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ABSTRACT

This thesis is concerned with the equivariant topological degree and its ap-
plications to global Hopf bifurcation theory for (neutral) functional differential
cquations (NFDEs) with symmetry. Firstly, an alternative new definition of the
G-degree developed recently by K. Geba, W. Krawcewicz and J. Wu is carried out
by using equivariant generic approxiinations and an analytic formula for the com-
putation of the degree is provided. Secondly, by extending the G-degree to that
for equivariant condensing field in Banach G-spaces, a local symmetric bifurcation
theorem of Krasnosel’skii type and a global symmetric bifurcation theorem of Ra-
binowitz type for a class of composite coincidence equations with symmetry are
obtained via a G-degree cpproach. Thirdly, the above bifurcation results are ap-
plied to prove local and global Hopf bifurcation theorems for (neutral) functional
differential equations with symmetry, which include several important theorems in
bifurcation theory obtained by S. N. Chow, B. Fiedler, J. Ize, J. Mallet-Paret, R.
D. Nussbaum and J. Yorke. Their applications to the Rashevsky-Turing theory
are also considered. Finally, the discrete global bifurcation waves such as phase-
locked oscillations and synchronous osciilations in a single-species ring patch model
as well as in a ring array of coupled lossless transmission lines are investigated via

global symmetric Hopf bifurcation theorems.
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INTRODUCTION

It has recently been recognized that many mathematical models from physics
and engineering are dynamical systems with certain symmetry. The symmetry can
either be intrinsi: to the physical system or the idealization of the problem under
investigation. Examples have been found in studying the dynamics of networks
of coupled oscillators. Since identical (symmetrical) coupling has been used, as

permutation group S, (sce Ashwin et al. [2]). Typical examples are also seen
in the study of thermal convection in the molten inner layer of the Earth. By
using a first approximation, one may consider the convective field flow between
two spherical shells. If the rotation of the Earth is neglected one obtains a problem
with O(8)-symmetry. If the rotation is included then the resulting mathematical
model has SO(2) ® Zy-symmetry (see Golubitsky et al. [18]). Other examples
include time-reversible systems (with a hidden O(2)-symmetry ) treated by Van-
derbauwhede [39], Hopfield models in neural networks with circulant symmetric
matrices (with a Z,-symmetry ) analyzed by Wu [40] and the translation and re-

flection invariant reaction difussion equations with periodic boundary conditions

and Mallet-Paret [17]. The list of the examples goes on and we refer to Golubit-
sky et al. [18], Sattinger [36] and the references cited there for more examples of
differential equations with symmetry which arise from various physical contexts.
When differential equations involve symmetry, the study of how the symme-
try affects the dynamics is of interest. In particular, the Hopf bifurcation in the
presence of symmetry has attracted considerable attention in recent ycars. Com-
pared with systems without symmetry, the symmetric bifurcation patterns are

much more complicated. Multiple eigenvalues are caused by the symmetry and



the center manifolds (for ODEs) are thus high dimensional. As far as local Hopf
bifurcation is concerned, there has been much progress toward a general theory of
bifurcation with symmetry. First, the Liapunov-Schmiilt reduction method can be
extended to the equivariant case and the existence of periodic solutions is reduced

to a symmetric static bifurcation problem. Second, by resorting to various results

can be analyzed in detail with the help of equivariant normal forms. Due to the
symmetry of the systems, calculations can often be simplified and conclusions on
bifurcation patterns such as supcriticality/subcriticality and stability are finally
drawn as in the non-symmetric case. We refer to Golubistky et al. {18] and Van-
derbauwhede [39] for the Jetailed discussions of the theory and its applications
to practical problems. For the use of center manifold reduction in analyzing local
symmetric Hopf bifurcations, see also Swift [37] and van Gils and Mallet-Paret
[17].

For a global theory of Hopf bifurcation with symmetry, topological methods
seem more natural. In the nonequivariant case, i.e. when symmetries are ignored
in the system, the first global result is due to Alexander and Yorke [1]. Their proofs
involve generalized cohomology (framed cobordism) arguments and are later much
simplified by Ize [24] using homotopy theory. A similar idea has also been em-
ployed by Nussbaum [34] to extend the Alexander-Yorke theorem to cover retarded
functional differential equations (RFDEs). On the other hand, Chow and Mallet-
Paret [4) have utilized the Fuller index for periodic solutions of an autonomous
equation and given another proof of the global Hopf bifurcation result (for both
ODEs and RFDEs), which is further improved in Chow, Mallet-Paret and Yorke
[5]. Also, Ize [26] has attempted the approach of obstruction theory and consid-
ered multiparameter bifurcation and, as a special case, the global Hopf bifurcation
theroem is recovered. In the meantime, the Alexander-Yorke theorem has also

been obtained for parabolic systems by Ize [25] using hon:ntopy arguments and by



Fiedler [9], resorting to the Hopf index refined from Mallet-Paret and Yorke's cen-
ter index [33]. For the equivariant case, Fiedler [10] has extended his results in [9]
to symmetric differential equations and several symmetric global Hopf bifurcation
theorems are established by using generic approximations and an equivariant Hopf
index. Since his arguments involve solution operators, it would be difficult and
more complicated, if not impossible, to apply them to those differential equations
are not known. So are all other topological methods (except that of obstruction
theory by Ize [26]) mentioned above, since they also depend upon the fact that
a unique (local) solution exists for each Cauchy initial value problem and the so-

lution is continuous with respect to the initial data. The idea of Ize [26], which

uses the infinite dimensional space of periodic functions, instead of the Euclidean
space RY, is exceptional and we believe that it could be extended to differential
equations without solution operators. However, the arguments would involve cer-
tain calculations using heavy results from equivariant obstruction theory, which,
to the best of our knowledge, are not established.

In looking for a more general and less involved topological proof for the global
Hopf bifurcation theorem, a degree-theoretic approach has long becn attempted.
This is probably inspired by the work of Rabinowitz [35] on global static bifurcation
for one-parameter nonlinear equations via Leray-Schauder degree. However, the
idea of Rabinowitz can not directly be extended to the Hopf bifurcation problem,
since the introduction of the unknown period as an additional parameter makes
has led to the generalized topological degrees defined by Ggba et al. [16] and Ize
[24, 28] for continuous admissible maps with range space one dimension lower than
the domain space. The values of their degrees are not integers, but are clements
of the homotopy group n41(S™). In consequence, the Hopf map is usually used
to show the nontriviality of the degree and therefore they lose the power of the

Brouwer degree in which an analytic computation may determine its nontriviality.



Moreover, as mentioned earlier, the proof of the global Hopf bifurcation theorem
as simplified by Ize [24] uses the solution operator and the application of the degree
of Geba et al. [16] to Hopf bifurcation problems has not been found, to the best
of our knowledge.

The first degree-theoretic proof for the global Hopf bifurcation theorem
comes with the introduction of the S'(-equivariant) degree and this is given
by Geba and Marzantowitz [15] for ordinary differential equations and is next
extended to FDEs by Erbe et al. [8]. The S'-degree, which is analytically con-
structed by Dylawerski et al. [7] for S'-equivariant maps with range space one
dimension lower than the domain space, possesses all the properties of Brouwer de-
gree and, more importantly, it also takes integers as its values. Therefore, analytic
formulas for the computation of the degree can be obtained. On the other hand,
by using equivariant homotopy theory, a more general S'-degree theory has also
been carried out by Ize, Massabé and Vignoli [28, 29] and its applications to global
Hopf bifurcation problems are extensively considered for ODEs (see [29]). By the
S'-degree approach, the treatment of the global Hopf bifurcation problem is very
much the same as that for static bifurcation studied by Rabinowitz [35]. Since it
does not use the solution operator, the analogs of the Alexander-Yorke theorem
due to the purely topological nature of the approach, it avoids the sophisticated
decomposition and perturbation theory of linear FDEs as well as generic approx-
imations, which, to the best of our knowledge, have not been developed to FDEs
where delayed and advanced arguments are allowed to coexist. We refer to Erbe
et al. [8] and Krawcewicz et al. [31] for more details.

Not only does the S'-degree provide a new proof for the global Hopf bi-
furcation theorem, it also suggests constructions of more general G-degrees for
any compact Lie group G. This has led to two G-equivariant degree theories
developed recently by Geba, Krawcewicz and Wu [11] and Ize, Massabé and Vi-
gnoli [28], which have offered useful approaches to global symmetric bifurcation

[



problems. The computation of the degrees of course plays a central role in these
theories and it relies heavily on the structure of the group G and the way it acts
on representation spaces. By using an analytic computational formula in the case
where G is abelian, applications to bifurcation problems have been made and
symmetric global Hopf bifurcation theorems are proved for functiona! differential
equations with symmetry ( see Ggba, Krawcewicz and Wu [12, 13]). Moreover,
Geba , Krawcewicz and Wu [14] have also successfully computed the O(2)-degree

and its application to time-reversable systems is considered.

In the present thesis, we shall develop further the equivariant degree theory of
Geba, Krawcewicz and Wu [11-14]. We are more interested here in computing the
G-degree by analytic formulas as is the case in computing the classical Brouwer
degree. Since neutral functional differential equations (NFDEs) are receving more
and more attention, we would also like to extend the theory to cover a global Hopf
bifurcation theorem for NFDEs with symmetry. Finally, it is of great interest to
provide certain bifurcation analysis procedures and show how to apply the theory
to specific biological, chemical and physical problems.

We have chosen the neutral functional differential equations as our main sys-
tem of investigation for three reasons. First, neutral equations are a very general
type of FDEs. They include retarded functional differential equations, intcgral
equations and ordinary differential equations. Second, compared with RFDEs,
neutral equations can display quite different and, in some cases, very interesting
dynamics. Due to the fact that the characteristic equation of a neutral equation
may have roots bifurcating from infinity, a phenomenon that does not occur in
RFDTs, neutral delay systems are not structurely stable in the sense that the in-
troduction of neutral terms may destabilize an asymptotically stable equilibrium
(see Kuang [32]) and, in other cases, it may also stabilize an otherwise unstable
equilibrium (see Gopalsamy and Zhang [20]). Since solutions to neutral equa-
tions are not necessarily differentiable, the Poincaré return map, a prwerful tool

in studying periodic solutions for ODEs and RFDEs, is therefore n generally



differentiable (see Hale and Lunel [23]). This introduces extreme difficulties in
studying neutral equations. Third, we have observed that there has recently been
growing interest in neutral equations and more and more neutral equations are
used as models to physical problems. As examples, a neutral dynamic model has
been derived by Burns et al. [3] in elastic motions of a three-degree-of-freedom
airfoil section in a two-dimensional imcompressible flow. In modelling population
dynamics in a food-limited environment, Gopalsamy and Zhang [20] have proposed
a neutral logistic equation. In the study of compartmental systems with pipes, a
neutral equation with infinite delay has been obtained by Gydri and Wu [22].
use of neutral delay systems modelling two species interactions in a closed envi-

ronment and in Gopalsamy ([19], Chapter 5) for various generalizations of neutral

more examples of neutral equations, we also refer to the recent monograph of Gyori
and Ladas [21].

We outline the contents of this thesis as follows. In Chapter 0, we prepare
some preliminary facts from algebra and topology. Material on transformation
groups and infinite dimensional representations, which is needed in subsequent
chapters, is included. Chapter 1 is devoted to analytic computational formulas for
the G-degree. As in the classical Brouwer degree case, an attempt has been made
to present a more analytical approach to the construction of the G-degree. This
is slightly different from the original definition by Ggba, Krawcewicz and Wu [11]
and the problem has boiled down to finding generic approximations of equivariant
maps.

In Chapter 2 and 3, we apply the G-degree to bifurcation problems. The
static bifurcation with G x S$'-symmetry is first treated in Chapter 2 and analogs
of Krasnoselskii’s local bifurcation theorem [30] and Rabinowitz’s global bifurca-
tion theorem [35] are proved for a class of nonlinear symmetric composite coinci-

dence problem by using G-equivariant degree. Chapter 3 contains the applica-



tions of Chapter 2 to Hopf bifurcation problems. We present proofs of symmetric
global Hopf bifurcation theorems, which are analogous to the Alexander-Yorke re-
sult, for neutral functional differential equations with symmetry. Hopf bifurcation
for symmetric functional equations is also considered.

The last two chapters, Chapter 4 and Chapter 5, illustrate how the sym-
metric global Hopf bifurcation theorems obtained in the previous chapters can be
applied to practical problems. We study in Chapter 4 a population model of a
single-species distributed over a ring of identical patches. Our main concern is to
explore the effect of the symmetry as well as the diffusion and neutral term on the
occurence of bifurcating periodic waves. Chapter 5 focuses on global phase-locked
oscillations in a ring array of symmetrically coupled lossless transmission lines.
The model we derive is a system of neutral functional differential equations and
may have other theoretical and practical interest. Finally, two theorems on lower
bounds of periodic solutions to NFDEs are appended.

We mention that we will not consider in this thesis the G-degree theory
developed by Ize, Mossabé and Vignoli [27-29], although it relates to that of Ggba,
Krawcewicz and Wu [11-14]. For the construction and computation of this more
general G-degree theory as well as its applications to Hopf bifurcation problems

for ODEs, we refer to their original work.
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CHAPTER 0

PRELIMINARIES

0.1. G-actions and G-spaces

In this section, we shall recall some basic facts from transformation group
theory. Most of them will be stated without proof. We .efer to the books by
Bredon [4] and Kawakubo [18] for more details.

Throughout this section, we assume G is a compact Lie group.

Definition 0.1.1. Let X be a Hausdorff topological space. By a topological
transformation group we mean a triple (G,X,p), where ¢ :Gx X — X isa

continuous map such that
() (g, p(h,z)) = p(gh,z) forall g,h€ G and z€ X ;

(ii) ¢(e,z) =1z for all z € X , where e is the identity of G.

For a topological transformation group (G, .X,¢), we call the map ¢ an
action of G on X and the space X, under the action of G, a G-space.
Whenever there is no confusion, we shall use the notation g(z) or gz for ¢(g,z).
Similarly, for C C G and A C X, we put C(A) = {g(z); g€ C,z € A}. A set
A C X is said to be G-invariant, or simply invariant, if G(A) = A. It is easy

to see that G(A) is compact if A is compact.

For any z € X, the subgroup G, = {g € G; gz = z} of G, which

is closed in G, is called the tsotropy group of z and the invariant subspace
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G(z) := {gz; g € G} of X is called the orbit of z. We denote by X/G the
set of all orbits in X. There is a canonical projection 7: X — X/G, z — G(z).
We provide X/G with the quotient topology with respect to the projection =
and call it the orbit space. Under this topology, X/G is also Hausdorff and the

projection 7 is a closed map.

Let X and Y be two G-spaces. A continuousmap f:X — Y iscalleda
G-equivariant map, or simply a G-map ,if f(gr) =gf(z) forall g€ G and z €
X. An equivariant homeomorphism is called a G-homeomorphism . We say two
G-spaces X and Y are G-homeomorphic if there exists a G-homeomorphism
f:X =Y. A continuous map f : X — Y satisfying f(gz) = f(z) for all

g €G and z € X is said to be an invariant map .

Remark 0.1.1. The above concepts can be carried over to the case where X = M
is a smooth (C'*°—) manifold. If the action ¢ : GXM — M is smooth, it is called
a smooth G-action and M is called a smooth G-manifold or simply G-manifold.
A smooth G-map f: M — N between G-manifolds is a G-diffeomorphism
if f is a diffeomorphism. M and N are G-diffeomorphic if there exists a
G-diffeomorphism f: M — N.

Example 0.1.1. Let V be a finite dimensional real vector space. A representa-
tion of G on V is a continuous homomorphism p: G — Aut(V). This repre-
sentation induces a linear G-action ¢ :G xV — V defined by ¢(g,v) = p(g)v.
By choosing a basis of V, we may identify V with a Euclidean space R"
(rn = dimV) and Aui{V) = GL(R"). Under this identification, the continuous
homomorphism p becomes a Lie homomorphism and the linear G-action ¢ is

thus a smooth G-action . In this way, every representation space is a G-manifold.
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To desbribe an orbit G(z), we need to know the space G/H of left cosets
gH of H in G, where H is a closed subgroup of G. We provide the quotient
topology induced by the canonical map #:G — G/H so that G/H, the homo-
geneous space, becomes a Hausdorff space. Recall that f : X — Y has a local
cross-section if for each y € Y, there exist a neighbourhood U’ of y and a map

s:U — X such that fos is the identity map on U.

The following result tells much more about G/H.

Proposition 0.1.1. Let H be a closed subgroup of G and 7 :G — G/H be
the canonical projection map. Then there exists a unique smooth structure on

G/H such that
(i) ™ is smooth;
(i) = has a smooth local cross-section.

Moreover, if H is a closed normal subgroup of G, then G/H becomes a Lic

group and 7 is a homomorphism of Lie groups.

Proof. See Bredon [14] or Kawakubo [18].

In what follows, whenever we say G/H is a smooth manifold, we mean

G/H is endowed with the above unique smooth structure.

Example 0.1.2. Let H be a closed subgroup of G. We can define a G-action
on the homogeneous space G/H by left translation, i.e. ¢(g,9'H) := Ly(¢'H) :=
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gg'H. This action is smooth. Indeed, we have the following commutative diagram

m

GxG —— G

iaxn | |7

GxG/H —2— G/H

and has a local cross-section. This implies that ¢ is the composition of smooth
functions and therefore is smooth. Under the action ¢, G/H is a smooth

G-manifold. ¢ will be called the natural action.

Now suppose that X is a G-space and z € X. We have a natural map
f:G/G; — G(z) defined by f(gG.) = gz. The following proposition describes
the orbit G(z).

Proposition 0.1.2. Under the natural action of G on G/G;,
(i) f:G/G: — G(z) is a G-homeomorphism,;

(ii) f:G/G. — G(z) is a G-diffeomorphism if X is a G-manifold. There-

fore, the orbit G(z) is a G-invariant submanifold.

Proof. See Kawakubo [18].

Recall that two closed subgroups H and K are conjugate in G, denoted
by H ~ K, if H = gKg~! for some g € G. Clearly, ~ is an equivalence

will be denoted by (H).
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From Proposition 0.1.2, we see that the quotient space G /G, describes the

orbit G(z). Notice that G, =gG.g97', ie. G,, and G, arc conjugate. This

leads us to consider all the conjugacy classes of closed subgroups of G.

Let O(G) stand for the set of all conjugacy classes of closed subgroups
of G. The set O(G) is then partially ordered under the following relation < :
a < B for a,B € O(G)if and only if there exist closed subgroups H and K
such that o = (H), 8 =(K) and K is conjugate to a subgroup of H. Given a
G-space and z € X, the conjugacy class (G.) is called the orbit type of r. It

follows from Proposition 0.1.2 that the orbit type fully describes the orbit G(r).

Definition 0.1.2. A transformation group (X,G, ) is said to be

(i) trivial if G, =G forall z € X

(ii) free if G, ={e} forall r e X.

Let X be a G-space and H a closed subgroup of G. We consider the
following subsets of X

x":={zeX; G, 2 H}

Xy ={z€X; G, =H}

X = {z € X; (G:) < (H)}
Xuny ={r € X; (G:) =(H)}
Denote by N(H) the normalizer of the closed subgroup H of G. Then N(H)

is closed and hence is a Lie group. Therefore, by Proposition 0.1.1, the Weyl group
W(H):= N(H)/H is a Lie group.

subsets.
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Proposition 0.1.3. Let X and Y be G-spaces and H a closed subgroup of
G. Then

(i) X" isaclosed N(H)-space aswell asa W(H)-space, where the W(H)-action
is given by ¢(nH,z) =nz, for n€ N(H) and z € XH_ Moreover, if X

is a G-representation, X" is a linear subspace of X;

(ii) Xy is an open, dense and free W(H)-space in XH,
(i) XU =GXY and X(uy=GXnu. In particular, XH) is closed;
iv) If (H) is a minimal orbit typs which occurs in X, then X y) Is closed in
(iv) ) yl (H)
X;
(v) Any G-map f:X — Y induces W(H)-maps f":XH" — YH, where

7= flxn.

Proof. See Kawakubo [18].

Definition 0.1.3. Let E and X be topological (Hausdorff) spaces and p :

E — X be a continuous map. (E,X,p) is said to be a vector bundle if
(i) for each z € X, E, :=p~'(z) has the structure of a vector space;

(ii) for each r € X, there exist an open neighbourhood U of z and a home-
omorphism ¥ : p~!(z) — U x R"® such that po¥ = 7 and for each
y € U, ¥|p-1¢z) : pP~'(z) = {y} x R" is a linear isomorphism, where

7 :U x R® - U denotes the projection.

We call E, the fibre of z. The condition (ii) is referred to as the local triviality

of the vector bundle. A continuous map s : X — E such that pos = Id is

called a section of the bundle.



Definition 0.1.4. A vector bundle (E,X,p) is called a G-vector bundle if
E,X are G-spaces and p is a G-map, and for each ¢ € G and r € X,

(E,X,p) is said to be smooth if X and E are G-manifolds and p is smooth.
Two G-vector bundles (E,X,p) and (E',X,p') are called isomorphic if there
existsa G-map f:E — E' suchthat p'of =p and f|g, : E; — E; isalincar

By definition, any vector bundle (E,X,p) is a G-vector bundle where G
actson E and X trivially.

Example 0.1.3. (i) Let p: E —» X bea G-vector bundle and f:} — X be
a G-map of G-spaces. Define the pull-back

f(E):={(y,v) €Y x E; f(y) = p(v)}

and p': f(E) =Y by p'(y,v) =y. Then f*(E) is G-invariant in ¥V x E
and (f*(E),Y,p') is a G-vector bundle.

(ii) Let p: E — X be a G-vector bundle and Y C X he an invariant
subspace. Then p: Ely :=p~'(Y) =Y isa G-vector bundle. We call it the re-
strictionof E to Y. It is straightforward to see that (E|y,Y,p) is G-isomorphic
to the pull-back i*(E) where i:Y «— X is the inclusion.

(iii) Let p: E - X be a G-vector bundle. If a G-invariant subspace
E' of E and the restriction p' : p|p : E' — X satisfy (1): E; = E'NE; is
a vector subspace space of E; for each z € X; and (2): p' 1 E' = X isa
G-vector bundle with respect to the structure of the vector spacc on E; in (1),

then (E',X,p') is called the G-vector sub-bundle of E.



(iv) Let V be a representation space of G and X be any G-space. We
can form the G-vector bundle p: X xV — X, where p is the natural projection

onto X. We call (X xV,X,p) the trivial G-vector bundle.

(v) Given a G-vector bundle p: E — X over a paracompact G-space X,

one can find a G-invariant metric (-,-) on E, i.e.
(guagv)yz = <u, v)z, zeX

for all ¢ € G and u,v € E;. We define for each ¢ > 0 two G-invariant sub-
spaces of E

'D(E) = {v € E; (v') v)p(v) < 6}

S(E) := {v € E; (v,v)pw) = €}

They are called the ¢-disc bundle and the e-sphere bundle, respectively.

(vi) Given a G-vector bundle p: E — X and its G-vector sub-bundle
E'. Suppose that X is paracompact and (-,-) is a G-invariant metric on E.
We put

Et=JE"
z€X

where E.' denotes the orthogonal complement of E. in E, with respect to
the inner product (,-);. Then E'* isa G-vector bundle of E, which is called

the orthogonal complement of E' in E.

Example 0.1.4. Suppose that M is a G-manifold. Let z € M and denote by
T.(M) the tangent space of M at z. Then the tangent (vector) bundle

T(M):= |J T(M)
zEM
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with p: T(M) - M, p(T:(M)) =z, r € M can be endowed with a G-vector
bundle structure by defining a G-action ¢ : G x T(M) — T(M) by ¢(g,v) =
g.v, (g,v) € G x T(M), and g, : T(M) — T(M) is the tangent map of the
diffeomorphism ¢ : M — M. Under the action ¢, T(M) is a G-manifold and
gs : Te(M) — T,,(M) is alinear isomorphism. We call (T(M), M, p) the tangent
G-vector bundle of M.

Recall that a Riemannian metric (-,) on M isasmooth metric on the tan-
gent bundle T(M). By using the Haar integral (see later in this section), one sees
that on the tangent G-vector bundle T(M) there exists a smooth G-invariant

Riemannien metric (-,-).

Let A C M be a G-invariant submanifold of M. Then we have the
G-vector sub-bundle T(A) of the restriction T(M)|a of the tangent G-vector
bundle T(M) of M. With respect to the above G-invariant metric, there exists
an orthogonal complement of T(A) in T(M)|a

v(A) :=T(A)*

which is called the normal G-vector bundle of A in M. Notice that v(A) is

canonically endowed with a G-invariant metric.

Recall that two G-maps fi, f2:Y — X are G-homotopic if there exists
a Gmap H:Y x[0,1] = X such that f; = H(-,i), i = 0,1, where G acts
on [0,1] trivially.

The following result will be needed in section 0.4.
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Proposition 0.1.4. If f1,f;:Y — X are G-homotopic G-maps, and Y is
compact and E is a G-vector bundle on X, then f{(E) is G-isomorphic to

f3(E).

Proof. See Segal [30].

Definition 0.1.5. Let H be a closed subgroup of G and A an H-space.
Definc an H-action on G x A by ¢(h,(g,a)) = (¢h™,ha) for h € H,a € A.
The orbit space G xy A := (G x A)/H of this H-action is called the twisted
product of G and A. We denote by [g,a] the H-orbit of (g,a).

Remark 0.1.2. The twisted product G xyg A is again a G-space with the

G-action
p:Gx(GxygA)—=Gxpy A

defined by &(¢',[g,a]) = [¢'9, a]. The following properties of Gxpy A are straight-

forward:
(i) If A isa G-space, then G xg A is G-homeomorphic to A4;

(ii) If H is a subgroup of G and A is an H-space, then (G xy A)/G is
homeomorphic to A/H.

Using the twisted product, we can present the following important result,

which is fundamental in the study of the structure of G-manifolds. For a proof,

see Kawakubo [18].
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Theorem 0.1.5. (THE SLICE THEOREM) Let M be a G-manifold. For any
zr €M and H
G-diffeomorphism f : G xyg V — M onto an open neighbourhood of the or-
bit G(z) such that f([g,0]) = gz. Moreover, the normal G-vector bundle v

G:, there exists a unique H-representation V' and a

of the G-invariant submanifold G(z) in M is isomorphic to

p:GxyV —-G/H

of g€ G and H actson G by h-g=gh~!, for he H.

In view of the above theorem, the H-invariant image S := f([e,v]) of V
under the G-diffeomorphism f above will be called a slice of G(r) at r and
f(GxugV) in M will be called a tube about the orbit G(z).

As a consequence of the slice theorem, we have the following corollary con-

cerning the orbit types around the orbit G(z).

Corollary 0.1.6. Let M be a G-manifold and z € M. Then there cxists
a neighbourhood U of the orbit G(z) in M such that (G.) < (Gy) for all
yeU.

Proof. Let S be a slice of G(z) at z. Then G(S) is an open ncighbour-
hood of G(z). For any y € G(S5), y = gs for some g € G and s € S.
Now S is a G,-representation. One has G, C G,. This implies that G, =
gGag~1,ie. (G:) £(Gs) = (Gy). The corollary follows by letting U = G(S).

Among other important consequences of the slice theorem, we introduce

several theorems which will be needed in the construction of the G-degree.

[
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The first result, describing the fixed point set of a G-action, improves

Proposition 0.1.3.

Theorem 0.1.7. Let M be a G-manifold and H be a closed subgroup of G.
Then

(i) the fixed point set MC is a closed submanifold of M;

(ii) the H-fixed point set MH is a W(H)-manifold.

Proof. See Kawakubo [18].

The following concept was first introduced by Peschke [29)].

orientation which is invariant under left and right translations.

By a left translation Ly, g € G, we mean amap L, : G — G defined by
Ly(¢') = g¢' for ¢' € G. Similarly, a right translation Ry, g € G is defined by
Ry(¢')=g'g™" for ¢' € G. By definition, any compact abelian (resp. connected)
Lie group is bi-orientable. For more information on bi-orientability of Lie groups,

we refer to Peschke [29].
We have the following result considering the structure of orbit spaces.
Theorem 0.1.8. Let M be a free G-manifold. Then
(i) the orbit space M/G is a smooth manifold and the projection = : M —

M/G is smooth and admits a smooth local cross-section. Moreover, for

any [z] € M/G, there exist a neighbourhood [U] of [z] in M/G and a
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G-diffeomorphism ¢ : 7~ ([U]) — G x [{] such that the following diagram

commutes

=1 ([U]) RN G x U]

| e
U v

where p: G x [U] — [U] is the projection.

(ii) if G is bi-orientable, M is orientable and the action of G preserves the
orientation of M, i.e. foreach g € G, p, : M — M, detined by ¢,(r) = yr
for = € M, preserves the orientation of M, then the orbit space M /G s
orientable. Moreover, the orientation of M/G can be determined by the

choice of orientation of G and M.

Remark 0.1.3. For any topological space X, we can always obtain a G -space

G x X where G actsby ¢'(g,z) =(g'g9,z) for ¢',g€ G and re X.
{ ! RN

Proof of Theorem 0.1.8. (i) See Kawakubo [18].

(ii) First fix an orientation of the tangent space T.G and use the left trans-
lation L, : G — G to choose an orientation of T,G for any given ¢ € G such
that the orientations are invariant under L,. Since G is bi-orientable, the right

translation R, :G — G preserves these orientations.

Let z € M. By Proposition 0.1.2, the map L, : G — G(x) defined by
L(g) =gz, g € G, is a G-diffeomorphism. This allows us to choose an orienta-
tion on G(z). Note that if y € G(z) then there exists g € G such that y = gr.

3
ond



L: )
G —— G(z)

it follows that the orientation of G(z) determined above does not depend on the
choice of y € G(z). Also, by the condition in (ii), we can choose an orientation

of T,M, y € G(z), which does not depend on the choice of y.

Let [z] denote the orbit G(z) in M/G. Choose an orientation of M.
Then T.,M and T.G are oriented and from

.M = T[z](*\I/G) D T::(G(i')) = I[f](-"j/g) D T(G)

an orientation of Ti;(M/G) can be determined in such a way that, together
with the orientation of G, it provides the given orientation of M via the above

isomorphism. Therefore, M/G is orientable and the proof is complete.

Now let M be a free G-manifold and V a representation vector space
of G. Then the product M x V is also a free G-manifold with the diagonal
action. Let p: M x V — M be the natural projection. p then induces a map

g: (X xV)/G — X/G between orbit spaces so that the diagram

MxV — (M xV)/G

¢l s

L]

M — MG

commutes. By Theorem 0.1.8, (X x V)/G and X/G are manifolds, and m, T

admit smooth local cross-sections. It follows that ¢ is smooth.



Theorem 0.1.9. The above induced map ¢ : (M x 1/G — M/G is a smooth
vector bundle with typical fibre V.

Proof. Let [z] € M/G. By Theorem 0.1.8, there exist a neighbourhood 8¢} of
(z] in M/G and a G-diffeomorphism ¢ : 77 ([1]) — G x [I{] such that the

following diagram commutes

A (M) —— G x U]

i

e

This gives a G-diffeomorphism ¢~ ! xid: G x [[{]x 1" — U] x VT between
free G-manifolds. Passing to their orbit spaces, onc has a diffcomorphism 4 :

(G x Ul x V)/G — (=7 1(U])) x V)/G.

andif 7 : Gx Ul xV — (G x [U] x V)/G denotes the projection then the

Now define amap j: U] x V — G x U] x V" by j{[u],r) = (¢ [u],r)
composition k:=woj:[U]xV = (G x [U] x V)/G is a diffcomorphism. Note
that (m7 ' ([U])) x V)/G = (x5 (U]} x V) = ¢ ([{]). We arrive at the following
commutative diagram

El, ,—1

¢~ (u]) - ) x v

l/

Therefore k~' o1~! gives a (smooth) local trivialization with typical fibre V.
g , ) I

This completes the proof.

For a G-manifold M, there exist generally more than one orbit type. Recall

that My denotes the union of all orbits of the type (H). By definition, My s



@ if (H)#(K).

Theorem 0.1.10. Let M be a G-manifold and H be a closed subgroup of G.
Then My) is a G-invariant submanifold of M. Moreover, My is closed if
and (H) is a maximal orbit type. Consequently, M(u)/G is a manifold and My
is a free W(H )-submanifold of M.

Proof. See Kawakubo [18].

When M is compact, as the following theorem shows, there are only a finite

number of disjoint nonempty invariant subsets M) in the decomposition M =

Ui eo(e) Min). For asubset A (not necessarily invariant ) of a G-manifold M,

we denote by J(A) the number of orbit types occuring in A, ie. J(A4) :=
#{(G.), z € A}.

Theorem 0.1.11. The following statements hold true:

(i) If A isacompact set of a G-manifold M, then J(A) < oo. In particular,
if M is a compact G-manifold, then J(M) < co.

(ii) If V is a G-representation vector space, then J(A) < oo.
Proof. See Kawakubo [18].

Finally, we include some theorems from G-equivariant topology.

We begin with the Haar integral on a compact Lie group G.



Let E be a Banach space. We denote by Cg(G) (resp. C(G) ) the set
of continuous functions f : G — E (resp. R). It is well known (see, for
example, Dinculeanu [9]) that there exists a unique invariant integral, called the
Haar integral, on G, which we denote by [ f(g)dg for f € Cg(G) (resp.
C(G)). Here dg denotes the normalized Haar integral, i.e. [;xdg = r (resp.
Jgdg =1) for all z € E. The Haar integral enjoys the following properties:

(i) For every a,B8 € R, fi, f2 € Cg(G)

/(ﬁfl(g) + Bf2(g))dg = ﬂf/ fi(g)dg + ﬁj Ja(g)dg;
J G G [#4

(ii) (Left and right invariance) For any h € G and f € Cg(G)

Lf(gh’l)dg=Lf(hg)dg=/G_f(g)dg;

(iii) For any f € Cg(G)
i “YHdg = 4 Ndg:
/(;f(g )dg fo(g) g

(iv) Let A be a topological space and f: G x A — E be continuous. Then the
function F': A — E defined by

F(a) = /G £(g,a)dg

is continuous;

(v) Let M be a smooth manifold and f : G x M — E be continuous. If

F(z) = L f(g,z)dg
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is also CT-differentiable;

(vi) Let T:E — E be a linear mapping. Then for every f € Cg(G)

/ T(f(g))dg = T / f(g)dg);
G G

(vii) If f € C(G) is nonegative,

/ f(g)dg > 0.
G

Remark 0.1.4. The Haar integral is often used to produce an equivariant (resp.
invariant) function from a nonequivariant one. More precisely, let X bea G-space
and E be a Banach G-representation space (see definition in section 0.2). Given
a continuous function f: X — E, by averaging f on G, we obtain an equi-

variant (resp. invariant) function f: X — E defined by

f(r)=/cy"f(gz)dy, z€E
(resp. F(z) = / f(gz)dg, = €E).
G

The continuity and equivariance (resp. invariance) of f follows from the proper-

ties (ii) and (iv).

Definition 0.1.7. Let L be a topological linear space (over R). We call L a
topological linear G-space if G acts on L linearly. By a metric G-space we

mean a G-space with a G-invariant metric.

We present the following equivariant version Dugundji extension theorem

[10]. See Murayama [24] for its proof.
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Theorem 0.1.12. Let L be a locally convex topological linear G-space and
A C X be a closed invariant subspace of metric G-space X. If f: A— L is
a G-map, then there exists a G-equivariant extension f: X — L of f such

that the image f(X) is contained in the convex hull of f(.4)U {0}.

If L = R" is a Euclidean G-representation space, the above thcorem

reduces to the equivariant Tietze-Gleason theorem (see Bredon [4]).

When one has several pieces of smooth G-maps, to “glue” them to get one

G-map, the invariant Urysohn function takes its place.

Theorem 0.1.13. Let A and B be disjoint, closed and invariant subsects of a
G-manifold M. There exists a smooth invariant function ¢ : M — [0,1] such

that ¢|a =0 and ¢|p=1.

Proof. Let 3 be a smooth Urysohn function with |4 = 0 and #|p = 1
(see Brocker and Jinich [6]). Averaging ¥ on G, we ol ain a smooth invariant

function ¢ : M — [0,1],
o) = [ wloz)dg, ze M,

as desired.

0.2. Isotypical decompositions of Banach G-spaces

In this section, we introduce some background material from the representa-
tion theory for compact Lie groups. For the purpose of applications to bifurcation
theory, we shall lay particular stress on real representations in Banach spaces. For
more details we refer to Adams [1], Brocker and tom Dieck (5], Kirillov [19] and

Lyubich [23).
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finite dimensional real (resp. complex) vector space and G be a compact Lie

group. By a representation of G on V, we mean a continuous homomorphism

of V. V is called the representation space of . From section 0.1, ¢ induces
a linear action on V so that V becomes a G-manilold. Two representations
@i : G — GL(V;), i = 1,2, are said to be equivalent, denoted by Vi =~ V3, if there
is an isomorphism f : Vi — Va, such that f(y1(9)z) = w2(9)f(z), forall g€ G
and z € V,. By using the Haar integral, it follows that every real (resp. complex)
representation of G is equivalent to an orthogonal (resp. unitary) representation.
Therefore, without loss of generality, we shall assume that the space V is endowed
with an inner product such that ¢ is an orthogonal (resp. unitary) representation,
ie. ©:G— O(V) (resp. U(V)), where O(V) (resp. U(V) )denotes the group

of all orthogonal (resp. unitary) operators on V.

With respect to a chosen basis, an orthogonal (resp. unitary) representation
can be given by its matrix form ¢(g) = (¢ij(g)), where @;; are called the repre-
sentation functionsof . Define a function xv(g) := Tr(p(9)) = Zipii(9), 9 €G.
xv(g) is called the character of . Clearly, xv does not depend on the choice
of a basis and xv(ghg™') = xv(h) forall g,k €G.

A representation ¢ : G — GL(V) is said to be irreducible if V # {0} and
the only G-invariant subspaces of V are {0} and V. For a real representation
¢ : G — GLy(V), by its complezification ¢c: G — GL¢(cV), we mean oc(9) =
¢(9) € GLc(cV) with ¢V := C@p V. By definition, xv(g) = xcv(g) for all
geG.

D(V,,Vz):={f: V; = Vy; f is linear and equivariant}.
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The following result (see Kirillov [19]) classifies the set D(V,13).

Theorem 0.2.1. (GENERALIZED SCHUR'S LEMMA) The following statements

hold true:

(i) f Vi and V; are irreducible and f € D(V},V3), then f is either zero or

an isomorphism;

(ii) K V isa complex irreducible representation and f € D(V,V), then f(v)=
Mv for some )\ € C;

(iii) If V is a real irreducible representation, then D(V,V) is a division alge-
bra over R and is isomorphic to one of R, C, H, where H is the four-

dimensional algebra of quaternions.

A real irreducible representation (p,V) is called a representation of real,
complez, or quaternion type, if D(V,V) is isomorphic to R, C, or H, respec-

tively.

The following result (see Kirillov [19]) describes the relation between a real

represention and its complexification.

Theorem 0.2.2. (i) Let V be a real irreducible representation of real, complex,
or quaternion type. Then its com~’~xification cV is respectively irreducible, the
direct sum of two inequivalent - -ip V-dimensional irreducible representations,

or of two equivalent irreducible re,.. ;sentations.

(ii) Let Vi and V; be two real representations. If cVy is equivalent to Ve,
then V, is equivalent to V,.
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Let fi,f2 : G — C be two continuous functions. Define the convolution

Hi*fr:G—-C by
fi s falg) = [3 Fu(R)fa(h~1g)dh

where dh denotes the normalized Haar measure on G.

Remark 0.2.1. Let (p,V) and (¥,W) be two inequivalent irreducible uni-
tary matrix representations of G with representation functions (y;;) and (#i;),

respectively. Then one has (see Brocker and tom Dieck [5])

XV *Xy = g%x‘fi xv*xw =0,
ly

1 .
/ ij(9)pri(g)dg = <-bikbjt,
G ayv

/ oi5(9)u(g)dg = 0
G

where dy denotes the (complex) dimension of V.

Combining Theorem 0.2.2 and Remark 0.2.1 leads to the following result on

real representations.

Proposition 0.2.3. Let V be a real irreducible representation of G. Then

XV, ifV is of real typé
XV *Xv = xv, ifV is of complex type
xv, ifV is of quaternionic type.

A,
s S S

Moreover, if W is another irreducible real representation of G which is inequiv-

alent to V, then xv *xw =0.

Proof. If V isof real type, we have xv = x.v. Since dy = d.v, the conclusion

follows from Remark 0.2.1. Suppose now that V is not of real type. By Theorem
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022, cV =V, & V,;, where V;,V, are two complex irreducible representations

of G. From the properties of characters, xv = x.v = xv,ov; = Xv, + \v, and

by Remark 0.2.1,
XV ®¥Xv = (x‘,"i + XV:) * (Xif; + X‘r’%)
=Xy *Xvi +2xv, *xv, + Xv; ¥ XV,

XV * Xy + XV, ¥ XV,

1

R .
= TmeViXVi T Gimc B X V2

&0 +xv) = Exv-
since, from Theorem 0.2.2, V; is inequivalent to V2 and xv, * xv, =0.

and

(zx‘f’;) * (ngz) =4(xv, *xv,)

Xv *Xv

= dimé VX = %XVI %Xv-
Finally, if W is inequivalent to V, by (ii) of Theorem 0.2.2, ¢cW is not equivalent
to cV. Therefore, Remark 0.2.1 implies that x.v * xew = 0. Consequently,

xv *xw =0.

This completes the proof.

Let V be a real irreducible representation. In view of Proposition 0.2.3, we

define a number n(V) as follows

dimyg V, if V is of real type

n(V) = g—i%i, if V is of complex type

‘*EA'“;L, if V is of quaternionic type.

We call n(V) the intrinsic dimension of V.
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We will also need the following well-known theorem which plays an important

its proof.
Theorem 0.2.4. (PETER-WYEL THEOREM) Let L?(G) denote the Hilbert space

erated by all representation functions is a dense and orthogonal subset of L*(G).

We now consider representations of G in Banach spaces.

Let W be a real (resp. complex) Banach space with norm |-|. A rep-
resentation of G in W is a continuous map ¢ : G x W — W such that the
(g,") : W — W is a linear invertible operator for every g € G. The notions

of equivalence between representations and irreducibility can be carried over to

every complex (and therefore real) irreducible representation of a compact abelian

Lie group is one dimensional (resp. one or two dimensional).

Proposition 0.2.5. For each Banach representation (p,W), there exists an
equivalent norm ||-| on W relative to which the representation ¢ is isometric,

i.e. p(g): W — W is a linear isometry for every g € G.
Proof. For every z € W, we use the normalized Haar integral to set

el = jG le(g)z]dg.

The property of the Haar integral ensures [l¢(g)z|| = ||z]| for all ¢ € G and
zeW.
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Due to Proposition 0.2.5, in what follows, we always assume that a Banach

representation is isometric.

The following result is useful in decomposing the whole space W into in-

variant relatively simpler subspaces.

Theorem 0.2.6. Let (p,W) be a real Banach representation of G. Suppose
that V is a real irreducible representation of G with the intrinsic dimension

n(V). Then the linear mapping Py : W — W defined by

Pyz := n(V)/va(g)cp(g):tdg, zeW
is a G-equivariant projection in W such that

(i) If z € W belongs to a representation space of an irreducible subrepresen-

tation of W which is equivalent to V, then Pyz = z;

(ii) If z € W belongs to a representation space of an irreducible subrepresen-

tation of W which is not equivalent to V, then Pyz = 0.

Remark 0.2.2. Theorem 0.2.6 indicates that the image Py(W) is the isotypical
(or primary) component of W corresponding to V, i.e. Py(W) is generated by
the irreducible subrepresentations in W that are equivalent to V. Since every
irreducible representation of G is finite dimensional, for every z € Py(W), the

orbit G(z) is contained in a finite dimensional subspace of W.

Proof of Theorem 0.2.8. The G-equivariance of Py follows from the linearity

of the Haar integral. To see that Py is a projection, we show Py o Py = Py.
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Indeed,
Py o Py(a) = (n(V)Y? [ xv(k) L xv(9)e(h)p(g)zdh dh
= ((V)? [ xv(®) [ x(o)p(ho)zdg dh
= @) [ xvih) [ xvioh™plo)eds dn
= ) [ ([ xvigh™xvimamp(o)eds
= ((V)? [ (v xv)ela)eds
one [ xvig) S o
= ((V)? [ XBola)zdg
=n(V) _/ xv(g)p(9)zdg = Pyz
JG
where we used Proposition 0.2.3.

On the other hand, let z belong to an irreducible subrepresentation space
U of W. Since U is finite dimensional, we can identify it with a matrix repre-

sentation (u;j(g)). Then

Pyz = n(V) L xv(9)(uij(9))dg
=n(V) L ;vu(ﬂi:‘(g))rdg

- n(V); jG (ver(9)us;(9))zdg

where (v;;j(g)) is the matrix representationof V. If V' and U are inequivalent,

then by the orthogonal relations in Remark 0.2.1,

]
=)

_/ vik(9)uij(g)zdg =
Je
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and therefore Pyz =0. If V and U are equivalent, again by Remark 0.2.1,

Pyz =n(V &'%Ekl; lg = ij)T dg = z.

This completes the proof.

By Theorem 0.2.4, there exist only a countable number of real and mutually
inequivalent irreducible representations of G, which we denote by (pn,Va), n =
1,2,.... Let xv,,n=1,2,..., denote their corresponding characters. For every

integer n, we define a projection P, : W — W as follows
Pazi=n(Va) [ xvi(o)p(a)eds, =€ W,

where (@, W) is a real representation of G on W. Set

Wo = WE,

W, = P,(W),n>21, and

we = By,

n=0

We therefore obtain the isotypical decomposition of W, as shown in the following

theorem.

Theorem 0.2.7. The subspaces W, are the isotypical components of W such
that

(i) the space W = @,> W, is densein W;

(i) if A:W — W is an equivariant linear mapping, then A(W,) C W, for
all n>20.
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Proof. The conclusion (ii) foilows directly from the Generalized Schur’s Lemma.
Tosee W™ = W, we assume W is a proper subspace of W for a contradiction.

Consider the following exact sequence of representations of G

0 — We w1, wWs —— {0}

where W/W® is the factor representation of W, i is the inclusion and ¢ is

the canonical quotient map. Clearly, i and ¢ are equivariant. Without loss

W by ¢~'(V) and W/W* by V in the above sequence). Hence, W is
finite codimensional in W and the above short exact sequence splits. Therefore

W is equivalent to the direct sum W @ W/W=, Now W/W®> is a subrep-

resentation of W. Denote by (p,V) any irreducible subrepresentation of G in

W, (p,V) is inequivalent to any one of (pn,Vn),n = 1,2,.... This is a con-
tradiction since py,p2,... are all irreducible representations of G. The proof is

therefore completed.

Let Wy, denotes the set of all points z € W such that the orbit G(z)
is contained in a finite dimensional invariant subspace of W. Since ®32,W, C

Wiin, we have the following result.

Corollary 0.2.8. Wy, isdensein W.

We finally include two examples concerning the isotypical decompositions of

the circle group S! and cyclic group Z,.

Example 0.2.1. Representations of S! and their isotypical decomposition.
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We identify S' with the unit circle {£ € C;|é] = 1}. Note that S' is
abelian. The irreducible real representation of S' is either one dimensional or
two dimensional. From Vanderbauwhede [34], we know that every one-dimensional
real representation of S' is trivial, which we denote by (po,R), and any two
dimensional real representation of S! is equivalent to one of the following matrix

representations on R?

_ [cosnf —sinnb\ [z
pn(6) = (sinné cnsnﬂ) (:2) '

6 € [0,2x]/{0,27} = S'.z,z2€eRn=1,2,....

On the other hand, if we are considering the complex representations of S,
then we obtain the following all irreducible one dimensional complez representa-

tionson E
en(f)z2=€"2,n€Z € Siiz € C.

Note that here n is allowed to take negative integers. By using the natural
isomorphism C 2 R?, we see that (p4n,C) is equivalent to (p,,R?) for n > 1.
Infact, (po,R) is the only irreducible S'-representation of real type and (pn,R?)
are all the real irreducible S!-representations of complex type. There exist no

quaternionic type real representations of S'.

Therefore, if (¢, W) is an isometric real Banach representation of S', cor-
responding to the irreducible representations pn, n 2 1, W has the following
isotypical decomposition

oo
W@;%wﬁdgw

n=0

where
Wo=W5S, Wy = Po(W),

p2or
P,z = 2/ (cosnf)p(@)zdd, z € W.
0
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Moreover, from the irreducible representations p,,n = 1, it follows that the

isotropy group (5'); = Z,, for every z € W, \ {0},n=1,2,....

Regard Z, = {€ € C;£" =1} as a finite subgroup of S' and denote by ¥
its generator. All complez irreducible representations of Z, are one-dimensional

and are given by

2ximk

em(rt)z=e"""z, z€C,

k=0,12,....,.n=1,m=0,1,2,...,n—1.

representation of Z, on R?

¥ (i) 71‘17 _ cos _2]25 —sin Eg::k I
Minl\ 22 sin 2mk cos 2k J \ z,

z,z2 €ER',m,k=0,1,2,...,n -1,

where £ € {0,1,...,2=1} = Z,. As in Example 0.2.1, for m > 0, (Ym,R?)

is equivalent to (%—m,R?). Notice that real irreducible representation of Z, is
either one-dimensional or two-dimensional. We have the following all the real
irreducible representations of Z,
(po,R), (pm,R?), m =1,2,...,25L, if nis odd;
(p0,R), (g, R), (pm,R?), m =1,2,..., 252, if n is even,
where (po,R) is the trivial one-dimensional real irreducible representation of
z,, (Pi"R) is given by p%(%)z = —z,% €EZ,,z€R, and py = Pm,m#0, 3.
Assume now that (p,R") is a finite dimensional orthogonal representation

of Z,. We look for its isotypical decomposition. By Theorem 0.2.7, corresponding

to each real irreducible representation p,, of Z,, there is an isotypical component
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Rﬁ such that @Hﬂ Rg =RV, (Note that RY is N-dimensional ). Moreover,

m=0""

RY can be explicitly given as follows

RY = ker(p(v) - e ™ Id), m=0,1,2,..., (2]
where Id denotes the N x N identity matrix and the complex space C is
identified with R2.

Remark 0.2.3. The (real) isotypical decomposition RN = &)lﬁﬂnﬂﬁ of RV
has been used by Dylawerski et al. [11] for computing S'-equivariant degree and
by Fiedler [13] for Hopf bifurcation with Z,-symmetry. This decomposition is
slightly different from the canonical one. See, for example, Serre [31] for the com-
plex case. For notational convenience, we have allowed the isotypical component

to take the trivial vector space {0}.

There is another real decomposition of RN with respect to a rcpresenta-
tion p:Z, = O(RV). Let R;v = A(p(7),11), the generalized eigenvalue space
corresponding to eigenvalues in II;, where II; = {A € C; M =1 and A" #

1 for 0<r<j}l,j€J:={j€N:jn} Itfollowsthat RV = @JEJR;V

This decomposition has been used by Erbe, Geba and Krawcewicz [12] for com-
puting Z,-equivariant index. It is not difficult to sec that this decomposition is
different from the isotypical decomposition (the latter is finer). Two decomposi-
tions coincide if and only if every set II;, j > [[2] — 2] +2, includes at most one

pair of eigenvalues of p(7).

0.3. An equivariant bijection theorem

In this section, we prove an equivariant version of the bijection theorem due
to Nussbaum [25,26], which will be used to extend the G-degree to equivariant
condensing fields.
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Let E denote a real Banach space. Throughout this section, we assume that
E is an isometric representation of a compact Lie group G. By E**", n =
0,1,2,..., we shall denote the Banach space E x R" equipped with the norm
I(z, M)|| = max{||z||, |A]}, (z,A) € ExR". The natural projection of E**" onto
E, (z,)) z, will be denoted by x. The action of G on the space E induces
an action on E®*" given by ¢(z,A) = (9z,1), ¢ € G, (2,)) € E®*", and the

operator m: E**" — E is then G-equivariant.

To state an equivariant version of the Bijection Theorem of Nussbaum (25,
26) (see also [7, 20]), we recall the notion of an abstract measure of noncompactness
on the spaces E®*". By M, we denote the class of all bounded subsets of
E**" n=0,1,2,..., and weput M = |Joo, M,. A function p: M — [0,00)

is called a measure of noncompactness if the following conditions are satisfied.
(B-1) p(X)=0 <= X iscompact;
(B-2) pX)=pX)
(v-3) XCY=pX)<uY)
(k-4)  p(XUY)=max{u(X),uY)};
(r-5)  p(ConvX)=pu(X)
(u-6) plaX)=lalu(X), a€R;
(k-7 WX +Y)<pX)+u);
(0-8)  p(m(X)) = u(X),

where, X,Y € M and ConvX denotes the convex hull of X. We remark

that the above set of axioms is not minimal. A classical example of a measure of
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noncompactness is the Kuratowski measure of noncompactness a : M — [0,00)

which is defined by

a(X) = inf{e > 0 : there exists X, X3,..., X, C Xsuch that

X=X,U---UX,, and diam(X;)<e¢ for j=1,...,q}

For more properties of measure of noncompactness and other examples, we refer

to Banas and Goebel [3], Krawcewicz [20] and Nussbaum [25,26].

Let X Cc E®t" and F:X — E®*™ be a continuous map such that F
We say that F is a pu-Lipschitzian map with a constent k > 0 if u(F(A4)) <
ku(A) for all bounded A C X. If u(F(X)) =0, F is called compact;if k=0,
we call F a completely continuous map; and if * < 1, we say that F is a
Darbo map (or pu-set contraction). We say that F is a condensing map if F
is p-Lipschitzian with k¥ = 1 and p(F(A)) < p(A) for all bounded subsects
A C X with p(A) > 0. In what follows, we will denote by Comp, Darbo and
Cond the classes of compact, Darbo and condensing maps, respectively. Clearly,

Comp C Darbo C Cond.

Let C be a fixed invariant closed convex subset of E and (A4,X) be a pair
of closed bounded invariant subsets of E®*" with 4 € X. We use A%( X,A)
to denote the class of all G-maps F : X — C such that

i) FeA,
(ii) m(z)# F(z) forall z € 4,

where A stands for any of the classes: Comp, Darbo, Cond. Consequently, we

get the following sequence of inclusions

Comp ¢(X, A) C Darbo ©(X, A) C Cond 9(X, A).
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A G-map H : X x[0,1] — C is called a homotopy in AG(X,A) if H €
AS(X x [0,1],A x [0,1]). Evidently, if H is a homotopy in AS(X,A), then
H, = H(-,t) € AS(X,4) for all t € [0,1]. We say that Fo,Fy € AC(X, A)
are homotopic in AC(X,A), denoted by Fy ~ Fi in A9(X,A), if thereis a
homotopy H in A®(X,A) such that F; = H;, for i=0,1. It can be verified
that the homotopy relation “ ~  is an equivalence relation in AS(X, 4) ([20)).
In what follows, we will denote by AC[X, 4] the set of all homotopy classes in

A%(X, A). Notice that the following inclusions

CompS(X.4) —— CondC(X,A)

.
\ Dafbﬂs(jf. 4)

induce the maps making the following diagram commutative

Comp©[X, A] —— Cond®[X, 4]

T (iz).
k‘ Datbag[xa A]

Moreover. we remark that if F € AG(X,A), then = — F is a proper map ({20,

25, 26 ]), and we have that
¢ 2 inf{||n(z) = F(z)||: z € A} >0,

Thus, for every G-map F, : X —» C, if F1 € A and [[Fi(z) — F(z)|| < € for
any : € 4, we have that F} € AG(X,4) and Fi~F in AC(X,A).

Now we are in the position to state the main result of this section.
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invariant pair (X,A) with 0 # A C X C E®*", the induced map
ie: CompS[X,A] — Cond¢[X, A]
is bijective.

Proof. By the commutativity of the above diagrams, it suffices to show that
(i1)s and (i3). are both bijective. We begin with proving the surjectivity of
(i1)s. Let F € Darbo€(X,A) and 0 < k < 1 be a constant such that F
is a p-Lipschitzian G-map with the constant k. We necd to show that F is
homotopic in Darbo (X, A) toacompact G-map. For this purpose, we consider

the following sequence of subsets of C

Q, £ Conv {F(X), {0}};

Qi1 2 Conv (F(X N7-1(Q;), {0]}, i

1,2,3,...

Note that u(Qit1) = p(F(X N7~Y(Qi)) < k(X N7~1(Qi)) £ ku(Q,) for all
i=1,2,.... It follows that u(Q;) < k'u(X), i=1,2,..., thus ilaig;ny(Q,') =0.
Let Q=[)2, Q. Then Q isinvariant, u(Q) =0 and F(XN f"i(’Q)) cQ.

Obviously, @, D Q2 D ..., and every @Q; is closed bounded and invariant.

Since 0 € Q, Q must be a nonempty convex compact set. By Theorem
H(z,t) = (1 - t)F(z) + tR(F(z)), z € X, t € [0,1]. Clearly, H is a Darbo
G-map. To prove F ~ Ro F in Darbo%(X,A), we nced to show that =(z) #
H(z,t) forall z € A and t € [0,1]. Suppose, to the contrary, that for some
(20,t0) € A % [0,1), 7(20) = H(z0,%0). Since F(z) € @1, R(F(2))€ Q< Q1.
The convexity of Q; implies that m(29) € @1. Thus z € X N7~'(Q), which
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gives that F(z) € @2 and =(2) € Q2. Inductively, we have 7(2) € Q and
F(z)) € Q. Since R|q = Id|g, we have

7(20) = (1 — to)F(20) + tR(F(20))
= (1 - tg)F(E’g) + tuF(Eﬂ) = F(Eg)!

This leads to a contradiction to the assumption F' € Darbo®(X,A4). So F is
homotopic to the compact map Ro F via the homotopy H in Darbo ¢(X, A).

This proves that (i,), is surjective.

We next show that (i;). is injective. Let Fp, F; € Comp©(X,A) and
H € Darbo%(X x[0,1]),A x [0,1]) be a G-homotopy from Fy to Fy. We want
to show that Fy ~ Fy in Comp %(X, A). In fact, by the surjectivity of (1),
for the pair A% [0,1] € X x[0,1], we have a compact G-map H : X x[0,1] = C
and a G-homotopy H € Darbo®(X x [0,1] x [0,1],4 x [0,1] x [0,1)) from H
to H of the form

H(z,8,t) = (1-t)H(z,t) + tH(z,s),

where (z,s,t) € X x[0,1]x{0,1]. Since H|xx{o,1) are compact G-maps, ﬁlx;({ﬂ‘]}g[giﬂ
are compact. Also, H |x x[0,1]x{1} = H is an equivariant compact map. We now

define H*: X x [0,1] - C by

H(z,0,3t) if telo,}], z€X,
H*(z,t)= ¢ H(z,3t-1,1) if te[}, 3], z€X,
H(2,1,3-3t) if te[%1], z€X.
From the above construction, it follows that H* is a G-homotopy from Fp to
F, in Comp 9(X,A). This proves the injectivity of (i1)a.
We now prove (iz). : Darbo[X, A] — Cond [X, 4] is surjective. Let F €
CondS(X,A) and ¢ = inf{||r(2) — F(z)|| : z € A} > 0. Since F is bounded,

46



IF(A)| £ sup{||F(z)ll : z € A} < oo. Choose a constant k > 0 such that
1—¢/||F(A)|l < k<1. Then kF isa Darbo G-map, and for all z € A4,

IEF(z) - F() < (1 = B [ F(A)] <.
Define H : X x [0,1] - C by
H(z,t) = (1 —-t)F(z) + tkF(z), (z,t)€ X x[0,1].

Clearly, H € Cond (X, A). Moreover, if H(z0,t0) = 7(20) for some (zo,t0) €
A x [0,1], then

e = inf{||x(z) — F(2)|| : z € A} < |I7(20) — F(zo)||
= ||H(z0,t0) — F(z0)|l = (1 — k)to || F(20)ll < (1= k) [IF(A),

contradicting the choice of k. So, F is G-homotopic to kF in Cond G(X,A).
This shows the surjectivity of (z1)..

The injectivity of (iz). can be proved by an argument similar to that for
(31)«, replacing “compact” and “Darbo” by “Darbo” and “condensing,” respec-

tively. This justifies the bijectivity of (iz). and completes the proof.

0.4. Intersection numbers of bundle sections

In this section, we recall the definitions and properties of the intersection
number of a smooth vector bundle section. As in the orginal definition of the
equivariant degree [15], we will also need the notion of intersection number in
order to develop a simpler and more applicable formula for the computations of

G-degree.
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Throughout this section, we assume that p: E — M isasmooth n-dimensional
vector bundle over a smooth n-dimensional manifold M. By a section of E we
shall mean a continuous map s : M — E such that p(s(z)) =z for all z € M.
The zero section of the bundle p : E — M will be denoted by z : M — E.
We will often identify M with z(M). For a given section s: M — E, we use
s(z) =0,z € M, to mean s(z)= z(z).

Recall that for a differentiable (C'—)section s: M — E and KCM a

Tyr)E = ToyM + Tos(T:M) forall z € Kns™H(M).

Definition 0.4.1. Let s : M — E be a C!'-section. We say that = €¢ M
is a regular zero of s if s(z) = 0 and D,s(z) : T;M — E; defined by the

composition

is an isomorphism of vector spaces, where ¢ is the natural quotient map.

By definition, if s thyr M, then every zero of s in K is regular.

Suppose now that £ C M is an open subset and s: { — E a section of
the restricted bundle Elg. We say that s is an Q-admissible section if s~'(M)
is a compact subset of §). We first assume that E, as a manifold, is orientable
andlet s:Q — E be an Q-admissible section such that s thg M. Then the set
s~1(M) is finite and consists of regular zeros of s only. Since E is orientable, for

every given z € s”!(M) a chosen orientation of T, M determines an orientation



of E; sothat the identification T,,)E = T:M @ E,; preserves the orientations.
Define for each z € s~!'(M) an integer

[ 41, if D,s(r) preserves the orientations,
n(s,z) =
-1, if D,s(z) reverses the orientations.

we can verify that the above definition of n(s,z) does not depend on the choice

of the orientation of T, M.

Definition 0.4.2. A continuousmap h: §2x[0,1] — E is called an Q-admissible
homotopy if he:Q — E for every t € [0,1] is a section of E|g and h~'(M) is
a compact subset of  x [0,1], where hy(z)= h(z,t) for all (z,t) € @ x [0,1].

Let s:Q — E be an {l-admissible (continuous) section. We choose an
set of all sections of E transversal to M is dense in the set of all continuous
sections equipped with the open-compact topology (see [15] and [17] for proofs).
We can choose a differentiable section 3:U — E such that 3§ hg M and

8u
z

%"5(1) ~s(z)l: < ;ié%fu ()l

We will call such a section 3 the regular approximation of s with respect to U.

It then follows that a number

x(s,)= Y a2
e~ (M)
is well-defined. Moreover, it can be shown (see [15]) that x(s,U) does not depend
on the choice of the transversal section 3:U — E and it enjoys all the properties

of a standard topological degree.



Definition 0.4.3. Let s:Q — E be an Q-admissible section. Choose an open
subset U C © such that U O s~'(M) has compact closure and put

x(s,9) := x(s,U).

We call x(s,§) the intersection number of s with respect to Q.

By using the excision property of x(s,§) (see [15]), it can be shown that

the above intersection number x(s,f2) does not depend cn the choice of the open

When E is not orientable, we give the definition of intersection number as
follows.
Definition 0.4.4. Suppose that s : Q — E is an (-admissible section, where
E is not orientable. We define the modulo two intersection number of s with

respect to ) as an element of the group Z; = {0,1} given by
x2(s,Q) = #(37 (M) N U)(mod 2),

where #(A) denotes the cardinality of a finite set A, U is the same as in
Definition 0.4.3 and 5: ) — E is a regular approximation of s with respect to

U.

It can also be verified, by using the excision and homotopy property (see
[15]), that the above definition does not depend on the choice of the open subset

U and the regular approximation 3.

in the following theorem. Its proof follows directly from the definitions and the
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corresponding properties of the intersection number for open set 2 with compact

closure.
Theorem 0.4.1. The intersection number of bundle sections satisfies the follow-
ing properties:

(i) (Existence). If s: Q — E is an Q-admissible section and x(s,) # 0,
then there exists ¢ € @ such that s(z) = 0;

(ii) (Excision). If Q; C Q is an open subset and s:§) — E is an Q-admissible
section such that s(z) #0 for = € Q\Qy, then x(s,) = x(s,);

(iii) (Additivity). If Q,,Q, are two disjoint open subsets of  and s:Q — E
is an Q-admissible section such that s(z)# 0 for x € Q\(, USQy), then

x(s, Q) = x(s,h) + x(s, 2);

(iv) (Homoiopy Invariance). If h:Qx[0,1] — E is an -admissible homotopy,
then x(h:,f) is a constant independent of t € [0,1].

0.5. Homotopical properties of GLE ,(E)

Let E be a real or complex Banach representation of a compact Lie group
G. We denote by GLE(E) (resp. Pré(E)) the set of all equivariant linear invert-
ible operators (resp. all equivariant projections) on E and by LG .(E) the sct of
linear equivariant operators of the form Id+ A, where A is a linear equivariant

condensing operator on E and Id is the identity operator. Set

GLS,4 := GL(E) N LG 1y(E).
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We are going to study homotopical properties of GLE 4(E) in this section.

We begin with several lemmas.

Lemma 0.5.1. Let (X, A) be a pair of compact trivial G-spaces with A C X.
Given a continuous map a : (X,A) — (L&, 4(E), GLE 4(E)), there exist a closed

invariant subspace E® of E and a continuous map p: X — Pr®(E) such that
(i) E° is of finite codimension;
(i) E°Nkera(z) = {0} forall z € X;

(iii) p(z)E = a(z)E forall z € X;

(iv) p(z) = a(z)oQoa~'(z) forall z € A, where Q isan equivariant projection

onto E°;

(v) E(X)={(v,z) € Ex X; v € kerp(z)} is equipped with a siructure of a

G-vector bundle over X.

Proof. The proof of Lemma A2.2 in Krawcewicz [20] can be carried over to this

equivariant case. Therefore we omit it.

Lemma 0.5.2. Let X be a compact space and
a:(X x [0, X x {1}) = (LG pa(E), GLGa(E))

be continuous. Then there exists a closed invariant subspace E° C E of finite
codimension such that E° Nkera(z,t) = {0} for all (z,t) € X x [0,1] together
with a continuous map b: X x [0,1] = GLE ,(E) satisfying

(i) b(z,t)|ge = a(z,t)|ge for all (z,t) € X x [0,1};
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(i) blxx{1) = elxx{1}-

Proof. By Lemma 0.5.1, there exist an invariant closed subspace E° of finite
codimension and a continuous map p: X x [0,1] = Pr¢(E) such that p(r,t)E =
a(z,t)E® for all (z,t) € X x [0,1] and p(z,t) = a(x,t) 0o Qoa~'(z,t) for all
(z,t) € X x {1}. Consider the G-vector bundle

E(X % [0,1]) = {(v,z,t) € Ex X x [0,1]; v € ker p(z,1)}.

We claim that the restricted bundle E(X x {1}) over X x {1} is trivial. Indeed,
let Ly = (I-Q)E. It follows that for all (z,t) € X x {1}, a(z,t)Ly = a(x,t)(I-
Q)E = (I -- p(z,t))E = kerp(z,t). Thercfore, ¥ : E(X x {1}) — Lo x X x {1}
defined by

¥(v,z,1) = (a"}(z,1)v,2,1), v € kerp(z,1), (z,1) € X x {1}
gives a trivialization of E(X x {1}).

In what follows, we show that the G-vector bundle E(X x [0,1]) itself
is also trivial. To see this, we consider the following commutative diagram of

G-vector bundles

p* 0i*(E) —— i*(E) —— E(X x [0,1])

ﬂl ﬁl l“

Xx[0,1] —— Xx {1} — X x[0,1]

where i: X x {1} = X x[0,1] is the inclusion, p: X x [0,1] — X x {1} is the
projection and i*(E) and p* oi*(E) are the pull-backs of E(X x [0,1]) and
i*(E), respectively. Since E(X x {1}) is trivial, i*(E) is also trivial, which
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implies further that p*o:i*(E) is a trivial G-vector bundle. Now the triviality of
E(X x[0,1]) follows from Proposition 0.1.4 by using the fact that the composition
poi: X x[0,1] = X x[0,1] is homotopic to the identity map.

Moreover, we can express explicitly p* oi*(E) and i*(E). From the defi-

nition of pull-backs, we have
p*oi*(E) = {(v,z,t) € Ex X x [0,1]; v € kerp(z, 1)},
i*(E) = {(v,z,t) € Ex X x {1}; v € kerp(z,1)}.

Note that kerp(z,1) = a(z,1)Lg. We see that i*(E) = E(X x {1}). Now p*o
i*(E) = E(X x [0,1]) implies that there exists a G-map f : p* 0 i*(E) —
E(X x [0,1]) such that the following diagram commutes

p* oi*(E) —f—r E(X x [0,1})

- l 1#3

X x[0,1] —— X x[0,1].

This gives rise to a G-isomorphism

for any (z,t) € X x[0,1]. A is continuouson X x [0,1] since f is. Moreover,
from the expressions of p*o0i*(E) and E(X x [0,1]), A(z,1) = Id, =n7!(z,t)=
kerp(z,1) = a(z,1)Ly and ;'(z,t) = kerp(z,t). Therefore

A(z,t): a(z,1)Ly — kerp(z,t)
which gives a G-map S:L¢ x X x [0,1] = E(X x [0,1]) as follows

S(v,2z,t) = (A(z, t)a(z,1)v,z,t), (v,z,t) € Lo x X x [0,1].
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Clearly, S is an equivariant G-vector bundle isomorphism and

Sleexxx(1) © ¥ = Tdlg(xx 1y -

We now define a continuous map S: X x [0,1] = LS

cond

(Lo,E) by

3(z,t)v = S(v,z,t), (v,z,t) €Ly x X x[0,1].

variant isomorphism. Let b: X x [0,1] — LE(E) be defined by

b(z,t) := a(z,t) 0 Q + S(x,t) o (Id - Q), (z,t) € X x [0,1].

and S(z,t) is a finite dimensional invertible map, b(z,t) € GLE ,(E). Morcover,

b(z,t)|ge = a(z,t)|ge since Q(E) = E® and (Id — Q)|go = 0, and b(z,1) =
a(z,1) follows from S|p,xxx{1} © ¥ = Id|g(xx{1})- This completes the proof.

We now state and prove the main result of this section.

Theorem 0.5.3. Let A C X be a pair of compact trivial G-metric spaces.
If a: (X, A) = (LG 4(E), GLS

cond & a(E) is continuous, then there exist a closed

invariant subspace E° and Eo of E, and a continuous map H : (X x[0,1], Ax
[0,1]) = (Lcona(E), GLE 4(E)) such that

(i) E=E'®E,, dimE, < oo;

(i) H(z,0)|ge = Id|ge, z € X;

(iii) H(z,1)|g, : Eo — Eq;
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(iv) H(z,0)=a(z), z€X.

Proof. Let a(z) = Id — T(z) for z € X, where T(z) is a linear condensing
G-map. We define a mapping b: X x[0,1] — LS _4(E) by

b(z,t)v =v~tT(z)v, (z,t)€ X x[0,1],v€E.

“cond

Then b:(A x[0,1),4 x {1}) — (LS 4(E),GLE 4(E)) is continuous. From the
proof of Lemma 0.5.2, there exist closed invariant subspaces E®° and E; of E
satisfying (i) together with a continuous map h : A x [0,1] = GL§, 4(E) such
that

h(z,t) = b(z,t) 0 Q + S(z,t) o (Id - Q), (z,t) € Ax[0,1]

with h(z,1) = a(z), z € A, where §: A x[0,1] = LE(Lo,E) and Lo = (Id -
Q)E. By Theorem 0.1.12, we extend S to X x[0,1] such that 5(z,1) = a(z),
for £ € A and put

H(z,t) = b(z,t) 0 Q + S5(z,1))Id - Q), (2,t) € X x [0,1].

nally, since (Id—Q) is compact, H(z,t) € LS 4(E),(z,t) € X x[0,1]. Therefore
H maps (X x[0,1], Ax[0,1]) into (LS ,4(E), GLE 4(E)). This completes the

proof.

In what follows, we consider the homotopy groups of GLC ,(E). We first
use all possible finite dimensional subrepresentations of G in E to obtain a direct
set A = {a} such that each & € A corresponds to a pair of invariant subspaces

{(Eq,E*)} of E satisfying
(i) B2 a; Bya€ A+ E, CEg;
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(i) dimE, < oo,
(i) E.®E® = E;

(iv) EP C E?, for every (2 a.

(v) for every finite dimensional invariant subspace V' of E, there exists an

a€A suchthat E, = V.
We now define imbeddings, for 8> a, iag: GLS(E,) — GLY(Ey) by
ia,8(T)(v1,v2) = (Tvy, v2),

where T € GLS(E,), (v1,v2) € Eo @ EL and E! denotes the orthogonal
complement of E, in Eg. Let i, : GLS(E,) — GLE ,(E) be defined by

to(T)zy,22) = (Tx), 12),

where T € GLY(E,) and (z,73) € Eq ®E™. Therefore, taking the direct limit,
we have the following well-defined inclusion

i : imGLY(E,) — GL& ,(E)
where lim, GLY(E,) = Uaen GLS(E,) is a topological space with the finest
topology such that every inclusion GLY(E,) < lim, GLY(E,) is continuous

(see [16, 32]).

Using Lemma 0.5.2, we can also prove the following important result.

57



Theorem 0.5.4. Le¢t A C X be a pair of compact metric spaces. If a :
(X, A) = (GLS ,(E), lima GL®(E,)) is continuous, then there exist sub-

con

spaces E° and Eo of E, and a homotopy H : (X x [0,1], A x [0,1)) —
(GLG (E), lim, GLG(E,,)) such that

cond
(i) E=E"®E,, dimEy < oo;
(ii) H(z,1)|go = Id|ge, z € X;

(iii) H(z,0)=a(z), z € X;

(iv) H(z,1)|g, : Eo — Eo.
Proof. Define a map b: (X x[0,1], X x {1}) = (L& 4(E), GLS 4(E)) by
b(z,t)v = (1 —t)v + ta(z)v, (z,t,v)€ X x0,1] x E.

By Lemma 0.5.2, there exist a decomposition E = E° @ E; and a homotopy
h:X x[0,1] - GLS_,4(E) such that h(z,1) = a(z), z € X and h(z,t)|p =

b(z,t)|go for (z,t) € X x[0,1]. Thus h(z,0)|gc = Id|ge for z € X. Moreover,

h is of the form
h(z,t) = b(z,t) 0 Q + S(z,t) o (Id — Q), (z,t) € X x[0,1].

Note that a(z) € lim, GLS(E,) for z € A and S(z,t) is a finite dimensional
map. h(z,t) € lim, GLE(E,) for (z,t) € A x [0,1]. In consequence, h maps
(X x[0,1), A x [0,1]) into (GLE 4(E), limqa GLS(E,)) and there exist maps

S:X — L°(E%E,) and T:X — GLS(E° Eo) such that

h(z,0)(v°,v0) = v° + S(z)v° + T(x)vo
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where (v°,v9) € E°®Ey and z € X. Now define ¢ : (X x[0,1},4 x [0,1]) —
(GLE, 4(E),limy GLS(E,)) by

a(z, (", v0) = v° + tS(x)v® + T(x)vo
for (z,t) € X x[0,1] and (v°,v) € E® @ Eo. Then the homotopy H : (X x
[0,1), A x [0,1]) = (GLE, 4(E),lima GLE(E,)) defined by

h(z,1 - 2t)v,

0 <1t
g(z,2 — 2t)v, <t

[

H(z,ty = {

it O
IA A

The next theorem concerns an important property of the inclusion ¢ :

limg GLS(Eq) — GLS, 4(E).

i.e., the induced hgmcamarpbism i« between their homotopy groups is an isomor-

phism. In particular, for all k=0,1,2,...,
hrnvrk(GL (E, ) = Tk(GLr_und(E)),

where mi(Y) denotes the k-th homotopy group of a topological space Y.

Proof. We first prove that i, is a monomorphism. Suppose a : Sk - lim, GLY(E,)
is a given map. We want to show that a« is null-homotopic with a homotopy in
limg GLS(E,). Let H; : 8* x [0,1] = GLE 4(E) be a homotopy between a

and ¢, where c: S*¥ — {Id} € GLE ,(E) is the constant map with the value
being the identity of GLS ,(E). Observe that H, : (S* x [0,1], S* x {0,1}) —

Ennd,
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(GLE ,4(E), limg GLY(E,)). By Theorem 0.5.4 there exist a decomposition E =
E°®E, with dimEy < oo and a homotopy

H:(S* x[0,1] x [0,1], S* x {0,1} x [0,1]) — (GLG,,a(E), lim GL®(Ea))
such that H(I t, D) Hl(if t), H(z,t, 1)|gp = Ic:lh.;j and H(I t, 1)|gﬂ Eu — E

by

H(z,0,3t), if 0<t<l,
H(z,t)={ H(z,3t-1,1), if }1<t<?,
H(z,1,3-3t), if $<t<],

where z € S*. Then

H(z,0) = H(;z: 0,0) = Hy(z,0) = a(zx)

H(z,1) = H(z,1,0) = Hy(z,0) = Id.

Therefore, a is homotopic to the constant map ¢, and hence, i, is a monomor-

phism.

Next, we show that i, is an epimorphism. Let §: S* — GLE ,(E) be a
map. We want to find a map a: S* — lim, GTC(E,) such that o is homotopic
to 8 in GLS ,(E). By Theorem 0.5.4, there exist a decomposition E = E°®E,
with dimEy < oo, and a homotopy H : S* x [0,1] = GLS 4(E) such that for
all z € §%, H(.-z,o) = (;1;-), H(z 1)|Eﬂ = Idlgﬂ and I;I(;z:rl)|En : Eg — Ey.

B and a. This mr’nplétes the proof.
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For a topological space Y, we denote by [S!,Y7] the set of homotopy classes
of continuous maps 3 : S — Y. When the group G = {e}, wedenote GLS ,(E)
(resp. GLG(Ea)) by GLcond(E) (resp. GL(ECI) )

Proposition 0.5.6. Let E be a complex Banach space. There exists a bijection
A :[S',GLcona(E)] — Z.
Moreover, if dim¢cE < oo, then

A[B] = degpg(det ¢(8)),

where B : S' — GL¢(E), det : GL¢(E) —» C* = C\ {0} is the determinant
homomorphism and degg(-) denotes the Brouwer degree of functions from S !

into C*.

Proof. If dim¢c E < 0o, then the statement is a well-known fact. If dimnc E = oo,
then by Theorem 0.5.5, limg m) (GL(Eg)) = 7 (GLcond(E)). But [S',GL(E,)] =

Z. So we have
S, GLcona(E)) & lim(S", GL(Ea)] = Z.

This completes the proof.

We end this section with two remarks.

Remark 0.5.1. Note that for a real Banach space E, therc are two connected
components of the space GL(E,) for each a € A. It follows from Theorem
0.5.5 that there are also two connected components for GLcond(E). We denote
by GLY ,(E) the component containing the identity Id. The other component

cond

will be denoted by GL_,, 4(E).
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Remark 0.5.2. All the results proved in this section for GLZ 4(E) hold also
true if we replace GLE ,(E) by GL.(E), where GL.(E) denotes the set of all

cond
invertible equivariant linear operators of the form Id — A with A completely
continuous. The proofs are the same. For more information about the homotopic

properties of GLcona(E) and GL.(E), we refer to [14, 20, 22, 27, 28, 33, 35].
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1.1, Introduction

In this chapter, we describe the notion of the G-equivariant degree con-
structed recently by Geba, Krawcewicz and Wu [16]. Based on generic approx-
imations of equivariant maps, our approach, which is more appropriate for the

Let us first briefly review various equivariant degrees which exist in the

literature.

Suppose that V is a finite dimensional orthogonal representation of a com-
pact Lie group G and f:V @R" — V is an equivariant continuous mapping
such that f(z) # 0 for all = € 8Q, where G acts on R" trivially and § is
indices of f have been studied by a number of authors. From the algebraic topol-
ogy point of view, any G-degree of f which has already been defined is closely
related to the stable equivariant homotopy group of sphere wg (see tom Dicck (7]
for notation). When n = 0, Segal [30] has been concerned with w§ for finite
group G and has shown that w§ is isomorphic to the Burnside ring A(G). This
result is then extended by Rubinstein [29] to a general compact Lie group. Based

on these studies, Dancer [4, 5] refines a degree in the case of symmetry invariance,
set. The Leray-Schauder G-degree of Marzantowicz [26] is similar. Defined as
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a sequence of the ordinary Leray-Schauder degrees, it is also directly related to
w&. Other related discussions in this direction can also be found in Tornehave
[31) on mapping degrees with conjugate orthogonal actions and Liick [25] for more
general treatment. We refer to tom Dieck [7] and the references therein for more

information on w§.

On the other hand, the stable homotopy group of sphere w§ has also been
by Dold [8-10], where an isomorphism between G-FIX(pt) and the Burnside ring
A(G) is constructed. The details and other more general results are published in
Ulrich [32]. Following the work of Dold, in his interesting paper, Komiya [23] has
found a family of integers indexed on the orbit types and a precise relation to the
G-FIX(pt) (and hence to the Burnside ring A(G) ) is obtained by using Euler
characteristic and Mobius inversion. The equivariant index of Komiya appears to
be convenient in applications. We refer to the paper of Erbe, Geba and Krawcewicz

[14] for the computation of the equivariant index for G = Z, and its use in

dynamical systems.

S is much more
complicated and very little is known. However, attempts to get integer-valued
G-degrees have been made. For n = 1, Dancer [6] has defined an S!-degree for
equivariant maps, which is then extended in Ize, Massabd and Vignoli [19] by using
obstruction theory. An analytic construction for a general S'-degree is conducted
Dylawerski [12]). The values of these S'-degrees can be expressed in terms of
integers and they possesses all standard properties of the classical Brouwer degree

(see Lloyd [24)).

An ‘“integer-valued” G-degree for a general n > 0 is first attempted by
Geba, Massabd and Vignoli [18] for equivariant gradient maps. The approach is

66



remarkable and is now adopted in [16] to construct the G-degree G-Deg(f,Q)
of Geba, Krawcewicz and Wu for any n > 0. In a recent paper, by extending
the equivariant fixed point indices of Dold to the general case n > 0, Prieto
and Ulrich [28] obtain a G-degree as an element of G-FIX" which turns out to
be isomorphic to wC. On the other hand, Peschke [27] has used the splitting of
wG (see tom Dieck [7]) and computed via obstruction theory those summands in
wC with dim W(H) =n where H is a closed subgroup of G. They are either
Z or Z, depending on whether W(H) is bi-orientable or not bi-orientable.
Moreover, Peschke has found that the direct sum of these summands classifies the
W (H )-homotopy classes of W(H)-maps between spheres (sce also an earlier
paper of Dylawerski [11] for the case n =1). Although we will not pursue this
in the thesis, we strongly believe that the G-degree of G¢ba, Krawcewicz and
Wu can be expressed (in a certain way) in terms of those summands computed
by Peschke, which again coincides with the degree of Prieto and Ulrich. It then
can be inferred that the equivariant degree G-Deg(f,2) [16] is the most general
(in the sense that it classifies the homotopy classes of W(H)-maps of spheres as
in the classical Brouwer degree case) and the best svited (in the sense that it is
integer-valued as in the classical Brouwer degree casc) G-cquivariant degree one
can define. Moreover, this G-degree yields naturally the Burnside ring A(G)
when n =0 (see also above for the isomorphisms G-FIX & A(G) 2 w§ ).

For the general n > 0, there is another G-equivariant degrec theory car-
ried out by Ize, Massab6 and Vignoli [20, 21] where they define an equivariant
degree degg(f,Q) as an element of a certain equivariant homotopy group of
sphere 7§ (SV). Here f: (2 c RM,8Q) — (RY,RV \ {0}) is equivariant with
respect to possibly different linear actions of G on RM and RY, and there
is not necessarily a component of RY in R™ on which G acts trivially. This
degree is much more general and it can be concluded from Remark 2.8 in [28] that
G-Deg(f,Q) lies in the stabilization of degg(f,§). The degree degg(f,) has
a universal property which implies that if degg(f,2) =0 then G-Deg(f,§2)=0.
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Therefore, if they are both applied to nonlinear problems, degg(f,2) could be
helpful whenever G-Deg(f,S1) fails to give any existence information. Moreover,
degg(f, ) has also recovered the Brouwer degree, Fuller’s degree [15], generalized
topological degree [17], degS' (Id— f,Q) of Dancer [6], S*-Deg(f,Q) of Dylawer-
ski et al. [13]. Finally, in the case of G = S!, the computation of degs:(f,2) has
been performed without appealing to the heavy machinery from algebraic topol-
ogy (see [21]). However, as pointed out by the authors, degg(f,f) is not fully
additive in general (see the counterexample in Appendix [21]) and it is so up to
one suspension. In addition, since degg(f,) is directly related to the homotopy
group of the sphere, which is far from known, it may not be integer-valued and
the ultimate computation of degg(f,2) could be a task of considerable difficul-
ties. In contrast to degg(f,), G-Deg(f,f) is fully additive and, due to its

elementary construction, it is simpler to be computed as a sequence of integers.

In this chapter, we present a slightly modified approach to the equivariant
degree G-Deg(f,2) of Geba, Krawcewicz and Wu, which we will call simply
equivariant degree or G-degree . This is achieved by so called regular generic
approzimations. The approach is different from the original construction of the
equivariant degree which uses the induction over orbit types. We shall try to
present a “practical” approach to the definition of the G-degree and develope
a simple computational formula for the equivariant degree, which can be used as
an alternative definition, i.e. a “practical” definition. However, in order not to
complicate the presentation, we will not repeat the proof of the existence of the
equivariant degree, which can be found in [16]. We hope this presentation is easier
to access for specialists in Applied Mathematics who are interested in nonlinear

problems with symmetry.

Let us now introduce the G-Deg(f,2) of Geba, Krawcewicz and Wu and

state its standard properties.
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Recall that we use O(G) to stand for the set of all conjugacy classes of
closed subgroups of G. For a closed subgroup H of G, N(H) denotes the
normalizerof H in G and W(H) is the Weyl group N(H)/H of H in G.
For every n € N, we put

8,(G) := {(H) € O(G); dimW(H) = n}.

Definition 1.1.1. We define Z®,(G) (resp. Z,¥,(G)) as the free Z-module (resp.
Z,-module) generated by those (H) € ®,(G) with W(H) bi-orientable (resp.
not bi-orientable) and define A,(G) as the direct sum Z®,(G) ® Z;P.(G).

An element of A,(G) will be writtenas v =3_ .4 (G) Yo -« where

c { Z if « € ®,(G) with bi-orientable W(H)
7212, ifae€ &,(G) with not bi-orientable W(H).

Recall that V is a real orthogonal finite dimensional representation of the Lie
group G. It induces by diagonal action a representation space V @ R", where

G acts trivially over R".

Definition 1.1.2. For an open invariant set @ of V ¢ R", an cquivariant con-
tinuous map f : 2 — V is said to be Q-admissible if f~'(0) is a compact
subset of Q. An equivariant continuous map h: Q x [0,1] — V, where G acts
on [0,1] trivially, is called an equivariant homotopy. An cquivariant homotopy
h:Qx][0,1] = V is said to be admissible, if h~!(0) is compact in © x [0,1].
For an admissible homotopy k: 2 x [0,1] — V, we say that hy and h, arc § -
homotopic, where hy : Q2 — V for t € [0,1] is defined by h((z) = h(z,t), z € Q.

The following result is proved by K. Ggba, W. Krawcewicz and J. Wu {16].
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Theorem 1.1.1. For every Q-admissible map f:§1 — V, where Q is an open
invariant subset of V @ R", we can assign an element G-Deg(f,Q) € A,(G)
such that the following properties are satisfied:

(P1) Ezistence. If G-Deg(f,2) # 0, i.e. there is an a € An(G) such that
Ya # 0, then there exists z € f~(0) such that (G.) < o;

(P2) Homotopy Invariance. If h : Q x [0,1] — V is an admissible homotopy,
then G-Deg(hy,f) does not depend on t € [0,1];

(P3) Ezcisi n. If Qo C Q is an open and invariant subset and f~'(0) € Qo,
then G-Deg(f,$2) = G-Deg(f,);

(P4) Additivity. If 0, and §, are two open invariant subsets of ! such that
2, N0 =2 and f“‘(l)) C 2, US;, then

G-Deg(f, ) = G-Deg(f,€) + G-Deg(f, 2);

(P5) Product Formula. If W is another orthogonal representation of G, U is an
open invariant subset of W such that 0 €U, and g: QxU -V xW is
defined by g(z,y) = (f(z),y) for (z,y) € U xU, then G-Deg(g,QxU) =
G-Deg(f,Q).

The element G-Deg(f,2) € A,(G) will be called the G-(equivariant) degree
of the map f with respect to the set Q. By Theorem 1.1.1, the properties of
this equivariant degree are compietely parallel to those of the classical Brouwer
degree. However, its value is not taken as an integer. Compare Bartsch [1] and

Bartsch and Mawhin [2] for the Brouwer degree for equivariant maps.
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The rest of this chapter is now organized as follows. In Section 1.2, we present
generic approximations for an §-admissible map f:Q — V. By using a linear
slice at each regular orbit of zeros, the equivariant degree of Gg¢ba, Krawcewicz
and Wu is discussed in Section 1.3 for a regular generic G-map. This has led to
an alternative definition of G-Deg(f,€) in Section 1.4. Section 1.5 discusses the
mutiplicativity property of G-Deg(f,) in the case n = 0 and its relation to
the Burnside ring is indicated. Finally in Section 1.6, we provide a vo.mputational
formula for G-Deg(f,2) when the zero orbit is regular and the group G is
abelian. Several specific examples illustrating how to compute the G-degree are

also included.

1.2. Generic approximations

Let G be a compact Lie group. To simplify notations, we put W := V(pR",

a trivial G-space.

Given a € O(G), it is known from Theorem 0.1.10 that W, := {r €
W; (G;) = a} is a G-invariant submanifold of W. We consider the normal
bundle v(W,) to W, in W, denoted by v, : N — W,. (Here we have
abused the terminology “normal bundle” for pu(W,) because it is not a normal
bundle in the strict sense but is composed of possibly more than one normal bundle
with different dimensions, as W, may have components of different dimensions
(see Bredon [3] and Kawakubo [22])). The normal bundle v(W,) is a collection
of G-vector bundles over W,. Let D be a compact invariant subset of W,.

We put
N(D,e) := {(v,w) € N*;ve D, we N, |w| <€}

where ||:|| is an invariant norm induced by the standard invariant Euclidean met-

ricin W. N(D,e¢) is the total space of the e-disk sub-bundles of the restricted
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vector bundles ¥(D) := v(W,)|p. Consider the G-map p:N(D,e) = W given
by u(v,w) = v+ w. Then, for a sufficiently small ¢ > 0, the G-map u isa
diffeomorphism onto its image wu(N(D,¢)), which will be called an a-normal
neighbourhood of D . Consequently, each element z of u(N(D,¢)) can be writ-
ten uniquely as z = v + w, where v € D and w € N with |lw|, <e.
Definition 1.2.1. Let € C V @ R" be an open invariant set and {2 be an
invariant compact subset of Q. For an equivariant map f:Q — V and o €
O(G), we say that f is a-normal in Qo if

(i) a is a minimal orbit type in Qo;

(ii) Q% - n a-normal neighbourhood, ie. U = w(N(D,¢)) for some D

and £ > 0;

(iii) f(z)= flv +w) = f(v)+w, forall z =v+w € Ny, where vE D, w €
N2.

Definition 1.2.2. Let Q and € be as above and % : Q2 x [0,1] = V be a
G-map, where G actson [0,1] trivially. The map h is s .d to bean a-normal
homotopy in g if the conditions (i) and (ii) in Definition 1.2.1 are satisfied
together with (iii): h(z,t) = h(v + w,t) = h(v,t) + w for all (z,t) € Qo x [0,1],
where r=v+w, ve D, we N;.

seEy

Remark 1.2.1. For simplicity, we have used the condition (iii) in Definition 1.2.1
and 1.2.2 for the a-normality of an equivariant map f. The conclusions in this
section hold also true if we replace the condition (iii) by f(v+w) = f(v) + N(w)

forall v € D and w € N&, where N is an equivariant (possibly nonlinear)



latter condition will be more convenient in computing the degree.

Definition 1.2.3. Let € C V ® R® be an open invariant set and f: Q — V
be an §-admissible G-map. We say that f is ({2)-generic if for every a €
J(f~1(0)) thereis an a-normal neighbourhood Q(a)C @ such that

() Ra)NN(BP) =2 for a# B
(1) Uses(s-1(oy @) is a compact neighbourfood of f~'(0);

(iii) For every a € J(f~'(0)) the G-map flg(a) is a-normal in Q(a).

Q-admissible G-maps.

Theorem 1.2.1. (GENERIC APPROXIMATION THEOREM) Let @ C V @ R"™ be
an open invariant set and f:Q — V be an Q-admissible equivariant map. Then

for every n >0 there exists a generic G-map fo: Q1 =V such that
(i) fo is SQ-admissible;
(ii) sup |lfo(@) = f(2)l <.

Proof. Let D; be a compact invariant neighbourhood of f~'(0) in Q, and

§ >0 be such that K := B(D;,6) C 2, where
B(D;,6) = {z € V®R": dist(D,,z) < 6}.

Set m = |J(K)|. We extend the partial order in J(K) to a total order a; <

ay <+ < O < agyy < ¢+ < ap. Assume that 0 < e < 6. We consider the
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minimal orbit type a := a; € J(K) and let D := D;NW, C Int K. Without
loss of generality, we assume that D # @. It follows from Theorem 0.1.10 that

D is an invariant compact set. This gives an a-normal neighbourhood N :
w(N(D,e)) CInt K of D, where p:N(D,e) > Q is a diffeomorphism onto its
image Ny for a suitable small € > 0. By Theorem 0.1.13 there exists an invariant
Urysohn function v : @ — [0,1] such that y(z) =1 for z € p(N(D,$)) and
4(z) =0 for z € R\ No. Definenowa G-map f,:Q—V as follows

fi(2) im { f(=2), z € Q\ No,
(2)[f(v) + w} +[1 — A(2)]f(z), z=v+wENo.

Since we can take £ > 0 as small as we wish, we can assume that

sup [|If(v) — flo+w)ll < & —e.

v+ we

Consequently,
sup|| fi(z) — f(z)|| = sup | fi(z) = f(z)ll
z€N zE€Np

= sup  [[v(@)[f(v) = f(2)] +v(z)w]

z=v4+wEN,
< sup  |If(v) - f(=)|+e< <.
No m

r=v+we€

This implies that f; : @ — V is Q-admissible and is a-normal in (a)
p(N(D,%)) and Qa) D f'(0) N Wa.
Assume now that for £ > 1 we have already constructed a G-map [ :

Q — V satisfying the following conditions:

(a) For every a < ay, there is a compact invariant set Qq C Int K such that

the G-map fx is a-normal in Q(a);
(b) For every a, 8 < ar, a)NQYB) =02 for a#p;

(c) Every a € J(f~1(0)\ Uf=l Q(a;)) is greater than ag;
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(d) sup,eqllfi(z) = f(2)li < kE.

From the above, A := fi'(0)\ Ufg, Q(a;) is an invariant compact subset of
Int K. There is a compact G-neighbourhood Djiy1 of 4 in Qpyy :=IntK'\
Uf=1 Q(a;) such that any a € J(Di41) is greater than aj. Assume that 6x41 >
0 is such that B(Dg+41,0k+1) C 41, and consider D := W,, ., N Diyy. The

set D is compact by Theorem 0.1.10 since aj4; is a minimal orbit type in
Diiq. Then again, for a sufficiently small 0 < € < 6k41, the G-map pu :
N(D,e) — § is a diffeomorphism onto its image Np := p(N(D,¢)) C Dy C K,
i.e. Qag41) := Np gives an ajg4i-normal necighbourhood. We choose again
an invariant Urysohn function 4 : @ — [0,1] such that y(z) =1 for r €
u(N(D,%)) and 4(z) =0 for z € 2\ No. Define the following G-map fi4: :
N1—-V by

Ji(2), x € 2\ Ny,

fen(@) = { (@) [fi(v) + w]+ [1 = ¥()]fe(z), = =v+we N,

Since we can take £ > 0 as small as we wish, we can also assume that

sup Ifu(v) = filv + w)l| < = —e,
v+weENg m
sup fis1(2) = fu(@)ll < L.
zeq} m
Consequently,
sup || fr+1(z) — f(2)|| < sup || fes1(z) — fi(z)|| + sup || f(z) = f(2)l|
€N z€N zeN
<Lkl =(k+1)-.
m m m
By definition, fr4; : € — V is Q-admissible and is a-normal in Qa) :=

p(N(D, §)), a < arsr. Therefore, by applying the induction principle we obtain

a G-map fo:= fm and the conclusion follows.
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Definition 1.2.4. Let 2 C V®R" be an open invariant set and f:Q — V be
an -admissible G-map. We say that f is a regular (2)-generic map if

(i) f is of class C;
(ii) f isan Q-generic G-map;

(iii) for every a € J(f~1(0)), a = (H), zero is a regular value of

fr = flagayn : Ue)a = VH.

Remark 1.2.2. Let @ C V @ R® be an open invariant set and f:Q — V be
an -admissible G-map. Then for every sufficiently small ¢ > 0 there exists
an Q-admissible G-map fo:Q2 — V of class C! such that

sup || f(z) — fo(z)|| <e.
z€N

Indeed, we first find an Q-admissible C~'-map F:$ — V suchthat sup,eq ||f(z)-
F(z)|| < ¢. Let K be an invariant compact set such that K D F~!(0). By using
smooth Urysohn function, we can find a C'-map fy : @ — V (not necessary

equivariant) such that
sup [1£(2) - fol@)ll < ¢
z€K
and F(z) = fo(z) outside K. Put
fola) = [ afo(a™')dg, = €0
Then fy is of class C' and

1£(2) - fol@)l < /G 1£(a="2) — folg™")lldg < e,
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as desired.

Remark 1.2.3. Let f: — V be a map as in Remark 1.2.2. Then for every

n > 0 there exists an Q-generic G-map fo:92 — V of class C! such that
sup || f(z) — fo(z)|| < n.
zeN

Indeed, it is sufficient to note that in the proof of Theorem 1.2.1, one can choose
Urysohn functions to be smooth ones, and therefore if f is of class C', the

resulting Q-generic approximation f, is also of class C!.

In what follows, we are interested in finding regular generic approximations
for a given -admissible map f. From Theorem 1.2.1 and Remark 1.2.2 and
1.2.3, the problem now is to find a C' Q-generic approximation which also

satisfies (iii) of Definition 1.2.4.

Theorem 1.2.2. (REGULAR GENERIC APPROXIMATION THEOREM) Let §2 C
V @ R™ be an open invariant set and f :Q — V be an Q-admissible G-map.
Then for every n > 0 there exists a regular generic G-map fo : @ = V such

that
(i) t-f+(1—1t)fo is Q-admissible for every t € [0,1];

(ii) sup || fo(z) — f(@)|| <n.
z€N

Proof. By Theorem 1.2.1, there exists an Q-generic G-map f:Q v
such that f is Q-admissible and sup,eq ||f(z) = f(z)|| < %. By Remark

gument as in Ulrich [32] (Proof of Theorem 3.2, Step 1) we can approximate
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fu, o =(H) € J(f~1(0)), by a W(H)-map fu which comes transversally to
zero. We then extend the W(H)-map fy toa G-map f( n) defined on the set
Q(a)(). Next, by using the condition (iii) of Definition 1.2.1, we extend f( H)
(as an identity in normal directions) to a G-map fo on the set (a). Finally,
with the help of smooth Urysohn function, we can extend the G-map fo toa
new G-map, still denoted by f, on the set {2, and the obtained G-map, which
is an approximation of the original f, satisfies the condition (iii) of Definition
1.2.4 on the set Q(a). Since the same ‘adjustment’ of f can be made on every
Qa’), o' € J(f~1(0)), the above construction shows that f can be approxi-
mated by a regular Q-generic G-map with an arbitrary degree of accuracy. This

completes the proof.

We finally remark that according to the definition, if f is a regular generic
G-map, then fy is transversal to 0 € VH. But it does not imply that f is
transversal to 0 € V. In fact, it may happen that the mapping f(x) := flaca)
which is the unique G-equivariant extension of fy, already has zero as a critical
value. Consequently, the above Regular Generic Approximation Theorem can not
be considered as a version of the Equivariant Transversality Theorem (see Ulrich

[32]).

1.3. G-degree for regular generic G-maps

Let (H) € ®,(G) besuch that W(H) is bi-orientable. We fix an invariant
orientation of W(H). If H; ~ H, i.e. H, =gHg™' for some g € G, then the
natural isomorphism t, : W(H;) - W(H), defined by t,(hH:)=g¢"'hgH, h €
N(H,), uniquely determines an invariant orientation of W(H,). Therefore, we
can choose an invariant orientation of W(H), which is preserved by isomorphisms

t, for every representative of the class (H) € ®,(G). Such an orientation will be
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called an (H)-orientation. In what follows, we will assume that for every class

(H) € ®,(G) with W(H) bi-orientable, there is fixed an (H)-orientation.

Let V be a finite dimensional orthogonal representation of G and V@®R"
be the induced representation of G with trivial G-action on R". Given any
closed subgroup H of G, its normalizer N(H) actson Vy xR" = (V@®R")y,
and consequently induces a free action of W(H) on Vy x R". Similarly, we
obtain a free diagonal action of W(H) on the product space Viy x R" x V# (sce
Proposition 0.1.3). The projection 7: Vi x R x VH — V; x R™ onto the space
Vu X R™ is clearly equivariant with respect to the above actions and therefore, by
Theorem 0.1.8, it induces a smooth map p: E — M between smooth manifolds
E:=(VyxR*xVH)/W(H) and M :=(Vy xR")/W(H). Morcover, Theorem
0.1.9 implies that p: E — M is a smooth vector bundle with a typical fibre V H,
Note that an orientation of VH determines the product orientation of VH x V¥
which does not depend on the orientation of V. Thus the product V¥ xV# has
a natural preferred orientation. This preferred orientation of V! x V! together
with the standard orientation of R® determines an orientation of Vj xR" x V1,
If W(H) is bi-orientable, then it follows from Theorem 0.1.8 that the manifold
E = (Vg xR"x VH)/W(H) is orientable and the orientation of E is determined

by the fixed orientation of W(H).

Let 2 C VA®R"™ be an open invariant set and f:Q — V an Q-admissible
regular generic G-map such that f~'(0) C Uaeg(s-1(0) @), where the sets
Q(a) are the same as in Definition 1.2.3. By the excision property (P3) and
additivity property (P4) of the G-degree, we have

G-Deg(f, )= Y G-Deg(f,a)).
a€J(f-1(0))

Consequently, it suffices to describe the value of G-Deg(f,(}(a)). We can assume,
by Gleason-Tietze Theorem, that f is a G-map defined on the whole space
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V @ R". For every a = (H), since f is G-equivariant, the restriction of f
to the subspace Vy x R" induces a W(H)-equivariant map fy : Vg x R" —
VH, fu(z) = f(z), £ € Vg x R". Clearly, fy is Q(a)y-admissible. Define
Fy:VuxR* = Vg xR* x VH by

Fy(z) = (=, fu(z)), =z €VyxR"

Then Fy is a W(H)-equivariant section of the bundle = : Vg x R" x vH

since the vector bundle is of dimension dim V¥ and dim W(H) = n, we have
dim M = djm(VH xR") =n = dim vH.

That is, the dimension of M is equal to the dimension of the fibre E. Therefore,
from Section 0.4, the intersection number of sy with respect to Q(a)y/WH

is well defined.

Now we can write down the G-equivariant degree G-Deg(f,Q(a)), namely

G-Deg(f,a) = Y. np-f € An(G)

AE® A (G)
where in the case a = (H) € J(f~'(0)) N &,(G) and W(H) is bi-orientable,
we have
, {X(Sf,H) if f=a
ng = N .
0 otherwise,
and in the case when o = (H) € J(f~'(0)) N €,(G) and W(H) is not bi-

orientable,

= { x2(spu) i B=a
ng =

0 otherwise.
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intersection numbers x(ss x) and x2(sys )

We consider first the case where a = (H) € J{f~'(0))N®,(G) is such that
W(H) is bi-orientable. By the assumption, the mapping fu : Qa)y — V¥ has
zero as a regular value, therefore f;'(0) C Q(a)y is composed of a finite number
of W(H) orbits, say W(H)zy, ...,W(H)zi. Fix an orientation (arbitrarily)
of the space VH. The invariant orientation of the group W(H) determines an
orientation of the orbit W(H)z; for every i = 1,...,k. We denote by S; the
linear slice to the orbit W(H)z; at the point z;, i =1,...,k, iec.

Si={veVE@QR":v—z; L T,,W(H)z,}.

We choose an orientation of the slice S; such that the orientation of T,,W(H)z;
followed by the orientation of S; gives the (fixed) orientation of V¥ @ R" =
T;.-W(H).’c.' ® S;.

Assume that A :S; — V is a linear isomorphism. We define signA to
be 1 if A preserves the above chosen orientations of §; and VH and -1

otherwise. The explicit formula for x(sys,n) now reads as follows

k

X(ss.) = Y signDf(z)ls,

i=1

where Df(z;)|s, = Dfu(zi)ls; : Si = VH is an isomorphism.

In the case where W(H) is not bi-orientable, we define sign4 =1 for

every linear isomorphism A:S; — VH# an- put

k

x2(sp,H) = ZSigﬂDf(:l:i)lsi (mod 2).

=1
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We summarize the above results in the following proposition.

Proposition 1.3.1. Let Q@ C V ®R" be an open invariant set and f:Q — V
an Q-admissible regular generic G-map. Then G-Deg(f,Q) =3} g4ce,(c) 8P

where

(0 if B¢ J(f7(0))

> sign Df(z)|s, if 8= (H), W(H) bi-orientable

ng = { W(H)zCf~'(0)u

> sign Df(z)|s, (mod 2) if B = (H), W(H) not bi-orientable
\ W(H)zCf~'(0)n

and S, denotes the linear slice to the orbit W(H)zr in the space VE@R" at

z € f~Y(0)y and z is an arbitrarily fixed zero of f.

1.4. An alternative definition of G-degree

In this section we present a new and completely analytical definition of the
G-equivariant degree, based on the Regular Generic Approximation Theorem and
the analytical formula for regular generic G-map stated in Proposition 1.3.1. This
new definition, resulting from the standard properties of the G-degree, can be

used for computational purposes.

Let € C VOR" be an open invariant set and f: Q2 — V an Q-admissible
G-map. By the Regular Generic Approximation Theorem (Theorem 1.2.2), there
exist a regular generic G-map g¢:§Q — V and an admissible G-homotopy & :

2x[0,1] = V between f and g. Thenthe G-equivariant degree G-Deg(f,2)=



Yoo - @ can be expressed by the following formula

(0 if a¢J(g'(0)

Z sign Dg(z)|s, if a=(H), W(H) bi-orientable

Ng = 4 W(H)zCg~ ' (0)n

> sign Dg(z)|s, (mod 2) if a = (H), W(H) not bi-orientable
\ W(H)zCg~'(0)n

()
where S; denotes the linear slice to the orbit W(H)z in the space V Mo R
Note that by homotopy invariance of intersection number, n, does not depend
on the choice of the regular generic G-map g¢. This observation leads to the
following alternative definition of the equivariant degree of Ggba, Krawcewicz and

Wu [16].

Definition 1.4.1. Let f:Q — V be as above. We define the equivariant degree
of f as follows

G-Deg(f,9) := Z Ng @
*€®,(G)

where n, is given by (*) and g is a regular Q-generic appriximation of f

such that f and g are §2-homotopic.

The above new definition of the equivariant degree provides an analytical
formula for the computation of the degree, and it can be viewed as a variant of
the analytical formula of the Brouwer degree. The only difference is that in the
equivariant case we ‘count’ the orbits of zeros instead of isolated zeros, and the
computation of the sign of determinants is done with respect to the linear slice in
the appropriate fixed-point subspace V¥ @ R". From this point of view, we may
interpret the G-degree G-Deg(f,§)) as a sequence of integers {nq}, indexed
by appropriate orbit types o and showing for a regular generic G-map f the

existence of at least n, orbits of solutions to the equation f(z) = 0 with each
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of these solutions being of exactly the orbit type a. Similarly to the case of
the Brouwer degree, where we consider approximations by regular mappings, the
existence property, as it is expressed for a regular generic G-map, loses its power
if we consider an arbitrary G-map instead of a regular generic G-map. As we are
making a deformation of regular generic G-maps, some of the orbits of zeros may
collapse cnto orbits of smaller orbit types, and consequently we can only express
the existence property as it is stated in Theorem 1.1.1. This can be seen in the

following example.

Example 1.4.1. Let G = Z; ® Z;, where Z, = {1,-1} c C, and V = R3.
We define the action of G on V as follows

(Y1,72) - (£, %, 2) := (M Ty Y20, MY22)s (M1,72) € Z2 B Lo, (z,y,2) € RE.

Weput Q={veV:|v|| <1} andlet f:Q -V begivenby f(v)=-v,v€
Q. It is clear that f~!(0) = {0}. We compute G-Deg(f,Q) € Ao(G) below.

We begin with the description of the generators of Ag(G), i.e. the de-
scription of ®¢(G). Let ap = (G), a1 = (Z, & {1}) = ({(1,1),(-1,1)}),
a2 = ({1}@2;) = ({1,1),(1,-1)}), a3 =({(1,1),(-1,-1)} and a4 =({1,1}).
Consequently, ®o(G) = {ag,a;,a2,a3,a4}. As an “almost” regular generic ap-

proximation we take the map ¢:Q — V, given by
g(m, Y, Z) = (-—.’L‘(.’L‘ - %)(z+ %)’ —y(y— %)(y + %)a _z(z - %)(Z-{- %)a (.‘B, Y, z) € Q.

The G-map g is not exactly a regular generic G-map in the sense of Definition
1.2.1. However, the only violation of genericity property is that g, instead of
acting in normal directions as identity, acts as cId, where ¢ > 0. Evidently, ¢
can be adjusted to a regular generic G-map, but by the homotopy invariance it

is not really necessary (see also Remark 1.2.1).
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We have the following orbits of zeros in the set ¢=!(0):

Orbit of Zeros Gv Orbit Type sign Dg(v)|s,
B (G.)
{(0,0,0)} ) g +1
{(01_%10)’(63 %10)} 143 -1
{('—%1030)3(%301 D)} 7 -1
{(0’0»_%)7 (Ds D,%)} ] xg -1
{(_%7_%’0)’(%73%10)5(55%7%10)7(%3%50)) ry +1
{(—%,07—%’)3(%101_%)!(_%EQ’%)1(%101‘%)} vy +1
{(0’_%’—-2_)?(91%iif)i(oiﬁ%i 'i)i(oa %ﬁa §)} oy +1
(3D Chh Db b bl | o .
{(—l’_%’“%,);,(,%if,%’ %)1(_%»%1%)1(i1%1_%)} my -1
Consequently, we obtain G-Deg(f, ) = 3i_, a; - i, where

o o

(27)] 1

ay =

(23] -1

{441 -1

(2 71 1

or, more clearly

G*Dég(f, Q) =g — Q) — O3 — 5 + Qy.
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The following exaryple illustrates the computation of G-degree for a regular

generic G-map with one orbit of zeros.

Example 1.4.2. Let G = S! act on V =C by the formula
y-z=79"2, y€S'cC,zeC

where n € {1,2,3,...} is a fixed positive integer. Let Q C W :=V ®R be the

set
Q:={(z,t)eCxR: 1 <|z|]<2, -1<t<1}.

We fix the standard orientation of G = S! and assume that for cach n the
orientation of S'/Z, is such that the natural homomorphisms S' — S'/Z,

preserves the orientations.

We define f: Q2 =V by

f(z,t)= ,—j—l(l — |zl +it), (z,8) € Q.

1} = S1x {0}, i.e. f~!(0) consists of only one orbit. Moreover, since §2 contains
points of only one orbit type (Z,), f isa generic G-map. We choose the point
v = (1,0) € f~1(0) and consider the linear slice S to the orbit Gv = f~1(0) at
(1,0), i.e. S={(z,0,t)eR3:z2,t € R} CV ®R. Fix an orientation of S (i.e.
an ordered basis of S ) in such a way that the orientation vector of f~'(0) at
(1,0,0), i.e. the vector < 0,1,0 >€ R* = V@R, followed by the chosen basis of

S results in an ordered basis of R*® giving the same orientation as the standard

choose the basis of § consisting of vectors {< 0,0,1 >,< 1,0,0 >}. Next, we
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consider the restriction fy of f to a neighbourhood of (1,0,0) in the slice S.

The mapping fo is expressed by
z. i
fo(t,z) = ;(1 —z+it)=(1-1z,1).

Note that f is a regular generic G-map and detp fo(0,1) =1 > 0, the G-degree
of f is

G-Deg (f,$2) = (Zn).

1.5. The Burnside ring and mutiplicativity property

Let V be a finite dimensional orthogonal representation of G and f :
QCV =V bean Q-admissible equivariant map. The G-degree G-Deg(f,)
defined in the previous sections is related to the Burnside ring of G. We will

briefly explain their relation in this section.

Let us first recall a definition of the Burnside ring. Two compact G-manifolds
X and Y are said to be equivalent, which we denote by X ~ Y, if for all sub-
groups H C G the spaces X¥ and YH have the same Euler characteristic.
We denote by A(G) the set of all equivalence classes of this relation, and by
[X] € A(G) we denote the class of X. Disjoint union and Cartesian product of
G-manifolds are compatible with this equivalence relation and induce the add;i-
tion and multiplication operations on A(G). Together with these two operations
A(G) is a commutative ring with identity, which is called the Burnside ringof G.
We refer to tom Dieck [7] for more details.

Let ®(G) denote the set of conjugacy classes (H) such that N(H)/H is
finite. It is well known (see tom Dieck [7]) that A(G) is the free abelian group
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on [G/H], (H) € ®(G), and for each compact G-manifold X, the following

relation holds

X1= Y x(Xn)G/H] (1.5.1)
(HYe®(G)

where x. denotes the Euler characteristic using homology with compact support.

The multiplication table of the generators [G/H] is given by the relation

[G/H]-[G/K]= Y ni[G/L] (1.5.2)
(L)EH(O)

where np = x.((G/H x G/K)(1)/G). Note that the space (G/H x G/K),/CG
is finite. Indeed, we have

(G/H x G/K)1) = (G/H x G/K)L/N(L)
c (G/H x G/K)L/N(L)
=(G/H" x G/K*)/(N(L)/L).

Since the spaces G/HL and G/K% consist of finitely many N(L)/L-orbits (see
Bredon [3] and tom Dieck (7]) and by assumption that N(L)/L is finite, both

In the case where G is an abelian group the formula (1.5.2) simplifics to

[G/H]:[G/K] = nunx([G/(H N K)] (1.5.3)

where npnk is equal to the number of all (H N K)-orbits in G/H x G/K.
From this we may say that the number ny in the formula (1.5.2) represents the
number of elements in (G/H x G/K)(1,)/G, i.e. it is the number of G-orbits in
G/H x G/K of the orbit type (L) .
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It is clear that, as an abelian group, A(G) is naturally isomorphic to
Ao(G) = Z&¢(G), by a transformation which identifies a generator (H) of Ao(G)
with [G/H) € A(G). Consequently, in the case where n = 0, the G-degree coin-
cides with the equivariant degree associated with the equivariant fixed point index
studied by Dold [9], Ulrich [32] and others. In this case G-degree takes values in
A(G), which has an additional multiplicative structure. The following property
of G-degree corresponds to the well known multiplicativity property of the fixed
point index (see Ulrich [32], I11.1.12).

Theorem 1.5.1. In the case where n = 0 the G-equivariant degree satisfies
the following property

(P6) Multiplicativity Property. Let V, W he two orthogonal representations of

G, and Q Cc V, U C W be two invariant open bounded subsets. If
f:V >V (resp. g:W — W )isan Q-admissible (resp. U-admissible )
G-map, then the G-map F :V xW — V x W, defined by F(z,y) =
(f(z),9(¥)), (z,¥y) €V x W, is ) x U-admissible and

G-Deg(F,Q x U) = G-Deg(f,) - G-Deg(g,U)

where the product is taken in A(G).

Proof. The proof can be found in Ulrich [32] and Ggba et al. [16]. We therefore

omit it.

Remark 1.5.1. When G is abelian, corresponding to each (H) € ®,(G), there

exists a natural homomorphism of abelian groups

S: A(H) = An(G)
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which can be defined on the generators [H/K] as follows
S([H/R]) = (K), _ (1.5.4)
where [H/K] € ®(H). Since H/K is a finite group, G/K has dimension n

and thus (K) € 4,(G). This remark will be used in the next section.

Remark 1.5.2. When G is abelian, we can also define an A¢(G)-module struc-
ture on Ap(G) as follows. For every (H) € ®,(G) and (K) € ®¢(G), the
G-space G/H x G/K has only a finite number of G-orbits. Infact, dimG/HnN
K =n and G/HNK acts freely on the manifold G/H x G/K of dimension n.
The G-orbit space (G/HxG/K)/G =(G/HxG/K)/G/(hNK) has dimension
0, i.e. it is finite. We therefore define the action A¢(G) X A.(G) — A.(G) by

(K)-(H)=nunx(HNK)

where nynx is the number of the G-orbits in G/H x G/K.

We finally present the following example illustrating the mutiplicativity prop-
erty of the G-degree.

Example 1.5.1. Let us consider again Example 1.4.1,i.e. G=Z,®Z; and G
actson V =R? by the formula

(71772) ’ (.‘D, Y, Z) = (713,723/771722), (7!772) € Z2 @zh (z,ysz) € Rs’

Q={veV:|v<1} f:Q@ -V, f(v)=-v, veE N The orbit types
in ®¢(G) are denoted by aq = (G), a1 = (Z; & {1}) = ({(1,1),(-1,1)}),
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a2 = ({1} @12) = ({l’ l)a(la —1)})v a3z = ({(lv l)v(—lv El)} and ay = ({‘ e
According to (1.5.3), we have the following multiplication table in Ay(G)

o g a Q3 4
Qo (¢ 0)] [+ 3] a2 a3 (= 7]
g ay 20 ay ay 2a4
a2 (7] Q4 202 (s 7} 2(1;
[+ £ [+ £1 Qy (s 7} 20’3 2&,’4 7
oy ay 204 204 2a, day

Since V=V @V @V and f(V*)CV* for i=1,2,3, by Multiplica-
tivity Property

G-Deg(f,9) = G-Deg(f1,) - G-Deg(f2,Q2) - G-Deg(fs,s)

where Q; = QNV*, fi:= fla,, ¢ =1,2,3. Note that for every i = 1,2,3,

‘li)(t + %) we obtain that G-Deg(fi,Q;) = G-Deg(gi,i) = ao — o, 1 =1,2,3.

Consequently,

G-Deg (f,92) = (a0 — a1)(ap — a2)(ap — @3)
= (ap — a1 — az + a4)(ao — ag)

=g —Q; —ap — a3 + ay4.

This computation agrees with that in Example 1.4.1.
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1.6. A regular value formula for abelian groups

V is a finite dimensional orthogonal representation of G, 2 C VV ® R" is an
open bounded G-invariant subset and f : V@O R" — V is a G-equivariant

Q-admissible C!-mapping such that
(a) 0 is a regular value of flg;
(b) f~1(0)NQ = Gz, for some zo € N;
(¢) dim G/G,, =n.

Let Hy = G,,. D
{r e VOR"* £ -z, L Tty(Gzo)}. By Theorem 0.1.5, S is an

enote by S the linear orthogonal slice of the orbit Gry at

Ia, ie. §

orthogonal representation of Hj.

Suppose that for every (H) € ®,(G) there has been chosen an invariant
orientation of G/H. Since for two subgroups H, and H, of G such that
(H,),(H;) € ®.(G) and H; C H,, the natural homomorphism ¢ : G/H; —

G/H; is a local diffeomorphism, we can assume without loss of generality that

The purpose of this section is to provide an explicit formula for G-Deg( f,2).
Let L := Df(z¢)|s:S — V. By assumption (a), L is an Hp-equivariant

isomorphism. The spaces § and V can be decomposed into the following

Hy-invariant orthogonal direct sums

S=SHo T and V=vigT.
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As L is an Hy-equivariant isomorphism, L(SH°) = VHe and L(T) = T'.
Moreover, since {0} x R* ¢ §"°, it implies that T C V x {0} and therefore T
and T' are the same subspace of V, under the identification of V' with V x {0},

which we will denote simply by T.

Let T, denote the direct sum of all irreducible subrepresentations of T
equivalent to a fixed irreducible representation of Hy such that the isotropy group
of its nonzero elements is K,, where a = (K,lpha). The subspace T, is called
the (nontrivial) a-isotypical component of T. It follows that L(T,) = T,. In
view of Theorem 0.2.7, we write

T= P T,

a€ET(T)\(Ho)
which is called the nontrivial isotypical decomposition of T.

We fix an orientation of VHe, The orientation of G/Hy followed by the
orientation of VHo determines a unique orientation of $H°, Define an integer

no by
{ 1 if L|gn, preserves the orientations,

-1 otherwise.

Definition 1.6.2. Let T, be an isotypical component of T as above. We define
the local a-indez of f on the orbit Gzo as the following eiement of A(H))

a-ind (f,Gz,) £ Hy-Deg(L|T,,BNT,)
where B denotes the unit ball in T.

Now we can formulate the main result of this section, the regular value

formula for an isolated orbit of zeros.
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Theorem 1.6.1. (REGULAR VALUE FORMULA) Under the above assumptions,
we have
G-Deg(f, @) =mS( [[ e-ind(f,Gxo)).
a€J(T)\(Ho)

where the homomorphism S is defined by (1.5.4).

Proof. Let 6 > 0 be given and D = {z € §; ||z]| < 6}. From Theorem 0.1.5
and the excision property, by choosing a sufﬁci.ently small § > 0, we may assume
that @ = Gxpy,D, i.e. Q isa tube around the orbit Gzy. Define f :D -V by
f(z) := f(z+z0). Then f isan Hy-equivariant D-admissible map. Thercfore,
the equivariant degree Ho-Deg(f, D) € A(Hy) is well defined. It follows directly
from the definition of the G-equivariant degree [16] and the assumption on the ori-

entations of G/K, (K) € ®,(G)NT(Q) , that G-Deg(f, Q) = I(Ho-Deg(f, D)).

Since 0 is a regular value of f such that f~'(0) = {0}, by taking §
sufficiently small, we may assume that f is D-homotopic to L. Therefore,
S(Ho-Deg (L, D)) = G-Deg(f,Q). Since Lir = @ Lo : @Ts — P T., where
Lo = L|t, : Ta — T, it follows from the Multiplicativity Property (PG) that

Ho-Deg(L,D)=ny [  Ho-Deg(La,BNTa)
a€J(T)\(Ho)

=mn J[ o-ind(f,Gzo).
a€IT(T)\(Ho)

This completes the proof.

We put

Fa,H, :={a € J(T); Ho/Kqo = Z,}
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and define the Hy-equivariant automorphism Lo : T — To by Ls := Lit,.
We also define for a = (K,) the following element of the Burnside ring A(Hp)

. { 0. if detLo >0
15T (Ho/ Hol - [Ho/Kal, i det Lo < 0.

We have the following result.

Proposition 1.6.2. (Ggba et al. [16]) Under the above assumptions we have

a-ind (f,Gro) = { (L) if a € FaH,

[Ho/Ho]  otherwise.

Proof. For the sake of completness we include the proof, which is taken from [16].

Let o ¢ F2,4,. Then T, can be equipped with a complex structure such
that an automorphism of T, is Hy-equivariant if and only if it is a complex
automorphism. Therefore, by connectness of the groups GL(n,C), L, can be
connected to the identity Id by a continucus path in the space of Hy-equivariant
linear automorphisms of T,. If we use this path asa BNT,-admissible homotopy
between L, and Id, we obtain that a-ind (f,Gzo) = 1.

IR

Assume now that o € Fp p,. Since Ho/K, = Z;, every R-linear auto-
morphism of 7, is Hy-equivariant. The linear group GL(T,) has two connected
components. If det L, > 0 then L, can be connected by a continuous path in
GL(Ta) to Id, and consequently, by the same argument as in the previous case,
a-ind (f,Gzo) = 1. If det L, < 0, then L, can be connected by a path in
GL(T,) to a linear map Lo which has the foilowing representation with respect

to a certain basis in T,
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We define a (nonlinear) map B, : T, — T by
Ba(tlatii-“itrﬁ) = (iil(tl - %)(tl + %)uti'i--iafm)-

Clearly, B, is D NT,-homotopic to L, , and the equation B,(f) =0 has the

following types of solutions
(i) the zero solution t =0 of the orbit type (Hp);

(ii) one orbit of solutions ¢ = (££,0,...,0) of the orbit type a = (K,) such
that det DB,(t) < 0.

Consequently, we obtain that
a-ind (f,Gzo) = [Ho/Ho| — [Ho/ Nl
and the proof is complete.

Combining Theorem 1.6.1 and Proposition 1.6.2 leads to the following ex-

plicit computation formula for the G-degree.

Corollary 1.6.3. Under the above assumptions we have

G-Deg(f, Q) =noS( [] na(L)).

aé%’;}l@

We end this section with a simple example.
Example 1.6.1. Let V:=C®C=R* and G=S5" acton V by
- (22) = (Y"21,7" %), (21,2) €V, 7€ S
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where n is a positive integer. Let

<lz| <2, |t|<1}

|t

Q= {(z1,2z2, ) EVBR: |z <1,
and define f: Q2 — V by
f(z1,22,t) = (Z1 22, %(1 — |z2] + it)), (z1,22,t) € .
The mapping f is S'-equivariant. Indeed,

f(y+(21,22,1)) = f(4"21,7%" 22, 1)
= (v 57" 2, j%ﬁ(l — |z3| + it))
= (Y"(Z122)s ZETT’(I — 22| + it))
=7 (122, 24(1 = |22] + 31))

=7 f(21,22,1).

Note that f~'(0) = {(0,22,0) : |z2| = 1} = G(0,1,0) is exactly the orbit of
v = (0,1,0) € 2. The isotropy group of vq is G,, = Z2, =: H. The linear slice
S to the orbit Gvy at (0,1,0) reads

S={(z1,22,t) ECxCxR:Imz2, =0} =CxRxR.
The restriction fo of f to the slice SN can ba expressed by
fo(z1,t,22) = (f1z2, 1 — 22 +it), (21,t,72) €5NQ

where we have chosen the ordered basis ¢€; = (1,0,0,0,0), é&; = (0,1,0,0,0), & =
(0,0,0,0,1), € = (0,0,1,0,0) in the slice S such that the orientation of the
orbit followed by the orientation of the slice gives us the standard orientation of

the space V @ R. The isotypical decomposition of S is

~

S= an %ngﬁ

97



where ayn =(Zn), azn = (Z2n), and T,, = C is exactly the first C-component
of V, and T,,, = {(t,r2) € R?:t,r; € R} isthe space of the stationary points of
the action of Hy = Z2, on S, ie. T,,, = SHo_ The derivative L = Dfy(0,1.0)

has the following matrix form

8

-
(o= B
|
L ©
o ©

=

Ny
o
(=]
=
o

Thus n =1 and 9,,(L) = [Ho/Ho) — [Ho/Z,). Note that Fp y, = {a,}. It
follows that

Ho-Deg(L,D) = [Ho/Ho| - ([Ho/Ho] - [Ho/Z,])
= [Ho/Ho| — [Ho/Zn].

Consequently,

G‘Deg(f7 Q) = (ZZn) - (Zn)
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CHAPTER 2

SYMMETRIC BIFURCATION THEORY IN BANACH G-SPACES

2.1. Introduction

This chapter studies the bifurcation problem for the following composite

coincidence equation
Lo[mo(z) — Bo(z)] = No(z), mo(z) — Bo(z) € Dom (L), (BP)

where V and W are two isometric Banach representations of G :=T x S, T
is a compact Lie group, L : Dom(Lo) C V — W is a given equivariant closed
Fredholm operator of index zero, 7o : V x R? — V is the natural projection,
By:VxR? 5V and Np:V xR? = W are G-maps of class C' such that

together with Ize's complementary function method to obtain equivariant analogs

of the local bifurcation theorem of Krasnosel’skii [28] and the global bifurcation
theorem of Rabinowitz [40].

Our motivation to study such a two-parameter bifurcation problem is two-
fold. First, we try to provide a degree theoretic proof of the local and global
symmetric Hopf bifurcation theorem for a class of one-parameter functional dif-
ferential equations of neutral type (NFDEs). After an appropriate reformulation,
a Hopf bifurcation problem of NFDEs is abstracted to a bifurcation problem of
a composite coincidence equation of type (BP) with two parameters, where the
additional parameter comes from the period of periodic solutions, the action of S?
is introduced from the usual shifting of the temporal argument and the action of
I' represents the spatial symmetry of NFDEs (see Chapter 3 and the references
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there). Second, the bifurcation problem (BP) is also important in its own right in
applications. For examples in this direction, we refer to Chossat et al. [6], Dancer

[9-11], Golubitsky et al. [22], Sattinger [46] and Vanderbauwhede [49].

In the nonequivariant case, i.e. when ' x S' actson V and W trivially,
the bifurcation problem (BP) with one parameter has been studied extersively
(see Chow and Hale (7], Deimling [12], Gaines and Mawhin [19] and the references
therein). Among numerous bifurcation results the general existence theorem of
Krasnosel’skii [28] for local bifurcation points and a two-fold alternative theorem
of Rabinowitz [40-42] are most well-known. We refer to Chiappinelli [5], Deimling
{12], Gaines and Mawhin [19], Stuart [47] and Thomas [48] for various extensions
of Krasnosel'skii type bifurcation theorem, and to Alexander [1], Alexander et
al. [2-4], , Erbe et al. [14], Fitzpatrick et al. [16-18], Geba et al. [20], Geba
and Marzantowicz [21], Hetzer [23], Ize [25], Krawcewicz et al. [29], MacBain [30],
Makhmudov and Aliev [31], Pesachowicz [38], Webb and Welsh [50] and Welsh [51]
for global bifurcation considerations. Since these two types of bifurcation theorems
are proved by topological degree arguments, it is natural to use the equivariant
degree to study the symmetric bifurcation problem (BP). However, the local and
global bifurcation theorems with symmetry we shall provide in this chapter are
analogues, rather than generalizations, of those in the nonequivariant case, since
the action of S!, the temporal argument shifting, is not trivial on V. Morcover,
in the case where I' is abelian, the nontriviality of the action of S! is essential

for allowing us to include two parameters in the bifurcation problem (BP).

The effect of the presence of symmetry on the existence of bifurcaton points
has been studied by many authors, among whom we mention Golubitsky, Stewart
and Schaeffer [23] and Vanderbauwhede [49] where analytic methods are employed
in dealing with bifurcation problems with symmetry. For the use of equivariant
degree in symmetric bifurcation, we refer to L ncer [9-11], Erbe et al. [14], Ggba
et al. [20], Geba and Marzantowicz [21)], Ize et 1. [26] and Krawcewicz et al. [29].
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The work of Gicogna [8] and Sattinger [45] is also interesting, where by restricting
the equation to a certain invariant fixed point subspace the bifurcation problem is

reduced to that in the nonequivariant case.

Our approach in this chapter follows the main lines of [20], which we ex-
plain as follows. In order to study the bifurcation problem (BP), we need a
G-equivariant degree in infinite dimensional space. We shall use the equivariant
bijection theorem (Theorem 0.3.1) to extend the G-degree of Geba, Krawcewicz
and Wu for compact fields to condensing fields and obtain an equivariant version of
composite coincidence degree for (BP) (see Section 2.3). In Section 2.4, we apply
the equivariant composite coincidence degree in conjunction with Ize’s complemen-
tary function method and an equivariant analog of Krasnosel’skii local bifurcation
theorem i~ obtained. Since the nontriviality of a G-degree is involved in this
theorem, we compute the value of G-degree for condensing fields by reducing it
to that in finite dimensional case where an explicit computational formula for an
abelian T is available (see Section 2.2). It turns out that when I' is abelian
the G-degree for condensing field related to (BP) is compleletely determined by
the information of its linear approximation on certain isotypical components of V
with respect to the I' x S! action. Finally, by using the computation formula
in Section 2.4, we prove in Section 2.5 global bifurcation theorems of Rabinowitz

tyve.

This chapter extends the results of Geba, Krawcewicz and Wu [20] for

compact fields to those for condensing fields. It also generalizes sections 2-4 of

Krawcewicz, Wu and Xia [29], where I' is assumed to be a trivial group.

2.2. A computation formula

In this section, we present a computation formula for G-Deg(f,§2). For its

proof, we refer to Geba, Krawcewicz and Wu [20].
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Let T be a compact abelian group and G =T x S'. We choose the natural
orientation of 5! and assume that for every (H) € ®;(G) there has been chosen
an invariant concordant orientation of G/H, i.e. for (H,),(H2) € $(G) with
H, C H;, the natural homomorphism ¢ : G/H; — G/H,, which is a local
diffeomorphism, preserves the chosen orientations. This concordant orientation
will be called natural if for H =T'x {1}, G/H = §' has been chosen its natural

orientation.
Let V be a finite dimensional real orthogonal representation of G and let

v=vioPVs
geB

be the isotypical decomposition of V. It follows that every non-zero element in

Vs has the same orbit type Hg. Put

Bg = {EEE, dlmG/Hﬁ :0}:
El = {EEB, dlmG/Hg = 1};
By = {BEE, dlmH/Hg =Z, }

Let us denote by GLE(V) (resp. GLS(Vjp) ) the group of all equivariant
linear automorphisms of V' (resp. V3 ) and let
w: S = GLE(V)

be a continuous mapping. Since A € GLS(V) implies A(V3) = Vp for all 3,

there are defined the restrictions

wp: S' = GLO(V3), wp(A) :=w(A)|v,, A€ S".
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For every B € Bj, we can find the natural inclusion S' C G/Hjg, and the
restricted action of S! on the component Vj; induces a complex structure on

Vp. It then follows that an R-linear operator A:Vjs — Vj is G-equivariant if

the group GL%(Vp) is the group of C-linear automorphisms of V; and we may
define an integer ug by setting

pp ;= deg(detc(wg))

where deg denotes the Brouwer degree. We call ug the winding number of wg.

This leads to a well-defined element

uw) = Y up(Hp) € 4:(G)
BeB,;

for every continuous map w: S* — GLE(V). We call u(B) the winding degree

of w.

On the other hand, for every B € By; , we can define an integer vg by

§ o

vg 1= =(1 — sign detwp()))

b

and an element v(w) € Ao(G) by

vw) = [[ ((G)-ve(Hy)),

BEBoa
where the product is taken in the Burnside ring Ao(G). Note that A;(G) is an

Ao(G)-module (see Remark 1.5.2). The product v(w):p(w) defines an element
in Al (G).
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Assume now that f:V xR?2 - V xR is a G-equivariant C!-map. We
denoteby P:V xR — V the natural projection onto V. We make the following
hypotheses:

(A) There is an open bounded invariant set @ C V x R? such that f is
Q-admissible, 0 is a regular value for flg and £:= f~}(0)NQ ¢ VG xR?
is diffeomorphic to the unit circle S?.

By the assumption (A), G-Deg(f, ) is well defined. Our goal in this section
is to give an explicit formula for the computation of G-Deg(f,).

Fix an orientation of V€ xR and orient VG xR? = (V¢ xR) xR with the
product orientation. For z € T the derivative Df(z) maps (T.X)* isomorphi-
cally onto V€ xR and thus it induces an orientation of ( T:X)t. Let n:S' - X
be a diffeomorphism such that the chosen orientation of (T;Z)' followed by the

orientation of T,Y, induced from that of S' by 7, yields the orientation of
VG x R2, Define w: S' = GLE(V) by w(A):= PDf(n()))|lv € GLE(V), A€

51, and consequently we arrive at the winding degree p(w) of w.

The following theorem is a particular case of the main result proved in [20].

Theorem 2.1.1. Suppose that f : V x R? — V x R satisfies the assumption

(A). Then, with the same notation as above, we have

G-Deg(f,2) = v(w) - p(w) = ( I1 - Vﬂ(Ha))) (Z up(Hp))

BEBo2 BEB,

where w(\) = PDf(n(M))lv, A € S™.
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Note that {1} x S? is a subgroup of G. We have
V=a=VeuexWVxVax-..-xV,
the isotypical decomposition of V with respect to the restricted action of S?, i.e.

for z € V;\ {0}, we have G. N ({1} x §') =Z;, j = 1,2,...,k, 00, Zo := S'.

Note that we do not exclude the case where V; = {0} for some indices j. Identify

S! = {e'%, 0 < @ < 2r}. The S'-action induces a complex structure on each

V;, 7 =1,2,...,k, which can be defined as follows

(a+ib)z := az + bexp(ig5)r, a+ib€C, z€Vj.

Let B € B. By definition, there is a positive integer k such that V3 C Vj.
It can be verified that there is a homomorphism pg:I' — S1/Z; such that

Hg = {(7,2) €T x §' : z € ps(7)}-

An orbit type of this form will be called a basic orbit type. It follows that
dimG/Hg =1 and B, = By, := {B € B; V3 C V; for some j > 0}. As
examples, for I' = Z,,, where n is a positive integer, all possible basic orbit

types of I' x S* are (Hy,),0<r<n-1,k=0,1,2,..., where

i itamety g o1, 0SiS<n-1"
Hk‘r-—{(g P S8 K )EZHXS 'Oi:mgk—l

In the case where I' = S! = Z,,, all possible basic orbit types are (Kj,,), where

k,r 2 0 are two integers, and

Ky, := {(32*',ei’j§(““ff)) €S'xS':7re0,1,0&€m<k-1}.
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For notational convenience, let B;y(G) (resp. B, (G) ) denote the Z-submodule
of A;(G) generated by all basic (resp. non-basic) orbit types of G. We have the
following corollary.

Corollary 2.1.2. Under the same assumptions as in Theorem 2.1.1,
G-Deg(f,9) = p(w) + A(w)

where u(w) = Y gep,, 48 (Hpg) € By(G) is the winding degree of w : St —
GLS(V) defined by w()\) = PDf(n(A\))lv and A(w) € By(G).

2.3. G-degree for equivariant condensing fields

In this section, we extend the G-degree in finite dimensional spaces to that
for condensing fields in Banach G-spaces. This will allow us to study equivariant

bifurcation problems via G-equivariant degree.
We begin by defining the G-degree for compact fields.

Let W be areal infinite dimensional isometric Banach representation of G.
We define the G-degree for compact fields by applying the standard method of
finite dimensional approximations. The following result is already known (see also

[13, 20]). For the sake of convenience, we will present its proof.

Theorem 2.3.1. Let X bea G-space and F: X -+ W a G-equivariant com-
pact mapping. Then for any € > 0 there exists an equivariant finite-dimensional

map F,: X — W such that

|Fe(z) — F(z)|| <e forall ze€ X.



Proof. Since F(X) is relatively compact, there exists a finite set N = {w;,...,wa}
Wyin such that F(X) C N, := N + B,(0), where B,(0) = {w € W; |lw| < ¢}.
Let u;: N. — R denote the mapping defined by

pi(w) = max{0,e — lw —wil|}, i=1,...,n, wE N,

and put

1 n
P.(w)= 5—— ) _pi(w)wi, we€ N..
2 pi(w) =1

=1

This leads to a map f’, : X = W below
F,(z) = P.(F(z)), z€X.

Then F, is an e-approximation of F with f‘,(X) C span{w,,...,wnp}. Av-

eraging 17', over G, we get an equivariant map F,: X — W, i.e.
Fu(z) = / gF.(g7'z)dg, z € X.
G

The property of the Haar integral ensures that F, isanequivariant ¢-approximation
of F. Moreover, N C Wy;,, implies that GN is contained in a finite-dimensional

invariant subspace, and so is F,(X). This completes the proof.

Suppose now that n is a non-negative integer. Then the action of G on
W induces a diagonal isometric action on W x R"™ with the trivial action on

R".

Definition 2.3.1. Assume that Q is an open bounded invariant subset of W x
R™. An equivariant continuous map f: W xXR" — W is called an 2-admissible

compact (resp. condensing) field if
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(i) f(z,A)#0 forall (z,))€ N

(ii) f=n—F, where 7 : W x R® = W denotes the natural projection on
W and F: W xR® - W is an equivariant compact (resp. condensing)

mapping.

By definition, if f is an 2-admissble compact (resp. condensing) field,
then F € Comp ©(0,090) (resp. Cond9(£1,00)).

Let f: W xR"®" = W be a given ()-admissible map. By Theorem 2.3.1,

we can find an equivariant finite-dimensional map F, : W x R® — W such that
|Fe(z) — F(z)|| < inf{|ly - F(y, Ml (v,A) € 9Q} (P1)

and

F(W xR") C W, C W (P2)

where W, is a finite dimensional G-invariant subspace of W. We define
G-Deg(f, ) := G-Deg((r — F¢)lwoxmn, 2 N Wy x R™).

By applying the same arguments as ir the nonequivariant case, one can verify that
the above definition of G-Deg(f,§?) does not depend on the choice of the equi-
variant approximation F., as well as the invariant subspace W, satisfying (P1)
and (P2). Moreover, the defined G-Deg(f,f2) possesses the standard existence,

excision, homotopy invariance, additivity and product properties.

We now illustrate how to apply the equivariant bijection theorem (Theorem
0.3.1) to define G-degree for equivariant condensing fields. Our approach repre-

sents an analog in the equivariant case of that introduced by Nussbaum ([34-36])
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in the non-equivariant case. From now on, let ! be an invariant open bounded
subset of W x R® and F € Cond¢(Q,09). By Theorem 0.3.1, there exists
Fy € Comp S(Q,09) such that F ~ F; in Cond ¢(Q,09Q). Moreover, if F; €
Comp %(Q2,89) is another compact map such that F ~ F; in Cond ¢(%2,8Q),
then F; ~ F, in Comp©(Q,09). Therefore, by the homotopy invariance of
G-degree for equivariant compact fields, G-Deg(m — F;,Q) = G-Deg(m — F3,9).
This justifies the following definition.

Definition 2.3.2. Let F € Cond ¢(R,09). Then the G-equivariant degree of
the Q-admissible condensing field = — F is defined by the formula

G-Deg (7 — F,Q) := G-Deg (7 — F1,1),

where F, € Comp ¢(Q,09) is a compact map such that F ~ F; in Cond ¢(Q,89).

We have observed that by the homotopy invariance, the above definition does
not depend ow the choice of F; € Comp ¢(Q,09). Moreover, it can be verified,
by a similar argument to that in the nonequivariant case, that the G-degree
for condensing fields has also the same standard properties as in the case of finite

dimensional spaces. For the convenience of references, we formulate these standard

properties below.

Theorem 2.3.2. The above well-defined G-Deg(n—F,§) for F € Cond€(R,0Q)
satisfies the following properties:

(i) Ezistence If G-Deg(m — F,2) # 0, then there exists an a € ®,(G) and
r € QN(x— F)~Y(0) such that (G.) < a;
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(ii) Ezcision If Qo C Q is an open invariant subset and F € Cond(Q,Q\ Q),
then

G-Deg(n — F,Q) = G-Deg(r — F, )

(iii) Additivity If ; and ), are two open invariant subsets of 2 such that
NN =02 and F e Cond(1, 02\ (2 UN,)), then

G-Deg(m — F,Q) = G-Deg (7w — F,;) + G-Deg(m — F, ;).

(iv) Homotopy Invariance If H :Qx[0,1) = W isahomotopy in Cond%(Q,09),

then

G-Deg(n — H(:,0),) = G-Deg(n — H(-,1),9).

(v) Product Formula Suppose that F € Cond®(Q,0Q), W, is another
isometric Banach representation of G and U is an open bounded invariant
subset of W, with 0 € U. Define & : QxU — W x W, by &(z,y,t) =
(F(z,t),y) for y€ U and (z,t) € Q. Then

G-Deg(®,U x Q) = G-Deg(F,S2).

To apply the G-degree to nonlinear problems which we will describe below,

we need to discuss the notion of equivariant composite coincidence degree.

Let E and F be two isometric representations of G and assume that
L:Dom(L) CE — F is a closed equivariant Fredholm operator of index zero,
where Dom (L) is an invariant subspace of E. A compact resolvent of L is a

compact linear operator K : E — F such that L+ K : Dom(L) = F is a
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bijection, and hence the inverse Ry :=[L + K]™! : F — E is well defined and
continuous. We use CR(L) to denote the set of all compact resolvents of L. It is
well known that CR(L) # @, but CR9(L) £ {K € CR(L) : K is G-equivariant}
may be empty. However, in many cases, and in particular, in the application to

Hopf bifurcation problems of neutral equations, the assumption CRES(L)# @ is

Let X CE xR"” be a bounded invariant closed subset andlet B: X — E
and N: X — F be two equivariant maps. We consider the following nonlinear
problem

{ Fiﬁrd .1:7%’ X such tl%gzt ?Tf(i?) — B(z) € Dom (L) (P)
and L[n(z) — B(z)] = N(z). '
Following [15], we call this nonlinear problem an equivariant composite coincidence

problem. Let K € CRCP(L) be a fixed compact equivariant resolvent of L, and

Ox(B,N)2 B+ Rg[N + K(r - B)]: X - E.

As compositions of equivariant maps, O (B, N) is equivariant. It can be verified

{ Find z € X such that
?r(;l') = @K(B, .N)(i‘)

we now introduce the following definition.
Definition 2.3.3. Let B: X - E and N: X — F be two equivariant maps.

The pair (B, N) is said to be an L-condensing G-pair if the map Ok (B,N):

X — E, defined above, is a condensing G-map.
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The above definition does not depend on the choice of K € CRY(L). In-

deed, if K! € CRG(L) is another equivariant resolvent, then we have
eK(B’N) = eKl(B,N) + RK (o] (K‘ - K)G,\-l(B,N) + REI(I{ — h‘l)’

and thus Ok (B, N) is condensing if and only if ©x1(B,N) is condensing.

Let (X,A) be a pair of closed bounded invariant subsets of E x R". We
denote by Cond §(X,A) the class of all L-condensing G-pairs (B,N), B: X —
E and N : X — F such that (P) has no solution in A4, ie. n(z) # Ox(B,N)(z)
for all z € A.

Definition 2.3.4. Let 2 C ExR" be an open bounded invariant subset. For ev-
ery L -condensing G -pair (B,N) € Cond §(Q, 8Q), we define the G -composite
coincidence degree of (L,B,N) on 0 as an element of A,(G) given by

G-Deg[(L, B,N), 9] £ G-Deg(r — Ox (B, N),Q),

where K € CRC(L) is fixed.

We note that this definition may depend on the choice of the equivariant
resolvent K. However every component of the degree is unique up to sign. See
[37). Furthermore, it follows from Theorem 2.3.2 that the standard properties
such as existence, excision, additivity and homotopy invariance hold also true for

G-composite coincidence degree.

We finally remark that composite coincidence problems of type (P) in the
non-equivariant case have been studied in Gaines and Mawhin [19]. The special
case of L-condensing G-pair (0,N) with N being L-compact (i.e., RxN

is compact) can be found in [14, 20, 21] in conjunction with the Hopf bifurcation
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that this example arises naturally from the study of Hopf bifurcation problem for

neutral equations.

2.4. A local bifurcation theorem with symmetry

variant of the local bifurcation theorem of Krasnosel’skii for a class of G-equivariant

nonlinear problem.

Let k be a positive integer. We assume that V' and W are two isometric

Banach representationsof G, E=V xR and F=W xR. Suppose that

Lo: Dom(Lo)CcV - W
is a given equivariant closed Fredholm operator of index zero such that CRS(Lo) #
@. We extend Ly to a Fredholm operator of index zero L: Dom (i} CE — F,

where Dom (L) = Dom(Lo) xR and L(v,r) = (Lov,0) for (v,r) € Dom(Lg) x
R. It follows from CR%(L,) # @ that CRC(L) # @.

Consider now the following nonlinear problem
Lo[mo(z) = Bo(z)] = No(z), mo(z) — Bo(z) € Dom(Ly), (B.P)
where mp : V x R¥ = V is the natural projection, By : V x R¥ — V, and

No:V xR¥ - W are two equivariant mappings of class C! such that (Bg,No)

and their derivatives (D,Bg, D,Ny) are Lg-condensing G-pairs.

115



To describe our bifurcation problem, we assume that there exists a k-dimensional

submanifold M C VE x R¥ satisfying the following conditions:

(A) For every z € M, mo(z) — Bo(z) € Dom(Ly) and Ly[mo(z) — Bo(z)] =

Ny(z), i.e. z is a solution to the equation (B.P).

(B) If (vo,X0) E M, vg € VG, Mo € RE, then there exist an open neighborhood
Uy, of ) in RF, anopen neighborhood U,, of vy in V¢ anda C'-map
n:Uxn, = VC such that

MO Uy, x Ung) = {(n(A), A) : A € Un, }-

Since all points (v,A) € M are solutions of (B.P), we call those points
trivial solutions. All other solutions of (B.P) will be called nontrivial. A point
(vo, Xo) € M is called a bifurcation point if in any neighborhood of (v, Ae) there

exists a nontrivial solutions for (B.P).

The problem (B.P) is equivalent to the equation
v = BRQ(BDSNQ)(US "\)s (vi A) € V x Rk:

where Og,(Bo,No): V x R* = V is given by Ok,(Bo, No) = By + R, [No +
Ko(ro — By)]. We define a mapping f : VxR¥ = V by f(v,)) = v -
Ok,(Bo, No)(v,A). By assumption,

Duf(ua ‘\) = Id - elfn(DﬂEG(US ‘\)s -—DHND(vs ’\)) V- V‘i

where D, denotes the derivative with respect to v € V, is a condensing linear

field, and hence is a Fredholm operator of index zero on the space V. Furthermore,

if (v,A) € M, then D,f(v,)) is also an equivariant operator. It follows from
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the implicit function theorem that if (vo,Ao) € M is a bifurcation point then
the derivative D, f(vo,Ao) is not an isomorphism of V, which means that all

bifurcation points of (B.P) are contained in the set

A2 {(v,)) € M: D,f(v,]) is not an isomorphism}.

Our goal is to find non-trivial solutions, or more precisely, a bifurcation point

for the equation (B.P), which is equivalent to the following equation
f(v,A)=0, (v,A) €V xR (2.4.1)

Our following idea of finding non-trivial solutions to (2.4.1) in a given open
bounded invariant neighborhood &/ C V xR* of a V-singular point (vg, o) € M
is based on the notion of the complementary function for the equation (2.4.1). This
method has been developed in the non-equivariant case by Ize [25] and recently
has been employed in [14, 20, 21] for the study of G-equivariant bifurcation prob-
lems. A “complementary function” for the equation (2.4.1) on U is an invariant
function ¢ : U — R satisfying the condition (v,A) <0 for all (v,A) €U NM.

Therefore, every solution to the system

f(ﬂs A) = O, .
{ e(v,\)=0, (v,A) €U, (2.4.2)

is a nontrivial solution to (2.4.1). This leads to the equivariant map F, : U —

finding a nontrivial solution to (B.P) in & by the problem of solving the equation
F,(v,A) =0 for (v,A) €Y. On the other hand, we can easily verify that (2.4.2)
is equivalent to the following coincidence problem

Lin(z) - B(z)| = No(z), z €U, (2.4.3)
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where 7 is the natural projection of E x R¥~! onto E, B(r) £ (By(z),0)€E
for € ExR¥1 =V xR* and N,(z) £ (No(z),¢(z)) € F. Therefore, if we
assume that (2.4.3) has no solution in U, then the G-composite coincidence
degree G-Deg|(L, B,N,),U] is well defined and it can be used as a tool to in-
vestigate the existence of solutions of (2.4.3). In particular, the nontriviality of
G-Deg|(L,B,N,),U] will imply the existence of a non-trivial solution of (B.P) in

Uu.

In the rest of this section, we will show that for an isolated V-singular
point (vo,)o) € M it is possible to compute the G-Deg|(L, B, N,),U] in terms

of derivatives D,B and D, N near (g, o) As we will see, this computation

to the global Hopf bifurcation problem of neutral equations.

In order to compute G-Deg[(L,B,N,)] for a certain complementary func-
tion ¢, we take as a neighborhood U of the isolated V-singular point (vo,Ao) €

M the invariant set
Bu(vo, ho;r,p) £ {(v,A) € V x R* : A= Xo| < p, [l = (V)] < 7}
where p, r > 0 are sufficiently small numbers such that
(i) if (v,A) € Bu(vo, hojr,p) and v # n(A) at [A=Xg| = p, then f(v,)) #0;
(ii) (vo,Mo) is the only V-singular point in Bum(vo, Ao, p);

(iii) B(ho,p) := {A € RF-1; |A = Xo| < p} C Uy, where U,, is the open
neighborhood of A¢ in Assumption (B).

Such a neighborhood U is called a special neighborhood of (vg,Ag) determined by

(r,p). The existence of a special neighborhood follows from the implicit function
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theorem. Moreover, for a special neighborhood U, we say that a continuous

invariant function 0 :U — R is an almost complementary function if
(i) 8(5(A),\) = —|]A = Ao| for all A€ B(ho,p);
(i) 8(v,A)=r if [lv—n(A)j=r and X € B(X,p);

(i) 6(v,30) = o = )]l i [lo —nQ)] < -

The existence of such a function 6§ follows from the Gleason-Tietze theorem. Note
that if @ is an almost complementary function, then for each § >0, ¢(v,A) £
6(v,)\) — & is negative on the set of trivial solutions UN M. For a sufficiently
small § >0, F, and Fy are homotopic in Cond (U, 0U). Therefore, by the
Homotopy Invariance Property G-Deg(F,,U) = G-Deg(Fs,U). Consequently
the nontriviality of the degree G-Deg(Fs,U) implies the existence of a nontrivial
solution of (2.4.1) in U.

The proposition below follows directly from the existence property of G-degree.

Proposition 2.4.1. Let (vo,Ao) € M be anisolated V-singular point and U =
Ba(vo, Xo;T,p) 2 special neighbourhood of (vg,Ae). K G-Deg(Fo,U) # 0 for
some almost complementary function 6 : U — R, then (vo,)) is a bifurcation
point for (2.4.1). More precisely, if G-Deg(Fg,U) = 3 7o -a and v, # 0 for
some a € J(U) N ®x_1(G), then (2.4.1) has a sequence of nontrivial solutions
(vn,An) such that limy_.oo(vn, An) = (vo, Xo) and (Gy,) < a for n=1,2,....

Proof. Choose ¢ > 0 sufficiently small so that the function ¢, : i — R, defined
by

(,0,(‘0, A) = 0(”7 ’\) —& (vv ’\) € Z-(-a
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is a well defined complementary function. By the definition of composite coinci-

dence degree and the homotopy invariance of G-degree we have

G-Deg|(L,B,N,,,U] = G-Deg(F,, ,U) = G-Deg (Fp,U).

x ¥

Therefore, G-Deg(Fy,U) # 0 implies that the equation F, (v,A) = 0 has a
solution in , and hence the equation (2.4.1) has a nontrivial solution in U.

Consequently, the bifurcation result follows.

From Proposition 2.4.1, it is important to compute G-Deg(Fy,U). To do
this, we first linearize the map. It follows that, by using a linear homotopy, for

sufficiently small r> 0 and p >0,
G-Deg (Fs,U) = G-Deg (D Fy,U),
where
DFy(v,)) = ((Id = Dy f(n(A), A))(v = 0(N)),8(v,2)), (v, A) €U.

By the excision property of G-degree, we know that G-Deg(Fy,U) is indepen-
dent of the choice of r and p.

In what follows we give an explicit computational formula for G-Deg(Fy,U)
in the case when k =2 and G =T x S', where T is a compact abelian Lie
group. This implies that the bifurcation problem (2.4.1) has a two-dimensional
parameter space. We will use this particular setting to study one-parameter Hopf

bifurcation problem in the subsequent chapters.

Let (vo,Ao) € M be an isolated V-singular point and let n: Us, — V°
be the map defined in Assumption (B) and let U« be a special neighbourhood of
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(vo, Xo). Set B(hojp):={) € R% |A = Xo| < p}. We define
a(A) == Id - Do f(n(A),A), A € B(hoip),

where f(v,)) = v — O,(Bo, No)(v,A). By assumption,

C (LS4 (V) if A€ B(ho;p),
“""E{GLS,ﬁcV) if A€ 3B(Ao; ). (244)

This gives a map a : (B(%0; ), 0B(A0;p)) = (LGna(V), GLGa(V)). We will
show below that under the above assumptions the G-degree G-Deg(Fy,U) can
be computed from the homotopical properties of the map a(:) defined by (2.4.4).

First we consider the irreducible representations of S§'. There are a total of
countable number of irreducible representations p;, p2,..., pn,... of §' on C

which are given by
PH(E) = £"z; ﬁglsgaawﬁséésls zeC.

Therefore, by Example 2.2.1, we have the following isotypical decomposition Vx =
Do Vas Va=V, Vo= Vsl, of the space V with respect to the restricted
action of S! on V. For every n > 0 the subspace V,, has a natural complex
structure such that an R-linear operatoron V, is S!-equivariant if and only if it
is C-linear with respect to this complex structure. Since the actionsof I' and S!
commute, the S'-isotypical components V,, n =0,1,2,..., are I-invariant,
and therefore, V} is a real isometric representationof I' andfor n=1,2,..., V,
is a complex isometric representation of I'. Let 01, 0n2,..., Opiy---: T — S

S'/Z, denote the sequence of all irreducible complex representations of I'. Then
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following isotypical decomposition

o0
Vo =@ Vais Voo := Vs, (2.4.5)

=0
of the subspace V,,. Notice that I' is abelian. The invariant space V,;, n >
0, ¢ >0, is a G-isotypical component of V corresponding to the irreducible

representation @y, :I' x S! — S! given by
eni(1,6)z = Oni(7)"z, (1,€) €T xS, z€C.

This implies that any C-linear operator on V;; is G-equivariant, and therefore
GLE , 1(Vai) = GLE,  4(Vai). Moreover, for v € Vy,i \ {0}, n > 0, i > 0, we have
that the isotropy group G, is exactly the subgroup Gg; := {(v,£); (v,¢ ") €
Graph (0,:)} = {(7,£); € € 0,i(7)}, where Graph (6,;) denotes the graph of the

homomorphism 68,;.

Let 95,...,95 : I' = C be the sequence of all (continuous) homomor-
phisms, characterizing all non-trivial real one-dimensional subrepresentations of
I' in V. We will denote by Vpi, ¢ = 0,1,...,m, the isotypical components
of Vp, such that for z € Vp; \ {0}, ¢ > 0, the isotropy group G is exactly
Go; = Kerd9; x S!, and Vyo = VG. For any A € GL.ona(Voi) we define

cond

e :
- {-1 if A € GLL4(Voi)

Let (vo,)0) € M beanisclated V-singular pointand a: (Bp(Ao),8B,(A)) —
(L€ _4(V), GLE 4(V)) be defined by (2.4.4). For all integers n >0 and i 20

cond cond

there are well-defined restrictions

ani(A) := a(A)|v;,; : Vi = Vai, A € B(osp).
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Note that
@i : 8! 2 0B(Xo; p) = GLE na(Vini)-

By Proposition 0.5.6, we have the following integers uy;, for each n >0, i > 0,
Bni = pai(vo, Ao) 1= A([Qiﬁ]):

where A is the homomorphism defined in Propostion 0.5.6 and [ani] denotes
the homotopy class of a,;. For n =0, we set

) . . .
voi = voi(vo, Ag)§(1 —signagi(2)), 1>0,
£(vo, Ao ) = sign ago()), A € OB(Ao;p).

In the following theorem, we set u(vg, o) = iﬂ}oiéﬂ tni - (Gni) € A1(G),

where (Gn;) denotes the orbit type of non-zero elements in Vyi, and v(vo, Ao) =

[T~ ((G) = v0i(Goi))

Theorem 2.4.2. Under the above assumptions, if (vg,A¢) € M is an isolated

V-singular point such that ago(\o) € GL(VC), then

G=Deg(Fa,Ll) = E(U@, Ao)b’(ﬂn, An) . y(va, 1\0)

Proof. First, by applying the standard linear homotopy argument, we get
G-Deg|(L, B, Ng),U] = G-Deg (Fp,U) = G-Deg (Fy,U)

where
Fo(v,3) = (a(A)(z = 1)), 6(v, ), (v,X) €,
a(A) := Dy f(n(A), A), A € B(o; p).
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We next use Theorem 0.5.3 to obtain a direct invariant decomposition V = V,@dV®

such that V0 is an invariant subspace of finite dimension and

a: (B(Ao; p),8B(X0; p)) = (LGna(V), GLE0a(V))
is homotopic to some

b: (B(Xo; p), 0B(Ma; p)) = (LGna(V), GLGma(V))

such that b\)ly, = Id|y, and b(A)|ye : VO — V® for A € B()Ao;p). Conse-
quently, by the homotopy invariance and the definition of G-degree for compact

vector fields
G-Deg (Fs,U) = G-Deg (Ty,U) = G-Deg (Ty|voxn2,U NV? x R?), (2.4.7)

where ¥(v,)) is a new almost complementary function defined by ¥(v,A) =
€+ 6(z,)), €>0 isa sufficiently small number and

Ty(v,A) = (B(A)(z = n(N), ¥(v, ), (v, M) €.

From the definition of an almost complementary function, we see that Ty|yoxns

satisfies (A) in Theorem 2.2.1. Therefore we have
G-Deg (Ty|voxmz,U NV x R?) = £*v*(vo, Ao) - u(vo, Ao),

where
v*(vo, 2o) = [J((G) - v5:(Goi)),
=1

# (v, %) = Y #ni(Gai)

n>0,i>0
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and

vg; = =(1 —signbgi(A)), i>0,

e* = sign detabg(A), ba(A) 1= b(A)|(veye,
Hni = A([bni(A)])  bni(A) := b(A)IVE‘-i A € B(Mo; p)s

L] R

in which A denotes the bijection in Proposition 0.5.6 and V%, is the isotypical

component of V® defined in the same way as in (2.4.5).
Recall that
a: (B(X0;£),0B(0; ) = (Ligna(V), GLGna(V))
is homotopic to
b: (B(X0; ), 0B(X0; p) = (Lona(V)r GLGna(V))

and b(\)|y, = Idly, for A € B()Ao;p). By homotopy invariance, we have ¢* =
e(vo, M)y HE; = paiy v§; = voi and (2.4.6) follows from (2.4.7) and (2.4.8).

This completes the proof.

Assume that n > 0, i > 0. There is a homomorphism 6,; : T’ — S'/Z,
such that Gyn; = {(7,2) € T x §'; 2z € 6,i(7)}. Recall that such an orbit type
(Gni) is called a basic orbit type. and by B;(G) (resp. B,(G)) we denote
the Z-submodule of A;(G) generated by all basic (resp. non-basic) orbit types.

Theorem 2.4.2 now simplifies to the following result.
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Corollary 2.4.3. Under the same assumptions as in Theorem 2.4.2,
G-Deg|(L, B, No).t] = e(vo, 3o (v, o) + (0, o)

where p(vo, M) = X ,50,i0 Hni (Gai) € Bi(G), and ((vo, Ao) € B\(G).

cation theorem [28] and is a convenient form in the applications to Hopf bifurcation

for differential equations with symmetry.

Theorem 2.4.4. Suppose that Lo : Dom(Lo) C V — W isagiven G-equivariant
closed Fredholm operator of index zero, By : V xE? -V, No : VxR? - W
are two G-maps of class C!' such that (By,Ny) and (D,By, D,Ny) arc
Lo-condensing G-pairs. Assume further that M C V¢ x R? is a 2-dimensional
submanifold satisfying the conditions (A) and (B). If (vg,A) € M is an iso-
lated V-singular point and there exist n > 0, i 2 0 such that p,; # 0, then
(vo, Ao) is a bifurcation point for the problem (B.P). More precisely, there exists a
sequence (vk,Ax) of nontrivial solutions to (B.P) such that (G,,) < (Gpni) and

limk—e@(vki Ak) = (ﬂﬂi A[J)

Proof. Notice that pu,; # 0 implies that p(vg, Aa) # 0. Thercfore, by Corollary
2.4.3, G-Deg|(L,B,N,),U] # 0 for some complementary function ¢ and special
neighborhood U of (vg,Aq). The theorem then follows from Proposition 2.4.1.

2.5. A global bifurcation theorem with symmetry

Let ' be a compact Lie group, G =T'x S' and V be a real isometric

Banach representation of G. For a moment we do not assume that I' is an abelian

group. However the main result of this section is valid only in this particular case.
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Recall that we use Vp to denote the set of all fixed points of V' with respect
to the restricted S!-action, i.e. Vo={veV; fv=v forall £ € S'}. We call
Vo the set of stationary points.

Assume that W is another isometric Banach representation of G and
index zero such that CRCG(Lg) # @. Let mp : V x R? —» V be the natural
projection, By:V xR? -V and No:V xR?* - W be G-maps of C' such
that (B, No) and (D,Bo,D,Ny) are Lg-condensing G-pairs. We are going

to consider the nonlinear problem
Lﬂ[ﬂ‘()(i’) - BD(I)] = Nn(i), ‘H‘Q(l‘) == BQ(I) € Dam(Zg), eV x Rz (GBP)
subject to the following condition:

'H) There exists a 2-dimensional G-invariant submanifold M C V€ xR? such
(

that for every (v,A) € M,
(l) Lﬂ[?f(ﬂ, :\) - Ba(u, .\)] = N()(U, A), and

(i) Dof(v,M)|v, € GL(Vp), where f(v,\) = v — Ok,(Bo,No)(v,A) for a
fixed Ko € CRS(Ly). Each pointin M is called a trivial solution to (GBP).
It follows from the implicit function theorem that for every (vo,A¢) € M
there exists an open neighbourhood Uy, of v in VC, an open neighbour-

hood Uy, of Ap in R? and a C'-mapn:U,, — Vo such that

MO Uy x Uny) = {(n(A), A); A € Un, ). (2.5.2)

Throughout this section we assume that (H) holds. Note also that the assumption

(H) excludes the bifurcation of stationary solutions.
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2.4, where 6: VxR? — R is an invariant function. Our general global bifurcation

theorem reads as follows.

Theorem 2.5.1. Suppose that every V-singular point in M is isolated and
M is complete. Let 8§ denote the closure of the set of all nontrivial solutions to
(GBP). Then for each bounded connected component C of S theset GCNM
is finite and consists of a finite number of disjoint TI'-orbits
GCNM = CJ T(vi, ).
i=1

Moreover, we have

q
> G-Deg((L, B, No,,Us) = 0, (2.5.2)
i=1

plementary function on U;.

Proof. Note that every point of GCNM is a bifurcation point and the V-singular
pointsof M areisolated. It follows that the set GCNM is finite. Write GCNM =
['(vi,A1)U---UT(vg, Ag)} for some integer g > 0. Choose r > p > 0 sufficiently
of (vi,A;) with iNU; =@ if i #j. Let U =UyUlUyU---UU. The set
U is open an  G-invariant and we can find @) C V x R?, an open bounded

G-invariant - _oset such that Q,NM = @, GC\U C @, and (U \U)NS = 2.

Put Q@ =UUQ,. We construct a complementary function 8:Q — R such
that

() 8(v,\) = —|A=N| if (v,A) €Us N M,
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(i) O(v,A) =r if (v,2) € Q\U.
Let F:Q — V xR be defined by
Fo(v,2) 2 (v — f(v,2),0(v,))), (v,A) €.
Then F,!(0) C GC and hence G-Deg(Fp,Q) is well defined.

We now consider the following homotopy H : 2 x [0,1] = V x R,
Hv, )\ 1) = (F(v,A), (1= )8(v, ) — tp), (v, A1) €A x [0,1].

By (i)-(ii), H(v,),t) # 0 forall (v,),t) € 32x[0,1], thus H isan Q-admissible
homotopy. Since H(v,),0) = Fo(v,)) and H(v,),1) = (f(v,A),p) #0 for all
(v,) € Q, it follows that G-Deg(Fy,R) =0. Ey (i), F5'(0) C GCNU. There-
fore, by the excision and additivity properties of G-degree

q q
0 = G-Deg (Fs,Q) = Y _ G-Deg(Fy,,Ui) = ) _ G-Deg[(L, B, No,), Ui].

=1 =1

where 0; = 0|y;. The proof is completed.

We now assume that I' is an abelian group. In this particular case, the
local invariant G-Deg (Fy,,U;) can be computed from Theorem 2.2.1. Notice that
G-Deg (Fy,,Ui) # 0 if and only if there is a non-zero winding number pn;(vi, Ax).
We have the following corollary.

Corollary 2.5.2. Suppose that M C V€ x R? is such that all the V-singular

points in M are isolated and M is complete. Let S denotes the closure of
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the set of all non-trivial solutions to (GBP). Then for each bounded connected
component C of S we have GC=C, CNM is finite and if

CNAM = {(vi, \1),.--.(vg: AQ)}s

then for every n >0, 1 > 0 we have

q
3 €(vis Ae) - aivrs Ae) = 0.
k=1

Proof. By Theorem 2.5.1, we have that

q
) " G-Deg(Fo, , Ur) =0

k=1

where U is a special neighbourhood of (vx,Ar) and 6; is an almost comple-

mentary function on Ui. It follows from Corollary 2.4.3 that

q q
0= 3 G-Deg (Fuy, ) = 3 c(om M) ((oss M)+ Clows ) ).
k=1

k=1

Consequently,
q
) (v, M (v, Ax) =0
k=1
and the conclusion follows.
Recall that for each n > 0, i > 0, V,; denotes the G-isotypical component

of V with respect to the irreducible representation n; : ' x S — S! defined
by

@ni(1,6)z 1= bni(7)E"z, (1,€)€T xS, z€C

130



where 6, is an irreducible complex representation of I'. Recall also that for any
vE Vui\ {D}i the isotropy group G, = Gai = {(7:¢€)s (1.€") € Graph (am)}

We refine the corollary 2.5.3 into the following form for the convenience of

applications.

Theorem 2.5.4. Suppose that M C VExR? is complete such that all V -singular
points in M are isolated. Forany n >0, i 2 0, let S™ denote the closure
of the set of all non-trivial solutions in V. Then for each bounded connected

component C™ of S™ we have GC™ = C™. C"NM is a finite set and if

C™ N M = {(v1, A1), (v2, A2),. .., (v, Ag)}s

then
g 7
3" e(vi, Ak) - Hni(vr, Ai) = 0.
k=1

Proof. The proof for GC™ =C™ is obvious and C™ N M must be finite.

Consider f, n = (f,é)lvﬁ,,,:!g, where f(v, A) =v - eKQ(Bn,Nﬂ)(U A)
VG“xm

Moreover, VG"' is G-invariant and M C (V‘:"'“)‘}i's»:IR2 V‘; ‘R2. By Theorem
2.5.2,

Z G-Deg (fg," Up') =0

where UP is a special neighborhood in VGni x R? of (vi,Ax) and O = Oyp:.
Let U be aspecial neighborhoodin V xR? of (vg,Ax). It follows from Theorem
2.4.2 that the (Gyi)-component of G-Deg(fo,Us) is equal to e(vi, Ak )pini. On
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the other hand, from the construction of the G-degree, the (G,;)-component of
G-Deg( fﬁ“‘,u;") is also &(vg, Ax)pni- Consequently,

q
z: e(vh Al.')lhu‘('llh Ar) =0,
k=1

as desired.
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CHAPTER 3

GLOBAL HOPF BIFURCATION OF NFDEs WITH SYMMETRY

3.1. Introduction

In this chapter, we apply the equivariant bifurcation theory of Chapter 2
to establish an analog of the Alexander-Yorke’s global Hopf bifurcation theory
[8, 33, 34, 130] and develop a powerful tool in order to obtain the existence and
multiplicity of symmetric periodic solutions for the following one parameter family

of equivariant neutral functional differential equations (NFDEs)
d, y o ]
E[z(t) - b(z¢,a)] = F(z¢,a), a€R (3.1.1)

when the parameter a is far away from those values at which the linearization
of (3.1.1) has a pair of pure imaginary characteristic values, where z € R", 7 >
0, z¢(0) = z(t+6) for 8 € (—oo,7], Cr := C((—00,7]; R"), F and b: Cr xR —
R" are continuously differentiable and for a representation p: [ — GL(R") of
a compact Lie group I' on R"

F(p(7)p,a) = p(7)F (¢, @)

Wp(7)p,a) = p(7)b(p,a), YET, p€T (3.1.2)

where (p(7)¢)(0) = p(7)p(8) for 6 € [—oo,7], and b satisfies the Lipschitz

condition

b(p,a) = H(,a)| < k sup ]I|<P(-3) ~9(s)l, », ¥ €C; (3.1.3)

#E(—oo,T

for a constant k € [0,1).
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Our first idea is standard. By introducing the unknown period as an ad-
ditional parameter, we reformulate the NFDEs (3.1.1) into an equivariant coinci-

dence problem of the following type
L[r(z) ~ B(z)] = N(z), z€ExR? (3.1.4)

where L : Dom(L) C E — F is an equivariant Fredholm operator of index zero
between E and F which are isometric Banach representations of I' x §!, 7 is
the natural projection of Ex R? onto E and B:ExR? - E, N:ExR? 4 F
are such that (B, N) isan L-condensing T x S'-pair due to (3.1.2) and (3.1.3).
(3.1.4) and the application of a local bifurcation theorem of Krasnosel’skii type
and the global bifurcation theorem of Rabinowitz type we presented in Chapter
2 facilitates the proofs of symmetric (equivariant) Hopf bifurcation theorems for

NFDEs (3.1.1).

The main ingredient of the equivariant Hopf bifurcation theorems is the
symmetric crossing number which enters as follows. First, by a group-theoretic
argument, the characteristic equation is decomposed (decoupled) with respect to
the induced representation of I' on certain complex space. To each isolated center
and each decomposed characteristic equation, a crossing number is then assigned
by using the classical Brouwer degree of some analytic function, which, in turn, ap-
pears to be a component of certain equivariant degree. The local symmetric Hopf
bifurcation theorem says that the nontriviality of this crossing number implies the
from the origin, while by applying the additivity property of the equivariant com-
posite coincidence degree, the global symmetric Hopf bifurcation theorem claims
that any maximal symmetric continuum of local symmetric Hopf bifurcation points
is either unbounded (in the Fuller space) or contains a finite number of isolated

centers such that the sum of all crossing numbers at these centers is identical

138



to zero. This presents a generalization to neutral equations with symmetry of
the Alexander-Yorke's globa: bifurcation theorem [8] in the absence of symme-
try. Moreover, the crossing number we defined is intimately related to the index,
Hopf index and center index, which are introduced respectively by Nussbaum [130]
for retarded equations, Fiedler [59] for parabolic equations and Mallet-Paret and
Yorke [117] for ordinary differential equations. It appears that our global equivari-
ant Hopf bifurcation theorem provides a new insight into neutral equations with

symmetry and includes the above mentioned global results as special cases.

Our approach in this chapter is an enrichment of that of Geba, Krawcewicz
and Wu [70] for retarded equations. In comparison to the general theory of equi-
variant Hopf bifurcation for ordinary differential equations and some parabolic
partial differential equations in Golubitsky and Stewart [76], Sattinger [146], Ru-
elle [142], Schecter [150] and Fiedler [61, 62], our study provides an alternative
tial equations. Due to the topological nature of our approach, we do not need
the genericity conditions on vector fields [62], dimension restrictions on invariant
fixed point subspace and maximality assumptions on certain isotropy groups [76].
Moreover, we avoid the solution operator, the sophisticated decomposition and
perturbation theory of linear functional differential equations and certain generic
approximations as well as generic bifurcation pictures (see, for example, [8, 33, 34,
117, 130, 143]) which, to the best of our knowledge, have not been developed to
NFDEs (3.1.1) where delayed and advanced arguments are allowed to coexist (i.e.
neutral equations of mixed type) and symmetries are presented to complicate the

dynamics.

It should be mentioned that a considerable amount of research has been
devoted to the existence of periodic solutions for autonomous retarded functional
differential equations (see [27, 31, 33, 46, 55, 83, 84, 87, 103, 127-131, 161-163]

and the references cited there), but little has been done for neutral functional
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differential equations despite the fact that more and more neutral equations arise
from population dynamics, electrodynamics and control theory (see, for example,
the references cited in Chapter 4 and Chapter 5). Although the existence of
periodic solutions for nonautonomous neutral equations has been considered in
(23, 56, 86, 90, 107, 114-116, 136, 144, 145, 152, 154], that of nontrivial periodic
solutions for autonomous neutral equations is more difficult to study. Earlier trials
along this line are [2, 24, 25, 82, 107, 124, 141, 156] obtained by using asymptotic
power series expansion method and some later results can be found in [127] by a
global bifurcation technique and [134, 160] via local Hopf bifurcation theorems.
More recently, we have established in [110] a global bifurcation theory for general
neutral equations and multiplicity results on the existence of nontrivial periodic
solutions of a specific neutral equation have been carefuly studied. However, a
global Hopf bifurcation theory for NFDEs (3.1.1) in the presence of symmetry and
the existence of symmetric periodic solutions for NFDEs (3.1.1) are still void, to

the best of our knowledge.

We have included a rather extensive bibliography at the end of this chapter.
Since the literature on the subject of Hopf bifurcation is vast, the list of references
we give does not pretend to be exhaustive. Instead, it is sclective and the choice has
been made to the references that deal with Hopf bifurcation from a general point
of view and the equations under consideration involving certain symmetries. Some
attempts have also been made to include the most recent literature on symmetric
Hopf bifurcation theory. We refer to (1, 26, 27, 31, 43-45, 47, 79, 87, 103, 105,
119, 135, 153, 161-163, 173, 180] for a more complete literature on (local) Hopf
bifurcation in various cases in the absence of symmetry. For the treatment of
equivariant Hopf bifurcation theory, we refer to [12-16, 50-52, 61, 62, 70, 73 76,
96, 97, 106, 121-123, 142, 146, 150, 157, 164, 166-170, 172-174] and the references
cited there. The papers of Chossat et al. [28, 29], Cicogna et al. [36-42], Dancer
[48], Field [63), Gaeta [68, 69], Golubitsky et al. [72], Renardy {139], Sattinger
[147-149), which deal with equivariant bifurcation theory (not necessarily Hopf
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bifurcation), are also related to our topics. Finally, the global bifurcation results
are preferred and, therefore, the work of Alexander et al. [3-8], Alligood et al.
[9], Auchmuty [17], Chow et al. [30-35], Dylawerski et al. [53], Erbe et al. [55],
Fiedler [58-62], Ggba et al. (70, 71], Healey [89], Ize [94-97], Krawcewicz et
al. [110], Mallet-Paret et al. [117), Nussbaum [127-131] and Wu [179] will be

frequently cited.

The chapter is organized as follows. In Section 3.2, we discuss briefly the

symmetry of periodic solutions and show how the symmetry of a periodic solution

group TI' can be related to an isotropy group of this solution in a Banach space
of periodic functions and explain why we assume I' = Z, in our discussion.
Section 3.3 is devoted to the proofs of local and global symmetric Hopf bifurcation
theorems with I' = Z, . These bifurcation results are then applied, in Section
3.4, to the Rashevsky-Turing theory and bifurcation of a ring of identical cells
governed by neutral equations and coupled by delayed diffussion are considered.

equations of general type.

3.2. Symmetry of periodic solutions

Let M > 0 be an integer and C(R,RM) denote the Banach space of
norm ||| = supyen |¢(v)| for ¢ € C(R;R"), where |-| is the usual Euclidean
norm on R". If ¢ € C(R;R") and ¢t € R, then ¢, € C(R;R") is defined as
¢e(v) =p(t +v) forveR.

Consider the following neutral functional differential equations (NFDEs)

2 12(t) - e = Fz) (32.1)
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where F, b: C(R;RM) — RM are continuously differentiable mappings satisfying

the following assumptions:

(A1) F:C(R;RM) - RM is completely continuous and there exists a constant

k € [0,1) such that

(@) — b(¥)| < klle = ¥ll, @, ¥ € C(R;RM).

(A2) There exist a compact Lie group I' and an orthogonal real representation

p:T — O(RM) such that

b(p(7)w) = p(7)b(¢),
F(p(v)e) = p(7)F(p),

for all ¢ € C(R;RM) and v €T, where p(7)p € C(R;RM) is defined by

(p(7)e)(v) = p(7)p(v), vER.

In what follows, a system (3.2.1) possessing (A2) will be said to be equivariant

with respect to the linear action of I' on RM,

Suppose now that z = z(t) is a periodic solution of (3.2.1) with minimal

period p > 0. Let O, denote the trajectory of z, i.e.
0, :={z;; teR}CCRRM)
Define

H:={y€T; p(v)0; = 0:} (3.2.2)
K :={yeT; p(y)xo = o} (3.2.3)
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By the continuity of representation p, H and K are closed subgroups of T.
Moreover, from (3.2.2), for every h € H, there exists a unique ©(h) € R/Z such
that p(h)zo = ze(n)p- Note that, under assumption (Al), solutions of (3.2.1)

with the same initial values are unique (see also [83]). We must have
p(h)z¢ = zeron)py tER. (3.2.4)

By definition, the map © : H — R/Z is a continuous homomorphism since p is
the minimal period of z(t), where the (additive) group R/Z gets the induced
topology from R. (It follows directly from the Weyl Theorem [171] that H,K

and R/Z are moreover Lie subgroups and © is a Lie homomorphism).

Notice that T';, =I'z, for all t € R, where for any ¢ € C(R;RM), T, :=
{v €T; p(7)¢ = ¢}. We have K = ker ©. By the homomorphism theorem [171],
it follows that K is a closed normal subgroup of H and

Z,:= {D
R/

2-1} c R/Z

“ar (3.2.5)

| :I ll'-‘
\Ii'

H/KEImE)E{

N

Following Fiedler [62] and Geba et al. [70], we give the following definitions.

Definition 3.2.1. Let z(t) be a periodic sulotion of (3.2.1) with minimal period
p > 0. We call the triple (H,K,©), defined by (3.2.2)~(3.24), a symmetry of z
and the subgroup K a spatial symmetry of z.

Referring to (3.2.5), we specify the symmetry of z below.
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Definition 3.2.2. Let (H,K,0) be a symmetry of z. The periodic solution
z(t) is called

a concentric waveif H = K;
a discrete waveif H/K =Z,, 1<n <oo;

a rotating waveif H/K = Z.

In applying the G-degree to detect the existence of nontrivial solutions,
one usually tells a part of their symmetry, which means that the full symmetry
of those nontrivial solutions could be “bigger”. This observation gives rise to the

following definition.

Definition 3.2.3. Let (H,K,0) be a triple and (H,K,0) be a symmetry of
periodic solution z. We say that z has symmetry at least (H,K,0) if H>H
and Gl,-, = é

The symmetry of a periodic solution can be reinterpreted as an isotropy
group of this periodic function in the Banach G-space of periodic functions,

where G:=T x S actson W := L?*(S'; RM) by

(7,0y(t) = p(7)y(t +0), teR,yel, 0€S" and ye W

Recall that for a subgroup H C ' and a group homomorphism © : H —
S, the twisted subgroup H® := {(h,0(h)) €T x S'; h€ H}.

/2=

Analogous to [62, 70], we have the following reinterpretation of the symmetry

of a periodic solution of (3.2.1).
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Proposition 3.2.1. Let z(t) be a periodic solution of (3.2.1) with minimal pe-
riod p>0 and y € W is defined by y(t) = z(pt) for t € R. Then

(i) z has a symmetry (H,K,©) iff the twisted subgroup H® is the isotropy
group of y;

(i) z has symmetry at least (H,K,8) iff the twisted subgroup H® isa
subgroup of the isotropy group of y.

Proof. (i) Let (k,K,©) be the symmetryof z and G, be the isotropy group of
y. If (v,0) € Gy, then («,8)y(t) = y(t). By the definition of the action G' and
y(t), p(7)z(pt+ p8) = z(pt), which implies that p(v)z(t+ pf) = z(t) for t €R.
Note that p is the minimal period. From (3.2.2), ¥y € H and 6 = ©(v), ie.
(7,8) € H®. This proves Gy < H®. Similarly, H® < Gy. Hence Gy = HS,

The converse can be proved analogously.

(ii) is a direct consequence of Definition 3.2.3 and the statement (i).

We look for periodic solutions of (3.2.1) with a symmetry (H,,K,©), where
Ko < K is a normal subgroup of Hy. To this end, we consider Eq. (3.2.1)
restricted to the invariant subspace X := (RM)Ko of RM, The action T' on

RM induces an Hy/K action on X by

[holz = p(ho)z, z € X, ho € [ho] € Ho/K



and F, b: C¥o(R;RM) x R = X is equivariant under the induced action, i.e.

F([hﬂ]‘l@! il) = [hQ]F(‘P! ﬂ)v

¥([holp, @) = [Ro]b(p, a),

ho € [ho] € Ho/K, ¢ € C*°(R,RM),
where

CKo(R,RM) = {y € C(R,RM); p(8) € X for 6 € R}
Consequently, it suffices to consider the system (3.2.1) on the Hy/K-representation
space X.
Note that Ho/K is asubgroupof Z,, 1 <n < oo, Hy/K is either cyclic or

(Ho, K, ©), we shall restrict our discussion to the case where '=12Z,, 1 <n < oo,

in the subsequent sections.

3.3. Local and global Hopf bifurcation with symmetry

Let 7 > 0 be a given constant. We denote by C, the Banach space of
bounded continuous functions from (—o00,7] to RN equipped with the usual
supremum norm [|¢|| = 8upge(—oo,r) IP(9)| for v € C,, where |:| denotes the
Euclidean norm on RN, For z € C(R,RVY) and t € R, z; € C, is defined as
z4(0) = z(t + 8) for 6 € (—o0,7].

ential equations

%[z(t) — b(zs,)] = F(z1,a) (3.3.1)
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where z € RV, a € R, b, f : C; x R = RV are continuously differentiable

mappings satisfying the following assumptions:

(A1) F:Cr xR — RV is completely continuous and there exists a constant

k€ [0,1) such that

[, a) — b(p,a)l < klle—¥ll, @, vE€Cr, a€R.

(A2) There exists a real orthogonal representation p : Z, — O(RN) of the

b(p(7)p, @) = p(7)b(p, @),
F(p(7)p, @) = p(v)F(p, a),

forall ¢ € C;, a € R and ¥ € Z, where p(y)p € C, is defined as
(p(7)p)(8) = p(7)p(6) for 6 € (—o0,7].
(A3) F(0,a) = 0 for all @ € R and there exists an ay; € R such that
D.F(0,00) : RN — R¥ is an isomorphism, where F.:RN xR — RV,

the restriction of F' on RY, is defined by

F(z,a) = F(3,a), z€R", a€R,

Z is the constant map from (—oo,7] into RN with the value z € RV,

and D, F(0,ao) denotes the derivative of F with respect to z at (0, aq).

We call all solutions (0,a) of (3.3.1) the stationary solutions and (0, o)

a nonsiguler stationary solution. By linearizing Eq. (3.3.1) at the stationary
solution (0,a), we obtain the following characteristic equation

detc Aq (A\) =0 (3.3.2)

147



where Aq ()) isan N x N complex matrix defined as follows:

Aq (A) := A[Id — D b(0, a)(e* Id)] — D,F(0,a)(e* Id)] : CV — CV
D, b0, a)(e* Id) = (Dyb(0,a)(ee1),. .., Db(0, @)(e* en))
D,F(0,a)(e*Id) = (D F(0,a)(e¥e1), ..., D,F(0,a)(e*en))

eMe;(0) = eMej, 0 € (—o0,7],
and {e,...,en} is the standard basis of RY and CV :=RVN 4RV,

A solution X € C to the equation (3.3.2) is called a characteristic value of
the stationary solution (0,a). (0,a) is said to be a center of (3.3.1) if (3.3.2)

has a pure imaginary characteristic value, and it is said to be an isolated center if

We also make the following assumption.
(A4) (0,ap) is an isolated center of (3.3.2).

By (A4), there exist constants Sy > 0 and é > 0 such that detc Aq,
(iB) =0 and if 0 < |a — | < 8, then iRN{) € C; detc Aq (A) =0} = @.

Now choose constants b = b(ag,8) > 0 and ¢ = ¢(ag, o) > 0 such that
the closure of € := (0,b) x (fo — ¢, 00 + ¢) C R? 2 C contains no other zero of
detc Aa, (). Note that detc A, (A) is analytic in A € 2 and continuous in
a € [ag — 6, a9 + 6], detc Aqgxs (A) #0 for A € ON.

We ficst consider the case where Z, is finite, i.e, n < o0.

To begin with, identify C¥ with RV + iRM. The real orthogonal repre-

sentation p of Z, by (A2) thus induces a unitary representation, again denoted
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by p, of Z, on CV as follows

p(Y)(z +iy) = p(v)z +ip(7)y, z+iveCV, veZ
Let us identify Z, 2 {y€ C:9" =1} and let v, € Z, denote the generator of

Z,, ie v, =¢'*". Put T, = p(7a) : R¥Y = R" and denote by o(T,) € C the
spectrum of T,.

Define a subset of integers J = {j € {0,1,2,...,n - 1}; eifid

n € a(Th)}-
We have the following isotypical decomposition of CV (see also [53, 62, 74, 155])

cVN=pcy
jeJ

where Cf , j € J, is the direct sum of all one-dimensional Z,-irreducible sub-
representation spaces V of CV such that each restricted representation ply is

isomorphic to the irreducible representation of Z, on C given by

;280 ;271 N
plen )z=¢e"n2z, 2€C, jeJ

Note that b and F are Z,-equivariant by (A2). A, ()) : CV — CV is
Z,-equivariant for all « € R and A € C with Re A > 0. Therefore A,

(.,\)'C',;v C CV for each j € J. This gives a map for each j € J below
Baj (V) =80 Mgy, F €.

Recall that detc Agg1s (A) #0 for A € 02, We have detg Aagas,j (A) #0 for
A€ 80 and j € J. Consequently, there gives rise to a well-defined number

¢j(ao, fo) := degp(detc Aay-s,j (+), ) — degp(detc Aag+s,j (+),2)
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for each j € J, where degp denotes the classical Brouwer degree. We will call
Aaj (A) =0 the j-th characteristic equation and cj(ao,Bp) the j-th crossing

number of (ay, Bo)-

In order to apply the abstract bifurcation theorems from Chapter 2, we

introduce some Banach spaces and linear and nonlinear mappings between them.

First, let S! := R/Z be the compact Lie group of the umit circle and
consider Banach spaces V = L3*(SY;RN), W = C(S';R") and the Sobolev
space H!(S';RM). Define a linear action of G := Z, x S' on V (resp. W)

below

(n(7,0)z)(t) = p(7)=(t + 6), 333)
(1,0)€Z, xS", teS' and z€V (resp. W). o

Under the action (3.3.3), V and W ( and hence H'(S';RVM)) are isometric
Banach representations of G, where the representation is given by n : G —
GL(V) (resp. GL(W) ). Associated with these spaces and NFDEs (3.3.1) are the
following two linear maps

Lo: H'(SLRY) >V, (Loz)(t):=2'(t), z € H'(S,;RY), te S,

1
Ko: HY(SLRM) oV, (Koz)(t):= / z(s)ds, z € H'(S";RV), te S".
0
(3.3.4)
Note that differentiation and integration are linear operations. Lo and K; are

G-equivariant with respect to the action (3.3.3).

The properties of Lo and K, are summarized in the lemma below.

Lemma 3.3.1. (Lo -+ Ko)™! : V — W, the inverse of Ly + Ko, exists and is
compact. Moreover, (Lo + Ko) can be explicitly given by

t 1 1
[(Lo + Ko)~'z)(t) = /o 2(s)ds + /o (3-t+s)a(s)ds, z€V, teS'. (335)
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Proof. The compactness of (Ly + Ko)~! follows from the Sobolev inequality.

Remark 3.3.1. Using (3.3.5), we have that
(g+mr%m%rm=-%mﬂﬂ4¢

(Lo + Ko)~" cos2nt - Id = z%sinzfrt -Id, teS.

We now consider two nonlinear maps defined below.

By : W xR? - W, By(z,a,B)(t) = b(2,5,a), z€ W, (a,B) € R?,

No: W xR? = V, No(z,a, B)(t) = —~-F(z0.4,0), z o2 (3:36)
0 XR- =V U;’E‘E)(t)_ B ,F(;;igia), zEW, (QaB)ER ’

where 2z 5(0) = g’(t+§%9) for 6 € (—oo,r]. By definition, By and Ny are

G-equivariant with respect to the action (3.3.3).

The following lemma shows that we can reduce the periodic problem to an

equivalent coincidence problem.

Lemma 3.3.2. Finding a % -periodic solution of (3.3.1) is equivalent to finding
g£a g - ]

a solution to the G-equivariant composite coincidence problem
Lg(fﬁj - BD)(Ei o, 5) = Nﬂ(ga «, E)a (31 «, E) EW x Rgi (3*3'7)

where my : W x R2 = W s the projection. Moreover, (z,a,f) is a solution of

(3.3.7) iff z= f(z,2,B), where themap f: W x R> = W is defined by

f(z,a,8) = By(z,a,8) + (Lo + Ko) " [No + Ko(mo — By)|(z,a,8). (3.3.8)
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Proof. Suppose z(t) is a Z-periodic solution of (3.3.1). Let z(t) = r(2ft)
for te¢ R. Then z € W and (z,a,8) is a solution of (3.3.7) by the definitions
of Ly,Kp in (3.3.4) and By, N, in (3.3.6). Conversely, if z € W is a solution
to (3.3.7), then z(t) = z(-%t) is a %"—periodic solution of (3.3.1). This proves
the first statement. The second statement follows directly from the formulation of

a coincidence problem in Chapter 2 into a fixed point problem.

This completes the proof.

Remark 3.3.2. By Lipschitz condition (A1), we see that By is a G-equivariant
condensing map. Moreover, by (3.3.8) and the compactness of (Lo + Kp)™! from

Lemma 3.3.1, (Bo,No) is an Lg-condensing G-pair.

Following Chapter 2, we now give an explicit decomposition of W. First,
by restricting to the subgroup S!' of G = Z, x S', we have an orthogonal

representation of S! on W which decomposes isotypically as follows
W=WodoW, 6 OWid---

where W) is the space of all constant maps in W and Wy, k£ 2 1, is the vector
space of all functions of the form z sin 2kt + ycos2knt, t € S?, z +iy € CN.

We complexify W; by defining a complex structure below

(a + bt) - (zsin 27t + y cos 2mt)
= (bz + ay) cos 2nt + (az — by) sin 2nt, (3.3.9)
a+bieC and teS.
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ical decomposition reads
W, = @ Wi, J'€{0,1,2,...,n}.
jer

We identify W, with CV. Then the complex structure (3.3.9) on W; becomes
the natural complex structure on CV and the Z,-representation on W; is
isomorphic to the Z,-representation on CV. This implies that J/ = J and for

each jeJ

W, ; = {zsin2mt + ycos2nt, t€ S', 2 +yi € Civ}

ay,j(a, B) :=Id — D.By(0,a, B)
= (Lo + EQ)EI[D;ND(C); a, f) + Ko(mg — D, By )(0, e, E)]'“’hi

for j € J, (a, B) € R%. Note that H!(S';RN) c W. We have

ar,;(e, B) = (Lo + Ko)~}[Lo(Id — D, By(0, a, 8)) — D, Ny(0,a, 8)]|w, ;- (3.3.10)

Lemma 3.3.3. a, (a,f) = % Ao (18)|lwy,;-

Proof. Let z(t) = zsin2nrt+ycos2nt € W, j, t€ S, z+yi € Cf’ By (3.3.10)
and (3.3.5), it follows that

a1,j(a, B)2(t) = (Lo + Ko)"*[(2(t) — D;Bo(0, a, B)z(t)) ~ D, No(0, a, B)z(t))
=(Ln + Ko) ') ~ DK, a)éns = D F(0,a)z0
(Lo + Ko)~*[2(t) — 27 cos 2t D ,b(0, )z cosg +2m sin 27t D ,b(0, a)z sing)
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+ 27 sin 27t D ,b(0, a)y cosg +27 cos 2rt D b(0, a)y sing)
- i"‘(sin 97D, F(0, a)z cos + cos 2ntD,F(0, a)r sins)

- 2%( 27tD,F(0,a)y cosg —sin 27t D, F(0, a)y sing))

where cosg and sing, being elements of C((—o0,7],R), are defined by
cosgf = cos B8, sing@ =sinpPl, 6 € (~oo,7].
By Remark 3.3.1 and the complex structure (3.3.9), it follows that for t € S*,

ay,j2(t) =z sin 27t + y cos 2wt — sin 27t D, b(0, a)x cosy
— co8 27t D ,b(0, @)z sing — cos 2mt D b(0, a)y cosg
+ sin 27t D, b(0, a)y sing

+ %(cns 27tD,F(0,a)z cosg — sin 2wt D (0, o) sing)

+ %(— sin 27tD,F(0, a)y cosg — cos 2nt D, F(0, a )y sing)
=z sin 2wt + y cos 27t

= (sin27tD,b(0, a)z cosg + sin 27t D, b(0, ar)xi sing)

— (cos 27t D ,b(0, )y cosg + cos 21t D, 4(0, a)zi sing)

; (sin27tD,F(0, a)z cosg + sin 2rt D, F(0, a)zi sing)
i

5l

—(cos 2rtD,F(0, a)y cosg 4 cos 2t D, F(0, a)yi sing)
=z sin 27t + y cos 2wt — (D, b(0, a)(cosg +2sing)Id)(z sin 2wt + y cos 27t)

- i.(D@.F(Di a)(cosg +ising)ld)(z sin 2wt + y cos 2nt)

oF(0, a)(e*? Id)][z sin 27t 4 y cos 2t

[zﬁId - i8D,(0, a)(e'?Id)

-D
[zE(Icl D,b(0,a)(e? Id)) — D,F(0, a)(e'? Id))2(t)

m\l"‘ ‘m|‘ = E"W

Ba (iB)2(2).
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This proves the lemma.

Combining now Lemmas 3.3.1-3.3.3, we can prove the following (local) Hopf

bifurcation theorem with Z,-symmetry.

Theorem 3.3.4. Assume (A1)-(A4) hold. If there exists a j € J such that
c:{ao, o) # 0, then (ao,Bs) is a bifurcation point. More precisely, there is a

sequence of triples {(zk,ak,Pi)}i>, such that
(i) (zi,a, Bi) — (0,00,8) uniformly for t € R as k — oo;
(ii) zx(t) isa %F-periodic solution of (3.3.1) with a=ax, k=1,2,...;

(iii) p(E;'%i);Ek(t) =zi(t + :;ﬁ’:%) for teR, k=1,2,....

Proof. By Lemmas 3.3.1-3.3.3, we need only to show that (0,a0,/f) is a bi-
furcation point to the following G := Z, x S'-equivariant composite coincidence
problem
{ Lo(mo — Bo)(z,a,8) = No(z,0, )
(2z,0,8) € W x R?,
where (By, Ny) isan Lo-condensing G-pair by Remark (3.3.2). Let D(a,fo) =
(g = 6,0 + 6) X (Bo — ¢, B0 + ¢) C R? and put

M= {(01'235); (&,E) € D(QDSBO)} - {0} X Rz*
By the way of the G-action, M C W€ x D(aq,f). Moreover, M is a 2-
dimensional submanifold of W x D(aq, ) satisfying (A) and (B) in Section 2.4

and, by assumption (A4) together with the implicit function theorem, (0, a0, /o)

is an isolated singular point.
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To apply Theorem 2.4.4, we compute p;,(0,a0,00). First, by definition of
p1,j(0, a0, B9) and Lemma 3.3.3, we have

h,j : = degg(detca, (), D(ao, Fo))
= degg(detc 41,5 (+), D(ao, Bo))-

On the other hand, a lemma of Erbe et al. [55] implies

degp(detc Ay,; (+), D(ao, Bo))
- degg(detc Aog—5,j ()’Q) - degg(detﬁ DNag+é,j (+),9).

Therefore (0, a0,80) = cj(ag,Bo) and (0,a0,5) is a bifurcation point if
cj(ao,Bo) # 0, by Theorem 2.4.4. This shows (i) and (ii).

To see (iii), let z(t) = zsin 27t + ycos2nt € W, ;. We have

p(e n )g(t) =e' (:1: sin 27t + y cos 27t)
=(cos = 2j 4 isin ll)(;r; sin 27t + y cos 2xt)
=[z cos 2=¥ sin 2wt + y cos —1 cos 27t
+ sin 2 (I cos 2t — y sin 27t))
=[xz sin(27t + 2: ) + ycos(2wt + -%1)]

=2(t+1)

where we used (3.3.9). Note that z(t) = :1:(%‘1?). (iii) follows. This completes the

proof.

We now consider the case where I' = S'. The action of 5! on RV in-

duces an action on CN. With respect to this action (representation), we have the

156



following isotypical decomposition of CV (see also [155])

where m is a certain positive integer, C;v , 1 € j < m, is the direct sum of all
one-dimensional S$'-irreducible representation spaces V of CV such that the

representation of S' restricted to V' is isomorphic to
pj(eiztﬂ)g _ gii'imjﬂgs z€ C, Ei’?fé € 5-1i

for some integer n; > 0. Putting

Do (A) := A[Id — Dyb(0, a)(e* Id)] — D, F(0, a)(e* Id)),

Baj (V) =80 Wiey, 1S5 <m,

under the assumptions (A1)-(A4), we can also define a j-th crossing number for

the j-th characteristic equation Agq,; (A) =0 as follows
¢j(ao, fo) := degp(detc Aay—s,; (+), ) — degp(detc Aao+s,j (+), )
for each j € {1,2,...,m}, where § and Q are the same as before.
Similarly, one obtains the local Hopf bifurcation theorem for the §!-symmetry.
Theorem 3.3.5. Let Z, = S' and (A1)-(A4) hold. If cj(ap,Bo) #0 for some

j € {1,2,...,m}, then there exists a sequence of triples {(zx(t),ax,Bk)}3, such

that
(i) (zx(t),ax,Pr) — (0,a0,P0) uniformly for t e R as k — oo;

(ii) zk(t) isa 3T-periodic solution of (3.3.1) with a =ay for k=1,2,...;
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(iii) p(e'?™)zi(t) = za(t + 57n;0) for ™ € §' and teR.

Proof. Proof is essentially the same as that of Theorem 3.3.4. We therefore omit

it.

Remark 3.3.3. From (iii) of Theorems 3.3.4 and 3.3.5, we see that the spatial
symmetry of the bifurcating periodic solutions zx(t) has decreased to the sub-
group Zg with d = ged(j,n) when n < o0 or Z,, when n = co. This type
of periodic solution has been refered to as rotating waves in the literature and
14], Ashwin et al. [15-16], Fiedler [62], Golubitsky and Stewart [75], Golubitsky,
Schaeffer and Stewart [74] and Smith [159] for ordinary differential equations and

Geba, Krawcewicz and Wu [70] for retarded functional differential equations.

The periodic solutions obtained by Theorem 3.3.4 and 3.3.5 are only of small
amplitude. To see its global continuum, we apply now the global bifurcation
theorem from Chapter 2. For the sake of convenicnce, we introduce the period p

of periodic solution as an additional parameter and rewrite (3.3.1) as

. .
F12(8) = bzt &r, )] = pF (20, 5 01, (3:3.11)

where 2z 2x(0) = z(t + 229), 0 € (—oo, 7). Using the same notation as in (3.3.6),

we can define

Bo(z,a,p) £ By(z,a, %,;

No(z,,p) & No(z,0, %), 2 € C(S';RY),
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and, consequently, we obtain the following composite coincidence problem which

is equivalent to (3.3.11)
Lg[mo — Eg](s, a,p) = ﬁg(:,a,p), p>0. (3.3.12)
We can further reduce (3.3.12) to a fixed point problem below

= f(z,a,p) (3.3.13)

M‘
ll

where f:C(S';RM) x R x (0,00) — C(S*;R") is defined by
f(z,a,p) = Bo(z,a,p) + (Lo + Ko)~'[No + Ko(mo = Bo))(z,,p), (3.3.14)

and Lo, Ko and mo are the same as before. Consequently, z € C(S";RV)
is a 1l-periodic solution of (3.3.11) if and only if 2 solves (3.3.13) for some

a € R, p > 0. Moreover, (Ep,ﬁn) is also an Lg-condensing G-pair.

We need the following “global” assumptions.

(GA3) F(z,a)=0 with z € (RN)?*" ifandonlyif z = 0. Moreover D;F(0,a) €
GL(RY) for every a € R.

(GA4) The set A := {a € R; the stationary solution (0,a) has pure imaginary
characteristic values } is discrete.
For every j € J (when n < oo)or 1 <j<m (when n = oo ), define
now a subset of C(S*;R"Y) x R? by

S’ = Cl{(z,~,p); z is a 1-periodic solutionof (3.3.11) such that
p(e' ¥ 2(t) = 2(¢ + £) if n<oo or
p(e2™2(t) = 2(t + N;8) if n=oo}.
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Put

M :={(0,a,p); a €R, p >0} Cc C(S';RY) x R%.
We obtain the following global symmetric Hopf bifurcation theorem.

Theorem 3.3.6. Let (A1) (A2) and (GA3) (GA4) hold. If there exists an integer
j such that 87 has a bounded connected component C’, then C'NM is a finite
set and

Y Cile,E)=0. (3.3.15)
(0,a,p)ECINM

Proof. First note that, under the assumption (GA3) and (GA4), zero is a regular
value of the restriction fo := flwexmxn, : WG xR x Ry — WC, where f is
given by (3.3.14) and W = C(S';RY), G := Z,xS". Consequently, f;"'(0)=M
is a 2-dimensional submanifold of W& xR? such that M C f~'(0). This implies
that M verifies the conditions (A) and (B) from Section 2.4. The set M s

referred to as a trivial (stationary) periodic solution set of (3.3.11).

By definition of f in (3.3.14) and the calculations in Lemma 3.3.3, we sce
that (0,a,p) € M is a singular point if and only if & € A and 2% is a
characteristic value of (0,a). Therefore, (GA4) implies that every singular point
is isolated. Moreover, (GA3) implies the condition (H) in Section 2.5 and for the

bounded component C/ of S, it follows from Appendix that
inf{p: (z,a,p) €’} > 0.

Consequently, we can assume the problem (3.3.12) is well posed on the whole

space W xR? (see also [33, 34, 55, 110]). Note that every singular point (0,a,p)
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is fixed under the action of G. The theorem and (3.3.15) follow directly from
Theorem 2.5.4. This completes the proof.

Remark 3.3.4. Global Hopf bifurcation, disregarding the symmetry aspects, has
been considered by Alexander and Yorke [§], Chow, Mallet-Paret and Yorke [34],
Ize [94, 95] and Mallet-Paret and Yorke [117] for ordinary differential equations,
Chow and Mallet-Paret [33] and Nussbaum [130] for retarded equations and Fiedler
[59, 60] for Volterra integral equations and parabolic equations. More recently,
an S!'-degree approach has been provided by Ge¢ba and Marzantowicz [71] and

ordinary and functional differential equations (with infinite delay and possibly
of anticipatory type), which is extended next in [110] to neutral equations. By
ignoring the symmetry in the equations, Theorem 3.3.6 thus provides an analog,
for neutral equations, of the above mentioned global Hopf bifurcation theorems.
For a detailed comparison of the S!-degree approach with earlier ideas by Mallet-
Paret and Yorke, Nussbaum and Fiedler, we refer to [55, 110].

Remark 3.3.5. For a symmetric global Hopf bifurcation, we mention the book
by Fiedler [62], where a general global Hopf bifurcation theory with Z,, 1 <
n < 0o, has been developed for ordinary differential equations. The proofs are by
generic approximation and rather analytic. For a specific Z,-symmetry of ring
coupled oscillators, Alexander and Auchmuty [6] have considered phase-locked
global (Hopf) bifurcations. By using their G-degree, Gegba, Krawcewicz and Wu
[70] obtained a global symmetric Hopf bifurcation theorem for retarded functional
differential equations with symmetry. Our results in this section extend those of
[70] to neutral equations. We postone a brief comparison of Theorem 3.3.6 with
similar ideas by Fiedler [62] to Section 3.5 and discuss phase-locked oscillations
in neutral equations in Section 3.4, where most of the results of Alexander and

Auchmuty [6] are extended to neutral equations via Theorem 3.3.6.
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Remark 3.3.6. As far as the local Hopf bifurcation theorem is concerned, the
advantage of the topological approach is obvious. It allows for multiple and/or
integer multiple characteristic values to exist. Also, it is permitted that the purely
imaginary charateristic value goes across the imaginary axis with a zero speed.
More precisely, let A(a) denote the characteristic value such that A(ag) = fyt.
It follows from the property of Brouwer degree that if

ddc'ﬂ[RﬂA(Q)”u=an = 0 fﬂ! n= 112, sy k - 1‘ B.Ild

d* _ |
ZorIReA(@)lla=as # 0,

where k > 0 is an integer, then the crossing number c(aqg,f8) #0 if k is odd,
implying (0, @0, B0) is a Hopf bifurcation point. When k is even, c(ao,f0) =0

original theorem of Hopf (see [119] for the English translation) is also considered
by Chaffee [26, 27] and Freedman [66], to name just two.

Unfortunately, another aspect of this topological approach comes out as a de-
stability is an important issue in many applications. A plausible explaination of
this fact may be as follows. In our local Hopf bifurcation theorem, only linear
terms are used in determining whether or not a point is a bifurcation point (in the
definition of isolated center and the calculation of G-degree via linear approxi-
mations). However, it is known from many calculations that stability of periodic
solutions in Hopf bifurcation relies heavily on the higher order terms. See, for

example, Hassard et al. [87] and Marsden et al. [119] for more details.



3.4. An application to the Rashevsky-Turing Theory

In attempting to construct a metaphor for morphogenetic behavior in bio-
logical systems, Rashevsky and, independently, Turing have developed a reaction-
diffusion theory of morphogenesis [138, 140, 165]. In this theory, a mechanism
of coupling and diffusing among cells is suggested as a possible basis for spatial
organization and temporal oscillations in morphogenetic processes. Among vari-
ous geometrical arrangement of cells, a simple and illuminating configuration of a
ring of identical cells has been proposed and studied by Turing [165]. This ring,
as it is now called Turing ring, provides a great variety of models for many sit-
uations in biology, chemistry and electrical engineering. Moreover, Turing ring
brings about mathematically tractable systems which exhibit a symmetry of a
group Z,, 2 <n < oo, and a rather extensive literature now exists on the study
of discrete waves and oscillations within groups of cells-the genesis of form and
rhythm. We refer to [3-6, 15, 16, 20-22, 62, 70, 74, 75, 77, 78, 93, 125] for the
Hopf bifurcations in a ring array of coupled oscillators and [19, 49, 88, 99-102,
104, 108, 109, 118, 120, 125, 131, 132, 137, 158, 165, 169, 170, 175-178] for many

other considerations.

In this section, we continue the above mentioned studies by applying our
symmetric Hopf bifurcation theorem to a Turing ring of coupled identical cells. We
propose models of functional differential equations of neutral type as the kinetics
and consider the delayed coupling and diffusion in the system. We will show how
the temporal delay (both in kinetics and coupling) affects the type of oscillations
that may be observed in the system. In particular, we shall prove the existence of
phase-locked and synchronous periodic solutions in these ring-structured neutral

systems.

We emphasize the significance of temporal delays in the coupling between

cells, since in many chemical and biological oscillators (cells coupled via membrane
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transport of ions, etc) the time needed for transport or processing of chemical
components or signals may be of considerable length. While such delay equations
in mathematical biology have been extensively studied in the literature (see [10,
11, 46, 60, 77, 98, 112, 113] for just a few), the study of the effect of temporal
delays on oscillations of coupled oscillators is not much known, to the best of our

knowledge.

Let N be a positive integer. We consider now a ring of N identical cells
that are coupled by diffusion along the sides of an N-gon. We assume the siate
(or morphogenetic state) of the k-th cell at an instant of time is completely
specified by the value of one state variable at that instant. This state variable,
denoted by u*, will be called morphogen; this may be regarded, as it was by

Turing [165], as the concentrations of specific chemical substances. Assume also

the k-th morphogen u*(t) of the k-th cell obeys the following kinetic equation
d ok N — £k e ’
E[u (t) - b(ui !'1)] = f(ut ,a), 1<k<N, (3.4.1)

where t € R denotes the instant of time, o € R is a parameter and b, f : C, :=
C((—o0,7],R) = R are continuously differentiable functionals which represent

the kinetics within each cell.

Note that if coupling between cells occurs, the morphogen transformations
follow and thus cells interact. Note also that a ring coupling is nearest-neighbor
so that interaction occurs only between any neighboring pair. Assume now the
linearity of the coupling (diffusion) between adjacent cells and take into account
the effect of diffusion taking place after a certain amount of time. We arrive at a

system of neutral functional differential equations

%[u"(t) — buk, )] = f(uk, @) + K(a)(uh*! = 2ub +ub™)
k=1,2,...,N, (mod N) (3.4.2)
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where K(a):C, — R is a bounded linear functional and the mapping a € R —
K(a) € L(C,;R) is continuously differentiable. K(a) represents the coupling

rate functional and the coupling term
K(a)(f* — uf) + K(a)(ub™" — ub) (3.4.3)

in (3.4.2) is assumed to obey the ordinary law of diffusion, i.e. the diffusion of
a morphogen between the two cells is proportional to the difference in morhogen

concentration.

Suppose now that f(0,a) = 0 for all a € R. So (0,...,0,a) is a ho-
mogeneous stationary solution of (3.4.3) and the linearized equation of (3.4.3) at

(0,...,0,a) reads

d , -
‘—i?(:z:"(t) — D,b(0,a)z¥) = D, f(0,a)zf + K(a)[z¥* — 22% 4 2§
1<:< N, (mod N), (3.4.4)

where D,b(0,a) and D,f(0,a) denote their respective derivatives with respect
to ¢. Consequently, Eq. (3.4.4) gives the characteristic equation of Eq. (3.4.3)

as follows
det Ao (A) =0 (3.4.5)

where foreach a €R, A € C, Aq (1) : CN — CV is given by
Ao (A) = diag(A[l — Dyb(0,a)(e™)]) = Dpf(0,a)(e™) — 8(A, @)  (3.4.6)

in which the discretized Laplacian 6()\,a): CN — CV is defined by

{6(), 0)z}x = K(a)[e* (2% — 22F + 2F71)]
1<k <N, (modN),
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for z =(z!,2%,...,2N) e CN.

Let £=¢¥ €C. Then ¢V =€ =¢(V-J forany 0<j <N —1. Define
for each 0 < j < N —1 a complex vector space

CY = {(¢N-D3, =05, ¢4 & 1Tz, ze€R). (3.4.7)

It follows that
cVN=Cleo+CVo®+---®+CH_,. (3.4.8)
Put
g(A, @) := A[L — Dyb(0, a)(e*)] = Dy £(0, a)(e*). (3.4.9)
For any r € R, j € {0,1,...,N -1} and k€ {1,2,...,N}, we have
(Ba (A(ENDT,eN=20, 4,60, 1) )
= [g(}, c,!)g(N-k)j + Ic(a)c’\'(ﬁ(”""“)j - 2£(N—k)j + €(N—k—l)j)]1.
= [g(\, @) + K(a)e* (& + £~ - 2)N Rz

= [g(), @) + 2K (a)e (cos 2t — 1))V ~Rig

= [g(\, @) — 4sin? ’T'ViK(a)e"']f(N—k)jz, k (mod N). (3.4.10)

This implies that A, (A)'c}v - C;-V and, under the decomposition (4.4.8) of
CV, Aqs ()) is a diagonal complex matrix, i.e. Aq (A) is similar to the diagonal

matrix
diag[g(), @) — 4asin? %K(a)c’\' Nl

=0

Thus we have reached the following proposition.
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Proposition 3.4.1. Let g(A,a) be given by (3.4.9). Then
det Aa (A) = V7' [g(), ) — 4asin? %E(a)e*]

and, consequently, A € C is a characteristic value of (0,...,0,a) iff there exists
a j€{0,1,...,N —1} such that

pi(A @) == g(A a) — 4 sin? %K(a)g* =0. (3.4.11)

Remark 3.4.1. We call (3.4.11) the j-th characteristic equation of (3.4.2). Note
that sin® %,1 = sin? ﬂ%;’i forany j € {0,1,...,N=1}. It follows from Proposi-
tion 3.4.1 that every zero of pj(A,a), j #0, %, is of even multiplicity. This is due
to the symmetry in the system, which forces characteristic values to be multiple.

See also [16, 74-76, 164].

Let us now consider the symmetry aspect of (3.4.2). We claim that Eq.
(3.4.2) has a symmetry of the dihedral group Dp. To see it more clearly, note
that Dy is generated by a rotation r and a reflection s such that

(rY=2Zy, ()%, and srs=r"!

(see [155]). Define now a real orthogonal representation p: Dy — O(RY) by

(p(r)z)k = Tiq1,

: : ) i , . (3.4.12
(p(s)z)y =zn_k, k=1,2,...,N, (mod N), z € RV, )

Note that all N cells are identical and the diffusions are the same. Under the
representation (3.4.12), Eq. (3.4.2) is Dn-equivariant with respect to p.

We now apply Theorem 3.3.4 to find discrete waves in Eq. (3.4.2). To this
end, we take Hp := (r) = Zy and Ko = {id}. Therefore Hy/K, ¢

R

= ZN isa

167



cyclic factor of the dihedral group Dy. Now (RMN)®o = R¥. The representation
p induces a subrepresentation, again denoted by p, of Hy = Zy on RM. We
use identification CV 2= RN 4+ iRN and thus p gives a unitary representation of

Zy on CNV.

Recalling the representation p in (3.4.1°) and the definition of the complex
space Cf’ in (3.4.7), we have for any z € R

p(r)(EN DI EIN-DI g4 e 1)

- (ﬁ(N-z)j,f(N_s)j,...,Ej,l,E(N—”'j)TJ}
= g (WG gN=DS g2 e )Ty
That is,
p(r)z=¢9z= ez, ze C;v

Consequently, each C;-V defined by (3.4.7) is an irreducible representation space
of p and the decomposition (3.4.8) is the isotypical decomposition of CV with
respect to the subrepresentation p of Zy. If we follow the same notation as in
Section 3.3, this implies that J = {0,1,2,...,N — 1} and, by (3.4.11), the j-th
characteristic equation is of the form

Aalvj (A) =Aa (A)IC}V =pJ(A7a) = 01 j E {0!1!23' "-QN = 1}-

By applying Theorem 3.3.4, we have the following theorein.

Theorem 3.4.2. Let b and f satisfy (Al). Suppose that there exist positive
numbers oy, fBo,€,6 and j € {0,1,2,...,N — 1} such that

(i) 9(0,a) — 4sin? Z K(ao) # 0;
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Qo

(b) pJ(lﬂ’ao)=0 for some (aaﬂ)e [00—51Q+E]x[,ﬁﬂﬂgsgﬂ+5] iff a
and B = Bo;

(iii) pj(u+iv,a0) =0 for some (u,v) € I with Q :=(0,€) X (Bo — 6,0 + 6)
if u=0 and v = fy;

(iv) degn(p;(-, a0 — ), ) # degn(p;(-, a +¢€),2).
Then there exists a sequence of triples {(zi,a1,01)}{2, such that
(a) (zi(t),eu,B1) = (0, a0,P0) uniformly with t € R as I — oo;
(b) z(t) isa %-periodic solution of (3.4.2) with a=ay, 1 =1,2,...;

(c) zf(®)=2}'(t+ % - 4) forall t€R and 1=1,2

o

Proof. Note that (i) implies the assumption (A2) and (ii) and (iii) gives (A4).
The theorem follows by appealing to Theorem 3.3.4.

For every j € {0,1,2,...,N —1} we now define a subset

S7 = Cl{(z, a,p); 2(t) = z(;—,) is a p — periodic solution of (3.4.2) with
¥ Y(t) =zt - 4p), t€R, Fk(modN)}

C C(S";RM) x R
Put
M :={(0,a,p); @ €R, p>0} C C(S;RN) x R%.

Theorem 3.4.6 implies the following global Zy-symmetric Hopf bifurcation the-

orem.
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Theorem 3.4.3. Let b and f satisfy (Al). Suppose that there exists j €
{0,1,...,N — 1} such that

(i) 9(0,a) # 4sin®’ ¥ K(a) forall a€R;
(ii) the set B:= {a € R; pj()\,a) =0 has pure imaginary roots } is discrete;

(iii) ¥ (0,0, pyem-(de8B(P;() @ —€), ) — degp(v,(-,a +¢),Q)) # 0 for any finite
subset M* of {(0,a,p); &,%*,e,6 satisfy (i) and (iii) for p;(A,a) in
Theorem 3.4.2.

Then there must exist an unbounded connected component C’ of S’ such that

C'NM +# 2.

We end this section with several remarks.

Remark 3.4.2. Following Alexander and Auchmuty [6], we call the periodic so-
lution obtained in Theorem 3.4.2 synchronous oscillations in the case where j =0
and phase-locked oscillations otherwise. Intuitively, synchronous oscillations oc-
cur when all the morphogaas oscillate in phase and phase-locked oscillations are
those where each morphogen oscillates just like the others except not necessarily
in phase with each other. We refer to [6, 14-16, 62, 74, 80, 81, 159] for more

delailed discussion in the case of ordinary differential equations.

Remark 3.4.3. We are only concerned with discrete diffusion on the Turing ring
in the Rashevsky-Turing theory. For the continuous reaction-diffusion case, there
exists an extensive literature. We refer to [61, 62, 64, 79, 100, 108, 120, 125, 133,
159, 165, 169, 170] for more details. On the other hand, several authors have also

considered the Turing ring for maps, where the kinetics equations are described
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by discrete dynamical systems. See [99-102, 175] for the applications of Turing

ring in chemical reactions.

Remark 3.4.4. For simplicity, we have assumed the isotropy of coupling between
N cells on a ring, i.e. the forward and backward “pulls” are the same. Similar
results can also be obtained for the anisotropic coupling, in which the diffusion

term (3.4.3) is replaced by
K(a)[zk — 2¥] + a*K(a)[zF~"! ~ z}] (3.4.13)

where a — 1 is a measure of the anisotropy. The coupling term (3.4.13), where
the temporal delay is neglected, has been used in modelling the electrical activity

in small intestines (see Kopell [108], Kopell and Ermentrout {109]).

Remark 3.4.5. In many applications Turing ring seems very rarely seen. How-
ever, if we just use part of symmetry of the system, Turing ring appears quite
often. In the work of Hadley et al.[80, 81] on phase-locking of Josephson-junction
arrays, we believe our theory can be applied (by using only the cylic group Z, as
a symmetry, instead of the full symmetry of the symmetric group S, ). See also
Aronson et al. [13, 14]. Similarly, in many compartment systems [98] or coupled
if we consider only part of the coupling or connections (see Smith [159] and Swift

[164] for such typical examples).

3.5. Extensions and discussions

We extend the symmetric Hopf bifurcation results obtained in previous sec-
tions to two variants of NFDEs (3.3.1), i.e. to functional equations and neutral

functional differential equations of general type. We will use the same notation
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and terminology as in Sections 3.3 and 3.4. Many details will be omitted to avoid

repetitions.

We first consider the one parameter family of functional equations

z(t) = F(z,a) (3.5.1)

where z € RV, a € R, F:C: xR — R" is a continuously differentiable mapping
satisfying the following conditions:
(B2) There exists a real orthogonal representation p:2Z — O(RV) such that F

is Zy-equivariant;
(B3) F(0,a)=0 forall a €R.
Any (0,a) € RN xR such that Id— D,F(0,a) is an isomorphism will be called

a nonsigular stationary point. By linearizing Eq. (3.5.1) at (0,a), we obtain the

following characteristic equation

]
=

detc Aq (M) (3.5.2)
where

Ao (A) :2 Id — D,F(0,a)(e*Id) : C¥ — CV. (3.5.3)
With (3.5.2)-(3.5.3) in mind, we can also make the following assumption.

(B4) There exists an ag € R such that (0,a0) is an isolated center of (3.5.1).

Similarly, we can find fo, b, ¢, § > 0 such that for each j € J

&j(aq, Bo) = degp(detc Aay-s,5 (), ) — degp(dete Aqys,j (+), ) (3.5.4)

172



is well-defined, where € := (0,b) X (8 — ¢, fo + ¢).

Let W := C(S';R") and define a nonlinear map No: W x R? > W by
No(z,a, ﬂ)(t) = F("".ﬂ?“vﬁ) € W x R%. (35'5)

Then Ny is Zn x S'-equivariant with respect to the action (3.3.3) of Zy x St.

We have the following lemma.

Lemma 3.5.1. z(t) is a %f-periodic solution of (3.5.1) if and only if 2(t) =

z(gﬁ”-t) is a solution to the Zy x S'-equivariant fixed-point problem below

z= No(z,a,8), (z,a,8) € W x R% (3.5.6)

Proof. It is straightforward.

Let W,,; denote the same component in the isotypical decomposition of W

for each j € J. We define

ay,j(a, B) := [Id — D:No(0, &, B)]lw, ;- (3.5.7)

Lemma 3.5.2. a, j(a, B) =04 (iﬂ)lwu .

Proof. Let z(t) = zsin2wt + ycos2nt € W,,;, where t € S?, z +iy € CV.

With the complex structure (3.3.9) in mind, we have

a,j(a, B)z(t) = 2(t) — D F(0,a)ze,
=2(t) — sin 27t D ,F(0, a)y cosg + cos 2xt D, F(0, o)z sing
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— cos2ntD,F(0, a)y cosg + sin 2at D, F(0, a)y sing
=2z(t) — [sin 27t D, F(0, a)z cosg + sin 2wt D, F(0, a)zi sing]

z(t) = D, F(0, a)(e'? Id)(z sin 27t + y cos 2nt)

=[Id ~ D,F(0, a)(eP Id))z(t)
= Aa (18)z(t).

This establishes the lemma.

We therefore obtain the following local Hopf bifurcation theorem with Z,-symmetry

for functional equation (3.5.1).

then (ao,fBo) is a bifurcation point. More precisely, there is a sequence of triples

{(zksﬁhﬂk)}g?;l such that
(i) (zx(t),ax, Bx) — (0,0, B0) uniformly for t € R as k — oo;
(i) zx(t) isa %speriadic solution of (3.5.1) with a = ay, k =1,2,...;

o 2. . )
(iii) p(e N ")zi(t) = z(t + %%%) for teR, k=1,2,....

furcation theorem (by identifying (3.5.6) as an equivariant coincidence problem
with Lo = Id, B, =0 and (Bp,N,) is an Lo-condensing Zy x S!-pair in a

neighbourhood of zero), as in the proof of Theorem 3.3.4.

Next, we consider the neutral functional differential equation of general type

z'(t) = F(zy, 24, a) (3.5.8)
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where F:C, x Cr x R = R" is continuously differentiable with F(0,0,a) = 0.

We assume

(C1) there exist a constant k € [0,1) such that

IF(@,KLP],C!)EF(@,‘],L'Z,E)IEk"fp&iﬁ", ¥, ifbli d’ZEera QER;

F(p(v)e, p(1)¥, @) = p(7)F(p, ¥, )
for all ¢, € Cr, a €R and v € Zy,;

(C3) there exists an ag € R such that D;F(0,0,a) is an isomorphism, where

F:RN xRN x R = RV is the restriction of F on RY xRV xR.
The characteristic equation of (3.5.8) now reads as follows
detc Aq (A) =0 (3.5.9)
where
Ao (A) := A[Id—DyF(0,0,a)(e* Id)]— D, F(0,0,a)(e* Id) : CN¥ — CV. (3.5.10)

Referring to the characteristic equation (3.5.9), we also assume

(C4) (0,a0) is an isolated center of (3.5.8);

]

F(0,0,a) €

(GC4) F(z,0,a) = 0 with z € (RN)2» iff z = 0. Moreover,
GL(RVN) for every a € R;

175



(GC5) The set A := {a € R; the stationary point (0,a) has pure imaginary
characteristic values with respect to (3.5.9)-(3.5.10) } is discrete.

Let j € J. We put
Ba,j (A) :=8a (Mlcy-
Similarly, the j-th crossing number of each (a,f) € A is defined as
Cj(ao, Bo) = degp(detc Aao-s,j (+), ) — degnp(detc Aag+s,j (+),2)
for some fy,6,b,c¢>0 and Q:= (0,b) x (Bo — ¢, By + ).

Theorem 3.5.4. Assume (C1)-(C4) hold. If ¢j(ao,fBp) # 0 for some j €
J, then (ag,Bo) is a bifurcation point of (3.5.8). Moreover, the bifurcating

2 ,
%—’:-periodic solution zi(t) has the symmetry p(e'Ww)z(t) =z(t+ %%—,‘7), where

(zk(t), ok, Bi) — (0,a¢,P0) uniformly for t € R as k — oo.

Proof. We only give a sketch of the proof.

Let z(t) = 2( -f;t) for t € R. Then finding a gﬂl-periﬂdic solution of Eq.
(3.5.8) is equivalent to finding a solution to

Ht) = 2 F(21,6, £21,4 @) (3.5.11)
where 2,5 is defined as before and z; 4(8) = 2'(t + -2%0) for 0 € (—oo,7).
Let V =C(S;RN) and W = C'(S';R"). We define

Lo: W -V, Loz(t) = 2'(t), z€ H'(S;RV), te §'
l -
Koy : W =V, Kyz(t) =/ z(s)ds, ze V, te S
0
No: W xR? 5 V, No(z,a,B)(t) := 3 F(z4, £ 21 g,0).
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As before, V and W are Zy x S!-representations and Lo, Ko and Ny are
all Zy x S'-equvariant with respect to (3.3.3). Moreover, Eq. (3.5.11) reduces

to the following Zy x S'-equivariant coincidence equation
Loz = No(z,a,8), (2,0,8) € W x R%, (3.5.12)

It follows from [90, 144, 145] that (0,Np) is an Lo-condensing Zy X S'-pair
under the assumption (C1) and (C2).

Now formulating (3.5.12) into a fixed-point problem gives a map
a(a, B) = Id = (Lo + Ko) ™' [Ko + D:No(0, a, 8)]
and considering the isotypical decomposition of W leads to the map

al,j(as B) = a(a, ﬁ)lwl;
= (Lo + Ko)™*[Lo = D:No(0, e, 8)]lwi,

Note that
D, No(0,a,8) = F D, F(0,0,a)z,5 + Dy F(0,0,a)z 5.
It follows that for z = zsin2nt +ycos2nt € W and j € J

(a1,;)2(t) = (Lo + Ko)~V[2'(t) - 75 D o F(0,0,a)z 5 — Dy F(0,0, a)z 4]

- ﬁ? Ao (Bi)2(t).
Therefore ay,j|w, EL Aa (i,8)|lw, ;. A similar argument to that of Theorem

3.3.4 implies (ap, ) is a bifurcation point.

This completes the proof.
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Under additional global assumptions (GC4) and (GC5), a global Z,-symmetric
Hopf bifurcation result for Eq. (3.5.8) can also be proved analogously.

Theorem 3.5.5. Let (C1)-(C3) and (GC4) (GC5) hold. If there exists an integer
j € J such that S’ has a bounded connected component C’, then C’NM is
a finite set and

Y Ela,m=0

(0,a,p)ECiNM

where 87 is defined by

87 :=Cl{(z,a,p); z(t) = ?(%) is a p-periodic solution
of (3.5.8) such that p(e'N z(t) = z(t + )}

c C'(5';RY) x R?

M :={(0,a,p); a €R, p>0} C C'(S";R") x R%

Proof. The proof is similar to that of Theorem 3.3.5. We omit it.

We finally give some discussions.

Remark 3.5.1. Our extension of local Hopf bifurcation results to functional equa-
tions is motivated by a paper of Hale and Oliveira [85], where a class of multiparam-
eter functional equations (without symmetry) is considered by using Fourier scries
together with a Liapunov-Schmidt reduction method (sec also Staffans [160]). Our
conditions are essentially the same as those of [85,160] except that our transver-

sality condition is weaker(compare Remark 3.3.6). For the global Hopf bifurcation,
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that we have no control on the lower bound of the periods of any possible periodic

solutions to (3.5.1).

For global Hopf bifurcation results for certain special integral equations, we
mention the paper by Fiedler [60], where a global Hopf bifurcation theorem (with-
out symmetry) is obtained for a class of Volterral integral equations, since Fiedler
uses an ODE-approximation appproach and the integral equation is equivalent,
under certain conditions, to an ordinary differential equation. This allows the
author to prove global results for integral equations. For general functional equa-
tions, a global Hopf bifurcation theorem seems still not available, to the best of

our knowledge.

Since functional equations include integral equation as a special case, our
local theory applies to the various models of integral equations. See [11, 30, 46,
77, 84, 85, 87, 112] for examples. In particulur, a model of van der Heiden [11,
60] for circular neural nets can be analyzed by our symmetric Hopf bifurcation

theorem,

Remark 3.5.2. The neutral equations of general type (3.5.8) have been studied
by many authors. We refer to Gopalsamy [77], Kuang [112] and Sadovski [144,
145] and the references cited there. Although the existence of periodic solutions
has been studied by Hetzer [90], Sadovski [144, 145] and others (see [77]), the Hopf
bifurcation of Eq. (3.5.8) has not been found, as far as is known to us. Theorem
3.5.5 thus gives an answer to the question proposed by Kuang [113] in the absence

of symmetry.

We shall consider an explicit neutral equation of the type (3.5.8) in Chapter
4 to illustrate our Theorem 3.5.4 and 3.5.5.
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Remark 3.5.3. Similarly, we can apply the results in this section to the Rashevsky-
Turing theory in the same fassion as in Section 3.4. The kineuics equations for each
cell now are described by Eq. (3.5.1) or Eq. (3.5.8). We will illustrate this appli-
cation in Chapter 4, where we study a neutral delay equation of the type (3.5.8).

Remark 3.5.4. For the sake of convenience, we have assumed throughout this
chapter that the functional defining the equations (3.3.1), (3.4.1), (3.5.1) and
(3.5.8) are well-defined for all ¢, ¥ € C; and a € R. By modifying the as-
sumptions naturally, the results in this chapter also hold true if they are only
defined on an open subset of C;, x R or C, x C; x R. The “unbounded” (resp.
“bounded”) must be understood as “approaching the boundary of the open sub-
set” (resp. “uniformly bounded away from the boundary of the open subset™).

This remark will be implicitly used in Chapter 4.

We finish this chapter with a brief discussion on the binery orbits from Ficdler

[62].

Remark 3.5.5. For simplicity, let us take the Turing ring as an example. As
it is shown in Section 3.4, Zy is a symmetry of the ring and Zpy acting on
RN gives a Zy-representation on CV. It is also seen that every charactor of
the representation appears and, consequently, there arc a total of N well-defined
crossing numbers, cj(ag,fo), ¢ < j < N, at each center (0,a¢). By (3.4.11),
however, these crossing numbers are not different from each other. Let C(N)
denotes the number of different crossing numbers. We have obviously from (3.4.11)
that

N . .
=41 if N iseven

C(N) = 2 ’

(V) { Nttt if N isodd.

2 b
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Next, to take into the account periodic doubling, we can also consider the equivalent

classes D(N) on the set Z(n):= {0,1,2,...,N — 1}, which is defined by
j1 ~ j2 iff there exist integers n;, ng >0 such that 2™ j; =2, (mod N).

Any element d € D(N) is called an binary orbit (see [62]). Obviously, the car-
dinality |D(N)| < C(N) and |D(N)| gives different crossing numbers. In this

sense, we have also 24, possibly different, crossing numbers for N = 1986.

To look at the global aspect of the above consideration, we shall assume also
the generic conditions on the Z,-centers (see Fiedler [62]). For any d € D(N),

we define the generic global equivariant Hopf indez HY, as

HY, = Z cj
JEd
where the sum ranges over all Z,-centers. In consequence, if H% # 0, then
3z, -centers Cj 7 0 for at least one j € d. By our global Hopf bifurcation theorem,
these exists an unbounded global continuum Z7 C H'(S';R) x R? such that the
periodic solutions in S’ are all phase-locked (see Theorem 3.3.6). This conclusion

is analogous to that of Fiedler [62].

Admittedly, we point out that in our conclusion, the period is not minimal.
That defect has been commonly seen in the topological approach to Hopf bifur-
cation theory. See also Alexander and Yorke (8] for an approach via generalized
homology theory, Chow and Mallet-Parret [33] utilizing Fuller index ([18, 57, 65,
67)), Ize [94, 95] and Nussbaum [130] using homotopy arguments. However, in
some situations, one can control the period by showing the nonexistence of pe-
riodic solutions of certain periods (sée [33, 110, 179] and also Chapter 5 how to
sidestep this difficulty).
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Finally, it is worthwile to note that besides the Turing ring, the Z,-symmetry
is also seen in other situations. We refer to Eigen and Schuster [54] and Hofbauer
et al. [91, 92] for examples of the hypercyle system which may exhibit a symmetry
of Zn.
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CHAPTER 4
PHASE-LOCKED OSCILLATIONS

IN A SINGLE-SPECIES RING PATCH MODEL

4.1. Introduction

In this chapter we illustrate our symmetric Hopf bifurcation results obtained
in Chapter 3 by considering a specific differential equation modelling the dynamics
of a single-species population distributed over a ring of identical patches (islands
or habitats). Our model equation is a neutral delay system which is continuous in
time and discrete in space. It allows for population dispersing from one patch to
its nearest neighbors. We shall study the phase-locked oscillations in the model
and draw some consequences of the effect of dispersion as well as the delay and

neutral term on the population dynamics.

The role of space and dispersal in interactions among biological populations
has been the subject of much theoretical and experimental work [6, 20, 27-30, 34,
37 and references therein]. It is widely recognized that the spatial heterogeneity of
environment, which leads to ecological interactions, operates in general to increase
species diversity. For example, it has been asserted that in some cases dispersal
can lend stability to interactions [18, 19, 34, 37, 43] while in other cases dispersal
can also give rise to instability [27, 34, 37, 43]. For the references related to this
subject, we refer to [18, 26, 27, 33, 34, 42] for the study of Lotka-Volterra models in
a spatially heterogeneous environment on the persistence and stability, and to [5,
7, 8, 11, 12, 17, 19, 22, 34, 37, 39, 43, 45] for similar discussions on single-species

models in a patchy environment.
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Our point of departure in this chapter is the classical single-species delay lo-
gistic model. By introducing a spatially heterogeneous environment to this model,
we arrive at a system which describes a population that grows and disperses in
two different phases. The growth phase (or the local growth rate) is modeled by a
neutral logistic equation that arises in the study of “food limited” population. The
dispersal phase is modeled by a linear operator that accounts for the redistribution
(or migration) of the population in its spatial habitat. There are a ncutral term
and time delays in the local growth rate, which affect the stability of a positive
equilibrium and can give rise to Hopf bifurcations of symmetric periodic solutions
which exhibit the phase-locked oscillations and synchronous oscillations (sce [2, 4,
14, 15, 26, 31] for the effect of delay on dynamics in other cases). We will show
that (i) in the case of instantaneous dispersion feedback, the dispersal in the local

growth rate as well as the neutral term have a stabilizing effect on the population

the positive equilibrium and leads to a Hopf bifurcation of synchronous as well as
phase-locked oscillations if the dispersions are small; (iii) the ncutral term may
bring about several global branches of phase-locked oscillations which would not
occur in the absence of neutral term. In this situation, the neutral term has a

destablizing influence.

We have chosen the single species logistic equation as a begining to an in-
vestigation of spatial heterogeneity and phase-locked oscillations for two rcasons.
First, it is the simplest single-species population model and contains no complex
regulatory mechanisms that might obscure the effects of environmental variation.
Second, there has been considerable literature , both mathematical and biological,
available on the study of the logistic equation, and its dynamics are well-known,

so any change of its behavior due to environmental heterogeneity will be apparent.

We emphasize that our study on single-species population dynamics in a

patchy environment is limited to a theoretical aspect and we have not tried to
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Snd any experimental (or laboratory) data to fit the theory. We treat spaces as
discrete ones, so only patch models are considered and dispersal is thus viewed as
a between-habitat phenomenon. The continuous space diffusion model is left for

a future investigation.

This chaper is organized as follows. In Section 4.2, we present the model
equation by introducing the discrete diffusion to a neutral logistic equation [15]
which models the single-species population dynamics in a food-limited environ-
ment. The Hopf bifurcation of phase-locked oscillations as well as synchronous
oscillations are considered in Section 4.3 in the case where the diffusion feedback
in local dynamics is instantaneous. We draw some consequences of the effect of
the delay and diffusion on the stability of a positive equilibrium. Section 4.4 is
devoted to the analysis of phase-locked oscillations when the feedback in the local
dynamics is delayed. Finally, in Section 4.5, we deal with the global bifurcation of
phase-locked oscillations in the appearance of the neutral term. In some special
cases, several global branches of phase-locked and synchronous periodic solutions

are obtained.

Our study in this chapter is a continuation of that initiated in [22].

4.2. The model equation

Let N(t) denote the numerical size of a single-species population growing
in a constant homogeneous environment closed to immigration and emigration.
The classical Verhulst-Pearl logistic equation, which models the dynamics of the
population growth, takes the following form

dN N(t)

2 =N - D2 (4:21)

where r is the intrinsic growth rate, K is the saturation level or the carrying

capacity of the environment. The basic assumption in Eq. (4.2.1) is that the per
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capita growth rate -5%% is a linear function of the population size N. Due to
its mathematical simplicity and biological clarity, this model has been widely used
not only in ecology but also in biology and chemical engineering. For more details,

we refer to [9, 16, 32, 35, 38] and the references therein.

In his studies, however, Nicholson [36] observed that population sizes (or
densities) usually have a tendency to fluctuate around an equilibrium and in cases
of convergence to a positive equilibrium, such a convergence is rarely monotonic.
This obviously does not agree with the dynamics of Eq. (4.2.1). To incorporate
such oscillations in population model system, Hutchinson [21] thercfore suggested
the following modification of (4.2.1)

dN N(t-r1),

E =rN(t)[1 - - 7 =], 1 €(0,00). (4.2.2)

This equation is commonly known as the “delay-logistic” equation. The delay 7
comprises various factors causing delayed growth rate response such as slow re-
placement of food supplies, maturation and gestation periods. Eq. (4.4.2) has
been extensively investigated and the validity of this model has been seen in sev-
eral different practical situations (cf. [35]). It is proved that if rr < 3, then
the unique positive equilibrium K is globally stable and the (local) asymptotic
rT =

stability continues for rr < is a critical value which gives rise to a

LTE]
ME

Hopf bifurcation and for every rr > 7, Eq. (4.4.2) has a nonconstant periodic

solution. For details, see (4, 31, 46].

Of course, due to the complexity of biological systems and the diversity of
environments in the real world, Eq. (4.2.1) and Eq. (4.2.2) are often unrealistic.
In his experiments on the population dynamics of Daphnia magna, Smith [41]
observed that the per capita growth rate 4 is not a linear function of the
density but rather a concave function. For a food-limited population, Smith argued

that the term (1 — N/K) should then be replaced with a term r iresenting
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the proportion of “the rate of food supply not momentarily being used by the
population.” Therefore

dN

— =N~ —] (4.2.3)

where F is the rate at which a population of density N uses food and T is
the corresponding rate when the population reaches saturation level. The ratio
F/T is not the same as N/K. Clearly, a growing population will use “food”
faster than a saturated population. This is due to the fact that F/T, during
the growth phase of a population, food is consumed both for maintenance and
growth whereas when the population reaches saturation level, food is used mainly
for maintenance only. Thus it is reasonable to assume that F depends on N
(the size of the population being maintained) and dt (the rate at wkich the
population is growing). As a first approximation, Smith then suggested a linear
function F as follows

dN )
FEEINEI-—EZTg c1 >0, e =20

When saturation is attained, dN/dt =0, N =F and T = K. Thus Eq. (4.2.1)

becomes
dN N(t) + N0 ] ,
=N [1 - ()+ di_ (4.2.4)

where ¢ = c;/c; = 0. Again, it is realistic to incorporate the delayed growth rate
reponse by putting a discrete delay 7 in the per capita growth rate. This has led
Gopalsamy and Zhang [15] to consider the following neutral logistic equation as a
generalization of Hutchinson’s equation (4.2.2)

% = rN(t) [ _NGE-T) ";;N (t- f)] (4.2.5)

in which ¢ is a real number and r,7,K are as in (4.2.2). c¢N'(t — 7) is called
the neutral term. Eq. (4.2.5) has been studied by several authors. It is proved
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that the positive steady state N(t) = K is stable if 0 < jer] < 1 and 0 <
rr < Bo(1 — c*r?) where B, = f.(c,7) € (37, 7). Consequently, the presence
of the neutral term has brought about a stabilizing influence in the systerm (cf.
[15]). Eq. (4.2.5) and its modifications are also studied by other authors. We refer
to [10, 12, 23-25] for the asymptotic behaviour of the solutions and [13] for the

existence of mr periodic solutions, where m is an integer.

Eq. (4.2.5) and all others above are modeled in a constant homogeneous
environment and the spatial heterogeneity is therefore neglected. However, since
all ecological systems of varying complexity exist on landscapes or seascapes, the
texts. Following Levin [27-30], we therefore consider a single-species population
distributed over a ring of n patches. Assume, for simplicity, that the growth of
the species in each patch can be described by the model equation (4.2.5) and that
the dispersion from one patch to the other occurs only in nearest neighbors and
is proportional to the difference of population sizes between two patches. Since a
portion of the population in one patch affects a portion of the population in an-

other patch through movement of population members or transmission of signals

space, rates of population growth and interspecific interactions also vary, and, as
a consequence, populaticn density varies through space, too. Therefore, we arrive

at the following system of neutral delay equations

W) e [1 N r) 4 oG- "')]
N [N,-+1(t=a‘)— 2N.—(;{ — o)+ Ni_y(t - f")] C (426)

+ da(Niga(t) = 2Ni(t) + Ni-a (1)),
1<i<n, (modn)
where N;(t) denotes the population size in the i-th patch, Nn4i(t) = Ni(t),
No(t) = Nyp(t), dy isthe transfer rate at which the dispersion serves as a feedback
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in the localized per capita growth rate and d; is the transfer rate at which the

that occurs, the dispersion is a positive feedback to the system. The feedback
can be delayed and o > 0 is incorporated to reflect this delay, d; = 0. In Eq.
(4.2.6), we have assumed the forword and backward dispersion are the same and

the anisotropy of the dispersion is neglected.

Admittdedly, the model (4.2.6) represents a vast simplification of ecological
reality. In particular, it still ignores the consequences of structure other than
space within the population modelled. This can be age structure, physiological
structure, genetic or phenotypic structure. We incorporate a diffusion term in the
localized per capita growth rate (i.e. d; may not be zero), which is not seen
in the literature, by assuming that the dispersion may make a contribution to
the local dynamics, at least in the “food-limited” environment situation. This
is motivated by a similar consideration in [40] where the population’s per capita
growth rate is assumed to be a function of a linear combination of the densities
of the individual population (called the weighted total density) as in the predator-
prey or competitive systems. Even though the system (4.2.6) is a much simplified
model, as we will zee in the subsequent sections, the mathematical analysis of the
dynamics of the model is still a problem of formidable complexity. However, the
tractable analysis does give some of the implications of the dispersion and delay

effect on the oscillation of population growth.

Clearly, if N(t) is a solution of the neutral delayed logistic equation (4.2.5),

(K,K,...,K) is a positive equilibrium of (4.2.6).
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Let z;(t) = N;(t) — K. Eq. (4.2.6) becomes
dz; .
zdt(t) =—r(zi(t) + K)
rdy

K

+ d2[$i+1(t) - 21:,'(t) + .‘L‘.‘_l], 1 S ] S n, (mod n)!

zi(t — 1) + cxi(t — 1)
7

(zi(t) + K)[zig1(t — 0) — 22i(t — o) + zi~1 (t = 0)]

Its linearized equation at the origin reads

é-:%fi)- =—rzit—1)—rezi(t-7)
—rdy[zit1(t —0) —2z4(t — 0) + zi—y(t — 7)) (4.2.7)
+ da[zig1 (2) — 2zi(t) + zia(2))]
1<i<n, (modn).
From Chapter 3, the characteristic equation of (4.2.7) reads below
n-1
(A, 1,0,¢) = H pi(A,T,0,¢) =0 (4.2.8)
=0
where
pi(A,7,0,¢) = A+ (1 + Ae)e™" —rdyaje " + dya;
; (4.2.9)

. 7 .
aj=4s1n2—l, 0<3<n-1.
n

We end this section with the following observation.

Proposition 4.2.1. Let ¢ € C([—max(o,7),0],R"). If ¢(s) € R}, the positive
cone in R®, for every s € [-max(o,7),0], then the solution (N;(¢)(t)) through
(0,¢) of Eq. (4.2.6) remains in R} for all t > 0.

Proof. Suppose to the contrary that (Ni(¢)(t)) ¢ R} for some t > 0. Then
t =min{t > 0|Ni(¢)(t) =0,1<i <n} and i € {1,2,...,n} exist such that
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<n It

Nig(8)(D) = 0 and N},($)(E) < 0 with Ni()(H) 2 0 for all 1 <

follows from (4.2.6) that

dNuu(¢)({)
dt

g = dS(qu*l(Qs)(t) + Nla=1(¢')(a = Q,

a contradiction to N; (¢)(f) < 0. This completes the proof.

4.3. Stability and Hopf bifurcation: Instantaneous feedback

taneous, i.e. o = 0 in the equation (4.2.6).

Recall that in this case, we have the characteristic equation below

p(A,7,¢) = H pi(A 1) =0 (4.3.1)

where
pi(ATie) = A4 r(1 4+ Ae)e™ " = (rd; — dy)a;
(4.3.2)

o]
a; = 4sin? =
n

We first present a result on the local asymptotic stability of the positive equilibrium

Theorem 4.3.1. The following statements are true:
(i) If |re| > 1, the positive equilibrium (K,...,K) of (4.2.6) is not stable for
all r>0;

(i) I |rc| <1 and there exist two disjoint subsets J, and J; of {0,1,...,[3]}
such that r < |(rdy, — d3)a;| for all j € Jy and r > |(rdy ~ d3)aj| for
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all j € Jz, then (K,...,K) is stable when T < 7* = minjey, 7;, where

Tj = ej/wi and

‘/1'2 ~(rdy — dy2a?
wj =4/ — —=

1—r2c2

(4.3.3)
(rdy — dj)aj — r:w?

=1 - = (T,
;= y = < 3 .
0; = cot (wj(l T o(rd; -dz)ﬂj)) » 05 < [2]1

(iii) If |rc] < 1 and r > |(rdy — d3)aj| for some j € {0,1,...,[2]}, then

(K,...,K) is not stable if T > r;, where T; is given in (ii).

Proof. Note that the characteristic equation at (K,..., k) has the forms (4.3.1)-
(4.3.2). The conclusions follow directly from Theorem 4.2 of Kuang [24, Chapter
1] and Theorem 3.1 of Freedman and Kuang [10].

Remark 4.3.1. If d; =0 (i.e. there is no feedback in the local dynamics) and

¢ =0 (i.e. no neutral term), then we have from (4.3.3)

w;

and hence 6;/w; > . By (ii), (K,...,K) isstableif rr < . This implics

that for the delay logistic system with discrete diffussion, dispersion can not change

the stability of the local dynamics. This generalizes a result in [22].

follows from (ii) that if

r<lbl for 1<5 <[5, (4.34)
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(4.3.5)

then (K,...,K) is stable. Note that (4.3.5) allows us to choose r, ¢ > 0 so
that we still have the stability in case r7 > Z. We know this is impossible when
¢ = 0 (i-e. the neutral term does not appear). (4.3.4) can be satisfied by increasing
the dispersals. Therefore, the dispersals as well as the neutral term here exhibit a
stabilizing influence on the population dynamics (see also Gopalsamy and Zhang

[15] and Kuang [24]).

From Theorem 4.3.1, if |re| > 1, (K,...,K) is always unstable. In what

follows, we therefore assume rc < 1.

We fix a,r,dy and d;, regard the delay 7 as a parameter and consider
the Hopf bifurcation in the equation (4.2.6). We find that when the dispersion is
small, there are phase-locked oscillations on the population growth, as the following

theorem shows.

Theorem 4.3.2. Assume that ¢ =0, rc <1 and |(rd, — d2)aj| < r for some

j€{0,1,...,[2]). Let

B;

1-—r2c? ’

\/rz —~ (rdy — dy)?a? (4.3.6)

_ d ‘d 7.=2 -
Ti= E;It:crt’l [ (rdy — dz)a; — cf;

ﬁ,(l + E(fdl = dg)d:) 7 )

(4.3.7)

Then 1 = 1; is a Hopf bifurcation point of phase-locked osciallations for equation
(4.2.6). More precisely, there exist a sequence of pi-periodic solutions N*(t) of

(4.2.6) with 7 = 1% such that

" o1, m é??rﬁjil, Nk(t) = (K,...,K)
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uniformly for t€ R as k — oo and

Ni_ %) = N,-E(tspk%), 1<i<n, (modn), k>1, teR

Proof. Recall that p;(}) = A (r+reX)e 2" —(rd, —dj)aj. Let A=ip, 8>0,

and set pj(if) = 0. Separating the real parts and imaginary parts gives

rcos Bt + refsin At = (rdy — dy)a;
{ (4.3.8)

rcfBcos Br —rsinfr = —f3.

Squaring them and solving for cos 8t in (4.3.8) yeild

(7% +r??f? = (rdy - dy)%a;” + 57
sin At = Alr + re(rd, — dz)a;)
1 r?(1 + ¢23%) (4.3.9)
2 fod e
cos At = _rep” —rlrd, —d—g—)—ﬂi.

\ 7"2(1 + ﬂgﬁgi)

Therefore, by (4.3.6)

. [rT=(rd| — dy)%a;?
B =p;= \/ T 302

is such that p;(¢4;) =0 and solving for 7 in (4.3.9) gives 7; in (4.3.7).

On the other hand, differentiating p;(A) = 0 with respect to 7, we get

d\ A(re) +r)e?" ,
dr ~ 1+4[rc—r(red+r)e=>"" (4.3.10)
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Note that (r 4+ rcA)e™*" = (rd; — d2)a; — A. It follows form (4.3.10) and (4.3.9)
that

A=ig;
r=7;

= Sign {Re(ﬂ)"}

Sign { ;:(Re ,\)}

A=if;

T=Tj

er +re T

= Sign { [,\(rc/\ +r) ,\]} §_==ig;
rc

= Sign {Re,\(rc/\ n r) Re,\(rc/\ + r)} A=if; (4.3.11)
=Sign { R Re—1C
= Sign { e,\((rdl - d;»)a, - ,\) e,\(rc,\ + r)} A=iB;
_ ~i[(rdy — d3)a; + iB;] —rei(r — irch;)
- ngn{ ReﬂJ[("dl - d2)20112 + 512] * ReﬂjW + r%"‘ﬂ:z] }

r2c?
(rdy - d2)2aJ + B2 R r2c2j3;2 }
] 1 -—-r2¢ 2
= Slgn{m} =1>0.
This implies that degp (p;(:,7; + €),R) # degp (p;(-,7; — €),§) for some small

€>0, where Q={z+iy; 0<z<$é B;j—-6<y<pP;j+6} and §>0 isa

sufficiently small number. Consequently, the theorem follows from Theorem 3.5.4.

Let dy =d; =0 in (4.2.6). Then all local dynamics are identical, and are
described by the neutral delay logistic equation (4.2.5). Recall that

; V1 —~r2c? cot-1 ( cr )
0= ——————— —_— ],
r V1 —r2c2

It follows from Throrem 4.3.2 that 7 = 7y is a local Hopf bifurcation point for

equation (4.2.5). This leads to a branch of synchronous oscillations in (4.2.6).
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Corollary 4.3.3. Assume that 0 =0 and 0 <rc<1. Then r =1y is a Hopf
bifurcation point of synchronous oscillations for Eq. (4.2.6). More precisely, there
exsits a sequence of py-periodic solutions N¥(t) = (n*(t),...,n*(t)) of (4.2.6)
with 7 = 1% such that n*(t) is a pi-periodic solution for (4.2.5) and

'Tk —* Tp,

uniformly for t e R as k — oo.
Proof. Note that fo = r/v1—r2c?. It directly follows from Theorem 4.3.2 by
letting dy =dz; =0.

Note that a; = 4 sin? % >0 If d,/d; > %, then (rd;, — dp)a; increases
with j. This implies that if (rd, —d;)a; < r for some j € {1,...,[3]}, then
(rdy —d2)ar < r forall 0 <! < j. By Theorem 4.3.2, we have also bifurcation
points 7 other than 7;, where 1 <1< j, r; is given by (4.3.6)-(4.3.7) with j
replaced by [. Moreover, the crossing number at each bifurcation point is always

—1. This implies the following simple observation.

Theorem 4.3.4. Assume ¢ =0 and 0 < rec < 1. If |(rd, = dy)aj| < r for
some j € {1,...,[}]}. Then there undergoes a global Hopf bifurcation at cach
T =1, 1 £1 < j, such that every branch of phase-locked solutions of (4.2.6) in
C'(S';R"™) x (0,00) x (0,00), bifurcating from each (0,7, wt) with 7 defined
by (4.3.7) and w; = 1@@_17, does not terminate at (0,7,,,3,) with m # 1,

conclusion follows.
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4.4. Stability and Hopf bifurcation: Delayed feedback

In this section we consider the case where the dispersion feedback in the

local dynamics is delayed, i.e. 0 > 0. We regard o as a parameter.

Note that in this case, we have
pi(M, o) = A +r(1+Ac)e™ —rdiaje " + dsa; (4.4.1)

where a; is as in (4.3.2).

We obtain the following result on the asymptotic stability of (K,..., K).

Theorem 4.4.1. Let (iii) in Theorem 4.3.1 hold. If 0 < |rd)| < d; and the

equation

(r?d? — d%)a;? — r? =y[(1 + r?c®)y + 2cry cos yr — 2rsin Ty}
(4.4.2)

+ 2dzaj(r cosyT + yresinyr)

has no positive solution y forevery j € {1,...,[3]}, then (K,...,K) isasymp-
totically stable for (4.2.6) with any ¢ >0 and T < 7*, where 7* is given by
(ii) of Theorem 4.3.1.

Proof. We show that for every o > 0, all roots of p;(A,7) have negative real
parts. To see this, let P(A) = A+r(1+Xc)e™ " +dza; and Q(A) = —rdyaj, 1 <
J £ [3]- We have

(i) P(-iy) = P(iy) and Q(-iy) = Q(iy) for every real y;
(ii) P(0)+ Q(0) =r — (rdy — d2)a;j > 0 since |rdi| < dy;

(iii) p;j(A0) = A+ r(l+ Ac)e™*" — (rd; — dz)a; has all roots of negative real

parts for 7 < 7* by Theorem 4.3.1;
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(iv) F(y) = |PGy)]? —|Q(iy)|*> has neither positive nor negative zeros, since the

right-hand side of (4.4.2) is an even function of y.

Note that Q()) is a non-zero constant funtion. @(A) and P()) have no common
imaginary zeros. By a result of Cooke and van den Driessche [3] (see also Freedman
and Kuang [10]), p;(A,7) has only roots with negative real parts when 7 < 7*

and the asymptotic stability of (K,...,RK) follows.

Remark 4.4.1. The assumption that the equation (4.4.2) has no positive solu-

tions seems a complicated condition. However, we can show that if

)2
rd2ai(T — 2¢) + 27 < u, cdra; < 1, (4.4.3)
J - J

then (4.4.2) has no positive solutions. Indeed, under (4.4.3) and |rd,;| < d;, for
all y>0

y[(1+c*r?)y + 2ycr cos y1 + (2dzajrc(—2r) sin Ty| + 2dza;r cos yT
> 1 +c*r? - 2rc+ (2dzajrc — 2r)7] + 2rdaa; cosyT
= y?[(1 = rc)? + 2r7(cdaa; — 1)] + 2rdza; cosyr

> 21"dgaj >0,

while the left hand side of (4.4.2) is negative, implying that (4.4.2) has no positive
solutions. Theorem 4.4.1 tells us that the delay in the dispersion feedback has no

destablizing influence under certain conditions as shown in Theorem 4.4.1.

To obtain Hopf bifurcation, we now assume the equation (4.4.2) has at least
one positive solution for some j € {1,...,[%]}. Let us denote this solution by y;.

Then

(rcosy;T +y;resiny;7 + dzaj)2 + (y; — rsiny;7 + y;rccos y.,--r)2 = r2d120j2
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This implies that there exists a unique 6; € (0,27} such that

daa; + rcosy;T + y;resiny;T = rdiaj cos b;
_ , (4.4.4)
_yj — rsiny;T + yjrccosy;7 = —rdya;sinéb;.
Set
0; .
ﬁj = ——‘li (4.4i5)
L]

It follows that from (4.4.4), p;(iy;,¢;j) = 0, i.e. iy; is a purely imaginary root
of pj()\,0) with o = ¢;. This leads us to the following Hopf bifurcation of

phase-locked oscillations.

Theorem 4.4.2. Let there exist j € {1,...,[3]} such that (4.4.2) has a positive

solution y;. Let y; satisfy
(1+r3ct)y; —r(1-cy;® +(c—1)dza;) siny;7 # r[l — 2c—edsa,]y; cos y;7. (4.4.6)

Then oj is a Hopf bifurcation point of phase-locked oscillations, where o; is

defined by (4.4.5).

Proof. By Theorem 3.5.4 and the discussion preceeding this theorem, we need
only to check that
4 Rel | 0
do BN aziy; 7
g=0;

where ) is a root of pj(A, o) =0.

To see this, let us differentiate p;(),0) =0 with respect to o (by viewing

A as a function of o ). It follows that

d —Ardyaje= ,
d_____ Ardige — (4.47)
do 14+ rce=> —r(1+ Ac)e=r" + ordyaje=A? '
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Note that pj(),0) =0 is equivalent to
r(1+ Ae)e " = —(\ + dya;) + rdyaje 7, (4.4.8)

Combining (4.4.7) and (4.4.8), one obtains that

()1 Ltree?+ (2 *ay) - rhase e + ordiaje
o L (4.4.9)
_(1+dgaj+A)+r§§ +§L—cf '
- '—}\Fdjﬂjéﬁ’\g A
Therefore, from (4.4.9),

Red B d
Sign ——( ) |A=ivs = Sign Red? A=iy,

A, '
= Sign (R“'(E ) Aoy
o f(14+deaj+A)+rce” 1-0
= Sign (Re{ Tardya e -+ > f)P=iv
— S ,el+d2a_,+,\+r¢:e AT
= dign - — f,fd;ja;g —Ar ,;;E-é,;
o 1+ dzaj+iy; + rece” :y,,
= Sign (Re Srdiae

Lo \ei0 o0~y T)i ;
= Sign {eREM ~Rel " _ Re—r—ci® }
wyjrdia; tyjrdia;e'® rda;
~ Sign {Rei(l + dya;)e' + Rgzrcew:i’f)j _ cosb; }
yjrdia; y;jrdia; rdya;
=Sign{ (1 + dza;)sin@; — resin(f; — y;7) — y; cosb; } £0
y;rdia; 7
whenever
(1 + d2a;)sin 8; # rcsin(0j — y;7) — y; cos8;. (4.4.10)

A direct calculation, by noting that @; satisfies (4.4.4), shows that (4.4.6) and
(4.4.10) are equivalent. This proves the theorem.
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Remark 4.4.2. The condition given by (4.4.2) and (4.4.6) are usually difficult to
verify. However, we do have some solutions y; > 0 to (4.4.2) and (4.4.6) in some
special cases. Take ¢ = 0 and d; = 0, for example. Then (4.4.2) and (4.4.6)
simplify to

r?(di%a;? ~ 1) = y(y — 2rsinyr) (4.4.11)

yj — rsiny;7 # ry; cosy;. (4.4.12)

Define f(y) = iﬁ’—’}i—h—l) and g(y) =y —2rsinyr, y > 0. If dy%2q;2 > 1 and
2rr < 1. Then f(y) is decreasing and g(y) is increasing. It follows that there
exists a unique y; > 0 such that f(y;) = g(y;). This y; > 0 gives a positive
solution to (4.4.11).

On the other hand, note that if r < J,

r r yj

< <1 and = > 1.
l—rcosy;r ~ 1—r sip y;
So y; satisfies (4.4.12). Therefore, if
22 1
di*a;">1, 2rr<1 and rs-z-

then y; > 0 exists such that both (4.4.11) and (4.4.12) are verified. For the

general case, we may use the computer to verify (4.4.2) and (4.4.6).

4.5. Global Hopf bifurcation: Neutral term effect

We now consider the global aspects of phase-locked as well as synchronous
oscillations in the system (4.2.6). For simplicity, we only deal with the case where

oc=0.
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In order to examine local bifurcation points, we shall regard a =rc <1 as
a parameter. Recall that we have the j-th characteristic equation as follows
pi(Ma)=A+(r+ad)e™ —b; =0,
o ! ) n.. (4.5.1)
b_j §(f‘d1 —idg)ilj, ] € {D—,ngnaq[?]};

We look for purely imaginary roots of (4.5.1) for a fixed 1< j < [3].
Let A =if8, # >0, be a root of pj(A a), i.e. p;j(:f,a) = 0. Separating
the real and imaginary parts, respectively, we get

bjcos Bt + Bsinfr =r
B cos Bt — b; sin fr = —af.

Squaring both sides of (4.5.2) and adding them yield

(4.5.3)

(4.5.4)

(4.5.5)

Let

z = f(B) is an increasing function. Note that f(y/r* - b;*

and limg_,o f(B) =0, limg_,- f(B) = +oo and limg_ .+ f(B) : Ecgir We have

215



infinitely many solutions for A to the equation (4.5.5), which correspond to the
B-coordinates of the intersection points of two graphs z = tan 7 and z = f(B).

Let 0 < r7 < §. Then we have sulotions #n to Eq. (4.5.5) as follows

(gm - 1)7T < E'ﬁ - E, M = 1,2,3,“ . (4-5*6)
27 T 7

A cn waremralle F ilara fo s : 3 A o " (N-1)x - (2N-1)r
More generally, if there is a positive integer N such that ‘—= < r £ *—=5—=,

then

¥ +2’:)=3]T < P < m, m=12,... (4.5.7)

. 1<1<q (4.5.8)

also exsit as solutions other than f,, to the equation (4.5.6). Thus, we get a

values from (4.5.3) as follows

..., =1,1,2,.... (4.5.9)

This leads us to the following local bifurcation result.

Theorem 4.5.1. Assume 0 < b; <r forsome j€ {1,2,...,[3]}. If

(N-1r<rr < @N -Ur (4.5.10)

for some integer N > 0, then (0,am,fm), m = —¢,—q+1,...,-1,1,2,...,
with an <1 are all local bifurcation points of phase-locked oscillations for (4.2.6).



Proof. It suffices to show that

d
2; ReA A=ifm # 0

A=Qym

for each m. To see this, we differentiate two sides of (A — b;)e*” +r +aX =0

with respect to a and get

i{\-"— A 4.5.11)
da = er" + (A =bj)rer" +a’ (4.5.

Setting pj(A,a) =0 implies that (A — b;)e*” = —r — aA. Substituting this into
(4.5.11) gives
d, -1 e a-—rr
@)

o
X X + ar. (4.5.12)

Consequently, using (4.5.2) in the last step, we have

Sign % (Re V)]s,
= SR e = SR g
= SignRe (—f;- +ar— 2 -:\rr) A=ifim = Sign (0"’ - Rﬁf‘:‘:) A=ifm
= Sign (amr - sinﬂim'r) = Sign (I-,O;T"'g_-’%n% + amr) =1#0,
(4.5.13)

as desired. This completes the proof.

To study the global Hopf bifurcation, we choose any 0 < k < 1 and let
la| < k and investigate the equation on the region D := {z € R?; 0 < |z] < £},

where |z| = maxi<i<a{|zil} for z € R".

We need the following lemma concerning periods of periodic solutions to Eq.

(4.2.6).

217



Lemma 4.5.2. For any integer m > 0, the equation (4.2.6) has no nonconstant

2T fpenadn: positive solution {z;(t)}%., with z;_,(t) = z(t - L) in D.

Proof. It suffices to show that the lemma holds for m = 1,2. In the following
we only give the proof for m = 1. The case m =2 can be treated analogously.

By the way of contradiction, we suppose that z(t) = {zi(t)}=, is a non-
constant 27-periodic positive solution of (4.2.6) with z,_;(t) = zi(t — 7). Then
zi41(t) = zi(t — 7), ziga(t —7) = zi(t) and zi_1(t — 7) = zi(t). Let yi(t) =
z;(t = ). We have

Zig1(t) — 2zi(t) + zi-1(2) = 2(i(?) — 2:(2))

and
73:‘ =rz; [1 A +2d}x(,y' — i) +c:(1 - ;’:)] + 2d;(yi — i)
' (4.5.14)
' - zi+2di(zi — yi )
7!I§=*fyi [I—I' - é‘t y)+c(1ﬁK)] + 2dy(z; — yi).
Put

wW=1-20  aag =180

and §; = 2d;, i = 1,2. The equation (4.5.14) becomes an implicit differential
equation of u and v
{ u =r(u—1)v—=6(u—v)+cv']+ 6K(u—v)
v'=r(v-1u-86w-—u)+cu']+6K(v-u)

which, by solving for u' and v', leads to an ordinary differential system below

o = "= DIf(u,0) + er(v — 1) f(v, u) + (v, u)] + g(u, v)
1-r2c2(u—-1)(v-1)
o _ r(v=1[f(v,u) + er(u = 1)f(u,v) + 9(u, v)] + g(v, v)

D = —— e e e

- 1-r2c?(u—1)(v - 1)

(4.5.15)

218



where

flu,v) =v—-6(u—-v), g(u,v)=6K(u-—v),
(u,v) € {(u,v) €R?; |z — 1| < 1/k, |y — 1] < 1/k}.

Note that (4.5.15) is symmetric about u and v. The diagonal A = {(u,v) €
R%;, |u—-1}] < 1/k,u = v} is invariant under the system (4.5.15) of ordinary
differntial equations. Since any autonomous one-dimensional ordinary differen-
tial equation has no nonconstant periodic solution, (u(t),v(t)) ¢ A for all ¢

Without the loss of generality, we assume that
u(t) < v(t) for all ¢t € R. (4.5.16)
Replacing ¢t by t — 7 in (4.5.16), we get
u(t—7)<ov(t-7) for all t € R. (4.5.17)

On the other hand, we have

wt—ry=1-BE=T) 3O _ gy

p ¥
wt-r)=1-2E20 o w0y

Consequently, (4.5.17) implies that v(¢) < u(t) for all ¢t € R, which contradicts
to (4.5.16). The proof is therefore completed.

We now state and prove the following global bifurcation theorem.

Theorem 4.5.3. Assume n iseven and 0 < (rd) —d;) < §. Suppose that there
exists a positive integer N satisfying (4.5.10). Let q be an integer such that

N-g-Um 2o (N—g)m
BB — < 4y/r*—by S——————T .
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ra:ﬁi )

ﬁ?, at least one of the following

Then for each integer —¢<m<1-N+ L

conclusions holds:

(i) Forany c € (0,22), the system (4.2.6) hasa p-periodic solution {N;(t)}},

with period p € [}v+;=1” gmf_;)gg] and satisfying

Nl!l(t)gNl(t_%)i igligai-‘:n;

(i) For any c € (2m,%), the conclusion in (i} holds;

(iii) For any A € (0,K), there exists a ¢4 > 0 and a p-periodic solution
{Ni(t)}2, to(4.2.6) with ¢ = ca, with period p > 0 as in (i) and satis-

fying

Nioa(t) = Ni(t g)s lg%:nlNl(t)l A, 1=12,...,n
teR

(iv) For any A€ (K,X), the conclusion in (iii) holds;
where a,, is given by (4.5.9).
Proof. We choose j = 3. Then by (4.3.2), ag =4 and b; =4(rd) —dz) <.

It follows that, from (4.5.3) and (4.5.7)—(4.5.8), B, and f_; exist to Eq. (4.5.5),
where 1 <1/ <q and

and the locations of f,,,-; are estimated by (4.5.7) and (4.5.8). Let a,, beany
am, given by (4.5.9). By Theorem 4.5.1, (0,am,0m) is a bifurcation point with

Is

7-th crossing number v3(am,fm) < 0. Consequently, the assertion of Theorem

L
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Forany c € (0, %), the system (4.2.6) has a p-periodic solution {N;(t)},

with period p € [}v+;=1” gmf_;)gg] and satisfying

Nl!l(t)gNl(t_%)i igligai-‘:n;

%r any c€ (2=, %), the conclusion in (i} holds;

‘or any A € (0,K), there exists a ¢4 > 0 and a p-periodic solution
Ni(t)}2, to (4.2.6) with ¢ = ca, with period p > 0 as in (i) and satis-

ying

Nioa(t) = Ni(t g)s lg%:nlNl(t)l A, 1=12,...,n
teR

or any A € (K, %), the conclusion in (iii) holds;
am is given by (4.5.9).
. We choose j = 2. Then by (4.3.2), ag =4 and b; =4(rd; —dz) <.

ws that, from (4.5.3) and (4.5.7)-(4.5.8), B, and fA_; exist to Eq. (4.5.5),
1<l<q and

: locations of f3,,,0—-; are estimated by (4.5.7) and (4.5.8). Let a,, beany
ren by (4.5.9). By Theorem 4.5.1, (0,am,0m) is a bifurcation point with
rossing number 73 (am,fm) < 0. Consequently, the assertion of Theorem
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As before, we first look at local bifurcation points. It follows that p(A,a) =10

has purely imaginary roots i where each g is a solution of the equation

(4.5.19)

We can also estimate the location of § by viewing the solution of (4.5.19)

as the intersection points of two graphs z = tan A7 and z = —r/ 7 B2 12 If

r < 5=, then we have
@m-lr g M7 19, (4.5.20)
2r T '
and

m=12.... (4.5.21)

A similar calculation to that of (4.5.13) shows that each (0,am,,8m) is a local

bifurcation point and their crossing numbers are all of same sign.

(4.2.5).

Lemma 4.5.4. For each integer m > 0 and constant 0 < k < 1, the equation
(4.2.5) has no nonconstant 2I-periodic solution N(t) € (0, % .

Proof. It suffices to show the lemma for m = 1. Suppose that N(t) is a noncon-
stant 2r-periodic solution of (4.2.5) with N(t) € (0, %). Let M(t)= N(t—r).
We have

N'(t) = rN(¥) [ M(t) *;M'(t)]
' (4.5.22)
M'(t) = rM(t)[ _N®) *:N( )] 7

I
et
m‘



Put

u(t)=1- % and v(t)=1- M(t)

K -
Then (4.5.21) simplifies to

{ u'(t) = r(u=1)[v + ']
v'(t) = r(v = 1)[u + cu'].

A similar argument to that in the proof of Lemma 4.5.2 now leads to a contradic-
tion. This completes the proof.

We now obtain the following global result for Eq. (4.2.5)

Theorem 4.5.5. Let 3;—5 < k <1 be given. Assume that 71~ k% < rr < 7
Then there exist (am,fm) given by (4.5.20) and (4.5.21), m =1,2,...,q, such
that at least one of (i)-(iv) below holds for the equation (4.2.5):

(i) For any c € (0,2m), (4.2.5) has a p-periodic positive solution N(t) with
period p€ [Z, =22-];

im? 2m—10D

(ii) For any c € (%m, %), the conclusion in (i) holds;
(iii) For any A € (0,K), thereis a ca > 0 such that a positive p-periodic

solution N(t) to (4.2.5) with ¢ = ca4 exists, with period p as in (i) and
maxeen N(t) = 4;

(iv) For any A € (K, %), the conclusion in (iii) holds;

where q is an integer satisfying
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wt)=1== and ov(t)=1- —

hen (4.5.21) simplifies to

{ u'(t) = r(u=1)[v + ']
v'(t) = r(v = 1)[u + cu'].

similar argument to that in the proof of Lemma 4.5.2 now leads to a contradic-

>n. This completes the proof.

We now obtain the following global result for Eq. (4.2.5).

heorem 4.5.5. Let 3;—5 < k <1 be given. Assume that 71 ~ k2 < rr < 7
hen there exist (am,Bm) given by (4.5.20) and (4.5.21), m =1,2,...,q, such

at at least one of (i)-(iv) below holds for the equation (4.2.5):

(i) For any c € (0,2m), (4.2.5) has a p-periodic positive solution N(t) with
period p€ %, 7255

i) For any c € (2=, %), the conclusion in (i) holds;

iii) For any A € (0,K), thereis a ca > 0 such that a positive p-periodic
solution N(t) to (4.2.5) with ¢ = ca4 exists, with period p as in (i) and
maxeen N(t) = 4;

iv) For any A € (K, %), the conclusion in (iii) holds;

1ere q is an integer satisfying
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and fB,, is given by (4.5.19)-(4.5.20).

Proof. Note that the equation (4.2.5) reduces to (4.2.2) when ¢ = 0 and by

Remark 4.5.1, Eq. (4.2.2) has no nonconstant periodic solutions. This excludes

the alternative (i) in Theorem 4.5.5 and the conclusion follows.
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several generalizations of the LLTL equation were also presented in [13, 14, 43,
46). In particular, Cooke and Krumme [13] gave a systematic procedure for reduc-
ing transimission line problems, which are described by linear partial differential
equations subject to certain nonlinear initial-boundary conditions, to initial value
problems for differential-difference or integral differential-difference equations. It
should be emphasized that it is the LLTL equation that has motivated the theory,
which was first systematically disscussed by Hale [28], for the D-type neutral
functional differential equations (NFDEs).

Strictly speaking, a single transmission line as considered above is less usual
than = multiconductor line in applications. As an electric circuit, a self-contained
single transmission line is assumed to be removed far enough from other lines
so that it is not affected by any electrical changes occuring in the latter. As

soon as a second transmission line is placed close to the first one the fields of the

produced by the electric field and inductive coupling results from the magnetic field.
The classical applications of telephone (or telegraph) lines and high-voltage power
transmission line are often examples of coupling. The coupling phenomenon is also
utilized in practice to realize directional couplers and interdigital filters. Moreover,
in the modern high-speed integrated circuit (IC) technology, coupling among a
group of physically close transimission lines is very common and interconnects in
high-density IC are usually treated as transmission lines. We refer to (12, 23, 45,
52, 56, 60] and the references therein for detailed discussions on coupled electric
circuits and transmission lines.

Motivated by Endo and Mori [17] and Winnerl et al. [64] we consider in this
chapter a ring array of mutually coupled lossless transmission lines. For simplicity,
we assume the transmission lines are resistively coupled and the capacitive and
inductive couplings among the systems are neglected. We also assume that each
linked transmission line is identical and terminates at each end by a lumped linear

or nonlinear circuit element. By employing the telegrapher’s equation at each



line together with a coupling term in the initial-boundary condition, we derive a

symmeiric difference-differential system of neutral type, which is equivalent to the
original partial differential equations governing the coupled lines. To study such
a symmetric neutral system we use the local and global bifurcation theory from
Chapter 2 and 3. We shall prove the existence and multiplicity of self-sustained
phase-locked and synchronous periodic solutions. Due to the global nature of the
bifurcation theorem, comparing our results with those of Shimura [55] and Brayton
[8, 9] (for single transmission line equation) the periodic solutions we shall present
are of large amplitude, in the sense that the parameter can be far away from the
local bifurcation value.

Since the self-sustained oscillation occurs in the lossless transmission line,
we may regard it as an electric oscillator. It should be noted that there re-
cently has been great interest in the study of coupled nonlinear oscillators. For
example, Alexander and Auchmuty [3] have considercd the global bifurcation of
phase-locked oscillations in the coupled brusselators and van del Pol oscillators. In
their series of papers, Endo and Mori {17-19] have discussed the mode analysis of
one-dimensional and two-dimensional multimode oscillators. As a mathematical
model for slow-wave electrical activity of the gastro-intestinal tract of humans and
animals, Allian and Likens [4] have proposed a tubular structure which comprises
one-dimensional rings and two-dimensional arrays of interconnccted nonlincar os-
cillators with third-power conductance characteristics. Similar mathematical mod-
els for the electrical activity in humans and animals are also postulated by Linkens
et al. [42] and Sarna et al. [54], where a series of simulated relaxation oscillators
are resistively coupled as a chain. Other problems related to the coupled clectric
oscillators are addressed by Gollab et al. [26] on periodicity and chaos and are
systematically reviewed by Grasman [25] on various applications.

This chapter is now organized as follows. In Section 5.2, we use the standard
reduction procedure developed in [9,, 13, 57] to derive the governing neutral equa-

tions for the resistively coupled lossless transmission lines of a ring structure. To

231



investigate the global bifurcation of the neutral equations, three lemmas concern-
ing the periods and upper and lower bounds are prepared in Section 5.3. Section
5.4 is devoted to the global Hopf bifurcation analysis and the existence of self-
sustained phase-locked and synchronous periodic solutions of large amplitudes is
proved. Finally, in Section 5.5, we draw some consequences and discuss briefly

some of the implications of the lossless transmission line problem.

5.2. Coupled LLTL neutral equations

Let N be a positive integer. We consider a ring of N mutually coupled
lossless transmission line (LLTL) networks which are interconnected by a common
resistor R. We assume all coupled LLTL networks are identical, each of which
is a uniformly distributed lossless transmission line with the series inductance L,
equations, let us take an z-axis in the direction of the line, with two ends of the

normalized line at z =0 and z = 1. See Fig. 5.2.1 and 5.2.2.

Vi 7 <]
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Fig. 5.2.2

Let ix(z,t) denote the current flowing in the A-th line at time ¢ and
distance z down the line and vi(z,t) denote the voltage across the line at ¢
and z. It is well-known [38, 45, 59] that the functions i; and v obey the

following partial differential equations ( Telegrapher’s equation)

& P

2o
- H‘ .
=
vt
"y

E = k=1,2,...,N.

When these N networks are interconnected resistively in the way as shown in Fig.
5.2.1, the middle lines have coupling terms from the preceeding and succeeding
lines, and at two ends z = 0 and z = 1, the line gives rise to the boundary
conditions

0 = E — vi(0,t) — Rpix(0,1)

- C'E;i!k(l,t) = —ik(1,t) + f(va(1,2)) = (T = Ii) (5.2.2)

Uk(]., t) - ’Uk+1(1.;,i—) = RIk(t)

where E is the constant DC dias voltage, f(vi(1,t)) is the current (V -
I characteristic) through the nonlinear resistor in the direction shown in Fig.

5.2.1 and I, is the network current coupling term.
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Ovk = 0. We have i,(0,t) = ix(1,t)

T i P S |- B i I B aikg
Under equilibrium conditions, D = Br
and vx(0,2) = vg(1,t). Thus, Eqs. (5.2.1) and (5.2.2) have the following equilib-
(5.2.3)

0

-
Il

8

rium equations
E — v —
e = f(vi) — l&(ﬂk.ﬂ — 20 + Vk41)-

We assume that (5.2.3) has a uniqgne homogeneous solution (v,ix) = (v*,2*),
for all 1 < k € N. By changing variables, the equilibrium can be shifted from

(v*,i*) to (0,0) and Egs. (5.2.1) and (5.2.2) reduce to

(5.2.4)

-C&

] ¢
k(0,t) + Roz4(0,1)
ka(l,t) = —1;(1,t) + §(ve(1,2)) — %(UH.; = 2uk + vr-1)(1,¢)

where
g(vi) = f(ve + ") = f(v").

We now solve the partial differential equation (5.2.4). It is known [57, 59]
that there exist unique solutions (d’Alembert solution) ix(z,t) and vx(z,t) which
are of the form

vi(z,t) = %[qﬁg(z —ot) + Yr(z + ot)] o
. o - | (5.2.5)
in(z,t) = F5du(z — ot) + Pu(z + ot)]

(5.2.6)
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of the line, and

ér € C'(—00,1], Y € C'[0, c0).

ok, (1) = (1 — ot), ko (t) = di(—ot)
Y, (t) = ¥(1 + ot), Yio(t) = Yi(ot)

and Vi(t) = vi(1,7). We have from (5.2.5) that

Bk, (1) = Vi(t) + Zi(1,1),  ro(t) = Vi(0,8) + Z2(0,1)

Yr, (t) = Vi(t) — Zix(1,1), i, (t) = Vi(0,1) — Zii(0,1).

Note that ¢y, (t) = éx,(t — L) and oy, (t) = ¥y, (t + 1). By (5.2.7) and the
boundary condition in (5.2.4)

Vi(t) + Zix(1,t) = —qpi, (t — 1)

. -~ , (5.2.8)
Vk—(t) — Zu(1, t)= ¢Ei(t)
where
2 . _Z-Ry o
r=- and 1= 7T R (5.2.9)
Now, the second boundary condition in (5.2.4) gives
ir(1,t) = CVi(t) + §(Va(t)) — £(Vi1(t) — 2Vi(t) + Vi-i(t)). (5.2.10)

Substituting (5.2.10) into (5.2.8) and eliminating &, (t —r) lead to

Vi(t) + Z[CV{ + §(Vi) = (Vi (t) = 2Vi(t) + Vi1 (2))]
=qVi(t = r) +qZ[CVi(t =) + §(Vi(t — 1))]
— LZ[Viga(t =r) = 2Vi(t = 7) + Vi (t = 7).
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This simplifies to

;[Vk(i) —qVi(t — )] = — FeVa(t) — FsVa(t — ) — §(Vi) + ¢g(Va(t — 1))
+ ﬁ?lvﬁl(f) = qViga(t — 1) = 2(Vi(t) — qVi(t — 1))
+ Vi-1(t) — gVi—a(t — )]
where §(Vi) = £§(Vi). Define foreach o € R the operator D(a): C([—r,0];R) —
R by
D(a)p = ¢(0) — ap(~r), ¢ € C([-r,0;R). (5.2.12)

Following [8, 9], we assume
gv)==-yv+g(v), veER, >0 (5.2.13)

where ¢ is a continuous function. Using (5.2.12) and (5.2.13), we obtain from

(5.2.11) the following LLTL-network coupling equations

di (Ve =~ (Fg = r)WVH(t) = a(Fg +r)VH(E = 1) — g(V*)
+q9(VE(t =) + g D(q)(VF+! —2vF 4 vF-1)  (5.2.14)
k=1,2,...,N, (modN)

where for each 1 < k < N, t € R, VF € C([-r,0);R) is defined by V() =
Vi(t + 8) for all 6 € [-r,0].

Note that Eq. (5,214) is a functional differential equatian of neutral type

equivalent to the system (5.2.4), which can be viewed as a ncutral system with
diffusion. Therefore, it may be considered as a special example of the Rashevsky-
Turing theory [53, 61] (see also Section 3.4). If there is no coupling between these
N networks, then (5.2.14) reduces to a single LLTL-network equation

%D(Q)Vf = ~(Fo-NV* ) -a(Fe+71)VE(t=r)=g(V*)+qg(VE(t-r)) (5.2.15)
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This equation was first obtained by Naguma and Shimura [49], Shimura [55] (for
Ry = 0 ) and Brayton [9] (for any Ry > 0) and was extensively investigated. See

(8, 9, 16, 20, 28-36, 39, 43, 44, 49, 55, 57, 65] and the references therein.

5.3. Periods and a priori bounds

In this section, we prove three lemmas which will be needed in the study of
global Hopf bifurcation of phase-locked oscillations. The first two lemmas concern
the periods of periodic solutions to Eq. (5.2.14). In the third lemma we give a
priori bounds on the amplitude of possible periodic solutions of Eq. (5.2.14).

We consider the following NFDEs
5 D(@)zt = — az*(t) - bgz*(t — ) - g(=*(1)) + qa(+X(t = 1))

+dD(g)[z¥*! — 22F 4 251 (5.3.1)

k=1,2...,N, (medN)

where constants d > 0, ¢ € [0,1), D(q): C([-r,0];R) = R is defined by
D(q)p = ¢(0) — gp(~7), ¢ € C([~r,0;R), (5.3.2)

r, a and b are positive constants, g is a differentiable function with ¢(0) =
9'(0) = 0. Note that Eq. (5.3.1) is a condensed form of Eq. (5.2.14). The
parameters r, a, b, d and ¢ are of physical meanings (sce (5.2.6) and (5.2.9)).

Note also that Eq. (5.3.1) is a special case of the following more general NFDEs

%D(q):tf F(q,z*(t),z*(t — r)) + dD(q)[z}*' — 225 4 2%~ (5.3.3)

In analysing the global branch of phase-locked oscillations, we need the fol-

loeing information on the periods of possible periodic solutions to Eq. (5.3.1).
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Lemma 5.3.1. For every integer m > 0, Eq. (5.3.3) has no nonconstant
2t _periodic solution z(t) := {z*(t)})., with z*"1(t)=z¥(t- L) forall teR
and k=1,2,...,N, (modN).
Proof. We consider two cases sepatately.

Casc (I): m isodd. Note that if z(t) is a nonconstant 2C-periodic solution

with %~ '(t) = z¥(t - =) then

(1) = gkt - D) =gkt -+ M2y =kt -,

It suffices to show that the lzmma is true for m = 1.

Suppose to the contrary that Eq. (5.3.3) has a nonconstant 2r-periodic so-
lution z(t) with z*¥~1(¢t) = z¥(t—r). Let y*(¢t) = z*(t—r). We have ik+1(i‘) =
zk(t +r) = 2%(t — r) = y*(t). Similarly, y*+1(t) = z*(t),z*"1(¢) = y*(t) an
y*=1(t) = r*(t). Therefore, by (5.3.2)

D(q)af+! = ak*+1(t) - ge**1(¢ - 1)
=y* () - gyt - 1)
= y*(t) — gz*(t) = D(q)zf~

k=1,2,3,...,N, (modN)

and (z*(t),y*(t)) satisfies the following ordinary differential equations

ihﬁnsqf@n=F@:HﬂmHﬁH@ﬂ1+w@%ﬂizﬂﬂ)
(5.3.4)

Ll (t) = gz*(t)] = F(q,y*(2), 2* (1)) + 2d(1 + q)(z*(t) = ¥*(2)).
Put

{ u(t) = z*(t) — qy¥(2) o
(5.3.5)

o(t) = y*(t) — ga¥(t).

238



Then
u(t) + quvit)
1-¢?

 qu(t) + v(t)
= 20,

z(t) =
(5.3.6)

Substituting (5.3.5) and (5.3.6) into (5.3.4), we sce that (u(t),v(t)) is a solution

to the following system of ordinary differential equations

u4qu qu+v
1-¢?"1-¢*
qu+v u+qu
j’_,ﬁ*ii&g

(5.3.7)

v'(t) = Flg, )+ 2d(1 + g)(1e - v).

Eq. (5.3.7) is symmetric about u(t) and v(t). Therefore, the diagonal A =
{(u,v) € R : u = v} is invariant under (5.3.7). Since any vector field on A R
cannot have nonconstant periodic solutions, (u(t),v(t) ¢ A for all t € R. So,

without loss of generality, we may assume that
u(t) <v(t) forall teR. (5.3.8)
Replaceing ¢t by t—r in (5.3.8) gives
u(t—r)<v(t-r) forall teR. (5.3.9)
On the other hand, we have

vt =r)=y*(t=r)—=qz*(t ~r)

= z*(t) — qu*(t) = u(t)

and

u(t — ) = ak(t = 7) - qy*(t = 7)

(0 - 424 (8) = ().



Therefore, it follows from (5.3.9) that
v(t) <u(t) forall teR

which contradicts to (5.3.8). This completes the proof for Case (I).

Case (II): m is even. Similarly, we need only to show the lemma for m =
5.2.

By the way of contradiction, suppose z(t) is an r-periodic solution to
Eq. (5.3.3) with zF~1(¢) = z¥(t — ). Set y*(t) = z*(t — §). As in Case (I),
(z*(t),y*(t)) satisfies the equations

i
|
|
+
bt
R
—
e
£
!
]
-
et

d k

iyk(t) — Lﬂ) + 2d(z* - y*)
 dt? Y l-q

This completes the proof.

Remark 5.3.1. An analog of Lemma 5.3.1 for the single scalar NFDE (5.2.15)

has been established in [39] for the case where no coupling occurs.

We will also need the following simple result.

lemma 5.3.2. Assume a >0, d>0 and zg(x) >0 for all z # 0. Then the
system of ordinary differential equations
d

Zak(t) = - azk(t) — g(z%(1)) + d(a*+1 (1) — 2R (1) + 24 (1)

dt (5.3.10)

k=1,2,...,N, (modN)
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has no nonconstant periodic solutions.

Proof. Suppose that z(t) = (z'(t),...,zN(t)) is a nonconstant periodic sulotion

of (5.3.10). Set

V(a(t) = 5 ) (e* ()

MI\H
_\Mz

k=

We have

Vis.a10)(2(t) = 2 z*[—az* — g(z*) + d(z**! ~ 208 4 24

k=1
— I‘ZZ(Ik)Z ZI g(-tk)-kdz k+l _

< - 2&V(1:)+2d2($k k1 _ gk gk
k_
—2aV(z).

This implies that

V(z(t)) < V(2(0))e 2** -0 as t— +oo.

k +IE-€-I)

It follows then that lim;_.o z(t) = 0. This is impossible since z(t) is a noncon-

stant periodic solution. This proves the lemma.

In what follows, we provide a priori bounds on periodic solutions of Eq.

(5.3.1).

Lemma 5.3.3. Assume that 0 <a < b and
(i) zg(z) >0 forall z #0;
(i) g(z) is nondecreasing;

(iii) limztoo i(j%) = 4o00;

I
"
pury



(iv) for any qo € [3,1),

$<9%0 9z

Then for any 6§ € §,1), there exists M = M(6) > 0 such that if q € [,6]
and z(t) is a periodic solution of Eq. (5.3.1) with period p > 0 which
satisfles z*~1(t) = z*(t — £), then |z(t)| < M forall t € R.

Proof. We prove the existence of M such that z*(t) < M for any k €
{1,2,...,N}. The existence of M such that z¥(t) > =M can be treated simi-
larly.

Let z(t) be a periodic solution of Eq. (5.3.1) with period p > 0 and
z*¥='(t) = z*(t-E) for k=1,2,...,N, mod(N). Then t € R exists such that

z*(t) - qz*(t -r) = %gg[xk(s) — qz¥(s = 1)) (5.3.11)
Therefore, for each fixed s € R,
2¥(s) € gz*(s — r) + [z*(2) - gz*(t - 7). (5.3.12)
Or, equivalently,
D(q)z¥ < D(q)f. (5.3.13)
Replacing s by s —r in (5.3.12) yields
z¥(s) < ¢*z*(s — 2r) + (¢ + 1) D(g)z5.

Repeating the above process m-times, we get

1-¢™ '

#4(6) S g"e*o =) + D@,
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Therefore, letting m — oo, we have
D i
z*(s ){ﬁ for all seR.
-9

In particular,

zk(t) — qz*(t —r)
1-¢

z*(1) <
which gives

() > 2*(t - r).

(5.3.14)

(5.3.15)

On the other hand, by (5.3.11), we see that L[z*(t) — qz%(t — )] = 0. Recall

that z(t) is a solution to Eq. (5.3.1). It follows that

az®(t) + bgz*(t - r) = — g(a*(t)) + qg(z*(t - 7))

+d[D(q)zs*" — 2D(q)xf + D(q)x¢~"].

Notice that z*(t—p) = z*(t) and z*~(t) = z¥(t—£) forany k =1,2,...

we have

D(q)ei*! = 2**(t) ~ gz*(t - 1)

= ok(t— §) - gz*(t - § —r) = Dlg)xt_,.
Similarly

D(q)z;™" = D(q)z7_s.
Substituting (5.3.17) and (5.3.18) into (5.3.16), we obtain

ﬂ:lfk(t) + bg:z:"(t —r) = ‘g(ik(t)) + Qg(ik(t -r))
+2d[D(q)zf_y — D(g)cf].

We now distinguish two cases:
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(5.3.17)

(5.3.18)

(5.3.19)



Case (i): z*(t) > 0. In this case, z*¥(t—r) < 0. For otherwise, if z(t—r) >

0, then the left hand side of (5.3.19) is positive, but the right hand side

—g(z*(t)) + qg(a*(t — r)) + 2d[D(q)z;_¢
< ~g(z*(t)) + qg(z*(t — r))
= g(z*(t))[~1- fg;(—'f(,t "1 < ¢
= s O)-1+e% M <o
by (5.3.13) and the assumptions (i)-(ii) on g¢ .
Now from (5.3.13) and (5.3.19), we see that

az*(t) + bgz¥(t ~ 7) < —g(2*()) + gg(*(t - 7))

which implies that

, (2%t —r
0 < az*(t) +o(a*(®) < aat(t - L=

Since z*(t —r) < 0, (5.3.20) gives further that

)(z%(t =r
g(:t"((t - r))) <b.

D(q)z}]

(5.3.20)

(5.3.21)

By assumption (iii), there must be a constant M; > 0 (independent of k ) such

that z*(t —r) > —M;. Substituting this into (5.3.21), we get

0 < az*(t) + g(2*(1)) < qg(a*(t — 7)) — bga(t = r)

< max_§[g(z) — bz]

= —M,<z<0

(5.3.15)

from which another constant M; > 0 (independent of k ) exists such that z(t) <

M;, due to assumption (iii). Therefore,

2 (t) - qz*(t — r) < My + 6M,.

This, together with (5.3.14), implies that z*(s) < #2+8M. for all s€R.
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Case (ii): z(t) < 0. In this case, z¥(t —r) < r*(t) < 0. If r*(t) -
gz*(t = r) €0, then, by (5.3.14), we are done. If r¥(t) — qr*(t = r) > 0, then
z*(t) > qz*(t — r). From (5.3.20), we get

qg(z*(t = r)) — bgz*(t — r) > agz*(t = r) + g(qr*(t - r)).
This implies

glgzt(t — r)) — gg(z*(t ~ 1))
PRI

> —(a+b).

Therefore, by the assumption (iv), there exists AM; > 0 such that r¥(t —r) >
M >0 (independent of k) such that z¥(s) < M for all s € R.
This completes the proof.

Remark 5.3.2. One can easily verify that all conditions (i)-(iv) are satisfied
for the function g(z) = cz®, ¢ > 0. Physically, such a function g describes
a cubic nonlinear conductance which can be realized with a tunnel diode or an
operational amplifier (see [33, 34]). More generally, one can prove that every

Z:‘gl giz?t! with ¢, > 0, gi = 0, 1 # 1 also verifies the

function g(z)
condition (i)-(iv). For the use of higher order nonlinear conductance, we refer to

[19].
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5.4. Self-sustained periodic solutions

In this section, we apply the global symmetric Hopf bifurcation theorem to
study the existence of phase-locked oscillations in Eq. (5.3.1).
We begin with the consideration of local Hopf bifurcations. Clearly, z(t) = (

is a solution of Eq. (5.3.1) for any ¢ € [0,1). The characteristic equation of the
stationary point (g,0) is

p(\q) = H pi(Mq) = (5.4.1)

j=0

where

pi(A,a) = (A + a;)e* — g(A = b))

a; = a + dc;j, b; = b —dc; (5.4.2)

c;=4sin? ¥, j=0,1,2,...,N-1.

The following lemma summarizes useful information about the characteristic equa-
tion (5.4.1).

Lemma 5.4.1. If 0 < a; < b;, for some j € {0,1,2,...,[%]}, then
(i) the equation

tan A7 = ﬁg;lji—:zfj (5.4.3)
has infinitely many positive solutions 0 < 8 < (; < -
as n — oo, such that

(a) if ﬁ= 3, then
(b) if gk =

7= + 2E for some positive integer m, then 2r < Ei”

< Bp <00

’1{{3 <23 <2 for n21;

<

H1

4r, %{%{%521‘{9:257‘15171(leenm:i-g,) n%:i{
ﬁ{nigffmngm;kl,

(c),fﬂ_l

¥ — 1 s not an integer, then 2T > 2r and CRE A
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(ii) +if, are characteristic values of the stationary points (qin,0), where

Moreover, if ¢ > 0 and q # gqa, n = 1,2,..., there exists no purely
imaginary characteristic value of p;(A,q) of the stationary point (q,0);

(ii) Let An(q) = un(q) + iva(q) be the root of (5.4.2), where q is close to g,
such that u,(qn,) =0 and v,(¢n) = Bn. Then d%u,,(q)l,,z.,“ > 0.

If (/ajbj = 7+ then, as Figure 5.4.1 shows, Tl and I'; have infinitely many

intersections (f,,z2,) such that

This gives

Fig. 5.4.1
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If \/a;b; = - + W* for a positive integer m , then I'1 and I'; have

infinitely many intersection points (f8,,z,) such that

n—1n ( )
@n-lr ™M 12...m

2r r
and
k)r 2(m + k) +1
(m-:: 2Ll < Bm+k < (m-;_) i"”f‘ k=12....

See Figure 5.4.2.

z
T r’ r=

B

Figure 5.4.2

Therefore,
27
2r < — < 4r,
B
2 2 2 2 . .
—7:<—7r-< rl*{f—'—f*, n=23,....m, when m>2, and
- 2" 2 k=1243,....
+k

- <
m+k+1l Buyr m
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If
T"j and

+ (m=1)x

r

b-ﬂHi

< y/ajb; < 7~ + BX for some nonnegative integer m , then

"1‘

2 have infinitely many intersection points (43,.z,) such that

(=l _(n-lr
r 2r

11}

1,2

P

in the case m =0 (see Figure 5.4.3),

x

| S

in the case m 2 1 (see Figure 5.4.4).
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S LN 4 A T

Figure 5.4.4

Therefore, we have

— >4r,

Jo]

% 92 2

Tl e 2l <9 for n>2

if m=0 and

2
2r < — < 4r,
7 7 7 Ji3)
A T T <o n=23,...,m, when m3>2
n Bn n—s; n—1
2r 2r 2r 2r .

< - < = < -
m+k " m4k—3 Bm+k mtk-1

if m > 1. This completes the proof of (i).
To prove (ii), welet A =if inthe j-th characteristic equation p;(},¢q) =0
of (5.4.1). By (5.4.2), this gives

(i + a;)e'" = g(if - b))
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which is equivalent to
{ — ajcos fr + dsin Or = gb,

B cos Br + a; sin Br = q3.

from which (ii) follows immediately.
Finally, we prove (iii). By viewing A as a function of ¢, we differentiate

both sides of pj(A,q) =0. It follows that

A—b;

T+r0+ap)er —¢ (5.4.4)

S S
]

Note that p;(A,q) =0 implies

A—b; = (A +aj)er
) q

(5.4.5)

Substituting (5.4.5) into (5.4.4), we obtain

[L+r(A+a))le —q

A _,
(%) “rage

d

(5.4.06)

1 +r q
= — +r—- ——,
;\EFQJ’ A—-bj

Therefore, with (5.4.6) in mind, we have

Sign{un(0))| _ = Sign{&Re )|

=fIn =fqn

— Sign{Re (42! Sien{Re (2 )~

= Slgn{Re(dq)}qun Sign{Re (77) }quq..

= Sign{RE(-—X_:EJ +r -~ J_A;b))},AE‘Bﬂ
7=qn

2Sigﬂ{r+ﬁ+?§%§;§}=1}&
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This proves (iii).

The proof of Lemma 5.4.1 now is completed.

According to Lemma 5.4.1, (gn,0) is an isolated center of (5.3.1) and its
j-th crossing number 7;(¢s,0,8,) = —1. By the local symmetric Hopf bifurcation
theorem (Theorem 3.3.4), (gn,0) is a (local) bifurcation point and hence a branch
of nonconstant phase-locked periodic solutions {z*(¢)}I_,, with period p > 0
close to %f and z*~Y(t) = z*(t - %p), k=1,2,...,N, (modN), bifurcates

from the stationary point (gn,0).

To investigate the maximal continua of the above (local) branch of phase-
locked periodic solutions, we now apply the global Hopf bifurcation theorem (Theo-
rtem 3.3.6) in conjuction with the two lemnmas in section 5.3. The results we obtain

are formulated in the following theorem.

Theorem 5.4.2. Suppose 0 < aj < bj, where N isevenand j = -12! Assume

that g satisfies the conditions (i)-(iv) in Lemma 5.5.3.

(i) If \/ajb; = &, then for any n > 1 and q € (qn,1), Eq. (5.3.1) has
n phase-locked periodic solutions {a:f' q(t)}iv_:l whose periods p;, satisfy
ﬁﬂ- < pig < %5, l=12,...,n and :cf,q'l(t) = :cf’q(t - g,—pl,q), k =
1,2,...,N, (modN);

(ii) If \/ajb; = £ + B for some positive integer m , then for any n 2 2
and q € (gn,1), Eq. (5.3.1) has n — 1 phase-locked periodic solutions
{.2::",,(t)}£’=_.l whose periods pi, satisfy ¥ < piq < 2 for 2<1<m
(when m > 2), %_"T < pig < 27' for m+1<1!<n, and zf,;l(t) =
:cf"q(t - &p1e)k=12,...,N, (modN);

(iii) If 5@ - -;- is not an integer, then for any n > 2 and g € (gn,1),
Eq. (5.3.1) has n — 1 phase-locked periodic solutions {:r:f"q(t)}f:'___1 where
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2r

periods p;, satisfy g% <pg <15 for | =2.3,...,n and r,";'(t) =
:cf"q(t - ﬁp;,g),k =1,2,...,N, (modN).

Proof. We only give the proof for (iii). Other cases can be proved analogously.

For any fixed positive integer n , we consider the following neutral equations

%D(Qn(a»xf = —az*(t) - bQ(a)z*(t — r) — g(¥(t)) + Qu(a)g(r*(t — 1))
+dD(Qu(a))[zt*! - 22k + 2t

k=:13233i”*iN? (deN)
(5.4.7)

where

-~

B

G +%5, . m
Qn(ﬂ!) = T(El‘ﬁt&ﬂﬁ + ?) -

Note that Q,(a) is an increasing function with limg—._oo Qn(a) = —%. The

map B:R x C([-r,0];R) = R defined by
B(a,p) = Qn(a)p(-r)

for (a,¢) € R x C([-r,0]);R) satisfies a Lipschitz condition with Lipschitz con-
stant k£ =gqn41 < 1.

Under the assumption (i) of Lemma 5.3.3, we can casily show that for any
a € (—00,00), if (a,z¢) is a homogeneous stationary point of Eq. (5.3.1), i.c.
£l =z, k=1,23,...,N, (modN), where z, = (z),23,...,z{), then
zo = 0. Moreover, using (5.4.2), we can show that 0 is never a characteristic value
since Qn(a) > —4%. Therefore, all stationary points of (5.4.7) are nonsingular. Let
a;= Q7Y q) for 1=2,3,...,n, where @, denotes the inverse function of @, .
Then (0,0q) are isolated centers of (5.4.V) for each 2 <[/ <n by Lemma 5.4.1.

Except at these isolated centers, there are no other purely imaginary characteristic



values of (0,a, ;) which satisfy v;(0,a,81) = —1 for each 2 <1< n. Fix now

n > 2 and consider the set
§ =Cl{(z,a,p); z(t) = 2(}) isa p-periodic solution uf (5.4.7)
with z*~1(t) = z*(t - 2),t€R, k=1,2,...,N, (mod N)}
c C(S';RY) x R%
Let C(0,a, %’) denote the connected component of S containing (0,a, %—"T)
By the statements after Lemma 5.4.1, C(0,«, 2‘5—"‘1) is nonempty. Moreover, the
Global Hopf Bifucation Theorem (Theorem 3.3.4) implies that C(0,a, %) must

be unbounded.

Recall that 4 < 2¢ < {#%. By Lemma 5.3.1 and 5.3.3, there exists a

constant M, = My,(gn+1) > 0 such that
(0, a, 2—"") C BC(M,) x R x [3F, 251,

where

BC(M,) = {y € BC(R;R"); sup [y(t)| < Ma}.
teR
On the other hand, since Q,(a) increases from —$% to gn4;, thereis z, such
that Qa(zn) = 0. At a = an, Eq. (5.4.7) reduces to the following ordinary

differential equations

-d—tz’f(t) = — az®(t) - g(z®(t)) + d(z**1(t) = 2z*(2) + 2*~1(2))
k=1,2,...,N, (modN).

(5.4.8)

conclude that

C(0,q, ZET) C BC(M,) x (2n,00) X [gTr, jg__rj]
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Therefore, since C(0,a, gv—"i) is unbounded, the projection of C(0,a, g—1;’) onto
the parameter (a)-space must be unbounded above. This implies that for every
a > a;, Eq. (5.4.7) has a nonconstant phase-locked periodic solution { r; O,
with period po € %5,% and 1'" l(t) r, ¥ (= g'=l5) k=1,2,...,N, (modN).
This, in turn, implies that for all ¢ € (gi,¢n+1), Eq. (5.3.1) has a nonconstant
phase-locked periodic solution {z} (t)}fL, with period pi, € (¥, #5) such
that z:ka (t) = Iﬁq(i - %),k = 1,2,...,N, (modN). This completes the

proof.

We end this section with several remarks.

Remark 5.4.1. We note that the existence of phase-locked periodic solutions of
periods less than 2r for Eq. (5.3.1) with ¢ € (g2,1) has been guarantced by
Theorem 5.4.2 in all cases. We call these solutions rapidly oscillating solutions.
It has been observed, both numerically and theoretically, that rapidly oscillating
periodic solutions appear to be unstable for many retarded cquations. It is still a

question whether or not the same phenomenon happens to the neutral equations.

Remark 5.4.2. For the existence of phase-locked periodic solutions with period
greater than 2r , we are unable to obtain the global results. A possible reason
for this is that phase-locked periodic solution with period equal to nr , where
n > 2 is an integer, still may exist. However, combining the local Hopf bifucation
theorem (Theorem 3.3.4) and Lemma 5.4.1, we can conclude that phase-locked
periodic solutions with period greater than 2r do cxist for ¢ near ¢, in the
case (ii) and (iii). We call these periodic solutions slowly oscillating solutions. It

is also an interesting question whether or not these periodic solutions are stable.

Remark 5.4.3. If d =0 in Eq. (5.3.1), i.e. there is no coupling between lines,
then Theorem 5.4.2 gives also a global branch of synchronous oscillating solutions.

Physically, this can be interpreted as each terminal voltage osclllating in the same
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way (each voltage is of identically the same amplitude at any time ) so that there
is no current flowing through the coupling resistor R ( in this case, we can take

R=o00 and d=0).

Remark 5.4.4. It follows from Theorem 5.4.2 that if 0 < a; < b; for j = g
(when N is even), then the system (5.3.1) has large amplitude periodic solutions.

It is not difficult to see that 0 < a; < b; for j = & is equivalent to

0<~RC -4< R/Z. (5.4.9)

It follows that, if ZC > %, choosing a large coupling resistance R will guarantee
(5.4.9). This also implies that if the lumped parallel capacitance C or the charac-
teristic impedance Z is large, there likely exist phase-locked oscillations. Further,
the synchronous oscillations always exist in the system (taking R = oo, see Re-
mark 5.4.3). This analysis seems in agreement with that obtained by Shimura
[55].

5.5. Conclusions and discussions

In this chapter, we have studied the ring structured, resistively-coupled loss-
less transmission lines. The telegrapher’s equation is reduced to a symmetric
neutral system. We have proved, under fairly general conditions, the existence of
large amplitude phase-locked and synchronous periodic solutions. To the best of
our knowledge, it is the first global result on the existence of periodic solutions for
the n-dimensional autonomous neutral functional differential systems. This is
due to the symmetry of the equations in question and our global Hopf bifurcation
theorem.

As electric circuits, the transmission lines can be coupled resistively, in-
ductively (:nagnetically) or capacitively (electrostatically). In this chapter, only

resistive coupling (by a common resistor R ) is discussed. The same problem for
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inductive coupling or capacitive coupling should also be addressed. But the differ-
ential equations governing the transmission lines will be more complicated. This
is beyond the scope of this thesis and we shall consider them elsewhere.

Note also that the inductive coupling may not be electrically connected at
all. In this case, the coupling is affected through the mutual inductance of the
lines in nearest neighbours. Moreover, a combination of the above couplings is
also possible. We refer to [7, 25, 56, 58] for more details on circuit couplings.

We are only concerned with the ezistence of symmetric periodic solutions
which describe phase-locked or synchronous oscillations. The stability of these
periodic solutions is an important issue and remains unsolved. We will address
this problem in our future investigations. (We have recently received a preprint of
Hale [30] where an idea of how to determine the stability of periodic solutions to
neutral equations is presented.)

A natural question also arises here. Since electric circuits are widely used
to simulate biological rhythms, it is plausible to question the applicability of the
lossless transmission line equations presented in this chapter to problems of os-
cillator in various disciplines are well-known [3-7, 17-19, 25, 34, 40-42, 47, 62,
63, 66). In neuron electro-physiology, numerous electric circuits have been built
[31) on nerve conduction has represented a non-myelinated axon membrance as a
one-dimensional transmission line. Although the electrical characterization of the
membrance is very different from the (lossless) transmiission line we described (the
membrance has a distributed constant resistance but has no inductance), it is still
interesting to construct a specific realization of the dynamical system (5.3.1) in
mathematical biology.

Let us pursue this line of thought somewhat further before we leave this
discussion. Actually, we have been led to a well-developed theory of dynamical

analogies [7, 51, 53]. It is well known that any electrical system can be replaced by
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an analogous mechanical system, and conversely. Under this analogy, we conclude
that the electric circuit considered in this chapter can be a simulator of almost all
stringed instruments, where the tunnel diode in the transmission line corresponds
to the Coulomb friction in the string, the voltage—current corresponds to frictional
force-relative velocity and the inductance corresponds to the mass (see, for exam-

ple, [55]). It is the main purpose of the t;hecxr:y of dynamic:al anal@gies to study

which certain pairs of diverse systems may be considered dynmmcally equivalent.
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APPENDIX

Bounds for the Period of Periodic Solution to NFDEs

We consider the following two types of neutral equations
d .
= [a(t) - b(zp, @) = F(z1,0) (DE)

and

2'(t) = f(z1, 24, @) (GE)
where 0 < a < o0, b and F are continuous maps from S x I into R™ and
f:8xT xI— R" is continuous, S and T are subsets of BC((—o0,a];R")

of continuous bounded functions, I is an open interval of R, z, (resp. £;) €

C, := BC((—o00,a];R"™) is defined by z:(6) = z(t + 6) (resp. ,(8) = z'(t + 6))

for 6 € (—o0,a]. The norm of C,, denoted by |- |leo, is given by [|¢]les =
sup |p(6)].

G(—-oo,a]
We say b, F and f satisfy the Lipschitzian conditions uniformly with
respect to a if the following inequalities hold

IF(S",Q) - F('/’a O‘)I < L”"’ = ¢’|Im,
[b(p, @) = b(¥, )| < k|l — ¥lleo,

forall o, v €S, a€l and

If(()ala"»baa) - f(‘P2, d)a Q)l S L”(,@l - ‘PZ”!
lf(%lbl,a) - f(‘P’ ¢'2ya)' S k”"l"l - ¢'2"3

for all ¢y, 2, ¢ €S and ¥y, ¥2, Y €T, a € I, where L and k are nonnega-

tive constants independent of a.
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Let z(t) be a nonconstant periodic solution of (DE) (resp. (GE)) with
period p > 0. We shall show in this appendix that there is a close relationship

between L, k and p. To this end, we need a lemma of Vidossich [7].

Lemma 1. Let X be a Banach space, V :R — X a p-periodic function with

the following properties:
(i) V is integrable and [] V(t)dt =0;
(ii) there exists U € L'([0,p/2];R*) such that
V() - V(s)| S U(t —s)

for almost all s, t with 0<s<t<p, t—s<Z% Then

B
p sup [V(t)| < 2/’ U(t)dt.
teR 0

By using the above Lemma, we can prove the following result which provides

an analogue, for neutral equations, of similar ones in [5-8].

Theorem 2. If F and b satisfy the Lipschitzian conditions with constant L

and k, k<1, and z(t) isa p-periodic solution of (DE), then p 2 4(1 - k)/L.
Proof. Let s <t and D(a,z) = z(t) — b(x¢, ). We have

ID(.’E:,G) - D(:c,,a)l = |$(t) - x(s) + b(msva) - b(xha)l

> |2(t) — z(s)| = kllze — Zalloo
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which gives that for all 7
ID(2149,@) = D(@aprs@)] 2 [o(t+7) = 2(s + 7)| = K2 e4r — utrloo-
By Mean Value Theorem, the above inequality yields
j2(t + 7) = 2(s + )| £ Kllzetr = 2esrlloo + 1D (26, @)t = 8)

for some £ € [s + 7,t + 7]. By taking the supremum with respect to 7 on two

sides of the above inequality and using the periodicity of z(t) one obtains

lze = Zslloo < kllze = 24]l0o + §u§ |D'(z¢, @)|(t — s).
£33

It follows that

1 o
lze — 24)|o0 < T Sup |D'(z¢, a)|(t = s).
1= Nk LelR

On the other hand,

ID'({E;,C’!) - D’(fsag)l = |F(-fli';, Ci) -~ F(zg, &)'

< Lijz¢ - 74| o

Therefore,

, , L ,
|D'(z¢, ) = D'(z4,a)] < 1—% ?ég |D'(z¢, a)|(t — ).

Let V(t) = D'(z¢,«) and U(t) =

L/(1 — k)sup |D'(z¢,a)|t. Then applying
EeR )
Lemma 1 we get

B
F]

p sup |D'(z,0)| < 2/
tER 0

L sup |D'(€, a)lsds.
1—k ¢em
Hence p > 4(1 — k)/L and the proof is complete.
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For the general neutral differential equations (GE)., we can also prove a

similar result on positive lower bounds for the periods of periodic solutions to

(GE).

Theorem 3. If f satisfies the Lipschitzian conditions with constants L and

k, k < 1, and z(t) is a p-periodic solution, then p > 4(1 — k)/L.

Proof. Let s,t € I. We have

l'i:’(t) - I’(‘SN = 'f('rh Thﬂ’) — f(zq, issﬁ)l

S kll&: = 2alloo + Lllze = sl o-
This gives that for all 7 € R,

|2’ (t +7) = g'(s+ 7)< El[#¢4r = Estrll + LllTe4r = Tatrlloo

= k|| = &, |00 + L||Tt = Zs]|0o

by the periodicity of z(t). Therefore,

¢ = dulloo = sup|&'(t + 1) = (s + 7| £ o0 = ullo + Lllee = o
T=a

and thus

e = dalloo < T lwe = 2alleo

On the other hand, Mean Value Theorem gives
|z(t) ~ 2(s)] = |2"(E)(t = ) < [l loa(t — 3).

Consequently,

[z = Zall < ll2[loo(t — 3)-

(1)

(2)

(3)



Substituting (2) and (3) into (1), one has

l='(t) - z'(s)| £ k- ﬁ"xt = Z,lloo + Lllzt — Zs]loc

f—%";i — Z,]loo

=z M1z’ lloo(t — ).

Choose now V(t) =z'(t) and U(t) = 1% |lz'|lc t. Applying Lemma 1 leads to

B -

2
su :L"(t)ng — z' ﬂsdsgi*f* fVIr@'pg
pouple (0 <2 [ skl 0ds = s 2

F

Ey

which implies that

g~
1Y
|

This completes the proof.

Note that the above results can be improved if the neutral equations (DE)
and (GE) reduce to ODEs (see [5-8]). For other improvement and similar results

for discrete dynamical systems, we refer to [1-4].
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