

Grounded Theory for DevOps Education

by

Candy Siu Tung Pang

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Candy Siu Tung Pang, 2019

ii

Abstract

DevOps, which stands for Development-Operations, is an important software engineering topic

that arose from the IT industry in 2009. XebiaLabs claimed that, in Google Search, DevOps is

one of the hottest search terms in technology over the last five years, and continues to rise [1].

According to Gartner in 2018, "DevOps processes would drive over 80% of the industrial-

strength technology on the market" [2]. Currently, there is a high demand for DevOps

practitioners, with many related job postings. DevOps is on its way becoming a required skill for

IT practitioners. Therefore, I am motivated to study how people get their education and training

to become DevOps practitioners, and how DevOps education should proceed in the future.

Since DevOps is very popular in industry, there are many blogs, webinars, conferences,

communities, and organizations in industry trying to understand, promote, assist, and improve

DevOps. However, there is limited academic research on DevOps. To the best of my knowledge,

no research has studied the state of DevOps education.

DevOps education is different from other technical training, for DevOps is much more

than a technology. DevOps is a cultural, procedural, and technological movement [3] [4] [5] [6]

[7] [8] [9] [10]. Therefore, I employed Grounded Theory (GT), a social science qualitative

research methodology, to study DevOps education. GT allowed me to discover the state of

DevOps education from external data without making presumptions.

Following the GT process, I started with interviewing IT practitioners. Through GT’s

open coding and microanalysis, I discovered from the interviews that IT practitioners were

interested in DevOps education and training. Continuing with the GT process, I used data

analysis, interview, and survey to investigate the current state and challenges in DevOps

iii

education from academic and industrial perspectives. Based on my findings, I proposed future

direction for DevOps education.

From the academic perspective, I found that most institutions were not teaching their

undergraduate computer science students much about DevOps. Academics were not motivated to

learn or adopt DevOps, for they thought the cost of adopting DevOps could not be justified in

their research projects. There need to be the right incentives for academics to adopt DevOps, in

order to stimulate interest in teaching DevOps.

From the industrial perspective, I found that industry has not clearly defined roles and

responsibilities for DevOps practitioners. Therefore, it is not clear what students should learn to

become DevOps practitioners. In addition, the DevOps community was evolving too fast for a

single DevOps curriculum to be defined. Finally, DevOps experts established that classroom

education and training was only the starting points of learning DevOps. DevOps practitioners

advance their DevOps skills at work.

From my findings, I proposed five groups of future studies to establish the benefits

academia stands to receive from DevOps education. The first group studies whether

incorporating DevOps processes into programming assignments improves student learning

outcomes. The second group studies whether DevOps skills are transferable to other computer

science subjects. The third group studies whether DevOps adds value to academic publication.

The fourth group studies whether DevOps knowledge improves students’ employment

opportunities. The fifth group studies how to align DevOps industrial practices with academic

education. These future studies would lay the path and direction for DevOps education in

academia.

iv

The scope and impact of DevOps has expanded rapidly. In addition to DevOps education,

I collaborated with other researchers to study other DevOps related topics. In one research study,

I identified maintenance processes that are necessary to sustain a continuous environment in

DevOps. In another research project, I defined interactions between microservices, which go

hand-in-hand with DevOps. Finally, in a different research study, I found that programmers

needed more knowledge about software energy consumption to support the DevOps’ trend of

cloud deployment. In conclusion, the field of DevOps is very wide. I have only studied DevOps

education, its continuity, its processes interaction, and its effect on infrastructure. There are

many more research opportunities in DevOps.

v

Preface

The research conducted on Continuous Integration (CI), Continuous Delivery (CR) and DevOps

from Chapter 1 to Chapter 7 for this dissertation was done in cooperation with Dr. Abram Hindle

and Dr. Denilson Barbosa at the University of Alberta. I am the lead collaborator of the research

project. I have led the identification and design of the research program, the collection of data,

the construction of surveys, the performance of interviews, the analysis of the research data, and

manuscript composition. Dr. Abram Hindle has provided step-by-step guidance throughout the

research project, and was involved in coding transcribed interviews and writing memos. During

the Grounded Theory process, I am the primary investigator, and Dr. Abram is the secondary

investigator. Dr. Abram Hindle and Dr. Denilson Barbosa have both contributed to data analysis

and manuscript composition. The research project received research ethics approval from the

University of Alberta Research Ethics Board, under project name "Continuous Integration",

Pro00040635, July 26, 2013.

Chapter 8 of this dissertation has been published as Candy Pang, and Abram Hindle,

"Continuous Maintenance", in the Proceeding of 2016 32nd IEEE International Conference on

Software Maintenance and Evolution (ICSME), Raleigh, NC, USA, p.p.458-462. I was

responsible for the problem identification, data collection and analysis, as well as the manuscript

composition. Dr. Abram Hindle was the supervisory author, and was involved with concept

formation and manuscript composition.

Chapter 9 of this dissertation has been published as Candy Pang, and Duane Szafron,

"Single Source of Truth (SSOT) for Service Oriented Architecture (SOA)", in the Proceeding of

2014 12th International Conference on Service-Oriented Computing (ICSOC), Paris, Frence, p.p.

575-589. I was responsible for the identification and design of the research program, the

collection of data, the construction of apparatus, the performance of experiments, the analysis of

the research data, and the manuscript composition. Dr. Duane Szafron was the supervisory

author, and was involved with concept formation and manuscript composition.

Chapter 10 of this dissertation has been published as Candy Pang, Abram Hindle, Bram

Adams, and Ahmed E. Hassan, "What Do Programmers Know about Software Energy

Consumption?", IEEE Software Magazine, May/June 2016, vol. 33, issue 3, p.p.83-89. Dr.

Abram Hindle was responsible for the identification of the research problem, and the analysis of

vi

research data. I was responsible for the design of the research program, the construction of

surveys, the collection of data, the analysis of the research data, and manuscript composition. Dr.

Abram Hindle, Dr. Bram Adams and Dr. Ahmed E. Hassan were involved with analysis of the

research data, concept formation and manuscript composition. The research project received

research ethics approval from the University of Alberta Research Ethics Board, under project

name "What Do Programmers Know About Powers?", No. Pro00041457, August 16, 2013.

IEEE is the publisher of the papers "Continuous Maintenance" and "What Do

Programmers Know about Software Energy Consumption?". IEEE does not require individuals

working on a dissertation to obtain a formal reuse license, but require the following message to

be displayed.

In reference to IEEE copyrighted material which is used with permission in this

dissertation, the IEEE does not endorse any of the University of Alberta's products or

services. Internal or personal use of this material is permitted. If interested in

reprinting/republishing IEEE copyrighted material for advertising or promotional

purposes or for creating new collective works for resale or redistribution, please go to

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn

how to obtain a License from RightsLink.

vii

Acknowledgement

Thank you Alberta Innovates Tech Futures (AITF) for providing 4 years of Alberta Innovates

Graduate Student Scholarship. Thank you University of Alberta for providing 2 years of Queen

Elizabeth II Graduate Scholarship - Doctoral level. Thank you Student Aid Alberta for providing

Persons Case Scholarship.

Thank you Dr. Duane Szafron for encouraging me to come back for my Ph.D. program

after leaving school for 13 years. Also thanks to Dr. Szafron for suggesting Dr. Abram Hindle

and Dr. Denilson Barbosa as my supervisors in his retirement.

Thank you to Dr. Abram Hindle for his brilliant supervision. After returning from

industry to the academic world, Dr. Hindle provided opportunities and guidance for me to

explore research topics and methodologies that I had not worked on before. Since I was away

from the academic world for an extensive period of time, Dr. Hindle provided extra support

helping me to catch up with the latest academic research topics in software engineering. During

my Ph.D. program, I experienced prolonged sickness, and Dr. Hindle was very patient during my

recovery. Last but not least, thank you Dr. Hindle for the provision of funding.

Thank you to Dr. Denilson Barbosa for his supervision in preparing and defending my

dissertation. Dr. Barbosa’s guidance during my dissertation writing has been highly appreciated.

In addition, thank you Dr. Barbosa for the provision of funding.

Last but not least, thank you to Alan S. Koch, senior lead instructor of the DevOps

certification course at ASPE Training, and Viktor Farcic, author of The DevOps 2.0 Toolkit -

Automating the Continuous Deployment Pipeline with Containerized Microservices, for

participating in our research.

viii

Table of Contents

1 Introduction ... 1

 Dissertation Contributions .. 2

 Hypotheses about Future DevOps Education ... 4

 Additional Contributions .. 4

 Dissertation Organization ... 5

2 Background ... 7

 Continuous Integration (CI), Continuous Delivery (CD), and DevOps History 7

 Prevalence of DevOps... 9

2.2.1 Prevalence in Industry... 10

 Evangelism .. 10

 Tools .. 10

 Surveys .. 13

2.2.2 Prevalence in Academia .. 15

 Grounded Theory (GT) ... 18

2.3.1 Grounded Theory in Software Engineering .. 18

2.3.2 Strauss and Corbin Grounded Theory Summary .. 19

 The First Phase of Grounded Theory Project .. 19

 The Second Phase of Grounded Theory Project .. 20

 Previous Software Engineering Research using Grounded Theory 21

3 Creation of Potential DevOps Grounded Theory.. 24

 Strauss and Corbin Grounded Theory Adoption .. 24

 Concrete Execution of Grounded Theory ... 25

3.2.1 Initial Interviews ... 25

3.2.2 Open Coding ... 27

ix

3.2.3 Code Relationship Analysis .. 28

3.2.4 Codes Occurrence Analysis .. 30

 DevOps Grounded Theory Topic Selection .. 31

3.3.1 Potential Research Questions Analysis ... 31

3.3.2 Topic Analysis and Selection.. 32

3.3.3 Potential DevOps Education Theory .. 33

4 Grounded Theory Study about DevOps Education .. 36

 DevOps in Academic Education ... 36

4.1.1 Academic Education Search Process .. 37

4.1.2 Academic Education Search Result .. 38

4.1.3 Academic Education Search Analysis .. 40

 Software Testing Teaching .. 40

 Challenges in DevOps Teaching ... 41

 DevOps in Academia .. 42

4.2.1 Academic Survey Process ... 42

4.2.2 Academic Survey Result and Analysis ... 43

 DevOps in Academic Research .. 44

4.3.1 Graduate Student Interview Process ... 44

4.3.2 Graduate Student Interview Result ... 45

4.3.3 Graduate Student Interview Analysis ... 46

 DevOps Requirements in Industry .. 47

4.4.1 DevOps Jobs Requirements .. 47

4.4.2 DevOps Job Search Process and Results .. 48

4.4.3 DevOps Jobs Search Analysis .. 51

 DevOps Professionalism ... 52

x

4.5.1 DevOps Certification .. 53

4.5.2 DevOps Training Programs .. 54

4.5.3 DevOps Communities, Conferences, and Organizations .. 56

 DevOps Practitioners .. 57

4.6.1 DevOps Practitioners Interview Process ... 57

4.6.2 DevOps Practitioners Interview Analysis ... 58

 DevOps Practitioner Requirement Analysis .. 59

 DevOps Practitioner Expectation Analysis ... 60

5 Hypotheses about DevOps Education ... 62

 DevOps in Programming Assignments ... 62

 DevOps Skills Transferability... 65

 DevOps Academic Values .. 66

 DevOps Employment Opportunities ... 67

 DevOps in Industry ... 69

 Concluding Remarks ... 71

6 Limitations .. 73

 Internal Threats ... 73

 External Threats .. 74

 Other Threats .. 75

7 Conclusion .. 76

 Future Work .. 79

8 Continuous Maintenance (CM)... 82

Abstract ... 83

 Introduction ... 83

 Related Work .. 85

xi

8.2.1 Development Management ... 85

8.2.2 Operations Management ... 87

 Continuous Maintenance (CM)... 88

8.3.1 Pre-Production CM ... 88

8.3.2 Post-Production CM.. 91

 Conclusion .. 93

9 Single Source of Truth (SSOT) for Service Oriented Architecture (SOA) 95

Abstract ... 96

 Introduction ... 97

 Mutable SSOT Service ... 100

9.2.1 Client-Record Creation ... 101

9.2.2 Client-Record Retrieval .. 101

 Immutable SSOT Service ... 102

9.3.1 Query-by-Criteria .. 103

9.3.2 Query-by-SSOT-ID... 104

9.3.3 Client-record Creation .. 105

9.3.4 Client-record Retrieval.. 105

9.3.5 Constructing SSOT-IDs .. 107

9.3.6 Update Subscription .. 108

9.3.7 Deletion Subscription.. 109

9.3.8 Additional Operations ... 110

 Performance and Quality-of-Service (QoS) .. 111

 Related Work .. 112

 Future Work .. 113

 Conclusion .. 114

xii

10 What Do Programmers Know about Software Energy Consumption? 116

Abstract ... 117

 Introduction ... 117

 The Survey .. 118

 The Results.. 119

10.3.1 Programmers Have Limited Awareness of Software Energy Consumption 119

10.3.2 Programmers Lack Knowledge of Reducing Software Energy Consumption 120

10.3.3 Programmers Lack Knowledge of Software Energy Consumption 122

10.3.4 Programmers Are Unaware of Software Energy Consumption’s Causes 124

 Limitations .. 125

 Conclusion .. 126

11 Final Words ... 128

 Lessons Learned.. 128

 Future Work .. 129

Bibliography ... 130

Appendix A Interview Questions for Initial Raw Data Gathering ... 137

Appendix B Open Coding Result of the Initial Interviews ... 139

Appendix C Open Coding Trees ... 147

Appendix D Potential DevOps Research Questions ... 152

Appendix E Potential Grounded Theory... 156

Appendix F 2017 QS World University Rankings by Subject - Engineering and Technology . 158

Appendix G Academic Survey Invitation Letter .. 160

Appendix H Survey comparing hands-on experience between Engineering and Computer

Science educators .. 162

Appendix I Graduate Student Research Invitation Letter ... 164

xiii

Appendix J Continuous Integration (CI) Introduction for Graduate Students 166

Appendix K ICAgile ICP-FDO Learning Objectives (Dec 2017) .. 168

xiv

List of Tables

Table 2.1 Academic Archives Search Results .. 15

Table 3.1 Categories of codes and their occurrences in number of interviews 31

Table 4.1 Number of Courses Including CI Content in Institutions ... 40

Table 4.2 Job Titles and Number of Postings in Monster with the Specific Keywords 50

Table 4.3 Number of Postings by Job Title in Monster .. 50

Table 4.4 DZone Job Categories ... 51

Table 4.5 Actual Topics on Coursera CI, CD, and DevOps courses .. 55

Table 4.6 Experts Ranked Factors of Becoming DevOps Practitioners. 59

Table B.1 Codes of the initial interviews.. 146

Table C.1 Code Tree for "Experience" ... 147

Table C.2 Code Tree for "Practice" .. 148

Table C.3 Code Tree for "Benefit" ... 149

Table C.4 Code Tree for "Cost" .. 150

Table C.5 Code Tree for "Tool" ... 150

Table C.6 Code Tree for "Social Aspect" ... 151

Table C.7 Code Tree for "Third-Party Service" ... 151

Table F.1 Top 50 Institutes in 2017 QS World University Rankings by Subject - Engineering and

Technology ... 159

file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497869
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497870
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497872
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497873
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497874
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497875
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497876

xv

List of Figures

Figure 2.1 DevOps Toolchain [44] ... 9

Figure 2.2 XebiaLabs Periodic Table of DevOps Tools (v2) [68] ... 11

Figure 3.1 A portion of an interviewee's response from transcription .. 28

Figure 3.2 Portion of the "Experience" code tree ... 30

Figure 8.1 Temporary Data Cleanup and Logs Archival .. 90

Figure 8.2 Exception or Violation Analysis ... 92

Figure 9.1 The Postal Codes Use Case ... 99

Figure 9.2 The Electronic Health Record Use Case I ... 103

Figure 9.3 The Electronic Health Record Use Case II .. 106

Figure 9.4 The Electronic Health Record Use Case III .. 107

Figure 10.1 Respondents’ responses regarding ways to improve software energy efficiency. The

respondents’ answers varied widely, indicating the need for increased education on software

energy consumption and efficiency. ... 121

Figure 10.2 Respondents’ rankings of energy consumption. Considerable disagreement existed

on whether a particular component consumed more energy than another.................................. 123

Figure 10.3 Respondents’ responses regarding causes associated with high energy consumption.

Only a few of the respondents could identify those causes. ... 125

Figure H.1 Comparing Hands-on Experience between Engineering and Computer Science

Educators Survey .. 163

file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497886
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497887
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497888
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497889
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497890
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497891
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497892
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497893
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497894
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497895
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497896
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497896
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497896
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497897
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497897
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497898
file:///D:/University%20of%20Alberta/2019/Thesis/Candy_Pang_ST_201809_PhD_v128.0.docx%23_Toc16497898

xvi

Glossary of Terms

AI - Artificial Intelligence

AWS - Amazon Web Services

BABOK - Business Analysis Book of Knowledge

CASCON - Centers for Advanced Studies Conference

CD - Continuous Deliver

CDSS - Collaborative Data Sharing System

CI - Continuous Integration

CM - Continuous Maintenance

COBIT - Control Objectives for Information and Related Technologies

COTS - Commercial Off-the-Shelf

CPU - Central Processing Unit

CRUD - Creation, Retrieval, Update, and Deletion

CSED - International Workshop on Continuous Software Evolution and Delivery

CVS - Concurrent Versions System

DBMS - Database Management System

DevOps - Stands for Development and Operations.

DevOps is about the culture, collaborative practices, and automation that aligns

development and operations teams so they have a single mindset on improving

customer experiences, responding to faster business needs, and ensuring that

innovation is balanced with security and operational needs. [3].

DORA - DevOps Research and Assessment

EDIFACT - United Nations Directories for Electronic Data Interchange for Administration,

Commerce and Transport

EPR - Electronic Patient Record

ESB - Enterprise Service Bus

ETL - Extract, Transform and Load

GPU - Graphics Processing Unit

GT - Grounded Theory

GUI - Graphical User Interface

xvii

HL7 - Health Level 7

ICE-DO - ICAgile Certified Expert in DevOps

ICP-FDO - ICAgile Certified Professional in Foundations of DevOps

ICP-IDO - ICAgile Certified Professional in Implementing DevOps

ICSE - International Conference on Software Engineering

IDE - Integrated Development Environment

IaaS - Infrastructure as a Service

IT - Information Technology

ITIL - Information Technology Infrastructure Library

ITSM - Information Technology Service Management

PC - Postal Code

PIM - Personal Information Management

PMBOK - Project Management Book of Knowledge

PMP - Project Management Professional

PaaS - Platform as a Service

QoS - Quality-of-Service

REST - Representational State Transfer

PHN - Patient’s Health Numbers

RDF - Resource Description Framework

ROI - Return on Investment

SE - Software Engineering

SLA - Service Level Agreement

SLR - Systematic Literature Review

SOA - Service Oriented Architecture

SSOT - Single Source of Truth

TDD - Test-Driven Development

TFS - Team Foundation Server

VM - Virtual Machine

WSDL - Web Service Definition Language

XP - Extreme Programming

YAML - YAML Aren’t Markup Language

1

1 Introduction

DevOps, which stands for Development-Operations, is one of the most important new

movements in software engineering since 2009. Sacolick [3] defined DevOps as movement

aligning development and operations teams in "organizational structure, practices, and culture to

enable rapid development and scalable, reliable operations". XebiaLabs claimed that in Google

Search, DevOps is one of the hottest search terms in technology over the last five years, and

continues to rise [1]. It has been a popular topic within the Information Technology (IT) industry.

According to a survey in 2016 [11], 80% of the organizations plan to adopt DevOps. In 2018,

"Gartner estimated that DevOps processes would drive over 80% of the industrial-strength

technology on the market" [2]. Currently, there is a high demand for DevOps practitioners. In

2019, according to a survey by DevOps Institute [12], 37% of the IT organizations are hiring

DevOps practitioners, and 14% are planning to recruit within 12 months [13]. DevOps is on its

way becoming a required skill for IT practitioners.

There are many blogs, webinars, conferences, communities, and organizations in industry

trying to understand, promote, assist, and improve DevOps. However, there is limited academic

research and curricula content about DevOps. If academics have limited knowledge about

DevOps, then students are not likely to obtain the DevOps skills required by industry. Hence,

students would not be able to fill the numerous DevOps openings. Therefore, I studied the

current state of DevOps education, and identified the source of the challenges in improving

DevOps education adoption. Based on my findings, I made hypotheses about how institutions

might proceed to include DevOps in future education. To the best of my knowledge, no research

has studied the state of DevOps education before. This is the first research that studies how to

embrace DevOps education in academic institutions.

Unlike other software engineering research topics, DevOps is much more than a

technology. Many IT practitioners argue that DevOps is a cultural, procedural, and technological

movement [3] [4] [5] [6] [7] [8] [9] [10]. Therefore, learning DevOps is different from learning

any other technology. Using the traditional quantitative scientific research methodology, I would

have made hypotheses about DevOps education, then proved or dis-proved my hypotheses. Since

there was no previous research about DevOps education, my hypotheses would solely be based

2

on my presumptions, which I tried to avoid. Instead, I used Grounded Theory (GT), a social

sciences qualitative research methodology. GT allowed me to discover the state of DevOps

education from external data without making presumptions.

To fulfill the great demand of DevOps practitioners now and in the future, I want to find

out how institutions can teach their students about DevOps. In this dissertation, I uses GT to

study the current state of DevOps education from both academic and industrial perspectives.

Based on the current state, this dissertation proposes methods to advance DevOps education that

benefits academia and industry. The next two sections will summarize my findings of the current

state of DevOps education and my proposals for future DevOps education advancement.

 Dissertation Contributions

Following Grounded Theory (GT), the social sciences methodology, I started the project by

interviewing IT practitioners. Then, through GT’s open coding and microanalysis, I, in

consultation with my supervisors, identified seven major categories of DevOps research topics,

and 119 DevOps research questions. One of the categories is about DevOps training and

education. Continuing with the GT process, I further investigated the current state and challenges

in DevOps education from academic and industrial perspectives.

From the academic perspective, my first finding was that most institutions were not

teaching their undergraduate computer science students about DevOps. I reviewed the

undergraduate computer science curriculum of 50 prestigious engineering and technology

institutions in the world. I studied their curricula, searching for different DevOps related terms to

assess what DevOps topics institutions covered. The results show that most institutions did not

cover much about DevOps at the time of writing this dissertation.

My second and third findings were that academics were not keen to learn or adopt

DevOps. Even though DevOps benefits software development [5] [11] [14] [15] [16], academics

would not adopt DevOps in research projects that involved software development. I invited

academics to participate in a DevOps education survey and presentation, and I interviewed

graduate students who develop software for their research projects. The graduate students all

agreed that adopting DevOps could improve the quality of their software, and could allow others

to reproduce their research results more easily. However, they felt that allowing others to

reproduce their results would increase the replicability of their research, but would not

significantly increase their chance of publishing. Hence, the cost of adopting DevOps could not

3

be justified in research projects, and graduate students would not adopt DevOps. There needs to

be the right incentives for academics to adopt DevOps, in order to stimulate interest in teaching

DevOps.

From the industrial perspective, my fourth finding was that industry has not clearly

defined responsibilities for DevOps practitioners, even though DevOps is popular and highly

demanded. I analyzed the job requirements for DevOps practitioners. The employers expected

DevOps practitioners to be Jacks-of-All-Trades. Job requirements in DevOps postings were

totally different from posting to posting. It is not clear what students should learn to become

DevOps practitioners.

My fifth finding was that the DevOps community was evolving too rapidly for a single

DevOps curriculum to be defined. I examined DevOps certification availability [17] [18] [19],

training opportunities [20] [21] [22], conferences [23] [24] [25] [26] [27] [28], communities [29]

[30] [31] [32], and organizations [33]. The DevOps community was booming, but in the early

stage of formalizing its credentials and defining its boundaries. Defining a curriculum for

DevOps is like shooting a moving target; therefore, accredited DevOps curriculum is not

available for education.

My sixth finding was that DevOps practitioners acquired their DevOps skills from work,

not from formal education. It is not easy to learn DevOps within a classroom. I interviewed

DevOps experts about their experience in learning DevOps. The experts confirmed that

classroom training and education was only the starting point of learning DevOps. IT practitioners

advanced their DevOps skills through hands-on working experience. Academic institutions need

to figure out how to bring work experience into DevOps education.

In conclusion, even though DevOps is becoming a requirement for IT practitioners, there

are many challenges in DevOps education. From the academic perspective, academics do not

perceive sufficient incentives to be involved in DevOps; therefore, DevOps rarely appears in

institutions’ curriculum. Academics lack interest in DevOps, for they do not believe DevOps

gives them enough benefits. From the industrial perspective, the DevOps communities are

working on the DevOps learning path, while DevOps is evolving rapidly. Furthermore, the IT

industry has yet to agree on the responsibilities of DevOps practitioners, which makes defining

DevOps curriculum even harder. At the moment, IT practitioners can only learn DevOps through

4

hands-on working experience. With all these challenges, there is no clear direction about where

DevOps education should start.

 Hypotheses about Future DevOps Education
To advance DevOps education, I identified 11 DevOps education hypotheses to help define the

future direction. Research based on these hypotheses will establish what DevOps education

should start teaching; how learning DevOps benefits students; and how to bridge the gap

between academia and industry. The 11 hypotheses are in five groups.

The first group studies whether embedding different DevOps processes into programming

assignments could improve student learning outcomes. Educators keep looking for better ways to

teach computer science; if embedding DevOps processes into teaching improve student learning

outcomes, then educators may be motivated to do so.

The second group studies whether DevOps skills are transferable. The hypothesis studies

whether knowing DevOps improves student learning outcomes in other computer science

subjects. If so, it should motivate more computer science educators to adopt DevOps.

The third group studies whether DevOps adds value to academic publications and

initiates joint DevOps research with computer science academics in different specializations. The

results may draw more attention from academics toward DevOps.

The fourth group studies whether knowing DevOps could improve students’ employment

opportunities and speed up integration at work. If so, the results should motivate students to learn

DevOps.

The fifth group studies how DevOps can affect industrial procedures, and whether

educators can bring those effects into academic education. These hypotheses include how on-the-

job experience enhances DevOps learning; what are the differences between adopting DevOps

culture and DevOps technology; and which project management methodology benefits more

from DevOps. The results can make DevOps education more industry oriented.

Chapter 5 will describe and explain these 11 DevOps education hypotheses in detail.

 Additional Contributions

The scope and impact of DevOps has expanded rapidly within a short period of time. Therefore,

there are many gaps waiting to be filled. In addition to my contributions regarding DevOps

education, I collaborated with other researchers to fill some of those gaps.

5

I studied and identified continuous maintenance processes missing from existing DevOps

publications, and published these findings in the paper "Continuous Maintenance" [34]. With the

continuous maintenance processes defined, all future DevOps advancement in culture, procedure,

or technology should take maintenance into account.

While adopting DevOps, many companies also adopt microservices, since "microservices

and DevOps go hand-in-hand" [35]. Microservice is an architecture that "encapsulat[es] portions

of your application into self-contained services that can be individually designed, developed,

tested, and deployed" [36]. Each microservice is a Single Source of Truth (SSOT). We defined

the interactions between microservices, that were fundamental for microservices deployment,

and published in the paper "Single Source of Truth (SSOT) for Service Oriented Architecture

(SOA)" [37]. The paper defined standard operations and interactions between microservices.

Based on the standard operations, development tool can be created to generate source code for

microservices' interactions, which makes DevOps adoption easier.

Research shows that organizations that adopt DevOps are likely to deploy their

applications in data centers [11]. Data centers have limited power supply. Similarly, mobile

device, which has become an essential part of our lives, also has limited power supply. Therefore,

all programmers should try to minimize software energy consumption. I studied programmers’

knowledge about software energy consumption. In my paper "What Do Programmers Know

about Software Energy Consumption?" [38], I concluded that programmers lack knowledge and

awareness about software energy consumption. Since DevOps adoption has soared, programmers’

skill to minimize software energy consumption is very important.

 Dissertation Organization
The rest of this dissertation is organized as follows. Section 2.1 provides the history of DevOps.

Section 2.2.1 describes the many blogs, webinars, conferences, communities, and organizations

in industry trying to understand, promote, assist, and improve DevOps. Section 2.2.2 describes

the limited academic research on DevOps. Section 2.3 provides an introduction to GT.

Chapter 3 presents how I employed GT to identify potential DevOps research topics.

Among the identified topics, I selected DevOps education as the topic for further study. Chapter

4 demonstrates how I employed GT to study the challenges in DevOps education through

interviews, survey, data collecting, and analysis. Chapter 5 lists my hypotheses about DevOps

6

education. Chapter 6 discusses the limitations in my GT study. Finally, Chapter 7 concludes my

GT study.

Chapter 8 includes my published paper "Continuous Maintenance" [34]. Chapter 9

includes my published paper "Single Source of Truth (SSOT) for Service Oriented Architecture

(SOA)" [37]. Chapter 10 includes my published paper "What Do Programmers Know about

Software Energy Consumption?" [38].

7

2 Background

As described in Chapter 1, DevOps is a popular topic in industry, but not in academia. This

dissertation studies the state of DevOps education using Grounded Theory (GT). In this chapter,

I will present the history of DevOps; show the popularity of DevOps in industry; as well as

highlight the general lack of DevOps interest in academia. I will also introduce the Grounded

Theory (GT) methodology used in this research project, and describe existing software

engineering research using GT.

 Continuous Integration (CI), Continuous Delivery (CD), and DevOps History
In the early days of software development, module integration usually occurred near the end of a

project and often failed, which caused much frustration [39]. Continuous Integration (CI) is a

practice that executes module integration frequently throughout a project lifecycle in order to

avoid tension at the end of the project.

Most IT practitioners credited the CI concept to Extreme Programming (XP) [40]. In XP,

Beck suggested that "developers should be integrating and committing code into the code

repository every few hours, whenever possible". However, Beck was only proposing a CI

concept, without any action plan.

In the late 90’s, the IT industry, especially the enterprises with abundant resources, saw

the necessity and value of adopting CI to deal with the fast-growing complexity in software

development. In the book "Microsoft Secrets: How the World's Most Powerful Software

Company Creates Technology, Shapes Markets, and Manages People" [41], Cusumano et al.

described how Microsoft adopted and benefited from CI by "do[ing] everything in parallel, with

frequent synchronizations". Microsoft called the model synch-and-stabilize or iterative

enhancement, but they actually put CI into action. At the time, IT practitioners also referred the

synch-and-stabilize model as "mile-stone", "daily build", "nightly build", or "zero-defect" [42].

The first book that fully documented CI practices, "Continuous Integration: Improving

Software Quality and Reducing Risk" came in 2007 [39]. Duvall et al. detailed the six CI tasks

as:

8

1. Continuous Code Integration

2. Continuous Database Integration

3. Continuous Testing

4. Continuous Inspection

5. Continuous Delivery

6. Continuous Feedback

These six tasks focused mainly on development. In 2010, Humble et al. expanded the CI

concept into Continuous Delivery (CD) in the book "Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation" [43]. Humble et al. described the

CD process as a Deployment Pipeline, an end-to-end process from software development to

delivery. The deployment pipeline allowed any version of an application to be delivered to

customers automatically as desired. Humble et al. covered many CI and CD practices and tools

in their book. It is still one of the most referenced books regarding CI and CD.

 CI and CD cover the software development processes up until software release. Once the

software is released, the operations team usually takes over the responsibility to operate the

software. DevOps expands the continuous processes, CI and CD, from development to

operations, and it represents a combination of Development (Dev) and Operations (Ops).

DevOps is about the culture, collaborative practices, and automation that aligns

development and operations teams so they have a single mindset on improving customer

experiences, responding to faster business needs, and ensuring that innovation is

balanced with security and operational needs.

 - Isaac Sacolick in "What is DevOps? Transforming software development" [3]

The DevOps workflow is commonly known to IT practitioners as depicted in Figure 2.1

[44]. The DevOps workflow includes all CI and CD tasks and processes. The CD process

includes two parts, deploy and release. In Figure 2.1, CD is depicted as release. The name

DevOps originates from the presentation "10+ Deploys per Day: Dev and Ops Cooperation at

Flikr" by John Allspaw and Paul Hammond in 2009 at the O’Reilly’s Velocity conference [45].

This presentation described how Flikr streamlined the development, release and operational

functions. The title was then shortened to #devops on Twitter.

In addition to CI, CD, and DevOps, there are many other continuous processes, like

continuous planning, continuous use, continuous trust, continuous improvement, continuous

9

innovation, etc. Fitzgerald et al. use the umbrella term "Continuous *" (continuous star) to

identify the family of continuous activities [46]. There are also DevSecOps [47] [48] [49] [50],

ChatOps [51], GitOps [52], DevOps 2.0 [53], and many more.

Technically, CI, CD, and DevOps are not the same. CD "is an approach whereby teams

ensure that every change to the system can be released. … The goal of DevOps is to merge dev

and ops roles together … to achieve business goals" [6]. However, most people in the IT industry,

practitioners or not, use the term DevOps to cover all continuous processes. In the rest of this

dissertation, we will use the term "DevOps" as an umbrella term to cover all continuous

processes, but use "CI" or "CD" when referring to specific CI or CD processes. Throughout the

project, I used the terms CI, CD, and DevOps in different surveys, interviews, and documents at

the time. I kept those terms as-is in this dissertation in order to preserve the original content of

the documents as they have been presented to the research participants.

As mentioned earlier, DevOps evolves from CI and CD. Therefore, up to now, more

works were done on the Dev-side than on the Ops-side. Some IT practitioners expressed their

frustration that "DevOps often can feel as though its real goal is to turn ITOps engineers into

developers" [54]. When I started this GT project, my focus was on CI, since DevOps was not as

popular then. Therefore, some of the earlier works have more focus on CI than DevOps.

 Prevalence of DevOps
DevOps is a software engineering topic that arose from the IT industry. DevOps’ popularity has

increased among IT practitioners in the last five years [29], and caught a lot of attention from

Figure 2.1 DevOps Toolchain [44]

10

industry researchers [5] [11] [14] [15] [16] [55] [56] [57] [58]. XebiaLabs claimed that, during

those five years, DevOps became one of the hottest technology search terms in Google Search,

and it keeps rising [1]. However, the number of academic publications on DevOps is relatively

low. In this section, we will compare the prevalence of DevOps in industry and in academia.

2.2.1 Prevalence in Industry

The popularity of DevOps in industry can be recognized in three ways: the positive publicity

trends, the creation of many supporting tools, and the large number of surveys with many

participants. I will describe these phenomena below.

 Evangelism

Many DevOps communities, user groups, and blogs are created [29] to promote and inform IT

practitioners on the topic. Even the most prominent industry technology research company

Gartner Inc. "predicts that by 2020, half of the CIOs who have not transformed their teams’

capabilities [to DevOps] will be displaced" [59].

Puppet [60] suggests, "DevOps practices lead to higher IT performance. This higher

performance delivers improved business outcomes, as measured by productivity, profitability,

and market share" (p.4) [16]. Therefore, DevOps has high return-on-investment value.

xMatters [61] declares that "DevOps practitioners are experiencing a faster time to

market, improved customer experiences, fewer customer-facing incidents, faster resolution times,

and a rapid-fire pace of innovation" (p.15) [9]. Therefore, DevOps gives companies a strong

advantage over their competitors in the market.

Interop ITX [62], a technical conference organizer on the latest technical topics for Tech

Leaders, added a DevOps Track to its conference [63]. Interop ITX recognizes that the "old

waterfall approaches no longer serve the pace of today's application development and

implementation cycles". Organizations are "dipping their toes into DevOps". Interop ITX also

introduced DevOps certification program to its conferences [64].

All these organizations are praising DevOps and pushing the IT industry toward DevOps.

 Tools

Since DevOps receives a lot of attention in industry, many companies and individuals are

developing tools to support the Deployment Pipeline [43]. One of these companies is XebiaLabs

[65]. XebiaLabs develops enterprise-scale DevOps tools, and they claimed that Forrester named

11

them a leader in Continuous Delivery (CD) and Release Automation [66]. In addition, Gartner

named XebiaLabs a leader in Application Release Automation [67].

XebiaLabs attempts to keep track of the ever-growing number of DevOps tools through

the periodic table [68] shown in Figure 2.2. XebiaLabs classifies DevOps tools according to their

licensing (Open Source, Free, Freemlum, Paid, and Enterprise) and the functionalities below.

1. Source Code Management

2. Repository Management

3. Database Management

4. Configuration Management or Provisioning

5. Build

6. Testing

7. Continuous Integration (CI)

8. Deployment

9. Release Management

10. Logging

11. Business Intelligence (BI) or Monitoring

(Tools that generate insights and analytics from business data or system data)

Figure 2.2 XebiaLabs Periodic Table of DevOps Tools (v2) [68]

12

12. Cloud, or Infrastructure as a Service (IaaS), or Platform as a Service (PaaS)

(Tools that orchestrate shared infrastructure for applications deployment)

13. Containerization

(Tools that create isolated user-space instances in an operating system)

14. Collaboration

(Tools that collaborate all stakeholders in an application life cycle)

15. Security

The periodic table is evidence of the complicated DevOps ecosystem. On June 25, 2018,

XebiaLabs released Version 3 of the Periodic Table of DevOps Tools [69]. Version 3 of the table

includes 52 new DevOps tools and restructured functionality categories [70], which reflect the

rapidly changing DevOps environment. XebiaLabs has also established an Ultimate DevOps

Tool Chest with over 450 DevOps tools [71], and growing.

The large numbers of DevOps tools with different functionalities serve a wide spectrum

of IT processes in DevOps. No single DevOps tool exists that supports all DevOps

functionalities. However, some categories of DevOps tools are in the core of the process, and we

will introduce a few of them below.

(#1) Source code management tools:

Source code management tools that manage source code revisions are the most important

tool in DevOps. Git [72] is a popular distributed revision control system that allows for non-

linear workflows. GitHub [73] is a web-based Git repository hosting service with its own added

features. GitLab [74] is an open-source version of GitHub, with wiki and issue tracking features.

Bitbucket [75] is another popular web-based hosting service for Git revision control systems,

which offers free and paid services. No matter which product is used, software developers check

source code into a source code management tool.

(#7) Continuous Integration (CI) tools:

CI tools retrieve source code from repositories, and execute pre-defined commands to

build source code into applications. Travis CI [76] is a distributed web-based CI tool that builds

projects hosted on GitHub and executes predefined YAML [77] build commands. Jenkins [78] is

a server-based CI tool written in Java, and run in a servlet container. Jenkins supports many

13

different types of source code management tools, and is able to execute different types of build

commands.

(#13) Containerization tools:

Traditionally, a CI tool builds an application, then deploys it to an operating system. A

containerization tool creates multiple isolated user-space instances in an operating system, so

that multiple applications can be deployed to an operating system, to reduce resource

requirements. Docker [79] is the first popular containerization tool. Docker is an open-source

tool that automates the deployment of applications inside software containers. Kubernetes [80] is

the most popular container orchestration engine [81]. Kubernetes is an open-source tool from

Google that orchestrates deployment, scaling, and management of containerized applications

across multiple hosts [82].

(#4) Configuration Management or Provisioning tools:

As described above, many different DevOps tools serve a wide spectrum of IT processes,

and the tools are not connected. Therefore, there needs to be a configuration management tool

that can configure and manage different system resources. Puppet [60] is an open-source

configuration management utility, and it is one of the leading infrastructure-as-code solutions [1].

Puppet has multiple lines of DevOps products, such as Puppet Discovery, Puppet Enterprise, and

Puppet Pipelines, that automate the modern enterprise. Puppet claims, from startups to "75% of

the Fortune 100, thousands of companies rely on Puppet" [60].

Only a few categories of DevOps tools are described here, but there are many more. Not

every DevOps pipeline uses all 15 categories of tools. Each pipeline adopts tools according to its

needs. Therefore, there are many opportunities for new DevOps tool vendors.

 Surveys

The large number of surveys about DevOps and the large number of IT practitioners answering

those surveys confirm the popularity of DevOps in industry. I summarized some of the survey

results below.

DZone’s DevOps Zone [31] is one of the most active DevOps communities. Since 2014,

DZone has been surveying IT practitioners on topics related to DevOps, and published annual

14

reports. In 2014 [55], 2015 [56], 2016 [57], 2017 [58], and 2018 [5], DZone had surveyed 500+,

900+, 596, 497, and 549 technical professionals about DevOps respectively.

In 2015, the DZone survey reported 50% of the IT professionals "believed that they have

implemented Continuous Delivery for some or all of their projects" (p.4) [56], but only 18%

were certain that they had implemented the textbook version of CD. Hence, the majority of IT

professionals have yet to catch up with the knowledge about CD. Nonetheless, 48% of those

surveyed said that CD would become a universal IT standard practice. In 2017, "41% of

respondents said their organization has a dedicated DevOps team" (p.3) [58]. In 2018, 48% of

the organizations have dedicated DevOps teams. "DevOps has become … something that needs

to happen sooner or later in order to stay competitive in a world where major companies like

Amazon and Netflix can deploy changes every few minutes" (p.2) [5].

Puppet has published the State of DevOps Reports in 2017 and in five previous years,

which documented the progressive DevOps adoption in the IT industry. In 2015 [14], 2016 [15],

and 2017 [16] Puppet surveyed 4976, 4600, and 3200 technical professionals respectively.

Puppet’s surveys concluded that "DevOps practices lead to higher IT performance. This higher

performance delivers improved business outcomes, as measured by productivity, profitability,

and market share" (p.4) [16]. In 2016, these higher performing survey responders "are deploying

200 times more frequently …, and [has] the lowest change failure rate" (p.13) [15]. In 2017,

these higher performing survey responders have "46 times more frequent code deployments; 440

times faster lead time from commit to deploy; 96 times faster mean time to recover from

downtime; and 5 times lower change failure rate" (p.21) [16].

Interop ITX has surveyed 300 technology professionals involved in DevOps [11]. Interop

ITX concluded from their survey that DevOps practices lead to reduced expenses and increased

revenue. "Other benefits included increased collaboration, higher frequency of software

deployments, a reduction in time spent maintaining applications, and improved quality and

performance of applications" (p.4) [11].

All surveys come to the same general conclusion that DevOps is highly beneficial.

Therefore, DevOps draws great attention from software development companies, and many try to

adopt DevOps.

15

2.2.2 Prevalence in Academia

Compared with its popularity in industry, DevOps does not receive much attention in academia. I

show the lack of awareness by querying IEEE Xplore [83], ACM Digital Library [84], and

Google Scholar [85] for academic publications on CI, CD, and DevOps. Next, I juxtapose those

results against queries for currently trending topics such as containers, cloud computing, and

deep learning. The results show that DevOps lack attention from academics.

In IEEE Xplore I searched for these exact phrases, "continuous integration", "continuous

delivery", and "devops" in document titles, author keywords, and full-texts separately. In the

ACM Digital Library, I searched with the same set of phrase in titles, keywords, and full-texts as

well. In Google Scholar, I searched for these phrases in titles and full-texts. In Google Scholar I

also tracked the trends of these phrase since 2018, 2017, 2014, and anytime. As comparisons, I

also searched the phrase "container", "cloud", and "deep learning". I selected these comparison

 CI CD DevOps Container Cloud
Deep

Learning

IEEE Xplore

In Title

(1998-
2017)

80

(1994-
2018)

26

(2014-
2018)

62

(2000-
2018)
1031

(2000-
2018)
23097

(1999-2018)
1722

In Keyword

(2008-
2017)
116

(2012-
2018)

52

(2011-
2018)
126

(1999-
2018)
751

(2000-
2018)
21596

(2006-2018)
1723

In Full-Text

(2000-
2018)
1970

(2000-
2018)
738

(2011-
2018)
758

(2000-
2018)
78109

(2000-
2018)

145293
(2000-2018)

17716
ACM DL
In Title 46 21 72 460 5286 353
In Keyword 67 33 71 279 3607 727
In Full-Text 1050 279 429 269521 32357 3672
Google Scholar
In Title (Anytime) 509 456 607 188000 233000 11000
 Since 2014 258 193 476 15100 32000 8630
 Since 2017 83 54 158 4680 14700 4660
 Since 2018 0 2 7 99 1070 400
In Full-Text
(Anytime) 22300 27800 7650 3790000 3350000 159000
 Since 2014 9410 8010 5240 224000 403000 287000
 Since 2017 2770 2410 2000 23000 46200 19400
 Since 2018 179 171 123 10900 18100 4050

Table 2.1 Academic Archives Search Results

16

topics because they have gained their attention and popularity around the same time as CI, CD,

and DevOps. Table 2.1 displays the search results.

On one hand, the phrases "continuous integration", "continuous delivery", and "devops"

were very specific. The searches might not found articles using the earlier terminology such as

"daily build" or "nightly build". On the other hand, the searches for the phrases "container",

"cloud", and "deep learning" might return articles that were not related to software development

or operations. Since I was only estimating the DevOps prevalence in academia, the leniency was

acceptable.

From IEEE Xplore, CI first appears as a keyword in 2008, CD in 2012, and DevOps in

2011, while Microsoft had fully adopted CI in their development process by 1998 [41]. It took

more than 10 years for academia to look into the CI, CD, and DevOps concept after it had

become popular in industry.

Deep learning first appears as a keyword in 2006, near the first appearance of CI in 2008.

However, by the end of January 2018, there are 1722 publications related to deep learning, while

only 116 related to CI, 52 related to CD, and 126 related to DevOps. Obviously, CI, CD, and

DevOps receive much less attention from academia. When a topic is the focus of a publication,

the topic will usually appear in the title of the publication. While CI, CD, and DevOps have

appeared in publication titles 46, 21, and 72 times, Container, Cloud, and Deep Learning have

appeared in publications titles 1031, 23097 and 1722 times. CI, CD, and DevOps are less

investigated academic research topics than Container, Cloud, and Deep Learning.

In ACM Digital Library, the publication counts are consistent with IEEE Xplore. The

numbers of publications with CI (46), CD (21), and DevOps (72) in their titles are much less

than those with container (460), cloud (5286), and deep learning (353) in their titles. While 727

publications identified deep learning as a keyword, only 67, 33, and 71 publications identified CI,

CD, or DevOps as keywords respectively. The ACM Digital Library concurs with IEEE Xplore

that CI, CD, and DevOps have not generated as much academic interest as container, cloud, and

deep learning.

Erich et al. has performed a Systematic Literature Review (SLR) of DevOps publications

in ACM Digital Library [86]. Erich et al. found 86 DevOps related academic publications

between 2011 and 2016. The number is cohesive with my search result. By studying the

academic publications, Erich et al. found that "the quality of the [DevOps] studies [was] quite

17

low". DevOps may need to draw more attention in academic to provoke higher quality study.

Similarly, Franca et al. also analyzed academic literature related to DevOps [87]. Franca et al.

found that "DevOps [was] little explored by the academic community", which is cohesive with

my finding.

Google Scholar further confirms that CI, CD, and DevOps have not received as much

attention from academia as a research topic. Since 2014, publications on container, cloud, and

deep learning are 10 times more than that of those on CI, CD, and DevOps. In the month of

January 2018, there were zero, two, and seven publications on CI, CD, and DevOps, while there

were 99, 1070, and 400 publications on container, cloud, and deep learning. The growing rates of

CI, CD, or DevOps publications are also slower than container, cloud, and deep learning.

Between 2014 and 2016, the average numbers of monthly publications on CI, CD, and DevOps

were 4.9, 3.9, and 8.8. The average numbers have grown to 6.9, 4.5, and 13.2 in 2017, increased

42%, 17%, and 49% respectively. On the other hand, the average numbers of monthly

publications on container, cloud, and deep learning between 2014 and 2016 were 289.4, 480.6,

and 110.3. The average numbers have grown to 390, 1225, and 388.3 in 2017, with increases of

35%, 155%, and 252% respectively. Academic research on CI, CD, and DevOps is growing

slower than other topics.

Practitioners in industry and researchers in academia pay different levels of attention to

DevOps. They also have different research interests concerning DevOps. Garousi et al.

compared industrial and academic publications on software testing, a subtopic of DevOps [88].

Industrial research focuses more on the actual practices, while academic research focuses more

on theory. Garousi et al. also found that IT practitioners believed the academic publications were

"too formal and hard to understand". Hence, IT practitioners do not consider academic research

practical or useful. Therefore, industry-academia collaboration is rare.

Without the collaboration from industry, it is difficult to perform academic research on

DevOps, as DevOps covers all software development processes performed by a board range of

IT practitioners, including programmers, system administrator, DBA, operational analysts,

support analysts, and more. DevOps also covers all infrastructure management for development,

testing, staging, production, scaling, virtualization, and more. It is not likely that academia can

recreate or simulate the complex industrial environment for research. Thus, industry-academia

collaboration becomes very important. To show that a certain process or tool is making an

18

improvement, academic researchers require cooperation and data from various participants in the

deployment pipeline [43]. GT is a methodology that can effectively gather qualitative data from

various participants. I will briefly describe GT in the next section.

 Grounded Theory (GT)

Grounded theory (GT) is a qualitative research methodology. It is different from the traditional

hypothetico-deductive approach. Its findings do not come from statistical procedures. GT uses

"nonmathematical process of interpretation … to discover concepts and relationships in raw data

and then organizes these results into a theoretical explanatory scheme" [89].

In 1967, Glaser and Strauss first described grounded theory in their seminal book "The

Discovery of Grounded Theory" [90]. "The goal of GT is to generate theory rather than test or

validate existing theory" [91]. Since 1967, many variants of GT have been published. GT is not

only for social sciences, since it also "proved an extremely useful research approach in several

fields including medical sociology, nursing, education, and management theory" [91].

2.3.1 Grounded Theory in Software Engineering

Software engineering research employed GT on many occasions. Stol et al. has compared

various GT variants, and studied 98 software engineering publications that claimed to use GT

[91]. However, Stol et al. found that "only 16 articles provide detailed accounts of their

procedures" [91]. Most of these publications were "slurring" GT, hence claiming to use GT

without actually following its guidelines or remaining compliant with the GT methodology.

Based on suggestions from Stol et al., I have followed the GT guidelines to create a compliant

GT study on DevOps, and provide detailed accounts of my procedures.

I started my GT research by studying the two popular variants.

• Basics of Qualitative Research: Techniques and Procedures for Developing Grounded

Theory, Second Edition by Anselm Strauss and Juliet Corbin [89]

• Constructing Grounded Theory - A Practical Guide through Qualitative Analysis, by

Kathy Charmaz [92]

The Charmaz version of GT includes repeating processes of coding (categorizing data for

analysis - not programming), memo writing, theoretical sampling saturation, and sorting. I

comprehended the constructivism in the Charmaz version of GT less than the post-modern

theory in the Strauss and Corbin version of GT. Therefore, I selected to use the Strauss and

19

Corbin version of GT in my project, which had processes similar to the Charmaz version but was

more methodological.

2.3.2 Strauss and Corbin Grounded Theory Summary

The Strauss and Corbin version of GT builds on the principles quoted below:

a. The need to get out into the field to discover what is really going on

b. The relevance of theory, grounded in data, to the development of a discipline and as a

basis for social action

c. The complexity and variability of phenomena and of human action

d. The belief that persons are actors who take an active role in responding to

problematic situations

e. The realization that persons act on the basis of meaning

f. The understanding that meaning is defined and redefined through interaction

g. A sensitivity to the evolving and unfolding nature of events (process)

h. An awareness of the interrelationships among conditions (structure), actions

(processes), and consequences (p.9)

 - Anselm Strauss and Juliet Corbin in "Basics of Qualitative Research" [89]

To satisfy these principles, I started my project:

• Without a predetermined theme or concept;

• Involving direct stakeholders from the fields;

• Investigating the goals and the interaction of the practitioners;

• Trying to identify the paths to the goals by identifying different aspects.

The Strauss and Corbin version of GT employs coding (open coding and selective

coding), theoretical sampling, memos, conditional/consequential matrix, and diagrams. Strauss

and Corbin use coding to conceptualize, reduce, elaborate, and relate concepts. They, then use

non-statistical sampling, writing of memos, and diagramming to analyze the information. The

Strauss and Corbin version of GT includes two phases as described below.

 The First Phase of Grounded Theory Project

The Strauss and Corbin version of the GT process starts by gathering raw data from the

stakeholders in the field, then the project investigators microanalyze the raw data through open

coding.

20

Open coding definition: a process where investigators go through the raw data line-by-

line to identify initial concepts, properties, and dimensions from the data.

Microanalysis definition: a process that examines the initial concepts, properties, and

dimensions from open coding to generate initial categories, and studies the relationships among

these categories.

Throughout the microanalysis process, investigators write memos to record ideas,

concepts, thoughts, and deliberations during the analysis. At the end, investigators organize these

concepts into discrete categories according to their properties and dimensions. Investigators will

then associate these categories with potential theories, as Strauss and Corbin describe below:

At the heart of theorizing lies the interplay of making inductions (deriving concepts, their

properties, and dimensions from data) and deductions (hypothesizing about the

relationship between concepts, the relationships also are derived from data, but data that

have been abstracted by the analyst from the raw data). (p.22)

 - Anselm Strauss and Juliet Corbin in "Basics of Qualitative Research" [89]

Not all potential theories will be further developed. Investigators select a theory of

interest to explore fully.

 The Second Phase of Grounded Theory Project

The selected theory is formulated into logical, systematic, and explanatory dimensions.

The dimensions are further developed and analyzed from many different angles. Investigators

further examine each dimension through asking questions and making comparisons.

By asking questions, investigators gather additional data from stakeholders regarding

specific dimensions of the potential theory from different perspectives, then analyze the data by

selective coding (p.143) [89]. During selective coding, investigators go through the additional

data to verify or reject the potential theory. The questioning and analyzing processes are repeated

to refine the theory until theoretical saturation (p.143) [89].

Selective coding definition: a process of integrating and refining the theory.

Theoretical saturation definition: a point in theory development at which no new

properties, dimensions, or relationships emerge during analysis.

Strauss and Corbin have not suggested a minimum number of shareholders to be

questioned. "The ultimate criterion for determining whether or not to finalize the data-gathering

processes from stakeholders is theoretical saturation" (p.158) [89]. If no new properties and

21

dimensions emerge from the data, the data-gathering processes can stop even with a small

number of samples.

Both selective coding and inter-rater reliability may have small sample size, but they

have different goals. The participants in inter-rater reliability measurement are trained to provide

rating according to predefined guideline to archive homogeneity or consensus. However, the

participants in selective coding are urged to provide their free view, so that new properties,

dimensions, or relationships can be discovered. The selective coding is saturated when new

participants do not add new idea to the existing ones.

In addition to asking question, investigators further their examination by making

comparisons. Investigators gather related data and existing results to verify or reject the potential

theory through traditional quantitative scientific methodologies and conditional-consequential

matrix (p.181) [89].

Conditional-consequential matrix definition: an analytic device suggested by Strauss

and Corbin to stimulate thought about the relationships between macro and micro

conditions/consequences, both related to each other and to the process.

Throughout the questioning and comparing processes, investigators write memos and

diagrams to document thought and analyze results. Memos can take several forms, including

code notes, theoretical notes, operational notes, and varieties of these. When writing the final

report, investigators draw on the memos to back up the theory.

Finally, investigators may use theoretical sampling (p.201) [89] to verify the potential

theory.

Theoretical sampling definition: a data gathering process driven by concepts derived

from the evolving theory and based on the concept of making comparisons, whose purpose is to

go to places, people, or events that will maximize opportunities to discover variations among

concepts and to densify categories in terms of their properties and dimensions.

Only a short description of Strauss and Corbin grounded theory is included in this section.

Please refer to "Basics of Qualitative Research" [89] for more detail.

 Previous Software Engineering Research using Grounded Theory
Even through GT is a social sciences methodology, there is existing DevOps research using GT

or GT’s processes, but not on DevOps education. Adolph et al. used GT to study how individual

aptitudes and team social factors affect project cost [93]. Using the GT methodology, Adolph et

22

al. reported two theories. First, team training should be an essential part of software engineering

education. Second, team leaders should have good leadership and facilitating skills, and respect

their peers.

Hilton et al. employed interviews as a qualitative method to discover knowledge, then

employed surveys to triangulate their findings [94]. Even though Hilton et al. did not mention

GT directly, they straightly used GT processes to study developers’ barriers and needs when

using CI. Hilton et al. started by interviewing 16 field stakeholders to discover a potential theory.

Then, they deployed two surveys, a focus survey with 51 participants and a broad survey with

523 participates, to verify the potential theory. The GT study concluded that developers had to

make trade-off decisions between speed and stability; accessibility and security; flexibility and

simplicity when using CI.

Hilton et al. also used a qualitative methodology to study the costs, benefits, and usage of

CI in open-source software [95]. Hilton et al. concluded from their GT project that "developers

encounter[ed] increased complexity, increased time costs, and new security concerns when

working with CI" [95]. Therefore, academics have many opportunities to improve DevOps

processes through industry-academia collaboration. To increase industry-academia collaboration,

Garousi et al. suggested that academia should ensure "the research problems are based on real

industry needs" [88].

Erich et al. used an approach inspired by GT to perform a Systematic Literature Review

(SLR) of DevOps [86]. Erich et al. found that the quality of the DevOps academic studies is low,

and "there exists little agreement about the characteristics of DevOps in the academic literature"

[86]. Erich et al. continued their study in industry, and found that DevOps is a "personnel trait",

a culture of automation. Similarly, Franca et al. used a GT inspired procedure to analyze a broad

range of academic literature to define DevOps [87]. Franca et al. concluded that DevOps lacked

consistent definition and evidence of benefits. Both of these publications claimed to be the

results of GT projects. However, they did not actually employ the GT methodology, a

phenomenon which Stol et al. opposed [91].

Luz et al. followed the Glaser and Strauss [90] version of GT closely to discover DevOps

adoption theory [96]. They employed practitioner interviewing, open coding, selective coding,

data analyzing, and theoretical coding to discover the success factors in DevOps adoption. Luz et

23

al. presented a grounded theory that collaboration is the most important factor in DevOps

adoption, more important than all other technical factors.

In conclusion, the evolution of DevOps goes from an iterative concept to continuous

integration, to continuous delivery, then to DevOps. It goes from being large enterprises’

practices to software developers’ practices, to IT industry practices, and finally to an IT standard.

The bright DevOps future inspires lively research and development activities in industry, but has

not stimulated a strong number of publications in academia. The abundant DevOps research

opportunities should be promoted to academics. To raise awareness about DevOps in academia,

and encourage academic-industrial collaboration, my GT project identified DevOps research

topics that interested the IT industry. I will describe how my GT project identified potential

DevOps research topics in the next chapter.

24

3 Creation of Potential DevOps Grounded Theory

Grounded Theory (GT) is particularly suitable for my open-ended DevOps research. Many IT

practitioners have identified DevOps as a cultural, procedural, and technological movement [3]

[4] [5] [7] [8] [9] [97] [98], rather than only a technological innovation. Randall states that

adopting DevOps technology without the corresponding culture would likely fail.

Tools are essential, but without a strong DevOps culture in place, tooling will only

segregate, frustrate, and negatively impact any type of transformation work you’re trying

to accomplish.

 - T.J. Randall in "Winning at Culture - The Keys to the Successful DevOps

Organization" [99]

GT allows me to discover the state of DevOps from raw data without making

presumptions. Therefore, my findings should cover all cultural, procedural, and technological

aspects. This chapter discusses how I closely followed the GT methodology to perform an open-

ended DevOps study.

 Strauss and Corbin Grounded Theory Adoption

There are many varieties of GT practices. Researchers may choose the version of GT suitable for

their research. I selected Strauss and Corbin Grounded Theory [89] for my DevOps study. Even

within one version of GT, there are many optional processes. Researchers adopt the GT

processes necessary to construct their theories. This section describes which Strauss and Corbin

Grounded Theory processes, described in Section 2.3.2, I have adopted to construct my grounded

theory in DevOps.

Following the Strauss and Corbin version of GT, in the first phase, I started by gathering

raw data from field stakeholders. Then I used open coding to identify initial concepts, properties,

and dimensions from the data. Through microanalysis, I organized the concepts into categories,

and documented all findings with memos. Finally, I associated these categories with potential

research questions. From these categories and potential research questions, I selected one topic

for in-depth GT investigation. This topic has the potential to provide the highest value to

stakeholders. From the categories and potential theories, I selected DevOps education as the

topic for further investigation through elimination.

25

Following the Strauss and Corbin GT process, in the second phase, I identified different

dimensions and perspectives of the selected topic, DevOps education, for in-depth examination

and analysis. For each dimension and perspective, I selected the most appropriate GT process for

further exploration. The GT processes I adopted included questioning, selective coding,

surveying, data gathering, and making comparisons. I did not use a conditional-consequential

matrix in analyzing different dimensions, since I did not find any appropriate situation to apply

the mechanism. When analyzing different dimensions, I used memos to document my progress,

thought, and findings in words and tables, which formed my final theory and report.

I did not finalize my theory using theoretical sampling, since my theory involved too

many dimensions. It was not practical to find theoretical samples to encompass all the

dimensions. Instead, I iterated the GT processes for each dimension until the theory was

saturated.

 Concrete Execution of Grounded Theory
Stol et al. found that most of the academic articles that claimed to be the result of GT projects

did not actually employ GT [91]. Therefore, I decided to execute a concrete GT project that

closely followed the GT processes. Throughout this dissertation, I will document how my project

followed the GT processes step-by-step, and how I analyzed raw data to discover concepts and

relationships. Others can use the documented steps to confirm the validity of this GT project.

Strauss and Corbin suggested that the investigators of a real GT project should start with

open minds, and without a pre-determined agenda. Therefore, I followed this suggestion by not

allowing my knowledge and preferences to affect my GT project. This section describes how I

followed the GT processes to gather initial data without personal bias.

3.2.1 Initial Interviews

Through referral from the local IT practitioners, I invited IT practitioners interested in DevOps to

participate in my initial raw data gathering interviews. I objectively summarized the six CI tasks

[39] described in Section 2.1 and the maintenance tasks from "Continuous Maintenance" [34] for

the interviewees. The six CI tasks are:

26

1. Continuous Code Integration

2. Continuous Database Integration

3. Continuous Testing

4. Continuous Inspection

5. Continuous Delivery

6. Continuous Feedback

The continuous maintenance tasks are:

1. Monitoring and reporting

2. Processes managing

3. Data cleanup, archive, and backup

4. Data analysis

5. Law compliance

6. Business continuous planning

7. Disaster recovery planning

Then I asked the interviewees questions regarding their DevOps experiences with

repositories, build scripts, integrated development environments (IDEs), testing, code quality,

and deployment. The questions were recorded in Appendix A Interview Questions for Initial

Raw Data Gathering.

I interviewed five IT practitioners. In interview order, the interviewees had 6, 10, 30, 15,

and 5 years of IT experience, with IT skills ranging from intermediate to advanced. The lengths

of the interviews were approximately 26 minutes, 35 minutes, 31 minutes, 67 minutes, and 29

minutes. The interviewees provided IT services in different fields, with different responsibilities,

but they had all participated in software development. As described in Section 2.1, DevOps grew

from CI, which focused on software development, to include operations. Therefore, we only

invited IT practitioners with software development experience. After the interviews, I transcribed

4 out of 5 interviews, since one interviewee preferred not to be recorded. Instead, I documented

high-level information about the interview in a memo.

Following the GT processes, I applied open coding to each of the transcriptions. The next

section will describe the open coding results in detail. Through open coding, I noticed that the

volunteers provided consistent and similar ideas about DevOps. The GT methodology relies on

27

quality, rather than quantity. Based on the coherent ideas among the interviewees, I found this

diverse group of volunteers sufficiently covered enough of the DevOps spectrum. Therefore, I

sought no further participants.

3.2.2 Open Coding

After I transcribed the interviews, another member of our research team and I followed the

Strauss and Corbin GT open coding process to microanalyze the transcriptions individually. The

purpose of open coding is to identify DevOps concepts and potential theories from the

interviewees for further investigation. During the process, each of us went through each

transcription line by line to code concepts, properties, and dimensions from the data. Codes were

meaningful single-words or phrases that represented concepts. "A concept is a labeled

phenomenon. It is an abstract representation of an event, object, or action/interaction that a

researcher identifies as being significant in the data. … Example of concepts include a tornado, a

flight, and a government agency, … they often provoke a common cultural imagery" (p.103) [89].

Through the microanalysis process, each of us linked concepts with thought, publications, and

other studies, then documented the linkages in memos for future reference.

After coding the transcriptions individually, two of us got together to compare codes, line

by line. We shared, compared, communicated, discussed, and enhanced the codes to agree on a

final list recorded in Appendix B Open Coding Result of the Initial Interviews. During

individual coding, each investigator selected words or phrases based on their understanding.

Through discussion, we selected the most suitable words or phrases, which might or might not be

the words used during the interview. If a concept appeared in the transcription multiple times,

then the corresponding code would appear multiple times. After finalizing the codes of one

transcription, we tried to apply the same codes to the rest of the transcriptions cumulatively and

consistently. As a result, the same concept repeated in different transcriptions would have the

same code.

28

For example, Figure 3.1 shows a portion of an interview transcription. A member of the

research team and I went through the transcription individually to identify codes from the

transcription. For the portion of transcription in Figure 3.1, the other member in the research

team identified the code "different levels of CI", and I identified the code "progressive

adaptation". When the two of us compared our codes, we agreed that we identified the same

concept. After discussion, we decided to use the code "adaption level" to represent the concept.

I recorded the original codes from the transcriptions under the "Code" column in

Appendix B Open Coding Result of the Initial Interviews. However, some of these codes

were very specific, so I generalized them. For example, the code "Git", which referred to a

specific product, was generalized as "tool". I recorded the generalized codes under the "Related

Code" column. In addition, I recorded the related context of each code under the

"Context/Expression from Transcription" column, if applicable.

3.2.3 Code Relationship Analysis

After the open coding and microanalysis processes, I finalized 34, 83, 28, and 125 codes from

the four transcriptions respectively. There were 153 unique codes. Three of the 153 unique codes

appeared most often: "experience" appeared 12 times, "automation" appeared 8 times, and

"reduce defect" appeared 7 times. In addition, 90 codes appeared only once, 36 codes appeared

twice, 17 codes appeared 3 times, 5 codes appeared 4 times, and 2 codes appeared 5 times. The

codes covered a broad range of concepts across the DevOps spectrum. For example, the code

"experience" was used in the context of programming experience, years of working experience,

experience with a tool, experience in projects, and more. The next step in GT was to analyze the

codes to identify important concepts raised across the interviews.

Figure 3.1 A portion of an interviewee's response from transcription

29

Code analysis started with identifying relationships between codes. I manually analyzed

the codes to link related codes together. For example, the codes "education", "training",

"experience", "knowledge", and "learning" were related according to their context listed in

Appendix B Open Coding Result of the Initial Interviews. A code might relate to multiple

other codes at the same time. For example, the code "knowledge" related to "learning", in terms

of learning some knowledge. The code "knowledge" related to "skill", in terms of having

knowledge about certain skill. The code "knowledge" also related to "tool", in terms of specific

knowledge about a tool. The multi-dimension relationships between codes made the analysis

difficult. The types of relationships (e.g. syntactic, example of, or generalized) are not significant

in the first phase of the GT process. But it is important to identify all relationships between codes.

Based on these relationships, investigator selects a potential topic for further GT study in the

second phase.

Through code analysis, I grouped related codes into seven categories, named

"experience", "practice", "benefit", "cost", "tool", "social aspect", and "third-party service". I

organized the codes into category trees. The root nodes of the trees were the seven categories

that represent the broadest concepts in the categories. The root node branched out to one or more

child nodes for related codes. Each child node might further branch out to one or more child

nodes. Each code might appear in multiple trees given the multi-dimensional nature.

For example, Figure 3.2 shows a portion of the code tree for the "experience" category.

The root node of the tree is "experience", then "experience" branches out to child nodes

"employed", "programming experience", "abstract concept", "training", "knowledge", and

"craftsmanship". The node "training" further branches out to child nodes "education",

"professional development", and "learning curve". The tree shows the relationships between

codes related to "experience". The relationships in the tree are not definite, and the order of the

nodes is not significant in GT.

The resulting trees are shown in Appendix C Open Coding Trees. The categories

"experience", "practice", "benefit", "cost", "tool", "social aspect", and "third-party service" have

19, 50, 28, 14, 30, 18, and 6 unique codes respectively. The "third-party service" category has the

least number of codes, and I excluded it from my further consideration. The "practice" category

has the most number of codes (50), and the "tool" category has the second most number of codes

(30). More codes in a category does not make the category more important. More codes reflects

30

that stakeholders have more diversified interests in the category. As explained in Section 2.1,

DevOps covers all IT processes from end to end, therefore the number of codes in the "practice"

category is high. As described in Section 2.2.1.2, there are a large number of DevOps tools,

therefore the number of codes in the "tool" category is also high. Code analysis identified these

categories for possible further study: "experience", "practice", "benefit", "cost", "tool", and

"social aspect".

3.2.4 Codes Occurrence Analysis

Among these codes and categories, I need to select a potential DevOps topic for further GT study.

The selected topic should draw common interest among IT practitioners. To remain consistent

with the original interviews, I looked for codes that appeared in multiple interviews. Table 3.1

lists the codes that appeared in three or more interviews.

Among all the codes only "cost", "reduce defect", and "training" appeared in all four

interviews. These three DevOps topics had surely drawn attention from IT practitioners. In

addition, there were 16 other codes that appeared in three out of four interviews. Only the code

"feedback" appeared in more than one category, which were "practice", "benefit", and "cost".

The categories "experience", "practice", "benefit", "cost", and "tool" have 3, 7, 5, 4, and 2 codes

that appeared in three or more interviews respectively. The results showed that these codes

represented common DevOps interest among IT practitioners.

Figure 3.2 Portion of the "Experience" code tree

31

The category "social aspect" had 18 codes, but none appeared in more than two

interviews, therefore the "social aspect" category was not show in Table 3.1. The lower interest

in the "social aspect" category agreed with the survey reported by DevOps Institute [12], which

surveyed over 1600 IT practitioners regarding DevOps skill requirements. Accumulatively, the

respondents rated "Soft Skills" less important than "Automation Skills", "Process Skills and

Knowledge" [13].

From Table 3.1, the "practice" category has the highest number of codes, but "auto build",

"auto test", and "automation" are closely related, which can be replaced by "automation". In this

case, the five categories "experience", "practice", "benefit", "cost", and "tool" have almost the

same amount of interests across the interviewees. Researchers may use the amount of interest to

weight future DevOps research topics.

 DevOps Grounded Theory Topic Selection

Through initial interviews, open coding, microanalysis, and code analysis detailed in Section 3.2,

I identified potential DevOps topics for further GT study. From the topics, I identified potential

research questions and theories. This section explains how I used elimination to select DevOps

education for further study in my GT project.

3.3.1 Potential Research Questions Analysis

Throughout the coding and analysis processes, the research team recorded thoughts, ideas,

concepts, and questions from interviewees in memos. After the code analysis, I reviewed the

memos to document potential research questions.

EXPERIENCE PRACTICE BENEFIT COST TOOL
Code # Code # Code # Code # Code #

experience 3 auto build 3 feedback 3 cost 4 repository 3
knowledge 3 auto test 3 improve

quality
3 feedback 3 tool 3

training 4 automation 3 maintainability 3 overhead 3
 code

integration
3 reduce defect 4 ROI 3

 feedback 3 version control 3
 merge 3
 test data

management
3

Table 3.1 Categories of codes and their occurrences in number of interviews

32

In total, I documented 119 potential research questions listed in Appendix D Potential

DevOps Research Questions. The research questions were grouped into the categories of

"experience", "practice", "benefit", "cost", "tool", "social aspect", and "third-party service".

There were 19, 38, 21, 5, 17, 17, and 2 questions in these categories respectively. The number of

questions in each category correlated with the number of codes in that category, since each code

represents specific ideas in the category. Scholars interested in DevOps may consider these 119

industrial-related questions in future research.

In the early days of this project, I mainly used the term CI, therefore the questions were

mainly addressing CI. However, the questions covered CI, CD, and DevOps topics. As discussed

in Section 2.1, most IT practitioners could not differentiate between CI, CD, and DevOps. To

maintain the original sense of the research questions, I kept the term CI as they appeared in the

interviews at the time.

3.3.2 Topic Analysis and Selection

Among the seven DevOps categories and 119 corresponding DevOps research questions, I

needed to select one potential topic for further investigation. The rest of the GT project would

focus on the selected topic. I reviewed the identified categories and questions, and looked for

significant topics that represented common interests among IT practitioners. Broadly, the

categories "experience", "practice", "benefit", "cost", and "tool" shared common interests among

IT practitioners. After further analysis, Table 3.1 shows that the sub-categories "training" under

"experience", "reduce defect" under "benefit", and "cost" (code) under "cost" (category) shared

the most interests. Therefore, they were my top candidates for further GT investigation.

Since the category "social aspect" shared less interest among IT practitioners [13], I

dropped it from my list of candidates. Future research should consider studying the "social

aspect" of DevOps, as many IT practitioners believe that DevOps is a cultural movement.

Among the categories "experience", "practice", "benefit", "cost", and "tool", I considered

which categories were more ready for further investigation at the time. During my first round of

interviews, my interviewees showed diverse understandings and misunderstandings about

DevOps practices. For example, one interviewee claimed to have adopted DevOps, only because

they were using a version control repository. Another interviewee defined DevOps as "making

frequent branching and merging in the repository". As shown in Section 2.1, DevOps practices

33

are much more than using a version control repository and checking in source code frequently.

IT practitioners seemed to lack a consistent definition for DevOps.

The 2015 DZone Guide to Continuous Delivery [56] reported that only 18% of the

practitioners who were practicing CD performed the "textbook" implementation. Hence, most

practitioners did not know or agree on what the DevOps practices were. The DZone Guide [56]

also reported that 48% of the practitioners believed DevOps would become the IT standard in the

future. Therefore, DevOps "practices" was immature for GT study, until after DevOps became

more established with common practices emerged from the field.

Different DevOps practices lead to different costs and benefits. Hence, studies about

"cost" and "benefit" must depend on studies about "practice", which was immature for study.

Therefore, "cost" and "benefit" were not mature candidates for further investigation either. I also

considered the "tool" category. As described in Section 2.2.1.2, DevOps employs many different

tools, but none have become the de facto standard yet, so "tool" was also not a mature candidate.

After this elimination, I decided to focus on the "experience" category.

In the "experience" category, the code "training" appeared in all of the interviews.

Practitioners need appropriate training to learn DevOps. As one of the interviewees said,

"Whatever tools you know actually guide your concept and how you will apply DevOps."

Training strongly influenced what DevOps practices were adopted. Therefore, "training" was a

mature candidate. As a result, I decided to study DevOps education further in my GT project. In

the next section, I will describe how I defined a potential theory on DevOps education for further

study in the second phase of my GT project.

3.3.3 Potential DevOps Education Theory

The goal of a GT project is to construct theory. After I selected the topic, I defined a

potential theory on the topic, incorporating information from the microanalysis. Chapter 4 will

evaluate the potential theory based different dimensions and perspectives. During the evaluation

process, the theory may be enforced, enhanced, refined, rejected, or redefined. At the end of

Chapter 4, a DevOps theory will emerge from the analysis.

To define a potential theory regarding DevOps education, I reviewed the original

transcriptions, the memos, the code analysis, and the research questions. From the transcriptions,

I realized that all of the interviewees acquired their DevOps skills mainly from employment. As

one of the interviewees said, "DevOps is an experience-based movement." In Appendix C Open

34

Coding Trees, the code "training", appears in Table C.1, under the category "experience". The

code "training" has the sub-categories: "professional development", "learning curve", and

"education". The relationship between these codes indicates that IT practitioners actively

acquired their DevOps skills through hands-on working experience, instead of passive training.

Since I decided to focus on DevOps education, I was interested to study whether IT practitioners

acquired DevOps skills through formal training or through hands-on working experience.

In addition, I reviewed the 119 potential research questions listed in Appendix D

Potential DevOps Research Questions for DevOps education related questions. I found the

following questions in the "Experience" category to be relevant. The potential theory could

possibly answer some of these questions.

• Is there a need to include CI education in computer science programs in institutions?

(Investigate whether CI can be taught in academia if needed.)

• Does CI depend heavily on individual's experience?

(Investigate how CI practitioners learn CI from experience.)

• What are the skills and knowledge needed for CI?

(Investigate what CI practitioners need to learn.)

• Do existing education curricula cover CI?

(Investigate whether CI practitioners can learn CI from academia.)

• How CI specialists get their training?

(Investigate how CI practitioners learn their skills.)

• What are the requirements for CI jobs?

(Investigate what CI practitioners are required to learn.)

• How popular are CI positions in job posting sites?

(Investigate the professional value in learning CI.)

• What should be the qualification of a CI specialist?

(Investigate the learning goals set for CI qualification.)

• How do IT practitioners learn CI?

Are there differences between junior and senior IT practitioners?

(Investigate how different levels of CI practitioners learn their skills.)

• Is CI pure craftsmanship?

(Investigate whether CI should be learned as craftsmanship, instead of skills.)

35

• Do CI experts need to be "Jacks-of-All-Trades"?

(Investigate whether CI requires a specific skillset, or undefined skillset.)

Based on these questions, I wanted to define a potential theory that contrasts learning

DevOps through formal training against hands-on experience. Strauss and Corbin suggested that

a potential theory should be abstract and catchy to invite deeper thought. The potential research

question "Is CI pure craftsmanship?" stood out as captivating. I traced the question back to the

code "craftsmanship". The code was identified during open coding to describe a situation where

the interviewee adopted a container into their DevOps pipeline through trail-and-error. The

process was like creating a craft, a piece of art, from their mind by experience. There was no

training or help available. Therefore, I named my potential theory "Continuous Integration (CI)

is a craftsmanship. How do you learn the craft?" I hoped the conceptual theory would invite

profound reflection. The full text of the potential theory is provided in Appendix E Potential

Grounded Theory. When I defined the potential theory, I used the term CI, instead of DevOps,

therefore I left the term as-is. Through this potential theory, I would compare learning DevOps in

academia versus industry.

In conclusion, I started my GT project by interviewing IT practitioners about DevOps.

Through open coding and code analysis, I identified seven categories of DevOps topics that

interested the IT practitioners. The categories were: "experience", "practice", "benefit", "cost",

"tool", "social aspect", and "third-party service". Through elimination, I decided to further

investigate DevOps education, in the category of "experience", and I defined a corresponding

potential theory "Continuous Integration (CI) is a craftsmanship. How do you learn the craft?"

Chapter 4 describes how I studied DevOps education through evaluating this potential theory

based on different dimensions and perspectives.

36

4 Grounded Theory Study about DevOps Education

Chapter 3 describes how I selected DevOps Education for further GT investigation, and defined

the potential theory "Continuous Integration (CI) is a craftsmanship. How do you learn the

craft?" In this chapter, through in-depth GT study, I answer the following questions: how do

people learn DevOps? Is DevOps education available in academia and/or in industry? What kind

of DevOps education is available? I studied these DevOps education questions from academic

and industrial perspectives, through questioning, selective coding, surveying, data gathering, and

making comparisons.

I first investigated the academic perspective. In Section 4.1, I investigated whether

academic education conveyed DevOps knowledge to students. In Section 4.2, I investigated

whether academics taught DevOps. In Section 4.3, I investigated whether academic research

would adopt DevOps. Then I investigated the industrial perspective. In Section 4.4, I

investigated the job requirements of DevOps practitioners. In Section 4.5, I investigated what

kind of DevOps professional training was available. In Section 4.6, I investigated how the

experts learned their DevOps skills. Through these investigations, I identified the state and

challenges in DevOps education and looked for ways to improve future DevOps education.

 DevOps in Academic Education

According to the ACM & IEEE Guidelines for Undergraduate Degree Programs in Computer

Science, "The education that undergraduates in computer science receive must adequately

prepare them for the workforce" [100]. DevOps has become a requirement for the workforce, but

the 2015 DZone Guide to Continuous Delivery [56] reported that most IT practitioners lacked

DevOps knowledge, even though most IT practitioners received formal education. Did IT

practitioners learn DevOps during their academic education? To answer this question, I searched

computer science curricula in academic institutions to learn whether academic education

delivered DevOps knowledge. The data showed that computer science curricula covered limited

DevOps knowledge.

37

4.1.1 Academic Education Search Process

I searched computer science curricula for DevOps content to determine whether DevOps

knowledge was conveyed in undergraduate education. However, there were many institutions in

the world; I decided to sample the top 50 institutions listed in the 2017 QS World University

Rankings by Subject - Engineering and Technology [101]. Since these were the top technology

institutions in the world, their computer science curricula should be representative. The list of

institutions is included in Appendix F 2017 QS World University Rankings by Subject -

Engineering and Technology.

For each institution, I searched the institutions’ home page for the computer science

department, then looked for undergraduate computer science courses offered by the department.

In the course description and curriculum, I looked for DevOps related terminology to determine

whether the institution conveyed DevOps knowledge to its students. To determine what DevOps

related terminology to look for, I reviewed these six fundamental CI tasks defined by Duvall et

al. [39]:

1. Continuous Code Integration

2. Continuous Database Integration

3. Continuous Testing

4. Continuous Inspection

5. Continuous Delivery

6. Continuous Feedback

Then, I compared these six tasks with the codes from the initial interviews in Appendix

B Open Coding Result of the Initial Interviews, since the codes represented what IT

practitioners understood as DevOps processes. Among the overlapping terminology, I identified

five groups of significant DevOps terms for the curriculum search. They are:

• Continuous Integration (continuous, integration, delivery)

• Testing (testing, test)

• Build (auto, build)

• Repository (repository, version control, git, cvs)

• Deployment (deploy, deployment, release)

38

Variations of the terminologies were listed in parentheses. I searched for each variation in

course descriptions and curriculum. For each match I reviewed the context to make sure the

content actually referring to the corresponding DevOps topics.

4.1.2 Academic Education Search Result

The first challenge of the process was finding the computer science department of each

institution. First, the computer science departments had different names depending on the

languages and cultures of the institutions. In most institutions, computer science was an

individual department under engineering, science, or mathematics using different names. In some

institutions, computer science was a school by itself. Moreover, in some other institutions,

computer science undergraduate programs were offered by departments with different names, for

example electrical engineering. In this situation, I identified the smallest department in the

institution that offered computer science (software) related education as the target of my search.

I excluded 11 institutions from the 50 because they have no English course descriptions,

or their course descriptions were only accessible by authenticated users. Some institutions

provided course outlines only, other provided detailed descriptions or curriculum. I always

explored the most detailed description available. For each DevOps term found in the description,

I reviewed the context to make sure the course actually included DevOps related content. The

only exception was on "deployment". Some course descriptions included the term, but provided

no context. I included those courses in my result, but marked by asterisk (*). Table 4.1 shows my

search result.

Rank Institution CI Test Build Repo De-
ploy

1 Massachusetts Institute of Technology (MIT) 0 4 0 0 0
2 Stanford University 0 0 0 0 1*
3 University of Cambridge 1 3 0 1 0
4 Nanyang Technological University (NTU) 0 2 0 0 1*
5 ETH Zurich - Swiss Federal Institute of Technology 0 2 0 0 0
6 Imperial College London 2 4 1 0 1
7 National University of Singapore (NUS) 0 10 1 2 1
8 University of California, Berkeley (UCB) 0 1 0 0 0
9 University of Oxford 0 1 0 0 0
10 Tsinghua University -- -- -- -- --
11 The University of Tokyo -- -- -- -- --
12 Ecole Polytechnique Fédérale de Lausanne (EPFL) 0 1 0 0 0

39

Rank Institution CI Test Build Repo De-
ploy

13 Harvard University 0 2 0 0 0
14 Korea Advanced Institute of Science & Technology

(KAIST)
0 1 1 0 0

15 The Hong Kong University of Science and
Technology (HKUST)

0 3 0 0 0

16 Georgia Institute of Technology 0 3 1 1 0
17 California Institute of Technology (Caltech) 0 4 0 1 0
=18 Peking University -- -- -- -- --
=18 Tokyo Institute of Technology 0 0 0 0 0
20 Delft University of Technology 0 2 0 0 0
21 Seoul National University 0 0 0 0 0
22 Kyoto University -- -- -- -- --
23 National Taiwan University (NTU) -- -- -- -- --
=24 Politecnico di Milano 0 1 0 0 0
=24 Shanghai Jiao Tong University -- -- -- -- --
=24 Technical University of Munich -- -- -- -- --
27 The University of Hong Kong 0 2 0 0 0
28 The University of Melbourne 0 3 0 0 0
29 KTH Royal Institute of Technology 1 5 1 1 0
30 University of California, Los Angeles (UCLA) 0 3 0 0 0
=31 Carnegie Mellon University 0 0 0 0 0
=31 The University of New South Wales (UNSW

Sydney)
0 7 0 0 0

33 RWTH Aachen University -- -- -- -- --
34 University of Toronto 0 3 0 1 1*
=35 Technische Universität Berlin (TU Berlin) -- -- -- -- --
=35 University Malaya (UM) 0 5 0 0 0
37 Princeton University 0 1 0 0 0
=38 KIT, Karlsruhe Institute of Technology -- -- -- -- --
=38 National Tsing Hua University 0 1 0 0 0
=38 University of Illinois at Urbana-Champaign 0 4 0 0 0
41 The University of Sydney 0 5 0 1 1*
42 Zhejiang University 0 1 0 0 0
43 Technical University of Denmark 1 8 0 2 1
=44 Monash University 3 8 0 2 2
=44 University of Texas at Austin 0 2 0 0 0
46 The Australian National University 0 4 0 1 1*
=47 Cornell University 0 4 0 1 0
=47 Fudan University -- -- -- -- --
49 University of Michigan 0 3 0 0 0

40

Rank Institution CI Test Build Repo De-
ploy

50 The Chinese University of Hong Kong (CUHK) 0 3 0 0 0

 Total Number of Courses 8 116 5 14 10
 Total Number of institutions 5 35 5 11 9
* Description included the searched term, but not sure whether the content was CI related.

Table 4.1 Number of Courses Including CI Content in Institutions

4.1.3 Academic Education Search Analysis

From the search result, only 5 out of 39 (12.8%) institutions taught about CI; 5 out of 39 (12.8%)

taught about building application; 11 out of 39 (28.2%) taught about repository; 9 out of 39

(23.1%) taught about deployment. However, excluding the 5 courses, with questionable

deployment content, only 4 out of 39 (10.3%) institutions taught about deployment. Nevertheless,

35 out of 39 (89.7%) institutions taught about software testing. Hence, DevOps and its

corresponding tasks were not part of the curriculum in most institutions, except software testing.

 Software Testing Teaching

Almost all institutions taught software testing. One possible explanation is that software testing

has always been an important component of software engineering. Myers published the book

"The Art of Software Testing" [102] in 1979. Myers found that "students graduate and move into

industry without any substantial knowledge of how to go about testing a program" [102],

therefore he wrote the book to satisfy the need. In that case, DevOps may be added to the

computer science curriculum in the future, when DevOps becomes essential to students going

into industry.

Software testing continues to be an important component of software engineering. In

1999, Back introduced Test-Driven Development (TDD), as part of Extreme Programming (XP)

[40]. TDD emphasizes that developers should program test cases before programming

functionalities. In 2007, Duvall et al. [39] defined test automation as a requirement of CI, hence

DevOps. However, by most of the course description, I could not tell whether the courses

included TDD and automated testing. If I looked strictly for automated software testing during

my course description search, then the number of resulting courses would be much lower.

I also realized that most of the courses identified in Table 4.1 were advanced software

engineering courses, but none were dedicated to DevOps. Hence, DevOps was only a topic in a

41

larger software engineering course. In the case of software testing, only six institutions, Korea

Advanced Institute of Science & Technology (#14), California Institute of Technology (#17),

Delft University of Technology (#20), University Malaya (#35), University of Illinois at Urbana-

Champaign (#38), and Monash University (#44), have dedicated courses to teach automated

testing. In addition, The University of Sydney (#41) and Technical University of Denmark (#43)

have dedicated courses about version control and testing. Academic education has embraced

testing, one of the DevOps topics, but not yet DevOps.

 Challenges in DevOps Teaching

During the search, I also realized that it might not be easy to teach some of the DevOps skills in

an academic setting. For example, to let students practice automated software build and

deployment, students needed designated build and deployment infrastructure. Students might

also need special authentication and local area network zoning to avoid conflicts. Even with the

provision of virtual machines, it might be a challenge to configure infrastructure for many

students in an academic environment.

Nonetheless, the course "COMP1040 The Craft of Computing" offered by The Australian

National University (#46) agreed with my potential theory that software development was

craftsmanship, a form of art. "The focus of The Craft of Computing will be on understanding

core principles that allow students to quickly and confidently learn and apply a variety of

computational tools to several different types of problem" [103]. As the course description

indicated, academic education could only equip students with the fundamental knowledge.

Students needed to advance their comprehension and understanding through hands-on experience.

Academic education also had difficulty catching up with the fast growing industrial

practice. As the Department of Computer Science at the University of Texas at Austin (#45)

indicated, "The [Computer Science] faculty revised the curriculum, because computer science

has become too large to learn in four years" [104]. Computer science research progresses and

day-to-day applications are expanding rapidly in academia and everyday lives. Institutions are

challenged to define curricula that would properly equip students to be IT practitioners. DevOps

covers all IT processes from end to end. To provide comprehensive DevOps education,

institutions need to add much more content to the already packed four-year curriculum.

Therefore, academic education can cover, at most, high-level DevOps knowledge.

42

With the ever-expanding amount of computer science knowledge, some institutions chose

to focus more on DevOps. From Table 4.1, institutions offered on average 3.92 DevOps related

courses and the median was 3 courses. However, the National University of Singapore (#7)

offered 14; the Technical University of Denmark (#43) offered 12; and the Monash University

(#44) offered 15. On the other hand, many more institutions did not address DevOps. Three

institutions, Tokyo Institute of Technology (#18), Seoul National University (#21), and The

University of New South Wales (#31), did not offer any DevOps related courses. Stanford

University (#2) has offered only one course that might include deployment content. Seven other

institutions offered only one course about testing. Different institutions have different favourite

areas of teaching.

After reviewing the curricula of the top 39 institutions listed in the 2017 QS World

University Rankings by Subject - Engineering and Technology, I found that most institutions

were not conveying sufficient DevOps content. With DevOps becoming an industrial standard,

all institutions should start conveying basic DevOps knowledge to their students, such as the six

fundamental CI tasks defined by Duvall et al. [39]. Since institutions may update what they teach

without updating their curriculum, the curriculum may not reflect what is actually being taught.

In the next section, I describe a survey of academic educators about whether they teach DevOps

content in their undergraduate programs.

 DevOps in Academia
From my curriculum search, I learned that most institutions had yet to include DevOps in their

undergraduate curriculum. It was possible that the academics were actually teaching DevOps, but

they have not updated the curriculum to include DevOps terminologies. Therefore, I decided to

survey the academics directly to explore the DevOps education condition in institutions.

Unfortunately, the DevOps survey failed to draw participation from the academics.

4.2.1 Academic Survey Process

Academics are busy people, so I designed a short survey to discover the DevOps teaching

condition in institutions. The survey should take less than one minute to answer, in the hope of

receiving numerous responses. Since I have searched the curricula of the top 50 institutions in

the 2017 QS World University Rankings by Subject - Engineering and Technology [101], it

would be consistent to survey the computer science academics in these institutions. In addition to

43

the computer science academics, I also invited the electrical engineering academics to participate

in the survey as comparison, since I found during my curriculum review that many institutions

grouped the electrical engineering department with the computer science department together. I

asked the academics these six questions:

1. Are you an engineering or computer science educator?

2. How many years have you been teaching undergraduate engineering or computer

science courses?

3. How many years of full-time hands-on experience as an engineer or IT practitioner do

you have?

4. Do you teach students about automated unit testing in your undergraduate courses?

5. Do you teach students about Continuous Integration (CI) in your undergraduate

courses?

6. Do you teach students about DevOps in your undergraduate courses?

Question 1 and 2 collected background information about the respondents. Question 3

found out whether the respondents have hands-on working experience. Hands-on working

experience is very important to DevOps, since IT practitioners claimed that "it [took] many years

of experience, combined with a solid understanding of tools, to eventually become a truly

effective Senior DevOps practitioner" [105]. My potential theory also projected that DevOps

education substantially depended on hands-on experience. Knowing whether the respondents had

hands-on working experience helped me understand what kind of DevOps knowledge the

respondents might possess. Questions 4 to 6 collected data about whether the respondents were

teaching automated testing, CI, and DevOps in undergraduate education. The survey result

would clarify whether academics were teaching DevOps.

Therefore, I searched the websites of the computer science and electrical engineering

departments of the top 50 institutions again to extract contact information of their department

heads. Through the contacts, I invited the academics in the computer science and electrical

engineering departments to participate in my survey.

4.2.2 Academic Survey Result and Analysis

Among the top 50 institutions, I excluded three institutions from my survey invitation. Those

three institutions did not have English contact information. I sent my survey invitation to the

computer science and electrical engineering department heads. I asked the heads to forward the

44

invitation to all educators in the departments. A sample of the invitation letter was included in

Appendix G Academic Survey Invitation Letter.

The survey was published as a Google Form at

https://docs.google.com/forms/d/e/1FAIpQLScZ1eSW9eOUHdTuq3ixOnTBfptZSx4jzqN5FoR8

B3LnMt0IMA/viewform on Feb 1, 2018 for two months. The survey is included in Appendix H

Survey comparing hands-on experience between Engineering and Computer Science

educators. Unfortunately, after two months, only four responses were received, one from

computer science and three from engineering. The number of responses was insignificant for any

conclusion. The only observation was that the single computer science respondent did not teach

automated testing, CI, nor DevOps, but one of the three engineering respondents taught

automated testing, CI, and DevOps. Hence, DevOps is not only a computer science topic; it is

also an engineering topic.

With such a low number of responses, my survey result was inconclusive. I did not know

whether academics were not interested in DevOps, or were too busy to answer the survey.

However, the lack of academic participation was consistent with my finding in Section 2.2.2 that

the academic publications in DevOps were relatively low. Since I could not draw academics to

my survey, I talked to some academics directly regarding their DevOps knowledge, experience,

and expectations, as described in the next section.

 DevOps in Academic Research
My potential theory proposes that DevOps is craftsmanship, which requires hands-on experience

and practice to refine. I tried to study whether academics practice DevOps in research projects.

My results showed that academics were not likely to practice DevOps, for the cost of adopting

DevOps was higher than its benefit. Since academics did not want to practice DevOps, it was

unlikely that they have the knowledge or interest to teach students about DevOps, which

supported my findings in Section 4.1 and 4.2.

4.3.1 Graduate Student Interview Process

Graduate students usually implement computer science research projects, under the supervision

of computer science professors. Therefore, I was interested to learn whether graduate students

practiced DevOps in their research projects. I invited all graduate students in my local computer

science department for interviews by sending them the invitation in Appendix I Graduate

https://docs.google.com/forms/d/e/1FAIpQLScZ1eSW9eOUHdTuq3ixOnTBfptZSx4jzqN5FoR8B3LnMt0IMA/viewform
https://docs.google.com/forms/d/e/1FAIpQLScZ1eSW9eOUHdTuq3ixOnTBfptZSx4jzqN5FoR8B3LnMt0IMA/viewform

45

Student Research Invitation Letter. In addition, I personally talked to the administrators of

different research groups to invite graduate students from different research areas for interviews.

I learned in Section 4.1 that DevOps was not a popular topic in academic education, and

graduate students might not know about DevOps. Therefore, I started each interview with a 10-

minute DevOps presentation. The slides of the presentation are included in Appendix J

Continuous Integration (CI) Introduction for Graduate Students. After the brief presentation,

I asked the graduate students the following questions.

1. Does your research involve any coding?

2. Do you think adopting CI in your situation will improve the quality of your research?

3. Do you think you would adopt CI in your situation? Why and why not?

4. What is the biggest barrier in adopting CI? Emotional? Intellectual? Technical?

Just as the initial interviews described in Chapter 3, I transcribed the graduate students’

interviews. Unlike the initial interviews, I applied selective coding, instead of open coding to the

transcriptions. Through selective coding, I went through the transcriptions looking for data to

verify or reject the potential theory. The potential theory would be refined through the process.

4.3.2 Graduate Student Interview Result

After a month long effort, all research groups turned down my invitation. As one of the groups

responded, "nobody [in the group] seem[ed] to be interested in learning more about [DevOps]".

The rejection was itself very valuable data for my GT project. It was clear that academics were

not interested in DevOps. In the end, I interviewed three graduate students in different research

groups, who have IT industry experience in different fields. All three interviewees provided

consistent answers to my questions. Therefore, I determined that there was sufficient data to

saturate my theory and seek no addition interviewees.

For the first question, all interviewees developed software for their research projects. For

the second question, after receiving the DevOps presentation, all interviewees agreed that

DevOps would improve the quality of their software projects. For the third question, all

interviewees, without any doubt, were sure that they would not adopt CI in their research

projects. They provided the following reasons for not adopting DevOps.

• Researchers lacked knowledge and experience about DevOps.

• DevOps sounded really complicated.

• The DevOps learning curve was too steep.

46

• It took a lot of time and trial-and-error to set up a DevOps environment.

• DevOps tools were not user friendly and lacked documentation.

• Research support teams did not have sufficient DevOps resources and support.

• Research projects were too small and short for DevOps.

• The overhead of setting up DevOps did not fit the tight timeline of research projects.

• DevOps did not add enough value to research projects.

• DevOps was only for commercial software projects.

4.3.3 Graduate Student Interview Analysis

The rejections and the low number of volunteers provided evidence for the lack of interest

among academics. When I approached the graduate students who had not worked in the IT

industry, they either had never heard about DevOps, or had no interest in learning anything about

it. All three of the volunteer interviewees had working experience in the IT industry. Hence,

DevOps drew interest from people with hands-on working experience only, as I had claimed in

my potential theory. This phenomenon may hinder DevOps education, since undergraduate

students are not likely to have IT working experience.

It was interesting that all three interviewees firmly showed that they would not adopt

DevOps in their research projects, even though DevOps would benefit their projects. One of the

barriers was that the cost of adopting DevOps was bigger than the benefit. In deeper discussion

with the interviewees, replicability was the biggest benefit of DevOps. By adopting DevOps,

research results would be easily repeatable and verifiable by the public, which improved

replicability and credibility of the result. However, higher replicability was not enough to

persuade the interviewees to adopt DevOps. As summarized in one of the interviews: "with

[DevOps], I can make research result repeatable, but until it is commonly adopted by the whole

research field, no one wants to spend the time to try to make it happen". If academia gives more

credit to verifiable results, then there may be more interest in DevOps.

My interview identified barriers to adopt DevOps in academia. A survey of 497 IT

practitioners found similar barriers in industry, as quoted below.

Top four barriers in CD adoption were:

1. Corporate culture - not enough collaboration or DevOps practices (53%)

2. Lack of time (47%)

47

3. Engineers or operation team do not have the right skill set (43%)

4. No support from management (30%)

Top four barriers in CD implementation were:

1. Environment configuration and setup (56%)

2. Coordination of team member and resources (34%)

3. Regression testing (32%)

4. User acceptance testing (31%)

 - The 2017 DZone Guide to DevOps Volume IV [58]

In both academic and industrial environment, participants were concerned about lacking

knowledge, lacking skills and resources, difficulties in setting up the environment, and

constrained timelines. Since academics are not motivated to learn or practice DevOps, it is not

likely that they have the knowledge or interest to teach DevOps, which is consistent with my

findings in the previous sections. Much works can be done to improve DevOps recognition in

academia. For example, some of the interviewees mentioned that their participation in the

DevOps surveys and interviews increased their knowledge and interest about the topic. Therefore,

research on the topic would raise DevOps recognition in academia. Starting in the next section, I

describe my in-depth study of DevOps education from the industrial perspective.

 DevOps Requirements in Industry
Both academics and industrial practitioners believed that lacking of DevOps knowledge and

skills was a barrier. Therefore, I identified the required DevOps knowledge and skills. Knowing

what the required DevOps skills are, will clear the path for DevOps education. If DevOps is

craftsmanship that required hands-on experience, then IT practitioners need to know what they

should put their hands on. Unfortunately, my study showed that DevOps lacks a clear

requirements specification. IT practitioners need to comprehend the whole spectrum of IT

processes through hands-on experience, so they can apply DevOps knowledge and skills to

connect all IT processes together.

4.4.1 DevOps Jobs Requirements

Since DevOps is very popular in industry, IT practitioners wonder what the required DevOps

knowledge and skills are. Lee searched through DevOps engineering job postings and identified

48

eight groups of required skillsets corresponding to the eight groups of tasks, which I summarize

as [106]:

• Design, build, and operate technology stack.

• Configure, monitor, and manage systems.

• Program different tools in various languages.

• Script Linux/Unix processes with various languages.

• Operate different cloud products.

• Automate IT processes regardless of tools.

• Understand and enforce best practices.

• Being proficient in interpersonal communication.

This long list of requirements cover almost the whole spectrum of IT processes and tools.

DevOps practitioners need to have the knowledge and skills of architect, programmer, scripter,

system administrator, database administrator, cloud administrator, operational analyst, and more.

They also need soft skills, including management, leadership, and communication. In conclusion,

there are no clearly defined requirements for DevOps engineers. The more experience the better.

As Lee concluded from the job postings in LinkedIn [107], DevOps engineers require at least

five years of IT practitioners experience [106]. Hence, IT practitioners cannot become DevOps

practitioners simply through education, without hands-on working experience. However, IT

practitioners could learn fundamental DevOps knowledge from academic education, and advance

their DevOps skills at work.

Delanbanque, a DevOps practitioner recruiting specialist, also agreed with Lee that

DevOps job postings "change[d] entirely from company to company" [108]. Delanbanque

suggested hiring "someone who under[stood] the methodologies over the tools" [108] for

DevOps positions. As my potential theory suggested, DevOps is a form of art. Craftsman use

different tools to create art pieces they comprehend through hands-on experience. "The focus

should be on the candidates’ ability to solve problems" [108]. Therefore, hands-on working

experience is compulsory for DevOps practitioners.

4.4.2 DevOps Job Search Process and Results

According to the responsibilities identified by Lee [106], the requirements for DevOps

practitioners are broad and extensive, so I studied whether DevOps positions actually exist. I

49

searched three types of job sites for DevOps related jobs: a general public job site, an IT

practitioner specific job site, and an academic specific job site. Using these three types of job

sites, I confirmed that DevOps jobs actually exist, and they are popular.

For a general public job site, I selected Monster.com [109] for the United States. Monster

is a global online employment service provider, and I chose the United States to limit the search

results. For an IT practitioner specific job site, I selected DZone.com. DZone [110] is one of the

world’s largest online communities, and is a leading publisher of information and resources for

software developers. For an academic specific job site, I selected IEEE Computer Society Jobs

Board [111]. IEEE Computer Society is one of the primary academic research publishers. IEEE

Computer Society receives a lot of attention from academic researchers and IT professionals.

Since the three job sites have different data and styles, I used different search criteria for each

site.

Monster’s postings are very broad and the number of jobs is very large, which increased

the difficulty of my search. A simple search by keyword results in more than 1000 postings.

Monster shows "1000+ Jobs Found", but not the actual number of matching postings. Therefore,

I had to limit my search using extra criteria. When I performed my search on December 13, 2017,

I further limited my search for postings that were posted in the last seven days and located in

California. In addition to the posting date and location, I further limited my search by job titles.

Monster posts its popular job titles in https://www.monster.com/jobs/job-title. From the list, I

looked for titles with the keywords, "continuous", "integration", "devops", and "software". The

Monster’s job titles with the corresponding keywords are listed in Table 4.2.

Job titles can be very confusing. Therefore, for each job title in Table 4.2, I reviewed the

first 20 postings from the search results to determine whether any of the 20 postings were

actually DevOps related. If not, the titles were excluded from the final search list. The job titles

with DevOps related postings are marked by an asterisk (*) in Table 4.2. I searched for the

number of posts available with those titles in the last 7 days in California on December 13, 2017.

For comparison, I also searched for three commonly used software developer titles: Software

Analyst, Software Architect, and Software Engineer. Table 4.3 shows the search results.

https://www.monster.com/jobs/job-title

50

DZone is a community for software developers. Its members are experienced IT

practitioners. Therefore, its postings have an IT focus. DZone classifies job postings by the

categories in Table 4.4. Employers can select any number of these categories for their postings.

On December 13, 2017, I searched DZone for postings using the categories "DevOps" and

"Integration". On that date, DZone had about 100 postings. The "DevOps" category had 15

postings; seven with "DevOps" in the job titles, eight without. The "Integration" category had

seven postings; one with "Integration" in the job titles, six without.

IEEE Computer Society's main audience is academic researchers and IT professionals.

Therefore, its postings target academics, graduate students, and IT professionals. There were not

many job postings in the IEEE Computer Society Jobs Board compared with Monster. I searched

on December 14, 2017 for job postings with titles or description including the keywords

Keyword Titles
continuous Continuous Improvement, Continuous Improvement Analyst, Continuous

Improvement Consultant, Continuous Improvement Coordinator, Continuous
Improvement Engineer, Continuous Improvement Facilitator, Continuous
Improvement Lead, Continuous Improvement Manager, Continuous Improvement
Officer

integration Application Integration Architect*, Application Integration Engineer*, CRM
Integration Specialist, Director Systems Integration*, Market Integration
Manager, Network Integration Engineering, Software Integration Engineer*,
System Integration Analyst*, System Integration Architect*, System Integration
Consultant*

devops DevOps Engineer*
software Software Analyst, Software Architect, Software Engineer, Software Engineering,

Software Engineering Manager, Software Instructor, Software Integration
Engineering*, Software Quality Assurance, Software Quality Assurance
Coordinator, Software Quality Assurance Engineer

* Job titles with CI/CD & DevOps related postings.
Table 4.2 Job Titles and Number of Postings in Monster with the Specific Keywords

CI/CD & DevOps Related Job Title # Post Other Job Title for Comparison # Post
DevOps Engineer 489
Application Integration Engineer 1000+
Director Systems Integration 53
Software Integration Engineer 516
System Integration Analyst 35 Software Analyst 969
System Integration Architect 17 Software Architect 173
System Integration Consultant 1000+ Software Engineer 1000+

Table 4.3 Number of Postings by Job Title in Monster

51

"DevOps", "Continuous", and "Integration". On that date, the IEEE Computer Society Jobs

Board had 336 postings. Searching by the keyword "DevOps" returned one posting. Searching

by the keyword "Continuous" returned 90 postings. Searching by the keyword "Integration"

returned 62 postings.

4.4.3 DevOps Jobs Search Analysis

Based on my search results, DevOps has definitely become a term used in job titles. I found

DevOps as part of job titles in all three types of job sites. However, there was no job title that

used the terms CI or CD. As I have described in Section 2.1, most IT practitioners considered CI,

CD, and DevOps as one thing.

On Monster, there were 489 postings with the title DevOps Engineer, and 969 postings

with the title Software Analyst. Software analyst is a common job title for software developers

and programmers. In my search, DevOps Engineer had half the number of postings of Software

Analyst. Hence, DevOps Engineer has become a common title among IT practitioners.

On Monster, there were many more postings for Software Analyst (969) than Software

Architect (173). Hence, the demand for Software Analysts is much higher than the demand for

Software Architects. The number of postings for each title represents the corresponding demand

in industry. Similarly, the number of postings for DevOps Engineer (489) was about half of those

for Software Analyst (969) and almost three times of those for Software Architect (173). This

represents a significant demand for DevOps practitioners. In addition, in DZone, 15 out of 100

postings were categorized as DevOps. Hence, DevOps represents a significant portion of IT

positions among the IT practitioners, especially in the software development community.

Even though there were many postings for DevOps Engineer in Monster, sampling the

job descriptions showed that most of the postings had either a development focus or an

operations focus. Delanbanque had the same findings that employers were "looking for a

candidate from either operations and infrastructure background or someone from a software

Agile DevOps IT Management Software Architecture
Back-End Engineering Java System Engineering
Big Data Front-End Microservies Support
Cloud Full Stack Mobile Dev UX/UI
Data Science Integration Performance Web Development
Database Admin Internet of Things Security

Table 4.4 DZone Job Categories

52

engineering and development background" [108]. This condition indicates that the DevOps

movement is still far from its original goal to integrate development with operations. However,

to fulfill the original DevOps goal, IT practitioners need to have extensive knowledge and skills,

as identified by Lee [106] in Section 4.4.1. It is not likely an academic education can cover the

required extensive knowledge and skills. IT practitioners need to earn and enhance their DevOps

knowledge and skills through hands-on experience.

Since DZone is a software developer community, the job requirements for DevOps

practitioners in DZone’s postings are much closer to those identified by Lee [106]. This

condition represents the challenges of the human resource representatives trying to hire DevOps

practitioners. Only experienced IT practitioners understand what DevOps really stands for, and

what kind of work experience is significant for DevOps. Human resource representatives without

IT experience may not be able to identify the DevOps knowledge and skills from applicants’

resumes. If the IT industry does not know what skills they want to employ, then it is hard to

design DevOps education. As the executive director at Robert Half Technology said, "At some

point in the future you will be able to hire for just DevOps, [but] we’re almost ahead of ourselves

today. What you really need or want is still somewhat undefined." [112]

Finally, in Monster, many jobs with "continuous" and "integration" in their titles had

nothing to do with DevOps. It was an indicator that the significance of CI, CD, and DevOps was

not well established in the general public job site. It will take more time for DevOps to be mature

and recognized by the broader IT audiences.

After reviewing job postings in three different types of job sites, it is clear that DevOps

practitioners are highly demanded in the IT industry. However, the role and identity of DevOps

practitioners is not well established. In the next section, I describe the industry’s effort in

establishing DevOps professionalism.

 DevOps Professionalism
Authoritative entities or formally recognized training programs could lead to the maturity of

DevOps. Therefore, I studied whether authorities or training programs exist for DevOps. Many

organizations are trying to establish authority, guideline, and standard for DevOps through

writing, community building, conferences, and training programs. To identify DevOps

authorities, I searched for DevOps certifications, training programs, communities, events, and

authoritative organizations. However, no organization had stands out as the DevOps authority yet.

53

4.5.1 DevOps Certification

Within IT, there are many different disciplines. Many disciplines have established authorities

that set the standards. For example, PMI [113] authorizes project management professional

(PMP) certificates bases on the Project Management Book of Knowledge (PMBOK). IIBA [114]

authorizes business analysis certificates based on the Business Analysis Book of Knowledge

(BABOK). ICAgile [115] is the certification and accreditation body of Agile professionals.

However, DevOps does not have similar authoritative organization.

ICAgile is a front-runner in establishing themselves as the DevOps authority. ICAgile is

trying to establish a separated track of DevOps certification, in addition to its Agile tracks.

ICAgile built its DevOps learning roadmap through community contribution from pioneers,

experts, and trusted advisors. ICAgile depends on experienced DevOps practitioners for

guidance. Hence, the primary source of DevOps knowledge is from experience.

The ICAgile’s DevOps certification path starts with from ICAgile Certified Professional

in Foundations of DevOps (ICP-FDO), then ICAgile Certified Professional in Implementing

DevOps (ICP-IDO), and finally ICAgile Certified Expert in DevOps (ICE-DO). The expert level

is reserved for those who "gain[ed] exposure in the community by writing great blogs, speaking

at conferences, and publishing [DevOps] books" [19]. ICAgile describes ICP-FDO as:

The ICP-FDO is one of two knowledge-based certifications on the DevOps Track. This

certification provides an overview of core concepts for DevOps and is geared towards a

broad audience of professionals, technical and non-technical. The learning objectives

cover areas such as the business case for DevOps, Continuous Integration, Continuous

Delivery, accompanying cultural changes, operational considerations, configuration

management, etc. Participants who complete this certification will gain an excellent

foundation in DevOps concepts and ingredients for a successful transition.

Typically, training providers will cover the required learning objectives in approximately

14 hours of instructional activities over the course of two days.

 - ICAgile ICP-FDO [17]

When I first looked up the objectives of ICP-FDO in December 2017, there were 22

major topics and 95 sub-topics, as listed in Appendix K ICAgile ICP-FDO Learning

Objectives (Dec 2017). The long list of topics and sub-topics shows the complexity of DevOps.

No training can cover all 22 major topics and 95 sub-topics thoroughly in the recommended two-

54

day period. Therefore, ICP-FDO provides only an overview of DevOps. Students who received

ICP-FDO certificates were not recognized as DevOps practitioners. In April 2018, ICAgile

published an official Learning Roadmap DevOps Track [116]. In the new roadmap, ICP-FDO

learning objectives have been reduced to five major topics with 14 sub-topics. Hence, even the

DevOps experts were in the process of learning and defining DevOps.

In December 2017, objectives for ICP-IDO were not yet defined. Hence, it was hard,

even for DevOps experts, to define the learning outcomes needed for DevOps practitioners. In

the new roadmap published in April 2018, the purpose for ICP-IDO was defined as:

The ICP-IDO is one of two knowledge-based certifications on the DevOps Track. This

certification takes a hands-on approach to planning, building, monitoring, and maturing

a DevOps pipeline. While the learning outcomes themselves are technology agnostic,

course designers will accredit their courses based on technology stacks and tool suites

most relevant to their intended course audience. Participants who complete this

certification will gain an excellent foundation for implementing DevOps in their

organizations and will become well-versed in avoiding common pitfalls and overcoming

obstacles to DevOps implementations.

 - ICAgile ICP-IDO [18]

There are 4 major topics and 14 sub-topics in the ICP-IDO roadmap. However, no

training organization has figured out how to provide training that satisfies the ICP-IDO learning

objectives yet. Therefore, the only way to become a DevOps practitioner is still through hands-

on working experience.

4.5.2 DevOps Training Programs

For non-technical personnel there are fewer available training programs. In November 2017, I

searched for DevOps training on Coursera [21], which provides "universal access to the world’s

best education". When searching Coursera for courses using the keywords "Continuous

Integration" and "DevOps", there were 0 results. Hence, DevOps was not even a valid topic for

Coursera.

In July 2018, I searched Coursera using the keywords "Continuous Integration",

"Continuous Delivery", and "DevOps" again. The searches returned 22 courses for "Continuous

Integration", 16 for "Continuous Delivery", and 13 courses for "DevOps". These searches

showed that DevOps gained recognition in eight months between 2017 and 2018. However, none

55

of those courses were actually about CI, CD, or DevOps. Instead, those courses were about Agile,

microservices, the cloud, specific tools, and other topics not directly related to DevOps. For

example, the course "Teaching Impacts of Technology in K-12 Education" [117] was one of the

results for the keyword "DevOps". It does not relate to DevOps directly. Table 4.5 summarizes

the search results. Hence, even though DevOps has gained recognition, it is not educated

recognition.

In addition, I searched Skillsoft [22] for DevOps courses, since Skillsoft is the global

online learning resource for many corporations. Skillsoft returned 32 courses. The search results

were similar to Coursera’s, with 30 of the 32 courses not directly related to DevOps. Two

courses "DevOps Fundamentals: Tools, Technologies, and Infrastructures" and "Integrate

Development and Operations (DevOps)" have course hours of one hour and 56 minutes, and one

hour and 32 minutes, which provided only a high-level description of DevOps. ICAgile

recommends that the ICP-FDO course be two days; Skillsoft’s learners could not learn much

about DevOps in less than two hours.

As described in Section 4.5.1, ICAgile defined learning objectives for the ICP-FDO

certificate. There are multiple IT training providers around the world that offer ICP-FDO training

certified by ICAgile, but there is no provider for ICP-IDO training yet. ICAgile provides

information about upcoming ICP-FDO classes around the world in different regions. In

November 2017, there were 19 upcoming ICP-IDO classes around the world within one year. In

July 2018, there were 59 ICP-FDO classes around the world within one year. Among the 59

classes, 46 would be offered in United States of America, including 8 offered online; 8 offered in

Australia and New Zealand; 3 in Canada; 2 in Southeastern Asia, but none in the rest of the

world. The increasing occurrences of ICP-FDO classes shows increasing demand and interest in

DevOps. However, the numbers also show that the interest is regional, concentrated in North

America. DevOps education needs to spread more globally.

Topic DevOps CI CD
Agile 2 2 2
Microservices 2 2 2
Cloud 4 2 3
Tool 1 4 1
Not directly related 4 12 8
Total 13 22 16

Table 4.5 Actual Topics on Coursera CI, CD, and DevOps courses

56

Among the ICAgile certified ICP-FDO training providers, ASPE Training [20] was the

primary provider in the United States of America and online. The ASPE Training course

"DevOps Implementation Boot Camp (ICP-FDO)" [118] actually takes three days, instead of the

two days recommended by ICAgile. It takes more time to convey even basic DevOps knowledge

than the experts estimate. In conclusion, industry lacks DevOps training for both technical and

non-technical personnel.

4.5.3 DevOps Communities, Conferences, and Organizations

DevOps is rapidly gaining recognition through the effort of many IT practitioners. DZone

Integration Zone [30], DZone DevOps Zone [31], and DevOps.com [32] are significant DevOps

communities where people can learn and share information and experiences about DevOps

through writing, publications, webinars, and more. DevOps service providers also market their

services. In addition to these communities, there are many personal blog sites about DevOps [29].

ICAgile defines Certified Expert in DevOps (ICE-DO) as great DevOps blog writers, conference

speakers, or book authors [19]. These communities provide important platforms for DevOps

practitioners to publish, and businesses to reach their potential clients, therefore advancing

DevOps maturity.

Besides the DevOps communities, there are increasing numbers of DevOps conferences

and events around the world. All Day DevOps [23] is an annual online conference that runs

continuously for 24 hours, with more than one hundred speakers, and audiences from over one

hundred countries in 38 time zones. All Day DevOps offers sessions in five tracks including

CI/CD, Cloud-Native Infrastructure, DevSecOps, Cultural Transformations, and Site Reliability

Engineering. DevOps World - Jenkins World [24] is organized by Jenkins [78], a DevOps tool

producer. It provides "opportunities to learn, explore, network, and help shape the future of

DevOps and Jenkins" [24]. DevOps World - Jenkins World has 2500 attendees from all over the

globe, and more than one hundred workshops covering software automation, DevOps culture,

performance measurement, security, and more. In addition, DevOps Enterprise Summit [25],

started in 2014, has more than 1400 attendees and over one hundred speakers. DevOps

Enterprise Summit emphasizes insights and exchanges between "practitioners and subject matter

experts in DevOps, who are pioneering the philosophies and practices that work (and conversely,

which to avoid)" [25]. Finally, there is DevOps Experience Virtual Summit [26], which focuses

on experience sharing among DevOps experts. There are many other DevOps events. The many

57

events show that the community is trying to improve DevOps awareness training, and education

by gathering experience from IT practitioners, which affirms my potential theory.

In addition to industrial conferences, DevOps is starting to get interest from academic

conferences. Centers for Advanced Studies Conference (CASCON) [27], an annual international

conference on computer science and software engineering, introduced a CI workshop in 2016

and a DevOps workshop in 2017. International Workshop on Continuous Software Evolution

and Delivery (CSED) [28], focuses on CI and CD. It co-located with the 2016 International

Conference on Software Engineering (ICSE) [119]. There are also organizations like DevOps

Research and Assessment (DORA) [33] that preforms DevOps research, and is trying to institute

a "scientific approach to software development, product management, and organizational

transformation" [33].

In conclusion, DevOps is still progressing toward maturity, and is on its way to become

an IT standard. In the meantime, it heavily relies on IT practitioners’ experience. Nonetheless,

the foundation work to formalize DevOps education has started. The ICP-FDO program allows

practitioners to learn and certify their basic DevOps knowledge. There are strong communities,

conferences, and events where people may learn or publish about DevOps. Academics are also

starting to show interest in DevOps through scientific research.

 DevOps Practitioners
Since the progress of DevOps heavily relies on the expertise of the DevOps practitioners, I

interviewed DevOps experts to learn about their experience. According to DevOps experts,

DevOps practitioners need to be Jacks-of-All-Trades with both social and technical skills, and

strong architectural knowledge about IT.

4.6.1 DevOps Practitioners Interview Process

During the interviews, DevOps experts were presented with the proposed grounded theory in

Appendix E Potential Grounded Theory, and then asked the following questions.

1. What do you think about the grounded theory above?

2. How do you become a CI expert?

3. What skills should a CI expert have?

4. Between 0 and 9, with 0 being least important and 9 being most important, how are these

factors contributing to your CI expertise?

58

A. Education? [0-9]

B. Years of hands-on experience? [0-9]

C. Diversity of hands-on experience? [0-9]

D. Diversity of skills? [0-9]

E. Knowledge about different tools? [0-9]

5. Others factors important to your CI expertise?

As defined by ICAgile, DevOps experts were people who "gain[ed] exposure in the

community by writing great blogs, speaking at conferences, and publishing [DevOps] books"

[19]. Therefore, I invited community article writers, conference and webinar speakers, and book

authors for interviews.

From DZone DevOps Zone [31], I searched for well "liked" DevOps articles and invited

writers for interviews. Since DZone does not provide contact information for the writers, I

searched for the corresponding writers in social media, and invited them for interview. Eight

writers were invited. Then I searched for speakers in All Day DevOps 2017 [23]. All Day

DevOps 2017 had five tracks, I invited keynote speakers and speakers from each track for

interviews, 12 in total. DevOps.com [32] offered many DevOps webinars. I invited six webinar

speakers for interviews. In addition, I invited two researchers from DORA [33], one instructor

from ASPE Training [20], and two DevOps book authors for interviews. Last, but not least, I

visited the local Python User Group [120] to invite the local IT practitioners to participate.

In February and March, 2018, I interviewed four volunteer DevOps experts and

transcribed the interviews. I applied selected coding on the transcriptions, as in Section 4.3, to

verify, reject, or enhance my potential theory. The interviewees provided consistent answers to

my questions. Therefore, I determined that there was sufficient data to saturate my theory and

seek no addition interviewees.

4.6.2 DevOps Practitioners Interview Analysis

It was not easy to get DevOps experts to participate in academic research through cold calls. I

wanted to express special gratitude to two of the DevOps experts, Viktor Farcic, author of the

book "The DevOps 2.0 Toolkit" [53] and Alan S. Koch, senior lead instructor of DevOps

certification courses at ASPE Training [20]. I had their permission to publish their names. They

have provided significant input to my GT project. The other two volunteers were senior IT

practitioners with wide and deep IT experience, who were passionate about the future of DevOps.

59

 DevOps Practitioner Requirement Analysis

During the interviews, the interviewees ranked the importance of different factors in becoming

DevOps experts. Table 4.6 shows the results. All interviewees consistently ranked education the

least important factor of becoming a DevOps practitioner. The interviewees indicated that

education could only provide fundamental DevOps knowledge. One of the interviewees said that

education was useful "only when you're looking for the first job".

Two interviewees ranked knowledge of different tools low. As one of the interviewees

said, "What really matter [was] that [practitioners] have enough experience … understand the

logic behind … instead of specific skill." Experienced IT practitioners could learn to use any

tools as needed. Another interviewee (Expert4 in Table 4.6) did not provide any rank regarding

knowledge of different tools. The interviewee considered specific tools were irrelevant to

becoming a DevOps practitioner. Therefore, I assigned zero to the factor for the expert. One

interviewee ranked knowledge of different tools 7 out of 9, but he remarked that "knowledge in

specific tools is not as important as having a broad knowledge of the available tools, [and] how

they fit together". Hence, the interviewees disagreed with my potential theory about DevOps

practitioners favoring their familiar tools. As one of the experts said, "Someone having very

board experience … [could not] be a huge expert in certain [tool]." Experts claimed that DevOps

practitioners should not limit themselves to specific tools, but focus on understanding system

level architectural concepts.

All experts ranked either years of hands-on experience, or diversity of hands-on

experience the most important factor of becoming DevOps practitioners. One interviewee

pondered that DevOps practitioners need more than experience. They need diversified

experience, where "diversity needs to represent both breadth of experience and depth of

Factor Expert1 Expert2 Expert3 Expect4
A. Education? [0-9] 3 0 5 2
B. Years of hands-on experience? [0-9] 7 9 8 9
C. Diversity of hands-on experience? [0-9] 9 6 6 9
D. Diversity of skills? [0-9] 8 5 7 9
E. Knowledge about different tools? [0-9] 7 3 7 0*

* Expert did not provide any rank, but said tools were irreverent.
Table 4.6 Experts Ranked Factors of Becoming DevOps Practitioners.

60

experience". It confirmed my potential theory that the DevOps craftsmanship could only be

learned through experience, and in this case, diversified experience.

 DevOps Practitioner Expectation Analysis

In addition to the ranking questions, I asked the interviewees the following questions.

What do you think about the potential grounded theory?

They all agreed that DevOps was experience based. As one of the interviewees quoted

from Daman Edwards that "there [was] no one true authority on what DevOps [was] or [wasn't],

because DevOps [was] an experience-based movement" [121].

The interviewees also agreed that DevOps was "akin to an art form" for there was no

"formula or recipe to accomplish [DevOps] goal". Therefore, DevOps was not craftsmanship that

IT practitioners learned, and then applied. Instead, IT practitioners applied their experience to

achieve DevOps craftsmanship. One of the interviewees further argued that DevOps was not

craftsmanship by a single IT practitioner, but by a team. It was about "creating self-sufficient

teams" that were capable of carrying out the craftsmanship. Most IT development involved a

team. The forefront of DevOps was to handle the social aspect of the development team.

How do you become a CI expert?

One of the interviewees concluded that DevOps practitioners should have "the breadth

and depth of IT experience that [would] provide context for all of the DevOps practices and

tools".

What skills should a CI expert have?

None of the interviewees named a specific skill, such as Java programming. As one of the

interviewees said, "There [was] not a truly DevOps tool or ... skill." Another interviewee

summarized that "DevOps expert must have a wide variety of technical, leadership, management,

and customer support skills that [came] from actual hands-on experience in a wide variety of IT

roles. But among those skills, none [was] so fundamental that it [was] required". What DevOps

practitioners needed were high-level skills, such as problem solving and automation. DevOps did

not entail any fixed tool, skill, or solution. Therefore, each DevOps implementation was unique

as a form of art, as depicted in my potential theory.

61

What others factors are important to your CI expertise?

One of the interviewees further illustrated that DevOps practitioners need more than

skills. DevOps practitioners also needed trust and authority from the higher management.

"DevOps [was] about transforming an organization." DevOps implementation often provokes

cultural changes and causes fear. IT practitioners need empowerment and trust to overcome the

barrier. Therefore, many IT practitioners argue that DevOps is a cultural, procedural, and

technological movement [3] [4] [5] [6] [7] [8] [9] [10], with cultural changes overshadowing

procedural and technological changes. In conclusion, DevOps experts described DevOps

practitioners as individuals with wide and deep hands-on working experience, problem solving

skills, and interpersonal skills. In addition to having the right DevOps practitioners, companies

wanting to adopt DevOps, should start by embracing the DevOps culture.

In conclusion, my GT project studied DevOps education in depth, from academic and

industrial perspectives, through questioning, selective coding, surveying, data gathering, and

making comparisons. From my study, a GT theory emerged that DevOps education heavily relies

on hands-on working experience, while classroom education provides fundamental DevOps

knowledge. With a strong DevOps community already existing, DevOps is on its way becoming

an IT standard. However, until a DevOps standard is broadly accepted by the IT industry,

comprehensive DevOps education is not likely achievable. In the meantime, institutions should

include fundamental DevOps knowledge in education, and increase the opportunity for students

to have hands-on practice. I will provide my hypotheses about DevOps education in the next

chapter.

62

5 Hypotheses about DevOps Education

In the previous chapter, the in-depth GT study about DevOps education concludes that DevOps

lacks commonly recognized scope, curriculum, and credentials. The roles and responsibilities of

DevOps practitioners are still rapidly changing. Therefore, institutions cannot yet provide

comprehensive DevOps experience to their students. Instead, academic institutions should

provide fundamental DevOps education to prepare students for their future DevOps advancement,

and foster DevOps research to benefit academia and industry.

Upon reflection on the outcome, I propose 11 hypotheses with experiments that could

ascertain the benefits academia, students, and industry stand to receive by teaching and adopting

DevOps. These 11 hypotheses are inspired by the findings of my GT project to confront the

shortcomings of DevOps education. Conducting these experiments will help fostering DevOps

academic research and teaching. These hypotheses will also help to cultivate the connection

between academia and industry.

For each hypothesis, I provide my inspiration, motivation, and goal to achieve. These

hypotheses are falsifiable. Therefore, I define concrete falsification conditions and test

procedures for them. These 11 hypotheses are divided into five groups, and they are listed in the

rest of this chapter.

 DevOps in Programming Assignments
The first group of hypotheses studies whether embedding different DevOps processes

into programming assignments will improve student learning outcomes. Educators keep looking

for better way to teach computer science. If embedding DevOps processes into teaching will

improve student learning outcomes, while at the same time preparing them for the job market,

then educators will be motivated to do so.

Hypothesis #1: Students who employ the continuous code integration pipeline with auto-

build and auto-deploy while doing programming assignments get statistically significant

higher grades for their programming assignments.

63

Inspiration: According to my curriculum search result in Section 4.1, most institutions

are not teaching DevOps related topics. Therefore, it is doubtful any DevOps curriculum exists in

academia. In addition, most academics are not interested in learning or adopting DevOps

(Section 4.2); so it is unlikely that academics will create curriculum for DevOps practices. If

there exists DevOps curriculum, which has been proven beneficial to students, then academics

may adopt such curriculum to teach DevOps.

Purpose: Continuous integration streamlines many processes, including continuous code

integration, continuous database integration, continuous testing, continuous inspection,

continuous delivery, and continuous feedback. However, it is not known whether simply

streamlining programming processes will improve program quality. If so, better program quality

should be reflected in higher grades on programming assignments. Therefore, this hypothesis

studies whether streamlining the programming processes in programming assignments improves

student learning outcomes. If so, institutions should embed these DevOps processes in students’

assignments.

This hypothesis streamlines only code integration, auto-build, and auto-deploy in

programming assignments. Programmers usually execute these processes manually. Streamlining

these processes adds no direct value to the programs’ quality. Therefore, this hypothesis studies

whether streamlining the programming processes improves program quality by increasing

student understanding and practice of programming.

Falsification: In a computer science course with programming assignments, students in

one class do programming assignments with no special instruction. In another class, students

employ the continuous code integration pipeline with auto-build and auto-deployment for the

same programming assignments. The hypothesis is falsified if students who employ the

continuous code integration pipeline in their assignments do not have statistically significant

higher grades on average for their programming assignments.

If continuous code integration, auto-build, and auto-deploy do not improve student

learning outcomes, then it may not be important for institutions to embed them in assignments.

Hypothesis #2: Students who implement auto-test while doing programming assignments

get statistically significant higher grades for their programming assignments.

64

Inspiration: According to my curriculum search results in Section 4.1, most institutions

teach software testing. However, it is not clear whether the curriculum is actually teaching

automated continuous testing as required by DevOps (Section 2.1), or just software testing

concepts. I would like to study automated continuous testing in education explicitly.

Purpose: Among different continuous integration topics, academic education covers

testing the most. This hypothesis studies whether automated continuous testing improves student

learning outcomes in programming assignments. If so, institutions should include automated

testing in programming assignments.

Falsification: In a computer science course with programming assignments, students in

one class do programming assignments with no special instruction. In another class, students

must implement specified automated tests in addition to the programming assignments. The

hypothesis is falsified if students who implemented automated tests do not have statistically

significant higher grades on average for their programming assignments.

If automated testing does not improve student learning outcomes, then it is not important

for institutions to include it in assignments.

Hypothesis #3: When doing assignments, students who receive continuous feedback

regarding their progress throughout implementing their assignments get statistically

significant higher grades than other students who submit their assignments only upon

completion.

Inspiration: Duvall et al. detailed six CI tasks [39], one of the CI tasks is continuous

feedback. During my curriculum search in Section 4.1, I found teaching about the other five CI

tasks, but none about continuous feedback. Therefore, I particularly like to study continuous

feedback in computer science education.

Purpose: Feedback is an important part of education. One of the continuous integration

tasks is continuous feedback. This hypothesis studies whether employing continuous feedback

improves student learning outcomes in programming assignments. If so, institutions should

employ continuous feedback in programming assignments.

Falsification: In a computer science course with programming assignments, students in

one class continuously check their code into a repository, then receive auto-feedback about their

65

progress right away throughout implementing their assignments. Students in another class do the

same programming assignments with no special instruction, and submit their assignments only

upon completion, then receive human marking and feedback. Compare the grades of the students

at the end of the course. The hypothesis is falsified if students who receive auto-feedback do not

have statistically significant higher grades on average.

If automated feedback does not improve student learning outcomes, then it is not

important for institutions to employ it in assignments.

 DevOps Skills Transferability

The second group of hypothesis studies whether DevOps skills are transferable. Hence,

whether acquiring DevOps skills improves student learning outcomes in other computer science

subjects. If so, it should motivate all computer science educators to adopt DevOps.

Hypothesis #4: Students, who practice a combination of continuous code integration,

auto-build, auto-deploy, and auto-test in their first two software engineering courses, get

statistically significant higher grades in senior-level non-software engineering courses

with programming components, including computer networks, database management

systems, and computer graphics.

Inspiration: When inviting non-software engineering research groups to participate in

DevOps research in Section 4.3, all non-software engineering research groups showed no interest

in learning more about DevOps. Therefore, I am interested in studying whether learning DevOps

has a positive effect on learning other computer science subjects.

Purpose: Data shows that practicing DevOps improves software quality, but it is not

known whether DevOps skills have other benefits. Therefore, this hypothesis studies whether the

hands-on experience with the software development pipeline combining continuous code

integration, auto-build, auto-deploy, and auto-test enhances students’ ability to learn computer

science knowledge in non-software engineering areas. If so, institutions should introduce

DevOps into the curriculum. Other non-software engineering computer science specializations

should also care about DevOps education.

Falsification: In the first two junior-level software engineering courses, half of the

students employ the software development pipeline combining continuous code integration,

66

auto-build, auto-deploy, and auto-test to do their programming assignments, while there is no

restriction for the other students. Compare the grades of the students in senior-level courses for

computer networks, database management systems, and computer graphics. The hypothesis is

falsified if students who employed the software development pipeline in junior-level software

engineering courses do not have higher grades than those who did not employ the pipeline, and

the difference is statistically significant.

 DevOps Academic Values
The third group of hypotheses studies whether DevOps adds value to academic

publications and can initiate joint DevOps research with computer science academics in non-

software engineering specializations. I will also use this study to foster academic awareness of

DevOps.

Hypothesis #5: Compared to research papers without artifacts, research papers with

"Reproducible" artifacts published in conferences, like Foundations of Software

Engineering (FSE), receive statistically significant higher number of citations within the

first five years of publication, since the ability to create "Reproducible" artifacts is a

major benefit of DevOps.

Inspiration: During my graduate student interviews in Section 4.3, graduate students

expressed their concern that adopting DevOps took a lot of effort, but academia did not reward

the effort appropriately. Therefore, it is not worth the effort. I am interested in studying whether

DevOps can increase the value of academic publication.

Purpose: For research projects with programming components, DevOps allows other

researchers to regenerate experiment results anytime and anywhere. Others researchers can easily

build on top of the existing results. This hypothesis studies whether DevOps’ ability to

regenerate experimental results increases publication value in term of citation-count. If so, it

should be a strong reason for academics to learn and adopt DevOps.

Falsification: Research papers with artifacts, accepted by conferences like FSE, are

given artifact badges, such as Functional, Reusable, Available, Replicated, Reproduced [122].

Five years after the publication, count the number of citations for each paper with badges like

Reproduced in proceedings. Compare the average number of citations for papers with

67

Reproduced badges and the proceeding’s citation impact factor [123]. The hypothesis is falsified

if the average number of citations for papers with the Reproduced badge is not statistically

significant higher than the proceedings’ citation impact factor.

Hypothesis #6: Students who employ continuous inspection with artificial intelligence

while doing programming assignments get statistically significant higher grades for their

programming assignments.

Inspiration: During my graduate student interviews in Section 4.3, graduate students

identified barriers adopting DevOps, including lack of knowledge, a steep learning curve, too

much trial-and-error, unfriendly tools, and lack of technical support. If a DevOps platform is

readily available for academics to evaluate their hypotheses, would academics be more interested

in DevOps?

Purpose: Continuous monitoring and feedback is important in DevOps. Incorporating

artificial intelligence (AI) into continuous monitoring and feedback may "detect anomalies,

predict performance problems and deviations from the baseline, suggest optimizations, correlate

signals across multiple platforms for troubleshooting, do root cause analysis and even automate

fixes" [124]. Therefore, there are many opportunities to initiate joint research between DevOps

and AI. Joint research is one way to create DevOps interest among academics in non-software

engineering specializations.

Falsification: In a computer science course with programming components, all students

employ the pipeline of continuous code integration, auto-build, and auto-deploy for their

programming assignments. Half of the students also embed continuous inspection with AI in the

pipeline, and the other half do not. The hypothesis is falsified if students who embed continuous

inspection with AI in the pipeline do not score statistically significant higher on average in their

assignments.

 DevOps Employment Opportunities
The fourth group of hypotheses studies whether knowing DevOps improves students’

employment opportunities and speeds up job integration. If so, it should motivate students to

learn DevOps.

68

Hypothesis #7: Students who practice a combination of continuous code integration,

auto-build, auto-deploy, and auto-test while doing programming assignments have a

higher chance to be employed.

Inspiration: The job postings search in Section 4.4 shows that there is a high demand for

DevOps practitioners in industry. Data in Section 4.5 also shows that DevOps is becoming a

standard requirement for IT practitioners. Therefore, I am interested in studying whether DevOps

education gives students an advantage in industry.

Purpose: There is a large demand for DevOps practitioners in industry. This hypothesis

studies whether practicing a combination of continuous code integration, auto-build, auto-deploy,

and auto-test allows students to answer interview questions better, therefore increasing their

employment opportunities.

Falsification: In one class, students do programming assignments with no special

instruction. In another class, students employ the DevOps pipeline combining continuous code

integration, auto-build, auto-deploy, and auto-test to do the same programming assignments.

Cooperate with industrial internship employers to score (0-100) students whom they interviewed

for the internship positions. Ask the industrial internship employers whether their company uses

DevOps. Use factor analysis to compare the scores from employers using and not using DevOps

versus students who employed the DevOps pipeline and those who did not. The hypothesis is

falsified if students who employed the DevOps pipeline in their assignments do not score

statistically significant higher on average in the interviews for both employers using and not

using DevOps.

Hypothesis #8: Students who practice a combination of continuous code integration,

auto-build, auto-deploy, and auto-test while doing programming assignments value the

course more when adapting to industrial work.

Inspiration: The last hypothesis studies whether DevOps education gives students an

advantage from the employers’ perspective. I am also interested in studying whether DevOps

education gives students an advantage from the employees' perspective.

69

Purpose: This hypothesis studies whether employing the pipeline combining continuous

code integration, auto-build, auto-deploy, and auto-test in programming assignments enhances

computer science education, so that students will value the course more when joining the

industrial work force.

Falsification: In one class, students do programming assignments with no special

instruction. In another class, students employ the DevOps pipeline combining continuous code

integration, auto-build, auto-deploy, and auto-test to do the same programming assignments.

After the students come back from their industrial internship programs, ask the students to score

(0-100) the usefulness of the course during their internship. The hypothesis is falsified if students

who employ the pipeline in their assignments do not score the course statistically significant

higher than those who did not employ the pipeline.

 DevOps in Industry

The fifth group of hypotheses is more industry oriented. Since the DevOps movement

started from industry, DevOps education should stay connected with industry. These hypotheses

relate industrial DevOps experience with academic education.

Hypothesis #9: IT practitioners with industrial working experience, can learn DevOps

skills faster than students without industrial working experience.

Inspiration: In Section 4.6, while selective coding the DevOps expert interviews, the

code "hands-on experience" kept coming up. However, hands-on experience can mean many

different things. It can mean hands-on experience in using specific tools, or hands-on experience

in directly supporting customers. Therefore, I would like to learn more about the substance of the

term "hands-on experience".

Purpose: DevOps experts believe that IT practitioners need hands-on experience to be

proficient in DevOps. When DevOps experts refer to hands-on experience, they may refer to

work experience, instead of DevOps usage experience. This hypothesis studies whether working

experience actually benefits DevOps learning. If so, educators should further study how to

incorporate work experience into academic education.

Falsification: Provide DevOps lectures to IT practitioners (with a minimum 3 years of

industrial working experience) and students without work experience, where neither the IT

70

practitioners nor the students have previous DevOps knowledge. Then specify the IT processes

and environment of a company, and ask the IT practitioners and students to describe what they

will do to setup a DevOps pipeline in the company. The descriptions are scored according to

their correctness and completeness. The hypothesis is falsified if the IT practitioners do not have

statistically significant higher scores on average then the students.

Hypothesis #10: Companies adopting DevOps culture (acceptance of development-

operations as one team, willingness to fail fast, experiment with new technology, and

focus on quality [5]) have a higher employee satisfaction rate then companies only

adopting DevOps technology (procedures and tools).

Inspiration: DevOps literature review in Section 2.2 shows that many IT practitioners

consider DevOps a culture movement. However, open coding in the first phase of this GT project

(Section 3.3) shows that IT practitioners have relatively low interest in DevOps culture. I am

interested in studying whether DevOps is really a cultural movement.

Purpose: Many DevOps practitioners stated that DevOps is more a cultural adoption than

technical adoption. This hypothesis studies whether companies aiming at adopting DevOps

culture, instead of DevOps technology have better employees’ satisfaction rate. Companies that

adopt DevOps as a culture foster acceptance of development-operations as one team, willingness

to fail fast, experiment with new technology, and focus on quality [5]. Then all changes are

implemented to suit the DevOps culture. Companies that adopt DevOps technology look for

DevOps procedures and tools that benefit the companies, and implement changes in the existing

environments. If DevOps culture is more important than DevOps technology for success, then

educators should study how to incorporate DevOps culture into academic education.

Falsification: Among companies going to adopt DevOps, provide half of the companies

training about how to adopt DevOps through cultural changes, and the other half about how to

adopt DevOps through technological changes. One year later, survey the companies’ workers,

involved in the DevOps adoption, about their satisfaction rate (0-100) of adopting DevOps. The

hypothesis is falsified if companies adopting the DevOps culture do not receive statistically

significant higher satisfaction rate on average than companies adopting the DevOps technology.

71

Hypothesis #11: Companies using Agile benefit more from adopting DevOps than

companies using non-Agile project management methodologies, in term of key

performance factors, such as deployment frequency, deployment lead-time, and mean

time to recover.

Inspiration: During the curriculum search in Section 4.1, most of the DevOps topics are

covered in senior software engineering courses. Many of these senior software engineering

courses also cover Agile project management. In addition, ICAgile is trying to establish a track

of DevOps certification (Section 4.5). Therefore, I am interested in studying whether DevOps

complements Agile.

Purpose: DevOps is a cultural, procedural, and technological movement that affects the

software development process. Agile (including SCRUM, XP, etc.) is a project management

methodology currently drawing the most attention from the IT industry. Therefore, this

hypothesis studies whether DevOps benefits companies using Agile more than DevOps benefits

companies using non-Agile project management methodologies. If so, educators should further

study how to incorporate DevOps into their current project management methodology teaching.

Puppet used deployment frequency, deployment lead-time, and mean time to recover as

benchmarks to identify high-performing DevOps teams [14]. Therefore, this hypothesis uses the

same criteria to measure improvement from DevOps adoption.

Falsification: Companies that are going to adopt DevOps should calculate their

deployment frequency, deployment lead-time, and mean time to recover as a benchmark before

the adoption. Then they should calculate their deployment frequency, deployment lead-time, and

mean time to recover one year after adopting DevOps. The hypothesis is falsified if after one

year, companies using Agile do not have statistically significant higher improvement on average

in all three key performance factors than companies using non-Agile methodologies.

 Concluding Remarks
These hypotheses can be used to study whether embedding DevOps processes in

programming assignments will enhance the student learning outcomes; examining whether

DevOps skills are transferable; exploring how to encourage academic DevOps research;

evaluating how DevOps knowledge affects student employment opportunities; and last but not

least, investigating how to connect academic DevOps learning with industrial working

72

environments. Studies based on my 11 DevOps education hypotheses could help illuminate the

path and direction for DevOps education in academia and industry.

73

6 Limitations

The 11 hypotheses in the previous chapter conclude the contributions of my GT project. When

using GT, a social sciences qualitative research methodology, I encountered different challenges

from using traditional hypothetico-deductive methodology. I describe my limitations during the

study in this chapter.

In 1967, Glaser and Strauss first described GT [90], a social sciences qualitative research

methodology. GT is an inductive methodology, which is very different from the traditional

hypothetical-deductive methodology. GT uses "nonmathematical process of interpretation … to

discover concepts and relationships in raw data and then organize these into theoretical

explanatory scheme" [89]. Since 1967, GT has been "prove[n] an extremely useful research

approach in several fields including medical sociology, nursing, education, and management

theory" [91]. Many software engineering publications report the results of GT projects [91].

Hence, GT is a well-accepted methodology for software engineering research. Even though GT

is a well-accepted methodology, it has some limitations, which I will discuss in this chapter.

 Internal Threats

Since GT was originally a social sciences qualitative research methodology, some computer

science researchers may have never heard about it, or have difficulty understanding the GT

processes and values. To address this, I added descriptions of the GT processes throughout the

dissertation to ensure that the readers better understand the progress and findings.

GT uses open coding to identify key topics of interest from field stakeholder interviews.

Some may argue that open coding is a personal interpretation of the interview transcriptions.

Therefore, the validity of open coding is questionable. To address this concern, each interview

transcription was open coded by two investigators. Through comparison and discussion, I tried

my best to eliminate misinterpretation and personal opinion from the open coding result. I could

have involved more investigators in open coding to increase the credibility of the results. When

open coding the four interview transcriptions individually, both investigators identified the same

phases for the same concepts almost all the time. When comparing the individually identified

codes, the investigators mainly discussed about the rhetoric of the codes. Considering the

relatively consistent coding results between the two investigators, adding another investigator

74

would not add significant value. Therefore, I did not involve additional investigators during open

coding.

 External Threats
If all the interviewees and data are from the same underlying population (e.g. restricted

geophysical region), a GT project may have external validity problem. Hence, the same GT

project may generalize different findings with different underlying populations. I tried my best to

break the localization barrier. I searched the computer science curricula of institutions around the

globe. I invited academics to my survey from institutions globally. I searched for DevOps

certification, training, conferences, and communities internationally. In addition, I invited

DevOps experts for interview worldwide. All these were done to ensure external validity.

Unfortunately, my survey, which invited academics from institutions globally, did not

receive a significant number of responses. I considered sending invitations to individual

computer science academics. However, in many institutions computer science academics were

listed among academics of other disciplines, who could not be clearly identified. Alternately, I

could expand my invitation to other institutions, or broaden invitation through social media.

However, I doubted the number of responses I would get after expanding the invitation would

significantly increase. Therefore, I decided to start with questioning local academics, to find out

how I might motivate them to participate in DevOps research, especially among non-software

engineering research groups. I planned to meet local academics to have in-depth discussions

about their interest in DevOps. In the end, all research groups rejected my invitation. Individual

graduate students who accepted my invitation all strongly rejected DevOps adoption. With the

strong response from local academics and graduate students, I generalized that academics lacked

interest in DevOps without further investigation.

Besides the localization concerns, computer science researchers may also be concerned

about the reliability of GT projects. I generalized from interviewing DevOps experts that IT

practitioners could only advance their DevOps knowledge and skills through hands-on working

experience. To ensure the result is reliable, I selected interviewees with different backgrounds,

knowledge, work experience, and who lived in different part of the world. I could have gone

back to the interviewees to reconfirm my findings. Instead, I considered that the interviewees,

who were from diverse circumstances, provided very consistent answers; they had already

75

verified each other answers. The finding should be highly reliable, and I did not question the

interviewees again.

 Other Threats
Studying a fast growing, immature topic like DevOps also poses a threat to data reliability. There

are new material, concepts, and events added to the pool every day. I had to stay close to all the

latest developments and keep myself up to date. For example, when I started the GT project, I

used the term CI. In the middle of the project, I shifted to the term CD. Finally, I selected the

term DevOps for my final report. DZone’s DevOps reports went through a similar shift. In 2016,

DZone named their DevOps report "Continuous Delivery" [57]. In 2017, DZone named their

DevOps report "DevOps Continuous Delivery and Automation" [58]. In 2018, DZone named

their DevOps report "DevOps Culture and Process" [5].

DevOps rapidly changing trends threaten the reliability of my gathered data. Usually,

repeating the data collection procedures to reconfirm the data can increase reliability. However,

this may not be the case for DevOps that changes so rapidly. XebiaLabs has to keep refreshing

its Periodic Table of DevOps Tools [68] to include the latest inventions. If I repeat my DevOps

job posting search, the job titles I used then, may not be valid now. Between December 2017 and

April 2018, ICAgile has rewritten their DevOps training objectives for their certificates. If I

repeat my DevOps certificate search, a new DevOps authority may emerge. Similarly, there are

new DevOps blogs, training, communities, conferences, and organizations that appear every day.

Repeating the data gathering process adds minimum value. Instead, I was involved in many of

the DevOps communities to stay up to date with the latest DevOps development. I am confident

that my reported data aligns with the trends.

Finally, I am interested in studying different education-related topics in computer science.

However, there is no corresponding platform for me to gather the required data. Multi-

institutional cooperative research on computer science education is very rare. I tried to survey

institutions internationally, but could not get the attention from other computer science educators.

To improve the validity of future research, it would be nice to establish a platform that gathers

computer science education data from institutions.

Even with these limitations, I made contributions to DevOps education, which I

summarize in the next chapter.

76

7 Conclusion

DevOps is a popular movement in the IT industry. XebiaLabs claimed that DevOps is one of the

hottest technology search terms in Google Search [1]. In the late 90’s, the beginnings of DevOps

started as frequently checking source code into repositories. In 2007, Duvall et al. officially

established CI [39]. In 2010, Humble et al. officially defined CD [43]. In 2009, Allspaw and

Hammond proposed the DevOps movement that expanded CI and CD from development to

operations.

I confirmed the popularity of DevOps by reviewing and following the large number of

DevOps blogs, webinars, survey reports, books, conferences, communities, and organizations in

industry that tried to understand, promote, assist, and improve DevOps. Because DevOps is

popular, many tools are created to support DevOps [68], and new DevOps tools keep sprouting

from industry. On the other hand, I searched for DevOps related academic publications in IEEE

Xplore, ACM Digital Library, and Google Scholar, and found them relatively scarce. Hence,

academia was not as keen on DevOps as industry. To promote academic research in DevOps, I

decided to study DevOps.

Since DevOps is a cultural, procedural, and technological movement, I decided to use GT,

a social sciences qualitative research methodology, to study DevOps. Using GT allowed me to

study both social and technical aspects of DevOps. However, there are many different GT

variants. I studied two popular GT variants in depth, and found that the Strauss and Corbin GT

[89] was more suitable for my DevOps study.

Following the Strauss and Corbin GT, I started by interviewing five field stakeholders

regarding DevOps. Using open coding, I microanalyzed four of the interviews, and finalized 34,

83, 28, and 125 codes from the interview transcriptions. By further analysis, I structured codes

into hierarchical trees, and identified seven categories of DevOps interests: "experience",

"practice", "benefit", "cost", "tool", "social aspect", and "third-party service", along with 119

potential research questions. In addition, I analyzed the codes to identify shared DevOps interests

among the stakeholders. Among the shared DevOps interests, I used data elimination to select

DevOps education as my topic of in-depth GT investigation.

77

Using GT, I studied DevOps education from academic and industrial perspectives. From

the academic perspectives, I reviewed the computer science undergraduate curricula of the top 50

institutions, listed in 2017 QS World University Rankings by Subject - Engineering and

Technology [101], to determine whether academic education conveyed DevOps knowledge.

Among different DevOps topics, 12.8% of the institutions covered CI, 12.8% covered building

application, 28.2% covered repository, 23.1% covered deployment, and 89.7% covered testing.

Hence, most of the world top institutions did not convey DevOps knowledge to their students,

except testing.

I tried to study why academics rarely taught DevOps in undergraduate education, while

DevOps was extremely popular in industry. I tried to survey academics globally to validate

whether institutions taught DevOps in undergraduate education. However, I did not receive a

significant number of responses. Instead, I tried to question local academics, in different research

groups, regarding DevOps, but they all declined because they were not interested in DevOps. In

the end, I interviewed three graduate students in different research groups to study the reasons

for the lack of interests in academia.

The graduate students all agreed that DevOps could improve the quality of their research

projects, which involved software development. DevOps could also make their research results

repeatable and verifiable by the community. However, these benefits were not enough to

motivate DevOps adoption. The graduate students did not believe DevOps would increase their

publication opportunities. Therefore, they felt it was not worth their effort to learn and adopt

DevOps. If academics are not interested in learning and adopting DevOps, it is not likely that

they will teach DevOps.

From the industrial perspective, I searched Monster, DZone job site, and IEEE Computer

Society Job Board to study what the DevOps jobs were, and how much demand there was. My

results showed that DevOps practitioners were in high demand, but their job titles, requirements,

roles, and responsibilities were highly diversified.

Further study of the DevOps job requirements showed that DevOps practitioners were

expected to be Jacks-of-All-Trades, who had perfect cultural, procedural, and technologic

knowledge and skills. Such DevOps practitioners were rare assets in industry; there were not

enough to satisfy the high demand. To fulfill the demand, employers just asked for skills that

they thought DevOps needed, without actually understanding DevOps. Therefore, job postings

78

for DevOps practitioners had very different requirements. DevOps education could not train

practitioners to be Jacks-of-All-Trades, or train practitioners to fulfill undefined requirements.

The roles and responsibilities of a profession are usually defined by an authoritative

organization. Therefore, I tried to search for a DevOps authority. However, DevOps was in its

early stage of formalization, so no such authority existed. ICAgile was one of the organizations

working on defining learning objectives for DevOps certificates. However, ICAgile’s DevOps

learning objectives changed dramatically from version to version. DevOps education is a rapidly

changing target that is hard to identify.

Since DevOps education is a moving target, I searched for existing DevOps training in

industry to determine what IT practitioners could learn from the available training. I searched

ICAgile’s certified training providers, Coursera, and Skillsoft for DevOps training. My results

showed that there was a limited amount of DevOps training for technical practitioners, and what

was available was mostly in North America. For non-technical practitioners, DevOps training

was almost non-existent. Even with the available training, the validity of the content was

questionable.

Since DevOps training was limited, I searched for DevOps learning resources available to

the public. From the DevOps communities, I found many DevOps blogs, webinars, industrial

research reports, organizations, conferences, and books, but no commonly recognized authority

or credential. However, with the large amount of effort from the DevOps communities, an

accredited DevOps curriculum may be defined in the near future.

The DevOps communities are relying on the DevOps experts to determine the proper

DevOps curriculum. Therefore, I questioned DevOps experts for their insights. According to the

DevOps experts, DevOps education could only provide fundamental DevOps knowledge. On top

of the basic DevOps knowledge, DevOps practitioners should have solid architectural knowledge

and problem solving skills. With this base, DevOps practitioners could advance their DevOps

skills through hands-on working experience, diversified experience with both breadth and depth.

Adding communication skills, teamwork, and support from management would complete the

training of a DevOps practitioner.

After studying DevOps education from the academic and industrial perspectives, a GT

theory emerged that DevOps education heavily relies on hands-on working experience, while

classroom education provides fundamental DevOps knowledge. With a strong and active

79

DevOps community already set up, DevOps is on its way becoming an IT standard. However,

until a DevOps standard is broadly accepted by the IT industry, comprehensive DevOps

education is not achievable.

My findings showed that academic institutions cannot provide comprehensive DevOps

training. Instead, academic institutions should provide fundamental DevOps education to prepare

students for their future DevOps advancement, and satisfy the high demand of DevOps

practitioners in industry. Contributing to that effort, I propose 11 hypotheses about DevOps

education in five groups to initiate DevOps education in academic institutions.

The first group studies whether embedding DevOps processes in programming

assignments will enhance student learning outcomes. The second group examines whether

DevOps skills are transferable. The third group explores how to encourage academic DevOps

research. The fourth group evaluates how DevOps knowledge affects student employment

opportunities. The fifth group investigates how to connect academic DevOps learning with

industrial working environments. In the future, researchers can work on these hypotheses to

benefit DevOps education in institutions.

As described in Chapter 2, DevOps is a really broad subject that is popular in industry,

but lacks attention in academia. This GT project on DevOps education has only made a small

contribution on one of many DevOps topics. There are many other DevOps topics worth

studying. I describe some of my potential future DevOps research projects below.

 Future Work
This GT project has only studied one of many DevOps topics of interest to IT practitioners. In

Section 3.3.2, I described why I selected the "experience" category for further GT study, over

other categories, "practice", "benefit", "cost", "tool", "social aspect", and "third-party service".

These other categories are also valuable for GT study, but they are not as ready as "experience".

In particular, the study of "practice", "benefit", "cost", and "tool" would be more appropriate

after the common DevOps practices are defined. Therefore, the next step in my DevOps research

is identifying common DevOps practices. DevOps practices have two main aspects: tools and

skills. I will create two projects to study DevOps tools and skills.

DevOps employs many tools. XebiaLabs categorized DevOps tools into 15 categories by

their functionalities as Source Code Management, Repository Management, Database

Management, Configuration Management or Provisioning, Build, Testing, Continuous

80

Integration (CI), Deployment, Release Management, Logging, Business Intelligence or

Monitoring, Cloud or IaaS or PaaS, Containerization, Collaboration, and Security [68].

It is important to prioritize these categories of tools from the industrial perspective, so

that researchers can focus on the high priority tools first. To identify the high priority DevOps

tools, I will survey high-performance DevOps teams in industry to learn which categories of

DevOps tools, identified by XebiaLabs, they employ in their DevOps practice.

I will survey high-performance DevOps teams, because they have successfully

implemented and benefited from DevOps. In the 2015 State of DevOps Report [14], Puppet Labs

identified high-performing DevOps teams by their high deployment frequency, short deployment

lead-time, low failure rate, and rapid recovery time. High-performing DevOps teams deployed

code 30 times more frequently and 200 times faster than their peers did. In addition, high-

performing teams had 60 times fewer failures and recover 168 times faster. My survey will focus

on these teams.

A category of DevOps tools is considered high priority, if over 75% of the high-

performance DevOps teams employ that category of tools. With the results, future research can

focus on the practices, costs, and benefits of the high priority DevOps tools. In addition,

academic institutions can teach students about the DevOps tools according to their priority.

Institutions cannot teach students all 15 categories of tools, since computer science curriculum is

already pushing the four-year boundary.

From the skills aspect, DevOps does not have a commonly recognized credential or

curriculum; therefore, there is no defined DevOps skillset. Skills required for DevOps are very

broad. Lee searched through DevOps practitioner job postings and identified eight groups of

required skillsets corresponding to the eight groups of tasks below [106].

1. Design, build, and operate technology stack [Operational]

2. Configure, monitor, and manage systems [Operational]

3. Program different tools in various languages [Developmental]

4. Script Linus/Unix processes with various languages [Developmental]

5. Operate different cloud products [Technological]

6. Automate IT processes regardless of tools [Procedural]

7. Understand and enforce best practices [Procedural]

8. Being proficient in interpersonal skills [Cultural]

81

These eight groups of skillsets thoroughly cover cultural, procedural and technological

(developmental and operational) aspects of software development. It is important to prioritize

these skillsets from the industrial perspective, so that researchers can focus on the high priority

skillsets. To identify the high priority DevOps skillsets, I will survey high-performance DevOps

teams to determine which DevOps skillsets, identified by Lee, they use in their daily work.

A DevOps skillset is considered high priority, if over 75% of the high-performance

DevOps teams employ the skillset in their daily work. With the results, future research can focus

on the effects of these high priority DevOps skillsets. In addition, organizations can use these

priorities to define training curriculum and credentials for DevOps practitioners. Academic

institutions can also prioritize curriculum changes to match the priority skillsets.

These two projects that prioritize DevOps tools and skills will set the foundation for

many other DevOps research in the future. Besides DevOps tools and skills, the "social aspect"

of DevOps is another area with many research opportunities, since not much work has been done

on it. Researchers may also consider other DevOps research questions listed in Appendix D

Potential DevOps Research Questions. With the popularity of DevOps still growing fast in

industry, any DevOps research will have positive influence in both academia and industry.

82

8 Continuous Maintenance (CM)

In Section 2.1, I provide an introduction about DevOps. DevOps extends CI and CD from

development to operations. Many others proposed combining other aspects of software

development into DevOps, including Continuous* [46], DevSecOps [47] [48] [49] [50], ChatOps

[51], GitOps [52], DevOps 2.0 [53] and more. I found that neither DevOps, nor these alternatives

covered the perspective of continuously maintaining the DevOps environments. I filled the gap

by writing the paper "Continuous Maintenance", which identified the continuous maintenance

processes not mentioned anywhere.

Some argue that the purpose of DevOps is to eliminate software maintenance from the

traditional software development cycle. Therefore, the term continuous maintenance is

inappropriate. A better term may be continuous continuity. Since "Continuous Maintenance" is

the name of the publication, I kept it as-is in its original form.

The paper "Continuous Maintenance (CM)" [34] was published in the Proceeding of

2016 IEEE International Conference on Software Maintenance and Evolution (ICSME). The

paper is reprinted in this chapter, with permission from Candy Pang and Abram Hindle @2016

IEEE.

The major contribution of the paper is proposed the Continuous Maintenance (CM)

concept, which is not covered in other literatures, as:

Maintain repositories and artifacts properly and consistently through automation,

summarization, compaction, archival, and removal during pre- and post-production.

In addition, continuous maintenance processes are defined for the two phases below.

Pre-Production Phase:

• Repository and storage summarization, compaction, defragmentation, and archival

• Management systems automation

Post-Production Phase:

• Exception or violation analysis

• Temp data and logs summarization and archival

• Data elimination

• Data warehouse and analytics

83

Since industry is still working on the scope and boundary of DevOps, defining the needs

of continuous maintenance will ensure future DevOps advancement, included cultural,

procedural, and technical, takes maintenance into consideration.

For this publication, I was responsible for the problem identification, data collection and

analysis, as well as the manuscript composition. Dr. Abram Hindle was the supervisory author,

and was involved with concept formation and manuscript composition.

Impact: As of writing, Continuous Maintenance has been cited three times according to

the Google Scholar [85], including an empirical conference paper that studied continuous

software engineering practices [125], and a Master thesis that studied tools and practices to

enhance DevOps core values [126].

Abstract

Abstract—There are many "continuous" practices in software engineering, for example

continuous integration (CI), continuous delivery (CD), continuous release (CR), and DevOps.

However, the maintenance aspect of continuity is rarely mentioned in publication or education.

The continuous practices and application execution use many repositories and artifacts, such as

databases, servers, virtual machines, storage, data, meta-data, various logs, and reports.

Continuous maintenance (CM) seeks to maintain these repositories and artifacts properly and

consistently through automation, summarization, compaction, archival, and removal. For

example, retaining builds and test results created by CI consumes storage. An automated CM

process can remove the irrelevant artifacts and compact the relevant artifacts to reduce storage

usage. Proper CM is essential for applications’ long term sustainability. There are two sides of

CM: pre-production and post-production. During the pre-production phase, CM maintains the

health of the development environments and the relevant processes. Then during the post-

production phase, CM maintains the health of the applications. This paper identifies some of the

CM processes observed in companies.

 Introduction

Continuous maintenance (CM) is an extension of continuous integration (CI). The CI concept

was first described as "do everything in parallel, with frequent synchronizations" in the 1998

book Microsoft Secrets [41]. Microsoft employs multiple teams to implement different features

84

in parallel, and relies on CI to keep software development synchronized. Companies have been

practicing CI for at least two decades. Normally integration happens from end to end, and in

practice it is not divided into continuous integration (CI) [39], continuous release (CR), and

continuous delivery (CD) [39]. Therefore, the authors combine CR, CD, and other continuous

practices into CI for discussion in this paper.

CM refers to the processes that maintain applications’ long term sustainability during

development and after production. For example, during development, many CI processes rely on

version control repositories, and these repositories need maintenance. The CI build process

creates artifacts such as executables, meta-data, and various logs. These artifacts need

maintenance. The CI test process creates artifacts such as virtual machines, containers, database

instances, test data, test results, and various kinds of logs. These artifacts also need maintenance.

In production, applications create artifacts such as data and execution logs that need maintenance.

CM maintains these artifacts through automation, summarization, compaction, archival, and

removal. For example, an automated maintenance process can analyze and summarize execution

logs, then compact and archive the logs for a retention period, before removing the logs.

Imagine an application that creates temporary files during a process. The temporary files

should be retained for a period of time, then be eliminated under normal circumstances. In this

case, the programmers implement the source code that creates the temporary files. The

operational analysts allocate the storage where the application writes the files. The programmers

specify the life span of the temporary files and any exceptional conditions. An automated CM

process will monitor the temporary files, compress the files to use less storage during the

retention period, and eliminate the files under normal circumstances. The CM process will also

watch for exceptional conditions, and carry out predefined handling procedures. Furthermore, the

CM process can analyze and summarize the temporary files to provide additional knowledge.

Likewise, CM can maintain bug reports, crash reports, and other non-source code artifacts

created by applications.

As IT practitioners, the authors have been observing the end-to-end CI practices in

enterprises for more than 10 years in the fields of health care, law enforcement, Internet service,

customer management, e-Commerce, telecommunication, finance, investment, and environment.

In the IT industry, programmers have embraced many of the CI practices. However, the authors

observed that the maintenance processes are often overlooked. Many of the maintenance

85

processes are retrofitted for development or in production after encountering sustainability issues.

For example, no CI publication has introduced any continuous process to clean up repositories.

When companies deploy CI, they should deploy CM at the same time to maintain CI. By

describing various CM processes, the authors hope to raise discussion and awareness about

application maintenance. In this paper, the authors describe continuous maintenance (CM) as the

continuous processes that maintain development (pre-production) artifacts, and operations (post-

production) artifacts through automation, summarization, compaction, archival, and removal.

The remainder of this paper is structured as follows. Section 8.2 reviews existing

continuous practices. Section 8.3 lists CM processes. Section 8.4 concludes the paper and

sketches future work.

 Related Work
In the existing literature, the maintenance processes for applications’ long term sustainability are

rarely mentioned. Fitzgerald et al. [127] tried to list all continuity related activities from business

strategy to development, which "include continuous planning, continuous integration, continuous

deployment, continuous delivery, continuous verification, continuous testing, continuous

compliance, continuous security, continuous use, continuous trust, continuous run-time

monitoring, continuous improvement (both process and product) … [and] continuous

innovation". Shamieh [128] added continuous engineering. However, the maintenance aspect of

continuity is missing. Some documented continuous practices among practitioners are described

below.

8.2.1 Development Management

During development, continuous practices have been well defined. In the book "Continuous

Integration", Duvall et al. [39] have thoroughly described the following CI practices and their

corresponding tools:

• Continuous code integration / continuous build

• Continuous testing

• Continuous inspection

• Continuous feedback

• Continuous delivery

• Continuous database integration

86

Continuous code integration is the core of the continuous development process.

Continuous code integration frequently builds applications from repositories, so that

integration problems can be identified early. There are many automated build tools, such

as Ant [129], Travis CI [76], and Jenkins [78].

For large projects, compiling a complete build can be very time consuming. A

hierarchical build process can be employed to reduce the building time of individual components.

Continuous build can identify integration problems, and continuous testing can identify

implementation errors. After each build, predefined unit tests and regression tests will be run to

identify implementation errors. Regression tests can also be organized into hierarchy to reduce

testing time and lower resource consumption. There are many automated testing tools, such as

JUnit [130] and other "xUnit" products.

Testing can increase programmers’ confidence in their source code. However, having

integrated source code that passes testing ensures neither code integrity, nor bug free status.

Therefore, continuous inspection evaluates the quality of the source code after each change, and

looks for potential issues according to previous knowledge.

Continuous inspection uses a variety of tools to examine different source code aspects.

For example, Checkstyle [131] makes sure source code adheres to code style standard, EMMA

[132] measures code coverage, and FindBugs [133] analyzes code to look for potential bugs. In

addition, there are tools that identify code duplication, measure unit tests coverage, estimate

energy consumption, and more. Overall continuous inspection safeguards source code quality.

Continuous code integration, continuous testing and continuous inspection can all

identify problems, but they rely on continuous feedback to alert the responsible personnel.

Continuous delivery orchestrates deployment in different environments, such as

individual machines, local servers, or the cloud. Humble et al. [43] in their book "Continuous

Delivery" describe the continuous delivery practice in details. However, they did not consider the

maintenance of artifacts described in this paper.

Last but not least, continuous database integration rebuilds databases and test data

according to changes in repositories [39]. Continuous database integration is necessary to

support continuous code integration and continuous testing.

Many continuous practices have been identified in software engineering. However, they

have not considered maintenance processes. DZone has published a Continuous Delivery

87

Maturity Checklist [134], which does not take into account artifacts maintenance either.

Programmers learn how to practice CI through these publications, which do not talk about

maintenance, but maintenance is essential to sustain applications. The authors believe that

programmers should learn about CM as they learn about CI.

8.2.2 Operations Management

In large companies, applications are implemented by the development team, but run by the

operations team [135]. The operations team follows pre-defined IT Service Management (ITSM)

activities to maintain quality IT services, separately from the development team or the

development process. A few popular ITSM frameworks are listed below:

• Information Technology Infrastructure Library (ITIL) [136]

• Control Objectives for Information and Related Technologies (COBIT) [137]

• International Service Management Standard for IT Service Management (ISO/IEC

20000) [138]

These frameworks identify processes, roles and responsibilities for IT practitioners to

sustain production environments and increase uptime. These frameworks promote circular

processes to continuously improve IT services. However, these frameworks do not specify

application maintenance processes, or promote coordination between programmers and

operational analysts.

It is generally known among IT practitioners that "there was, is, or has been a problem

within corporate IT departments between Development and Operations" [139]. DevOps [135]

was introduced "as a culture, movement or practice that emphasizes the collaboration and

communication of both software programmers and other IT professionals while automating the

process of software delivery and infrastructure changes" [6]. DevOps focuses on automating

infrastructure, but the literature is not explicit about maintaining applications in operation. CM

covers maintenance processes necessary to sustain applications in operation.

CM can also benefit DevOps by purging containers and virtual machines that are not

needed anymore. For example, a system may use Docker containers [79] for testing and

deployment. In some cases, the containers are made, but left behind. An automated CM process

can clean up dangling containers to maintain resource availability.

In the rest of the paper, I will describe the CM processes that enhance development

management and operations management.

88

 Continuous Maintenance (CM)
As described in the previous sections, CI creates many artifacts, such as executables, meta-data

and logs from code integration; results, data and logs from testing; warnings and reports from

inspection. CI also depends on many repositories and artifacts, such as databases, storage and

virtual machines. In addition, applications running in production also create and depend on many

artifacts. Continuous maintenance (CM) consists of the processes that maintain these repositories

and artifacts properly and consistently through automation, summarization, compaction, archival

and removal.

CM aims to improve productivity, sustainability, and efficiency through automation. CM

seeks to improve consistence and continuity within an IT department. The goal of this paper is to

make companies aware of the CM processes, which complement and complete the continuous

practices. Not all processes are applicable to all applications. CM processes can be classified into

two phases: pre-production and post-production.

8.3.1 Pre-Production CM

For Commercial Off-the-Shelf (COTS) applications, the pre-production phase includes all the IT

processes before the applications are released to the public. For Web applications, the pre-

production phase refers to the IT processes before the applications are deployed to production.

The pre-production phase includes all CI practices described in Section 8.2.1.

Above and beyond, the pre-production phase also includes processes such as feature

verification, bug fixing, user acceptance testing, and staging. CM is responsible for maintaining

the long term wellness of repositories and IT artifacts that support the pre-production phase.

Some of the pre-production CM processes are listed below.

1) Repository Archival: Repositories are the core of many CI processes, such as

automated build and testing. There are many version control repository software, such as

Concurrent Versions System (CVS) [140] and Git [72], Perforce [141], and Team Foundation

Server (TFS) [142]. Each software has its advantages and disadvantages, and organizes data in

its own way. For example, Git accumulates data continuously. Without maintenance, the size of

Git repositories will keep growing. In large companies, ever growing repositories may cause

performance and management issues. CM monitors the content, size, and performance of the

repositories, and keeps check of the relevant content. Older file versions that are no longer

relevant to the product development can be archived. Nonetheless, these repositories often

89

handle binary files poorly. For example, Git requires special tweaks to manage large binary files

[143]. CM can automate theses corresponding processes.

CM can help maintain application branching policy. Such a policy enable pruning of

branches that are no longer needed. According to the policy, CM can archive the branches that

are abandoned or no longer relevant to the product line. In some cases, it may be worthwhile to

apply some forms of data warehousing to dead branches, especially those with many binary

materials and assets.

CM automatically archives content regularly. Archival does not imply removing artifacts

forever. It may just be marking artifacts as historical and no longer relevant to the product

development. CM is particularly important for companies using multiple types of repositories to

support different technologies. CM will ensure that all types of repositories are maintained

consistently.

2) Storage Cleanup: Besides repositories, many CI practices consume a lot of

storage. For example, the continuous code integration process builds applications from

repositories regularly and executes tests. For large applications, a complete build may take hours.

When continuous code integration fails, the build’s artifacts should be retained for investigation,

while avoid filling up storage. Even if all tests pass, the IT department may retain the executables

for additional assessment, such as performance and energy consumption. On top of the

executables, the following details about each build should be retained:

• List of source code files used and their versions

• List of configuration files used and their versions

• List of binary files used and their versions

• Build and application execution log

If any tests fail, programmers need to know the exact conditions in which the tests fail.

These additional test artifacts should be retained:

• Test logs and test results

• Databases and data used in the tests

• Virtual machines and containers

These artifacts are also retained from user acceptance test and staging, where written

failure reports are provided to programmers after testing.

90

CM manages metadata and retains relevant artifacts. When needed, CM can help recreate

any executables from the repository according to the metadata. Retaining build and test artifacts

devour a lot of storage. CM can deduplicate, compress, and/or archive large files to use less

storage. CM can also support the business process that resolves integration problems. Once a

build has served its business purpose, CM can eliminate irrelevant artifacts.

3) Management Systems Automation: Continuous code integration identifies

conflicts; continuous testing identifies bugs; continuous inspection identifies quality issues.

Companies may use different management systems (e.g. bug tracking system, task tracker,

quality management system) to manage these affairs. Since the CI processes are being invoked

continuously without human’s involvement, CM should filter out redundant information for

project stakeholders.

CM can simplify and enhance the management processes. For example, when automated

tests fail, CM can use bug-dedupers and bug-clusterers [144] to determine whether the errors

have been reported in the bug tracking system. If not, CM will automatically initialize bug

reports on behalf of the programmers. CM can also employ bug repair, crash-dedupers, and

crash-clusterers [145] to propose solutions for the programmers. CM can also close duplicated

bugs.

Moreover, CM can utilize search based software engineering [146] to generate additional

unit tests, which may reveal errors. In the presence of errors, search based software engineering

can mutate and search possible programs for mutations that repair the errors. CM can bring these

Figure 8.1 Temporary Data Cleanup and Logs Archival

91

potential errors and solutions, not identified by continuous inspection, to the attention of the

programmers.

In the pre-production phase, CM maintains a healthy development environment by

managing artifacts used and generated during the CI processes. CM ensures all development

artifacts are in good condition, so that programmers can concentrate on their source code.

8.3.2 Post-Production CM

For COTS applications, the post-production phase refers to the time after the applications are

installed, configured, and have started serving users. For web applications, the post-production

phase refers to the time after the applications are deployed to the production environments and

are accessible by users.

Maintenance is necessary to keep applications sustainable. This section describes the

automated CM processes that maintain applications in the post-production phase, involving both

programmers and operational analysts.

1) Temporary Data Cleanup: Many applications create temporary data or files. The

temporary data may be created intentionally, or left dangling because of abnormal termination.

Regardless, programmers should know where temporary data may exist. Programmers need to

work with operational analysts to identify potential temporary data. Then CM can automatically

monitor, summarize, archive, and clean up temporary data, as shown in Figure 8.1.

92

2) Logs Archival: Many applications keep execution logs about connection requests,

service requests, executed processes, exceptions, and errors. Under normal situation, the logs

will not be examined. When problems occur, the logs will be inspected. CM can analyze the logs

and store the relevant statistic data, then compress and archive the logs for a period of time

before eliminating them, as shown in Figure 8.1.

Many applications also keep audit logs. Audit logs contain metadata about data creation,

retrieval, update, and deletion (CRUD). CM can analyze and summarize the audit logs as

benchmark. Audit logs can grow rapidly, especially the data retrieval audit logs. Therefore, CM

should monitor the size of the audit logs, then compress and archive the logs as needed. Audit

logs are very important for many businesses. CM should keep the archived audit logs easily

accessible for inquiry or analysis.

3) Exception or Violation Analysis: Execution logs and audit logs contain valuable

information. CM can analyze them before archiving.

Analyzing execution logs can identify potential problems such as intrusion attacks, illegal

accesses, infrastructure hitches, and capacity constraints. CM can bring these potential problems

to the responsible personnel. Defining and continuously enhancing the exception analyzing rules

can prevent potential problems in the future, as shown in Figure 8.2.

Figure 8.2 Exception or Violation Analysis

93

Analyzing audit logs can identify wrongful data usages. For example, there were

incidents where health service providers had been illegally browsing patients’ medical records

[147] [148]. CM could have identified the wrongful behavior through analyzing the retrieval

audit logs. Subject matter experts may be involved in defining the rules for audit logs analysis.

The rules should be reviewed and enhanced continuously.

4) Data Elimination: In some businesses, there are legal obligations to eliminate

obsolete data. For example, the law enforcement systems may need to remove juveniles’ records

once the offenders become adults. E-commercial systems may need to purge cardholder data

after retention period [149]. Subject matter experts and legal advisors may involve in defining

the data elimination rules for CM to remove obsolete data for legal compliance.

5) Data Warehousing and Analytics: Proper data warehousing and analytic improve

business value, and speed time to insight [150]. Sometimes production data is too complicated

and sensitive for data warehousing. CM can employ the Extract, Transform and Load (ETL)

tools provided by the database management systems (DBMSs) to periodically extract analyzable

data from production databases, then filter, convert, mask, and replace sensitive data before

loading data into data warehouses for analysis. Subject matter experts and data analysts may

need to review the data conversion rules to make sure sensitive information cannot be mined

from the data warehouses.

In the post-production phase, CM maintains applications’ sustainability by managing

operational data and logs. So that operational analysts can focus on handling exceptions, and will

be more aware about potential problems.

 Conclusion
Many artifacts, such as executable, meta-data, test data, logs, reports, virtual machines, and

containers, are used and generated by the continuous integration processes during development.

In addition, data and logs are generated by applications running in production. Managing

repositories and these artifacts is onerous and not adequately addressed in the continuous

literature. Thus continuous maintenance is proposed to maintain these artifacts and extract

values out of them through analysis, summarization, compaction, archival, and removal. This

paper identifies specific automatable maintenance processes needed before production in

development, and after production in operation that are benefited by continuous maintenance.

94

Continuous maintenance attempts to automate many manual maintenance processes to

reduce maintenance costs. This allows companies who deploy continuous maintenance to

allocate a bigger portion of their IT budget to innovation [151], hence increase return on

investment.

Since this is a relatively new topic, there are many research questions to be answered:

• How many companies have implemented what CM processes?

• How do companies deploy the CM processes?

• Who is accountable for the CM processes?

• Have companies implemented or purchased CM tools?

• Where do programmers and operational analysts see the needs of cooperation for

maintenance?

• What are the challenges in their cooperation?

• What other CM processes exist?

• Can CM policy, guideline or checklist be defined?

95

9 Single Source of Truth (SSOT) for Service Oriented Architecture (SOA)

In Section 2.2.1, I described survey results which concluded that DevOps improves IT

performance. DevOps improves IT performance by creating a pipeline to deploy application as

fast as possible.

Running the whole pipeline for a huge monolithic application is often slow. Same applies

to testing, packaging, and deployment. On the other hand, microservices are much faster

for the simple reason that they are far smaller (p.23) [53].

Microservices are slowly becoming the preferred way to build big, easy to maintain and

highly scalable systems (p.9) [53].

Single Source of Truth (SOA) is a software design pattern that packages functionality as

a suite of interoperable services to be shared by multiple separated systems. Richards called

Microservices the "incarnation of SOA" [36]. Each microservice should be a Single Source of

Truth (SSOT) within the system. While most publications focus on the technical and

architectural perspectives of microservices, no publication examines the relationship and

interaction between microservices. I filled the gap by writing the paper "Single Source of Truth

(SSOT) for Service Oriented Architecture (SOA)" [37], which depicted the relationship and

interaction between services in SOA, hence microservices.

The paper was published in the Proceeding of 2014 International Conference on Service-

Oriented Computing (ICSOC). The final publication is available at Springer via

http://dx.doi.org/10.1007/978-3-662-45391-9_50. The paper is reprinted in this section, with

permission from Candy Pang and Duane Szafron.

The major contribution of this paper is defined two types of SSOT relationships (mutable

and immutable), their operations, interactions and benefits.

The benefits of the mutable SSOT include the following:

• No need to keep foreign data on local resource.

• No need to manage foreign data changes in local database.

• No need to store a large amount of foreign data, when only a small amount is used.

• Always get the latest up-to-date correct data.

96

In addition to the benefits of mutable SSOT, immutable SSOT provide these additional

benefits:

• In large enterprises or government agencies, SSOT allows data to be divided into

separate units, therefore enhance maintainability, reusability, scalability and

accountability.

• Enhanced data quality, consistency and protection.

• Provides only limited data to the users according to users’ authorization, instead of

exposing the whole data set.

Base on the defined SSOT operations, development tool can easily be created to generate

SSOT service code with corresponding client access code, which makes microservices and

DevOps adoption easier.

For this publication, I was responsible for the identification and design of the research

program, the collection of data, the construction of apparatus, the performance of experiments,

the analysis of the research data, and the manuscript composition. Dr. Duane Szafron was the

supervisory author, and was involved with concept formation and manuscript composition.

Impact: As of writing, SSOT for SOA has been cited one time according to the Google

Scholar [85], which is a Doctor of Philosophy thesis that studied user interface design [152].

Abstract
Enterprises have embraced Service Oriented Architecture (SOA) for years. With SOA, each

business entity should be the Single Source of Truth (SSOT) of its data, and offer data services to

other entities. Instead of sharing data through services, many business entities still share data

through data replication. Replicating data causes inconsistencies and interoperability challenges.

Even when there is a single authoritative source, that resolves inconsistencies, the data copies

may end up being out-of-sync and cause errors. This paper describes how to use a SSOT service

to eliminate data replication, enforce data autonomy, advocate data self-containment, and

enhance data maintenance. Both mutable and immutable SSOT relationships (mappings) are

considered. This paper describes the challenges, solutions, interactions and abstractions between

the SSOT data service providers and the loosely coupled data consumers. It also assesses the

performance and future usage of a SSOT service.

97

Keywords: Single Source of Truth, Service Composition, Service Oriented Architecture (SOA),

Software Design Concept, Software Engineering.

 Introduction
Before embracing the Service Oriented Architecture (SOA), enterprises or business entities used

to share data through data replication. Replicating data across multiple systems gives rise to

inconsistencies and interoperability challenges. In some cases, one of the systems is treated as

the "authoritative" source or the Single Source of Truth (SSOT). The authoritative source’s data

is replicated to the clients’ databases, resulting in data layer synchronization challenges.

Independent client’s data transformation or modification can result in data discrepancies that

require manual intervention. A better solution is to hide the data layer from the clients in the

SOA.

In the SOA, a SSOT should associate with clients through the service layer, instead of the

data layer. This would alleviate data replication and the related problems. The authoritative

source identified as the SSOT should provide data services for the clients. In this approach,

clients maintain mappings to the SSOT data, but do not replicate the SSOT data. Unfortunately,

many enterprises have yet to overhaul data layer replication into a SSOT service. Lack of

experience in SSOT service implementation may have hindered enterprises from the migration.

This paper describes a SSOT service model for two common data sharing scenarios:

mutable and immutable data sources. We use two motivating examples to illustrate the variants:

(a) the management of Postal Codes (PC) and (b) the management of Electronic Patient Records

(EPR). The proposed SSOT service model is useful for any business entity that maintains full

ownership of its data, and does not want the clients to duplicate its data, but allows data access

by restricted queries. The value of the model will be illustrated by the PC and EPR examples.

Most business applications use addresses. In Canada, Canada Post is the single

authoritative agency that manages PCs for mail-delivery addresses. Each address should have

exactly one PC, while each PC covers an area with multiple addresses. Most business

applications collect address information from their customers, and store customers’ addresses

with PCs in their local databases. Periodically, business applications also replicate Canada Post’s

PCs to their local databases for data-validation purpose. For example, an application using

billing addresses, which require PCs, may have a Billing_Address table and a Postal_Code table

as shown in Figure 9.1(a). The Postal_Code table contains all valid PCs periodically replicated

98

from Canada Post. Before adding a new address to the Billing_Address table, the application

checks the validity of the provided PC, i.e., whether the PC exists in the Postal_Code table. If so,

the application will add the new address to the Billing_Address table. This process can only

validate the existence of the PC, but it cannot validate whether the PC is correct for that address.

There is a mapping between the PC and the billing address.

A mapping that changes over time is called a mutable mapping, and a mapping that does not

change is immutable. Canada Post changes PCs from time to time. PCs can be inserted, updated,

deleted, split or merged. The application needs to synchronize the Postal_Code table with

Canada Post, and, if necessary, to correct the PCs in the Billing_Address table. Since the PC that

is mapped to a billing address can change over time, the mapping between PC and billing

address is an example of a mutable mapping. Mutable mappings are often subject to

synchronization errors. For example, Canada Post only provides PC changes to subscribers

monthly. Therefore, the subscribers’ Postal_Code tables are out-of-sync with Canada Post most

of the time. As shown in Figure 9.1(b), when a PC is updated (from A1B 2C3 to A2B 2C3), the

corresponding mappings in the Billing_Address table can be updated. However, when a PC is

deleted (from A1B 2C4 to none) or split (from A1B 2C5 to A1B 2C5 and AIB 2C8), there is no

simple solution to correct the mappings in the Billing_Address table, by using the updated PC

list.

As a second example, let us consider a regional Electronic Patient Record (EPR) system

that manages patients’ health numbers (PHNs), names and contacts. Each patient in the region

receives services from multiple healthcare providers, with different specialties. Each healthcare

provider obtains patient information directly from the patient during the patient’s visit,

containing information included in the EPR. Then, each provider independently stores the

patient’s information in its local database. In this model, a provider-specific patient record may

be inconsistent with the regional EPR. In principle, each provider-specific patient record could

be mapped to a corresponding EPR in the regional authoritative system. In this case, the mapping

between an EPR and a provider-specific record is immutable. The mapping is immutable despite

the fact that patient’s data may change. For example, when a patient changes his/her name, the

patient’s EPR will be updated, but the patient’s EPR is still mapped to the same provider-specific

record. Therefore, the mapping is immutable.

99

The SOA paradigm can alleviate data synchronization issues. Clients using data that

already exists in an authoritative source will not replicate the authoritative data in their local

databases. Instead, the authoritative source acts as a SSOT service that provides clients the

authoritative data. In the examples above, Canada Post serves as the SSOT service for PCs and a

 (a) Billing address tables (b) PCs update, delete and split

Customer

Create Customer Record Mutable SSOT Local DB

Customer data

queryByCriteria(Customer data)

SSOT data

createRecord(Customer data)

(c) Create record with mutable SSOT

Retrieve Customer Record Local DB

getCustomerRecord(...)

Customer data

Mutable SSOT

queryByCriteria(Customer data)

SSOT data

business process

(d) Retrieve record with mutable SSOT

Figure 9.1 The Postal Codes Use Case

100

regional health authority provides the SSOT service for EPRs. Clients access PCs and EPRs by

invoking SSOT services, without replicating SSOT data in their local databases. Therefore,

clients do not need to manage and synchronize data with the SSOT. The SSOT can also shield its

autonomy from the clients. We advocate the SSOT service model over data-replication. This

paper is structured as follows. Section 9.2 and 9.3 illustrate the challenges and solutions

associated with the mutable and the immutable SSOT by the PC and the EPR use cases

respectively. Section 9.4 evaluates the performance of the SSOT service. Section 9.5 describes

the related works. Section 9.6 recommends future works, and Section 9.7 concludes the paper by

enumerating SSOT’s benefits.

 Mutable SSOT Service

A SSOT service that manages mutable mappings is called a mutable SSOT service. In this case,

the mapping between a SSOT record (each individual PC in our example) and a client

application record (each billing address in our example) can change over time. Clients need to

invoke the mutable SSOT service with query criteria. Therefore, a mutable SSOT service

supports at least the query-by-criteria operation.

For example, in the PC use case, Canada Post maintains a mutable PC SSOT service that

provides a single web service operation, PC-query. The PC-query operation takes PC query

criteria as input. Clients may specify Street Number, Number Suffix, Unit/Suite Apartment,

Street Name, Street Type, Street Direction, City, and/or Province as criteria. The PC-query

operation returns a set of PCs that match the criteria.

This PC SSOT service can replace data replication. For example, in Figure 9.1(a), the PC

column in the Billing_Address table and the Postal_Code table are replicated data that can be

dropped in favor of invoking the PC-query operation provided by the mutable PC SSOT service.

The PC query criteria will come from the remaining columns (e.g. Street#, City) in the

Billing_Address table. When the application needs the PC of a billing address, it will use the

address data in the Billing_Address table as query criteria to retrieve the PC from the PC SSOT.

The rest of this section will use the PC use case to illustrate how clients can use a mutable

SSOT service to replace data replication.

101

9.2.1 Client-Record Creation

Figure 9.1 (c) depicts how an application can use mutable SSOT service for data validation

during record creation. In the PC use case, when the application receives a new billing address

from a customer, the application queries the PC SSOT using the customer address. If the PC

SSOT returns a single valid PC, then the address is valid. The application proceeds to create a

new Billing_Address record for the customer.

If the PC SSOT returns more than one PC, then the customer address is not definitive.

For example, if the customer address contains only the city field, then the PC SSOT will return

all the PCs for the city. In principle, the application should not accept a non-definitive address as

a billing address. Therefore, the application would seek additional address details from the

customer. Similarly, if the PC SSOT returns no PC for the customer address, the application

should alert the customer that the address is invalid and request the user to take remedial action.

In contrast, the data-replication model may allow non-definitive or invalid billing

addresses in the application’s database. Using a mutable SSOT service not only eliminates data

replication, but also enhances data quality.

Different clients may have different processes for the SSOT response. The application in

the PC use case expects a single valid PC from the response. Other applications may iterate the

response records to select the most desired result. To support different clients’ processes, the

mutable SSOT query-by-criteria operation may return additional information. For example, the

PC-query operation may return other address fields (Street Number, Unit/Suite Apartment, Street

Name, etc.) in addition to the PC. Clients can use the additional address fields to filter the

response records.

9.2.2 Client-Record Retrieval

Since the SSOT data is excluded from the clients’ local databases, each client needs to combine

its local data with the SSOT data to compose the complete data records. The client data retrieval

process is depicted in Figure 9.1(d).

In the PC use case, the application first retrieves a Billing_Address record from its local database,

then uses the local address data as query criteria to invoke the PCquery operation, and retrieve

the up-to-date PC from the PC SSOT. If the PC of the billing address has changed since the last

retrieval, then the PC SSOT will return a different PC from the last retrieval, but it will be the

correct PC.

102

 Immutable SSOT Service
A SSOT service that manages an immutable mapping is called an immutable SSOT service. The

mapping cannot change over time. Each record in the client application has a permanent static

relationship with a SSOT record. To establish this mapping, a client record is associated with a

SSOT record using a unique permanent single source of truth identifier (SSOT-ID). A SSOT-ID

is conceptually equivalent to the resource identifier in the Resource Description Framework

(RDF) [153] and the unique identifier in the Representational State Transfer (REST) [154]

architecture. Each record represents a resource in the SSOT. We will use the term resource

instead of record since each SSOT resource may contain multiple child-records. For example, an

EPR may contain multiple names, addresses and phone numbers as child-records. Each resource

has a unique permanent identifier called the SSOT-ID. Clients use the query-by-SSOT-ID

operation to retrieve resource details, which include the child-records.

The rest of this section will illustrate the immutable SSOT service through the EPR use

case. Assume that a clinic application and a pharmacy application both need patients’ health

numbers (PHNs), names and contacts, along with their own provider specific data. Traditionally,

in the data-replication model, the clinic application would have a Clinic_Patient table and a

Patient_Visit table, and the pharmacy application would have a Pharmacy_Patient table and a

Drug_Dispensing table, as shown in Figure 9.2(a). The clinic application assigns a county to

each patient using the patient’s home address, while the pharmacy application does not. In the

data-replication model, the PHNs, names and contacts located in the clinic’s and pharmacy’s

databases may have errors or be inconsistent with the authoritative EPR system. When patients

move, patients must notify the EPR authority, the clinic and the pharmacy individually.

Actually, PHNs, names and contacts are readily available in the regional EPR system. An

immutable EPR SSOT service can eliminate data replication from the clinic and the pharmacy

databases. After eliminating the replicated EPR data, Figure 9.2(b) shows the new clinic

application and pharmacy application tables. In the new Clinic_Patient and Pharmacy_Patient

tables, the EPR columns are replaced by the SSOT-ID column. Unlike the PC use case,

immutable SSOT clients do not routinely use the query-by-criteria operation to obtain SSOT data.

Instead, clients can invoke the query-by-SSOTID operation to retrieve SSOT data from the

immutable SSOT service.

103

Each immutable SSOT service should provide at least four operations: (a) query-by-

criteria, (b) query-by-SSOT-ID, (c) update subscription, and (d) deletion subscription. The

potential risks of using the immutable SSOT service query-by-criteria operation are illustrated in

Section 9.3.1. The rest of the sub-sections describe different usages of the immutable SSOT

operations.

9.3.1 Query-by-Criteria

An immutable SSOT service could provide the same query-by-criteria operation as a mutable

SSOT service. Clients could query the SSOT service by criteria and receive a correlated set of

results matching the criteria. However, in some situations, the immutable SSOT query-by-criteria

operation may sustain a privacy violation risk. In the EPR use case, if the query-by-criteria

operation returns all resources matching any given set of criteria, then any client can browse the

 (a) Providers’ table in replication model (b) Providers’ table in immutable SSOT model

(c) Partial response example

Figure 9.2 The Electronic Health Record Use Case I

EPR SSOT Query Criteria:
• Lastname = ‘PANG%’
• Phone#=’7807654322’

EPR SSOT Query Response Object:
• SsotID = ‘DYXMSFK9SJ2’
• Lastname = ‘PANG’
• Firstname = ‘CANDY’
• Phone# = ‘7807654321’
• Health# = ‘####5-3623’
• Address = ‘4523 *****’
• Birthday = ‘MM-09-YYYY’

104

EPR data, which violate patients’ privacy. For example, a client may specify Firstname=’JOHN’

as the query criteria for the EPR SSOT query-by-criteria operation. In response, the EPR SSOT

returns all patients with first name equals ‘JOHN’. The large response set may violate many

patients’ privacy, since many of the set may not be patients of the querying facility.

To avoid browsing, the query-by-criteria operation could specify a maximum number of

returned records (i.e. query-limit). If the response set is larger than the query-limit, the service

would return an error. At which point the client needs to refine the query criteria and queries

again.

A safer query-by-criteria operation may also demand more than one query criterion to

avoid brute force hacking. For example, the EPR SSOT query-by-criteria operation could reject

single criterion queries to avoid PHN cracking by querying with randomly generated PHN’s until

a valid resource is returned.

For further privacy protection, the query-by-criteria response set can be filtered to contain

partial data. The partial data must include the complete SSOT-ID and sufficient information to

identify a SSOT resource. Figure 9.2(c) shows a set of query criteria for the EPR SSOT query-

by-criteria operation, and one partial response record. The partial record includes the SSOT-ID

and only part of the PHN, address and birthday. Using the partial record, a client should be able

to determine whether the EPR maps to the targeted patient. Once a partial record is selected, the

client can use the SSOTID to retrieve the resource details using the query-by-SSOT-ID operation.

9.3.2 Query-by-SSOT-ID

If the query-by-criteria operation returns only partial data for privacy protection, the immutable

SSOT service must provide a query-by-SSOT-ID operation, which takes a SSOT-ID as input. In

response to a query-by-SSOT-ID request, the immutable SSOT provides details of the resource

corresponding to the provided SSOT-ID, but only the details that the client is authorized to see.

This allows the SSOT service to distinguish between client access permissions, providing

different information to different facilities, such as pharmacies, clinics and acute-care facilities.

To protect data privacy, the immutable SSOT should include a proper auditing

mechanism to detect, identify and stop improper browsing behavior or unlawful use of data. In

the EPR use case, if a client continually invokes the EPR SSOT query-by-SSOT-ID operation

with randomly generated or guessed SSOT-IDs, the EPR SSOT auditing mechanism should

detect and deter the client.

105

Each SSOT-ID is effectively a foreign key to a remote SSOT resource. Since the SSOT

and clients are loosely coupled, the foreign key constraints in the client data cannot be enforced

at the SSOT. An alternate foreign key constraint handling mechanism will be discussed in the

later sub-sections.

9.3.3 Client-record Creation

Figure 9.3 (d) depicts the role of an immutable SSOT service during client record creation. Using

the clinic application in the EPR use case as an illustration, when a patient first visits the clinic,

the clinic application needs the patient’s SSOT-ID. The patient provides personal data to the

clinic. The clinic application invokes the EPR SSOT query-by-criteria operation with the

patient’s data. From the returned set of partial EPRs, the clinic and patient together identify the

correct EPR. With the SSOT-ID from the selected partial EPR, the clinic application invokes the

query-by-SSOT-ID operation to retrieve the portion of the patient’s EPR that is permitted to the

clinic. The clinic application then assigns a county to the patient according to the patient’s home

address in the EPR. With the patient’s SSOT-ID and assigned county, the clinic application adds

a new record to the Clinic_Patient table for the patient. Similarly, when a patient first visits the

pharmacy, the pharmacy application uses the EPR SSOT query-by-criteria operation to retrieve a

partial EPR of the patient. The pharmacy application gets the patient’s SSOT-ID from the partial

EPR. Since the pharmacy data does not depend on data in the EPR, the pharmacy application can

add a new record to the Pharmacy_Patient table for the patient with the patient’s SSOT-ID.

9.3.4 Client-record Retrieval

As with the mutable SSOT service, the immutable SSOT clients need to combine the SSOT data

with the local data to compose complete data records. The data retrieval process is depicted in

Figure 9.3(e).

In the EPR use case, when a patient revisits the clinic or the pharmacy, the clinic and

pharmacy applications use the EPR SSOT query-by-criteria operation to retrieve the patient’s

SSOT-ID. With the SSOT-ID, the applications fetch the permission filtered EPR with query-by-

SSOT-ID. Using the SSOT-ID again, the applications retrieve patient’s local data from the local

databases, i.e. the Clinic_Patient, Patient_Visit, Pharmacy_Patient and Drug_Dispensing tables

in Figure 9.2(b). Finally, the applications combine the EPR and local data to instantiate a

complete patient record.

106

Create Customer Record

Customer

Inmutable SSOT Local DB

getCustomerData()

Customer data

queryByCriteria(Customer data)

Resource correlation set

selectResource(Resource correlation set)

SSOT ID

createRecord(CustomerData, SsotID)

queryBySsotID(SsotID)

SSOT data

(d) Create record with immutable SSOT

Retrieve Customer Record

Customer

Inmutable SSOT Local DB

getCutomerData()
Customer data

queryByCriteria(Customer data)

Resource correlation set

selectResource(Resource correlation set)
SsotID

getLocalData(SsotID)

queryBySsotID(SsotID)
SSOT data

Local data

business process

(e) Retrieve record with immutable SSOT

Figure 9.3 The Electronic Health Record Use Case II

107

9.3.5 Constructing SSOT-IDs

Since the SSOT and the clients are loosely coupled, the clients rely on the SSOT-IDs to be

unique and permanent. Therefore, it is important to select a proper data type, length, format and

representation for the SSOT-ID. For example, the Canadian Social Insurance Number (SIN) has

9 digits. The first digit of the SIN represents the owner’s residential status. Similarly, a SSOT-ID

can have embedded representations. The design of the SSOT-ID deserves extraordinary attention

to ensure uniqueness and permanency. For example, the SIN is unique, but not permanent. When

an owner’s residential status changes, a new SIN may be assigned. Therefore, SIN is not a good

SSOT-ID candidate. In addition, public data items are not good SSOT-ID candidates.

An SSOT-ID does not need to be a single value. It can also be a composite value, as long

as it is unique and permanent. Part of the SSOT-ID can be a fixed-length sequential number, to

ensure its uniqueness. Since the SSOT-ID will be shared between systems, it is recommended

that the SSOT-ID take a different format from the SSOT database standard, so that the SSOT

database standard will not be exposed.

Clients store the SSOT-IDs in their local databases. The SSOT-IDs are guaranteed to be

unique and permanent. Therefore, clients may consider using the SSOT-IDs as the primary keys

Immutable SSOT Client

subscribeUpdate()

updateResource(SsotID)

update(SsotID)

Local DB

hasReference(SsotID)

SSOT data
getLocalData(SsotID)

True

Local data

queryBySsotID(SsotID)

business process

(f) Immutable SSOT update subscription

Figure 9.4 The Electronic Health Record Use Case III

108

in their local databases. If the SSOT-ID data type and size do not match the local database

standard, we recommend that the local database create its own local primary key, and use the

SSOT-ID as a foreign key. In the EPR use case, the Clinic_Patient table could have used the

EPR SSOT-ID as the primary key. Since the primary key of the Clinic_Patient table will be a

foreign key of the Patient_Visit table, the clinic application created its local primary key (PID in

the Clinic_Patient table), to preserve data type consistency between tables.

The clients should also consider whether the sequence of the primary keys matter to the

local business logic. In the EPR use case, it is likely that a portion of the EPR SSOT-ID is a

sequential number. The clinic serves only a relatively small number of patients in the regional

EPR system. Therefore, only a small number of the EPR SSOT-IDs will be imported into the

clinic’s database. If the clinic application uses the EPR SSOT-IDs as its primary key, then the

primary key will have a lot of gaps in its sequence. In addition, the order of the primary keys will

not represent the order in which patients’ records are added to the clinic’s database.

9.3.6 Update Subscription

Data updates for an immutable SSOT may affect clients. In the EPR use case, the clinic

application assigns a patient’s county based on a patient’s home address. When a patient moves,

the clinic application may assign a different county for the patient. In this case, data updates in

the EPR SSOT affect the clinic application. On the other hand, none of the pharmacy application

local data depends on the EPR SSOT data. Therefore, data updates in the EPR SSOT do not

affect the pharmacy application.

The SSOT cannot determine how data updates will affect the loosely coupled clients.

Clients are responsible for managing their own data. Therefore, the immutable SSOT must

provide an update subscription operation. If a client is concerned about data updates in the SSOT,

then the client is responsible for subscribing to the SSOT update service through the update

subscription operation.

After a SSOT resource is updated, the SSOT will send an update message with the

SSOT-ID of the updated resource to the subscribers. When the subscriber receives the update

message, the subscriber can check whether the SSOT-ID is referenced locally. If not, the

subscriber can ignore the update message. If the SSOT-ID is referenced locally, then the

subscriber can fetch the resource details using the query-by-SSOT-ID operation. Based on the

109

latest resource details, the subscriber may update its local data accordingly. The update

subscription process is depicted in Figure 9.4(f).

In the EPR use case, the clinic application would subscribe to the EPR SSOT update

service. When an EPR is updated, the clinic application will receive an update message with the

SSOT-ID of the updated EPR. The clinic application determines whether the SSOT-ID is

referenced locally. If so, it retrieves the patient details from the EPR SSOT using the query-by-

SSOT-ID operation. Then the clinic application can determine whether the patient’s latest home

address matches the clinic-assigned county in the local database. If not, it updates the local

database accordingly. On the other hand, the pharmacy application is not affected by EPR

updates. Therefore, the pharmacy application would not subscribe to the EPR SSOT update

service. Notice that the pharmacy still relies on the SSOT for the latest EPR patient information.

However, it does not subscribe for updates since it does not need to update its own local database,

when EPR data changes.

9.3.7 Deletion Subscription

Just like any other data, the SSOT data can be deleted. Since the SSOT is loosely coupled with

its clients, clients cannot put a foreign key constraint on the SSOT to restrain the SSOT from

deleting data. Instead, the SSOT provides a deletion service. When a resource is deleted from the

SSOT, the SSOT will send a deletion message to the subscriber. Clients need to determine

whether they should subscribe to the SSOT deletion service using the deletion subscription

operation.

In the EPR use case, deleting a patient from the EPR SSOT may create broken links in

the Clinic_Patient and Pharmacy_Patient tables. Therefore, the clinic and pharmacy applications

should both subscribe to the EPR SSOT deletion service.

If the SSOT physically deletes the resource, then the deletion message should contain the

last version of the resource before the deletion and the reason for deletion. Clients can use this

information to determine how to handle the deleted data.

In the EPR use case, a patient may move from the region and be deleted from the EPR

SSOT. The clinic and pharmacy applications will receive a deletion message from the EPR

SSOT with the last version of the patient’s EPR. The applications may store or ignore the EPR in

the deletion message. Depending on the reason for deletion, the applications can delete, archive

or mark the patient’s local record inactive.

110

Alternatively, the SSOT may logically delete a resource. In this situation, the deletion

message will only contain the resource SSOT-ID and the reason for deletion. The client can still

fetch the logically deleted resource using the query-by-SSOT-ID operations. The query-by-

SSOT-ID operation would return the corresponding resource but flagged as deleted. The query-

by-criteria operation could exclude logically deleted resources from the response correlated set,

or provide them and flag them as deleted.

In the EPR use case, if patients are only logically deleted from the EPR SSOT, the clinic

and pharmacy applications may mark the patient inactive in their local databases. If EPR records

are only logically deleted, then clients should always check the deleted flags on the EPR, since

logically deleted records may later be undeleted.

9.3.8 Additional Operations

An SSOT creation subscription operation is not recommended. If clients can subscribe to SSOT

data creation, then clients can replicate the whole SSOT database, which violates the purpose of

using SSOT. Clients should only link to the SSOT resources related to their operational

mandates, but not replicate the SSOT data.

In addition to the four mandatory operations, an immutable SSOT service might provide

additional resource create, retrieve, update and delete (CRUD) operations. In the EPR use case, if

a patient has not registered with the regional EPR SSOT, then the clinic and pharmacy

applications would not find the patient through the query-by-criteria operation. If the EPR SSOT

also provides a patient creation operation, then the authorized clinic or pharmacy personnel can

create SSOT EPRs as needed.

If the clinic or pharmacy personnel are not authorized to create SSOT EPRs, then the un-

registered patients need to register with the EPR authority later. In the meantime, the applications

can create a local temporary file to store the patient’s data. An optional column (TEMP FILE#)

can be added to the Clinic_Patient and Pharmacy_Patient tables to keep track of the temporary

file number. In the absence of the SSOT ID and existence of the TEMP FILE#, the applications

will not query the EPR SSOT for patient’s information, but retrieve data from the local

temporary file. After the patient registers with the EPR SSOT, the applications can insert the

EPR SSOTID into the Clinic_Patient and Pharmacy_Patient tables, and delete the temporary file.

At this point, the application returns to normal processing.

111

 Performance and Quality-of-Service (QoS)
Despite the data-synchronization challenges, the data-replication model has a performance

advantage over the SSOT service model. In the SSOT service model, client applications make

extra service invocations to the SSOT during record creation and retrieval, which may affect user

experience. Therefore, we implemented experiments to evaluate how the extra SSOT service

invocations might affect user wait times.

The experiments evaluated delay caused by the SSOT service invocations. They were

conducted on the institution’s network supporting ~40,000 students. The SSOT service was

hosted on a workstation in a departmental subnet. In the experiments, client applications

accessed the SSOT service through Wi-Fi on the institute’s public network during regular office

hours. This condition simulated an enterprise network supporting multiple sub-divisions.

The experiment results show that if the SSOT service and the client applications are

located within the same enterprise network, then the service invocation costs less than 20

milliseconds per call. This indicates that users should not notice any performance deterioration.

If the SSOT service is available across a wide area network, the performance primarily depends

on the transmission delay between the public SSOT service and the clients. Clients should

benchmark the transmission delay to determine the actual performance effect.

In dynamic web service composition [155], clients select web service providers according

to their published quality-of-service (QoS) [156]. Even though, SSOT’s clients will likely access

the SSOT service statically, the SSOT service should publish the following QoS metrics per

operation:

• Operational hours: the regular SSOT servicing hours.

• Maintenance schedule: the changes and release schedule.

• Reliability: the SSOT’s ability to perform the operation without errors.

• Request-processing time: the maximum and average time required for the SSOT

service to complete the operations.

The SSOT may publish additional QoS metrics, such as capacity, performance,

robustness, accuracy and more [155]. Clients can design their usage of the SSOT service

according to the SSOT’s QoS metrics.

112

If the SSOT service is part of a larger enterprise or jurisdiction, then the SSOT service

usually has the same operational hours and maintenance schedules as their clients. Public SSOT

services, like Canada Post, are usually available 24x7.

 Related Work

Most SSOT is implemented on the data layer. Ives et al. [157] suggest synchronizing distributed

data on the data layer. Ives et al. propose a "Collaborative Data Sharing System (CDSS) [that]

models the exchange of data among sites as update propagation among peers, which is subject to

transformation (schema mapping), filtering (based on policies about source authority), and local

revision or replacement of data." Since data across multiple sites are continuously "updated,

cleaned and annotated", cross-site synchronization has to deal with issues such as data

correctness, schema and terminology consistence, and timing. These data layer synchronization

hurdles highlight the advantage of our SSOT service model that eliminates data layer

synchronization.

Others try to implement SSOT using an Enterprise Service Bus (ESB) [158], in which a

SSOT is defined. Clients duplicate the SSOT data locally, and subscribe to ESB for SSOT

updates. Whenever the SSOT is updated, clients synchronize with the SSOT by repeating the

changes in their local copies. Our SSOT model totally avoids data duplication at the clients’ site.

Instead of a data-centric model for SSOT, some research has turned to artifact-centric

modeling [159]. An artifact is a set of name-value-pairs related to a business process or task,

where data represents business objects. In the artifact-centric model, each artifact instance is

shared between all process participants. The participants get information from the artifact and

change the state of the artifact to accomplish the process goal. Since the artifacts are shared

between process participants, access and transaction control is necessary. Hull [160] suggests

using artifact-centric hubs to facilitate communication and synchronization between the

participants. Our SSOT service model does not require complicated facilitation or a centralized

hub.

Other researchers have proposed the Personal Information Management (PIM) [161]

model. In our model, the SSOT does not have any knowledge about its clients’ data. However,

the PIM model finds, links, groups and manages clients’ data references to the source. PIM is a

centralized data management model, while SSOT is a distributed data management model.

113

Finally, Ludwig et al. [162] propose a decentralized approach to manage distributed

service configurations. The proposed solution uses RESTful services to exchange configuration

data between hosts, and a subscription mechanism to manage changes. This approach endorses a

data perspective similar to an SSOT service, where each data source maintains self-contained

autonomous data. Data is not synchronized across multiple sites. Sources and clients are

statically bound.

 Future Work
A mutable SSOT service has one standard operation: query-by-criteria. An immutable SSOT

service has four standard operations: query-by-criteria, query-by-SSOT-ID, update subscription,

and deletion subscription. Based on these standard operations, we defined Web Service

Definition Language (WSDL) extensions for the mutable and immutable SSOT services with

corresponding templates. Because of the limited space, we do not include the SSOT WSDL and

templates in this paper.

Based on the WSDL extensions and templates, development tools can easily be created to

generate SSOT service source code with corresponding client access code. These tools can

simplify development for programmers, which encourages the use of SSOT services to replace

data-replication. Eclipse is an excellent platform to implement such tools. There are three

additional future work topics.

Maintenance and Upgrades: Every active service goes through changes. Besides

regular change management, services may experience unexpected emergency incidents. When

these incidents occur, the clients should be alerted about their occurrences, side-effects, recovery

progress and estimated recovery times. As suggested by Ludrig et al. [162] a subscription service

can be used to communicate change, maintenance and emergency notices. Protocols and

language extensions can be defined for various types of change, maintenance and emergency

activities. Since SSOT introduces a single point of failure, a cloud infrastructure specifically

designed for SSOT can improve its availability.

Local Temporary Cache: If the cost of the SSOT service invocation is a concern, clients

can cache the SSOT resources temporarily. Once a SSOT resource is obtained, there is a good

chance that the client needs the same SSOT resource for related processes. Therefore,

temporarily caching the SSOT resource will likely reduce service invocations. The cached SSOT

resource can be flushed after a timeout period. The SSOT update or deletion message should also

114

flush the related resource from the cache. The caching functionality would ideally be

implemented as middleware that supports the SSOT service architecture.

Schema Synchronization: For existing applications to adopt a SSOT service model, the

existing client applications need to map their local data to the SSOT data. Both the SSOT and the

clients can make use of existing ontology studies, which define data syntax and semantics for

specific industries. For example, HL7 [163] is defined for the health industry; RosettaNet [164]

is defined for e-business; EDIFACT [165] is defined for electronic data interchange. Moving

toward standard languages will benefit the survival and the long term growth of the industry. The

SSOT service model does not define the communication architecture or protocol between the

clients (e.g. between the clinic application and the pharmacy application in the EPR use case),

but adopting the SSOT service model can simplify communication between the clients. For

example, the pharmacy can verify a patient’s prescription with the clinic by the patient SSOT-ID

and avoid multiple drug dispensing.

 Conclusion

The SSOT service model described in this paper addresses the data-synchronization problems

that arise due to data-layer replication across distributed systems. On the other hand, the SSOT

service model introduces a single point of failure in the system. Depending on the Service Level

Agreement (SLA), the SSOT may need support from multi-site configurations or cloud-

infrastructure with fail-over capability. Although the data-replication model does not have a

single point of failure, it suffers from data-synchronization and data-inconsistency issues. Data

synchronization usually involves defining a custom peer-to-peer data exchange agreement. The

custom agreement tightly couples the data provider and consumer, which makes switching

providers very costly. Nonetheless, data synchronization usually happens during the overnight

maintenance windows. Data becomes stale between synchronizations. Furthermore, data

replication keeps a full copy of the provider’s data at the clients’ sites. If clients use only a small

portion of the provider’s data, then the clients are wasting resources. An added benefit of the

SSOT service model is that it can control what data each client is authorized to access, while data

replication makes all data available to clients.

The SSOT service model allows the provider and clients to be loosely coupled. Clients do

not need to pledge infrastructure resources for the foreign data. The SSOT service model also

provides up-to-date data. Overall, we believe that the SSOT service model can be used to

115

eliminate data replication, enforce data autonomy, advocate data self-containment, ease data

maintenance and enhance data protection. In the long term, these properties will also increase

business adaptability.

Within large enterprises or government agencies, managing large amounts of data as a

single entity is problematic. Decomposing a large data set into smaller autonomous and

independently managed data sets can increase flexibility. As in the EPR case, once the EPR

SSOT service is established, a new patient related service can be created without defining and

creating its own patient data set. The new service does not need to negotiate with other parties

regarding data acquisition or synchronization. The new service can loosely couple with the EPR

SSOT and be established quickly. In addition, the SSOT service model allows each individual

service to be self-contained and maintain its local database. For example, the clinic application

and the pharmacy application in the EPR use case maintain their individual local databases

without sharing data with the EPR system. This characteristic is very important in the health

industry, where patients’ privacy is closely monitored.

The SSOT service model is also applicable to the financial industry. Banking, investment

and insurance businesses are often integrated under one corporation. However, legislation may

require each of these businesses to be separate entities. The SSOT service model allows the

corporation to create a customer SSOT to register each customer once. Banking, investment and

insurance services can run as separate entities, while being loosely coupled with the customer

SSOT service. With the SSOT service model, new financial services can be introduced more

quickly. Similarly, the SSOT service model can benefit any jurisdiction that provides multiple

services.

116

10 What Do Programmers Know about Software Energy Consumption?

As described in Section 2.2.1, the 2015 DZone Guide to Continuous Delivery [56] reported 50%

of the IT practitioners had employed DevOps in their organizations, and the adoption rate kept

rising. In 2017, the State of DevOps [11] reported 24% of the organizations employed DevOps

ran their production systems in the public cloud; 18% would move to the public cloud within six

months; 13% would move within one year. Therefore, the energy consumption of the data

centers, which provide public cloud service, continually increases. I wondered whether

programmers are aware of the energy consumed by their software running on the cloud.

Therefore, I surveyed programmers accordingly, and published the results in the article "What

Do Programmers Know about Software Energy Consumption?" [38].

The article "What Do Programmers Know about Software Energy Consumption?" [38]

was published in the IEEE Software Magazine, May-June 2016. The paper is reprinted in this

chapter, with permission, from Candy Pang, Abram Hindle, Bram Adams, and Ahmed E. Hassan

@2016 IEEE.

The major contribution of this publication is studied these following research questions:

• Are programmers aware of software energy consumption?

• What do they know about reducing energy consumption?

• What’s their level of knowledge about energy consumption?

• What do they think that causes high energy consumption?

By surveying 122 programmers, I concluded the following findings:

1. Programmers have limited awareness of software energy consumption

2. Programmers lack knowledge about how to reducing software energy consumption

3. Programmers lack knowledge of software energy consumption

4. Programmers are unaware of software energy consumption’s causes

With the research findings, many works can be done to monitor and reduce software

energy consumption, but most importantly programmers should be made aware about software

energy consumption and how to reduce consumption.

For this publication, I was responsible for the design of the research program, the

construction of surveys, the collection of data, the analysis of the research data, and manuscript

117

composition. Dr. Abram Hindle, Dr. Bram Adams and Dr. Ahmed E. Hassan were involved with

analysis of the research data, concept formation and manuscript composition.

Impact: As of writing, What Do Programmers Know about Software Energy

Consumption has been cited 58 times according to the Google Scholar [85]. The citations include

different contexts, such as empirical conference paper that studied software engineers’

perspective on software energy consumption [166], and journal article that studied energy

consumption in computer clusters, grids, and clouds [167].

Abstract
A survey revealed that programmers had limited knowledge of energy efficiency, lacked

knowledge of the best practices to reduce software energy consumption, and were unsure about

how software consumes energy. These results highlight the need for training on energy

consumption.

 Introduction
With the rising popularity of mobile computing and the advent of large-scale cloud deployments,

the nonfunctional requirement of minimizing software energy consumption has become a

concern. For mobile devices, energy consumption affects battery life and limits device use. For

datacenters, energy consumption limits the number of machines that can be run and cooled.

According to an IDC white paper, "Today, for every $1.00 spent on new hardware, an additional

$0.50 is spent on power and cooling, more than double the amount of five years ago. Datacenters

at their power and cooling thresholds are unable to support new server deployments, a fact that

severely limits the expansion of IT resources [168]."

Unfortunately, the demand for energy-efficient computing isn’t reflected in the education,

training, or knowledge of programmers. Programmer training often focuses on methodologies

such as object-oriented programming and nonfunctional requirements such as performance.

Performance optimization is often considered a substitute for energy optimization because a

faster system likely consumes less energy. Although this is a step in the right direction, it’s

insufficient and sometimes even incorrect. For instance, parallel processing might improve

performance by reducing calculation time. However, saving and restoring execution context,

118

scheduling threads, and losing locality might end up consuming more resources than sequential

processing [169].

A previous analysis based on energy-related questions on StackOverflow

(http://stackoverflow.com) showed that programmers had many such questions but rarely got

appropriate advice [170]. To gain more tangible evidence of and concrete insight into this

problem, we surveyed programmers to gauge their knowledge of software energy consumption

and efficiency. In particular, we addressed four questions. Are programmers aware of software

energy consumption? What do they know about reducing it? What’s their level of knowledge

about it? What do they think causes spikes in it?

 The Survey

An anonymous online survey comprised 13 questions in four phases (full survey details, data,

and analysis can be found online [171]).

Phase 1 involved three questions regarding respondent demographics:

• How many years of programming experience do you have?

• How would you rank your programming skill--beginner, intermediate, or advanced?

• In what programming language are you most proficient?

Phase 2 involved eight quantitative questions. The first two evaluated the respondents’

knowledge of software energy consumption (using the common term "power consumption"

[172]):

• For desktop computers, rank the software power consumption of the CPU, hard drive,

memory, network, and screen and GPU.

• For mobile devices, rank the software power consumption of the CPU, data storage

device, memory, network, and screen and GPU.

The next six yes/no questions gathered information about the respondents’ experience

with software energy consumption:

• Do you take power consumption into account when developing software?

• Is minimizing power consumption a requirement or a concern of your software?

• Have users complained about your software’s power consumption?

• Have you modified your software to reduce power consumption?

119

• Have you measured your software’s power consumption? If yes, how do you measure

it? (If the respondent answered yes, the questionnaire provided additional space for a

text response.)

• Would power consumption be one of your decision factors when choosing a mobile

development platform?

Phase 3 involved two qualitative questions, allowing respondents to further express their

knowledge and experience regarding software’s power consumption:

• What software functions have higher power consumption?

• How would you improve your software’s power efficiency?

Phase 4 involved optional qualitative follow-up interviews.

We posted survey invitations in numerous programming-related Reddit (www.reddit.com)

subgroups (subreddits) between 20 August and 4 September 2013. We received 122 responses

and conducted four follow-up interviews.

 The Results
The survey respondents identified themselves as programmers. Of the 122 respondents, 37 (30

percent) used C or C++ and 84 (69 percent) used C#, Java, JavaScript, Perl, PHP, Python, or

Ruby. According to the November 2014 TIOBE Index (www.tiobe.com/index.php/tiobe_index),

these languages accounted for 54 percent of existing programs and likely represented more than

half the software running in datacenters. In addition, Java is the primary language for Android

and BlackBerry, whereas C# is the primary language for Windows Phones.

10.3.1 Programmers Have Limited Awareness of Software Energy Consumption

Our survey results show that the programmers rarely addressed energy efficiency and that users

rarely requested it. Only 22 respondents (18 percent) claimed to take energy consumption into

account when developing software. Only 17 respondents (14 percent) considered minimizing

energy consumption a requirement. Twenty-six respondents (21 percent) said they modified

software to reduce energy consumption.

One interviewee indicated that clients "care first and foremost about speed of

development, and secondly about reasonable quality and performance." This suggests that the

lack of attention to software energy consumption is an issue of priorities.

120

These results show that these programmers either were unaware of energy efficiency or

weren’t asked to address it. An interviewee mentioned that "1 watt would be a lot of power for a

mobile phone, [but] it’s absolutely negligible in comparison to other household appliances." That

1 watt might be negligible on the personal level, but on the global level, energy consumed by all

mobile devices and datacenters multiplies. In 2006, 6,000 US datacenters reportedly consumed

61 billion kilowatt-hours of energy costing US$4.5 billion [173].

Similarly, software users and clients were unaware of software energy consumption.

Only 4 respondents (3 percent) reported that their users complained about their software’s energy

consumption.

Our results confirmed Hammad Khalid and his colleagues’ finding that mobile-

application users have low awareness of resource use [174]. Their results showed that resource

related complaints (application reviews), including energy consumption complaints, ranked last

out of 12 types of user complaints in terms of frequency. Although users don’t complain

frequently about resource consumption, Khalid and his colleagues’ results also show that

resource-related complaints negatively affect users. So, despite the low frequency of such

complaints, they’re highly troubling. If customers and clients aren’t asking for energy-efficient

software, programmers are less likely to address the energy efficiency of software. Hence,

appropriate public education and expanded awareness among clients and programmers about

software energy consumption is needed.

10.3.2 Programmers Lack Knowledge of Reducing Software Energy Consumption

To reduce software energy consumption, programmers must start by measuring the energy

consumption of their software. Only 12 respondents (10 percent) said they did this. Fifteen

respondents (12 percent) indicated that you can measure software energy consumption through a

power meter, the battery, the power supply, resource measurement, software tools, and CPU time.

These results show that these programmers lacked knowledge of how to accurately

measure software energy consumption. Most of the suggested methods measure the overall

hardware energy consumption, not the fine-grained energy consumption of the software. In

addition, mobile device batteries don’t accurately report the actual energy use [172]. Ding Li and

his colleagues also found that programmers used "typical practices in energy measurement

studies ..., [which] have limitations that could introduce inaccuracy [175]."

121

Measuring software energy consumption is a challenge. One interviewee stated that "one

has to have a proper understanding of the entire system [to] make an informed [energy

consumption] analysis." Programmers have to understand the interactions between high-level

and low-level components to really analyze the root causes of software energy consumption. The

survey and interviews showed that most of the respondents had difficulty measuring and

optimizing software energy consumption even when the appropriate tools were available.

Another interviewee admitted, "It’s more often the hardware rather than the software that

we are interested in when we talk about energy consumption." Although few respondents

measured the energy consumption of their software, 79 (65 percent) of them considered energy

consumption as a factor when choosing a mobile development platform. Many respondents

relied on choosing the right platform and hardware to ensure the energy efficiency of their

software. However, they rarely addressed software energy consumption.

Figure 10.1 summarizes how the respondents would improve energy consumption.

Nineteen respondents (16 percent) were aware that better algorithms lead to better energy

efficiency, which was the most popular suggestion. Only 11 (9 percent) and 8 (7 percent) of the

respondents, respectively, were aware that less computation and reduced polling can reduce

energy consumption. The results show that the respondents’ ideas about how to best reduce

Figure 10.1 Respondents’ responses regarding ways to improve software energy efficiency. The
respondents’ answers varied widely, indicating the need for increased education on software
energy consumption and efficiency.

122

software energy consumption varied widely. Furthermore, university courses don’t often teach

about the link between better algorithms and energy consumption.

10.3.3 Programmers Lack Knowledge of Software Energy Consumption

Figure 10.2 summarizes the respondents’ rankings of the software energy consumption for

desktop computer and mobile-device components.

For desktop computer components, we expected these rankings (from highest to lowest

consumption):

1. CPU,

2. hard drive,

3. screen and GPU,

4. network, and

5. memory.

For mobile-device components, we expected these rankings:

1. screen and GPU,

2. CPU,

3. network,

4. hard drive, and

5. memory.

We based these rankings on current conventional wisdom, backed up by experiments we

had performed over the past three years and recent studies [172] [175] [176]. Because these

rankings weren’t written in stone, they could differ among specific hardware. We were focusing

on the consistency of rankings across all respondents, independent of our expected ranking. For

desktop computers, only 1 respondent (1 percent) ranked the components in our expected order.

For mobile devices, 12 respondents (10 percent) ranked the components in our expected order.

Using Spearman’s rank correlation, we compared the respondents’ rankings with the

expected ranking. Generally, positive correlations closer to 1 indicate stronger agreement. If two

rankings completely match, their correlation is 1. If they’re the inverse of each other, the

correlation is -1. If they’re unrelated, a correlation near 0 is possible.

For desktop computers, the average correlation between the respondents’ rankings and

the expected ranking was 0.48, indicating a medium level of agreement. For mobile devices, the

123

average correlation was 0.75, indicating a much stronger agreement. The correlation’s standard

deviation was 0.25 for desktop computers and 0.20 for mobile devices.

We also used Spearman’s rank correlation to compare the respondents’ rankings against

each other (interagreement), regardless of the expected ranking. The correlation was 0.3 for

desktop computers and 0.6 for mobile devices. So, respondents had less internal agreement on

the energy consumption of desktop computer components than on the consumption of mobile

device components. The correlation’s standard deviation was 0.48 for desktop computers and

0.32 for mobile devices. This implies that respondents agreed less about the energy consumption

of desktop hardware components and more about the energy consumption of mobile-device

components.

(a) Desktop Computer Components Ranked by Energy Consumption

(b) Mobile Device Components Ranked by Energy Consumption

Figure 10.2 Respondents’ rankings of energy consumption. Considerable disagreement existed
on whether a particular component consumed more energy than another.

0

20

40

60

80

100

1st 2nd 3rd 4th 5th

o

f
P

ar
ti

ci
p

an
ts

Rank

CPU

Hard Disk

Network

Screen & GPU

Memory

0

20

40

60

80

100

1st 2nd 3rd 4th 5th

o

f
P

ar
ti

ci
p

an
ts

Rank

Screen & GPU

CPU

Network

Storage Device

Memory

124

In other words, considerable disagreement existed on whether a particular component

consumed more energy than another. One explanation might be that different types of

programmers make different assumptions about the energy consumption of hardware

components. For example, game programmers interact mostly with the screen and GPU, so

they’re more likely to identify the screen and GPU as the most energy consuming components.

Programmers might blame the most obvious component without understanding how software

consumes energy.

Furthermore, programmers might focus overly on their users’ on-screen experience--that

is, on what’s observable. The respondents overwhelmingly ranked the screen and GPU as the

highest-energy-consuming components: 82 respondents (67 percent) for desktop computers and

95 respondents (78 percent) for mobile devices. It is true, though, that the screen and GPU often

consume the most energy on mobile devices.

The overall results show that programmers lack consistent knowledge regarding the

energy consumption relationship between software and hardware. Nonetheless, programmers

have more consistent knowledge about software energy consumption on mobile devices than on

desktop computers. So, it might be more effective to develop education and awareness programs

and guidelines for specific domains (for example, mobile devices and gaming).

10.3.4 Programmers Are Unaware of Software Energy Consumption’s Causes

Gustavo Pinto and his colleagues mined Stack Overflow data to identify seven causes of

unnecessary software energy consumption [170]:

• unnecessary resource use,

• faulty GPS behavior,

• background activities,

• excessive synchronization,

• background wallpapers,

• advertisements, and

• high GPU use.

Our results closely matched the results of Pinto and his colleagues. Taken as a group, the

respondents identified most of Pinto’s seven causes. For example, in Figure 10.3, "Network"

refers to unnecessary resource use, "Sensor" refers to faulty GPS behavior, "Threading" refers to

125

background activities, "Pulling or polling" refers to excessive synchronization, and "Graphics"

refers to background wallpapers and high GPU use. The respondents didn’t identify

advertisements.

However, individually, only 19 respondents (16 percent) identified network data access

as a cause of high energy consumption. The low identification rate matches the observation of Li

and his colleagues [175]. Six respondents (5 percent) identified pulling or polling for excessive

synchronization. Only 4 (3 percent) identified sensor use, which can leave the GPS turned on for

too long. Thirty-five (29 percent) identified graphics as a cause of high energy consumption for

functions such as background wallpapers and animations. In short, the numbers show that only a

few of the respondents could identify the causes of high energy consumption.

 Limitations
One limitation was our use of social media to recruit survey respondents, instead of directed

emails or phone calls. Nevertheless, through social media, we were able to reach programmers in

the field whom we otherwise couldn’t have reached. More than half a million users have

subscribed to programming-related subreddits, which often have more than 1,000 concurrent

users. To avoid having our survey invitation tagged as spam and to avoid negative reactions, we

posted it to one relevant subreddit at a time. This process significantly lengthened the data-

gathering period and limited the number of respondents.

Another limitation is that we didn’t control for the development process that the

respondents used. Many development processes exist. An enterprise might employ the full

Figure 10.3 Respondents’ responses regarding causes associated with high energy
consumption. Only a few of the respondents could identify those causes.

126

COBIT (Control Objectives for Information and Related Technology; www.isaca.org/cobit)

development cycle. A mid-size shop might use agile processes. A one-man startup might do

whatever is necessary. In a formal process, programmers might not have the opportunity to

specify the functional or nonfunctional requirements. But surveying a statistically significant

number of programmers for each process type would have been difficult. So, we surveyed a

board range of programmers. Future studies need to investigate the energy consumption

knowledge of IT workers in different roles.

A third limitation is that we focused on programmers’ software energy consumption

knowledge. Software has many nonfunctional requirements (for example, memory use,

performance, security, and usability); energy consumption is just one of them, albeit the least-

studied one. However, although nonfunctional requirements might affect each other, mixing

other criteria into our study might have blurred the results.

 Conclusion
The programmers in our study lacked knowledge and awareness of software energy-related

issues. More than 80 percent of them didn’t take energy consumption into account when

developing software. Nevertheless, most of them considered software energy consumption to be

important when choosing a mobile development platform.

The fact that only 3 percent of the respondents received complaints about software

energy consumption might suggest that users are unaware of it. As Chenlei Zhang and his

colleagues argued, the creation of benchmarks and reporting mechanisms (similar to Energy Star)

that inform users of software energy efficiency can significantly increase user awareness [177].

Increased user awareness will, in turn, motivate programmers to measurably enhance their

software’s energy efficiency. As one Reddit respondent commented, the "survey has at least

made me consider … possible costs of doing things."

Pinto and his colleagues identified eight strategies to reduce energy consumption through

software modification [170]:

127

• minimizing IO,

• bulk operations,

• avoiding polling,

• hardware coordination,

• concurrent programming,

• lazy initialization,

• race to idle, and

• efficient data structure.

These strategies should be part of programmers’ education. In addition, development

tools can be created to identify unnecessary energy consumption and suggest how to reduce it.

Educators could develop slides, videos, projects, and assignments as part of an undergraduate

curriculum for energy efficiency and sustainability.

128

11 Final Words

In this dissertation, I have presented four of my research results in the areas of DevOps education,

maintaining continuity, single source of truth for microservices, and software energy

consumption. These topics may seem disconnected, but they all linked to the popular DevOps

movement in the IT industry. The diversity reflects that DevOps is comprehensive and covers a

broad range of IT aspects. Therefore, there are many DevOps research opportunities.

 Lessons Learned
First, my research (Chapter 1 to 7) shows that academic institutions have not embraced DevOps

education. Since DevOps is becoming an industrial standard, institutions should incorporate

DevOps knowledge and skills in undergraduate computer science curriculum to prepare students

for industry. However, DevOps is not mature enough for systematic teaching. Therefore,

institutions can only teach basic DevOps knowledge to get students ready for advancing their

DevOps skills in industry. I proposed 11 hypotheses to serve as a base for academic DevOps

education.

Second, my research (Chapter 8) shows that there are many continuous processes in

DevOps. The continuous processes need proper maintenance to sustain continuity. Therefore, I

proposed continuous maintenance to maintain repositories and artifacts properly and consistently

through automation, summarization, compaction, archival, and removal during pre- and post-

production. Continuous maintenance is necessary to make DevOps sustainable.

Third, my research (Chapter 9) focuses on interactions between microservices. Since

"microservices and DevOps go hand-in-hand" [35], microservices have become popular along

DevOps. DevOps allows companies to "respond faster to business needs" [3]. For microservices

to be swift along with DevOps, they have to be single sources of truth, that are deployable

individually. Then, microservices interact with each other to achieve business purposes. I defined

the mutable and non-mutable interactions between microservices that are the basis of all

microservices interactions. With microservices, DevOps can attain its advantage of being

responsive.

Fourth, my research (Chapter 10) shows that programmers lack knowledge about

software energy consumption for effective datacenter deployment. The majority of organizations

129

that employ DevOps will run their production systems in public datacenters [11]. However, the

limited power and cooling thresholds of the datacenters severely limits the expansion of IT

resources [168]. Concerning the limited power supply in datacenter, I surveyed programmers

about their knowledge of software energy consumption. My survey shows that programmers lack

knowledge and awareness of software energy-related issues. More than 80 percent of the

surveyed programmers do not consider energy consumption when developing software.

Programmers need to be more aware about software energy consumption to keep datacenters

sustainable for future DevOps expansion.

 Future Work
In addition to the future work mentioned so far, there are many more DevOps research topics

worth exploring, especially DevSecOps [47] [48]. Lately, DevSecOps has become a focus of the

DevOps community, in blogs [178], webinars [179], surveys [49] [50], conferences [23],

writings [180] [181], and more. Many DevOps practitioners have "felt the struggle that comes

from trying to balance speedy DevOps practices with necessary security practices" [180]. Many

industrial researchers are studying how to incorporate security into DevOps. Academic

institutions should also study how to incorporate DevSecOps into their security courses.

"DevSecOps is really becoming mandatory. We’ve kind of known this was coming for years, but

it’s really starting to come home for everyone" [181]. Studying DevSecOps provides an

opportunity for academic researchers to be leaders in an emergent and highly relevant area.

In conclusion, DevOps is influential in industry and provides many research opportunities

for academia. Academics should put more effort into DevOps research.

130

Bibliography

[1] XebiaLabs, Inc., "2017 The Year DevOps Got Real," [Online]. Available:
https://xebialabs.com/assets/files/whitepapers/DevOpsGetsReal.pdf. [Accessed 16 03 2018].

[2] D. A. Tamburri and D. Perez-Palacin, "Special Issue: DevOps Quality Engineering," Journal of Software: Evolution and
Process, pp. 1-3, 2018.

[3] I. Sacolick, "What is devops? Transforming software development," DZone, Inc., 26 02 2018. [Online]. Available:
http://www.infoworld.com/article/3215275/devops/what-is-devops-transforming-software-development.html. [Accessed 27
02 2018].

[4] W. Jackson, "2017 State of the Software Supply Chain," 2017. [Online]. Available: www.sonatype.com. [Accessed 20 04
2018].

[5] M. Werner, "The 2018 DZone Guide to DevOps Culture and Process Volume V," DZone, Inc., 2018. [Online]. Available:
https://dzone.com/storage/assets/7828456-dzone2018-researchguide-devops.pdf. [Accessed 16 01 2018].

[6] M. Schmidt, "DevOps and Continuous Delivery: Not the Same," DevOps.com, MediaOps, LLC., 08 04 2016. [Online].
Available: https://devops.com/devops-and-continuous-delivery-not-same/. [Accessed 12 04 2016].

[7] A. Streets, "Dedicated DevOps? I Smell a Rat…," DZone, Inc., 25 07 2017. [Online]. Available:
https://dzone.com/articles/dedicated-devops-i-smell-a-rat. [Accessed 28 07 2017].

[8] J. Lee, "Can DevOps Be a Role?," DZone, Inc., 24 08 2017. [Online]. Available: https://dzone.com/articles/can-devops-be-
a-role. [Accessed 30 08 2017].

[9] xMatters & Atlassian, "DevOps Maturity Survey Report 2017," 2017. [Online]. Available: http://info.xmatters.com/rs/178-
CPU-592/images/atlassian_devops_survey.pdf. [Accessed 02 09 2017].

[10] A. Wallgre, "You Can't Buy DevOps in a Box," DZone, Inc., 26 08 2017. [Online]. Available:
https://dzone.com/articles/you-cant-buy-devops-in-a-box-electric-cloud. [Accessed 26 08 2017].

[11] E. Bruno, "2017 State of DevOps Research Reports," Interop ITX, UBM LLC., 2018. [Online]. Available:
http://images.reg.techweb.com/Web/UBMTechweb/%7Bcc7768e4-e40f-4033-b4b0-
f55f2bb5222a%7D_Interop_ITX_State_of_DevOps_FinalFinal.pdf. [Accessed 25 01 2018].

[12] DevOps Institute, "DevOps Institute," [Online]. Available: https://devopsinstitute.com.
[13] E. Oehrlich and J. Groll, "2019 Upskilling: Enterprise DevOps Skills Report," 03 2019. [Online]. Available:

https://devopsinstitute.com/wp-content/uploads/2019/03/UpskillingReport-Final.pdf. [Accessed 06 03 2019].
[14] Puppet & IT Revolution, "2015 State of DevOps Report," 2015. [Online]. Available: https://puppet.com/system/files/2016-

03/2015-state-of-devops-report.pdf. [Accessed 17 06 2016].
[15] A. Brown, N. Forsgren, J. Humble, N. Kersten and G. Kim, "2016 State of DevOps Report," Puppet & DORA, 2016.

[Online]. Available: https://puppet.com/resources/white-paper/2016-state-devops-report/. [Accessed 10 09 2016].
[16] N. Forsgren, J. Humble, G. Kim, B. Alanna and N. Kersten, "2017 State of DevOps Report," Puppet & DORA, 2017.

[Online]. Available: https://puppet.com/system/files/2017-06/2017-state-of-devops-report_3.pdf. [Accessed 15 05 2017].
[17] ICAgile, "ICAgile Certified Professional in Foundations of DevOps (ICP-FDO)," [Online]. Available:

https://icagile.com/Learning-Roadmap/DevOps/Foundations-of-DevOps. [Accessed 18 12 2017].
[18] ICAgile, "ICAgile Certified Professional Implementing DevOps (ICP-IDO)," [Online]. Available:

https://icagile.com/Learning-Roadmap/DevOps/Implementing-DevOps. [Accessed 18 12 2017].
[19] ICAgile, "ICAgile Certified Expert In DevOps (ICE-DO)," [Online]. Available: https://icagile.com/Learning-

Roadmap/DevOps/Expert-in-DevOps. [Accessed 19 12 2017].
[20] ASPE Training, "ASPE Training," [Online]. Available: http://aspetraining.com/.
[21] Coursera Inc., "Coursera," [Online]. Available: https://www.coursera.org/.
[22] Skillsoft Corporation, "Skillsoft," [Online]. Available: https://www.skillsoft.com/.
[23] Sonatype Inc., "All Day DevOps," [Online]. Available: https://www.alldaydevops.com/.
[24] CloudBees Inc., "DevOps World - Jenkins World," [Online]. Available: https://www.cloudbees.com/devops-world.
[25] IT Revolution, "DevOps Enterprise Summit (DOES)," [Online]. Available: https://events.itrevolution.com/.
[26] DevOps.com, MediaOps, LLC., "DevOps Experience Virtual Summit," [Online]. Available: https://devopsexperience.io/.
[27] IBM Canada Laboratory, "Centers for Advanced Studies Conference (CASCON)," [Online]. Available: https://www-

131

01.ibm.com/ibm/cas/cascon/index.jsp.
[28] ACM SigSoft, "International Workshop on Continuous Software Evolution and Delivery (CSED)," International

Conference on Software Engineering (ICSE), 14 05 2016. [Online]. Available: http://continuous-se.org/CSED2016/.
[29] E. Novoseltseva, "Top 16 DevOps Blogs You Should Be Reading," DZone, Inc., 18 02 2018. [Online]. Available:

https://dzone.com/articles/top-16-devops-blogs-you-should-be-reading. [Accessed 21 02 2018].
[30] DZone, Inc., "DZone Integration Zone - Enterprise Integration news, tutorials, tools," [Online]. Available:

https://dzone.com/enterprise-integration-training-tools-news.
[31] DZone, Inc., "DZone DevOps Zone - DevOps news, tutorials, tools & reviews," [Online]. Available:

https://dzone.com/devops-tutorials-tools-news.
[32] DevOps.com, MediaOps, LLC., "Where The World Meets DevOps," [Online]. Available: https://devops.com/.
[33] DevOps Research and Assessment LLC., "DevOps Research and Assessment (DORA)," [Online]. Available:

https://devops-research.com/.
[34] C. Pang and A. Hindle, "Continuous Maintenance," in 2016 IEEE International Conference on Software Maintenance and

Evolution (ICSME), Raleigh, NC, USA, 2016.
[35] P. Belagatti, "7 Microservices Architecture Books Every DevOps Enthusiast Must Read," DZone, Inc., 27 04 2018.

[Online]. Available: https://dzone.com/articles/7-microservices-architecture-books-every-devops-en. [Accessed 30 04
2018].

[36] M. Richards, Microservices vs. Service-Oriented Architecture, O'Reilly, 2016.
[37] C. Pang and D. Szafron, "Single Source of Truth (SSOT) for Service Oriented Architecture (SOA)," in International

Conference on Service-Oriented Computing, Paris France, 2014.
[38] C. Pang, A. Hindle, B. Adams and A. E. Hassan, "What Do Programmers Know about Software Energy Consumption?,"

IEEE Software, vol. 33, no. 3, pp. 83-89, May-June 2016.
[39] P. M. Duvall, S. Matas and A. Glover, Continuous Integration: Improving Software Quality and Reducing Risk, Addison-

Wesley, 2007.
[40] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.
[41] M. A. Cusumano and R. W. Selby, Microsoft Secrets: How the world's most powerful software company creates

technology, shapes markets, and manages people, New York: Simon and Schuster, 1998.
[42] M. A. Cusumano and R. W. Selby, "How Microsoft Builds Software," Communications of the ACM, vol. 40, no. 6, pp. 53-

61, June 1997.
[43] J. Humbel and D. Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment

Automation, Addison-Wesley, 2010.
[44] Kharnagy, "File:Devops-toolchain.svg," Wikipedia, 07 09 2016. [Online]. Available:

https://en.wikipedia.org/wiki/File:Devops-toolchain.svg. [Accessed 11 03 2018].
[45] A. Still and P. Stanhope, DevOps and DNS - Improving Web Application Performance at the DNS Layer, O’Reilly, 2017.
[46] B. Fitzgerald and K.-J. Stol, "Continuous software engineering: A roadmap and agenda," Journal of Systems and Software,

vol. 123, pp. 176-189, January 2017.
[47] DevSecOps, "DevSecOps - Security as Code," [Online]. Available: http://www.devsecops.org/.
[48] K. Carter, "Francois Raynaud on DevSecOps," Computing Edge, pp. 15-18, 01 2018.
[49] Sonatype Inc., "DevSecOps Community Survey 2017," 2017. [Online]. Available: https://www.sonatype.com/2017survey.

[Accessed 25 03 2017].
[50] D. E. Week, "DevSecOps Community Survey," Sonatype Inc., 2018. [Online]. Available:

https://www.sonatype.com/hubfs/SON_Survey2018_final.pdf. [Accessed 16 04 2018].
[51] J. Hand, ChatOps - Managing Operations in Group Chat, O'Reilly, 2016.
[52] A. Richardson, "GitOps: High-Velocity CI/CD for Kubernetes," 14 02 2018. [Online]. Available:

https://dzone.com/articles/gitops-high-velocity-cicd-for-kubernetes. [Accessed 15 02 2018].
[53] V. Farcic, The DevOps 2.0 Toolkit - Automating the Continuous Deployment Pipeline with Containerized Microservices,

CloudBees, 2016.
[54] C. Tozzi, "DevOps Is Killing the ITOps Engineer (and That’s Bad)," DevOps.com, 12 07 2019. [Online]. Available:

https://devops.com/devops-is-killing-the-itops-engineer-and-thats-bad. [Accessed 15 07 2019].
[55] A. Noller, "DZone's 2014 Guide to Continuous Delivery," DZone, Inc., 14 04 2014. [Online]. Available:

https://dzone.com/articles/introducing-dzones-2014-guide. [Accessed 24 02 2018].
[56] J. Gopal, "The DZone Guide to Continuous Delivery," DZone, Inc., 2015. [Online]. Available:

https://dzone.com/storage/assets/18140-dzone_2015continuousdelivery_9.pdf. [Accessed 29 03 2016].

132

[57] J. Esposito, "The DZone Guide to Continuous Delvery Volume III," DZone, Inc., 2016. [Online]. Available:
https://dzone.com/storage/assets/1216574-dzone-continuousdelivery2016.pdf. [Accessed 29 03 2016].

[58] M. Werner, "The DZone Guide to DevOps, Continuous Delivery and Automation Volume IV," DZone, Inc., 2017.
[Online]. Available: https://dzone.com/storage/assets/4152382-dzone-guidetodevopscontinuousdeliveryautomation.pdf.
[Accessed 04 02 2017].

[59] N. Forsgren and M. Kersten, "DevOps Metrics," ACM Queue, vol. 16, no. 6, pp. 30:19-30:34, 11-12 2017.
[60] Puppet Inc., "Puppet," [Online]. Available: http://puppet.com.
[61] xMatters, "(x)matters," [Online]. Available: http://www.xmatters.com.
[62] Interop ITX, UBM LLC., "Interop ITX," [Online]. Available: https://www.interop.com.
[63] J. Groll, "DevOps Track," Interop ITX, UBM LLC., 30 04 2018. [Online]. Available: https://www.interop.com/devops.

[Accessed 08 03 2018].
[64] Interop ITX, UBM LLC., "DevOps Foundation Certification Course," 30 04 2018. [Online]. Available:

https://www.interop.com/devops-certification-course. [Accessed 08 03 2018].
[65] XebiaLabs, Inc., "XebiaLabs Enterprise DevOps," [Online]. Available: https://xebialabs.com/.
[66] R. Stroud, C. Gardner, E. Oehrlich, E. Klavens, A. Kinch and D. Lynch, "The Forrester Wave: Continuous Delivery And

Release," 2017. [Online]. Available: https://xebialabs.com/assets/files/analyst-
reports/The_Forrester_Wave_Continuous_Delivery_and_Release_Automation_2017.pdf. [Accessed 01 03 2018].

[67] C. Fletcher and L. F. Wurster, "Magic Quadrant for Application Release Automation," Gartner Inc., 2017.
[68] XebiaLabs, Inc., "Periodic Table of DevOps Tools (v2)," 14 06 2016. [Online]. Available:

https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/. [Accessed 24 02 2018].
[69] XebiaLabs, Inc., "XebiaLabs Unveils Periodic Table of DevOps Tools v.3 at DevOps Enterprise Summit London 2018,"

25 06 2018. [Online]. Available: https://xebialabs.com/company/press/xebialabs-unveils-periodic-table-of-devops-tools-
v3-at-devops-enterprise-summit-london-2018/. [Accessed 26 04 2019].

[70] XebiaLabs, Inc., "Periodic Table of DevOps Tools (v3)," 25 06 2018. [Online]. Available:
https://xebialabs.com/assets/files/infographics/periodic-table-of-devops-tools-v3.pdf. [Accessed 26 04 2019].

[71] XebiaLabs, Inc., "The Ultimate DevOps Tool Chest," [Online]. Available: https://xebialabs.com/the-ultimate-devops-tool-
chest/. [Accessed 12 04 2018].

[72] Linus Torvalds, "Git," [Online]. Available: https://git-scm.com/.
[73] GitHub Inc., "GitHub," [Online]. Available: https://github.com.
[74] GitLab Inc., "GitLab," [Online]. Available: https://about.gitlab.com/.
[75] J. Noehr, "Bitbucket," Atlassian, 2008. [Online]. Available: https://bitbucket.org.
[76] Travis CI, GmbH, "Travis CI," [Online]. Available: https://travis-ci.org/.
[77] YAML.org, "YAML Ain't Markup Language," [Online]. Available: http://yaml.org/start.html.
[78] CloudBees Inc., "Jenkins," [Online]. Available: https://jenkins.io/.
[79] Docker Inc., "Docker," [Online]. Available: https://www.docker.com/.
[80] The Linux Foundation, "Kubernetes," [Online]. Available: https://kubernetes.io/.
[81] J. La Torre, "50+ Useful Docker Tools," DZone, Inc., 01 01 2018. [Online]. Available: https://dzone.com/articles/50-

useful-docker-tools. [Accessed 02 01 2018].
[82] S. Yegulalp, "What is Kubernetes? Container orchestration explained," InfoWorld, 04 04 2018. [Online]. Available:

https://www.infoworld.com/article/3268073/containers/what-is-kubernetes-container-orchestration-explained.html.
[Accessed 06 04 2018].

[83] IEEE, "IEEE Xplore Digital Library," [Online]. Available: http://ieeexplore.ieee.org.
[84] Association for Computing Machinery (ACM), "ACM Digital Library," [Online]. Available: http://dl.acm.org.
[85] Google Inc., "Google Scholar," [Online]. Available: http://scholar.google.com.
[86] F. Erich, C. Amrity and M. Danevaz, "A Qualitative Study of DevOps Usage in Practice," Journal of Software: Evolution

and Process, 28 06 2017.
[87] B. B. N. de Franca, H. J. Jeronimo and G. H. Travassos, "Characterizing DevOps by Hearing Multiple Voices," in

Proceedings of the 30th Brazilian Symposium on Software Engineering (SBES), 2016.
[88] V. Garousi and M. Felderer, "Industrial and Academic Focus Areas in Software Testing," IEEE Software, vol. 34, no. 5,

pp. 38-45, Sep/Oct 2017.
[89] A. Strauss and J. Corbin, Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory,

Second ed., Sage Publication, 1998.

133

[90] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory: Strategies for Qualitative Research, Aldine
Transaction, 1967.

[91] K.-J. Stol, P. Ralph and B. Fitzgerald, "Grounded Theory in Software Engineering Research: A Critical Review and
Guidelines," in Proceedings of the 38th International Conference on Software Engineering (ICSE), Austin, Texas, 2016.

[92] K. Charmaz, Constructing Grounded Theory - A Practical Guide through Qualitative Analysis, SAGE Publications, 2006.
[93] S. Adolph, P. Kruchten and W. Hall, "Reconciling perspectives: A grounded theory of how people manage the process of

software development," The Journal of Systems and Software, vol. 85, pp. 1269-1286, 8 February 2012.
[94] M. Hilton, N. Nelson, T. Tunnell, D. Marinov and D. Dig, "Trade-Offs in CI: Assurance, Security and Flexibility," in

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, Paderborn, Germany, 2017.
[95] M. Hilton, T. Tunnell, K. Huang, D. Marinov and D. Dig, "Usage, costs, and benefits of continuous integration in open-

source projects," in 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), 2016.
[96] W. P. Luz, G. Pinto and R. Bonifacio, "Building a Collaborative Culture: A Grounded Theory of Well Succeeded DevOps

Adoption in Practice," in Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2018.

[97] D. Karanth and R. Williams, "Continuous Integration Part 3: Best Practices," DZone, Inc., 06 07 2017. [Online]. Available:
https://dzone.com/articles/continuous-integration-part-3-best-practices. [Accessed 07 07 2017].

[98] M. Sahasrabudhe, "Why DevOps Efforts Fail," DZone, Inc., 22 08 2017. [Online]. Available:
https://dzone.com/articles/why-devops-efforts-fail. [Accessed 24 08 2017].

[99] T. Randall, "Winning at Culture - The Keys to the Successful DevOps Organization," XebiaLabs, 10 05 2018. [Online].
Available: https://xebialabs.com/assets/files/whitepapers/WinningAtCulture_eBook_Final.pdf. [Accessed 23 05 2018].

[100] ACM & IEEE, "Computer Science Curricula 2013 - Curriculum Guidelines for Undergraduate Degree Programs in
Computer Science," Association for Computing Machinery (ACM) and IEEE Computer Society, 2013.

[101] QS Top Universities, "2017 QS World University Rankings by Subject - Engineering and Technology," [Online].
Available: https://www.topuniversities.com/university-rankings/university-subject-rankings/2017/engineering-technology.
[Accessed 03 08 2017].

[102] G. J. Myers, The Art of Software Testing, 1st ed., New York: Wiley, 1979, p. 177.
[103] The Australian National University, "COMP1040 The Craft of Computing," [Online]. Available:

https://programsandcourses.anu.edu.au/2017/course/COMP1040. [Accessed 24 08 2017].
[104] University of Texas at Austin, "Curriculum - Department of Computer Science," [Online]. Available:

https://www.cs.utexas.edu/undergraduate-program/academics/curriculum. [Accessed 17 08 2017].
[105] I. Kantor, "How to become a DevOps Engineering in six months or less," Medium.com, 03 06 2018. [Online]. Available:

https://medium.com/@devfire/how-to-become-a-devops-engineer-in-six-months-or-less-366097df7737. [Accessed 09 07
2018].

[106] J. Lee, "Are You Qualified to Be a DevOps Engineer?," DZone, Inc., 12 09 2017. [Online]. Available:
https://dzone.com/articles/are-you-qualified-to-be-adevops-enginee. [Accessed 15 09 2017].

[107] LinkedIn Corporation, "LinkedIn," [Online]. Available: https://www.linkedin.com/.
[108] C. Delanbanque, "7 Steps to DevOps Hiring Success," DevOps.com, MediaOps, LLC., 21 06 2017. [Online]. Available:

https://devops.com/7-steps-devops-hiring-success/. [Accessed 09 01 2018].
[109] Wonster Worldwide, Inc., "Monster," [Online]. Available: https://www.monster.com/jobs.
[110] DZone, Inc., "DZone," [Online]. Available: https://dzone.com/pages/about.
[111] IEEE Computer Society, "IEEE Computer Society Jobs Board," [Online]. Available: https://computer.org/objs.
[112] J. Ambrosio, "DevOps Hiring: Look for the Right Mindset," InformationWeek, 03 10 2018. [Online]. Available:

https://www.informationweek.com/devops/devops-hiring-look-for-the-right-mindset/d/d-id/1332949. [Accessed 09 10
2018].

[113] Project Management Institute, Inc., "Project Management Institute (PMI)," [Online]. Available: https://www.pmi.org/.
[114] International Institute of Business Analysis, "International Institute of Business Analysis (IIBA)," [Online]. Available:

https://www.iiba.org/.
[115] ICAgile, "International Consortium for Agile (ICAgile)," [Online]. Available: https://icagile.com/.
[116] C. Garlick, D. DeGrandis, G. Gotimer and T. Guay, "ICAgile Learning Roadmap DevOps Track," ICAgile, 04 2018.

[Online]. Available: https://icagile.com/Portals/0/LO%20PDFs/DevOps%20Learning%20Outcomes.pdf. [Accessed 27 07
2018].

[117] B. Simon, "Teaching Impacts of Technology in K-12 Education Specialization," University of California San Diego,
[Online]. Available: https://www.coursera.org/courses?query=Teaching%20Impacts%20of%20Technology%20in%20K-
12%20Education&. [Accessed 04 03 2019].

134

[118] ASPE Training, "DevOps Implementation Boot Camp (ICP-FDO)," [Online]. Available:
http://aspetraining.com/courses/devops-implementation-boot-camp-icp-fdo. [Accessed 28 07 2018].

[119] Association for Computing Machinery (ACM), "International Conference on Software Engineering (ICSE)," [Online].
Available: http://www.icse-conferences.org/.

[120] The Edmonton Python User Group, "Edmonton.py," [Online]. Available: http://edmontonpy.com/.
[121] D. Edwards, "The (Short) History of DevOps," 17 09 2012. [Online]. Available: https://www.youtube.com/watch?v=o7-

IuYS0iSE. [Accessed 13 04 2019].
[122] ACM Joint ESEC/FSE, "ESEC/FSE 2018 Artifacts," [Online]. Available: https://2018.fseconference.org/track/fse-2018-

Artifacts. [Accessed 27 11 2018].
[123] A. Nigam and P. Nigam, "Citation Index and Impact factor," Indian Journal of Dermatology, Venereology, and Leprology,

vol. 78, no. 4, pp. 511-16, July 2012.
[124] M. Branscombe, "AIOps: Is DevOps Ready for an Infusion of Artificial Intelligence?," The New Stack, 29 01 2019.

[Online]. Available: https://thenewstack.io/aiops-is-devops-ready-for-an-infusion-of-artificial-intelligence/. [Accessed 04
02 2019].

[125] J. Ruohonen and V. Leppanen, "How PHP Releases Are Adopted in the Wild?," in 2017 24th Asia-Pacific Software
Engineering Conference (APSEC), 2017.

[126] M. K. Aljundi, Tools and Practices to Enhance DevOps Core Values, vol. M.Sc. Thesis, School of Business and
Management, Lappeenranta University of Technology, 2018.

[127] B. Fitzgerald and S. Klaas-Jan, "Continuous Software Engineering and Beyond: Trends and Challenges," in Proceedings of
the 1st International Workshop on Rapid Continuous Software Engineering, Hyderabad, India, 2014.

[128] C. Shamieh, Continuous Engineering for Dummies, IBM Limited Edition, John Wiley & Sons, Inc., 2014.
[129] The Apache Software Foundation, "Another Neat Tool (Ant)," [Online]. Available: http://ant.apache.org.
[130] The JUnit Team, "JUnit," [Online]. Available: http://junit.org/.
[131] Checkstyle, "Checkstyle," [Online]. Available: http://checkstyle.sourceforge.net/.
[132] Vlad Roubtsov, "EMMA," [Online]. Available: http://emma.sourceforge.net.
[133] University of Maryland, "FindBugs," [Online]. Available: http://findbugs.sourceforge.net/.
[134] DZone Research, "Continuous Delivery Maturity Checklist," The DZone Guide to Continuous Delivery 2015 Edition, p.

32, 2015.
[135] M. Loukides, What is DevOps, O'Reilly, 2012.
[136] AXELOS Ltd., "Information Technology Infrastructure Library (ITIL)," [Online]. Available: https://www.axelos.com/best-

practice-solutions/itil.
[137] ISACA, "Control Objectives for Information and Related Technology (COBIT)," [Online]. Available:

http://www.isaca.org/cobit/pages/default.aspx.
[138] ISO, "ISO/IEC 20000-1:2011 Information technology-Service management-Part 1: Service management system

requirements," [Online]. Available:
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=51986.

[139] R. Lowery, "What You Need to Know about DevOps," 19 04 2016. [Online]. Available: http://www.solutionsiq.com/what-
you-need-to-know-about-devops/.

[140] Derek Robert Price & Ximbiot, "Concurrent Versions Systems (CVS)," GNU, [Online]. Available:
http://www.nongnu.org/cvs/.

[141] Perforce Software, Inc., "Perforce," [Online]. Available: https://www.perforce.com/.
[142] Microsoft Inc., "Team Foundation Server (TFS)," [Online]. Available: https://www.visualstudio.com/tfs/.
[143] J. Narebski, Mastering Git, Packt Publishing, 2016.
[144] A. Alipour, A. Hindle and S. Eleni, "A Contextual Approach Towards More Accurate Duplicate Bug Report Detection," in

Proceedings of the 10th Working Conference on Mining Software Repositories, San Francisco, CA, USA, 2013.
[145] J. C. Campbell, E. A. Santos and A. Hindle, "The Unreasonable Effectiveness of Traditional Information Retrieval in

Crash Report Deduplication," in Proceedings of the 13th International Conference on Mining Software Repositories,
Austin, Texas, 2016.

[146] J. C. Campbell and A. Hindle, "The charming code that error messages are talking about," PeerJ PrePrints, vol. 3, p.
e1388, 2015.

[147] R. Southwick, "Hospital staffer fired for snooping into patient, employee health files," Edmonton Journal, p. A8, 08 10
2014.

[148] T. Hopper, "Mount Sinai staff access Ford's records - Two employees disciplined for taking a peek," National Post, p. 9, 17

135

10 2014.
[149] Security Standard Council, "Payment Card Industry (PCI) Payment Application Data Security Standard v1.1," 2008.
[150] C. Howson, J. Parenteau, R. L. Sallam, T. W. Oestreich, J. Tapadinhas and K. Schlegel, "Critical Capabilities for Business

Intelligence and Analytics Platforms," Gartner, 2016.
[151] M. Zetlin, "How to balance maintenance and IT innovation," 21 10 2013. [Online]. Available:

http://www.computerworld.com/article/2486278/it-management/how-to-balance-maintenance-and-it-innovation.html.
[152] A. Cahyadi, Beyond Functionality and A User Interface: A Design Thinking Perspective on The Design of Dashboards,

vol. Ph.D. Thesis, Faculty of Business and Law, Swinburne University of Technology, 2016.
[153] O. Lasila, R. R. Swick and World Wide and Web Consortium, Resource Description Framework (RDF) Model and Syntax

Specification, W3C Recommendation, 1998.
[154] R. T. Fielding, "Chapter 5 Representational State Transfer (REST), Architectural Styles and the Design of Network-based

Software Architectures, Doctoral dissertation," University of California, Irvine, 2000. [Online]. Available:
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

[155] S. Dustdar and W. Schreiner, "Survey on Web services Composition," International Journal on Web and Grid Services,
vol. 1, pp. 1-30, 2005.

[156] S. Ran, "A Model for Web Services Discovery With QoS," ACM SIGecom Exchanges, vol. 4, no. 1, pp. 1-10, Spring 2003.
[157] Z. Ives, N. Khandelwal, A. Kapur and M. Cakir, "ORCHESTRA: Rapid, Collaborative Sharing of Dynamic Data," in The

2nd Biennial Conference on Innovative Data Systems Research (CIDR'05), Asilomar, CA, USA, 2005.
[158] M.-T. Schmidt, B. Hutchison, P. Lambros and R. Phippen, "The Enterprise Service Bus: Making servie-oriented

architecture real," IBM Systems Journal, vol. 44, no. 4, pp. 781-797, 2005.
[159] A. Nigam and N. Caswell, "Business artifacts: An approach to operational specification," IBM Systems Journal, vol. 47,

no. 3, pp. 428-445, 2003.
[160] R. Hull, "Artifact-Centric Business Process Models: Brief Survey of Research Results and Challenges," in OTM 2008,

Monterrey, Mexico, 2008.
[161] W. Jones, "Personal Information Management," Annual Review of Information Science and Technology, vol. 41, no. 1, pp.

453-504, 2007.
[162] H. Ludwig, J. Laredo, K. Bhattacharya, L. Pasquale and B. Wassermann, "REST-Based Management of Loosely Coupled

Services," in The 18th international conference on World Wiide Web (WWW'09), Madrid, Spain, 2009.
[163] HL7, "Health Level Seven International," [Online]. Available: http://www.hl7.org.
[164] GS1 US, "RosettaNet Standards," [Online]. Available: https://resources.gs1us.org/RosettaNet.
[165] EDIFACT, "United Nations Directories for Electronic Data Interchange for Administration, Commerce and Transport,"

[Online]. Available: http://www.unece.org/trade/untdid/welcome.htm.
[166] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski, L. Pollock and J. Clause, "An Empirical Study of

Practitioners' Perspectives on Green Software Engineering," in 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), 2016.

[167] M. Zakary and L. Gillam, "Energy efficient computing, clusters, grids and clouds: A taxonomy and survey," Sustainable
Computing: Informatics and Systems, vol. 14, pp. 13-33, June 2017.

[168] J. Scaramella and M. Eastwood, "Solutions for the Datacenter's Thermal Challenges," Jan 2007. [Online]. Available:
http://whitepapers.zdnet.com/abstract.aspx?docid=352318.

[169] B. Göetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes and D. Lea, Java concurrency in practice, Addison-Wesley, 2006.
[170] G. Pinto, F. Castor and D. Y. Liu, "Mining Questions About Software Energy Consumption," in Proceedings of the 11th

Working Conference on Mining Software Repositories, 2014.
[171] C. Pang, "Technical Summary: What do developers know about Software Energy consumption and power use?," 2013.

[Online]. Available: http://webdocs.cs.ualberta.ca/~hindle1/2014/green-programmers/.
[172] A. Hindle, "Green Mining: A Methodology of Relating Software Change to Power Consumption," in Proceedings of the

9th Working Conference on Mining Software Repositories, 2012.
[173] P. Kurp, "Green computing," Communications of the ACM, vol. 51, no. 10, pp. 11-13, 2008.
[174] H. Khalid, E. Shihab, M. Nagappan and A. E. Hassan, "What Do Mobile App Users Complain About?," IEEE Software,

vol. 32, no. 3, pp. 70-77, 2015.
[175] D. Li, S. Hao, J. Gui and W. Halfond, "An Empirical Study of the Energy Consumption of Android Applications," in

Proceedings of the IEEE International Conference on Software Maintenance and Evolution, 2014.
[176] A. Banerjee, L. K. Chong, S. Chattopadhyay and A. Roychoudhury, "Detecting energy bugs and hotspots in mobile apps,"

in Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2014.

136

[177] C. Zhang, A. Hindle and D. M. Germán, "The Impact of User Choice on Energy Consumption," IEEE Software, vol. 31,
no. 3, pp. 69-75, 2014.

[178] P. Naidu, "A DevSecOps Reference Guide 101," DZone, Inc., 27 07 2018. [Online]. Available:
https://dzone.com/articles/a-devsecops-reference-guide-101. [Accessed 10 08 2018].

[179] V. Puranik and J. Worthington, "Scale DevSecOps with your Continuous Integration Pipeline," Veracode, 14 02 2019.
[Online]. Available: https://webinars.devops.com/scale-devsecops-with-your-continuous-integration-pipeline.

[180] Threat Stack, Inc., "The SecOps Playbook - How SecOps Enables Secure Code Release, At Scale and At Speed," 2016.
[181] E. Chickowshi, "7 Reasons Why CISOs Should Care About DevSecOps," Security Boulevard, 2019.

137

Appendix A Interview Questions for Initial Raw Data Gathering

What do programmers know about Continuous Integration (CI) details?

Repository:

Do your CI processes involve source code repository software?

If so, what is/are the source code repository software?

Do you store anything else in the repository, besides source code?

Build script:

Do your CI processes involve tools that automate build from source code?

If so, what are the automated build tools?

Do your CI processes practice single command build?

Do you schedule periodic application builds on a dedicate machine?

If so, when a scheduled build fails, would the team be acknowledged?

If so, through what mechanism is the team notified?

Do you think it is costly to dedicate a machine just for build?

Development Integrated Development Environment (IDE):

Do you use IDEs?

If so, which IDEs?

Can you build your applications without the IDE?

Testing:

Do you execute performance or load tests?

Do your CI processes involve automated (regression) tests?

If so, do you use any automated test tools?

What are the automated test tools?

Are any of your regression tests based on specific authentication and authorization?

Are any of your regression tests based on specific data?

If so, how do you manage the test data?

Do any of your regression tests require communication with external web services?

Code Quality:

Do your CI processes involve source code inspection (analysis) tools?

138

If so, what are the inspection tools and what are being inspected?

Deployment:

Do your CI processes generate deployable software, such as installable packages?

Do your CI processes include automated deployment?

If so, how many different machines does your build process deploy to?

139

Appendix B Open Coding Result of the Initial Interviews

Inter
view

Code Related code Context/Expression from Transcription

#1 programming
experience

experience Education is experience?

#1 education training University formal training regard as experience to
student.

#1 employed Employment implies professionalism?
#1 full stack Both client and server sides.
#1 frequent Frequency and continuous are related.
#1 integration

problem
 CI minimizes integration problems.

#1 merge Merging is integration.
#1 fine granularity Tones of changes
#1 Git tool (repository) Version control is a CI tool
#1 Git version control
#1 Git tool (repository) CI is Git?
#1 improve quality CI improves quality regardless of team size in a

single developer team.
#1 reduce repetitive CI reduces repetitiveness.
#1 maintainability CI improves maintainability.
#1 reduce defect CI improves quality.
#1 familiar with Git tool (repository) Tool dependency.
#1 overhead cost Worthwhile even with overhead.
#1 worth while ROI
#1 overhead cost CI reduces maintenance overhead.
#1 cost Ignore installation cost.
#1 emotional effect Breaking CI is not a big deal.
#1 experience Experience with Git.
#1 experience On small or medium projects.
#1 repository tool CI needs version control.
#1 repository tool Just source code in repository.
#1 automation Unclear coverage.
#1 knowledge training Lack of build system knowledge.
#1 knowledge training Lack of CI knowledge.
#1 auto test CI without automated test?
#1 cooperation Lack of cooperation or periodic build.
#1 dedicate machine Cost of build machine is a concern.
#1 training Programmer benefit from training or survey.
#1 project scope CI benefits less obvious in small project.

140

Inter
view

Code Related code Context/Expression from Transcription

#1 abstract concept
#2 experience education Education and programming assignments

experience?
#2 experience Interesting question about years of experience.
#2 experience education Taking Java course, but never used, valid

experience?
#2 experience How to quantify experience?
#2 experience Quantify usage of technical skill.
#2 experience Hobbyist activity counts as experience, or must be

production coding experience?
#2 experience education Years of school as experience?
#2 experience More experienced programmers do not count

school years as experience.
#2 experience After working in industry, realized that schools

provided limited knowledge.
#2 education training College training practical enough for work?
#2 repository Shared source code submit to repository
#2 integration Is merging.
#2 merge Is integration.
#2 automation CI is automation.
#2 test CI involves testing.
#2 deployment CI can include CD.
#2 different process adaption Inclusive or exclusive?
#2 partial adaption adaption
#2 tool Tools are necessary in CI
#2 CircleCI tool CI tool.
#2 tool Automate code submission, triggers build, test and

deployment.
#2 repetitive Part of programmer's life.
#2 repetitive CI reduces repetitiveness.
#2 maintainability With associated cost.
#2 configuration Environment.
#2 self-

documentation
 CI processes are self-documented.

#2 scaled effect CI has mixed positive and negative effects.
#2 partial adaption adaption
#2 maintainability Related to CI.
#2 quantifiable

benefit
 CI’s benefit is hard to quantify.

#2 reduce defect In final product
#2 final product CI interim benefits are hard to quantify.
#2 final product CI over all benefit is undoubtable.

141

Inter
view

Code Related code Context/Expression from Transcription

#2 prevent naive
error

reduce defect

#2 multiple approach experience Experience leads to different approach.
#2 multiple approach experience Experience identifies complication.
#2 multiple approach For different requirements.
#2 multiple approach May add to work load.
#2 multiple option multiple approach
#2 easy approach adaption Start with basic and minimal CI processes.
#2 easy approach No automated infrastructure maintenance.
#2 maturity More mature CI brings more benefit?
#2 maturity Experienced worker realize the need of multi-role

knowledge.
#2 enforcement Avoid inconsistence in human.
#2 consistency CI enforces consistence.
#2 overhead cost Benefit cancels out the cost and overhead
#2 multi-

environment
configuration Identify additional defects.

#2 pay for better Paid service is better?
#2 pay for better Freeware creates problem or uncertainty?
#2 hardware support Programmer lacks hardware knowledge for root

cause analysis.
#2 multi-discipline multi-role CI needs multiple discipline knowledge during

integration.
#2 multi-discipline multi-role Multiple discipline problem is hard to identify.
#2 social pressure emotional effect Some feel embarrassment
#2 social pressure emotional effect Programming is not a black room process anymore.
#2 social pressure emotional effect Programming is now a social event.
#2 quick return ROI Benefit can be recognized easily.
#2 code integration CI starter.
#2 documentation self-

documentation
Part of CI content.

#2 build tool tool CI tool?
#2 single command

build
build process CI requirement?

#2 DevOps tool DevOps "ssh" deploy.
#2 DevOps tool tool
#2 build process Not clearly defined.
#2 build process What do include or exclude?
#2 perioditic build auto build
#2 feedback Need feedback mechanism.
#2 IDE tool Commonly used
#2 IDE tool Used in development, testing, deployment?

142

Inter
view

Code Related code Context/Expression from Transcription

#2 performance test Need lot of effort to maintain, not being kept up
#2 GUI test tool tool Part of CI?
#2 role-based

authorization
 Missing test concept.

#2 test data
management

 Manually done.

#2 external web
service access

 Becoming popular.

#2 JSLint tool CI static analysis tool.
#2 static analysis

tool
tool Part of CI?

#2 static analysis
tool

tool Too many warnings.

#2 warning fatigue Warning discarded.
#2 script tool Script is tool?
#2 packaging In deployment.
#2 CD Part of CI?
#2 common

understanding
standard Lack of common understanding among IT

practitioners.
#2 training Necessary in CI.
#2 CI survey knowledge IT practitioner benefits with knowledge.
#3 version control Confuse or conflate CI with version control.
#3 code integration Merge weeds out conflicts.
#3 keep history Need audit data in development.
#3 accountability Take responsibility.
#3 improve quality Cannot quantify
#3 repetitive Reduce repeating merge, build, and test.
#3 reduce defect In term of removing conflict.
#3 feedback Timely feedback for developers.
#3 IDE tool Tool dependence.
#3 IDE tool Not separable from CI.
#3 tool dependence tool
#3 auto build build process Less known area in CI.
#3 database

integration
 Less known area in CI.

#3 energy efficiency Lack of knowledge about software energy
consumption.

#3 patch
management

 Concept rarely mentioned in CI.

#3 role-based
authorization

 Multiple authorization not considered.

143

Inter
view

Code Related code Context/Expression from Transcription

#3 test data
management

 Not considered.

#3 experience CI depends on individual's experience.
#3 expenses cost Return on investment (ROI)
#3 auto build build process Not used.
#3 auto build
#3 collaboration social pressure Lack of or avoided.
#3 dynamic type

language
 Not integrate well with CI.

#3 dynamic type
language

auto build Not compliable, not buildable.

#3 dynamic type
language

auto test Need automated test.

#3 professional
development

training Lack of.

#3 immuture
developer

experience

#3 immuture
developer

social pressure

#4 merge Merging is integration?
#4 feedback test Unit tests provide feedback.
#4 feedback Promptly feedback, most important in CI.
#4 Maven tool CI tool.
#4 Maven auto build
#4 automation Automation is CI.
#4 automation Limitation of automation?
#4 automation Human involvement in automation?
#4 automation Quantify different levels?
#4 readiness Always ready.
#4 readiness Quantify readiness?
#4 continuous test auto test
#4 improve quality In feeling or actual better?
#4 improve quality feedback By feedback?
#4 instantaneous

feedback
feedback

#4 adaption Practitioners are convinced by CI.
#4 manual process Build, run, unit test.
#4 reduce repetitive What manual process reduced?
#4 unit test test More than unit test in CI.
#4 feedback improve quality Quantify improved quality?
#4 reduce defect tool By supporting tools.
#4 reduce defect tool Closely related to tool usage.

144

Inter
view

Code Related code Context/Expression from Transcription

#4 reduce defect tool Making tools meaningful.
#4 reduce defect tool Tools make reducing defect feasible?
#4 peer review Manual process.
#4 process improve quality Improve quality?
#4 auto build Fundamental in CI.
#4 code integration Fundamental in CI.
#4 repository Fundamental in CI.
#4 technical debt Reduce accumulative defect.
#4 maintenance

overhead
overhead Reduce maintenance overhead.

#4 maintenance
overhead

cost

#4 early discovery Reduce maintenance overhead.
#4 learning curve training CI education necessary.
#4 progressive

adaption
adaption Quantify different adaption levels.

#4 adaption level adaption Different levels of CI.
#4 performance test Cloud solves scaling problem.
#4 performance test No need for scaling test?
#4 cloud infrastructure
#4 container CI platform.
#4 Docker container Enhance CI
#4 automation Extend to platform configuration.
#4 container Simplify CI processes.
#4 container Improve deployment process.
#4 Amazon cloud
#4 AWS cloud
#4 DevOps Closely related to CI.
#4 configuration CI extends to configuration.
#4 infrastructure CI extends to infrastructure.
#4 monitor tool tool Necessary for CI.
#4 container continuous test Improve continuous test.
#4 dashboard feedback Method of reporting.
#4 continuous

maintenance
maintainability Rarely considered processes.

#4 quality assurance improve quality Repetitiveness guarantees repeatable result.
#4 quality assurance Learned the auditing and compliance lesson the

hard way.
#4 continuous

maintenance
maintainability System and infrastructure administration, e.g.

backup.
#4 continuous

maintenance
maintainability Currently not done.

145

Inter
view

Code Related code Context/Expression from Transcription

#4 third-party service GitHub
#4 repository Pros and cons between local and remote

installation.
#4 privacy Code ownership as property.
#4 third-party service cloud
#4 repository Backup important for local repository.
#4 automation Involve manual process in CI.
#4 Agile Roles in CI?
#4 multi-role Multiple hats.
#4 availability third-party service CI depends on third-party service availability.
#4 version control tool (repository) Part of CI
#4 repository tool Different repository software simulates different

behavior.
#4 packaging For distribution.
#4 version control Important in CI.
#4 build Important in CI.
#4 rapid change Technology needs to catch up.
#4 AWS cloud
#4 service versioning Multi-version service support is challenging in CI.
#4 service versioning Deploy different versions of API.
#4 multi-client Induce multi-version application.
#4 multi-client maintainability Add maintenance challenges.
#4 data as a service
#4 data maintenance maintainability Important in CI
#4 political

limitation
 Country boundary restrains deployment.

#4 legislation cloud Limit cloud data usage.
#4 privacy cloud Limit cloud data usage.
#4 auto GUI test GUI test tool GUI test difficult to automate.
#4 GUI test tool Revolution.
#4 auto GUI test GUI test tool Capture-based GUI test not practical.
#4 auto GUI test Multi-platform issues.
#4 multi-platform configuration
#4 multi-platform multi-

environment

#4 Capistrano tool Build tool.
#4 product line multi-platform Multi-platform issues.
#4 web technology Easier to learn for startup than native app.
#4 startup
#4 Kerberos Security standard.
#4 auto test Authentication and authorization challenges.

146

Inter
view

Code Related code Context/Expression from Transcription

#4 security Continuous security not effective?
#4 security Big-bang more effective?
#4 privacy test data

management
Concern in test data management.

#4 regression test performance test Stress test.
#4 regression test performance test Important and challenging in CI.
#4 script tool Used for automation.
#4 fake Agile Agile Team claims to use Agile, but not.
#4 essential startup CI is not consider essential to most startup.
#4 cost Monetary or non-monetary.
#4 cost Resource.
#4 cost People? Hardware? Software? Procedure?
#4 cost What is needed to start CI?
#4 cost startup Startup cost.
#4 return on

investment (ROI)
cost Not enough to motivate CI adaption?

#4 process Lack of excitement.
#4 phase two Adapt CI in source code restructure.
#4 phase two Adapt CI as secondary thought.
#4 phase two Retrofit CI into existing structure.
#4 standard Lacking in CI (e.g. Docker).
#4 craftsmanship CI implementation depends on practitioner’s skill

set and experience.
#4 single command

build
standard Need definition for single command build.

#4 Rubymine tool (IDE)
#4 JetBrain tool (IDE)
#4 SourceLab tool CI verification tool.
#4 SE skill Programming language.
#4 SE skill training Proficient in programming not sufficient for CI.
#4 SE skill knowledge Practitioners need end-to-end knowledge to support

CI.
#4 Jack of all trades DevOps CI needs wide range of skill.
#4 size matter CI culture different between large and small

organizations.
#4 size matter Large organizations have more divided

responsibilities.
#4 size matter Small organizations have no divided

responsibilities.
Table B.1 Codes of the initial interviews

147

Appendix C Open Coding Trees

1st Level 2nd Level 3rd Level 4th Level
experience
 employed
 programming experience
 immature developer
 abstract concept
 training
 education
 professional development
 learning curve
 knowledge
 full stack
 multiple approach
 multi-role
 multi-discipline
 CI survey
 SE skill
 Jack of all trades
 DevOps
 craftsmanship

Table C.1 Code Tree for "Experience"

1st Level 2nd Level 3rd Level 4th Level
practice
 frequent
 consistency
 merge
 code integration
 database integration
 automation
 test
 auto test
 dedicate machine
 performance test
 regression test
 role-based authorization
 test data management

148

1st Level 2nd Level 3rd Level 4th Level
 energy efficiency
 test data management
 dynamic type language
 continuous test
 container
 unit test

 deployment
 continuous deployment
 process
 different process
 manual process
 peer review
 configuration
 multi-environment
 multi-platform
 product line
 multiple approach
 multiple option
 documentation
 self-documentation
 build
 auto build
 build process
 single command build
 periodic build
 dynamic type language
 DevOps
 feedback
 instantaneous feedback
 packaging
 patch management
 continuous maintenance
 security
 privacy
 test data management
 data maintenance

Table C.2 Code Tree for "Practice"

149

1st Level 2nd Level 3rd Level 4th Level
benefit
 integration problem
 pay for better
 version control
 keep history
 service versioning
 fine granularity
 improve quality
 feedback
 process
 quality assurance
 reduce repetitive
 repetitive
 maintainability
 multi-client
 reduce defect
 prevent native error
 tool
 self-documentation
 quantifiable benefit
 final product
 accountability
 readiness
 technical debt
 early discovery
 availability
 third-party service
 rapid change

Table C.3 Code Tree for "Benefit"

1st Level 2nd Level 3rd Level 4th Level
cost
 ROI
 quick return
 adaption
 partial adaption
 easy approach
 maturity
 scaled effect
 progressive adaption

150

1st Level 2nd Level 3rd Level 4th Level
 adaption level
 overhead
 worth while
 maintenance
 expenses

Table C.4 Code Tree for "Cost"

1st Level 2nd Level 3rd Level 4th Level
tool
 repository
 Git
 build
 CircleCI
 Maven
 DevOps
 IDE
 Rubymine
 JetBrain
 test
 GUI test
 SourceLab
 static analysis
 JSLint
 script
 tool dependence
 infrastructure
 hardware support
 cloud
 Amazon (AWS)
 container
 Docker
 monitor
 feedback
 dashboard
 security
 Kerberos
 deployment
 Capistrano

Table C.5 Code Tree for "Tool"

151

1st Level 2nd Level 3rd Level 4th Level
social aspect
 collaboration
 cooperation
 project scope
 Agile
 fake Agile
 enforcement
 social pressure
 emotional effect
 warning fatigue
 standard
 common understanding
 political limitation
 legislation
 startup
 essential
 phase two
 size matter

Table C.6 Code Tree for "Social Aspect"

1st Level 2nd Level 3rd Level 4th Level
third-party service
 cloud
 Amazon (AWS)
 external web service access
 data as a service
 web technology

Table C.7 Code Tree for "Third-Party Service"

152

Appendix D Potential DevOps Research Questions

Experience

• Knowledge across multiple fields is necessary to practice CI?
• Need to improve CI education?
• CI depends heavily on individual's experience?
• Does the level of CI adaption in a company correspond to the experience of its IT

practitioner?
• Does CI demand all IT practitioners to have some programming ability?
• Does CI demand higher skill set from IT practitioners?
• How much infrastructure knowledge IT practitioner should have to practice CI?
• What are the skills and knowledge needed for CI?
• Is CI covered in education curriculum?
• Is CI a topic in recent Software Engineering researches?
• What and where do CI specialists get their training?
• What are the requirements for CI jobs?
• How popular are CI positions in job posting sites?
• What should be the qualification of CI specialist?
• Is there enough publicity about CI?
• How do IT practitioners learn CI? Junior? Senior?
• Is CI pure craftsmanship?
• How can Software Engineering education cover the CI needs?
• CI experts need to be Jack of all trades?

Practice

• What are the CI maintenance considerations?
• How is practicing CI different between large and small teams?
• Is CI a practice for single application?
• Maintenance is dead?
• CI includes "Continuous" and "Integration", but the "Continuous" concept is always

overlooked by the practitioners?
• Does adapting CI mean eliminating scheduled releases and milestones?
• How using different version control repositories are affecting CI practices?
• What be managed by CI? Configuration? Environment? Virtual machines?
• How enterprises handle broken builds?
• How enterprises manage CI infrastructure?
• What are the common concerns for CI environment and environment management?
• How applications depending on third-party services are tested and managed by CI?
• How often is Continuous Inspection adopted?
• Why are IT practitioners confusing version control repository with CI?
• How to manage mobile application patching in CI?

153

• Does CI work for dynamic typed languages, such as Python?
• What tasks should be included in the application build process?
• How to manage secondary artifacts (e.g. scripts) in CI?
• How does CI affect the IT practices?
• What are the feedbacks provided through CI?
• What are the major causes of CI build failures for different types of applications?
• What is hindering people from adapting auto-test?
• How CI changes software maintenance?
• CI practices and automation intensify the usage of many resources, and escalates

maintenance issues which have been ignored?
• What are the issues raised from adopting CI?
• How companies adopt CI?

What are the CI adaptation processes?
• Are CI and DevOps separable?
• In CI, who should be responsible for cleanup, archive and backup?
• How can CI practices be incorporated into project planning and management?
• Are there specific technologies that do not integrate well with CI (e.g. Perl)?
• Can human involved GUI testing be replaced by CI?
• What are included in software security testing?

How often is security testing included in CI?
• Comparing continuous security review versus big-bang security review?
• How to evaluate the security and privacy quality of an application in the CI process?
• Is there CI security evaluation?
• How are CI practices different between large and small companies?
• It has been a challenge to manage mutli-version service APIs.

How often is CI used in this type of environment?

Benefit

• What are the CI’s benefits?
What CI is benefiting?

• Can CI’s benefits be quantified?
• Have CI’s benefits been proven?
• Are there any interim benefits until CI is fully implemented?
• Has it been proven that CI reduces defects?
• Does implementing CI improve quality?
• Without using tools, can CI improve quality and reduce defects?
• Does feedback from the CI processes improve software quality?
• How does feedback improve quality?
• Does the scale of return from implementing CI correspond to adaption level, team size,

and/or application size?
• What kinds of defects CI can catch, while compiler cannot?
• CI enforces consistency therefore reduce human errors. Does it reduce defects?
• Is there data that compare productivity before, during and after CI adoption?

154

• What are the quick wins from CI?
• What are the benefits correspond to each CI process?
• What are the most important goals in adopting CI?
• What are the defects CI reduced?
• Can automated testing’s benefit be qualified?
• CI is more beneficial to complicated projects and applications?
• Does CI make application security better, worse, or irrelevant?
• CI improves awareness by feedback?

Cost

• What is the total cost of ownership for CI? Man hours? Software? Hardware?
• What are the hard and soft expenses in adopting CI?
• How can ROI be calculated for adopting CI?
• How to estimate and evaluate CI adoption costs?
• How can startups plan for CI costs?

Tool

• Engineers do everything by the book. Is CI that book for Software Engineering?
• CI tools usually run on one platform, not good for applications using or support multiple

platforms?
• Will enterprises use open source CI tools? For development? For production?
• What can be accomplished in CI without using third party tools?
• Comparing startup and enterprise, how valuable are CI tools?
• What are the CI test data managing processes and tools?
• How different IDEs support different CI processes?
• Are CI tools integrating well?
• How often company integrates container usage into CI?
• How the container technology affects CI?
• What are the differences between using local versus remote repository for CI?
• Any suggestion or guidelines for selecting repository for CI?
• Is there CI tool that build, test and deploy for multiple environments?
• Is there data management tools that support CI?
• All CI tools must support command-line interface?
• How are CI processes different between the bare metal, virtual machines, and container

environments?
• What programming languages are used for CI automation?

Social Aspect

• How CI affects the IT culture?
• Is coordination really necessary in CI?

If so, what kind of coordination is necessary in CI?

155

• What are the roles and responsibilities of IT support personnel in CI?
• Has CI killed maintenance?
• Does causing a build failure have any emotional effect on the IT practitioners?
• Does CI affect team morale?
• How to promote CI to non IT practitioners?
• Has CI created negative social effect?
• Who should lead CI adoption (e.g. programmer, operator, business manager)?
• Does professional designation have any value in IC?
• How programmers with different style adopt CI from the social aspect?
• How CI handle warning fatigue in programming?
• Is CI really a job killer?
• Are IT practitioners feeling good about CI?
• How does Agile work with CI?
• How much CI should startups adopt?
• How do companies manage personnel during CI adoption?

Third-Party Service

• What are the challenges of CI with cloud?
• What are the considerations of using third party services for CI?

156

Appendix E Potential Grounded Theory

Title: Continuous Integration (CI) is a craftsmanship. How do you learn the craft?

The Oxford dictionary defines craftsmanship as skill in a particular craft. The quality of design

and work is shown in something made by hand artistically. Wikipedia describes craftsmanship as

a human attribute relating to knowledge and skill at performing a task. Dictionary.com portrays a

craftsman as a person who practices or is highly skilled in a craft.

CI is a craftsmanship for it is a kind of art that highly depends on the skill of the crafter.

CI solutions are customized one at a time. They cannot be mechanically reproduced. IT

practitioners craft CI solutions with their advance knowledge and sophisticated skill one at a time.

Art products may vary significantly, or be similar but different. Some crafted arts may

have similar pattern, but created by different tools. Like crafting a piece of wood, there is no

right or wrong. A crafter employs one's own skill and tools to create the best piece of art from

the wood. Similarly, the implementation of CI is different from project to project, and from

organization to organization. The CI implementation in large organizations may be different

from that in small organizations. IT practitioners use their skills and tools to customize CI

solution for the best of each situation. Since IT practitioners may have different skills and tools,

similar solutions may employ different tools. Sometimes, CI strategy may be oriented according

to the tools in hand. As the idiom says, "To a man with a hammer, everything looks like a nail."

Compared with other IT skills, CI demands higher craftsmanship. For CI solution

involves the full IT stack, instead of one dimension, layer or component. Therefore, CI has to

deal with a lot more variances.

Since CI is a craftsmanship, learning CI is different from learning other IT skills, for

example, learning a programming language. To learn a programming language, one will learn its

syntax, its data structure, its compiling and execution mechanism, etc.. However, a programming

language is just one of the tools employed by CI. A student may master the skill of using

hammer and chisel, but it does not means the student can engrave a good piece of art. Especially

when CI is a full-stack art, mastering one skill is not sufficient to master all of CI. IT

practitioners can learn their skills and tools through education, but they can only accumulate

157

knowledge about how to apply these skills and tools in CI through hands-on experience. Just like

crafting, students can only achieve proficiency in CI through hands-on experience.

158

Appendix F 2017 QS World University Rankings by Subject - Engineering
and Technology

https://www.topuniversities.com/university-rankings/university-subject-

rankings/2017/engineering-technology

Ra
nk

University Website Country

1 Massachusetts Institute of Technology
(MIT)

http://web.mit.edu/ USA

2 Stanford University https://www.stanford.edu/ USA
3 University of Cambridge https://www.cam.ac.uk/ UK
4 Nanyang Technological University

(NTU)
http://www.ntu.edu.sg Singapore

5 ETH Zurich - Swiss Federal Institute of
Technology

https://www.ethz.ch/en.html Switzerla
nd

6 Imperial College London https://www.imperial.ac.uk UK
7 National University of Singapore (NUS) http://www.nus.edu.sg/ Singapore
8 University of California, Berkeley

(UCB)
http://www.berkeley.edu/ USA

9 University of Oxford http://www.ox.ac.uk/ UK
10 Tsinghua University http://www.tsinghua.edu.cn/publish/ne

wthuen/index.html
China

11 The University of Tokyo http://www.u-tokyo.ac.jp/en/ Japan
12 Ecole Polytechnique Federale de

Lausanne (EPFL)
https://www.epfl.ch/ Switzerla

nd
13 Harvard University http://www.harvard.edu/ USA
14 Korea Advanced Institute of Science &

Technology (KAIST)
http://www.kaist.edu/html/en/index.ht
ml

South
Korea

15 The Hong Kong University of Science
and Technology (HKUST)

http://www.ust.hk Hong
Kong,
China

16 Georgia Institute of Technology http://www.gatech.edu/ USA
17 California Institute of Technology

(Caltech)
http://www.caltech.edu/ USA

=18 Peking University http://english.pku.edu.cn/ China
=18 Tokyo Institute of Technology http://www.titech.ac.jp/english/ Japan
20 Delft University of Technology https://www.tudelft.nl/en/ Netherlan

ds
21 Seoul National University https://www.useoul.edu/ South

Korea
22 Kyoto University http://www.kyoto-u.ac.jp/en Japan

159

Ra
nk

University Website Country

23 National Taiwan University (NTU) http://www.ntu.edu.tw/ Taiwan
=24 Politecnico di Milano https://www.polimi.it/en/home/ Italy
=24 Shanghai Jiao Tong University http://en.sjtu.edu.cn/ China
=24 Technical University of Munich https://www.tum.de/en/homepage/ Germany
27 The University of Hong Kong http://www.hku.hk/ Hong

Kong,
China

28 The University of Melbourne http://www.unimelb.edu.au Australia
29 KTH Royal Institute of Technology https://www.kth.se/en Sweden
30 University of California, Los Angeles

(UCLA)
http://www.ucla.edu/ USA

=31 Carnegie Mellon University http://www.cmu.edu/ USA
=31 The University of New South Wales

(UNSW Sydney)
https://www.unsw.edu.au/ Australia

33 RWTH Aachen University http://www.rwth-aachen.de/ Germany
34 University of Toronto https://www.utoronto.ca/ Canada
=35 Technische Universitat Berlin (TU

Berlin)
http://www.tu-
berlin.de/menue/home/parameter/en/

Germany

=35 University Malaya (UM) https://www.um.edu.my/ Malaysia
37 Princeton University https://www.princeton.edu/ USA
=38 KIT, Karlsruhe Institute of Technology https://www.kit.edu/english/ Germany
=38 National Tsing Hua University http://nthu-

en.web.nthu.edu.tw/bin/home.php
Taiwan

=38 University of Illinois at Urbana-
Champaign

http://illinois.edu/ USA

41 The University of Sydney http://sydney.edu.au/ Australia
42 Zhejiang University http://www.zju.edu.cn/english/ China
43 Technical University of Denmark http://www.dtu.dk/english Denmark
=44 Monash University https://www.monash.edu/ Australia
=44 University of Texas at Austin https://www.utexas.edu/ USA
46 The Australian National University http://www.anu.edu.au/ Australia
=47 Cornell University https://www.cornell.edu/ USA
=47 Fudan University www.fudan.edu.cn/en/ China
49 University of Michigan https://umich.edu/ USA
50 The Chinese University of Hong Kong

(CUHK)
http://www.cuhk.edu.hk/english/index.
html

Hong
Kong,
China

Table F.1 Top 50 Institutes in 2017 QS World University Rankings by Subject - Engineering and
Technology

160

Appendix G Academic Survey Invitation Letter

Subject: Hands-on experience between Engineering and Computer Science educators

Dear [Chair or Head] of [Engineering or Computer Science],

The work in Engineering and Computer Science both involve a lot of craftsmanship.

The skill of the craftsmen in their trade is highly dependent on their hands-on experience.

We wonder whether there is a different between Engineering and Computer Science

undergraduate (Bachelor degree) educators in their hands-on experience.

We invite the top 50 universities in the 2017 QS World Rankings to help answering the question.

https://www.topuniversities.com/university-rankings/university-subject-

rankings/2017/engineering-technology

Would you please kindly forward this invitation email to the [Engineering or Computer Science]

educators in your [Engineering or Computer Science] department?

We invite full-time employees of post-secondary institutions with undergraduate teaching

responsibilities (professor, associate professor, assistant professor, lecturer, etc.) in Engineering

and Computer Science to answering these questions, which take just a minute.

1. Are you an Engineering or Computer Science educator?

2. How many years you have been teaching undergraduate Engineering or Computer

Science courses?

3. How many years of full-time hands-on experience as an engineer or IT practitioner do

you have?

4. Do you teach students about automated unit testing in your undergraduate courses?

5. Do you teach students about Continuous Integration (CI) in your undergraduate courses?

6. Do you teach students about DevOps in your undergraduate courses?

161

Link to the survey.

https://docs.google.com/forms/d/e/1FAIpQLScZ1eSW9eOUHdTuq3ixOnTBfptZSx4jzqN5FoR8

B3LnMt0IMA/viewform

If you have any question, please feel free to email me.

Thank you very much.

Best regards,

Candy Pang

Ph.D. Candidate

University of Alberta

Email: cspang@ualberta.ca

Home page: http://webdocs.cs.ualberta.ca/~cspang/

P.S. The Letter of Information and Consent Form can be found at

https://drive.google.com/file/d/0B7u377iiS0-RdVgxbFFBN0U4M0U

162

Appendix H Survey comparing hands-on experience between Engineering and
Computer Science educators

163

Figure H.1 Comparing Hands-on Experience between Engineering and Computer Science

Educators Survey

164

Appendix I Graduate Student Research Invitation Letter

Subject: What is Continuous Integration (CI)?

Dear fellow students,

Continuous Integration (CI), as part of Development-Operations (DevOps), is very popular in the

industry.

Two new job titles "Automation architect" and "DevOps manager/VP of DevOps" are related to

CI and DevOps, which "experts say may sound a bit strange but are needed in today’s workplace

and are here to stay." [1]

Research shows that "DevOps practices lead to higher IT performance. This higher performance

delivers improved business outcomes, as measured by productivity, profitability, and market

share." [2]

However, a survey of over 1000 IT practitioners showed that "around 60% either didn’t know

what [DevOps] was, or weren’t sure if their companies were doing it." [3][4]

If you have not used CI or DevOps before, we are seeking your help in our research.

We will like to know what hinders people from adopting CI.

If you can give us half an hour, we will give you a 10 minutes introduction about CI.

Then, we will ask a few questions about your opinion of CI.

Please send me an email <cspang@ualberta.ca>, if you can give us half an hour.

If you have any question, please feel free to email me.

Thank you very much.

Best regards,

Candy Pang

Ph.D. Candidate

University of Alberta

165

Email: cspang@ualberta.ca

Home page: http://webdocs.cs.ualberta.ca/~cspang/

P.S. The Letter of Information and Consent Form can be found at

https://drive.google.com/open?id=0B7u377iiS0-RVXc3NVNmNlY2djg

[1] http://www.cio.com/article/3214629/careers-staffing/7-hot-new-it-jobs-and-why-they-just-

might-stick.html

[2] https://puppet.com/system/files/2017-06/2017-state-of-devops-report_3.pdf

[3] https://dzone.com/articles/the-future-of-devops-2

[4] http://info.xmatters.com/rs/178-CPU-592/images/atlassian_devops_survey.pdf

166

Appendix J Continuous Integration (CI) Introduction for Graduate Students

167

168

Appendix K ICAgile ICP-FDO Learning Objectives (Dec 2017)

1. Version Control

1.1. Commit Everything

1.2. Infrastructure as Code

1.3. Working on Main line

2. Mindset and Principles

2.1. DevOps Principles

2.2. Systems Thinking

2.3. Definition of Done

2.4. Communication

2.5. Collaboration

2.6. Reduced Risk

2.7. Small, Frequent Releases

2.8. Feedback Loops

2.9. Continuous Improvement (Kaizen)

2.10. Ingraining the DevOps Mindset

2.11. Measuring DevOps Success

3. Cultural Challenges

3.1. Essential Conflict

3.2. Teams

3.3. Organizational Structure

3.4. Confidence in Automation

3.5. Resistance to Change

3.6. Incremental Implementation

3.7. Time-bound vs. Queue-driven

3.8. Distributed Teams

4. Dependency Management

4.1. Artifact Management

4.2. Third-party components

5. Managing Configuration

5.1. Application Configuration

5.2. Environment Management

5.3. Feature Toggles

5.4. Configuration Management Tools

6. Practices of Continuous Integration

6.1. Principles of Continuous Integration

6.2. Commit Code Frequently

6.3. Prioritize Fixing the Build

6.4. Writing Automated Developer Tests

6.5. All Tests and Inspections Much

Pass

6.6. Run Private Builds

6.7. Avoid Getting Broken Code

7. Build Automation

7.1. Build Tools

7.2. Minimize External Requirements

8. Quality Assurance

8.1. Static Analysis

8.2. Development Standards

8.3. Continuous Feedback

8.4. Distributed Teams

9. Philosophy and Mindset

9.1. Definition of Continuous Delivery

9.2. Continuous Delivery vs. Continuous

Deployment

10. Principles of Continuous Delivery

169

10.1. Repeatable, Reliable Process for

Releasing Software

10.2. Automate Almost Everything

10.3. Keep Everything in Source Control

10.4. If It Hurts, Do It More Frequently,

and Bring the Pain Forward

10.5. Build Quality In

10.6. Done Means Released

10.7. Everybody is Responsible for the

Delivery Process

11. Practices of Continuous Delivery

11.1. Build Binaries Only Once

11.2. Same Deploy Process Everywhere

11.3. Smoke Test Your Deployment

11.4. If Anything Fails, Stop the Line

12. Deployment Pipeline

12.1. Definition of Deployment Pipeline

12.2. Commit Stage

12.3. Automated Acceptance Stage

12.4. Manual Testing

12.5. Non-functional Testing

12.6. Automated Deployment

12.7. Rolling Back a Release

12.8. Pushing to Production

12.9. Deployment Orchestration

12.10. Developing the Pipeline

13. Types of Tests

13.1. Unit Testing

13.2. Functional Testing

13.3. Non-functional Testing

13.4. Exploratory Testing

13.5. Systems and Integration Tests

14. Managing Infrastructure

14.1. Virtualization

14.2. Cloud Computing

14.3. Containers

14.4. Provisioning

14.5. Automated Infrastructure

14.6. Scaling

14.7. Monitoring

14.8. Log Management

14.9. Continuity Planning

15. Managing Databases

15.1. Managing Change

15.2. Database Scripting

15.3. Test Data

15.4. Reverting Data Changes

16. History of DevOps

16.1. Origins of DevOps

16.2. Early Thinking on DevOps

16.3. DevOps vs. Traditional

Approaches

16.4. DevOps vs. Continuous Delivery

16.5. DevOps Business Value/Benefits

16.6. DevOps is Emergent and Evolving

17. DevOps within an Agile Context

17.1. DevOps within an Agile Context

18. Role of Continuous in a DevOps Culture

18.1. Role of Continuous Integration in a

DevOps Culture

19. Principles of Continuous Integration

170

19.1. Principles of Continuous

Integration

20. Test Automation

20.1. Test Automation

21. Role of Testing in DevOps

21.1. Role of Testing in DevOps

22. Managing Defects

22.1. Managing Defects

	1 Introduction
	1.1 Dissertation Contributions
	1.2 Hypotheses about Future DevOps Education
	1.3 Additional Contributions
	1.4 Dissertation Organization

	2 Background
	2.1 Continuous Integration (CI), Continuous Delivery (CD), and DevOps History
	2.2 Prevalence of DevOps
	2.2.1 Prevalence in Industry
	2.2.1.1 Evangelism
	2.2.1.2 Tools
	2.2.1.3 Surveys

	2.2.2 Prevalence in Academia

	2.3 Grounded Theory (GT)
	2.3.1 Grounded Theory in Software Engineering
	2.3.2 Strauss and Corbin Grounded Theory Summary
	2.3.2.1 The First Phase of Grounded Theory Project
	2.3.2.2 The Second Phase of Grounded Theory Project

	2.4 Previous Software Engineering Research using Grounded Theory

	3 Creation of Potential DevOps Grounded Theory
	3.1 Strauss and Corbin Grounded Theory Adoption
	3.2 Concrete Execution of Grounded Theory
	3.2.1 Initial Interviews
	3.2.2 Open Coding
	3.2.3 Code Relationship Analysis
	3.2.4 Codes Occurrence Analysis

	3.3 DevOps Grounded Theory Topic Selection
	3.3.1 Potential Research Questions Analysis
	3.3.2 Topic Analysis and Selection
	3.3.3 Potential DevOps Education Theory

	4 Grounded Theory Study about DevOps Education
	4.1 DevOps in Academic Education
	4.1.1 Academic Education Search Process
	4.1.2 Academic Education Search Result
	4.1.3 Academic Education Search Analysis
	4.1.3.1 Software Testing Teaching
	4.1.3.2 Challenges in DevOps Teaching

	4.2 DevOps in Academia
	4.2.1 Academic Survey Process
	4.2.2 Academic Survey Result and Analysis

	4.3 DevOps in Academic Research
	4.3.1 Graduate Student Interview Process
	4.3.2 Graduate Student Interview Result
	4.3.3 Graduate Student Interview Analysis

	4.4 DevOps Requirements in Industry
	4.4.1 DevOps Jobs Requirements
	4.4.2 DevOps Job Search Process and Results
	4.4.3 DevOps Jobs Search Analysis

	4.5 DevOps Professionalism
	4.5.1 DevOps Certification
	4.5.2 DevOps Training Programs
	4.5.3 DevOps Communities, Conferences, and Organizations

	4.6 DevOps Practitioners
	4.6.1 DevOps Practitioners Interview Process
	4.6.2 DevOps Practitioners Interview Analysis
	4.6.2.1 DevOps Practitioner Requirement Analysis
	4.6.2.2 DevOps Practitioner Expectation Analysis

	5 Hypotheses about DevOps Education
	5.1 DevOps in Programming Assignments
	5.2 DevOps Skills Transferability
	5.3 DevOps Academic Values
	5.4 DevOps Employment Opportunities
	5.5 DevOps in Industry
	5.6 Concluding Remarks

	6 Limitations
	6.1 Internal Threats
	6.2 External Threats
	6.3 Other Threats

	7 Conclusion
	7.1 Future Work

	8 Continuous Maintenance (CM)
	Abstract
	8.1 Introduction
	8.2 Related Work
	8.2.1 Development Management
	8.2.2 Operations Management

	8.3 Continuous Maintenance (CM)
	8.3.1 Pre-Production CM
	8.3.2 Post-Production CM

	8.4 Conclusion

	9 Single Source of Truth (SSOT) for Service Oriented Architecture (SOA)
	Abstract
	9.1 Introduction
	9.2 Mutable SSOT Service
	9.2.1 Client-Record Creation
	9.2.2 Client-Record Retrieval

	9.3 Immutable SSOT Service
	9.3.1 Query-by-Criteria
	9.3.2 Query-by-SSOT-ID
	9.3.3 Client-record Creation
	9.3.4 Client-record Retrieval
	9.3.5 Constructing SSOT-IDs
	9.3.6 Update Subscription
	9.3.7 Deletion Subscription
	9.3.8 Additional Operations

	9.4 Performance and Quality-of-Service (QoS)
	9.5 Related Work
	9.6 Future Work
	9.7 Conclusion

	10 What Do Programmers Know about Software Energy Consumption?
	Abstract
	10.1 Introduction
	10.2 The Survey
	10.3 The Results
	10.3.1 Programmers Have Limited Awareness of Software Energy Consumption
	10.3.2 Programmers Lack Knowledge of Reducing Software Energy Consumption
	10.3.3 Programmers Lack Knowledge of Software Energy Consumption
	10.3.4 Programmers Are Unaware of Software Energy Consumption’s Causes

	10.4 Limitations
	10.5 Conclusion

	11 Final Words
	11.1 Lessons Learned
	11.2 Future Work

	Bibliography
	Appendix A Interview Questions for Initial Raw Data Gathering
	Appendix B Open Coding Result of the Initial Interviews
	Appendix C Open Coding Trees
	Appendix D Potential DevOps Research Questions
	Appendix E Potential Grounded Theory
	Appendix F 2017 QS World University Rankings by Subject - Engineering and Technology
	Appendix G Academic Survey Invitation Letter
	Appendix H Survey comparing hands-on experience between Engineering and Computer Science educators
	Appendix I Graduate Student Research Invitation Letter
	Appendix J Continuous Integration (CI) Introduction for Graduate Students
	Appendix K ICAgile ICP-FDO Learning Objectives (Dec 2017)

