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Abstract

In this thesis, the relationship between bond graph techniques, and those
conventionally used to study manipulator dynamics, is explained. Utilizing
the same kinematic structure used to obtain the Newton-Fuler formulation
of the link dynamics, a multibond graph link miodel, suitable for nse as a
component in an object-based modeling environment, is created.

A SIMULINK block-diagrain model of a revolute manipuiator link, based
on the multibond graph link model, is cousiructed. The SIMULINK model

is then used as a component to simulate a planar two-link manipulator.
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Chapter 1

Introduction

1.1 Introduction

A robotic manipulator is a complex mechanical assemblage of joints, links,
and actuators, coordinated by an active or passive control system. The
inspiration for creating robotic manipulators comes from living organisms.
That is, the goal of robotics design is to create mechanical systems that
perform as capably as biological systems.

Robots are able to operate in environments that are hostile to living
organisms; this appears to be their main advantage. In terms of adaptability,
robustness, and even dynamic performance, the current generation of robotic
manipulators compares poorly with corresponding biological systems. For
example, a typical industrial manipulator has a maximum payload capacity
that is twenty times smaller than the mass of the manipulator itself. In

contrast, the human arm is known to lift payloads that are twice its own



mass. A consequence of the industrial manipulator’s much smaller payload-
to mass ratio is a degradation in speed; manipulators that have a payload
capacity comparable to that of the human arm operate more slowly[20, p.
xxii].

In order to improve the capabilities of robotic manipulators, the design
problem has been decomposed into a number of simpler problems and as-
sociated research areas. For a classical robot architecture, areas of research
include: control; vision; sensor fusion; path planning; as well as mechanical
design[17].

While decomposition of the robotics design problem is necessary, it also
introduces a difficulty of its own: research carried out in one of the specialized
arcas may be so specific that it cannot be integrated into a working robot
design[4]. One reason this problem arises is that the design and construction
of robotics manipulators is a time-consuming and expensive process. Thus,
the researcher is faced with simulating the robotic manipulator. If the simula-
tion is constructed from scratch, it is quite possible that invalid assumptions
may have to be made about those aspects of the robotic manipulator with
which the researcher is less familiar.

It has been proposed that the verification of research results, through sim-
ulation, can be improved significantly if an object-based approach to model
construction is adopted. Using this approach, a model of the robotic ma-
nipulator is built by connecting a number of component models together. If
the component models are closely related to the physical components of the
system, the construction of the robot model is essentially a schematic for

constructing the physical system[19]. Further, the robot modeler is able to
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treat components as black bozes, needing only to know how the components
are connected, not the details of how they work.

Presently, there is no common modeling language for robotic manipula-
tors, apart from mathematical equations. However, advocates of bond graph
modeling techniques have suggested that bond graphs constitute an idcal
graphical language for the object-based modeling of complicated dynamies

systems, such as robotics.

1.2 Bond Graph Modeling of Mechanisms

Bond graph techniques provide a graphical language for modeling dynamic
systems[21]. These techniques model system dynamics at a higher level than
mathematical equations. The advantage of this is that the components that
comprise a physical system can be readily identified in a bond graph model.
Mechanical engineers were among the first users of bond graph techniques
[12]. For this reason, a large body of literature exists on the application of
bond graph techniques to multi-body dynamic systems, such as robotics.
Shahinpoor [23] presented bond graph modeling as an alternative to
Newton-Euler and Lagrange approaches. However, the large number of coor-
dinates used to describe multi-body systems makes the resulting bond graph
unwieldy. For this reason, most researchers have adopted a vector-hased ex-
tension to the bond graph, called the multibond graph, described in [6, 7, 8].
Allen presents a multi-bond graph approach to modeling links in accel-
erated reference frames [1]. This paper uses center-of-mass coordinates, and

Euler angles to describe the gecometric configuration of the links. A survey of



additional papers published on the application of multibond graphs to multi-
body systems is presented in [12]. Although a number of these papers use
robotic systemns as examples, they do not adopt the coordinate assignment
conventions used in robotics. Thus, it remains hard to relate the multibond

graph techniques to those conventionally used to obtain the dynamic model

of a robotic manipulator.

1.3 Thesis Organization

In this thesis, bond graph techniques are applied to the dynamics of robotic
manipulators. Through the development of a bond graph link model, suit-
able for use with object-based modeling techniques, the relationship between
bond graph modeling techniques and those conventionally used for robot dy-
namics is explained. An example of using the component link model, with

the computer simulation program SIMULINK, is provided.

e Chapter 2 provides a tutorial on the use of bond graphs. Bond graph
techniques are applied to simple mechanical and electrical systems; a
systematic method for obtaining equations from a bond graph model

is reviewed.

e In chapter 3 the bond graph concept is extended to include multi-
bonds. Multibond graph techniques are then applied to develop the
dynamic model for a robotic link. To verify the correctness of this
model, the Newton-Euler equations for robot dynamics are obtained

from the multibond graph link model.



o The simulation of a robotic manipulator using the simulation program
SIMULINK is presented in chapter 4. A component block diagram
model, based on the multibond graph link model, is developed. The use
of the component block diagram to construct the manipulator model

is presented.

o Chapter 5 presents a brief summary and conclusion, and suggests topics

for future research.

e Appendix A contains the two SIMULINK S-files used to implement the
SIMULINK modulated transformer block, described in chapter 4.

o In appendix B, the equations used to implement the SIMULINK link

block diagram (see chapter 4) are presented.

o A listing of the SIMULINK S-file. thai implements the two-link ma-
nipulator example presented in chapter 4, i1s given in appendix C. Due
to the large size of this file, appendix C is contained in a supplemental

volume.



Chapter 2

Bond Graph Fundamentals

2.1 Introduction

Bond graphs, created by Henry Paynter in 1959, constitute a graphical lan-
guage for describing lumped-parameter dynamic systems in terms of en-
ergy and information flow [21]. The bond graph language was developed to
model engincering systems that contain more than one type of energy; thus
systems containing hydraulic, mechanical, electrical, or magnetic energies,
among others, are all modeled using a uniform notation and a small set of
ideal elements.

Bond graph techniques were developed as a generalization, in terms of
notation, of the electrical network concept [12]. In fact, any advantage that
bond graphs have over equivalent electrical networks is qualitative; for every
idcal bond graph clement there is a corresponding ideal circuit element. This

leads to a difficulty in justifying a preference for the use of bond graphs.
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Figure 2: Simple Bond Graphs

Visually, however, bond graphs and electrical networks appear significantly
different. This difference is illustrated in figure 1 which shows a simple R

L-C circuit and its corresponding bond graph. It is now recognized that
bond graphs present dynamic systems in a new light, leading to new insights
into their behaviour. As can be seen from figure 2, which shows some simple
bond graphs, the name bond graph was arrived at by observing the similarity

between these graphs and chemical bond diagrams.

2.2 The Bond Graph Language

Bond graphs model physical systems as a collection of interacting elements.

Interaction occurs when power is transmitted from one element to another
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Figure 3: Typical Multiport Elements

through ports identified with the elements. Since each element has one or
more ports associated with it, the term multiport is used to describe the class
of all elements that comprise a bond graph [21]. Examples of typical multi-
ports are shown in figure 3. As shown in the figure, multiports are designated
with alphanumeric characters, and the connecting ports are represented by
short line segments.

The connection of ports between pairs of multiports, to facilitate interac-
tion, is called bonding. A bond graph is defined as a collection of multiports,
bonded together [21].

To model physical systems with bond graphs, it is necessary to indicate
the direction of power flow within the graph. This is accomplished by at-
taching a half arrow to each bond in the graph, indicating the direction of
positive power. Such a bond graph is said to be oriented [21]. Figure 4 shows

examples of oriented bond graphs.

R4Z——S; Se > TF >

Figure 4: Oriented Bond Graphs
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Figure 5: Tetrahedron of States

2.3 Port Variables

Each connecting port has, associated with it, two power variables: effort,
and flow. Both of these variables are assumed {o be scalar functions of an
independent time variable, t. Power is found directly from the product of
the effort and flow:

P(t) = e(t)f (1)

Momentum p(t) and displacement ¢(t) can be found as the time integrals
of the effort and flow variables respectively. The relationship between port,
variables is often illustrated using Paynter’s tetrahedron of stales, shown in
figure 5 [22, p 28].

The vertices of the tetrahedron are labeled with the four port variables:
e, p, f,and q. Each edge of the tetrahedron represents a possible relationship
between the port variables. The edges labeled I, R, and € represent, passive

one-port relationships, explained in section 2.4.1.
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Name oo 2 cTining Relationship Symbol
Effort Source e=e(t) e=e(t) S¢e—
Flow Source f=1(t) f=f(t) S —

Resistance e=o6(f) e=Rf Rée——
Capacitance q=6é(c) q=Ce Ce—
Inertance p=¢() p=If | 6—no

Table 2.1: Summary of One-Port Elements
2.4 Multiport Characteristics

Bond graphs are composed using only a few basic types of multiports. Each
multiport is classified by the number of ports it possesses, as well as its energy
characteristics. A multiport that has n power ports is referred to as an n-
porl. In terms of energy characteristics, multiports can be active or passive,
depending on whether or not they are a source of energy. Only nine types
of multiports are needed to model lumped-parameter dynamic systems: five

one-ports, two two-ports, and two three-ports.

2.4.1 One-Ports

The simplest type of multiport is the one-port. Of the five basic one-ports,
two are active and three are passive. The active one-ports serve as sources of
effort and flow, while the passive elements are used to store or dissipate en-
ergy. A summary of the basic one-ports showing name, defining relationship,

and symbol is shown in table 2.1.

10



Active One-Ports

The effort source, denoted.SE., is defined by the relationship ¢ = ¢(t), and
the flow source, Sp, is defined by the relationship f = f(t). Both of these
sources are ideal, and equivalent to the ideal voltage and current sources
used in electrical circuits. Because these elements are sources of power, the
half-arrows that indicate the direction of power flow, always point away from

the source.

Passive One-Ports

The passive one-ports, resistance (R), capacitance (C), and inertance (/),
define mathematical relationships between the port variables. As the name
resistance implies, the resistance one-port dissipates energy. In contrast, the
inertance and capacitance one-ports store energy.

The resistance one-port (R) relates an effort and flow variable. This can
be written as e = ®(f), gencrally, or as e = Rf if the relationship is linear.

The capacitance one-port defines a relationship between a displacement,
variable (the time integral of the flow variable), and an effort variable. This
can be expressed as ¢ = ®(e). If the relationship between ¢ and ¢ is linear,
the expression may be rewritten as ¢ = Ce.

The last passive one-port, inertance, is defined by the relationship p =
®(f), which relates a momentum variable (the time integral of the effort) to
a flow variable. For linear relationships, the expression may be rewritten as
p=1f.

The relationships defined by the passive one-ports are shown graphically

11



in the tetrahedron of states (figure 5). To indicate that they dissipate or
store energy, the half-arrows associated with the passive one-ports always

point towards the element.

2.4.2 Two-Ports

For two-ports, only those elementis that conserve power are considered. As
mentioned earlier, only two such elements are required.

The first two-port, called the transformer (T F), is defined by the relation-
ship ¢y = ey and mfy = f;. In this relationship, the variable m may either
be constant, or an arbitrary function, without affecting the power-conserving
properties of the the two-port. In those cases where m is not constant, the
clement is referred to as a modulated transformer (MT F).

The second two-port is the gyrator (GY'). This element is defined by the
relationships ¢y = m f; and mf, = e;. Once again, m may be constant or
an arbitrary function. In the latter case, the element is called a modulated
gyrator (MGY').

Sign conventions for transformers and gyrators have one half-arrow point-
ing towards the element, and one half-arrow pointing away from the element.
This marking indicates that power flows through the two-port.

A summary of the two-port elements, showing name, symbol, and defining

relationship, is shown in figure 2.2.



Name Defining Relationships Symbol
Transformer e, =me, mf, =f, \TF N
Gyrator e,=mf, mf, =e, ‘\gYy—

Table 2.2: Summary of Two-Port Elements

2.4.3 Three-Ports

As with two-ports, only elements that conserve power are used. The two
elements used are the /-junction and the 0-junction.

The 1-junction is defined by the pair of relationships: ¢y + 5 + ¢4 = 0,
and fi = f; = f3. In electrical systems, where effort is identified as voltage
and flow is identified as current, it can be seen that the definition of the |-
junction simply restates Kirchoff’s voltage law [16, pp. 31-37]. In the same
vein, the 0-junction represents Kirchoff’s current law and is defined by the
relationships: e; = e; = e3, and fy + fo + f3 = 0.

Unlike one-ports and two-ports, signs for three-ports may be difticult to
assign. The easiest approach is to determine the signs from the actual system
under study, so that consistency with the signs of attached one-ports and two-
ports can be maintained. The properties of the three-ports are summarized

in table 2.3.

2.5 Application of Bond Graphs

The application of bond graphs to engineering systems is hest presented by

way of example. For simplicity, attention is restricted to the development and

13



Name Defining Relationships Symbol

0-Junction e, =e;=e, f,+f,+f,=0 —sg—

1-Junction fx -f2=f3 € +e,+e,'0 —_

Table 2.3: Summary of Three-Port Elements

solution of bond graphs for mechanical and electrical systems. This does not
mean that bond graphs are more difficult to apply to other energy domains.
Electrical and mechanical systems have been chosen because they are most

relevant Lo robotics.

2.5.1 Electrical Systems

In electrical circuits, effort is interpreted as voltage, while flow is interpreted
as current. Bond graph elements — resistance, capacitance, and inertance -
are used to represent resistance, capacitance, and inductance (respectively) in
the electrical circuit. Since 0-junctions have a constant effort, they represent
parallel connections within the circuit. 1-junctions, having a constant flow,

represent series connections.

R-L-C Circuit

To develop the bond graph for the simple series R-L-C circuit, shown in figure
6a, the first step is to identify the junction structures. In this case there is

only a single I-junction that represents the series connection of all the circuit

14
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Figure 6: Bond Graph of R-L-C Circuit

elements.

The next step is to attach all elements that share a common flow with the
1-junction. Here there are four circuit elements, but only three ports avail-
able on the 1-junction. This is rectified by bonding an additional I-junction
onto the existing one. Generally, the bond between the new junction pair is
dissolved, and the new junction is drawn as shown in figure 6h. Manipulating
junction structures in this manner is mathematically consistent, and shows
why there is no need for basic multiports having more than three ports.

Having attached the one-ports to the junction (figure 6¢), half-arrows are

attached to the bonds, consistent with the sign conventions of the one-ports.



The resulting oriented bond graph is shown in figure 6d.

Resistor Network

As a second example of the application of bond graphs to electrical circuits,
the resistor network shown in figure 7a is considered. Once again, the first
step is to identify the junction structures. The two nodes, identified in the
figure, become 0-junctions, while the paths between the nodes become 1-
junctions. The junction structure is shown in figure 7b.

The next step is to attach the resistive elements to the 1-junctions, as
shown in figure 7c. If it is assumed that node 2 is grounded, the corresponding
0-junction may be eliminated. This leads to the bond graph shown in figure
7d. A further simplification can be made by eliminating the 1-junction to
which R4 is attached.

To orient the bond graph, half-arrows are placed on the bond connected
to one-ports. As shown in figure 7e, this still leaves two bonds that are not
oriented. Summing the current at node 1 of the circuit gives: I3 = I + 1.

Applying this information, the completed bond graph is shown in figure 7f.

2.5.2 Mechanical Systems

Unlike low frequency electrical circuits, which can be described by their topol-
ogy alone, mechanical systems have geometrical constraints. Thus, in addi-
tion to the dynamics of a mechanical system, the kinematics must also be
considered. The kinematics of a mechanical system can be identified as the

linear graph defined by the two-ports and three-ports that comprise the sys-

16
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tem bond graph.

For mechanical systems, two cases are considered:

e For systems undergoing pure translation, the effort variable is force, and
the flow variable is velocity. The resistance one-port is interpreted as
friction; the capacitance one-port becomes a spring; and the inertance

one-port is interpreted as mass.

e For systems undergoing pure rotation, the effort variable is torque,
while the flow variable is angular velocity. In this case, the resistance
one-port is interpreted as rotating friction; the capacitance one-port
becomes a rotational spring, and the inertance element renresents the

moment of inertia.

Mechanical Mass—-Spring—Damper System

As a first example in using bond graphs for mechanical systems, consider the
mechanical system shown in figure 8a. This system is the mechanical analog
to the electrical R-L-C circuit of figure 6. It is interesting to see that a series
connection in an electrical circuit corresponds to a parallel connection in a
mechanical system.

Once again, the first step towards developing the system bond graph
involves identifying the junctions. In this case there is a single 1-junction
that corresponds to the velocity #. Next the one-ports are attached to the
junction, as shown in figure 8c. Note that the one-ports have additional

information associated with them, i.e., each of the one-ports is labeled with
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Figure 8: Bond Graph of Mass-Spring-
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the corresponding parameters of the mechanical system. Finally, half-arrows
are attached to the bonds, resulting in the oriented bond graph of figure 8d.

To explore this example further, consider what happens if the direction
of F is reversed in figure 8a. The bond graph is no longer oriented properly.
The direction of positive power is determined by the product of F and z,
and the half-arrows on the source one-ports indicate the direction of positive
power. The change in direction of F' can be indicated by labeling the effort

one-port with Sg: —F.

Rack and Pinion

As a second application of bond graphs to mechanical systems, consider the
rack and pinion assembly shown in figure 9a. In this case it is useful to
consider three velocities: w;, w;, and £. The rotational spring exerts an
equal (but opposite) torque on both rotating masses proportional to the
difference between w; and w,. Thus, a common effort junction, to which the
spring is attached, relates, w; and wz. The relationship between # and w;
is obtained by taking the time derivative of the expression: z = r0,. This
relationship has the same form as the transformer two-port. Using these
pieces of information, the junction structure shown in figure 9b is arrived at.

Figure 9¢ shows the partially oriented bond graph that results from at-
taching the one-ports, with their requisite signs, to the junction structure.
This leaves only two bonds, connecting the 1-junctions to the 0-junction, un-
oriented. Orientation of these bonds is determined through the introduction

of a relative velocity, ws, defined by the relationship: w3z = wy —w;. Alterna-
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Figure 9: Bond Graph of Rack and Pinion System
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tively, the relationship could be defined by: w3 = w; —w;. The importance
of the relationship, between w; and wy, lies in the magnitude of the differ-

ence; the sign of the difference is unimportant. The completed oriented bond

graph is shown in figure 9d.

2.6 Obtaining Equations From Bond Graphs

A bond graph presents a mathematical model of a dynamic system in graph-
ical terms. A set of differential equations, describing the system dynamics,
can be obtained by writing down and combining the mathematical relation-
ships found in a bond graph.

The process of generating equations from a bond graph can be greatly sim-
plified if additional information is placed on the oriented bond graph. This
information uniquely identifies the effort and flow variables associated with
cach bond in the graph. In addition, independent effort and flow variables
are distinguished from those that are dependent. Bond graphs, to which this
additional imformation has been added, are referred to as being augmented.
Differential equations generated from an augmented bond graph are naturally

in a state-space form.

2.6.1 Causality

Distinguishing between dependent and independent variables is accomplished
by applying the concept of causality to the bond graph. Causality is a math-

ematical tool used as an aid in the generation of equations from the bond
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Figure 10: Interpretation of Causal Stroke

graph; it does not necessarily have physical significance. Each one-port in a
bond graph defines a relationship between an effort variable and a flow vari-
able. Causality, indicated by a vertical stroke on the bond, indicates which of
the bond variables is independent and which is dependent. The convention
used for causal strokes is shown in figure 10.

Depending on how the causal stroke is applied, effort and flow variables
associated with an energy-storing onec-port have either an integral or a deriva-
tive relationship. For example, if the flow variable associated with a capac-
itance one-port is independent, the relationship between the port variables
is given by: e = ®~(g). Since f = ¢, the effort variable is a function of the
integral of the flow variable. Note also that, with causality assigned in this
manner, the variables ¢ and f in the bond graph can be replaced with the
variables ¢ and q.

When a bond variable is expressed in terms of the integral of the other
bond variable, the bond is said to have integral causality. If all the bonds
in a graph, connected to energy storing one-ports, arc in integral causality
then the equations describing the system dynamics can be written in terms of
momentum p(t) and displacement ¢(t) variables, and their first derivatives,

resulting in equations in state-space form.
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Name Possible Causality
Effort Source Se—
Flow Source S, ——
Resistance RF——— R——
Capacitance CH—- ¢ c—
Inertance | |—
Trasnformer - TF} {TF i
Gyrator F GY { {GYFH
1-Junction — 1<
A
0-Junction —0 /\/
* Denotes Integral Causality

Table 2.4: Causality for Bond Graph Elements

Application of causality to a bond graph may not always result in all

bonds connected to energy storing one-ports having integral causality. Caus-

ality is propagated by the bond graph junction structure (two-ports and

three-ports). When mixed integral and derivative causality occurs in a bond

graph, this means that one or more of the system state variables is not

independent. Possible causal assignments for the basic bond graph elements

is shown in table 2.4.

To assign causality to a bond graph in a systematic fashion, the sequential

causality assignment procedure (SCAP) from [22, p. 93] is presented:

1. Assign the requisite causality to all bonds connected to source elements
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in the bond graph. Propagate the causal stroke as far as possible

through the bend graph structure.

2. Choose any C or I element and assign integral causality. Again, propa-
gate this causal stroke as far as possible through the bond graph struc-
ture. Repeat this procedure until all the C' and [ elements have been

causally assigned.

3. Choose any R element that has not been assigned, and give it an arbi-
trary causality. After propagating the stroke through the bond graph

structure, repeat this process until all bonds have been assigned.

2.6.2 Augmented Bond Graphs

In addition to placing causal strokes on the bond graph, it is convenient to
number each bond in the graph and label it with an effort and flow variable.
Bonds that terminate on energy storing one-ports, and are in integral caus-
ality, are labeled first using the derivative of the appropriate state variable.

For instance, the flow variable for bond n, terminating on a capacitance
element and in integral causality, would be labeled with an effort variable,
€n, and a flow variable, ¢,. Similarly, the bond terminating on an inertance
element in integral causality, would be labeled with the effort variable, p,,
and the flow variable, f,. Having done this, the system state variables can be
identified from the bond graph as the momentum and displacement variables,
Pn and qy.

After identifying the system state variables, the remaining bonds are la-



IJ1 Cik I:J2

51T1 * 16 52T" 1r

OI 8, ,

Se: TN = 0 MRS TR b

Figure 11: Causality for Bond Graph Elements

heled sequentially with effort and flow variables. e; and f;. An example of
this procedure is shown in figure 11, which shows an augmented version of
the bond graph for the rack and pinion system (see figure 9). In this exam-
ple, both integral and differential causality are found. This causal conflict
arises because the velocities wy; and z are not independent. In this case, the
state variable could be associated with either of these two velocities. For

convenience, the state variable associated with the angular velocity is used.

2.6.3 Obtaining the State Equations

With the aid of the augmented bond graph (11), the system state equations
can be obtained by writing down and combining the mathematical relation-

ships in the graph:

n
fi=%= 2.1
1= (2.1)

1)
fa = J—j (2.3)
Py = ¢4 + 5 (2.4)



Combining 2.4, 2.2, and 2.7:

Combining equations 2.3, 2.8, 2.11 and 2.12:

Combining equations 2.2, 2.6, 2.7 and 2.13:

9=Jfo~ 15 (2.5)
p2 = —€b — €7 (2.6)
€3 = €5 = €¢ (27)
f2=fe = f7 2.8)
h=fa= /s (2.9)
€7 = Te€g (-)'“))
cs = mfy (2.11)
Js=1f7 (2.12)
€g = mrL2 (2.13)
J2
2 P2 _ ___Jz __'__(I_’ (2.14)
J, Jo 4+ mre K
Po_m ’1n
7 (2.19)
. q .
p=T+ = (2.16)
K

Finally, equations 2.14, 2.15, and 2.16 can be written in matrix form as:

1
0 al
J
0 - K(Jy+mr?)
)]
A 0

27

pr |0 (2.17)
q 0



2.7 Summary

The bond graph modeling techniques, outlined in this chapter, present a
highly organized approach to studying the dynamics of lumped-parameter
engineering systems. The bond graph model of a dynamic system can be
quickly constructed using a small set of ideal elements. The resulting model
graphically represents the flow of power and energy within the system.

Once a bond graph model has been created, causality can be applied to
it using SCAP, and a set of state-space equations can be obtained. The state
variables correspond to the momentum and displacement variables of the
system. The number, and type, of state variables for a particular dynamic
system is readily visible in the system’s augmented bond graph.

Bond graph techniques, as presented in this chapter, have been applied to
robotic systems [23]. However, the large number of coordinates convention-
ally used to describe the position and orientation of a robotic system tends to
make the corresponding bond graph too complicated to be practical, despite
the simplicity of the notation. In the next chapter, extensions to the bond

graph methodology, that overcome this problem, are introduced.
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Chapter 3

Applying Bond Graphs To
Rigid Manipulators

3.1 Introduction

For kinematic or dynamic analysis, a rigid manipulator can be viewed as
a collection of rigid bodies, called links, connected serially by prismatic or
revolute joints [9, p. 69]. Based on this view, a simple and general procedure
for modeling manipulators can be formulated. First, a bond graph fragment!
that represents a single link is created. The bond graph fragment can then
be used as a component to construct the model for any serial manipulator.

The study of robot dynamics, as applied to rigid manipulators, is a well
developed area described in a number of textbooks on robotics. The geo-

metric configuration of the robot is typically described using the Denavit-

1A bond graph fragment is a graph containing free, or unconnected, ports



Hartenberg (D-H) notation [9, p. 74]. This provides an organized way to
assign oriented coordinate systems to each joint of the manipulator.

Formulation of the system dynamics can be accomplished using either the
Newton-Euler [9, p. 196) or Lagrangian dynamic approach [9, p.207]. Using
cither of these methods, the dynamic equations can be generated in a closed
or iterative form.

The approach taken in this thesis - modeling manipulator dynamics from
the point of view of the links — is essentially the same as that used by the
Newton-Euler (N-E) method. In contrast, the Lagrange-Euler method devel-
ops the dynamics in terms of the kinetic and potential energies of the entire
manipulator.

Before modeling a manipulator link, it is useful to extend the bond graph
techniques presented in chapter 2 to include the concept of vectors. This
produces an extremely compact notation that greatly simplifies the drawing
of the link junction structure. An additional benefit of this extension is
that it allows the similarity between the bond graph and N-E approaches
to be maximally exploited; the bond graph junction structure can be drawn

from the same kinematic (vector) equations that would be used for the N-E

method.
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3.2 Bond Graphs and Redundant Coordi-
nates

The position of a robotic manipulator with n degrees of freedom (DOF) can
be described completely using n independent coordinates. However, conven-
tional approaches to robotic kinematics and dynamics attach an oriented co-
ordinate system to each joint of the manipulator. Since each joint, considered
independently, requires 6 variables to describe its position and orientation,
6n variables are used to describe the position of a manipulator. However,
because each joint contributes only 1 DOF to the manipulator, 5n variables
are redundant.

The use of redundant coordinates in a bond graph may lead to ambiguity
in the interpretation of inertial parameters that are associated with angular
velocities, i.e. J parameters. To overcome this problem, it is useful to restrict
the use of J parameters to describe the moment of inertia about center
of mass (CM) coordinates only. To illustrate this, consider the physical
pendulum, shown in figure 12a. To analyze the dynamics of the physical
pendulum, the distributed mass is replaced by a point mass located at the
pendulum CM, a distance [ from the pivot. Once this is done, it is clear
that the angular velocity of the pendulum, about its CM, is the same as
the angular velocity about its fixed point. The inertial parameter, J, can
then be identified as being the moment of inertia about the pendulum CM,
denoted Jeps. Using the parallel axis theorem, the moment of inertia about

the pendulum pivot is: J = Jeay + mi%. The corresponding bond graph is
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Figure 12: Bond Graph Model of a Physical Pendulum

shown in figure 12b.

Restricting the use of inertial parameters to CM coordinates implies that
CM coordinates must be used, in addition to the joint coordinates, when de-
veloping the bondgraph junction structure for a robotic manipulator. Again,

this approach is consistent with the N-E method.

3.3 Accelerated Reference Frames

Since the majority of industrial manipulators use rotational joints, coordinate
frames? attached to the joints are accelerated with respect to an inertial base

reference system. Under these conditions, the vector operator

(9),-(2)

can be used to relate the time derivative in the rotating reference frame with

the time derivative in the inertial frame [15, p. 176]. Here (g;) denotes the

2The term frame refers to a set of four vectors that describe position and orientation.
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time derivative in the inertial frame; (3‘%)' indicates the time derivative with
respect to the rotating frame; and w is the angular velocity of the rotating
frame relative to the inertial frame.

As an example of incorporating accelerated reference frames into bond
graphs, the bond graph for Euler’s equations is considered. In an inertial
reference frame attached to the CM of the rigid body, the angular momentum

vector for the rigid body is given by:
H=Jw (3.2)

where w is the angular velocity vector of the rigid body, and J is a diagonal

inertia matrix (tensor). The net torque acting on the body is then:

_ (™
r_dzs

For a set of axes fixed in the rigid body this becomes:

T= (%I—;)r +w X H
or )
T H, wa 3 — will,
| = H | + | wally — w1l (3.3)
T3 Ha w Hy — wally

The bond graph corresponding to equation 3.3 is shown in figure 13. The
junction structure of this bond graph, a modulated gyrator ring, is referred

to as an Eulerian junction structure.
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Figure 13: Bond Graph Model of a Euler’s Equations

3.4 Multibond Graphs

To deal effectively with vector and tensor quantities, the bond graph nota-
tion has been extended to include the concept of multibonds (described in
[6, 7, 8]). A multibond represents the grouping of three power bonds, corre-
sponding to an orthogonal coordinate system used to describe the dynamic
system. As such, a multibond is not a vector. However, the cffort and flow
variables associated with the multibond are vectors. For example, in carte-

T
stan coordinates, the effort and flow variables become: e = [ €: €, € ]

and f = [f: fy f- ]T. The power of a multibond is then given by:
P =eTf.

Multibond graph methods may be thought of as a generalization of bond
graph methods in the same manner that mairix algebra is a generalization
of scalar algebra. With this in mind, the translation of bond graph elements

into multibond graph elements is a straightforward procedure:
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e For passive one-ports, the scalar one-port parameters, R, C, and [/,
become matrices, and the defining relationships are written in terms
of matrix-vector products. To attach a physical meaning, a one-port
parameter matrix is referred to as a field parameter. In mechanical
systems, the field parameter J is equivalent to a Cartesian tensor of

second rank, often called an inertia tensor [15, p. 193].

o Given the power relationship of a multibond, the defining relationships
for two-ports must be modified to ensure conservation of power. The
new relationships for a transformer are: ¢; = m7e; and mf, = f,.
Similarly, the the relationships for a gyrator element are: ¢, = m7,

and mf; = e;.

e For three-ports, the defining relationships remain unchanged when trans-
lating from bond graphs and multibond graphs except that the scalar

sums of the former are replaced with vector sums in the latter.

When dealing with vectors, a new type of relationship needs to be consid-
ered: the vector cross product. For ordinary bond graphs, the cross product,
relationship was introduced using Euler’s equations. To extend this to multi-
bonds, equation 3.3 is rewritten as:

. dH
H = (';it—)b + AH

Here the vector cross product has been replaced with a matrix vector mul-
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tiplication:

0 -—Ww3 w? 111
wxH=AH= wa 0 —w; H,
—wy Wy 0 H;

Recalling that H = Jw, the term AH can be rewritten as AJw. Since
AH is an effort, and w is a flow, the product AJ represents a resistance,
modulated by the angular velocity. This element is called a gyristor,denoted
G.. Using this new element, the Eulerian bond graph (figure 13) can be

redrawn using multibond graph notation®, as shown in figure 14.

I:J

S::To uV) NGIAJ

Figure 14: Multibond Graph Model of a Euler’s Equations

Applying the time derivative operator (3.1) to the equations p = mv and
f = p produces a similar gyristance element for use with linear momentum

in an accelerated reference frame.

3For acsthetic reasons, the orientation of the arrows is inverted when compared to the
notation in [6]
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3.5 Link Numbering Scheme and Notation

To create the multibond graph model for a manipulator link in a manner
compatibie with the N-E method, a link numbering scheme consistent with
that used in robotics texts [9] is adopted. Ir this scheme, the links and joints
are numbered from the base outward, with joint (7) connecting link (7) with
link (i —-1).

An inertial reference frame, numbered 0, is established at the base of the
manipulator. At each subsequent joint a coordinate frame, having the same
index as the joint number, is attached. Coordinate frames are related to
each other through the use of rotation matrices. The notation ¥Ry is used
to indicate the rotation from coordinate frame Y to coordinate frame X.

Vector quantities can be manipulated only if they share a common refer-
ence frame. Since multiple reference frames are used in robotics, it is neces-
sary to remember which frame a variable is referred to. To keep track of this,
a notation very similar to that used for translormations is used. Thus, YX,
is used to indicate the quantity X, belonging to link or joint Z, measured

with respect to coordinate frame Y.

3.6 Link Kinematics

The motion of a rigid body, moving in space, can be divided into two parts:
the translation of the body CM; and the rotation of the hody about its
CM. What this means, in terms of developing the multibond graph junction

structure, is that the angular velocity of the link can be treated separately



from the linear velocity of the link.

3.6.1 Angular Velocity

Let 6; represent the angular velacity of link (i), with respect to link (i — 1).
Then the angular velocity of link (i), %w;, with respect to the inertial base

coordinate system is given by:
Owi = Wiy + "Ri—16; (3.4)

In other words, the angular velocity of link (Z) , referred to the base, is equal
to the angular velocity of link (i — 1) referred to the base, plus the angular
velocity of link (¢) with respect to link (¢ — 1} referred to the base. The
multibond junction structure that represents equation 3.4 is shown in figure

15. In this figure, 0; is shown as a constant flow source, representing a rotary

actuator.
A &
l\
S,: 6;———\ MTF: N0 ¢ N 1w,
oRi-1Z1

Figure 15: Multibond Graph Junction Structure for Link Angular Velocity

3.6.2 Linear Velocity

Figure 16 shows three coordinate frames, (0),(z — 1), and (Z) where it is

assumed that the (i — 1) and (7) frames translate and rotate with respect to
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the (0) frame. Referring to the figure, the position vector °r; is defined as:
Ol'.' = ol','_1 + Or:.
The velocity is then given by:

vi= () Cr) = (%) Cro) + (5) €2 (35)

The first term on the right of this expression is simply the lincar velocity of

(£) b =re

The second term can be expanded using operator (3.1):

(f;) (i) - (%) o ) e (3.7)

Letting ¢; represent the linear velocity of joint (7), with respect to joint (i —1),

the preceding link:

and once again applying (3.1):
d 0 * (¢} . 0 ) 0 * .
(EZ>'-_] ( l‘i) ="Ri1q: + "R;_,0; x r; (1.8)

Combining equation 3.5, with equations 3.6, 3.7 and 3.8 allows the lincar
g ¢q |

velocity cf a link joint to be expressed as:
OV,' = OV,'_l + Ow.- X Ol‘: + OR,'_l(i,‘ (3.9)

To obtain the linear velocity of the link CM, the following equation is
considered:

Oi’.‘ = Ul‘: + Oég
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Figure 16: Three Coordinate Frames

Here, °r; represents a vector from the base inertial coordinate frame; °r; is
a position vector from the base frame to joint ¢; and %8; is a position vector

from joint 2z to the link CM. The velocity of the CM is then given by:

Vi =i+ % (051')

Applying operator (3.1) to the second term on the right yields:

d 1o, d o 0 0z
E(S‘)z(ﬁ) (Si)+ w; X 7s;
Assuming that the CM is fixed, relative to frame 7, the linear velocity of

the link CM is:

O = v + %w, x %; (3.10)
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3.7 Multibond Graph Link Model

Using expressions 3.4, 3.9, and 3.10, the multibond junction structure for a

link can be drawn, as shown in figure 17

6:."9_' .
7o \ 1:%ve,
) "fi’.f‘\
S,: 6, =——= MTF——\ ¢ o

.e°
1

=4 ?
i

/’

° \

-

8

<

Figure 17: Multibo.. U Graph Link Junction Struecture

In this figure, the transformer parameters S, and * are given by:
I . 24 A

0 0z 0,. 0.~
0 — 83 Si2 0 =y Iz
%3 0 <O, | and | Orr. 0 O (3.11)
—-0.5,"2 Ogi'l 0 —07';‘2 “1':'| 0

respectively. The numbers (1,2,3) indicate the indices of the vectors s, and
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Figure 18: Multibond Graph Link Model

Having obtained the multibond graph link junction structure, it is a sim-
ple matter to complete the model by attaching the inertance and gyristance
one-ports, introduced in section 3.4, to the structure. The finished model is

shown in figure 18. In this figure, the matrix A; is given by:

0 —Owis  wi,
A= Owis 0 —Owi
0 0
— Wiz2 Wil 0

M; is a scalar representing the link mass, while °J; is the inertia tensor for
the link, with respect to the base inertial reference frame.

In practice, only one of f; or ¢: will be non-zero, depending on whether the

link 1s in rotation or translation. Also, causality considerations may mean

that the flow sources representing 6; or G; have to be replaced with effort
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sources.

3.8 Example: Single Link Manipulator

As an example of using the multibond graph link model, the multibond graph

for a simple one link rigid manipulator, shown in figure 19 is considered.

Figure 19: Single-Link Manipulator

For this manipulator, the rotation matrix °R; is:

cos(0) —sin(0) 0
°Ri = | sin(6) cos(8) 0
0 0 1

The parameters wq, %vq, Ovy, 1}, 41, and A, °J; are all equal to 0. This leads
to the simple multibond graph model shown in figure 20.

For this example, the state variable is arbitrarily chosen as the angular
momentum of the manipulator, H. This requires that, to satisfy causality,
the flow source is replaced with an effort source. An augmented version of

the multibond graph is shown in figure 21.
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Figure 20: Single-Link Manipulator Multibond Graph
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Figure 21: Augmented Single-Link Manipulator Multibond Graph
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From the augmented multibond graph, the state equations for the single

link manipulator can be determined:
fi=(n)"H (3.12)
Summing at the 1-junction (°w,) gives:
H=e—e (3.13)

T
Assuming that 7 = [ 00 7 ] :

0
ca=7=|0 (3.14)
T
The relationship between ez and e4 is:
AT
es= (1) eq (3.15)

The gravitational force Se: g acts in the Y, direction, and is given by:
-
Se:g = [ 0 —mg 0 ] (3.16)
Summing the efforts at the I-junction (°%;) yields:
e4 = €5+ eg — Se:g (3.17)
Multibond (5) is in derivative causality so that
d
=2 3.18
es mdt (fs) ( )

Also,
Cg = A]Tllf(; ("l‘))
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The relationship between f4 and f; is:
Ja=51fs (3.20)

Noting that f, = f, = f3 and fy4 = fs = fe, equations 3.12, 3.18, 3.19,
and 3.20, can be substituted into 3.17 to yield:

o4 = m% (30 Cn)™ 1) + M3y ()™ H = Seig (3.21)
Then equations 3.14, 3.15 and 3.21 can be combined with equation 3.13
to give:
it =7 (50)7 (e (5 ()™ 1) + A, ()™ 1 g
dl dt }

(3.22)
With some manipulation this equation could be put into state space form.
However, to simplify 3.22, it is easier to substitute °J; ®w; for H. This leads

to:

i (O.l, Ow.) =7 — (.’;'I)T (mi (5’1 Owl) +mA, S Cw; — Sc:g) (3.23)

Let the distance to the CM of the link, along X, be I. Then

] lcos(6)
e = [1 00 ]r and %5, =°R,'& = | Isin(0)
0
From this, using 3.11, S| can be determined:
0 0 —lswn(0)
Sy = 0 ] lcos(0) (3.24)

lsin(0) —lcos(0) 0
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At the CM, the inertia matrix is:

Jz 0 0
'Y= o0 Jy 0
0 0 J..

Referring this to the base:

Jzzcos0  —J,sin(0) 0
Oy =°Ry 'y = | Josin(0)  Jycos(8) 0
0 0 g

-
Since the angular velocity of the link, w, is given by [ 00 0 ] , the deriva-

tive of °J, %w; is:

0
% (1 %) =] o (:3.25)
J..0
The product S; %w, is:
0 0 —Isin(0) 0 —Isin(0)0
51 %y = 0 0 Icos(0) 0| =1 teos(0)0 | (3.26)
Isin(0)0 —lcos(0)0 0 0 0

The time derivative of 3.26 is:

—lcos(0)0% — lsin(0)0
d

au (5'1 Owl) = | lcos(0)0 — Isin(0)0? (3.27)
0
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Also using 3.26, the product A; S, %w; is:

0 —6 0 || —lsin(8)d —lcos(8)6?
MS%w;={6 0 0 lcos(8)0 | = | —lsin(0)6?
0 0 0 0 0

Using these results, 3.23 can be rewritten as:

.-

0 0 ~1sin(6)8 — 2lcos(6)6?
- \T - .
0 [=(0]|-m(5) | icos(8)d — 2sin(6)6* + g
J..0 T 0

Finally, this can be simplified to:

r

0 0 0
0 |[=]0]|—-ml’ 0
J..0 T 6+ 2cos(0)

physical pendulum:

mglcosd

6+ 777
+J+m12

Multibond Graph Link Model
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(3.28)

(3.29)

(3.30)

Setting the input torque to 0 and dropping the subscript on J, the z com-

ponent of equation 3.30 is readily recognized as being the equation for a

3.9 Obtaining the N-E Equations From the

As mentioned previously, the approach taken to developing the multibond

graph link model is very similar to that used by the N-E method. In fact,



with a suitable causal assignment, the N-E equations can be obtained from
the multibond graph link model. This provides a convenient mechanism
for verifying the correctness of the multibond graph model. In addition, it
serves to illustrate the flexibility of the multibond graph approach; the causal

assignment that leads to the N-E equations is only one of the several possible

assignments.
0 .0
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Figure 22: Newton-Euler Multibond Graph Link Model

To obtain the N-E equations for a rotating link, the multibond graph
link model is redrawn and augmented as shown in figure 22, In this figure,
the connections to link (2 — 1) are made through constant flow sources. In a

multi-link model, these connections would be replaced by 1-junctions (that
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also have a common flow). Similarly, the connections to link (i + 1) are made
through constant effort sources that would be replaced by 0-juncticas in a
multi-link chain. Taken together, these connections graphically represent the
fact that velocities propagate forward along the kinematic chain, while forces
propagate backwards.

Another important feature of these connections is that they, in conjunc-
tion with the constant flow source representing é;, place the inertance one-
ports in derivative causality. Thus, as with the N-E method, the angular and
linear accelerations of the link must be determined before equations can be
written for the link.

Since the multibond graph link junction structure was developed using
the same velocity relationships used by the N-E approach, the link velocity
equations (3.4, 3.9, and 3.10) must be obtainable by summation at the 0-
junctions of the multibond graph.

The angular acceleration of the link can be obtained by differentiating

(.09 (). 0+ (2), 059

Applying operator (3.1) to the second term on the right gives:

(i), ) = (), Cer) v rt

equation 3.4:

Also:
d 0 . o .
(d_t> s ( Ry 9.’) ="Ri10;

Using these results, the angular acceleration of the link at joint (z) can be
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expressed as:
ou'),- = °u'1.-_, + OR“_l é,' + Ow.-_, X (OR.'_l 0.) (3.31)

Similarly, the linear acceleration of the link at joint (i) can be obtained

by differentiating 3.9:

(8).69= (2), 001 () 00

Here the term involving ¢; has been dropped because the link is not trans-
lational. Once again applying (3.1) to this equation, the acceleration at the

joint can be written as:
0% = %0y + %@ x Orf 4+ %w; x (Ow.' X 01‘-') (3.32)

1

The linear acceleration at the link CM can be obtained by differentiating
in the same manner as was done to obtain the linear and angular accelerations

at the joint. The resulting acceleration at the link CM is:
Oc_l,' = 0(.2),‘ X 05,‘ +°w,~ x (Owi X 05;) + 01‘),- (3.33)

Expressions for the torques and forces acting on the link are obtained by

summing at the 1-junctions of figure 22. At the junction (%v;):
€14 = €15 + Cle (334)

€15 = M.’jls

Cie — A,‘A/’,'f](;
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The term fy5 represents the derivative of °%; with respect to frame (7). Since

the link is rigid this is the same as the derivative, with respect to frame (z),

o= () Ca)=(3) ()

Also, the term A; M, fi6 can be rewritten as the vector cross product:

of %;:

e16 = M; (Ow; x 9 ﬁ,-)

Substituting 3.10 into this equation, and noting that:
(gdz) (Ov.’) + %w;i x %v; = %

i

Equation 3.34 can be written as:
e = M; (Uw; x 95, + % x (Ow; X 05,') + 01'),-)

The term in the outer parentheses is simply the linear acceleration of the
link CM, so that this can be rewritten as:

F; = M;%; (3.35)

Here the effort €;4 has been relabeled Fi.

Summation at the 1-junction representing the linear velocity of the joint

(not labeled in figure 22) yields:
e10 = F; + °pi (3.36)
The torque acting on the link is given by:

es = %hip1 + (es + eg) + (€7 + €12) (3.37)
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The term (es + €s) can be relabeled N; and is given by:

Ni = °J;%0; + %w; x (°J; %w;) (3.38)
The matrices S; and R? are anti-symmetric, so that (S;)7 = —8S; and
(RH)T = —R*. The sum of e; and e); can then be given as:

er+e12 =1 x %pip1 + (OT: + 05.‘) x F;
Then, equation 3.37 can be rewritten as:
€4 = 0;1;+1 + N; + OT,-* x 0]),‘44 + (07‘: + 05,‘) < F; (3.39)

Finally, the input torque to the link is given from the multibond graph
as:

= ("R,-_,)T cq (3.40)

Equations 3.4, 3.31, 3.32, 3.33, 3.33, 3.36, 3.38, 3.39, and 3.40 consti-
tute the Newton-Euler equations for a rotational link {14, p. 114], and are

repeated below for convenience.

e Forward Equations:

Ou;i = Wiy + °Ri_10;
00 = %y 4+ °Ri_y 0; + %wisy x (OR.'-n 0;’)

. . 0 - 0 {
O‘U,' = Ovi_l + Tw; X 7': +0w,‘ s (Ow; X ,1‘:)

— . 0 0 0 - [0
Oa,-z Ow,' X U8+ wy X (w,' X .S',‘) + T



o Backwards Equations:
F, = M, %;
N; = °J: % + %wi x (°J;°w;)
eio = Fi + %pin
eq = 0il-‘+1 + Ni + 07'}' x 013:'+1 + (OT,-* + 05.') x F;

T = (ORi—l)T €4

3.10 Summary

In this chapter the bond graph concept was extended to include multibond
graphs. Then, using multibond graph elements, a model for a single manipu-
lator link was developed. This link model is suitable for use as a component
to construct arbitrary manipulator configurations.

The correctness of the multibond graph link model was demonstrated
by deriving the N-E equations from an augmented version of the graph.
Interestingly, the need to use forward and backward iteration while solving
the N-E cquations, is readily visible in the multibond graph model.

A simple example (section 3.8) demonstrated the extraction of equations
from the multibond graph model of a manipulator. Even for this one-link
case, reducing the equations to a simple form is tedious. In the next chapter,
the simulation of multibond graph models is presented. Combining computer
simulation with the multibond graph model of a manipulator, the dynamics

can be studied without obtaining explicit closed-form equations.



Chapter 4

Simulating Multibond Graphs
with SIMULINK

4.1 Introduction

Because of the importance of simulation in the study of multi-body dynamic
systems,such as robots, extensive research has been carried out to develop
efficient formulations of the dynamic equations [9, pp. 216-218] [2, p. 155].
Interestingly, the emphasis on eflicient simulation algorithms applies only to
the execution time of the simulation, not the time taken to construect the
dynamic model.

In contrast, Beauwin and Lorenz present a methodology whereby hond
graph models of subsystems are connected 1o consiruct complicated mecha-
nisms [3]. The difference between this approach to simulation, and those that

consider efficiency, is very similar to the difference between interpreted and



compiled languages within the field of computer programming. Interpreted
languages encourage interaction and exploration, while compiled languages
emphasize speed of execution.

The approach presented in [3] complements the one presented in this
thesis: Beauwin and Lorenz model the mechanism primarily as a collection
of joints; the approach taken here is to model the system as a collection of
links. This difference is largely due to the fact that conventional approaches
to developing the kinematics and dynamics for robotic systems are based on
the use of links.

In this chapter, a procedure which will enable us to use the multibond
graph model of a robotic manipulator to simulate its dynamic response is
described. This can be done without obtaining a closed-form solution of the
dynamic equations of the robotic manipulator.

There are a number of different ways to simulate the dynamics of a robotic
system using the bond graph model. If numerical efficiency is the prime
requisite, iterative dynamic equations, such as the N-E equations developed
in chapter 3, can be obtained and simulated using a compiled programming
language. On the other hand, if some of the execution speed can be sacrificed,
simulation can be undertaken using a more flexible and interactive software
environment.

An important characteristic of interactive simulation environments is that
the simulation can be presented graphiically. Since bond graph modeling
techniques derive much of their strength from the highly visual manner with
which the system dynamics are presented, it seems appropriate that the

graphical representation be retained when simulating the system. This can
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be accomplisiied in two different ways:
1. Use software written expressly for simulating multibond graphs.

2. Transform the multibond graph model into a form suitable for schem-
atic input into a block-diagram modeling software package such as Vis-

Sim or SIMULINK.

While the first alternative provides an easy and direct approach to simulate
multibond graphs, it facks flexibility when compared to the second alterna-
tive. Block-diagram modeling software packages include the capability to
simulate multibond graphs as one feature of a much larger package. For
example, most block-diagram modeling software packages allow mixed con-
tinuous and discrete simulations to be created. This makes it possible to
simulate a digital controller attached to the multibond graph model of a
manipulator, as well as the multibond graph model itself.

Of the many block-diagram modeling software packages available, SIM-
ULINK, in conjunction with its underlying simmulation engine MATLAR, ap-
pears to be the most suitable for simulating multibond graphs. The reason
for this is that SIMULINK allows the passing of vectors for block inputs and
outputs. VisSim and Tutsim, two other packages which can be used, lack the
ability to handle vectors and require that the multibond graph be decom-
posed into an ordinary bond graph.[7] Noting that flexibility and interaction
are properties of the simulation software, and identifying these properties
as goals, the simulation of multibond graph models of robotic manipulators

using SIMULINK is presented here.



4.2 Simulation and Derivative Causality

A potential obstacle to the simulation of a multibond graph is the presence
of derivative causality in the augmented graph. This indicates that the graph
contains algebraic loops called “class 1 zero-order causal paths.”[10] In or-
der to simulate bond graphs containing these paths it is necessary to either:
eliminate the zero-order path using a variety of techniques; or acceept the
zero-order path and simulate the multibond graph using algorithms devel-
oped for solving stiff systems.

Elimination of zero-order causal paths can be done analytically, through
transference of dependent storage elements to those with integral causality.
Dijk [11] citing [5] indicates that, for large complex systems, this may not
always be possible. An alternative approach involves relaxing the derivative
constraint through the introduction of stiff compliances with, or without,
parasitic resistances into the model. Finally, it is possible to insert source
elements into the bond graph that model the constraint forces with Lagrange
multipliers.

The price paid for accepting derivative causality, and using stiff-equation
solvers, is increased simulation time. Still, Dijk contends that the increased
accuracy obtainable with this approach makes the acceptance of derivative

causality preferable to elimination [11].



4.3 A SIMULINK MTF Block

Simulation of multibond graph models using block-diagram modeling soft-
ware is possible because each multi-port is defined in terms of a mathematical
input-output relationship. SIMULINK contains built-in blocks that repre-
sent all the mathematical relationships to be found in a multibond graph,
with the exception of the modulated transformer (MTF). Before simulat-
ing multibond graphs using SIMULINK, then, it is nccessary to create a
SIMULINK block corresponding to the MTF.

Information for drawing and simulating a block diagram in SIMULINK
is contained within a special MATLAB fuaction called an S-function. This
function, like a MATLAB function, can be either an ascii text file called
an M-file, or a compiled C or Fortran file called a MEX-file.[18, p. 3-1]
While an M-file version of an S-function can be directly entered into a text
file, it is more typically generated using mouse-driven commands within a
SIMULINK block diagram window. Once an S-function has heen created, a
masking function can he applied to it in order to specify the appearance of
the block, a d any variable parameters that are to be passed into the block.
(18, p. 3-19]

S-functions are comprised of a collection of one or more primitive func-
tions. The majority of these primitive functions are intrinsic to SIMULINK.
However, for those instances where a suitable transfer function cannot be
constructed using intrinsic functions, provision has been made to construet,
user-defined S-functions. By definition, intrinsic and user-defined functions

are also S-functions.
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For the purposes of simulating a multibond graph with SIMULINK, an
MTF represents a matrix-vector multiplication, where the matrix elements
are functions of one or more time-dependent modulation parameters. Since
MATLAB does not allow matrices to contain uninitialized variables, it is
necessary to generate the matrix at each time step of the simulation. One way
that this can be accomplished is to place the MATLAB commands needed
to generate the matrix in a text string, and then pass this string to the
MATILARB eval function. The eval function accepts a text string as input, and
evaluates the string as a MATLAB command. This approach to generating
the modulation matrix can be expected to slow the simulation significantly,
but it offers the advantage that modulation matrix parameters can be entered
in the SIMULINK block diagram window via the masking function.

User-defined S-functions within SIMULINK have single input and output
vectors (connections). For the MTF block, however, it is desirable to have
a scparate input for the modulation parameters. Also, for convenience, the
number of modulation parameters should be passed into the S-function using
the masking function. This means that the MTF block must be contained
in two S-functions. The first S-function, constructed using blocks built into
SIMULINK), is not lim*ted to having a single input and output vector. As
shown in figure 23, this S-function multiplexes the signal input vector with
the vector of modulation parameters. The resulting vector is the passed,
along with a text string containing the MATLAB commands to generate
the modulation matrix, to a user-defined S-function written as a MATLAB
M-file. The resulting MTF block, consisting of both S-functions, is easy to
use and completely configurable (see figure 24) from the SIMULINK block
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Figure 23: First part of MTF S-function

diagram window. The S-functions used to construct this block are shown in

appendix A.

4.4 A SIMULINK Link Model

In chapter 3 it was shown how the multibond graph model for any rigid-body
serial manipulator can be constructed using a single component multibond
graph. A similar approach is used to construct a SIMULINK model, from
the component multibond graph, that is then used as a building block to
simulate the dynamics of an arbitrary rigid-body serial manipulator.

Figure 25 shows an augmented version of the link multibond graph model
where causality is assigned so that the inertance one-ports, associated with
the link angular velocity, are in integral causality. Conversion of this model
into a SIMULINK block-diagram model is a simple procedure that involves
writing down the multiport relationships from the multibond graph, and
implementing the relationships in the block diagram. For example, the rela-

tionships at the 1-junction (°w;) are:

0
C; = €4 — € — C7— C12 — Ni+|
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Block name: MTF
Block type: MTF (Mask]

Modulated Transformer

Moadulation Matrix (function)

'[cos{uf4)) -sinfu(4]] O; sin[u[4]) cos{u[4)) 0; 0 0 1}'
Number of Parameters

3

Figure 24: Dialog for entering MTF parameters
and
fs=Jfs=fe = f1= Sz

This is represented as a summing block having five inputs and a single output.

Also from the multibond graph:
fs=(0)"! /65

and

es = A°J: fe

The portion of the block diagram corresponding to these equations is shown
in figure 26. The complete block diagram for the link, incorporating all of
the equations obtained from the corresponding augmented multibond graph

(figure 25) is shown in figure 27. The equations are listed in B.
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Figure 25: Augmented Multibond Graph Model
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Figure 26: A Part of the Link Block Diagram
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Figure 28: SIMULINK Link Block Diagram

A comparison of this block diagram with the multibond graph model
(figure 25) shows that, in appearance, the block-diagram model is at least as
simple as the multibond graph model. However, whereas the link forces and
velocities are tightly grouped in the multibond graph model they are scat-
tered all over the block diagram. This has important implications if changes
1o the model are contemplated. For instance, suppose the model needs to
be altered to include the effects of joint compliance. For the multibond
graph, the change involves attaching a capacitance one-port to the appro-
priate junction. Modifying the block diagram model is not as ohvious or

straightforward.
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Figure 29: SIMULINK Link Component Block

The SIMULINK block-diagram model shown in figure 28 is considerably
more complicated than the model shown in figure 27. One reason for this is
that signal lines for the MTF parameters have been added explicitly to the
SIMULINK model. A secondary reason is that additional blocks have been
added to precalculate the values for cos(0;) and sin(8;). This is done to avoid
repeated calls to these functions at each iteration of the simulation.

The functionality of the SIMULINK link model can be encapsulated in a
single block, as shown in figure 29, where only the external connections to the
link are visible. The inputs and outputs to this block are numbered sequen-
tially from the top down, to correspond with the input and output blocks
numbered 1 through 7 in figure 28. The compact version of the link model
(figure 29) can be used as a component to construct models for arbitrary

rigid-body serial manipulators with revolute joints.

4.5 Example: Two-link Planar Manipulator

As an example of generating a SIMULINK model using the link component
block, the model of a two-link planar manipulator, shown in figure 30, is

considered. Fach link is represented by a separate SIMULINK link compo-
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Figure 30: Two-link Planar Manipulator

nent block. The blocks are then connected according to the multibond graph
model of figure 25, i.e. velocities propagate forward along the kinematic
chain, and forces propagate backwards. Following this, the MTF parameters
for each link are entered using the kinematic configuration of figure 30. These

procedures are described in the following section.

4.5.1 SIMULINK Model Construction

Model construction starts by dragging two copies of the link component block
into an empty SIMULINK block-diagram window. Once the blocks are in

place, connections between them can be established:

—

. Output 2 (N;) of link 2 is connected to input 2 (Nyy) of link 1.

o

. Output 3 (v;) of link 1 is connected to input 3 (v;_y) of link 2.

[

. Output 4 (Figy) of link 2 is connected to input 4 (F;) of link 1.
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Figure 31: First Stage of Model Construction

4. Output 5 (w;) of link 1 is connected to input 5 (w;_;) of link 2.

5. Output 6 (theta out) of link 1 is connected to input 6 (theta in) of link
2.

6. Output 7 (S out, C out) of link 1 is connected to input 7 (S in, C in)
of link 2.

A picture of the model, at this stage of construction, is shown in figure 31.
With the two links connected, the MTF parameters for each link can be

entered. The rotation matrices for the manipulator are:
cos(0y) —sin(0,) 0O cos(0;) —sin(0;) 0
Ry = | sin(0,) cos(8,) 0| and 'Ry = | sin(6;) cos(6,) O
0 0 I 0 0 1
For this example, each of the links is assumed to be rectangular, with a length

of 1 meter, and a cross-section of 0.1m. x 0.1m. . The first link has a mass of

60 kilograms, while the second link has a mass of 30 kilograms. Using these
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values, the inertia tensors for the links are calculated to be [13, p 227]:

0.10 0 0 005 0 0
'h=] 0 50 0 | and *Ja=| 0 25 0
0 0 5.0 0 0 2.5
Also the vectors °rj, °rj, °§,, and %s; are given by:
0 cos(0) 0.5¢cos(8)) ]
°ci=10]., %= sin(0) |, %81 =] 0.5sin(0))
0 0 0

and
0.5(cos(0y)cos(0;) — sin(0,)sin(0,))

%52 = | 0.5(sin(0,)cos(0,) + sin(03)cos(0,))
0
With reference to figures 27 and 28, the MTIE parameters for link | are

as follows:

1. The block labeled MTFO is the matrix:

10cos(0;) 10sin(0y) 0O
(°J)7 = | —0.2sin(0)) 0.2c0s(0,) 0
0 0 0.2

This block has two modulation parameters, sin(0;) and cos(0,).

2. The block labeled MTF1 represents the rotation ° Iy, which is the iden-
tity matrix. To avoid unnecesary calculations, this block is removed.

Similarly, MTF8& is also removed.
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3. Block MTF2 represents the cross-product w x H. Because link 1 is not

in translation, this block can be removed as well.

4. Blocks MTF3 and MTF7 represent the matrix R} and its transpose
respectively. For link 1 these are both empty matrices, but are left in

the model for simplicity.

5. Blocks MTi"4 and MTF6 represent the matrix S; and it transpose.

These blocks are modulated by the parameters sin(#,) and cos(4,).

6. Finally, block MTF5 represents the matrix Ay, with its three modula-

tion parameters: wy, w2, and w1,3-

As mentioned previously, sin(0;) and cos(8,) are pre-calculated in the block.
When entered as modulation parameters, these tvvo values are made acces-
sible to the user-defined MTF S-function as u(4) and u(5), as dictated by
SIMULINK. Thus, the rotation matrix °R; is entered in the appropriate

MTF dialog box as:
"[u(5) -u(4) 0; u(4) u(s) 0; 0 0 13"

With the exception that no blocks can be eliminated, entry of the MTF
parameters for link 2 follows in a similar manner to that of link 1. The
variables sin(0;) and cos(0,) are available as MTF parameters u(6) and u(7);
the parameters u(4) and u(5) are also available, having been passed into the

link.
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Figure 32: SIMULINK Model of Two-link Planar Manipulator

4.5.2 Simulation Results

To test the SIMULINK model, external connections are established as shown
in figure 32. To simulate this model, both torque inputs are set to 0, and
initial conditions are set so that /{,(0) = 0.5, and /1,(0) = 1. The system
is simulated using Gear integration. This is necessary because both links
contain derivative blocks. To obtain accurate results, the simulation tolerance
must be set at 1e-7 or smaller.

As well as setting the tolerance of the simulation, the maximum and
minimum step sizes must aiso be set. To determine the optimum settings
for these parameters, a series of short simulations were run, varying these
parameters. The results are shown in table 4.5. Interestingly, a minimum
step size of 1072 seconds produces surprisingly long simulation times.

Simulation results, showing the angular velocities of the links, are shown

in figure 33. From the plot it is seen that, since the angular momentum of
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Max. Step (S) Min. Step (S)

le-1 le-2 le-3 le-4 le-5 le-6 le-7
1 4.97c+2 | 2.85e+3 | 1.44e+3 | 1.35¢+3 | 1.42e+3 | 1.35e+3 | 1.37e+3
le-1 5.0le+2 | 2.86e+3 | 1.45e+3 | 1.35e+3 | 1.42e+4+3 | 1.35¢+3 | 1.37e+3
le-2 5.0le+2 | 2.86e+3 | 1.39e+3 | 1.42e+3 | 1.46e+3 | 1.39e+3 | 1.42e+3
le-3 5.02¢+2 | 2.86e+3 | 4.07e+2 | 4.10e+2 | 4.11e+2 | 4.10e+2 | 4.15e+2
le-4 5.04e+2 | 2.86e+3 | 4.05¢+2 | 4.12e+3 | 4.12e+3 | 4.15e+3 | 4.10e+3

Table 4.5: Results of Varying Maximum and Minimum Step Sizes

link 1 is constant, the angular velocity of the link is constant. The angular
velocity of link 2 is periodic and discontinuous; the discontinuity results in
simulation time of just over one hour, using a maximum step size of 1073
seconds and minimumn step size of 10~ seconds.

This simulation result is somewhat counter-intuitive. If the two links were
freely rotating it would be expected that a torque, exerted by the second
link on the first, would influence the angular velocity of the first link. But,
from the causality assignment of the augmented multibond graph model (25),
it can be scen that the velocities %w; and %v; propagate forward along the
manipulator chain. Setting the input torques to zero, then, is equivalent to
driving the links with constant velocity sources. That is, %0, and %6, are
constant. With this in mind, the simulation results are as expected.

All simulations were run on an HP 735 workstation; the S-function con-

taining the two-link manipulator is shown in appendix C.
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Figure 33: Graph of Link Angular Velocity
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4.6 Summary

In this chapter the SIMULINK block-diagram model of a rotating link was
presented. This model, created from the multibond graph model of a link, is
suitable for use as a component to construct more complicated manipulator
models.

The SIMULINK component block contains a derivative block, due to the
presence of derivative causality in the link multibond graph model. Using
the Gear stiff equation solver, simulations constructed from the SIMULINK

component block are long, but nevertheless accurate.
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Chapter 5

Summary and Conclusions

5.1 Summary

To provide the background necessary to understand the ideas developed in
this thesis, a tutorial overview of bond graph techniques was presented in
chapter 2. In addition to describing the basic multiport elements, the appli-
cation of bond graph techniques to simple mechanical and electrical sysiems
was presented, by way of example. As well, the use of the Sequential Cansal
Assignment Procedure (SCAP) to obtain a set of state-space equations from
a bond graph model was described. The material presented in chapter 2 is
contained in a number of textbooks. the most notabile of these are written
by Rosenberg and Karnopp (for example [22]).

In chapter 3 an extended form of bond graph, the multibond graph, was
used to model the dynamics of a manipulator link. While there is a great

body of literature on robot dynamics, multit:ond graphs, and the application



of multibond graphs to multi-hody systems, the work presented in chapter 3

serves Ltwo purposes:

1. To relate multibond graph techniques to those conventionally used in

developing the dynamics of manipulators.

2. To create a link model suitable for use in an object-based modeling

scheme.

To accomplish these goals, a multibond graph model of a single link was
created, using the kinematic structure that would be used to obtain the
Newton-Euler (N-E) formulation of the link dynamics. The relationship be-
tween the multibond graph model, and the N-E approach, was demonstrated
by deriving the N-E equations from an augmented multibond graph link
model.

A demonstration of the utility of the multibond graph link model, in
an object-based modeling environment, was presented in chapter 4. In this
chapter, a SIMULINK block-diagram model of a revolute manipulator link,
based on the multibond graph link model was created. Using the SIMULINK
link model as a component, a planar two-link manipulator was modeled and

simulated.

5.2 Conclusions

The creation of a multibond graph model of a manipulator link, using the
same kinematic structure that would be used to develop the Newton-Euler

formulation of the link dynamics, shows the close relationship between the
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two techniques. This is somewhat surprising since bond graph techniques
model dynamic systems in terms of power and energy. Thus, one would
expect that the multibond graph approach was similar to one of the con-
ventional energy-based approaches. The determining factor appears to be
the point-of-view adopted in developing the dynamics, that is, whether the
dynamics are developed from a local (link-based) perspective, or in terms of
the entire manipulator.

The use of multibond graphs to form the basis for a object-based modeling
and simulation tool for robotics has been demonstrated. The construction
of a dynamic model for robotic system can be accomplished simply by con-
necting together multibond components corresponding to actuators, links
and sensors. During construction, the detailed workings of cach component
is hidden. Thus, the researcher is relieved of the responsibility of heing an

expert in every branch of robotics.

5.3 Suggestions For Future Research

There are many applications for an object-based modeling tool in robotics.
For such a tool tn be effective, a library of components for actuators, sensors,
and links must be available. The procedure for creating ideal mod:-Is of these
components is very similar to that presented here.

To design a control system, it is often necessary to make simplifying as-
sumptions about the dynamics of a manipulator, based on an ideal model.
To test the validity of these assumptions using simulation, it is necessary

to have a realistic manipulator model. Thus, methods for creating more

77



accurate multibond graph models, perhaps using system identification tech-
niques, should he investigated. It would be particularly interesting to see
if the non-ideal effects could be isolated, and modeled separately with mul-
tiport elements. Adding or subtracting these elements from the multibond
graph model would allow the designer to see exactly where the control system
design broke down.

Computer animation is an excellent demonstration and teaching tool in
robotics. Physically-based modeling has recently become an important re-
search area within computer graphics. While the majority of work in this
arca uses object-based or object-oriented techniques, the dynamic model for
cach object is created using mathematical equations. It would seem that this
is an ideal application for multibond graphs.

In this thesis, the simulation of multibond graphs was carried out using
SIMULINK. The methods used to create the MTF block were just barely
tolerated by this program; the program beeps continually while the two-link
model is being loaded. The reason for this is that SIMULINK requires that
all variables be initialized. In fact all the variables were initialized, using the
masked-block function, but SIMULINK did not recognize this while loading
the model. A further difliculty with the program is that the algorithmn used
for the Gear method is not available; it is very difficult to determine the
proper step sizes for a simulation without running a series of test. Even
having run those tests, the results seem strange. For example, in table 4.5
the simulation times using a step size of 1072 are incredibly poor, and seem
to have no relationship with the other times in the table.

Methods to improve the simulation of multibond graphs should be inves-
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tigated. It would be nice to have the option of entering the multibond graph
schematically, rather than having to convert it to a block-diagram form. Us-
ing the programming interface to MATLAB and SIMULINK, it should be
possible to provide support for schematic entry, animation, and generation
of symbolic equations. Due to the complexity of the underlying simulation
engine, using the programming interface to MATLAR is preferable to devel-
oping a dedicated simulator. However, it is also possible to create a simulator
based on one of the publically available MATLAB clone software packages.
The advantage of doing this is that increased flexibility is gained by having

access to the source code.
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Appendix A

S-Functions for MTF Block

A.1 Connections, Appearance, and Mask-

ing for MTF Block

This M-file, generated by drawing in a SIMULINK block diagram window, contains

the S-function that defines the connections, appearance and masking for the MTF

block.

function [ret,x0,str]l=mtf(t,x,u,flag);

AMTF is the M-file description of the SIMULINK system named MTF.
% The block-diagram can be displayed by typing: MTF.

h



%

%

h

A

%

h

%

%

h

%

%

SYS=MTF(T,X,U,FLAG) returns depending on FLAG certain

system values given time point, T, current state vector, X,

and input vector, U.

FLAG is used to indicate the type of output to be returned

in SYS.

Setting FLAG=1 causes MTF to return state derivatives, FLAG=2

discrete states, FLAG=3 system outputs and FLAG=4 next sampla

time. For more information and other options see SFUNC.

Calling MTF with a FLAG of zero:

[S1ZES]=MTF([],{],[],0), returns a vector, SIZES, which

contains the sizes of the state vector and other parameters.
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% SIZES(1) number of states

% SIZES(2) number of discrete states

% SIZES(3) number of outputs

% SIZES(4) number of inputs.

A For the definition of other parameters in SIZES, see SFUNC.

% See also, TRIM, LINMOD, LINSIM, EULER, RK23, RK45,

%4 ADAMS, GEAR.

% Note: This M-file is only used for saving graphical information;

% after the model is loaded into memory an internal model

% representation is used.

% the system will take on the name of this mfile:
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sys = gfilename;

nev_system(sys)

simver(1.2)

if(0 == (nargin + nargout))

set_param(sys,’Location’, [230,130,730,430])

open_system(sys)

end;

set_param(sys,’algorithm’,

set_param(sys,’Start time’,

gset_param(sys,’Stop time’,

set_param(sys,’Min step size’,

set_param(sys,’Max step size’,

’RK-45")

’0.0*)

19999997 )

’0.0001)

*10°)

set_param(sys,’Relative error’,’1e-3’)

33



set_param(sys,’Return vars’, 1)

A Subsystem ’MTF’.

new_system([sys,’/’,’MTF’])

set_param([sys,’/’,’MTF’],’Location’, [220,168,672,402])

add_block(’built-in/S-function’, [sys,’/’,’MTF/S-function’])

set_param([sys,’/’,’MTF/S-function’],...

'function name’,’mtf_int’,...

‘parameters’,’inputString, numberOfParameters’,...
P P g

’position’,[195,110,245,130])
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add_block(’built-in/Inport’,[sys,’/?,’MTF/in_2’])

set_param([sys,’/’,’MTF/in_2’1,...

’Port’,’2’,...

'position’, [70,115,90,135])

add_block(’built-in/Outport’, [sys,’/’,’MTF/out_1’])

set_param([sys,’/’, 'MTF/out_1’],...

'position’, [280,110,300,130])

add_block(’built-in/Inport’,[sys,’/’,'MTF/in_1’])

set_param([sys,’/’,’MTF/in_1'],..

’position’, [70,10¢,90,120])
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add_blzck(’built-in/Mux’, [sys,’/’, 'MTF/Mux’])

set_pasani[sys,’/',’MTF/Mux’],...

'inputs’,’[3 numberOfParameters]’,...

'position’, [120,100,150,135])

add_line([sys,’/’,’MTF’],[250,120;270,120])

add_line([sys,’/’,’MTF*],[95,125;110,125])

add_line([sys,’/’,’MTF’],[95,110;110,110])

add_line([sys,’/’,’MTF’],[155,120;185,120])

set_param([sys,’/’,’MTF’],...

’Mask Display’,’MTF’,...

‘Mask Type’,’MTF’,...

’Mask Dialogue’,
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'Modulated Transformer|Modulation Matrix (function)

|Number of Parameters’,...

'Mask Translate’,’ inputString = €1; numberOfParameters=€2;’)

set_param([sys,’/’,’MTF’],..

'Mask Help’,’'Note: the modulation furction must be

enclosed in ’’quotes’’ ’,

'Mask Entries’,’’’[1 0 0; 00 1; 0 O 1]’’\/3\/’)

4 Finished composite block ’MTF’.

set_param([sys,’/’,’MTF’], ...

’position’, [230,97,260,148])
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% Return any arguments.

if (nargin | nargout)

% Must use feval here to access system in memory

if (nargin > 3)

if (flag == 0)

eval([’[ret,x0,str]=’,sys,’ (t,x,u,flag);’])

else

eval([’ret =’, sys,’(t,x,u,flag);’])

end

else

[ret,x0,str] = feval(sys);

end
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end

A.2 Internal Function Called by MTF Block

function [sys,x0]=mtf_int{(¢,x,u,flag,inputString,number0fParameters)

h

[/

h

%

%

A

mtf_int:

Description:

S-file implementation of a MTF ‘internal)

This function is called from the masked block MTF.

This function evaluates the matrix function

contained in inputString, and then multiplies

the resultant matrix with the input u.
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% Note: inputString must be enclosed in single ’quotes’.

if (abs(flag) == 0)

% return flags

sys=[ O

3;

3+number0fParameters

1];

elseif (abs(flag) == 3)

% return output vector

90

[/

h

number

number

number

number

number

of

of

of

of

of

centinuous states

discrete states

outputs

inpute

discontinuous roots

flag for direct feedthrough



T = eval(inputString);

sys=[ T+ [u(1)

M = gize(u,1);

if( M > 1)

8y8 = 8ys8.’;

end

else

sys = [];

end

;u(2);u(3)] J;

% calculate transformer matrix

% calculate output vector

% how many rows did u have?

% transpose if input was row vector

% don’t return anything
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Appendix B

Equations From Augmented

Multibond Graph Link Model

The following equations are taken from the multibond graph shown in fignre

25 of chapter 4.

€s
fs
€5
fs
€q
€2
f2

€1

H;

(°J)H;

es— €6 —"Nipy —e7 — ;2
Ja=fe=fr=fi2=Jis
AJifs

€3 = €4

Jo—"wiy

Ori = (“Ri-1)Te,

(B.1)
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(13.3)
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(B.5)
(B.6)
(B.7)
(B.8)
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Appendix C

S-Function for Two-link

Manipulator

Note: Due to the size of the listing file, this appendix is contained im a
supplementa!l volume. The listing code was generated by SIMULINK, and is
only of interest for verifying the physical parameters of the example two-link

manipulator in chapter 4.
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