and 6 more instances before the timeout of

36,000 seconds. The minor performance change for the other three systems is also

shown in Figure 5.5.
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Table 5.4: Results for expLRB extensions for TS2

System SAT UNSAT Total
MplLRB 0 0 0
MplLRBeL 24 22 46 (+46)
MplCOMSPS 2 2 4
MplCOMSPSeL 1 3 4
MplCM 0 1 1
MplCMeL 2 1 3 (+2)
MplCBT 21 20 41
MplCBTeL 22 22 43 (+2)

Figure 5.5: Difference in solved instances over time for expLRB extensions and
their baseline on TS2

Experiments with Extended PhaseLRB In MplCOMSPSeL, MplCMeL and MplCBTeL,

expLRB is active only in PhaseLRB (first 2,500 seconds of their execution) and

switches to VSIDS until timeout (36,000 seconds for TS2). In contrast, expLRB

remains active for whole run of MplLRBeL, the best performing expLRB solver for

this test set. The modest performance gains with the other three expLRB solvers

for TS2 could be due to the shorter period of activation of expLRB in these three

solvers.

To test this hypothesis, we repeated the same experiment for TS2 instances with

a slightly modified version of MplCOMSPSeL, the weakest of the four expLRB
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Table 5.5: Comparison between expLRB+expVSIDS extensions and their base-
lines on TS1

System
2017 2018 Combined

SAT UNSAT SAT+UNSAT SAT UNSAT SAT+UNSAT SAT+UNSAT PAR-2

MplCOMSPS 104 98 202 116 94 210 412 3701
MplCOMSPSeLV 105 97 202 127 96 223 425 (+13) 3601
MplCM 103 111 214 128 100 228 442 3456
MplCMeLV 105 109 214 123 99 222 436 (-6) 3492
MplCBT 97 110 207 133 102 235 442 3498
MplCBTeLV 102 110 212 138 101 239 451 (+9) 3403

solvers for TS2 (Table 5.4). In this experiment, PhaseLRB in MplCOMSPSeL is

extended to 18,000 seconds from the default 2,500 seconds. This version solves

equal number of instances (4) as the default MplCOMSPSeL. Thus the extension of

PhaseLRB in this solver does not lead to solving of more instances.

5.2.5 Experiments with both expLRB and expVSIDS Exten-
sions

Our last set of experiments evaluates MplCOMSPSeLV, MplCMeLV, and MplCBTeLV,

in which both LRB and VSIDS are replaced by expLRB and expVSIDS for

PhaseLRB and PhaseVSIDS2.

Results for TS1

Table 5.5 and Figure 5.6 compares three expLRB+expVSIDS extensions with

their respective baselines. MplCOMSPSeLV (+13) and MplCBTeLV (+9) solve sig-

nificantly more instances. Both systems also achieve a lower PAR-2 score than their

baseline. MplCMeLV performs poorly (-6). This result is similar to MplCMeL (-4).

Results for TS2

Evaluation of expLRB+expVSIDS solvers for TS2 are shown in Table 5.6. The

performance gains are similar to the expLRB and expVSIDS extensions. Figure

5.7 shows that each of these three extensions solves instances faster than their base-

lines.
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Figure 5.6: Difference in solved instances over time for expLRB+expVSIDS ex-
tensions and their baselines on TS1

Table 5.6: Results for expLRB+expVSIDS extensions for TS2

System SAT UNSAT Total
MplCOMSPS 2 2 4
MplCOMSPSeLV 6 7 13(+9)
MplCM 0 1 1
MplCMeLV 5 5 10 (+9)
MplCBT 21 20 41
MplCBTeLV 23 21 44 (+3)

5.3 Detailed Analysis of the Experimental Results

For a detailed analysis of the results presented in the previous section, we gather

experimental data from

• gLCM and gLCMeV to analyze the performance gain for expVSIDS.

• MplLRB and MplLRBeL to analyze the performance gain for expLRB.

For convenience of the analysis, for a given set of instances, we define four subsets

below.

• expg+: Instances which are solved by gLCMeV but not by gLCM, or for which

gLCM takes longer time to solve than gLCMeV.
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Figure 5.7: Difference in solved instances over time for expLRB+expVSIDS ex-
tensions and their baselines on TS2

• expg−: Instances which are solved by gLCM but not by gLCMeV, or where

gLCMeV takes longer.

• expm+: Instances solved by MplLRBeL but not by MplLRB, or for which

MplLRB takes longer time to solve than MplLRBeL.

• expm−: Instances solved by MplLRB but not by MplLRBeL, or where MplLRBeL

takes longer.

5.3.1 GLR and Average LBD Score

In [41], it is shown that on average, a more efficient CDCL branching heuristic

leads to higher GLR values and lower average LBD (aLBD) scores of the learned

clauses. Here we analyze these scores on our exp test set.

Comparison between VSIDS and expVSIDS

The top two rows of Table 5.7 show the average GLR and average aLBD values for

expg− and expg+ for TS1 with gLCM and gLCMeV.

• For expg−, where the baseline gLCM is more efficient, gLCM has a lower

average GLR score. However, gLCM learns higher quality clauses (lower
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Table 5.7: Comparison of average GLR and average aLBD

Instance Set System expg− expg+
#inst avg. GLR avg. aLBD # avg. GLR avg. aLBD

TS1
(2017 + 2018)

gLCM
156

0.47 15.08
245

0.49 15.88
eGLCM 0.49 15.79 0.49 14.78

TS2
(SATCoin)

gLCM
6

0.61 25.46
11

0.34 35.81
eGLCM 0.30 33.55 0.37 32.29

aLBD), on average.

• For expg+, where gLCMeV is more efficient, gLCMeV generates conflicts at

the same rate as the baseline. However, it learns higher quality clauses (lower

aLBD), on average.

Hence, our results on TS1 for VSIDS and expVSIDS are largely consistent

with the observation of [41].

Table 5.8: Comparison of average GLR and average aLBD in MplLRB and
MplLRBeL

Instance Set System expm− expm+

#inst avg. GLR avg. aLBD # avg. GLR avg. aLBD
TS1
(2017+ 2018)

MplLRB
225

0.46 16.08
194

0.47 19.92
MplLRBeL 0.48 16.80 0.46 17.64

TS2
(SATCoin)

MplLRB
0

_ _
46

0.02 51.41
MplLRBeL _ _ 0.03 40.11

The experimental data from TS2 for VSIDS and expVSIDS are consistent

with [41]. The bottom two rows of Table 5.7 show that in each case, the better

system has both a higher average GLR and a lower average aLBD.

Comparison between LRB and expLRB

The top two rows of Table 5.8 show the average GLR and average aLBD values for

expm− and expm+ for TS1 with MplLRB and MplLRBeL, respectively. For these

two subsets of instances of TS1, the better system achieves slightly lower GLR

values on average. However, the better system achieves a lower average aLBD,

which is consistent with the observation of [41]. This is particularly pronounced for

the case of expm+ for both TS1 and TS2 in Table 5.8, where the better system
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Table 5.9: Comparison of average CD phase length with gLCM and gLCMeV

Instance Set System expg− expg+
#inst avg. CDLen # avg. CDLen

TS1
(2017+ 2018)

gLCM
156

30.27
245

8.60
gLCMeV 29.97 8.26

TS2
(SATCoin)

gLCM
6

4.96
11

8.27
gLCMeV 9.38 7.73

MplLRBeL achieves lower average aLBD (average aLBD reduction of 2.28=19.92-

17.64 for TS1 and 11.30=51.41-40.11 for TS2)- a significant improvement in qual-

ity of the learned clauses.

For the 46 instances from TS2, which are exclusively solved by MplLRBeL

(bottom two rows of Column expm+ of Table 5.8), the system achieves a higher

average GLR and a lower average aLBD. This case is strongly consistent with [41].

The baseline MplLRB could not solve any of these SATCoin instances, hence no

data is available for the bottom two rows of Column expm− of Table 5.8.

5.3.2 Reduction of Average CD Phase Length

Table 5.9 shows that for both TS1 and TS2, exploration in gLCMeV slightly re-

duces the average CD phase length for both expg− and expg+ in three out of four

cases.

Table 5.10 shows that MplLRBeL has a lower average CD phase than MplLRB

for both TS1 and TS2 in all three cases for which data are available.

Overall, our analysis clearly shows that random exploration helps solvers to

escape from CD phases more swiftly.

Table 5.10: Comparison of average CD phase length with MplLRB and MplLRBeL

Instance Set System expm− expm+

#inst avg. CDLen # avg. CDLen
TS1
(2017+ 2018)

MplLRB
225

96.89
194

18.19
MplLRBeL 95.05 17.18

TS2
(SATCoin)

MplLRB
0

_
46

98.63
MplLRBeL _ 88.04
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5.4 Exploration Parameter Adaptation

A parameter setting that is effective for one instance may not be effective for

another. We developed an algorithm named ParamAdapt to dynamically control

when to trigger exploration episodes, and how much exploration to perform in each

episode.

5.4.1 The ParamAdapt Algorithm

The three exploration parameters nW , lW , and pexp are adapted between restarts

based on the search behavior. A parameter setting is a triple Σ = (nW, lW, pexp),

which is updated at the beginning of each restart by ParamAdapt by comparing the

exploration performance of the two most recent search periods: the period between

the latest two restarts and the period before it. The search in expSAT starts with a

default value of Σ, Σ′ = (nW ′, lW ′, p′exp). ParamAdapt keeps track of the following

statistics about all exploration steps within a period: the number of random steps

rSteps, the number of conflicts c, the number of glue-clauses gc, and the mean

LBD value lbd of the learned clauses.

With fixed weights w1 > w2 > w3, an exploration performance metric (EPM)

σ is defined as

σ =
w1 × gc+ w2 × c

rSteps
+ w3 ∗

1

lbd

This performance metric rewards finding glue clauses (most important), finding any

conflict (very important), and learning clauses with low LBD score (important).

At each restart, the algorithm computes a new EPM σnew and compares (the

comparison starts after the second restart) it with the prior one σold, and computes

a new parameter settings Σnew from Σold.

• If σnew < σold, the performance of exploration is worse than before. First,

Σnew is modified from Σold by performing an increment: Randomly select a

parameter p ∈ Σold and increase its value by a predefined stepsize.

• If σnew = σold, we perform an increment.
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• If σnew > σold, then exploration is working better than before. We do not

change Σold in this case.

The values of a parameter are bounded by a range. Whenever a value leaves its

range, it is reset to its default value.

Table 5.11: Parameter values for the adaptive-expSAT solvers

Description Parameters Value
Weights (w1, w2, w3) (40, 10, 3)
Range for nW [lnW , unW ] [1, 20]
Range for lW [llW , ulW ] [1, 10]
Range for pexp [lpexp , upexp ] [0.02, 0.6]
Step size for parameters (snW , slW , spexp) (1, 1, 0.01)
Exponential Decay Factor ω 0.9

5.4.2 Experiments

To test the potential of ParamAdapt, we perform experiments for TS1 and TS2

with four expVSIDS extensions with ParamAdapt implemented on each of them.

We denote by ΨeV_ad the adaptive version of non-adaptive expVSIDS extension

ΨeV.

We set the default parameters Σ′ = (nW ′, lW ′, p′exp) = (5, 5, 0.02). The values

of the other parameters are given in Table 5.11.

Table 5.12: Comparison between adaptive expVSIDS extensions and non-adaptive
expSAT extensions with TS1

System 2017 2018 Combined
SAT UNSAT SAT+UNSAT SAT UNSAT SAT+UNSAT SAT+UNSAT PAR

gLCMeV 84 95 179 103 97 200 379 4068
gLCMeV_ad 85 94 179 105 96 201 380 (+1) 4036
MplCOMSPSeV 106 101 207 125 96 221 428 (+11) 3442
MplCOMSPSeV_ad 99 99 198 123 96 219 417 3665
MplCMeV 104 111 215 128 100 228 443 3445
MplCMeV_ad 107 108 215 130 100 230 445 (+2) 3435
MplCBTeV 98 113 211 138 102 240 451 (+4) 3400
MplCBTeV_ad 99 111 210 135 102 237 447 3410

Table 5.12 shows the performance comparison between the non-adaptive and

adaptive expVSIDS extensions. For TS1, the overall performance of the non-

adaptive versions is better: MplCOMSPSeV and MplCBTeV solve 11 and 4 more
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problems compared to their adaptive versions. gLCMeV_ad solves 1 more instance

than gLCMeV. MplCMeV_ad solves 2 more instances compared to its non-adaptive

version.

For TS2, the performance of most of the adaptive expVSIDS solvers is sig-

nificantly better than their respective non-adaptive versions, as shown in Table 5.13.

MplCOMSPSeV_ad and MplCMeV_ad solve 16 and 13 more problems than MplCOMSPSeV

and MplCMeV, respectively. gLCMeV_ad solves 9 more instances than gLCMeV.

MplCBTeV_ad and MplCBTeV solve an equal number of problems.

Table 5.13: Additional comparison with TS2

System SAT UNSAT Total
gLCMeV 4 8 12
gLCMeV_ad 13 8 21 (+9)
MplCOMSPSeV 6 7 13
MplCOMSPSeV_ad 14 15 29 (+16)
MplCMeV 6 4 10
MplCMeV_ad 14 9 23 (+13)
MplCBTeV 23 20 43
MplCBTeV_ad 22 21 43

5.4.3 Analysis of Experimental Results with ParamAdapt

Table 5.14: Comparison of performance metric between MplCOMSPSeLV and
MplCOMSPSeV_ad

1: System 2: Overhead 3: exp_GLR 4: exp_aLBD 5: GLR 6: aLBD 7: CDLen
MplCOMSPSeV 48.51 secs 0.0193 15.25 0.51 22.91 20.08
MplCOMSPSeV_ad 198.21 secs 0.0179 15.78 0.51 23.39 20.77

For TS1, the performance of the adaptive expVSIDS extensions is worse.

Here, we present an analysis that explains this result.

Table 5.14 shows an analysis with MplCOMSPSeV and MplCOMSPSeV_ad, for

which we observed the largest performance gap for TS1. MplCOMSPSeV has sig-

nificantly lower overhead incurred in exploration (Column 2), exploration finds

conflicts at a faster rate (Column 3), from which lower LBD (Column 4) clauses
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are derived. During the search both systems generate clauses at the same rate (Col-

umn 5), however the average LBD of the learned clauses for MplCOMSPSeV is

lower (Column 6), so is the average CD phase length for MplCOMSPSeV (Column

7). These data may just explain the better performance of MplCOMSPSeV over

MplCOMSPSeV_ad for TS1.

5.5 Discussion of Experimental Results

5.5.1 Comparing the Relative Strength and Weakness of expVSIDS
and expLRB

In Table 5.15, we compare the performance of our expVSIDS and expLRB exten-

sions for TS1 instances.

• For the common problems solved by both expVSIDS and expLRB exten-

sions, expLRB extensions are usually faster, as shown in Column 2.

• However, when counting instances which are solved by only one system,

expVSIDS extensions usually do better, as shown in Column 3. This results

in more problems solved for the expVSIDS extensions (Column 4).

Table 5.15: Comparison between expVSIDS and expLRB extensions

1:Systems 2:Common Solved 3:Exclusively Solved 4:Total
Count avg. Solve Time Count avg. Solve Time Count avg. Solve Time

gLCMeV 325 827.44 54 1656.9 379 945.63
MplLRBeL 325 612.8 68 1621.8 393 787.36
MplCOMSPSeV 400 788.58 28 2329.2 428 889.37
MplCOMSPSeL 400 751.78 23 1942.8 423 816.54
MplCMeV 422 794.01 21 1962.7 443 849.41
MplCMeL 422 783.74 16 1978.0 438 827.36
MplCBTeV 423 824.05 28 2389.9 451 921.27
MplCBTeL 423 828.26 26 2045.2 449 898.72

5.5.2 Which CD Phase Bins Correspond to Gains?

In Figures 4.2 and 4.4 (Chapter 4), for TS1, we have observed that the distribution

of instances based on average CD phase length is heavy-tailed (i.e, there are many

instances with long CD phase, on average) for both VSIDS and LRB, respectively.
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Figure 5.8: Difference in solved instances between two expSAT extensions and their
baselines over bins of instances.

Does the performance gain achieved with the expSAT approach come from these in-

stances with high average CD phase lengths? To answer this question, we compare

(a) gLCM and gLCMeV, and (b) MplLRB and MplLRBeL.

For each of the 25 bins b in the right plots of Figure 4.2 (section 4),

• let bingLCM(b) ⊂ TS1 be the set of instances in the bth leftmost bins in

Figure 4.2.

Similarly, for each of the 25 bins b in the right plots of Figure 4.4 (Chapter 4),

• let binMplLRB(b) ⊂ TS1 be the set of instances in the bth leftmost bins in

Figure 4.4.

In Figure 5.8, the left plot compares the difference of the number of solved in-

stances by gLCMeV and gLCM for the instances in bingLCM(2), . . . ,bingLCM(25).

For gLCMeV, the gains come with instances from bingLCM(3), . . . ,bingLCM(7).

Hence the gains in case of gLCMeV come from those instances for which the base-

line has moderately high average CD phase length.

The right plot in Figure 5.8 compares the difference of the number of solved in-

stances by MplLRBeL and MplLRB for the instances in binMplLRB(2), . . . ,

binMplLRB(25). For MplLRBeL, some gains come from bins (in between binMplLRB(2),
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. . . ,bingLCM(12)) for which its baseline has low-to-moderately long CD phase, on

average, and the biggest gains come from bingLCM(25), for which, on average, the

baseline has very long CD phase.

This analysis indicates that the gains with the expSAT approach can come from

instances irrespective of their average CD phase length and is more dependant on

solvers that implement the approach and the benchmark instances. In our analysis,

binMplLRB(25) corresponds to the biggest gains with MplLRB. Out of these 12

instances from binMplLRB(25), 8 instances were also solved by gLCMeV in the

following bins: bingLCM(6), bingLCM(5), and bingLCM(4). On average, these 8

instances, which are solved by both MplLRBeL and gLCMeV, have very long CD

phases with MplLRB, but have moderately long CD phases with gLCM.

5.5.3 Overhead and Conflict Discovery Rate of Exploration

What is the cost and benefit of performing exploration? On average, for the in-

stances from TS1, gLCMeV (resp. MplLRBeL) incurs 92.53 (resp. 76.51) seconds

of overhead to perform exploration, which is about 3.94% (resp. 2.72%) of its av-

erage run time of 2346.12 (resp. 2791.31 secs) seconds. With random exploration

amid substantial CD phases, on average, gLCMeV (resp. MplLRBeL) finds about 2

(resp. 3.4) conflicts per 100 random steps.

5.5.4 Performing Exploration More Frequently Just After Restarts

In Section 4.8, we have shown that on average, BFC (Before First Conflict) CD

phases are significantly longer than AFC (After First Conflict) phases for almost all

of the TS1 instances. Typically, restarts are followed by longer CD phases in the

upper part of a search tree. Does performing more exploration amid the BFC CD

phases help?

Experiment

We evaluated MplLRBeL
res, a version of MplLRBeL where we perform exploration

before every decision amid a BFC CD phase, until it ends with the discovery of

a conflict. That is MplLRBeL
res performs exploration more aggressively amid BFC
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CD phases and turns off exploration amid AFC CD phases. This version solves

384 instances out of 750 TS1 instances. In comparison, regular MplLRBeL solves

393 instances and the baseline MplLRB solves 378 instances. Hence, performing

exploration aggressively only amid BFC CD phases is helpful, but not as good as

performing exploration amid all substantial CD phases through out the course of

the search.

Analysis of Overhead of Performing Exploration

On average, MplLRBeL
res incurs a significantly higher exploration overhead of 279.94

seconds in comparison to MplLRBeL, with 76.51 seconds of exploration overhead.

Furthermore, with the higher exploration overhead, exploration in MplLRBeL
res dis-

covers conflicts at a slower rate (2.98 per 100 random steps) than MplLRBeL (3.4

per 100 random steps). Hence, compared to MplLRBeL, with more overhead, ex-

ploration in MplLRBeL
res discovers conflicts at a lower rate. These two observations

may just explain the worse performance of MplLRBeL
res.

5.5.5 Learning Derived Clauses from Exploration

In expSAT, we do not learn the clauses that are derived from conflicts discovered

during exploration. This is based on the following intuition. Whenever a CDCL

search learns a clause c, c is immediately used by propagating the asserting literal

(first UIP), which is hosted by c. However, in case of exploration, when a clause

c is derived, such propagations do not immediately follow. Thus the utility of c is

uncertain. We ran an experiment with gLCMeV for instances from SAT-2017, where

we saved the learned clauses that are derived during exploration. This version of

gLCMeV (solves 178) is than the regular gLCMeV (solves 179) reported in Table

5.1.

5.5.6 CryptoMiniSAT on TS2

On TS1, almost all of our expSAT extended solvers show strong performance gains

over its baseline. To put this experiment into perspective, we ran experiment with
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Figure 5.9: Number of Solved Instances as function of of time for CryptoMiniSAT5,
MplCBTeLV and MplLRBeL

CryptoMiniSAT5 3, which is known to be a strong system for solving cryptographic

benchmarks. This system solves 41 instances, while two top expSAT solvers on this

benchmark MplLRBeL and MplCBTeLV, solve 46 and 44 instances, respectively.

Figure 5.9 shows the number of solved instances as a function of time for these

three solvers, where both of these expSAT extensions scales slightly better than

CryptoMiniSAT5.

5.6 Related Work

Randomized exploration in SAT is used in local search methods such as GSAT

[71] and WalkSAT [70]. The Satz algorithm [40] heuristically selects a variable

x, then performs two separate unit propagations with x and (¬x) respectively, in

order to evaluate the potential of x. Modern CDCL SAT solvers include exploration

components. For example, in MiniSAT, a small percentage of variables is selected

randomly [23]. CaDiCaL, a more advanced CDCL SAT solver, triggers random-

walk based local search in regular intervals to determine better polarity values for

the variables [12].

In contrast to the DPLL and CDCL SAT frameworks, which employ depth-first

3Source: https://www.msoos.org/cryptominisat5/
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search, in [58] the authors propose a SAT solver UCTSAT which employs MCTS

with UCT (Upper Confidence bounds applied to Trees). Given a SAT instance,

UCTSAT repeatedly invokes UCT search at the root and incrementally builds a SAT

search tree based on the value estimates of the search states. The value of a state is

estimates come from the outcomes of random samples of states that were visited in

previous iterations.

Liang et al. [41] propose a look-ahead based branching heuristic that greedily

maximizes the GLR score. Compared to this work we perform nondeterministic

exploration of the search space with a small subset of unassigned variables per ran-

dom walk, and prioritize variables that generate high-quality conflicts. Since deci-

sion time is disregarded in their work, there is no basis to compare the experimental

results.

In [9], the authors propose a hybrid SAT solver SATHYS, which combines a

CDCL SAT solver with a local search SAT solver. The search alternates between

these two solvers, and they exchange information. The local search solver helps

CDCL by identifying the most promising literal assignment to branch on, while

CDCL guides the local search out of local minima.

The Conflict History-based Branching (CHB) [42] and Learning Rate Based

(LRB) [43] heuristics model variable selection as a Multi-Armed Bandit (MAB)

problem, which is solved using the Exponential Recency Weighted Average (ERWA)

algorithm. Both of these heuristics compute rewards from the conflict history of

unassigned variables, in order to rank them.

In [5], the authors study the search process of Glucose by computing four mea-

sures over a fixed set of benchmark instances to derive insights into the search

process of Glucose. One of these measures is decisions per conflict, which approxi-

mates the average decision distance between two conflicts in a given run of a solver

with a given SAT instance. In expSAT, we utilize this notion to define substantial

CD phases.

Cai 2021 et al. [16] present a hybrid SAT solving algorithm that alternates

between local search and CDCL search. During CDCL search, this algorithm at-

tempts to identify a promising branch, which may contain a satisfying assignment.
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Once such a promising branch is identified, a local search episode is triggered. This

episode attempts to find a total assignment by extending the current partial assign-

ment, where it repeatedly flips the remaining unassigned variables to satisfy the

currently unsatisfied clauses. If the problem is not solved before reaching a prede-

fined number of flips, it returns back to CDCL search. Before starting the CDCL

search again, it updates the VSIDS and LRB scores of those variables, flipping of

which created conflicts during the last local search episode. Similar to their work,

we perform local search during in an exploration episode and update the variable

selection heuristics. However, contrary to the work of [16], which performs local

search to find satisfiable assignments, in expSAT, amid a CD phase, we perform

local search during an exploration episode to identify conflict friendly variables.

5.7 Conclusions

In Chapter 4, we provided empirical insights into the conflict generation pattern

in CDCL SAT solving. Our case studies with two leading conflict driven CDCL

branching heuristics VSIDS and LRB provide empirical evidence that conflicts are

generated in bursts, often followed by long conflict depression phases. The latter

occur due to weaknesses of the underlying branching heuristics.

This observation led us to develop an exploration-guided CDCL SAT solver

framework called expSAT, which performs random exploration amid substantial

conflict depression phases. Under the expSAT framework, we developed expVSIDS

and expLRB, which combine the exploration scores from random walks with VSIDS

and LRB scores.

Our extensive empirical evaluation of the expSAT approach with five state-of-

the-art CDCL SAT solver results in 11 expSAT extensions with expVSIDS and

expLRB. We show strong performance gains with most of our extensions for in-

stances from SAT Competition 2017 and 2018, and especially for 52 hard SATCoin

benchmarks. An analysis of the experimental data shows that expSAT solvers in-

crease GLR, and reduce average LBD and average CD phase lengths in most cases.

This explains the gains with the expSAT approach. Our in-depth discussion on var-
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ious aspects of CD phases and expSAT reveal interesting insights for CDCL SAT

solving.
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Chapter 6

Conflict Generating Decisions in
CDCL

In [41], the authors have shown empirically that the most efficient CDCL decision

heuristics, such as VSIDS, LRB and CHB, produce about 0.5 conflicts per decision,

on average. Each decision step in CDCL can generate 0, 1 or more than one conflict.

Conflicts play a crucial role in CDCL search. A better understanding of conflict

generating decisions is a step towards a better understanding of CDCL and may

open up new directions to improve CDCL search. Motivated by this, in this Chapter,

we study conflict producing decisions in CDCL.

We categorize each conflict-producing decision as a single conflict (sc) or a

multi-conflicts (mc) decision, depending on whether it produces one, or more than

one conflict. We label the resulting learned clauses sc and mc clauses accordingly.

The contributions of this Chapter are:

1. We compare sc and mc decisions in terms of the average quality of the

learned clauses. The average LBD score is significantly lower (of better qual-

ity) for sc than for mc clauses.

2. We analyze the distribution of conflicts in mc decisions. Although a mc deci-

sion can produce a large number of consecutive conflicts, mc decisions with

a low number of consecutive conflicts are more frequent.

3. We contribute an analysis that shows how consecutive clauses learned by a

mc decision are connected to each other.
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4. We introduce the measure of ConflictProximity to study the relation

between conflicts in a given conflict sequence. The proximity between a set

of conflicts is defined in terms of literal blocks that are shared between the

reason clauses of these conflicts. We show that the conflicts which are dis-

covered during the same mc decision are closer by this measure than conflicts

discovered by consecutive sc decisions.

5. We develop the CDCL decision strategy Common Reason Variable Reduc-

tion (CRVR), which reduces the priority of some variables that appear in mc

clauses. Our empirical evaluation of CRVR on benchmarks from the main-

track of SAT Competition-2020 (TS3) shows performance gains for satisfi-

able instances in several leading solvers.

6.1 Notation

We denote a CDCL solver ψ running a given SAT instance F by ψF . Assume that

this run makes d decisions and generates c conflicts and learns a set of learned

clause L.

Single Conflict (sc) and Multi-conflicts (mc) Decisions

A sc decision generates exactly one conflict and learns a sc clause, while a mc de-

cision generates more than one conflict and accordingly learns multiple mc clauses.

Let ψF take s sc decisions and m mc decisions, learning the set of clauses Ls and

Lm, respectively. Then d = m+ s and |L| = |Ls ∪ Lm|.

Burst of mc Decisions

We define the burst of a mc decision as the number of conflicts (i.e., learned

clauses) generated within that mc decision. Let bi is the burst of ith mc decision. We

have |Lm| =
∑m

i=1 bi.

For ψF , we define

• avgBurst, the average burst over m mc decisions as |Lm|
m
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• maxBurst, the maximum burst among the bursts of mc decisions as

maxi=1...m bi

.
• We define a mapping countb : Z 7−→ Z which takes a burst b ≥ 2 as input

and outputs the number of mc decisions with burst b.

Learned Clause Quality Over sc and mc Decisions

Let lbd(L) be the LBD score of a learned clause L. For ψF , we define

• the average LBD score aLBD over L learned clauses as
∑
L∈L lbd(L)

|L| .

• the average LBD score aLBDsc over Ls learned clauses as
∑
Ls∈Ls lbd(Ls)

|Ls| .

• the average LBD score aLBDmc over Lm learned clauses as
∑
Lm∈Lm lbd(Lm)

|Lm| .

For an mc decision M, we denote the minimum LBD score among its learned

clauses by min_LBDM. For ψF , avg_min_LBDmc is the average minimum LBD

over m mc decisions.

6.2 An Empirical Analysis of sc and mc Decisions

In this section, we present our empirical study of conflict-generating decisions in

CDCL search. We use MplDL as CDCL solver and investigate its sc and mc deci-

sions in the test set TS3.

Table 6.1: Conflict Generating Decisions. Columns A to G shows average measures
over the number of instances shown in the Count column.

Type Count Conflict Frequency Clause Quality mc Bursts
A: PDSC B: PDMC C: aLBDsc D: aLBDmc E: avg_min_LBDmc F: avgBurst G: maxBurst

SAT 106 6% 10% 22.32 32.30 18.90 2.69 33.76
UNSAT 110 7% 12% 236.26 389.68 80.80 2.70 52.37

UNSOLVED 184 9% 16% 72.14 144.75 73.38 2.60 29.70
Combined 400 8% 13% 80.68 104.07 60.86 2.65 94.51

6.2.1 Distributions of sc and mc decisions

We denote Percentage of Decisions with Single Conflict and Percentage of Deci-

sions with Multiple Conflicts as PDSC and PDMC, respectively. Columns A and B in

Table 6.1 show the average PDSC and PDMC values for the test instances from TS3,
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under SAT, UNSAT and UNSOLVED. Overall, 8% of all decisions are sc and 13%

are mc (see the bottom row). On average, about 21% (8%+13%) of the decisions

are conflict producing, almost two thirds of all conflict producing decisions are mc.

Since mc decisions produce 2.65 (Column F) conflicts on average, this generates

almost 1 conflict per 2 decisions, which is reflected in the average GLR value of

0.49 for these instances.

6.2.2 Learned Clause Quality in sc and mc Decisions

0 50 100 150 200 250 300 350 400
Instances (Sorted  by aLBDmc)

2

4

6

8

10

LB
D

 (
Lo

g)

aLBDmc
aLBDsc
avg_min_LBDmc

Figure 6.1: Clause Quality in Conflict Generating Decisions; LBD scores are shown
in Log (natural) scale

Columns C and D in Table 6.1 compare LBD scores of sc and mc decisions.

On average, sc decisions generate higher quality learned clauses (with lower LBD

scores). However, Column E shows that in most cases, the average minimum LBD

score over the clauses in a single mc decision is lower than for sc. The exception is

the UNSOLVED category. Fig. 6.1 shows per-instance details of these three mea-

sures in a log scale. In almost all instances, LBD scores for mc (blue) are higher

than for sc (orange), and minimum mc LBD (green) is lowest.

To summarize, on average mc decisions are conflict-inefficient compared to sc

decisions. However, on average the best quality learned clause from a mc decision

has better quality than the quality of a sc clause.
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6.2.3 Bursts of mc Decisions

Column F in Table 6.1 shows the average value of avgBurst for the test set TS3.

On average, the burst of mc decisions are quite small, about 2.65. However, as

shown in column G, the average value of maxBurst is very high. The left plot

in Fig. 6.2 compares these values for each test instance in log scale. In almost all

cases maxBurst (orange) is much larger than the average (blue). This indicates

that while large bursts of mc decisions occur, they are rare, as indicated by the

average of 2.65. In the following section, we analyze the distribution of mc bursts

in details.
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Figure 6.2: Analysis of Bursts of mc decisions; Bursts are shown Log (natural)
scale.

Distribution of mc Decisions by Burst Size

Column G of Table 6.1 illustrates that maxBurst can be very large. To simplify

our quantitative analysis we focus on counting mc decisions with bursts up to 10.

The plot on the right of Fig. 6.2 shows the average (over the 400 instances in our test

set) count (in Log scale) of the number of bursts of a given size b, with 2 ≤ b ≤ 10.

The frequency of bursts decreases exponentially with their size.
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6.3 Clause Learning in mc Decisions

In this section, we establish a structural property of the learned clauses in mc deci-

sions.

Formalization of mc Decisions

Let v be the decision variable for the mc decision M with burst x ≥ 2. At

the time when the search reaches the first conflict C1 in M, let P0 be the set of

literal assignments that followed the assignment of v. With 1 ≤ i ≤ x, let Ci

be the ith conflicting clause, from which the clause Li = Ri ∨ {¬fi} is learned.

Here, Ri is the reason clause and fi is the fUIP literal for this ith conflict. After

learning Li, and after backtracking, ¬fi is the only unassigned literal in Li, and it is

immediately unit-propagated from Li. Let Pi be the propagation block that contains

literal assignments starting from the assignment of ¬fi until the search reaches the

conflicting clause Ci+1. Let L = (L1, . . . , Lx) be the ordered sequence of x learned

clauses inM.

Figure 6.3: Connection between learned clauses in M. After backtracking, Li
forces ¬fi, the negated literal of the fUIP for the conflict at Ci. This forced as-
signment creates a block of assignments Pi, until the search reaches a conflict at
Ci+1. Pi contains fi+1, which is the fUIP of the conflict at Ci+1. From Ci+1, Con-
flict Analysis learns Li+1, which contains ¬fi+1.
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Claim 1: M learns a sequence of clauses L = (L1, . . . , Lx), where a clause

Li (1 ≤ i < x) implicitly constructs Li+1, by implying fi+1, the fUIP literal for

the (i+ 1)th conflict, from which Li+1 is learned.

We justify Claim 1 as follows:

With 1 ≤ i < x, after learning the ith clause Li = Ri ∨ ¬fi and backtracking

to a previous level, the literal ¬fi (the negated literal of the fUIP of ith conflict)

is forced in Li. This forced assignment creates a propagation block Pi and reaches

the conflicting clause Ci+1. From Ci+1 the search learns the next clause Li+1 =

Ri+1 ∨ ¬fi+1 within the current mc decision. Clearly, the fUIP of i + 1th conflict,

fi+1 ∈ Pi, as ¬fi+1 ∈ Li+1 is the only literal assigned in the current decision level.

Fig. 6.3 shows the connection between Li and Li+1.

We have (a)(Li = Ri ∨ ¬fi)→ fi+1, (b)fi+1 ∈ Pi, and (c)¬fi+1 ∈ Li+1

Hence, under the current partial assignment, the learning of Li is a sufficient

condition for the learning of Li+1. Any pair of consecutive clauses (Li, Li+1) are

connected via the pair of assignments (¬fi, fi+1), where the first assignment in

this pair is the negated literal of the fUIP literal for the ith conflict and the second

assignment is the fUIP literal for the (i+ 1)th conflict.

Since the argument applies to all 1 ≤ i < x, we have the desired result.

6.4 Proximity between Conflicts Sequences in CDCL

By Claim 1, we see that learned clauses in a mc decision are connected in a specific

way. This indicates that conflicts in a mc decision are also related, as clauses are

learned from conflicts. Here, we first introduce the measure of ConflictProximity

to study proximity between conflict sequences and then present an empirical study

to reveal insights on proximity between conflicts sequences in CDCL.

6.4.1 Conflict Proximity

The notion of conflict proximity uses a novel measure called Literal Block Proxim-

ity, which measures the commonality of literal blocks between a sequence of reason

clauses over a sequence of conflicts.
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Literal Block Proximity

Assume that from a conflicting clause C, L = R ∨ ¬f is learned, where R is the

reason clause for the conflict at C and f is the fUIP literal of the current conflict.

We define a mapping

D : Clause 7−→ {dl1 . . . dln}

which maps a given reason clause R to the set of distinct decision levels in R. Each

dl ∈ D(R) corresponds to the block of literals blockdl in R which were assigned

in dl.

Let RC = (R1, . . . , Rm) be the sequence of reason clauses for the conflicting

clauses in C = (C1, . . . Cm), where Ri ∈ R is the reason clause for the conflict at

Ci ∈ C. We define the set Literal Block Proximity (LBP) forRC , LBPRC by

LBPRC = D(R1) ∩ · · · ∩ D(Rm)

That is, LBPRC is the set of decision levels that are common in all clauses in

R. Therefore, the assignments in blockdl with dl ∈ LBPRC contribute to the

discovery of every conflicting clause in C.

Example 1: Let RC = (Ra, Rb) be a set of reason clauses for the conflicts at

clauses in C = (Ca, Cb). Let D(Ra) = {2, 9, 14, 35, 110} and D(Rb) = {9, 10,

11, 35, 98, 110} be the sets of decision levels in Ra and Rb, respectively. Then

LBPRC = D(Ra)∩D(Rb) = {9, 35, 110}. The assignments in block9, block35,

and block110 contribute to the generation of conflicts in both Ca and Cb.

Conflict Proximity in a Conflict Sequence

For a reason clause sequenceRC = (R1, . . . , Rm), we define the ConflictProximity

cpRC , with 0 ≤ cpRC ≤ 1 as

cpRC =
|LBPRC |
|URC |

where URC = D(R1)∪· · ·∪D(Rm) is the set of all literal blocks inRC . In Example

1, URC = {2, 9, 10, 11, 14, 35, 98, 110} and cpRC =
|LBPRC |
|URC |

= 3/8.
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For any two given reason clause sequences RCp and RCq, with |RCp| = |RCq|,

if cpRCp > cpRCq , then we call conflicts associated with the reason clauses in

RCp are more closely related to each other than conflicts associated with the reason

clauses inRCq.

We now study proximity of conflicts in CDCL under ConflictProximity.

6.4.2 Proximity of Conflicts over sc and mc Decisions

While the learned clauses in a mc decision are connected, each learned clause in a

sc decision is learned in isolation. We propose the following hypothesis:

Hypothesis 1: On average, conflicts in a mc decision with burst x are more closely

related than conflicts which are generated in the last x sc decisions.

We support this hypothesis by comparing the ConflictProximity of rea-

son clauses over mc and sc decisions.

0 50 100 150 200 250 300 350 400
Instances (Sorted by Avg. ConflictsProximity over mc decisions)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
g.

 C
on

fl
ic

ts
Pr

ox
im

it
y 

of
 R

ea
so

n 
Cl

au
se

s

Over mc decisions
Over sc decisions

Figure 6.4: Comparison of average ConflictProximity of reason clauses over
mc and sc Decisions

Experiment

We have performed an experiment with 400 instances from TS3 with MplDL with

a time limit of 5,000 seconds. For each run of an instance, whenever the search finds
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a mc decision with burst x, we compute the LBP and ConflictProximity for

the reason clauses (i) for these x conflicts and (ii) for the last x conflicts in sc

decisions. For this experiment, we collect data for bursts x ≤ 10. For a run with

an instance, we compute the average of ConflictProximity of reason clauses

separately over mc and sc decisions.

Fig. 6.4 shows that average ConflictProximity for the reason clauses over

mc decisions (blue lines, average is 0.43) are higher than ConflictProximity

of reason clauses over sc decisions (orange line, average is 0.34) for almost all

instances. This validates Hypothesis 1.

6.5 The Common Reason Variable Reduction Strat-
egy

6.5.1 Common Reason Decision Variables

Assume that a mc decisionM finds x ≥ 2 consecutive conflicts within its decision.

Let R = (R1, . . . , Rx) be the sequence of reason clauses for these x conflicts.

LBPR is the set of common decision levels over R. For each decision level dl ∈

LBPR, we call dl, a common reason decision level and the decision variable v

at dl, a common reason decision variable (CRV) for M. If |LBPR| = z, then

there are z CRVs inM. The CRVs inM are the decision variables from previous

decision levels, which contributed to the generation of all the conflicts inM.

6.5.2 Poor mc Decisions

Recall that in Section 6.2 (Fig. 6.1), we observed that on average, mc decisions

(blue line) produce lower quality clauses than sc decisions (orange line). However,

the best quality clause (green line) in a mc decision has better average quality than

other learned clauses. Nevertheless, in a poor mc decision its best quality learned

clause is worse than the average quality.

Definition 13: (Poor mc Decision) A mc decisionM is poor if the quality of the

best learned clause in M is lower than a dynamically computed threshold θ, the

average quality of the last k learned clauses.
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Table 6.2: The CRVR Decision Strategy

Procedure DetectPoorCRV Procedure CRVRBranching

1. θ ← aLBD(k)
2. if (min_LBDM > θ)

a.R ← reason_clauses_in_M()
b. for each dl ∈ LBPR

i. v← dvar(dl)
ii. poor_crv[v]← true

1. selected← false
2. while (not selected)

a. y← select_next_free_var()
b. if (poor_crv[y])

i. activity[y]← activity[y] * (1-Q)
ii. poor_crv[y]← false
iii. reorder()

c. else
i. selected←true

6.5.3 The CRVR Decision Strategy

We summarize the previous two subsections as follows:

• Conflicts in a poor mc decision are not likely to be helpful, as the quality of

its best learned clause is lower than the recent search average.

• The CRVs in a poor mc decision combinedly contribute to the generation of

these conflicts.

Does suppression of such CRVs for future decisions help the search? We design a

decision strategy named common reason variable score reduction (CRVR), which

can be integrated with any activity based variable selection decision heuristics such

as VSIDS and LRB. The high-level idea of CRVR is as follows: Once a poor

mc decision is detected, CRVR (i) finds the CRVs for that poor mc and (ii) marks

those CRVs as poor CRVs, (iii) then reduces the activity scores of those poor

CRVs for future decisions. CRVR consists of two procedures, DetectPoorCRV

and CRVRBranching. Pseudo-codes of these two procedures are shown in Table

6.2.

DetectPoorCRV

This procedure is invoked at the end of an mc decisionM. It computes a dynamic

conflict quality threshold θ, the average LBD score of the last k learned clauses.

Then it determines if M is poor by comparing min_LBDMwith θ. In this case,

DetectPoorCRV obtains the sequence of reason clauses R inM and computes
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LBPR. For each decision level dl ∈ LBPR, any decision variable v at dl is

marked as poor.

CRVRBranching

Pseudocode for CRVRBranching is shown in the right side of Table 6.2. This

procedure modifies a CDCL decision routine to lazily reduce the activity score of

poor CRVs. It employs a while loop until a variable is selected, where in each

iteration of the loop, it performs the following operations: (i) obtain a free variable

y, where y is the free variable with largest activity score. (ii) check if y is marked

as poor. If y is poor, then it reduces activity[y], by a factor of Q, a user

defined parameter with 0 < Q < 1 . (iii) unmark y to no longer to be poor and

reorders the variables by their activity scores. The reduction of the activity score of

y, followed by reordering, decreases the selection priority of y.

6.6 Experimental Evaluation

6.6.1 Implementation

We implemented CRVR in three leading baseline solvers MplDL, Kissat-sat

and Kissat-default. We call the extended solvers MplDLcrvr, Kissat-satcrvr,

and Kissat-defaultcrvr, respectively. The solver MplDL employs a combina-

tion of the decision heuristics DIST [80], VSIDS [49] and LRB [43], which are acti-

vated at different phases of the search, whereas Kissat-sat and Kissat-default

use VSIDS and Variable Move to Front (VMTF) [62] alternately during the search.

The heuristics DIST, VSIDS and LRB share similar data structures: all maintain

an activity score for each variable. Whenever a variable is involved in a conflict,

its activity score is increased. In contrast, VMTF maintains a queue of variables,

where a subset of variables appearing in a learned clause are moved to the front of

that queue in an arbitrary order.

CRVRworks on top of activity-based decision heuristics. Hence in Kissat-satcrvr

and Kissat-defaultcrvr, we employ CRVR only in phases when VSIDS is ac-

tive.
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In all of our extended solvers, we use the following parameter values: a length

of window of recent conflicts k = 50 and an activity score reduction factor Q = 0.1.

Table 6.3: Comparison between 3 baselines and their CRVR extensions with TS3
instances.

Systems SAT UNSAT Combinded PAR-2
MplDL 106 110 216 2065
MplDLcrvr 116 (+10) 107 (-3) 223 (+7) 2001
Kissat-sat 148 118 266 1552
Kissat-satcrvr 150 (+2) 114 (-4) 264 (-2) 1565
Kissat-default 134 126 260 1624
Kissat-defaultcrvr 139 (+5) 125 (-1) 264 (+4) 1588

6.6.2 Experiments and Results

We conduct experiments with the same set of 400 instances from TS3 with a 5,000

seconds timeout per instance. We compare the CRVR extensions and their coun-

terpart baselines in terms of number of solved instances, solving time and PAR-2

score.

Table 6.3 compares MplDLcrvr, Kissat-satcrvr, and Kissat-defaultcrvr

with their baselines. All extensions show performance gains on SAT instances, but

lose on UNSAT instances. The strongest gain is for MplDLcrvr, which solves 10

additional SAT instances, but 3 less UNSAT instances, for an overall gain of 7

instances. Kissat-satcrvr solves 2 more SAT instances, but loses 4 UNSAT in-

stances, an overall loss of 2. Kissat-default solves 5 more SAT instances, and

1 fewer UNSAT instance, +4 overall.

The PAR-2 results are consistent with the solution counts. While Kissat-satcrvr

has a slightly worse 0.8%) PAR-2 score compared to Kissat-sat, both MplDLcrvr

and Kissat-defaultcrvr have significantly lower PAR-2 scores (by 3.19% and

2.28%, respectively), which reflects overall better performance of these two sys-

tems.

Fig. 6.5 compares the relative solving speed of MplDLcrvr (blue), Kissat-satcrvr

(orange), and Kissat-defaultcrvr (green) against their baselines by plotting

the difference in the number of instances solved as a function of time. MplDLcrvr
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Figure 6.5: Solve time comparisons. For any point above 0 in the vertical axis,
our extensions solve more instances than their baselines at the time point in the
horizontal axis.

(blue) performs slightly worse than MplDL early on, but beats the baseline con-

sistently after 1,900 seconds. Kissat-defaultcrvr (green) is ahead of its corre-

sponding baseline Kissat-default at most time-points. Compared to Kissat-sat,

Kissat-satcrvr (orange) is behind at most time points.

Overall, compared to their baselines, our extensions perform better on SAT in-

stances, but lose a small number of UNSAT instances. We discuss this behavior in

the next section.

6.7 Discussion of the Experimental Results

6.7.1 Detailed Performance Analysis of CRVR

Recall that for a run of a given solver, the metric GLR measures the overall conflict

generation rate of the search, average LBD (aLBD) measures the average quality

of the learned clauses and G2L measures the fraction of learned clauses which are

glue. We relate the performance of CRVR with these three metrics. We consider

two subsets of instances from TS3, where MplDL and MplDLcrvr show opposite

strengths:

• CRVR−bad: 12 instances solved by MplDL, but not by MplDLcrvr.
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• CRVR−good: 19 instances solved by MplDLcrvr, but not by MplDL.

Table 6.4: Relating solving efficiency with the three metrics with the average GLR,
average LBD and average G2L. More efficient branching heuristics tend to achieve
higher average GLR [41], higher average G2L [18] and lower average aLBD [41]
than less efficient ones.

Instance Sets Count (SAT+UNSAT) average GLR average aLBD average G2L
MplDL MplDLcrvr MplDL MplDLcrvr MplDL MplDLcrvr

CRVR−good 19 (18+1) 0.58 53 4399.91 147.69 0.003 0.018
CRVR−bad 12 (8+4) 0.56 0.56 18.83 18.53 0.024 0.023

The 19 instances in CRVR−good (first row of Table 6.4) are solved exclusively

by MplDLcrvr. For this subset, MplDLcrvr learns clauses at a slightly lower rate.

However, for CRVR−good, the average aLBD (resp. average G2L) is significantly

lower (resp. higher) with MplDLcrvr. CRVR helps to (i) learn higher quality clauses,

and (ii) learn more glue clauses relative to the number of clauses for the subset of

instances in CRVR−good, for which MplDLcrvr is efficient.

18 of the 19 instances in CRVR−good are SAT. The learning of significantly

better quality of clauses with MplDLcrvr for these SAT instances may just explain

the good performance of CRVR on SAT instances.

For the 12 instances in CRVR−bad (second row of Table 6.4), MplDL learns

clauses at the same rate, but learns clauses which are of slightly lower quality than

the clauses learned by MplDLcrvr. However, for this set, the average G2L value is

slightly higher with MplDL than MplDLcrvr. This could explain the better perfor-

mance of MplDL for this subset.

6.7.2 Performance behavior of CRVR on SAT instances

The author of [54] showed that Glucose with LBD core cut 2 (clauses with LBD

score upto 2 never get deleted) is as powerful as original Glucose (which retains

some learned clauses with LBD score > 2) for SAT instances, while performance

of the modified Glucose on UNSAT instances is worse (Table 2.1 in [54], page 51).

This indicates that retaining glue-clauses has more positive impact on SAT instances

than UNSAT instances.
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We have analyzed data for MplDL and MplDLcrvr for the experiments in Table

6.3. The G2L value is slightly higher for MplDLcrvr than MplDL. Further, as shown

in the previous section, the gap in G2L value between these two systems is highly

pronounced for the 19 instances, 18 of which are SAT, which are exclusively solved

by MplDLcrvr, but not by MplDL. For these 19 instances, the average G2L value for

MplDLcrvr (0.018) is 3 times higher for than MplDL (0.006). Hence the propensity

of MplDLcrvr to learn more glue clauses relative to the total learned clauses may

help the solver in solving more SAT instances.

6.8 Related Work

Audemard and Simon [5] briefly studied decisions with successive conflicts, which

we refer to as mc decisions in this paper. They studied the number of successive

conflicts in the CDCL solver Glucose on a fixed set of instances. Here, we present a

more formal and in-depth study of mc decisions. The authors of [41] relate conflict

generation propensity and learned clause quality with the efficiency of several deci-

sion heuristics. In contrast, we study and compare the conflict quality of two types

of conflict producing decisions for CDCL. The conflict generation pattern in CDCL

is studied in [17], showing that CDCL typically alternates between bursts and de-

pression phases of conflict generation. While that work presented an in-depth study

of the conflict depression phases in CDCL, here we study the conflict bursts phases

in detail. The authors of [18] studied the conflict efficiency of decisions with two

types of variables: those that appear in glue clauses and those that do not. In this

Chapter, we compare the conflict efficiency of conflict producing decisions.

6.9 Conclusions

We presented a characterization of sc and mc decisions in terms of average learned

clause quality that each type produces. Then we analyze how mc decisions with

different bursts are distributed in CDCL search. Our theoretical analysis shows that

learned clauses in a mc are connected, indicating that conflicts that occur in a mc de-

cision are related to each other. We introduced a measure ConflictProximity
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that enables the study of proximity of conflicts in a given sequence of conflicts. Our

empirical analysis shows that conflicts are more closely related in mc decisions than

in consecutive sc decisions. Finally, we formulated a novel CDCL strategy CRVR

that reduces the activity score of some variables that appear in the clauses learned

over mc decisions. Our empirical evaluation with three modern CDCL SAT solvers

shows the effectiveness of CRVR for the SAT instances from TS3.
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Chapter 7

Conclusion

In this thesis, we have studied CDCL SAT solving algorithms empirically. Particu-

larly, we focused on heuristic guided variable selection steps in CDCL to discover

their impact on conflict generation and clause learning. Our studies have unveiled

a series of important insights, some of which lead to the developments of novel

techniques that extend the standard CDCL SAT solving algorithms. Empirical eval-

uations of these new techniques reveal their effectiveness on state-of-the-art CDCL

solvers over a diverse set of benchmarks. Our analysis of the experimental results

from these evaluations reveals another set of interesting insights, some of which are

novel for CDCL SAT search.

In this chapter, first, we present an overview of the main results of this thesis

work. Next, we present the potential impact of this work. We conclude this chapter

by laying out some future work of this thesis.

7.1 Overview of this Thesis

Here we present a brief overview of this thesis work.

• Chapter 3: We relate variable selection step in CDCL with glue clause, a

special type of learned clause with high pruning power. We distinguish be-

tween two types of variables during a run of a given CDCL SAT solver on

a given formula: glue variables that appear in a glue clause up to the cur-

rent state of the search and non-glue variables which do not appear in any of

the glue clauses. We demonstrate that decisions with glue variables are more
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conflict efficient than non-glue variables. Based on this finding, we develop

a variable bumping scheme named glue bumping, which lazily increases the

activity score of glue variables to prioritize their selection. With benchmarks

from the main track of SAT Competition 2017 and 2018, we demonstrate

modest-to-strong performance gains with this scheme with four state-of-the-

art CDCL SAT solvers. We also propose a novel conflict metric named G2L

that measures the fraction of the learned clauses that are glue. To the best

of our knowledge, for the first time this metric incorporates quality of the

learned clauses in measuring conflict efficiency of CDCL solvers. We have

also shown that G2L correlates well with the performance of CDCL SAT

solvers, in cases where standard conflict metrics such as mean GLR and mean

of average LBD scores do not provide consistent explanations.

• Chapter 4: In this chapter, we have introduced two novel concepts for CDCL

SAT search: a Conflict Depression (CD) phase, in which the search does not

produce any conflicts for a number of consecutive decisions and a Conflict

Burst (CB) phase, in which the search produces at least one conflict in each

of a number of consecutive decisions. With 750 instances from SAT Com-

petition 2017 and 2018 and two high-performance CDCL SAT solvers, we

demonstrated empirically that the typical search behavior in CDCL consists

of shorter but conflict intense CB phases, followed by longer CD phases.

We showed that there is a weak correlation between average length of CD

phases and solving hardness. We studied the correlation between backjumps

and CD. Our analysis shows that in general the correlation is low for the ma-

jority of instances. However, on average, there is a high correlation between

the length of a CD phase and length of backjumpings for a majority of in-

stances.

• Chapter 5: To escape from CD phases quickly, we propose an algorithmic

extension of the standard CDCL framework named expSAT that performs

random exploration amid substantially large CD phases. The goal of per-

forming exploration is to identify, and then prioritize conflict friendly vari-
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ables, selection of which may generate a conflict quickly and end the current

CD phase. Our extensive evaluation of expSAT with 5 state-of-the-art CDCL

SAT solvers show modest-to-strong performance gains on benchmarks from

SAT Competition 2017 and 2018, and impressive gains with hard SATCoin

instances. Analysis of the experimental data from two of our expSAT exten-

sions and their corresponding baselines shows that these extensions reduce

the average CD phase length for problem instances for which our expSAT

extensions are more efficient.

• Chapter 6: A decision in CDCL can generate 0 or more conflicts. In this

chapter, we study conflicts generating decisions in detail. First, we char-

acterize single conflict (sc) decisions and multi-conflict (mc) decisions in

terms of the quality of the learned clauses that each type produces, and show

that sc decisions learn higher quality clauses than mc decisions, on aver-

age. Our theoretical analysis with mc decisions reveals an interesting insight:

learned clauses in a mc decision are connected. This insight leads to the

formulation of a new measure named ConflictProximity, that mea-

sures closeness between conflicts in a given sequence. With the concept of

ConflictProximity, we demonstrate that on average conflicts occur-

ring in a mc decision are more closely related than conflicts in a sequence of

conflicts in sc decisions.

We formulated CRVR, a decision strategy that lazily de-prioritizes the selec-

tion of variables which appear in some of the learned clauses. Our empiri-

cal evaluation of CRVR with benchmarks from SAT Competition 2020 show

modest-to-strong performance gains with 3 leading CDCL SAT solvers for

SAT instances.

7.2 Impact of this Thesis

We highlight the impact of this thesis work below:

• The conflict efficiency based characterization of glue variables is a concrete

step towards the understanding of how CDCL branching heuristics work and
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why they work well. This aspect of Chapter 3 has been recognized in [25,

52].

This characterization has opened up the possibility to design better CDCL

SAT solving algorithms, such as the glue-bumping method. In a more recent

work [32], the author has developed a machine learning model to predict glue-

variables for making decisions, which helps in improving performance of the

CDCL SAT solver CaDiCaL over recent SAT Competition benchmarks. We

hope that further effective methods for CDCL SAT solving will be developed

in the future following this characterization.

• The concept of conflict depression phases is new for CDCL SAT research.

Besides exploration as in expSAT, a deeper understanding of conflict depres-

sion phases could lead to new research avenues for improving CDCL SAT

search.

• The solvers that implement the techniques developed in this thesis have demon-

strated strong performance in SAT Competition-2021 and SAT Race-2019.

We expect that these strong performances will motivate SAT practitioners

from both academia and industry to use our solvers for solving SAT prob-

lems.

• In SAT Competition-2018, we submitted a SAT solver named exp_MC, which

is based on a preliminary version of the expSAT approach. Though exp_MC

did not make it into the top tier of that competition, it was used in a re-

cent work in Hierarchical Task Network (HTN) planning [10] domain, where

exp_MC was the best performing system among 19 tested systems the au-

thors have used for evaluating a novel SAT encoding of HTN planning. Thus

exp_MC pushed the boundary for SAT based HTN planning.

• The process of bitcoin mining is very energy demanding and is a subject of

increasing concern for the environmental effects of the mining industry [26,

75]. One effective solution could be making the mining process faster.

As a proof-of-concept, the bitcoin mining process has been encoded into a
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SAT benchmark named SATCoin [47], which opens up the possibility of us-

ing highly scalable CDCL solvers for mining bitcoins. The impressive per-

formance gains with expSAT on the SATCoin benchmark is an indication that

expSAT could be an useful technique in SAT based bitcoin mining.

7.3 Future Work

Here, we provide some research avenues that could be explored following this thesis

work:

• Chapter 3:

– The routine for updating heuristic scores in the glue bumping scheme

uses a static rule. To further improve the performance of this scheme,

devise a method that dynamically chooses a rule from a set of rules,

depending on the current state of the search.

– The glue-level measures the frequency of appearance of glue variables

in glue clauses up to the current state of the search. A variable with high

glue level logically connects many glue clauses in which it appears.

In the Variable Incidence Graph (VIG) of a given SAT formula, the

eigencentrality of a node measures the impact of that node in the VIG.

Bridge variables in such a VIG connects two sub-graphs of that VIG.

Are there any correlations between variables with high glue-levels with

variables with high eigencentrality? What percentage of variables with

high glue-levels are bridge variables?

– A non-glue learned clause that contains a high number of glue variables

could also be an important clause, and preventing the deletion of that

clause could be beneficial for the search. Can we design clause deletion

heuristics based on the notion of glue level?

– The conflict efficiency metric G2L incorporates conflict quality in its

measure. Can we design more efficient branching heuristics based on

this measure of conflict efficiency?
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• Chapter 4

– The study of parameterized complexity of SAT attempts to explain solv-

ing hardness of SAT as a function of some structured parameters, such

as backbones and backdoors [38], community structures [2, 53] and

mergability [84]. None of those had been shown to be both theoretically

and empirically satisfying in explaining hardness of SAT. Hence, relat-

ing solving hardness with a parameter is a very challenging problem in

SAT research [28].

Though in Chapter 4, we show a weak correlation between the phe-

nomena of CD and solving hardness, the relationship between solving

hardness and the CD phases is not well understood and remains an in-

teresting future work.

– While CD phases are pathological, for an UNSAT formula, the occur-

rence of some long CD phases may help the search learn a clause which

is beneficial for constructing a refutation proof for the formula. How to

verify this phenomena empirically is an interesting, challenging issue.

Given a set of UNSAT formulas, one way is to analyze the Deletion

Resolution Asymmetric Tautology (DRAT) [77] log of learned clauses

for each formula and analyze how many of these learned clauses follow

long CD phases.

– Can we use machine learning models for better handling of CD phases?

We see two research issues in this direction:

* Issue I: In Chapter 4, we showed that for the majority of test in-

stances, the correlation between the length of backjumps and the

length of CD phases that follows those backjumps is weak-to-mod-

erately positive (see Figure 4.12). In general, search gives no indi-

cation of how long a CD phase will last. A CDCL search cognisant

of an impending long CD phase, could take appropriate course

of actions (such as performing restart, resetting the variable selec-

tion/phase selection heuristics, reducing the current clause database)
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just before the occurrence of that long CD phase. Two interesting

research directions are: (i) develop machine learning models to pre-

dict the length of CD phases given the state of the search, and (ii)

devise a CDCL algorithm that takes appropriate course of actions

amid a CD phase, if the trained machine learned model predicts a

long CD phase.

* Issue II: Develop (i) a machine learning model, which is trained

to predict conflict-friendly branching variables during a CD phase

and (ii) a CDCL algorithm that uses this model to guide the search

to escape from a CD phase quickly.

• Chapter 5:

– In general, performing deeper walks with an expSAT solver may in-

cur high overhead than shallower walks. Are there SAT benchmarks for

which deeper exploration can be helpful?

– Lookahead based SAT solvers [11] guide the search by performing de-

terministic probing of the future states. Designing algorithms that per-

form deterministic probing amid a CD phase is another interesting re-

search direction.

– The performance of expSAT is quite impressive for the SATCoin bench-

mark.What characteristics of a domain (such as SATCoin) makes expSAT

especially effective?

• Chapter 6:

– Explanation the poor performance of the CRVR strategy on UNSAT in-

stances, and then improve the performance of the CRVR method on

UNSAT instances.

– Some CDCL SAT sovlers such as CaDiCaL and Kissat use VMTF as

their predominant decision heuristic along with VSIDS. Currently, CRVR

is only applicable to activity based decision heuristics such as VSIDS
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and LRB. How to apply the CRVR strategy to non-activity based selec-

tion heuristics such as VMTF.

– CRVR uses two fixed user defined parameters Q and K. How to design an

adaptive strategy for these two parameters?

– In the CRVR method, we deprioritize the selection of a poor crv. Ex-

tending the current analytical/empirical results of this chapter and de-

signing a method that prioritizes selection of a crv is another interest-

ing research direction.
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Appendix A

Safe Population Growth with
Rule-30: A SAT Benchmark

This benchmark was developed for SAT Competition 2021 [68].

A.1 Introduction
A population is an one-dimensional grid of n ≥ 1 organisms, where each organ-
ism evolves between being alive (1) and dead (0) over chronological time steps by
following a fixed rule of evolution. At any time step t ≥ 1, the combined states of
n organisms represent the state of the population at t. At t, a population is under
the threat of extinction, if the number of alive organisms falls below n ∗ (P/100),
where 0 < P ≤ 100, and safe otherwise. We say that a population grows over
T time steps, if for any time step t < T − 1, population at t + 1 has more alive
organisms than population at t.

In our proposed SAT benchmark Safe Population Growth (SPG), given a pop-
ulation of n organisms, and a maximum time step T , verify if a population could
safely grow up to time step T , while following a fixed rule of evolution. 20 instances
of this benchmark were submitted for the SAT Competition 2021.

A.2 SPG as a Cellular Automaton
State evolution in the Safe Population Growth (SPG) problem deals with cells in
finite elementary cellular automaton (CA) [79], with respect to (i) the safety con-
straint at any given time step and (ii) the growth constraint between any two con-
secutive time steps.

In an elementary CA, at time step t+1, the state of a cell c, which has cell l (resp.
r) as its left (resp. right) neighbour, is computed based on a boolean combination of
the states of c, l, and r at time t. There are 23 = 8 combinations of boolean values
for l, c, and r at t, for each of which there are 2 ways to set the value of the state of
c at t + 1. Hence, there are 28 = 256 ways to set this new state, which are called
rules [79] for a given elementary CA.

These rules are divided into four classes based on their patterns of evolution in
a given CA. We consider Rule 30 [78] for the SPG problem, an instance of a class
IV, which is known to exhibit chaotic behavior. At time t+ 1, for a given center cell
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Figure A.1: State evolution for the center cell for Rule 30; black cells represent alive
(1) cells, white cells represent dead (0) state.

Figure A.2: Emergence of fractal patterns with Rule 90 that applies the rule ct+1 ←
(lt XOR rt), for any time step t ≥ 1.

(c), its left (l) and right (r) neighbours, Rule 30 computes the state centert+1 of the
center cell as follows:

ct+1 ← lt XOR (ct OR rt)

Figure A.3 (also taken from [78]) shows a chaotic evolution of a CA that follows
Rule 30, where the evolution of the cellular automaton does not exhibit any regu-
larity. Figure A.2 shows a contrasting example with Rule 90 from class III, where a
cellular automaton develops clear fractal patterns.

A.3 SAT encoding of the SPG problem

A.3.1 SPG as a SAT Benchmark
Given a population of n ≥ 1 organisms, a maximum time step T ≥ 2, , and a
safety threshold 0 < P ≤ 100, the task of the SPG problem is to determine if the
population evolves up to T by following Rule 30, with respect to the following two
constraints:
Safety: The Total number of alive organisms in every time step 1 ≤ t ≤ T is at
least n ∗ (P/100).
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Figure A.3: Emergence of chaotic behavior with Rule 30; an application of Rule 30
produces extremely irregular and complex patterns.

Growth: For any two consecutive time steps, the number of alive cells at t + 1 is
greater or equal to the number of alive cells at t.

We can encode an instance of the SPG problem as a SAT instance. Let sti be the
state of the current cell i, where 1 ≤ t ≤ T and 1 ≤ i ≤ n. Given a SPG problem,
we encode it as a SAT formula FSPG as follows

FSPG = Fevolution ∪ Fsafety ∪ Fgrowth ∪ Fboundary

where Fevolution, Fsafety, Fgrowth, and Fboundary are defined as follows:

Fevolution :
T∧
t=1

n∧
i=1

(st+1
i = (sti−1 ⊕ (sti ∨ sti+1)))

Fsafety :
T∧
t=1

n∑
i=1

sti ≥ n ∗ (P/100)

Fgrowth :
T−1∧
t=1

n∑
i=1

st+1
i ≥

n∑
i=1

sti

Fboundary :
T∧
t=1

¬st0 ∧ ¬stn+1

Over T time steps,

• Fevolution encodes the evolution of the population of n organisms that follows
Rule 30.

• Fsafety encodes the population safety constraint.

• Fgrowth encodes the population growth constraint.
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• Fboundary encodes the assertion that the left (resp. right) neighbor of the left-
most (resp. rightmost) organism outside of the boundary of a given population
is always dead (0).

FSPG is SATISFIABLE, if the population can evolve up to time step T with
respect to the safety and growth constraint, otherwise, it is UNSATISFIABLE.

A.4 Problem Modeling and Instance Generation for
the SPG benchmarks

A.4.1 Problem Modeling
picat [83] is a CSP solver which accepts a CSP problem and converts it to a SAT
CNF formula, which is in turn solved by a SAT solver hosted by picat. Before
solving the converted CNF formula, picat outputs the CNF formula.

To generate instances for the SPG benchmark, we first model the SPG prob-
lem in a picat program picatSPG. Then, for a given set of parameter values for
(T, n, P ), we generate the CNF FSPG from picatSPG by using the CNF generation
functions of picat.
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Appendix B

Source Code Links

B.1 Chapter 3
• Four CDCL solvers that implement the Glue Bumping method are available

at: https://github.com/solimul/gluebumping

B.2 Chapter 5
• Eleven CDCL solvers that implement the expSAT method are available at:
https://github.com/solimul/expSATExtensions

B.3 Chapter 6
• Three extensions of the CRVRmethod are available at: https://figshare.
com/articles/software/CRVR_Extensions/14229065
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