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Abstract

The design of a fast, accurate, and robust system identification method. and applica-
tion to adaptive control are the main objectives of this research. This research ajm 1s
carried out through black-box modeling system identification using artificial neural
networks and an optimal control method. The black-box model implicitly includes
the advantage that no physical insight into plant dynamics is available or used in
the process of adaptive control design. Applications can include real environments
such as rigid-body robot manipulators with unknown friction, payload. backlash. and
external disturbances. free-floating robot manipulators with inherently unclear mass-
related properties. underwater robotic vehicles with complex hydrodynamic effects.
ground vehicles for suspension control with random road conditions. microrobots
with viscous effects at low speed. etc.. The black-box modeling is a strategy that
puts all uncertain dvnamics (including even analytically can-be-known dynamics to
overcome the limitation of ad-hoc control) into a black-box having only input and
output measurements.

System identification based on a black-box model is carried out through a devised
recurrent neural network and a suitably modified on-line training algorithm. The al-
gorithm is fast in learning speed, accurate in identification error. and robust with
respect to different plants dynamics. Although artificial neural networks (ANNs)
have excellent capability, for example function approximation, input/output map-
ping, massive parallel processing, etc., their learning algorithms have problems of
speed, accuracy and robustness generally due to the error back-propagation training

strategy. In this thesis, these drawbacks are solved through a novel recurrent neural



topology and modified on-line training algorithm. The developed svstem identifica-
tion techniques show excellent performance and take into account uncertain dynam-
ics as well as nominal dynamics simultaneously by inputs and outputs via on-line
observation. The adaptive control algorithm based on the black-box identification
excludes the possible use of previously can-be-known analytic information about a
specific plant in order to prevent ad hoc (control) processor working for a specific
system only. Therefore, a major goal of this thesis is to design a flexible adapt-
ive control for diverse nonlinear systems and includes the development of powerful
neural networks with robust connection weights training algorithms. This research
gives specific attention to this aspect.

The neural system identifier. mentioned above, is combined into optimal control
techniques for tracking problems of SISO to MIMO systems under the certainty-
equivalence principle. Since the conventional combination of model-based identifiers
and optimal techniques has been carried out using linear models. the use of nonlinear
neural identifiers requires a new approach with optimization methods. The overall
control scheme developed in this research is categorized as a multi-variable adaptive
self-tuning control with neural identifier. The control method. supported by a neural
black-box model. can cope well for nominal and uncertain dynamics with fast tracking
speed and wide operating conditions. It is applicable to different nonlinear systems
without changing control schemes. For a benchmark plant. the rigid-body. multi-joint.
robot manipulator is used to test the concepts because it exhibits highly nonlinear.
strongly coupled MIMO, and fast time-varying elements with uncertain nonlinear

dynamics for the tracking purpose via pure input/output measurements.
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Chapter 1

Overall Introduction

1.1 Introduction

This thesis presents the development of fast. accurate and robust neural system iden-
tification techniques and applications to adaptive control. Some complicated dynamic
systems such as a robot manipulator. human neuromuscular system and flying vehicle
(aircrafts. missiles. etc.) include lots of dynamic complexities. Typical difficulties
include nonlinearity. strong coupling effects. time-variance. parameter uncertainty.,
unmodeled dynamics. etc.. These complexities are difficult to model mathematic-
ally. For the adaptive (control) processing to handle these undesirable problems.
the behavior (position. velocity. orientation. etc.) of these systems must be able to
be interpreted on-line (sometimes in advance) to manage them properly. This mo-
tivates the search for a nonlinear system identification algorithm which in the past
has been tackled mainly by off-line algorithms or mathematical models. In the past
three decades major advances have been made in adaptive identification and control
for identifying and controlling linear time-invariant plants with unknown parameters.
The choice of the identifier and controller structures was based on well established
results in linear system theory. In this research, the first effort is put on the develop-
ment of a powerful neural identifier performing on-line.

The adaptive system identifier adjusts itself by causing its output to match that
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of the unknown system. generally to cause its output to be a best least-squares fit 1o
that of the unknown system. Upon convergence. the structure and parameter values
of the adaptive system identifier may or may not resemble those of the unknown
system. but the input-output response relationships will match. In this sense. the
adaptive system identifier beccmnes a model of the unknown system. New control
strategies can be investigated to handle highly complex systems based on a model.
One such method that has emerged to deal with these complex nonlinear svstems is
the use of artificial neural networks (ANNs). It is generally found that ANNs handle
the nonlinear identification problem well. although some difficulties for more complex
systems still need to be resolved.

In practice. the iterative on-line identification and its adaptive control processing is
inevitable to compensate various nominal dynamics and uncertainties through train-
ing a2 ANN model. In order to carry out this objective. first of all. the svstem
identification should robustly be achieved based on an adequate. but universal svs-
tem model. This is essential in order to take into account various dyvnamic effects
in real-life systems by means of only input/output measurements. For example. the
adaptive explicit control scheme consists of two separate main blocks of plant ident;-
fication to characterize dynamic effects into a model and controller gain adjustment
to minimize the control error between desired and actual signals. The author strongiv
believes that plant identification plays a very important role for controlling nonlin-
ear time-varyving system with uncertainties. This is also emphasized in the following

statements:

The Achilles heel of its self-tuning version (adaptive explicit control scheme.
however. is the identification algorithm which was originally introduced

more as an afterthought than as an integral part of the design [SMS91}.
A key part of the self-tuning controller is the identifier [CGS9.
The identification block in this research includes the developed recurrent neural

network architecture. and its fast. accurate and robust learning algorithm. The iden-

tification task can be separated into four successive subproblems as follows:




Creating data sets on-line or off-line.

Building a model (architecture).
¢ Determining (estimating or training) parameters of the model.

Testing or diagnosing performances of speed. accuracy, robustness, generality.

etc..

The description for step 1 is covered in Chapter 2. while the development and findings
for step 2. 3, and 4 are covered in Chapters 4. 5, and 6 respectively.

After the nonlinear system dynamics is identified on-line through the neural net-
work model and efficient training algorithms. its applicability is shown through the
adaptive self-tuning (explicit) control scheme for the tracking problem of the robot
manipulator presented in Chapter 7. Chapter 7 shows the development of the optimal
LOQ (linearly observed quadratic) control based on a fast. accurate and robust neural
identifier developed in the previous chapters. and presents simulation results for track-
ing control without using pre-information of the system being controlled. If a certain
control strategy does not require pre-knowledge of the system being concerned. the
system identifier will play a more important role in modern control methodology.
This is because an exact mathematical modeling of many dynamic systems is difficult
to obtain if not impossible in some cases. As systems get more complicated, cost and
time are key features in effecting appropriate design strategy. One such example may
be found in the Functional Neuromuscular (or Electrical) Stimulation of biomedical
engineering, where the exact mathematical modeling of human body is almost im-
possible. There exists potential advantages in using neural networks from application

to application. Some real-life stories of neural nets applications are outlined below:

1. Ford Research Lab. (Dearborn, Mich.): developed the road-tested, low-cost,
U.S.-made controller that meets the tough new Clean Air Act standard for
ultra-low vehicle emissions. Crucial to this success was the ability of

advanced neural networks to minimize such parameters as pollution




and energy overuse. accounting directly and effectively for nonlinearities and
noise, in a highly dynamic system. (Also important was the availability of

low-cost, high-throughput chips.)

(SN

. Accurate Automation Corp.! (Chattanooga, Tenn.): developed the aircraft
stabilizer (controller) by using the inputs and outputs of the players who could
stabilize the craft under a wide variety of conditions, and then using neural
networks to replicate these players’ behavior {which is an identification of craft-
players’ behavior off-line). The neural networks control is a central part
of all the efforts. For this. the designers took few weeks with very little
expenditure. They also used neural optimization methods for solving the mass

ratio problem of the National Aerospace Plane.

3. NASA's Ames Research Center (Moffett Field) and Dryden Flight Research
Center (Edwards, both in Calif.): developed the automatic landing system for
a real MD-11 jumbo jet. Their first-generation controller was a hybrid of a
neural network and a traditional control system. in which the neural network
had earlier been trained off-line to respond to emergencies as experienced pilots

do. A second-generation system based on on-line learning is in development.

4. Other: The list of applications of neural networks is impressive. For example.
the neural networks are used in about half the optical character recognition

systems on the market today?.

Meanwhile, neural identification techniques have a wide potential range of ap-
plications such as in antenna array processing (blind identification®), communication
channel equalization. in multiuser detector of CDMA (code division multiple access)*
communication, in image reconstruction and restoration, in factor analysis. in integ-

rated circuit testing and diagnosis, in designing voice controlled machines, in medical

! The largest prime contractor in the continuing U.S. efforts in hypersonics.

*IEEE Spectrum, vol.35, no.1, Jan., 1998

3defined as the problem of separating and estimating multiple source signals from an array of
sensors without knowing the characteristic of the transmission channels.

*Also called SSMA (spread spectrum multiple access)




science, etc. as shown in [HJ86]. [CCBGY0], [JHI1]. [TLSH91], [Car91]. [CJHI1],
[Sor91], [CPASL], [VMSS], [Vac91], [CM92], [KM96], [TS96]. and [CSBIG).

1.2 Black-box Neural System Identification

The key points in neural system identification are to design a robust and general
model structure as a black-bor, and then to develop a fast, accurate and robust neural
training algorithm for various dynamic nonlinear systems. An architectural model
is imitating the behavior of physical dynamic systems which may be regarded as
an unknown black-box having one or more inputs/outputs, while a mathematical
model contains detailed information of the system under consideration. A black-box
1s a mechanism, or a device, that accepts an input(s), and produces an output(s).
Historically. the word black-bor comes from the fact that many electronic devices are
actually housed in black boxes. The word “black’ calls attention to the fact that we
may not know how the internal mechanism converts the inputs into outputs as shown
in Figure 1. A certain input-output system may be so complicated that analysis
of its behavior is difficult. or impossible. because of the unstructured uncertainty.,
especially in a nonlinear system. The behavior of the device may vary with time. In

the cases such as this. the designer assumes such a system to be a black-box.

Black-box

inputs 9 _ outputs
—_— —_—

Figure 1: A System Diagram Of A Black-box Model

Figure 2 presents a system with the exact known function g(+). The black-box
system identifier associates outputs with inputs without knowing the function g(+)

even after the identification process.



SJunction

yp— g(-) —— g(Vv)

Figure 2: A System With A Known Mathematical Expression

Boxes can be hooked up to one another as shown in Figure 3. This corresponds

to the process of forming functions of functions.

V—=>| g(-) —=g(v)—> fl+) —= f{g(v))

Figure 3: Functions Of Functions

The concept of functional boxes is similar to one in the coding of problems for
artificial neural networks. One functional box in Fig. 2 corresponds to a single-laver
neural network which forms a conceptual unit and which actually can be available
through training the networks. Cascaded boxes in Fig. 3 correspond to multi-layer
neural networks. For the recent adaptive control area. one of the major problems
associated with the system model for identification is that of studying their behavior
so as to predict the outputs corresponding to any particular inputs under unknown
environments. Therefore, black-box models not using prior knowledge can have im-
portant advantages. These include compensation of the mathematically unmodeled
dynamics and the uncertainties, as well as flexibility and applicability for various sys-
tems if unknown functions are known through neural networks and training methods
in terms of mapping. For the purpose of comparison, it is necessary to distinguish a

type of system model that roughly depends on three levels of prior knowledge.

1. White-box model: This is the case when a model is perfectly known; it has
been possible to construct it entirely from prior knowledge and physical insight.

This naturally leads to an ad-hoc controller’ for a plant where prior knowledge

®Designed for a specific plant and losing the general application.
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was obtained.

2. Grey-box model: This is the case where some physical insight is available.
but several parameters remain to be determined from observed data. It is useful

to consider two subcases:

(a) Physical modeling: A model structure can be built on physical grounds.
which has a certain number of parameters to be estimated from data. This

could, for example, be a state-space model of a given order and structure.

(b) Semiphysical modeling: Physical insight is used to suggest certain non-
linear combinations of measured data signal. These new signals are then

subjected to model structures of black-box character.

Most adaptive controllers are classified into this latter modeling
method. This method cannot overcome the category of ad-hoc

control.

3. Black-box model: No physical insight is available or used. but the chosen
model structure belongs to families that are known to have good flexibility and
have been successful in the past. for example, recurrent neural networks for
dynamic systems. and feedforward neural networks for static (time-invariant)
mapping. Some of the purely adaptive indirect control schemes use this tvpe of

system model.

In this thesis, the strategy of the black-box neural system identification is tackled,
which requires no prior knowledge about the system under study. This can theoretic-
ally result in a pure-measurement based adaptive processor in its application, which

will be useful for complex systems where analysis is intractable.

1.3 Literature Reviews

The contents of this review are related to areas of the robotics, artificial neural net-

works, system identification and optimal control. Therefore, the literature reviews




may follow somewhat interdisciplinary subjects.

1.3.1 Neural System Identification and Neuromorphic Con-

trols

There has been considerable interest in learning in the form of neural networks models.
The overall complexity of many nonlinear systems and the ideal of a truly general
system control have led to much discussion of the use of neural networks. Several
neural network models and learning schemes were applied to robot dynamics. A main
distinction between these methods is the amount of pre-knowledge about dynamic
systems which is used in the design procedure. In this context. the term pre-knowledge
is related to the characteristic and structure of the analytical form of a system (robot)
mathematical model.

[KFS87]and [KUISSS] used the complete available information about the robot
dynamic model in the design procedure. This approach uses a neural structure based
on non-recurrent single-layer feedforward neural network. They have a deterministic
nature. but there are several drawbacks related to poor generalization properties
and to the inherent complexity of the implementation of a complete model of robot
dyvnamics.

[CBGI0] presented nonlinear system identification using two-layer feedforward
neural network in batch and recursive modes. This research was motivated by the
theoretical basis of [Cyb89] that neural networks can uniformly approximate any con-
tinuous function. The main interest of [CBGY0] is to improve the performance of the
BP algorithm using the RPE (recursive prediction error) algorithm where the up-
dating rule also can be regarded as an approximation of the steepest-descent (gradi-
ent) algorithm. They showed that the RPE algorithm is better than the classical
BP algorithm in speed through simulations on a single-input single-output system.
However, there exist similar drawbacks of the BP algorithm due to the same gradient
search and error-propagation down methods. Most of the gradient search methods

suffer from problems of limited weights initialization, slow learning speed with free



initial weights and local minima. It is questionable that the feedforward neural net-
work they used would work for other dynamic nonlinear systems. The feedforward
networks are generally known to have the capability of static mapping.

[ST92] presented a fast training algorithm for multi-layer perceptrons using the
combination of the Kalman filter and BP algorithm as an alternative to the back-
propagation (BP) algorithm. They have improved the number of iterations by their
training algorithms about 20% compared to the performance of the pure-BP al-
gorithm. Their algorithm was tested for pattern classification and pattern recognition
problems (static mapping task) through simulated training patterns. Some contribu-
tions noticed were: (a) To improve the training speed. they adopted Kalman filter
techniques. (b) The separation of each neuron into linear and nonlinear portions
was observed for the Kalman filter which is applicable to a linear parametric model.
But they failed to apply the Kalman filter method to both output and hidden layvers
training due to the absence of a hidden-layer supervisor. They expediently used the
modified error BP algorithm with the Kalman gain for the hidden-layer training.
Their methods can still be affected by shortcomings of the BP algorithm. The im-
portant subjects of the numerical wind-up in the covariance matrix and the forgetting
factor selection were not covered in the Kalman filter application. However. one of
their conclusive comment was that the adaptive nature of the Kalman gain makes
their algorithms much less likely to get caught in a state other than the global min-
tmum. and this is very noteworthy. This is because the local minimum problem has
been indicated as the most serious defect in the BP training clone. They used the
Kalman filter just for the output-layer training. This raises the expectation that the
application of the Kalman filter family® to both hidden and output layers training
may solve the crucial local minimum problem. But application of a pure Kalman fil-
ter algorithm to the multi-layer neural nets requires derivation of an explicit teaching
signal of hidden-layers.

[ML93b] used two Adalines of neural networks in order to solve for dynamic uncer-

6The RLS (recursive least-squares) algorithm is one case of the Kalman filter.
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tainties. The use of one Adaline becomes possible from the pre-analysis of the linear
factorization method on nonlinear rigid-body dynamics based on original works in
[KK85]. In this approach, one Adaline was used with off-line training by the LMS
algorithm for structured (nominal) dynamics compensation, while another Adaline
used an on-line weight updating mechanism using Lyapunov’s method to compensate
uncertainties. However, such a linear pre-factorization to derive the mathematical
linear dynamics is possible only when physical uncertainties are just on the mass
properties of the individual links. Therefore, when dynamic uncertainties exist other
than mass property, the control scheme is violated seriously. Two separated Adaline
schemes do not make sense under diverse uncertainties because the linear factoriza-
tion is not possible. Training algorithms using hill-climbing (e.g.. gradient descent
algorithm like LMS) generally suffer from local minima problems and slow training
speed as presented in [MD93]. These become more serious especially when the neural
network complexity is increased for a more dexterous robot. The sensitivity to the
learning rate for the LMS algorithm causes another problem. The linear factoriza-
tion requires huge pre-derivation processes when its application is extended to the
six d.o.f robot rather than a simple two d.o.f planar model as its simulation. It s
definitely required to develop the computerized factorization method for the extended
application.

[JH95] used techniques of the computed torque method with a PD controller and
a neural network in order to improve the poor performance of a robot controller about
dynamic uncertainties. This is to compensate the uncertain dynamics on-line in the
Cartesian space. To test the capability of uncertainty compensation, Coulomb friction
and viscous friction torques have been added to each Joint and the payload of I0A'g
to the third link mass. In particular, this research examined the system performance
depending on the location of the neural network controller through simulation scen-
arios. They exploit the fact that smaller hidden layer signals are helpful for a neural
network to capture nonlinearities. which will be useful for more effective modeling.
They made use of the two-layer feedforward neural network with a nonlinear hidden-

layer and a linear output-layer. The input buffer keeps two sampling periods of old
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signals with a total of 81 synaptic weights. This control scheme. however. requires
heavy calculations for a n x n inertia matrix. n x 1 Coriolis/centripetal vector. n x 1
gravitational vector and n x n Jacobian matrix with exact kinematic parameter values
(where n is the number of degree-of-freedom). The BP training algorithm they used
can suffer from some shortcomings. The pre-compensation of nonlinear terms by the
computed torque method is impractical for a high d.o.f. robot controller.

In [LP96] a similar strategy of multi-layer neural networks training to that of
[ST92] was described for the system identification. The BP algorithm and Kalman
filter were used for hidden and output layers respectively. In order to improve the
speed and stability of the BP algorithm, they used the same steepest-descent search
and an optimal learning rate different from that (constant) of [ST92]. The optimal
learning rate has a value in the range of [0, 10]. but they did not show a clear optimiz-
ation methodology to determine its value. The Kalman filter with the unity forgetting
factor that they used may not work in more general problems under different systems
and operating conditions. No investigation was shown about burst phenomenon in
the Kalman filter. For a dynamic nonlinear system identification. they introduced the
time-delay unit (memory) and feedback to input/output signals, which might make
a contribution to the learning speed in simulations. In overall performance. the dis-
tinct differences are seldom noticed between [ST92] and [LP96] since both research
used the BP algorithm for the hidden-layer training. Meanwhile. their emphasis is
noticeable that system identification is usually the first step taken by adaptive control
engineers since control theory requires an understanding of a system before we try to
control it.

[YB89], [OSF+91}, [KV92], [BGCY6] tried the grey-box model based neural con-
trol. In these cases, neural networks can be used as a general computational model.
Although the ideal of a pure neural network approach without knowledge about ro-
bot dynamics is very promising and has lots of advantages, it is noticed that these
approaches might not be very practical. This is due to high dimensionality of in-
put/output spaces, huge training cycles in off-line phase, non-robustness (also speed

and accuracy) of learning algorithms, and less generalization properties of overall
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algorithms. Therefore. the development of a (more) general neural model (architec-
ture) and its robust training algorithm on-line is inevitable for the more black-box
model based adaptive signal processing to cover those problems.

[SS95] employed the direct adaptive tracking control design with neural networks
based on the original work of [SS92]. This research was extended to classes of mul-
tivariable mechanical systems including robot manipulators, where bounds of asymp-
totic tracking errors and the convergence rate to these bounds are developed. This
approach is distinguished from the late 1980s linearly factorized adaptive control
schemes. The rigid body motion dvnamics is decomposed into a matrix of unknown
nonlinear functions which is multiplied by a vector of analytic (known) signals. This is
carried out based on the agreement that an explicit linear factorization of mechanical
systems dynamics is impossible. This is in contrast to previous adaptive control re-
search of [SL86. SL87a. SL87b. SL8S. SV89. 0S89. SO90. Spo92] which all are based
on the linear factorization method. This new adaptive approach learns unknown
nonlinear functions including uncertainty through a neural network and simultan-
eously computes known vectors from the mathematical analysis of motion dynamic
equations. This is different from previous approaches where nonlinear component
functions must be computed by the analytic factorization process. The previous
approaches resulted in the neglect of uncertainty effects except for the uncertainty
on the mass property. The new approach has more flexibility for compensating for
nonlinear properties including the uncertainty by means of Gaussian radial basis func-
tion networks and factorization information. This research shows good findings and
results for the stability proof under assumptions of boundedness for states, smooth
desired trajectories with up to the second derivatives and an understanding of the
state dependence of dynamics in advance, but not the exact functional form. To
prove its final performance, the simulation presents the tracking results of a planar
two-joint robotic manipulator based on the proposed neural network with a total of
437 nodes and 5224 weights being trained. This neural size seems to be impractical
for a real-life application.

[KV95] presented the application of neural networks and fixed gain PID control to
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the robot control based on the decentralized control scheme originated from [VSKS85].
This research used the PID control with manually adjusted gains for a nominal control
part and several multi-layer feedforward neural networks for a variable control block.
Some features included: (a) They decomposed one big feedforward ANN into several
small nets whose outputs then were combined in parallel. The network decomposition
was performed based on coordinate information of Lagrange-Euler robot dynamics
to reduce the load of neural training algorithm. (b) For a fast training method. the
classical RLS (recursive least-squares) algorithm with constant forgetting factor was
used to circumvent the drawbacks of the BP (backpropagation) training algorithm.
Some shortcomings include: (a) They used a feedforward neural network. which is
related more to static mapping, for a dynamic nonlinear input/output mapping. It is
well known that recurrent neural networks of feedback and memory are more suitable
for dynamic mappings. (b) They did not pay attention to the numerical wind-up
phenomenon in using the RLS algorithm, which was known as a crucial drawback.
(c) They did not present a reasonable teaching signal of the hidden-layer for the RLS
algorithm, but used the error backpropagation for a hidden-laver teacher. (The BP
algorithms became popular due to the hidden-layer training methodology although
there exist some drawbacks.) To cure the slow property of the BP algorithm. theyv had
to carry out previous off-line training for the synaptic weights initialization although
the overall control scheme was an on-line strategy.

[BGCY6] described the design of a neuro-adaptive trajectory tracking controller
for the robot manipulator. The proposed control scheme consists of two modules
of feedforward RBFN (radial basis function network) for a system identifier and in-
version of its neural emulator. The overall scheme comprises the adaptive indirect
control. They used the standard RLS algorithm for the RBFN training and the Kal-
man filter for the inversion of the neural emulator motivated by (IST92] and [ST92].
The use of the Kalman filter for the control law on-line is noteworthy. Since the
popular BP (backpropagation) algorithm is prone to local minima trap. sensitivity
to learning parameters and relatively slow in convergence, they used the RLS al-

gorithm for the RBFN training. However, the following disadvantages were noticed:
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(a) They did not use the RLS algorithm as an on-line method. but for off-line pur-
pose because the standard RLS clone is not robust enough for an arbitrary neural
training data set. A network trained off-line by differently scaled data sets can not
take into account time-variance and dynamic uncertainties accurately. (Actually. the
RLS algorithm was suitably developed for a time-varying system.) (b) They tailed
to use the multi-layer neural networks because of the absence of adequate training
method without using the BP algorithm. (Although the RBFN has two-layver neural
network architecture, it cannot be regarded as a multi-layer neural network because
synaptic weights in the hidden-layer are of all unity values. Neurons in the output-
layer of the RBFN do not have a nonlinear processing unit and a recurrent structure
either.) In order to partly resolve less robustness of the RLS algorithm. they used
the off-line training data sets which should be modified by normalizing and scaling
differently and manually. But this cannot be a true solution to those problems in
the RLS clone. (c) They used the constant forgetting factor of unity. This can cause
a problem for algorithmic generalization. (d) They did not cover the topic of the
persistent excitation problem for the RLS algorithm. This is one of the important
factors in conjunction with the application of the RLS clone. As a side effect of their
strategy. the overall control scheme has caused the generalization problem leading to
large tracking error when different desired signals are applied. Intensive research to

improve the performance of the RLS algorithm is required.

1.3.2 Non-Neuromorphic Adaptive Robot Control

The non-ANNs based adaptive controls of robot manipulators are reviewed below.
[DD79] proposed a simple model reference adaptive control for control of mech-
anical manipulators. They took into account the effect of payload by combining it
with the final link. A Model-Reference-Adaptive Control(MRAC) law was devised
using the steepest descent method for a manipulator with counterbalance in order to

handle non-linearities and payload. Coupling between joints of the manipulator was




-

15

neglected and a numerical simulation study was performed with three-joint dvnamics.

[TAS81] developed a MRAC law which consists of feedforward control and feed-
back control. The feedforward control reduces the effects of gravity, while feedback
control compensates for the position errors, velocity errors, constant disturbances.
and acceleration requirements based on the Lyapunov direct method. They assumed
low-speed motion to make it possible to neglect Coriolis and centrifugal force. and
their simulation was shown with a four-joint manipulator.

[KG83] proposed an adaptive self-tuning controller based on discrete linear time-
invariant decoupled model. The controller algorithm assumes that the interaction
forces among the joints are negligible. Thus the assumption of slowly varying para-
meters is unavoidable. Tracking results at a high velocity are not shown. Robustness
of the proposed algorithm is questionable for different desired trajectories because
the non-linearity in the dvnamics of the manipulator strongly depends on the desired
trajectories of high velocity profile.

[LC84. LC85] suggested an adaptive perturbation control scheme composed of
a nominal control and a variational control. Since nominal control uses the direct
calculation of manipulator inverse dynamics along the desired trajectory. it requires
full information for the dynamics of the manipulator. The variational control regu-
lating the perturbation with respect to the desired trajectory was based on a linear
perturbation model of the manipulator together with a recursive least-squares identi-
fication algorithm and a one-step-ahead optimal control algorithm. They showed by
computer simulation that their control law was insensitive to variation of payload.
but convergence of the control law was not shown explicitly. Their simulation was
tested with a three-joint manipulator.

[CHSS86] presented an adaptive computed torque or inverse dynamics method for
the control of manipulators with rigid links. They tried to show a globally stable
control scheme and conditions for parameter convergence as well as its asymptotic
properties. However, drawbacks exist in practice due to the fact that the global
stability of this method depends on having exact dynamic models and full knowledge

of parameters of the system, accuracy, and speed in computation. Thus, degradation




16

of response may occur due to disturbance. change in payload. and inaccurate sensor
measurement. Their simulation showed the results of link mass estimation and of
one joint position error tested on dynamics of only two-joint planar manipulator.
More complete simulation results are required to show the robustness with respect
to various desired paths of high velocity profiles which indeed affect the dynamics of
the manipulator and the robustness in change or existence of payload.

[KO88] proposed decentralized control of robot manipulator using state and PI
feedback. This paper seems to suggest that a static state feedback is indeed sufficient
to stabilize the system about a constant setpoint(desired path), and system may still
perform satisfactorily if the constant reference signal is replaced by a slowly time-
varying signal. However, with the assumption of constant setpoint or slowly time-
varying reference input. stability or robustness problems of the controller for the robot
manipulator cannot be objectively proved for the general desired trajectories because
it has skipped crucial problems from trajectory dependent dynamics of manipulator
by simple assumption. One of the expected problems in applications of the proposed
control methodology is that simulation studies were tested only for a planar two-link
manipulator with simple desired setpoint.

[SL8S] presented adaptive solutions based on the prior availability of an explicit.
linearly parameterized representation of motion equations of the robot. To guarantee
the global stability and asymptotically convergent error. sufficiently smooth desired
trajectories are assumed. As a design strategy. they mathematically separated the
plant motion equation into a nonlinear function assumed known and physical para-
meters unknown but constant. The nonlinear function part is compensated by the
computed torque method, while unknown parameters is controlled by the PD con-
troller. This algorithm requires the exact prior knowledge and linear factorization
process in advance which is possible when the physical uncertainty is only on the
mass property of the individual link.

[KH91] proposed an adaptive self-tuning controller for a robot. They improved
the performance by taking into consideration the interactions between joints of the

Stanford manipulator. This approach used the MIMO ARX model. and estimated
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(blocked) off-diagonal matrix to take into account interactions between joints. It is
regarded as an almost black-box model control since they did not use pre-information
of robot dynamics. This research, to a certain extent, improved convergence at
moderate or high velocity after fine tuning the forgetting factor and weight constants
for the optimal controller along given desired signals. But it has the drawback of
a large tracking error when desired trajectories are changed to even slower velocity
profiles. This method sometimes failed to converge to an arbitrary desired response of
bounded-velocity profile. This defect is presumed from less robustness of the system
identification carried out by the linear ARX model and classical estimation algorithm
for the highly nonlinear time-varying dynamics. A more generalized system model
and robust estimation algorithm are demanded to resolve drawbacks effectively.

[Spo92] devised the robust robot control law based on Lyapunov stability theory
in conjunction with Lagrange-Euler robot dynamics equation. Their novel approach
lies in the fact that uncertainty bounds for the control law are derived and the tracking
error bounds is shown depending only on the inertia parameters of robot. In previous
works of this type. the uncertainty bounds have depended not only on the inertia
parameters but also on the desired trajectories and the manipulator state vector.
However. this control strategy did not overcome the previous adaptive scheme by
using the computed torque method requiring the exact pre-knowledge about the plant.
Generally the computed torque method suffers from less capability for the uncertainty
handling.

Other research of [LM91, LM93, ML93a, ML9I3b] used similar methods to Slotine
and Li approaches as shown in [SL86, SL87a, SL87b, SL88, LS88]| for the adaptive
robot control. They made full use of pre-analysis of mathematical linear factorization
on the rigid-body robot dynamics. This clone commonly suffers from limitation of

an ad-hoc controller and uncertainty compensation problem.
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1.3.3 Summary

Conventional nonlinear controls (generally non-ANN based adaptive controls) have

similar limitations, which are also shown in computed torque control (LWP80],[LCS5],

Lyapunov based control [CL81],[Cor89], the sliding mode control [DZM8S], [ND94].

[UF94], and the exact linearization control [Tak93]. These limitations apply in general

and more specifically to robot control. They include:

1.

o

Control laws frequently use the computed torque method for robust control
with exact knowledge about the system being controlled. This leads to an ad-
hoc controller for a specific nonlinear system and requires heavy computation
to evaluate the nonlinear terms analytically. Indirect adaptive control suffers
from robustness and generalization strongly depending on the performance of

the system identifier as shown in [KG83. SKST. KH91).

Indirect adaptive controllers have faced the difficulties of stability and robust-
ness due to weak system identification capability depending on system models
and estimation algorithms. This arises from its inherent design scheme such
that it generally uses the inputs observation and outputs measurement only. A
remedy for those difficulties is to use the ANN-based system identifier where the

adequate design of neural nets and its effective training method are required.

- To avoid the problems of stability and robustness, the operating range has been

limited as an indirect solution as follows:

(2) Some adaptive controllers have assumed slowly-moving speed, which may
partly lead the original nonlinear control to a linear control problem and
result in a decoupling effect of the original coupled system. This causes
performance degradation or fails when the operating range is increased.

Therefore the operating range should not be sacrificed.

(b) Simulation scenarios need to perform on arbitrary trajectories for gener-
alization. The simple planar two-link robot is not enough for a test-bed

because the adaptive performance depends on the size of the system model.
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Compensation ability of a nonlinear uncertainty needs to be tested through
simulation works. This capability usually is realized through the robust Sys-
tem identification without using pre-knowledge. The importance of the system

model is again emphasized in this point.

Since drawbacks and limitations are found in aforementioned non-neuromorphic

adaptive controls, the use of neuromorphic control is getting widespread attention

with some limitations listed below:

1.

[AV]

Some neural network architectures were built based on the complete available
information about a system being controlled. This causes poor generalization
properties and increases the structure complexity depending on the system.
Therefore. the performance and success rate of this neural architecture are

highly dependent on the tested system or test scenarios.

Feedforward (multi-layer) neural networks were frequently used for the dy-
namic mapping due to the difficulty of less systematic recurrent neural network
architectures. The effective use of memory unit (time-delay) and svstematic
recurrent links was seldom found to make a more generalized recurrent neural
network. Simple increase of the hidden-layer neurons cannot always be an ef-
fective way to improve the feedforward neural performance because training

algorithm efficacy deteriorates with increased synaptic weights.

- Most neural training algorithms are heavily depending on the BP algorithm”

(or steepest-descent, or delta rule, or gradient search) although there exist
drawbacks of slow convergence, sensitivity of the learning rate and momentum
constant, weights initialization problem and local minimum. This js because

the BP clone can train synaptic weights in the hidden-layer.

Other training methods of the hidden-layer are seldom identified without using

the BP’s error propagation backward because the clear teaching signal in the

"The BP algorithm was first documented in the Werbos's Ph.D. thesis [Wer74] at Harvard
University in 1974.
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hidden-layer is absent. To overcome the BP’s bottleneck, a reasonable hidden-

layer teacher should be developed without using the gradient search basis.

5. The Kalman filter family including the RLS algorithm was used for the single-
layer training on-line due to its fast convergence speed. The intensive research
of the numerical burst phenomenon, which is identified as a crucial drawback in
the Kalman filter (RLS) clone, was frequently neglected in conjunction with the
neural training method. The extension of the Kalman filter to the multi-layer
training is desired. where however the derivation of a clear supervising signal

for the hidden-layer training is necessary for better performance.

6. To cover less robustness of the on-line training algorithms, the undesirable uses
of an off-line training method for a dynamic system were sometimes performed
as a pre-processing step before the on-line training. This limits the flexibility

of the on-line training algorithm.

1.4 Objectives Of the Thesis

The primary objective of this thesis was to develop a fast. accurate. robust, and gen-
eralized neural system identifier for on-line applications. This system identification
technique has a wide variety of applications in different disciplines. One applica-
tion of the on-line neural system identification scheme is the control of a nonlinear.
time-varying and coupled robot system with uncertainties without using any pre-
information about the plant. The designed control scheme is expected to be a univer-
sal nonlinear controller depending only on the measurement signals. The following

procedure is used to realize the research objectives:

1. To design a more general recurrent neural network for application to various
dynamic systems. A specific neural network design based on pre-information
of a system is not flexible in applications, and gives its training algorithm
less robustness and more computational load under different systems. This

development includes:



A more efficient neuron model can be devised.

Meaningful neural synaptic links can be connected by time-delay units

(memory) and by finding of new signal sources.

New components in one-layer can be observed to create more data points.

More systematic recurrent architecture is desired for the generalized im-

provement of performance.

2. To develop the non-gradient based training algorithm leading to a fast, accurate

and robust training algorithm on-line. For this the following steps are presented:

¢ A methodology is developed to apply the conventional RLS (recursive
least-squares) algorithm for the multi-layer neural nets training to make
use of its advantages after the pros and cons of the RLS algorithm are
investigated.

¢ The clear hidden-layer teaching signal is derived not using the error propaga-

tion backward.

e The numerical burst phenomenon in the RLS algorithm should be identi-

fied and resolved.

¢ The synaptic weights update law in the RLS algorithm can be re-derived

to improve its robustness.
o The variable forgetting factor in the RLS algorithm should be developed
and tested.

o The covariance matrix in the RLS algorithm should be kept from the

divergence due to various input signals.

3. To simulate the developed neural system identifier to show its improved per-
formance under reasonable scenarios. Any previous off-line training process

should not be performed for this.

4. To devise the adaptive self-tuning controller with on-line neura] system identi-

fier for a robot manipulator tracking problem only depending on the measure-




[ SV]
o

ment signal. This type of controller should be robust with respect to dynamic

uncertainty compensation and arbitrary time-varying desired signal.

¢ LOQ optimization technique is integrated into the neural system identifier

on-line.

* All algorithms are tested on the closely-simulated robot manipulator to

the 3-joint PUMA 600.

1.5 Thesis Layout

Chapter 1 introduces the motivation and methodology for this research. It provides
literature reviews of related works of ANNs and neuromorphic controls. The detailed
reviews are also discussed in each chapter depending on the matched subject.

Chapter 2 presents the robotics relating to the robot manipulator dynamics.
Through this chapter, the insight of a nonlinear, time-varying coupled systems’ char-
acteristics can be identified along with their complexities. The derived closed form of
the rigid robot dynamics is useful as a performance test by being able to simulate the
motion of a nonlinear system. The generation of training data and test of controller
on-line are carried out based on equations supported by this chapter.

Chapter 3 reviews the general background of neuron modeling, capabilities. applic-
ation areas about ANNs discipline, which can provide a developer with an intuition
to develop and/or improve through a creative imitation process.

Chapter 4 deals with development of the recurrent neural networks architecture
called the SERNN (supervision and error recurrent neural networks) for a more robust
and generalized system identification. Most architectural efforts are assigned to find
a good recurrent neural net (i.e., a specific mathematical form through synaptic links)
capable of producing output values that match desired values. In ANNSs society, it is
known that the recurrent architecture is superior to feedforward nets for the dynamic
mapping capability. The conventional neural architecture of increasing simply the

number of hidden-layer neurons is not desirable.
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Chapter 5 develops a fast, accurate and robust on-line training method called the
MRLS (modified recursive least-squares) algorithm. Most of ANNs training have
been carried out by the error backpropagation clone. However, there are serious
drawbacks of BP in a variety of research even though the BP algorithm can often
find a good set of synaptic weights in a reasonable time. The fundamental defect in
the BP clone is recognized as its use of the gradient descent optimization principle.
The objective specification of this chapter is to develop the pure non-BP training
algorithm. Even though there exist conventional estimation algorithms for a linear
parametric model, their direct application to the multi-layer neural networks has
been hampered because (of): (a) ANNs is a nonlinear model. (b) ANNs have a
multi-layered topology leading to the absence of a teaching signal for the hidden-
layers. (c) limitations of speed. accuracy and robustness in neural training process.
and (d) performance sensitivity depending on initial weights values. Comprehensive
trials are tackled to resolve these problems in this chapter.

Chapter 6 investigates how the developed neural architecture and training al-
gorithms perform for the black-box neural system identification of dynamic nonlinear
systems through simulations. This chapter shows excellent performances such as
speed. accuracy. robustness and generalization for a neural identifier. A good system
identification technology can be applied to a variety of adaptive processing areas. In
this thesis. the neural identifier is used for the adaptive self-tuning control of a robot
manipulator without using pre-information.

Chapter 7 presents how the on-line neural identifier is synthesized with the optimal
LOQ (linearly observed quadratic) control processing leading to the adaptive self-
tuning scheme. This control scheme is supposed to exhibit design specifications
such as no restrictions about system linearity, robustness with respect to different
variable trajectories, good capabilities for uncertainties including sudden dvnamic
changes in the middle of excursion, reasonable noise rejection ability, and no pre-
information requirement about a nonlinear systemn being considered (only measured
signals are used). It is expected that the pure measurement-dependent control (i.e..

black-box model based control) would be useful for complex nonlinear systems which




are difficult to be modeled by the mathematical analysis.

Chapter 8 concludes this thesis with contributions and further research.
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Chapter 2

Robotics For Computer Simulation

This chapter introduces the robotic kinematics and the derivation of the dynamics on
the PUMA 600. The robotic information presented here is useful for digitally simu-
lating the behavior of the robot arm. The input and output measurements of the plant
are necessary for the system identification purpose and sometimes for the evaluation
of the controller performance. General discussion of the robot systems is presented.

and the techniques are described in conjunction with PUMA 600 manipulator.

2.1 Description of Manipulator by D-H Notation

The research [4] first proposed a systematic method to define a local coordinate svstem
for each link of a robot manipulator. The relations between a world coordinate system
and a local coordinate system will be described by link parameters and joint variables
from Denavit-Hartenberg (D-H) coordinate system(frame), which are often called
kinematic parameters. A schematic picture of PUMA 600 manipulator is shown in

Figure 4 where the D-H coordinate system and its kinematic parameters are used.

2.1.1 Determination of Coordinate System in Robotics

The PUMA 600 series robot manipulator consists of seven links connected by six

revoluted joints. Since the motion of the links involves angular rotation, the position
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and orientation of the end-effector has definite relationships with joint angles (or joint
variables) and links. These mathematical relations depend on the coordinate systems
chosen, and play an important role in the kinematics. dynamics and the control of
robot manipulator. Since the PUMA 600 has six joints and seven links, we can assign
one coordinate system to each link. One coordinate system whose origin can be fixed
to the base, or at the shoulder of the manipulator. is called the World Coordinate
System, while the six coordinate systems whose origins can be assigned to the each
of the six links are called Local Coordinate Systems. Accordingly the local coordinate
system(frame) moves with the links.

The problem is to assign rectangular right-hand coordinate frames and kinematic
parameters for the links. Then. the transformation matrices relating to the coordinate
frames are to be written. For the next link i + 1 with respect to link ¢ in Figure 4. the

coordinate axes are chosen by the D-H coordinate frame assigning method [4. 1. 7].

2.1.2 Determination of the Kinematijc Parameters

After establishing the coordinate frames, it is necessary to define four kinematic
parameters which are sometimes called the structural kinematic parameters since they
depend on the structure of the given manipulator and describe the relatjve position
of a successive pair of the axes in two coordinate systems. Having established four
structural parameters d;, g, a;. and 6;i,i=1.--- .nfora particular manipulator. the
transformation matrix between the adjacent coordinate frames may be written.

For the purpose of illustrating four structural parameters, a coordinate system
shown in Figure 5 can be described in terms of four parameters - length a,, the twist
angle oy, distance d,, and angle 6, between links.

In Figure 3, since a straight line L is assumed to represent a rotational axis, a
local coordinate frame is to be assigned. For a multiple joint serial link manipulator,
the aforementioned structural parameters are determined for the ith link, ; = 1,---,n

as follows:

1. a; : The distance from the origin of the ith coordinate frame to the intersection
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Figure 5: Illustration of Structural Parameters

of the Z;_;- and the X,-axis along the r;-axis.

[S¥]

a; : The angle of rotation about the positive X;-axis is measured from the pos-
itive Z;_, (or its parallel projection) to the positive Z;-axis, where the positive

direction is counterclockwise.

3. 0i : The angle of rotation about the positive Z;-y is measured from the positive

Xi_i-axis to the positive X;-axis. It is positive in the counterclockwise direction.

4. di : The distance from the origin of the (i — l)st coordinate frame to the inter-

section of the Z;_,-axis, and the X;-axis along the Z;_,-axis.

Based on the procedures to determine the structural kinematic parameters, the
values of d;, a;, a; and 6; (13] can be obtained for PUMA 600 in Table 2.1 through
Figure 4.



J ;Tt af 67| di | a
1 -90]6,] 0| 0
2 0 02 0 as
3 90 | 05 | d5 | a3
4 —-90 (6, |dy| O
3 90 65| 0 0
6 0(bs] 0| O

Table 2.1: Structural Kinematic Parameters

2.2  Determination of Transformation Matrix
A 4 x 4 matrix. which is called the transformation matrir. relates the link-attached

coordinate frame to the reference coordinate frame.

2.2.1 Recursive Transformation Matrix

If vector P; is known in the ith coordinate frame. then it can be expressed in the

(z — 1)st coordinate frame as P,_,. that is

(2.1) Py = AP,

where matrix A!_, of the recursive transformation matrir can be written by the

following general form:

[ cosd; —cosa;sind; sina;sin§; | a; cos 6;
5 ; sin 8; cosajcosf; —sina;cosd; | a;sinb;
(2.2) A = )
0 sin o; Cos a; d;
0 0 0 1

We can extend equation 2.1 as follows:
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Po = ApALLBAIAAS Py
(2.3) = ASPs

Matrix A§ in Equation 2.3 is a function of structural kinematic parameters. When
these values are known. the position of the end-effector can be calculated by Equation
2.3. The determination of this position from the values of the joint variables is referred

to as solving the forward kinematic equations.

2.2.2 Partition and Decomposition of Transformation Matrix

Transformation matrix A§ can be partitioned into four parts as follows:

[ Rotation Submatrix Translation Vector ]
3x3 Ix1
48 = ( ) ( )
Perspective Vector Scaling Factor
i (1x3) (1x1) |
(2.4) )
(X, v, z.| P,
X, Y, Z,| P,
X. Y. Z.|P.
| 0 0 041 )

And also the transformation matrix A$ can be decomposed into matrix multiplica-
tion of translation matrix-Trans(P;, P,, P.) and rotation matrix-RPY (¥, ¥,. ¥.)

as follows:

A§ = Trans(P.,P,, P.)RPY(¥,,¥,,¥,)

(1 o0o0|lp][x. V. z
2 r ox-

(2.5) 010(P||X, Y 2z
00 1|P|]|x v z
00 0|1 0 0 0]l

- - - e

o o o
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Figure 6: R-P-Y Angles for Orientation
2.3 Orientation of End-Effector

Grasping of an object by the end-effector means that the position and orientation
of the end-effector are the same as those of the object in the reference coordinate
frame. The simplest one to understand is roll(¥.). pitch(¥,). and vaw(\¥,) in Figure
6 which are called R-P-} angles. These R-P-Y angles are used to represent the
overall orientation of the object or end-effector of the manipulator.

A sequence of three rotations is a rotation about the X axis. a rotation about the
Y axis. and a rotation about the Z axis. So the rotation matrix. RPY (U . 0, ¥.).

can be performed by means of successive rotational operations:

RPY(V.,¥,,¥,) = Rot(z, ¥.)Rot(y, ¥,)Rot(z, ¥,) =

[ c(@.)e(0,) c(We)s(Wy)s(¥s) = s(We)e(Tz) (W2)s(L,)e( W) + s(L2)s(¥,) | 0
s(¥=)e(Wy) s(W)s(Wy)s(e) + (W )e(Be)  s(W.)s(W,)c(W,) ~ c(¥.)s(Ps) | 0
—s(¥,) c(¥y)s(¥-) c(Wy)e(¥e) 0

i 0 0 0 1|




where _
C(\p:) —s(lIl:) 0 0
. v.) 00
Rot(=.¥.) = s(¥:)el¥e)
0 0 1 0
| 0 0 0 1]
[ «(w,) 0 s(¥,) 0]
0 1 0 0
Rot(y.¥,) =
=s(¥y) 0 ¢(¥,) 0
0 0 0 1]
(1 0 0o 0]
0 ) —s(¥,) 0
Rot(r.¥.) = «(%x) (¥:)
0 s(¥:) o(¥P;) 0
0 0 0 1

where s(-) and ¢(-) stand for sin(-) and cos(-) respectively. The Rot(-) matrices are

called the basic homogeneous rotation matrices.

2.3.1 An Algorithm for Calculating ¥,, ¥,, and V.

R-P-Y angles for the orientation of the manipulator need to be computed with the
given four structural parameters. The transformation matrix A§ for the PUMA ro-
bot manipulator can be calculated by successive multiplication of the transformation
matrix in equation 2.2 with the structural kinematic parameters in Table 2.1. This
successive matrix multiplication can be easily performed by using symbolic com-
putation software. for example. Maple 1 developed by the University of Waterloo
(15]. This result is equated by equation 2.4 for calculating Roll(\¥.).Pitch(¥,). and

Yaw(¥,) angles. i.e..




=1
~—

X,

C6C5C4C1C2C3 — CgC5C4C15253 — CeC551S4 — CgS5C1C283 — CgS5C152Ca
—S654C1C2C3 + $654C15253 — SgS1Cq

—S6C5 — C4C1C2C3 + S6C5C4C1 5283 + 56C55154 + S655C;C253
+8655C152C3 — C654C1C2C3 + C654€C1 5253 — C$1Cy

55C4C1C2C3 — $5C4C18283 — S55154 + C5C1C283 + C5€182C3

dscic283 + dycysacs + cicaazcs — €152a353 — s1d3 + ¢1az¢;

C6C5C4S1C2C3 — CeC5C4515253 + C6C5C Sy — CS551CyS3 — C6555152C3
$565451C2C3 + $654515253 + $6C1Cy

—386C5C451C2C3 + §6C5C4815283 — SgC5C1 84 + $65581C2S83
—C6S5451C2C3 T C6S54515283 + C6C1Cy + $6555,59C3

$5C451C2C3 — 85C4515283 + S5C184 + €551C283 + C58152C3

dys1C283 + dys,52¢3 + $1C2a3C3 — $152a353 + ¢, d3 + s1a2¢

TC6C4C552C3 — CeCyC5C283 + C6S55253 — C6S55C2C3 + S45652C3
+S8486C2C3

$6C4C582C3 + S6C4C5C283 — SeS55253 + SgS5C2C3 + $3C6S2C3
+54C6C253

—C48552C3 — C455C283 — C55253 + C5C2C3

—d482$3 + d4C2C3 = $2a3C3 — C2Qa383 — A233.

But transformation matrix A§ can be rewritten in terms of Translation Matrir and

basic Rotation Matrices about X — Y — Z axes:

(2.

8)

AS = Trans(P., P,, P.)Rot(z, V.)Rot(y, ¥,)Rot(z. ¥ )

By rearranging equation 2.8:

Rot™'(z,W.)Trans~!(P;, P,. P.)A$ = Rot(y. ¥, )Rot(r. ¥ )




The left hand side of equation 2.9 is:

Rot™!'(z.¥.)Trans~'(P,, P,, P.)AS

[ o0 s 0fol[100l-2][x. v. z]|p]
—s(¥:) (%) 0100 1 0|-P, || X, ¥, Z,|P,
0 0 1|0({|0 0 1|-P.||X. ¥y Z|P.
|0 0 oftf{ooof 1 J[o 0o o1 ]
[ Xeo(W.) + Xys(V.) Yec(W) + ¥ys(T,) Zoc(.) + Z,s(%.) |0
Xye(Ws) = Xos(W.) Yoe(W.) — Yos(U.) Zyc(V.) — Z,s(¥.) |0
- X, Y. Z. 0
i 0 0 0 1
(2.10)
The right hand side of equation 2.9 is:
Rot(y. ¥, )Rot(z. ¥ )
[ «2,) 0 swy]ol[1 o 0 o]
0 1 0 0 0 o(¥.) —s(¥.){0
=s(¥y) 0 c(¥,)|(0 0 s(U;) (¥ [0
(2.11) . 0 0 0 (1f]0o o 0 |1]
i | i
c(Wy)  s(y)s(¥:) s(W,)e(¥,) |0
0 c(¥;) —s(U;) 0
—s(¥y) o(¥,)s(¥:) o(¥,)c(¥,) |0
|0 0 0 1
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By comparing equation 2.10 and equation 2.11, we can calculate V., U,.and ¥, as

follows:

= Xye(¥:) — Xos(0.) =0

(2.12)

—_— \Il: = atan:)(-\’yy ~X’I)
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= X:cos(V.) + X, sin(¥.) = cos(¥,), X, = —sin(¥,)
_osin(¥,) -X.

S e el X, sin(0,)

(2.13) — U, = atan2(-X_, X, cos(¥.) + X, sin(¥.)

~ Y. = cos(¥,)sin(¥,), Z. = cos(¥,) cos(¥,)

oy sin(¥;) Y
tan(\Ill.) = mr—)- = 2
(2.14) — ¥, = atan2(Y:, Z.)

where argument values of atan?() in equations 2.12 - 2.14 are given in equation 2.7.
atan2(y, r) returns the arctangent of y/z.in the range of —7 to =, using the signs of

both arguments to determine the quadrant of the return value.

2.4 Summary - Need for Six-joint Dynamics

The position of the end-eflector origin. i.e.. P.. Py and P. in equation 2.7 is only a
function of the first three joint variables. 61.8; and 0 instead of all six joint variables.
01.--- .0s. because other structural kinematic parameters are constants in Table 2.1.
On the other hand, R-P-Y angles, U, ¥, . and ¥, in equations 2.12 - 2.14. which are

representing the orientation of the end-effector, depend on all six Jjoint-variables.
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2.5 Mathematical Modeling of PUMA Manipulator
Dynamics

The dynamics equations or dynamics models describe the motion of a manipulator
by means of differential or difference equations (or partial differential equations for
a robot manipulator with nonrigid links). The equations of motion are useful for
computer simulation and the design of a controller for a robot manipulator. In this
section, we shall present the dynamics model based on Lagrange-Euler equation and
its customized closed-form for the PUMA 600.

The derivation of the dynamics model of a robot manipulator based on the
Lagrange-Euler equation is systematic [17. 1, 12]. By assuming rigid body motion.
the resulting model of motion is a set of second-order coupled nonlinear differential
equations. Using the 4 x 4 transformation matrix representation of the kinematic chain
and the Lagrangian equation, [1] has shown that the dynamic motion equations for a
six degree-of-freedom Stanford robot manipulator are highly nonlinear and consist of
inertia loading. coupling reaction forces between Joints (i.e.. Coriolis and centrifugal)
and gravity loading effects. These torques/forces depend on the robot manipulator’s
physical parameters, instantaneous joint position, velocity and acceleration. and the
load it is carrying.

The L-E dynamics model of motion provides explicit state equations for the manip-
ulator dynamics and can be utilized to analyze and design advanced control strategies
in joint-variable space. This L-E dynamics model is used to solve the forward dynam-
ics problem; that is, given the desired torques/forces, the equations of the dynamics
model are used to obtain the joint accelerations which are then integrated to solve for
Joint positions and their velocities; or for the inverse dynamics problem, that is, given
the desired joint positions, velocities and accelerations, generalized forces/torque are
computed.

Unfortunately, the computation of these coeflicients, especially in the case of a six-

joint (d-o-f) robot manipulator, requires a fair amount of arithmetic operations even
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though its formulations are straightforward. systematic and readable. Thus. the L-E
model is very difficult to utilize directly for real-time control purposes unless they are
simplified. So, complete closed-form equations of models are seldom presented for a
more than three d-o-f manipulator although the literature abounds with formulations
for generating complete dynamics robot models (10, 3].

However. [11] has performed a complete and customized closed-form dynamics
model of the six d-o-f PUMA robot manipulator in real-time using the symbolic-
ally processing software - ARM (Algebraic Robot Modeler), where the unmodeled
dynamics like friction, backlash, and dynamics of actuator exist.

[11]'s customized closed-form of the dynamics model, which is based on L-E
equation and customized with some parameters from (13], and which has reduced
the computational requirements. is useful for simulating the six d-o-f PUMA robot
manipulator on a computer and precompensating the nonlinear terms in the design
of an adaptive controller. The customized closed-form equations of dynamics model
for PUMA 600 robot manipulator. written in MATLAB. are presented in Appendix
Al

2.6 Derivation of L-E Dynamics Model for Motjon
of Robot Manipulator

For control analysis and design, researchers would like to obtain an explicit set of
closed-form differential equations (or state equations) that describe the dynamic be-
havior of a robot manipulator. In addition, the interaction and coupling reaction
forces in the equations should be easily identified so that a proper controller can be
designed to compensate for their effects. The Lagrange-Euler Dynamics model is one

of the good models for the dynamics analysis [5].
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2.6.1 Lagrange-Euler Equation

To determine a differential equation model for the motion of n d-o-f robot manipu-
lator. the Lagrangian dynamics technique is employed. For a conservative svstem.

the Lagrange-Fuler equation is shown as below:

d (9L ac .
9 ,' —_— —_— ——— — = e
(2.15) 7 (ad;’) En 0 :=1.....n

When external forces are acting on the system, they are included on the right hand
side of equation 2.15. Thus, Lagrange-Euler equation for a nonconservative system

is represented by the following form:

d (dC ac :
2 — =] = — = = .
(2.16) 7 (36},-) e . 1=1.....n
where
L = (Lagrange function) = kinetic energy(A’) — potential energy(P)

K" = total kinetic energy of the robot manipulator

P = total potential energy of the robot manipulator

q: = generalized coordinates of the robot manipulator

g: = first time derivative of the generalized coordinate, q:

7i = generalized force(or torque) applied to the systemn
at joint i to drive link :

In order to determine the Lagrange-Euler( L-E) dynamics model from the Lagrange-
Euler equation for a nonconservative system, one is required to properly choose a set
of generalized coordinates. For example, g; = 6; corresponds to generalized coordin-
ates of joint variables which are defined in each of the 4 x 4 transformation matrices
shown in equation 2.2.

The following derivation of the L-E dynamics model of a n d-o-f robot manipulator

is based on transformation matrices in Chapter 2.
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Figure 7: A Point r! in Link i.

2.6.2 Kinetic Energy of a Robot Manipulator

The Lagrange-Euler equation 2.16 requires knowledge of the kinetic energy (A’) of
the physical system. which in turn requires knowledge of the velocity of each joint.
In this section, the velocity of a point fixed in link i will first be derived and the
effects of the motion of other joints on all points in this link will be explored.

As shown in Figure 7. let r! be a point in the link 7, and ry be the same point as
r} with respect to the base coordinate frame. The transformation matrix A!_, relates
the spatial displacement of the ith coordinate frame to the ( — 1)th link coordinate

frame as follows:

(2.17) ri= = [z}, yi, . 1]
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(2.18) ro=| " | =lzh vir 7o, 1)

The velocity of rf then is:

- . -
iod oy Yo
(2.19) o=+ (ro) .,
~0
| 0]
(2.20) ry = Agri
where

Ap = Ag AT - AL

The velocity of r} expressed in the base coordinate frame can be expressed as:

ry = 7 (To)
d
= dt(-l ri)
d o
= dt(4 Al AL
d P i i TR i
= dt (’10 4-_11“-*—.4(1).4?'-'[“-{-"'+.45"'.4,~_1[‘l-+_4$---.4x~_lr,~)

(0, L 04, a4
- aql ql a Q2 EQqu r;

(2.21) = (Z aa: qJ) ri ,  where r=0
b

After obtaining a point velocity of each link 7, we need to find the kinetic energy

of link i. Let A be the kinetic energy of link i expressed in the base coordinate
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frame (which is an inertial frame). and dhy be the kinetic energy of a particle with

differential mass dm; in link i. then the kinetic energy of the differential mass dm, is:

"t 1 t -t
dig = 5 ((26)7 + (90) + (2)%) dm,
1 i
= E(r(‘) ro) dm;
l i i
= §Tr[r0(ro)]dm,~
L [ 04h. (i a4i .
= - i ¢ i : d i
7[5 Gt (5 ko)
AAy ; 10A
2.22 = —T 0 : : d ;
e (58 on] o

where T'r[-]. a trace operator instead of a vector dot product. is used in the above

equation. Then. the kinetic energy of link i is:

/ dR
[’ i

L1=1 k=1 aq-l

pat ]

[\’5
i
5 TT

(2.23) éTr

2

=1

aQJ

94,

(/ rfrf'dmi)

LAY J

()q QJ QL

24y’

g

QJQ‘-J

In equation 2.23, the integral can be put inside bracket since 3—2 (that is. the rate

of change of the point(r!) i

in link 7 relative to base coordinate frame as g; changes)

is constant for all points on link : and independent of the mass distribution of the

link, and also ¢; are independent of the mass distribution of link /. The integral term

inside parenthesis in equation 2

by recalling r{ = [z} y! z! 1]’ as follows:

.23 known as pseudo-inertiq matrir, J; is represented




!
Ji = /r:r:dml-

[' f.l'fzdm,- fl':y,‘dm, fI:::dm, f.rfdm,- ]
_ | Srwidme [yPdm [yizidmi [ yidm,
| Txsdme Syisidmg [ sfdm, [ eidm,
| fzidmi  [yldm;  [:idm; [ dm, ]
52 2 A
[ ettt g2 sz, =
2, Eate @4
- S2. k_!?y: 5.2:;'*5,;5”!—5.2:: =i i
I I gt 5 L |
[ —I.n+12.,“!+l..~: Lizy [ m, ! .
(2.24) = fiey San o m;g;
lir- Liy- —u—l"‘+"2 =h:: m; 3
i M., m; g m;: m; |

where ¥} = [#/ §' = 1 is the center of mass vector of link ¢ from the ith link
coordinate frame and Sizy is called the radius of gyration of link i about X =Y, axes

- Inertia tensor I; and first moments of body are defined as:

¢ Inertia Tensor /;

l. Moments of Inertia

[ixr=/(y52+::2) a'm,-

liyy = / (zfz + zfz) dm,

Ii:. = / (l‘fz + yfz) dm;

2. Cross-Products of Inertia (Symmetry : [izy = I;yz)

[,'_,_-y = /x:y:dm,




¢ First Moments of Body

K = Yk}
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[ir: —/ xdmi
Liy: -/y: xdmt

mz! —/ ‘dm,

The total kinetic energy A is scalar. and the off-diagonal elements of J, are zero

because the classical cross-products of inertia are assumed to be zero [13].

2.6.3 Potential Energy of a Robot Manipulator

Let the total potential energy of a robot manipulator be P and each of ith link's

potential energy be P;:

P = —mg(Fp)

(2.26) =

where Ty = (2§ g5 =)’ and i =

m;g (Ag

[z} !

r) i=1.2,....n

;i]l
Jokl S
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The total potential energy of the robot manipulator can be obtained by summing

all the potential energies in each link:

A
=1
(2.27) = Y —mig(ASF)
=1

where g = [g:, g,. g., 0] is a gravity row vector expressed in the base coordinate

system. For a level system, g = [0, 0. —g, 0] and g is the gravitational constant

(g = 9.8062 m/s?)

2.6.4 L-E Dynamics Equations of a Robot Manipulator

The Lagrangian function £ = A"~ P can now be formed from the kinetic energy and

the potential energy. i.e..

L = {K}-{P}

(2.25) - { ZZZT [ g;%,qk} {i—mfg(%f:f)}

"'xl] 1 k=1 =1

We now obtain the dynamics equations of a robot manipulator from below the

Lagrange-Euler equation.

ac oc
2.9 - _ 7= =1.....
(2.29) T 7 (3Qg> 3a; 1=1,....n

Evaluation of 4 ( gq‘; )

Let’s perform first differentiation of 3‘; :




ac
aQP

(2.30)

We obtain:

(2.31)

ai{;izz r[ 834°]q1q::+2m.g4 )}

=1 3=1 k=1

%; 04y {ZZ r[ 9q; g:]‘“k}

=1 k=1

+ 5 {migAGE + mogAZ3 + - + m,gAJER}
P

éi{iﬁ[%: 684*] iT [64‘ 6A"]qk}

<i=1 |j=1 2 k=1 a‘b aqk
+0 (since 94 =0)

aQP
1 &< 04y QAL ] a4y 94
- Tr 0 ,] 4= Tr [ 0 =9 J
2 =1 j=1 [an P 2 ; 2=:1 BQp aQL

(a)
By changing the dummy index j to & at (a).

1 &< 94y 94y L& 94y 94
L5 £ (2508 L5 2,24,
2 Zugl [3% 9g5 | * 72 ;:{:\ 9q, " g | *
(5)
34% ; 34y’ 24y ,a4:’]’ 548 ; 34y’

Since T'r [WS‘I‘WS] =Tr [373']‘%3} =Tr [Ef"]*%‘:'] at (b)

> > Tr [%Ji%l] g forp<i

=1 k=1

0 forp>isince37':fll=

Zn:iT [6A A Jq

aqp 1=p k=1 an aQP



[ ]}
o

Hence,

7(5) = @ (S5 (52924

1=p k=

N : 94y  0AY
- ZZT [aq Jaqp]qk

t=p k=1

64‘
YT [aqka 53 }qkqm

t=p k=1 m=1

2 t
(2.32) +zzzr [8"”;‘ Jaa4]qkqm

t=p k=1 m=

Evaluation of 2%
dqp

The last term of Lagrange-Euler equation is evaluated, that is :

ac d [1 94y 94}
9o = -“(522 T’"[aq, “Fa Jq’q“rzm’“ )

aqP t=1 j=1 k=]
I &KL 024§ | 9A J
= = Tr Ji—
2 f‘;k:l [aqa Bge | 1%
LI 0%4 a4,
+ Tr[ Ji— J 7
égg _ BQLaqp 5q, | W%
()
+Zmiga_°f‘:
1=p p

By mterchanglng the dummy indices of j and k at (a),

%A} 34' aA._
= ZZZ [aqp aq JQJCIHLmeg

1=p j=1 k=1 a

By changing j to m and then swapping Z and Z,

m=] k=1
9A z QAL .
233 = J g .m + ; Q —:
(233) l—zp ; mZ [3% Iqi ] s Z,:, g dq, r




ac) 3L

4
on of (
Evaluation 55 Sar

From equations 2.32 and 2.33, we obtain: the third term of £ (%) in equation 2.32

cancels the first term of % in equation 2.33.

d (dC ‘ dAL 8A"
— == Tr
t (a%) d‘Ip ZZ [ Oqx a‘Ip JQk

i1=p k=1
+ZZZT [ Jm‘Jqum
t=p k=1 m=1 aq a 9 4p
(2.34) —Zm,g040 '

Finally, we obtain the dynamics equation of a robot manipulator by changing dummy

summation indices p to i and i to j:

®
L
[S1]
I
3
oq
Q
:"t

2.6.5 Computational Simplification of Dynamics Equation us-
ing @ — matriz

The computation of the matriz partial derivatives in equation 2.35 is very time con-
suming. The calculations can be made faster by first noticing that transformation
matrix A!_, is a function of the generalized coordinate q; only. So, the computation
of partial derivative §4!_ /9q; for serial link manipulators can be converted to a
multiplication of matrices [1].

If we define Q; — matriz for a revolute joint 7 as below:
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Then,
dA:_,
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(2.37) 9a
For example:
-
—sinf; -~ cosa;cosb;
94 _, cosf; —cosa;siné;
2 0 0
i 0 0
[0 -1 0 0] [ coso,
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0 000 0
|0 00 OJ i 0
= Qi-'ﬁ-l
Hence, for i = 1,2,....n:
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In order to simplify partial derivative notations of dynamics equation 2.35

the U — matriz as follows:

for 5
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a;sin 6,
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Lz]k = aqk
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(2.40) = aqkézj =9 ATQeAIQ AL, fori> >k
0 fori<jori<k

For example, for a manipulator with all revolute Joints i = j =1 and ¢, = 6,.

ol d
Uy = Wlll = 0—91 (Ql.’{é) = QlQl.-l(l,

Equation 2.40 can be interpreted as the interaction effects of the motion of joint |
and joint k on all the points in link ;. Hence. dynamics equation 2.35 is rewritten

without partial derivative operations by using the I — matriz:

nooJ noj n
o= D TrlUpd;Ulac+ 325 S Tr(limd, Ulddkdm = Y m,gl 0
J=i k=1 =t k=1 m=1 =t
(2.41) fori=1.....n

The above equation can be expressed in a much simpler form as:

(2.42) 7= DG+ Y. )" cikmGrgm + G t=1,....n
k=1

k=1 m=1

Or in a matrix form:

(2.43) 7(t) = D(q(t))a(t) + C(a(t), a(t)) + G(q(t))

where
7(t) = n x 1 generalized torque vector applied at joint i = 1.....n, and can be

expressed as:

T(t) = [nu(t), m2(t),- .., ()]
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q(f) = n x 1 vector of the joint variables of the robot manipulator and can be

expressed as:

q(t) = n x 1 vector of the joint velocity of the robot manipulator and can be expressed
as:

q = [ql(t)’ (jg(t), s *qn(t)]l
q(t) = n x 1 vector of the acceleration of the joint variable q(t) and can be expressed
as:

El = [éil(t)f QZ(t)' EREX én(t)],

D(q) = n x n inertial acceleration-related symmetric matrix whose elements are:

Dy = > Tr[led;U};] i.k=1,....n
j=max(i.)

C(q.q) = n x 1 nonlinear Coliolis and centrifugal force vector whose elements are:

where

n

Ci = >3 ckmGedm i=1..... n

v=1 m=]
n

Cikm = TT'[L/J'kajL:;—i] thkm=1,....n
J=max(i.k.m)

>

G(q) = n x 1 gravity loading force vector whose elements are:

G(q) = [le GQ* ey Gn]l

where
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2.7 Customized Closed-form of Dynamics Equation

for Six d-o-f PUMA Robot

For controlling the robot manipulator or simulating its behavior on a computer. the
dynamics coefficients of in equation 2.43, that is, D(q(t)). C(q(t), q(t)) and G(q(?)).
need to be computed. However, the algebraic manipulations leading to the complete
dynamic model for a robot manipulator become tedious and time-consuming as the
number n of d-o-f increases, although the formulation of equation 2.43 is inherently
straightforward (10, 2, 18]. So, complete dynamics equations are seldom presented
for robot manipulators with more than three d-o-f although formulations for gen-
erating complete dynamic robot models have been shown in the literature [10. 3].
The following section is to show how to build the customized closed-form dynamics

equation based on Lagrange-Euler dynamics model of equation 2.43.

2.7.1 Customizing Dynamics Equation

In contrast to generalized-purpose algorithms. the practical problem with customized
algorithms is that a different algorithm is required for a specified robot manipulator to
reduce the computational requirements of manipulator dynamics for real-time control.

Computational savings of customized algorithms stem from the kinematic and
dynamic structure of the manipulator and systematic organization of the svmbolic
model when the symbolically processing computer program is used [9. 11].

For example, Algebraic Robot Modeler(ARM) [11] resolves this problem as fol-
lows: The kinematic and dynamic structure of the manipulator is exploited during
the off-line symbolic modeling as additions of zero and multiplications by +1/zero
are canceled algebraically. Upon completing the modeling stage, ARM applies a few
elementary grouping and factoring rules to the algebraic expressions in closed-form
dynamic robot models to remove repetitive calculations within and across equations.

On the other hand, the dynamic coefficients Dy and ¢ty in equation 2.42 exhibit

the symmetric reflective coupling properties (8, 16].




o Symmetry: D = Dy, and Cikm = Cimk-
o Reflective coupling: cixm = —Cmii for & < i and m.

The dynamics coefficients Dix, citm, and G; depend on the constant geometrical.
inertial, and gravitational parameters of the robot manipulator. The symbolically
processing software. which produces the closed-form of the dynamics robot equations.
accepts these constant parameters as input, either symbolically or numerically at the
user s option.

The following section describes the parameters shown in the [13] with which
ARM generates the complete customized closed-form of the dynamics equation of
the PUMA 600 robot manipulator. This dynamics equation is useful for simulating

the motion of the physical robot and thus. is used in simulating the plant of the

PUMA robot manipulator on a computer in this thesis.




2.7.2 Parameters of PUMA 600

The six d-o-f revolute PUMA robot has parallel/perpendicular joint axes. a diagonal
link inertia tensor. a sparse center-of-mass vector. and the six link coordinate frames
assigned in 2.1. Physical parameter values for the PUMA 600 are shown as follows:

Kinematic Link Parameters

The transformation matrix Ai_, for the dynamics equation is evaluated with Table

2.2,

[ cos#, —cosa;siné, sina;sinb, | a, cos §, ]
¥ sinf; cosa;cos§, —sina,cosd, a;sin §;
i =

0 sin a, cos a, d;

| 0 0 0 1]

joint

;= al | 6° d, a,

1 —-90 | 6, 0 0
2 018, 0 a,=43.2cm
3 90 | ;5 | d3=12.5cm | a3=1.9cm
4 "’90 94 d4=43.2cm 0
b) 90 | 4, 0 0
6 01| 6 0 0

Table 2.2: Kinematic Link Parameters for the PUMA 600
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Center-of-Mass and Relative Link Mass

We assume that all masses are nonzero and focus on coordinate r! in each link i. Thus.
the center-of-mass of link 7 in the ith coordinate frame is denoted by £t = [#! ' =)

and values of center-of-mass and relative link mass are shown in Table 2.3.

Link || Z(cm) | g(ecm) | 2(cm) | Relative Mass(m;/ms)
1 0 0 8 33.5
2 -21.6 0 21.75 7.3
3 0 0 21.6 36.3
4 0 2 0 8.95
3 0 0 2 2.39
6 0 0 1 l

Table 2.3: Center-Of-Mass and Relative Link Mass

The total weight of the PUMA 500 series manipulator is 120 pounds [19]. After
subtracting the weight of base, the remaining mass of six links is assumed to be
about 60 pounds. By equating the relative link mass shown in the [13]. each link

mass is shown in the Appendix A.

Gravitational Acceleration Vector

The gravitational acceleration vector g points in the negative Zo—axis direction and

it is denoted as below:

where g = 9.8062 m/s2.




Pseudo-Inertia Matrix
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Pseudo-inertia matrix J; is assumed to be diagonal in [12. 13]. So off-diagonal pseudo-

inertias are zero. and the main diagonal is composed of radii-of-gyration.

where
Jirr
Jiyy

Jx*:

The experimental values [13]

Table 2.4.

. .

[ Jez 00
0 Jy, 0 0
0 0 J.- 0
| 0 0 0 my; J
_— 1 ( Q2 q2 G2
- §m‘ T ~irr “iyy + *x:-)
1 o2 2 Q2
= 5”1,(.5”:1_ Sxyy - bi::)
1 - - -
= §mi(b,-2:z + S5, — SL.)

of radii-of-gyration for the PUMA 600 are shown in

Link | S2,(cm?) | $2(cm?) | S2(cm?)
1| 451 151 57.9
2 i 565.7 1847 1403 |
3 6728 le791 |36
1 | 316 21.1 31.6
5 | 6.9 11.2 6.9
6 | 33.8 33.8 0.911

Table 2.4: Radii-of-Gyration

2.8 Digital Simulation of PUMA 600 Motion

Simulation of physical manipulator motion implies the forward dynamics problem:

that is. given certain torques/forces. the joint acceleration is solved. This requires




solving the inverse dynamics equation 2.43 as below:

(2.44) O(k) = DH((k)) [r(k) - C(O(k), B(k)) — G(O(k))]

For the recursive calculation of the equation 2.44 at each time k. the initial values of
7(0). ©(0) and O(0) should be given by coentroller.

The kinematic structural parameters to compute D(-). C(:) and G(-) in equa-
tion 2.44 are given in Table 2.1. The inversion of a inertia matrix, D(-). is done
by using the well known lower/upper triangular(LU) decomposition and backsubsti-
tution. For some applications on singular matrices. the LU decomposition method

substitutes tiny value(1.0e-20) for a zero pivot element [14].

2.8.1 Measured Angular Velocity and Position with Measure-

ment Error

Velocity and position are computed from the acceleration equation 2.44 by the Euler’s

method.
(2.45) O(k + 1) = O(k) + O(K)T,
(2.46) Ok +1) = O(k) + O(k)T, + ~B(k)T?

The sampling period T, = 0.01 second is used in the sense that breaking continu-
ous times into increments would be a reasonable approximation. The measurements
of joint velocity O™ (k) is generated by superimposing sample values of white Gaus-
slan noise process with zero-mean and variance o2, which accounts for measurement

€rror.

(2.47) O™ (k) = O(k) + N (k)
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where G"‘(k) is a (6 x 1) measured velocity vector. O(k) is a (6 x 1) pure velocity
vector from the inverse dynamics equations and V(k)isa (6 x 1) measurement error
vector whose elements have independent samples of white Gaussian noise process with
o? = 0.01. Here, only measurements of Joint velocity are assumed to be available
because the measurement of joint position can be computed by integrating the joint
velocity measurements of equation 2.47 in the controller unit, provided that the initial

position ©™(0) is known:

O™(k) = O"(k=1)+O™(k - )T, + 2O™(k — 1)T2

L [Om(k) — O™k — 1) 72

= G)"‘(k—l)+é)’"(k—1)Ts+; T s

. 1.
(2.48) = O™(k—1)+ é@’"(k— DT, + 50™(k)T,

where O™ (k — 1), O™(k — 1) and @”‘(l;) are all available at instance k.

When a self-tuning controller is designed using a model with position output.
difficulties in tracking may be experienced when the model for the positional output
is of low order, that is. when the model for the position is not sufficiently rich in the
frequency content. These difficulties may often be circumvented by constructing a

time-series model for the joint velocities [6].

2.8.2 About Generation of Gaussian Noise

The white Gaussian zero-mean process with variance ¢? is generated with random
numbers from a random number generating function in the program. However. the
random number generating function requires different seed as an argument for gen-
erating different pattern of numbers in each execution of program. Generally this
value of the seed is fed into the program manually. In this thesis, different seeds are
automatically generated into the program by reading the present time from computer

clock and then multiplied hours, minutes and seconds by different weights as follows:
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(2.49) seed = (hour x 10000) + (minute x 100) + second

where hours, minutes and seconds are present time read by the time-reading function
in program. With these different seeds, each execution of the main program uses

different measurement error patterns of the Gaussian noise process.

2.9 Remarks

The customized closed-form of the dynamics equation for six d-o-f PUMA robot can
be realized on commercially available processors, and is applicable to real-time control
algorithms which require the on-line evaluation of manipulator dynamics. MATLAB
programs in the Appendix A shows the customized closed-form of dynamics equations

based on the L-E dvnamics.
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Chapter 3

Artificial Neural Networks

3.1 Introduction

This chapter describes the general theory about Artificial Neural Networks (ANNs).
ANNs try to mimic the nerve system in a mammalian brain, which is a highly
complex, nonlinear and parallel information processing system, into a mathematical
model. The application of ANN promises a high computation rate by the massive
parallelism. great degree of robustness (or fault-tolerance) due to the distributed
representation. and can result in the ability of adaptation. learning, diagnosis and

generalization for the system being investigated [34].[14].

Parallel Processing

The brain and ANNs process information in a similar manner. The topology of neural
networks enables them to process large dimensional information simultaneously by
massive calculation with a specific parallel computing system. This is hundreds of
times faster than serial architecture computers. (In conventional single-processor
Von Neumann computers, the speed of computation is limited by the propagation
delay of the transistors.) For example, consider the amount of computation needed
to process a single visual image. If one restricts the image resolution to 1000 x 1000

receptors, several million computations are performed in order that objects in the
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image are identified. Even at the nanosecond speeds of modern computers. this
task can require several seconds in a conventional computer. And even then the
recognition may be marginal. In contrast. biological visual systems compute such
tasks in milliseconds. The reason for this disparity in performance is. of course. due
to the massively parallel computations being performed in the brain. At any one
time, tens of thousands of computations are being performed simultaneously within
biological neural network. However, ANNs do lack some characteristics, including
the ability to forget[61] although they share many distinct features with biological

networks.

Mapping

Neural networks can perform a mapping between an input and output space. and
synthesize an associative memory that retrieves the appropriate output when presen-
ted with the input and generalizes when presented with new inputs[45]. The above
ability to learn arbitrary functions from a set of training examples is one of the
most important characteristics of some ANNs. This capability covers a diverse range
of applications. In fact, one could argue that most ANN applications fall under
the general heading of functional mappings, where an ANN learns to transform an
n-dimensional input vector to an m-dimensional output vector according to some cri-
teria. For example. a neural network can be regarded as a black-box that transforms
input vector X from an n-dimensional space to an output vector y in m-dimensional
space G : x = y. The types of mappings G which a network can approximate de-
pends on the particular ANN architecture. In general, the mapping G will be either
autoassociative (mapping to an original pattern from a noisy or partially given input
pattern) or heteroassociative (mapping from an input pattern to a different output
pattern). Meanwhile, certain multilayer feedforward networks can approximate al-
most any reasonably well behaved functions G to any desired degree of accuracy. In
order to implement such a network, however, it may be necessary to use an unwieldy

number of neurons if very high accuracy is desired.
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Generalization By Learning

Generalization can be regarded as the process of describing the whole from some
of the parts, reasoning from the specific to the general case, or defining a class of
objects from a knowledge of one or more instances. Generalization is an essential
part of learning as it permits us to remember facts that apply only to individual
members of the class. It serves as an efficient mode of memorization and storage.
ANNSs generalize when they compute or recall full patterns from partial or noisy input
patterns, when they recognize or classify objects not previously trained on, or when
they predict new outcomes from past behaviors. The ability to classify objects not
previously trained on is a form of interpolation between trained patterns. The ability
to predict from past behaviors is a form of extrapolation. Both of these types of

mappings are a form of generalization.

Robust Performance

If a certain system continues to perform well when part of it is disabled or when
presented with noisv data. that can be typically robust as a computing system.
ANNs establish such features that if one or a few neurons fail during operation. the
distributed storage of information over a set of network neurons ensures a graceful
degradation in the networks" performance. None of the information is completely lost
and the neural networks are still capable of fault-tolerant operation. This is possible
because the knowledge stored in an ANN is distributed over many neurons and in-
terconnections, not just a single or a few units. Consequently, concepts or mappings
stored in an ANN have some degree of redundancy built in through this distribution
of knowledge. This aspect of ANNs is sometimes called robust performance by fault-
tolerance. This is in sharp contrast to conventional computers, where the loss of a
single transistor or other component in a serial (Von Neumann) computer can result
in complete system failure. Such systems are most intolerant of faults. One would
expect the human brain to exhibit similar characteristics to ANNs. A portion of the

brain can be damaged or removed without seriously affecting the performance of an



individual.

3.1.1 Neural Networks Application

ANNs can perform functional approximation and signal filtering operations that are
beyond optimal linear techniques because of their nonlinear nature. This interest
stems from a recognition of the fact that the dynamics of many phenomena cannot be
accurately described using linear models. Important ANN architectures have nonlin-
ear dynamics. Their behavior cannot be fully appreciated without an understanding
of nonlinear dynamical systems theory. Many ANN applications are related to the
prediction of nonlinear systems behavior. For example. ANNs have been shown to be
effective as tools in forecasting the future movement of a time series which is known
to be driven by nonlinear dynamics. ANNs themselves offer a promising approach to
better understand, classify and model nonlinear systems. They can be used effect-
ively to estimate system parameters and thereby help to characterize these systems.

Typical applications are given bellow.

Control

ANNSs have been used effectively in learning to control robotic manipulators. outdoor
mobile robots including driverless driving tasks (autonomous land vehicles). They
have also been used to efficiently control the positioning of huge electrodes in elec-
tric arc furnaces used by steel-making companies, saving the companies millions of
dollars through reduced electricity consumption and extended life of costly equip-
ment. They have been used to control and optimize chemical plant processes saving
companies huge sums of money through better process control and material usage.
Dozens of consumer products, especially those manufactured by Japanese compan-
ies, incorporate neural network controllers including induction cookers, microwave
ovens, air conditioners, clothes dryers, photocopy machines, word processors as well
as others. ANNs have been used both independently and in conjunction with fuzzy

logic controllers to improve the performance of a product. The range of applications




in the area of control seems unlimited.

Multi Sensor Data Fusion

Sensor data fusion is the process of combining data from multiple sensors in order
to derive more information through individual sources. The fusion process includes
detection. association. correlation. estimation. and combination of data to achieve
identity estimation and timely assessment of situations. The sensor technology in
1980s has led to rapid expansion of multisensor fusion applications. including military.
process control. monitoring. robotics. diagnostics and others.

The most powerful example of large scale multisensor fusion is found in human
and other biological svstems. Humans apply fusion of body s sensorv data of touch.
sight. sound and scent to gain meaningful perception of the environment. Hundreds
of thousands of sensors are collecting data in real-time for fusion and processing
through successively higher levels of abstraction. The nervous syvstem performs the
fusion of sensory data through its massively interconnected network of neurons.

Artificial neural networks offer great promise in multisensor data fusion applic-
ations for the same reasons that biological systems are so successful at these tasks.
ANN architectures and processing capabilities show a kind of data fusion to achjeve

desired mapping of input to output signals.

Optimization

ANNs have been used for a number of problems that require finding an optimal
or near optimal solution. Such problems typically require the satisfaction of some
constraints. Some examples of optimization applications include the pricing and
sale of passenger seats by airlines. the scheduling of manufacturing operations. for
example. sequencing of tasks to machines to meet some criteria. finding the shortest of
all possible distance of paths through a large number of cities. minimization of some
cost function under a set of constraints. and so on. One of the earliest examples

of ANNs in solving optimization problems was the application of dyvnamic recurrent
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networks to the traveling salesman problem [24].

Pattern Recognition

ANNs generally are good at learning perceptive type of tasks such as pattern recogni-
tion: handwritten or printed characters, visual images of objects, speech recognition.
and so on. Many researchers increasingly are publishing the successful applications
of ANNs in the areas of image processing. speech recognition, handwritten character

recognition, automatic target recognition, robotics, process control. etc..

Forecasting

Prediction is a common task in many fields. A consumer products company will want
to know the growth in sales for a new product they plan to introduce. Meteorologists
need to predict the weather. Banks want to predict the credit-worthiness of compan-
ies as a basis for granting loans. Airport management groups want to know customer
arrivals at busy airports, and power companies want to know customer demand for
electric power in the future and so on. ANNs have been shown to be successful as
predictive tools in a variety of ways: predicting that some event will occur or not.
predicting the time at which an event will. or predicting the level of some event out-
come. To predict with an acceptable level of accuracy. an ANN must be trained with
2 sizable set of examples of past pattern and future outcome pairs. The ANN must
then be able to generalize and extrapolate from new patterns to predict associative
outcomes. Some organization have developed sophisticated systems that require the
training of hundreds or even thousands of ANNs on a weekly basis to predict stock

market index movements as well as individual stock price behaviors.

Data Compression

Some ANNs are used to learn to compute a mapping that is a reduction of the
input pattern space dimension to perform a sort of data compression. Patterns are

transformed from n-dimensional space to m-dimensional space where m < n by the
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assignments of codes to groups of similar patterns. The m-dimensional code words
serve as prototypical patterns for whole clusters or groupings of similar patterns in
n-dimensional space. C onsequently. much shorter length patterns can be dealt with.
thereby reducing the amount of transmission bandwidth required in data transmission
applications and memory storage requirements when storing groups of patterns. Data
compression is particularly important in applications where large amounts of data

are being collected and processed as in the case of satellite image data processing.

Diagnosis

Diagnosis is a common ANN application for many fields: medicine. engineering.
and manufacturing. This problem is essentially one of classification. It requires the
correct association between input patterns that represent some form of symptom.
or abnormal behavior. with the corresponding disease or equipment fault or other
tvpe of malfunction. Diagnosing complex systems. including ill people. is a practical
expert system application. It is also a viable ANN application. and manyv diverse
applications of diagnosis using some form of ANN architecture have been published

in the literature.

3.1.2  History of Neural Networks Research

From the mid 1940s to 1960. in order to solve the basic principles for intelligent
information processing. interdisciplinary research on the brain and computers was
attempted. McCulloch and Pitts [35] published their important paper describing
the properties of a simple two-state binary threshold tvpe of neuron that has both
excitatory and inhibitory inputs. Through proper choice of threshold levels. these
units can be shown to perform any of the finite basic Boolean logic functions (inclusive
OR. AND. NOT. and so on). Networks of these units were then thought to be
representative models of the brain. They made a neuron model representing a basic
component of the brain and showed its versatility as a logical operation system.

Another early result was published by Hebb [21]. who was one of the first to suggest
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a plausible process for neural learning. Even today. many of the learning models
used by researchers are some form of Hebbian learning. Hebb had also reasoned
that many distributed cell assemblies were used to represent knowledge, one of the
first suggestions of the connectionist architecture. Rochester and colleagues [46]
reported the computer simulation of ANNs at the Dartmouth summer conference
now recognized as Artificial Intelligence (Al). In performing simulations of Herb's
model. this group discovered that some changes were essential. They generalized
the model to include inhibition as well, so that active cells could inhibit others from
becoming active, and also introduced normalization of weights to prevent unbounded
growth in some synapse weights. The concept of fatigue was introduced so that firing
cells were less likely to fire in the immediate future. Although their work was not too
conclusive. it was important as a forerunner of many simulation studies.

By the early 1960s. the perceptron received considerable excitement when it was
introduced because of its conceptual simplicity. Some of them were Rosenblatt’s
perceptron [47] for the specific guidelines for learning systems by the proof of per-
ceptron convergence theorem. and Widrow and Hoff’s Adaline (adaptive linear neural
element) [57] and Steinbuch’s Learning Matrix [53]. The difference between the per-
ceptron and the the Adaline lies in the training procedure. However in 1969, Minsky
and Papert [37] introduced a rigorous analysis of the perceptron; they proved many
properties and pointed out limitations of several models.

In the 1970s, Grossberg developed Adaptive Resonance Theory (ART) [17] based
on biological and psychological evidence and proposed several architectures of nonlin-
ear dynamic systems with novel characteristics such that the dynamics of the network
were modeled by first order differentiable equations. These are self-organizing neural
implementations of pattern clustering algorithms [9]. Von der Malsburg was per-
haps the first to demonstrate self-organization using competitive learning through
computer simulation [54]. Also, Albus developed an adaptive Cerebellar Mode] Ar-
ticulation Controller (CMAC) which is a distributed table-look-up system based on
models of human memory [2]. Anderson et al. [4] proposed the brain-state-in-a-

box (BSB) model consisting of a simple associative network coupled to a nonlinear
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dynamics. Werbos [56] originally developed a back-propagation algorithm. and its
first application was for estimating a dynamic model to predict nationalism and social
communications. However, Werbos’s work remained almost unknown in the scientific
community [20].

In the 1980s, Hopfield introduced a recurrent-type neural network with symmet-
ric synaptic called Hopfield networks consisting of a set of first-order differentiable
nonlinear equations that minimize a certain energy function (23], and his approach
was based on the Hebbian learning law [21]. Cohen and Grossberg established a gen-
eral principle for designing a content addressable memory (CAM), which is known
as the continuous-time version of the Hopfield network with a distinctive feature of
an attractor neural network {10]. Furthermore, Kosko extended some of the ideas
of Hopfield and Grossberg to develop his adaptive Bidirectional Associative Memory
(BAM) [28] employing differential as well as Hebbian and competitive learning laws.
Ackley et al. [1] and Hinton et al. [22] exploited the Bolt=mann machine which is
rooted in a simulated annealing process proposed by Kirkpatrick et al. [26]. The
Boltzmann machine is trained by a two-phase Hebbian-based technique.

The neocognitron developed by Japanese researcher Kunihiko Fukushima [16. 15.
14] is a hierarchical feedforward network that learns through either supervised or
unsupervised methods. The networks are modeled after biological visual neural sys-
tems. Fukushima and his colleagues have published results showing the neocognitron
to be capable of hand written character recognition, independent of scale. position
and some deformation in the characters. One version of the system is capable of
identifying multiple characters using a feedback path.

One of the most important developments of recent neural network research s
the discovery of a learning algorithm to adjust the weights in multilayer feedforward
networks (also referred to as multilayer perceptrons). This algorithm is known as
(error) back propagation since the weights are adjusted from the output layer back-
wards layer-by-layer to reduce the output errors. The method was discovered at
different times by Werbos [56], Parker [42], and Rumelhart et al. [48]. This develop-

ment opened the way for more general ANN computing by overcoming the limitations
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suffered by single-layer perceptrons. The backpropagation algorithm has emerged as
the most popular one for a learning algorithm, and the two-volume book. Parallel
Distributed Processing (PDP) was published by Rumelhart and McClelland (49]. This
work gave a strong impulse to the neural networks research and revitalized the sub-
sequent research in this field. This research in the 1980’s triggered the present boom
in the neural networks society. Also in 1988 a procedure of multi-layered feedforward
networks was described by Broomhead et al. (8] using Radial Basis Functions (RBF).
which has lead the design of neural networks to an area in numerical analysis and
also linear adaptive filters. The research on RBF was further enriched based on the

Tikhonov’s regularization theory by Poggio in 1990 ¢t al. [45].

3.2 Modeling of A Neuron

A biological neuron or nerve cell is believed to be the basic unit used for computation
in the brain. The human apparently has something between 10'° and 10'! neurons.

perhaps more. Somehow these cells are able to cooperate in an effective way.

3.2.1 Structure of Spinal Motor Neuron

Most of biological neurons in the literature for the artificial neural networks are
modeled after the spinal motor neuron. Neurons possess tree-like structures called
dendrites which receive incoming signals from other neurons across junctions called
synapses. Some neurons communicate with only a few nearby ones, whereas others
make contact with thousands. A simplified sketch of a biological neuron (spinal

motor) is illustrated in Figure 8 and its functions are roughly explained as follows:
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Figure 8: Comparative View of Biological and Artificial Neuron

® Dendrites: One end of the cell, the input end. has a number of fine processes
called dendrites because of their resemblance to a tree (dendro- is a Greek root
meaning tree). The variability in shape and size reflects the analog information

processing that neurons perform.
® Cell Body or Soma: The cell body is referred to as the soma.

e Aron: Most neurons have a long, thin process, the axon, that leaves the cell
body and may run for meters. The axon is the transmission line of the neuron.
When axons reach their final destination they branch again in terminal arbor-

ization (arbor is Latin for tree).

¢ Synapse: At the ends of the axonal branches are complex, highly specialized
structures called synapses. In the standard picture of the neuron, dendrites

receive input from other cells, the soma and dendrites process and integrate the
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inputs, and information is transmitted along the axon to the synapses. whose
outputs provide input to other neurons or to effector organs. Synapses allow
one cell to influence the activity of others. Present dogma in neural network
theory believes that synapses vary in strength. and that these strengths, that
is, the detailed interactions among many neurons, are the key to the nature of

the computation that neural networks perform.

e Nucleus: The nucleus and surrounding machinery have the job of sending nu-

trients, enzymes, and construction material down the axon to the rest of cell.

We can say that the neuron is a very busy place.

3.2.2 How Neurons Work

How neurons interact remains largely mysterious. and complexities of different neur-
ons vary greatly. Generally speaking, a neuron sends its output to other neurons via
its axon. An axon carries information through a series of action potentials. or wave of
current, that depend on the neuron’s voltage potential. More precisely, the membrane
generates the action potential and propagates down the axon and its branches. where
axonal insulators restore and amplify the signal as it propagates. until it arrives at a
synaptic junction. This process is often modeled as a propagation rule represented
by summation value v = 2_i in an artificial neuron of Figure 8.

A neuron collects signals at its synapses by summing all excitatory and inhibitory
influences acting upon it. If the excitatory influences are dominant, then the neuron
fires and sends this message to other neurons via the outgoing synapses. In this
sense, the neuron function (activation function) can be modeled as a simple threshold
function. Since the advanced knowledge on nervous systems is neither enough nor
certain, it is almost impossible to exactly define the neuron functionalities and con-
nection structures merely from a biological perspective. Accordingly, the selection of
these activation functions generally depends on the applications the designed neural

models are for, and artificial neuron models are loosely tied to the biological neuron




9

abilities as Figure 8. Nevertheless. it is known that they have the potential to offer a

truly revolutionary technology for modern information processing.

3.3 Artificial Models of the Neuron

Since neural networks are built up of interconnected model neurons, it is important
to know what these neurons are supposed to do. From the discussion of elementary
neurophysiology, it is clear that a real neuron is immensely complex, and it can be
modeled at many levels of detail. If we tried to put into a model everything we know.
or even a small fraction of what we know about a real neuron, it would be impossible
to work with current computer technology. Therefore. we must use a model] that is
adequate for what we want to use it for. Choosing the level of detail to put in a model
is something of an aesthetic judgment. A neuron model should be simple enough to
understand and rich enough to give behavior that is interesting and significant. If all
goes well. the result will predict things that might be seen in a real organism. If a
practical application is in mind. it will be able to perform satisfactorily the function
required of it. Many neuron models are used in the neural network literature. Here.

three of them used currently are presented.

3.3.1 McCulloch-Pitts Neuron

McCulloch-Pitts neuron was first proposed by Warren McCulloch and Walter Pitts in
1943 [35]. McCulloch and Pitts made perhaps the first attempt to understand what the
nervous system might actually be doing, given neural computing elements that were
abstractions of the physiological properties of neurons and their connections. These
investigators made a number of assumptions governing the operation of neurons that
define what has become known as the McCulloch-Pitts neuron. In this model, the
output of a neuron takes on the value of 1 if the total internal activity level of that
neuron is negative and 0 otherwise. Therefore, the neuron is performing what is

called threshold logic or all-or-none. Each neuron has a fixed threshold and receives
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inputs from excitatory synapses. all of which have identical weights. The neuron can
also receive inputs from inhibitory synapses. If the inhibitory synapse is active. the

neuron cannot become active. It is a binary device as shown in Figure 9
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Figure 9: McCulloch-Pitts Neuron

The central result of the 1943 paper is that any finite logical expression can
be realized by a network of McCulloch-Pitts neurons. This was exciting, since it
showed that simple elements connected in a network could have immense compu-
tational power. It suggested that the brain was potentially a powerful logic and
computational device. Does McCulloch-Pitts neurons make correct approximations
to real neurons? Although it is occasionally suggested that they are adequate brain
models and useful approximations to neurophysiology, this is not correct. But the
work of McCulloch and Pitts gave rise to a tradition that views the brain as a kind
of noisy processor doing logical and symbolic operations. much as a digital computer

does.

3.3.2 Integration Neuron

Based on the neurophysiology of the horseshoe crab Limulus, Bruce Knight [27]
analyzed a simple integration model of a single neuron. It is sometimes called the
integrate-and-fire model of the neuron, and its close relative the forgetful integrate-
and-fire are still used as simple neural elements for some physiologic applications.
In Figure 10, imagine a noise-free neuron containing an internal variable v(t), which
might correspond to membrane potential. A stimulus z(t) might correspond to ionic

current.
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Figure 10: A integrate-and-fire neuron

Then,

d
d—'; = z(t). (z(t) > 0).

When v(¢) reaches a criterion threshold 8. a nerve impulse is fired. The system resets
v(¢) to its starting value after the spike is fired. Suppose a spike was fired at time ty

and the time now is ¢. Then,

v(t) = /tr(r)d‘r.

t
A more complex version of the integration model assumes a decay of membrane
potential due perhaps to membrane leakage. This assumption leads to a differential
equation relating stimulus magnitude z(t) and internal variable ¢(¢) with a decay

term 5 as follows:

du(t)
dt

= =7 v(t) + z(t)

The solution is now a little more complex, and the above expression can be integrated.
More detailed relations about instantaneous firing frequency, stimulus magnitude r(t)

and decay factor v is shown in (18], [19], [25].

3.3.3 Generic Connectionist Neuron

Although many neuron models are used in the neural networks architecture including

the McCulloch-Pitts neuron, and integration neuron, the generic connectionist neuron
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is mainly considered here. This neuron has a two-stage process. In the first stage.
inputs from the synapses are added together. with individual synaptic contributions
combining independently and adding algebraically. giving a resultant activity level.
In the second stage, This activity level is used to generate the final output activity
of the model neuron by using the activity level as the input to a nonlinear function
relating activity level (membrane potential) to output value (average output firing

rate). Figure 11 shows the basic architecture.
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Figure 11: Generic Connectionist Neuron

Each artificial neuron model building up an artificial neural network simulates a
biological neuron such that the basic artificial processing unit may be considered to

have three components as follows:

1. Weighted Summer to sum the input signals weighted by the respective synapses

of the neuron, whose operations constitute a linear combiner.

2. Activation Function to limit, or squash, the magnitude the output of a neuron.
This neuron output function often uses one of the following: the two valued func-
tion of 1 and 0 using a threshold that is non-differentiable, a sigmoid function
that is a continuous and differentiable nonlinear function, a Gaussian function.
a ramp, a step, a linear with saturation, etc.. The expressions below show some

typical activation functions:
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A tanh(v) is often used instead of the conventional sigmoid function since the

output value of the sigmoid function is positive. whereas that of the tanh(v)

function is both positive and negative.

The choice of activation function is not clear. but generally thev depend on
the application based on the fact that neurons located in different parts in the
nervous system have different characteristics. For example. the neurons of the
ocular motor system have a sigmoid characteristic. while those located in the
visual area have a Gaussian characteristic [5]. There are other useful function
types such as logarithmic and ezponential [11] although their biological basis

has not been established.

Weight, Synapse or Connecting Link to be characterized by a strength of its
own. It is universally assumed that the connection strengths are single numbers:
the more complex temporal behavior and nonlinear interactions known to exist
in real synapses are ignored in the name of simplicity. Almost all neuron
models assume linear addition of synaptic interactions as the first stage in the

information processing.
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e Bias or Threshold inputs to have the effects of increasing (called bias) or lower-
ing (called threshold) the net input of the activation function respectively. Gen-
erally, their values are selected as +1 and —1 respectively. Biased networks can
more easily represent the relationship between the inputs and outputs than net-
works without biases. For example, when all inputs to the network are zero. a
neuron without a bias will always have a zero output. A neuron with a bias.
however, can learn transfer functions that have a non-zero output under the
same conditions by feeding an appropriate value for the bias. (However. it is
difficult to determine the appropriate value for the bias. In this research,
a new neuron model is proposed to make an automatic decision on

bias/threshold value of sign and magnitude.)

Consequently. the mathematical output of the neuron unit is expressed as follows:

y=g(v)

= g(z W; - Iy + 9,)

=1

3.4 Neural Networks Classification

In the biological brain, a tremendous number of neurons are interconnected to form
the network and perform advanced intelligent activities. For example. the human
brain is estimated to have about 10!t neurons. and for each neuron, the number of
connections can be up to 10° to 104, resulting in up to 10 to 10'5 interconnections
in the neural system of the human brain. In neural networks, therefore, connections
are important. There can be many different ways to connect artificial neurons or pro-
cessing units in large networks. These different patterns of interconnections between
the neurons are called architectures. Network architecture, therefore, consists of how
many neurons each layer has, the layers a network has, each layer’s transfer function,
and how the layers are connected to each other and to networks inputs. The best
neural architecture to use depends on the type of problem to be represented by the

network. Large networks may be able to perform complex tasks which would be
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impossible with individual neurons. For that reason, the development of various
problem-specific architectures of neuron-like networks are required and
the derivation of learning algorithms associated with these architectures
must be performed.

ANNs can be classified depending on different basis such as the learning paradigm.
the connection architecture and general area of application. For example, based on the
learning paradigm, one can make the network classification of supervised /unsupervised
and reinforced learning networks or based on the application type, network clas-
sification of prediction, pattern recognition, classification and associative memory
networks. In this section, the classification of network type is based on connection
architecture since the behavior of the network depends largely on the interactions
between the neurons and synaptic weights. For this, two classes have been roughly

defined as feedforward and recurrent neural networks.

3.4.1 Feedforward Neural Networks

e Single Layer Feedforward Networks: Networks with a single layer of com-
putational neurons that process input signals in a feedforward direction include
ADALINE (Adaptive Linear Neural Element). Perceptron, AM (Associative
Memories), LVQ (Learning Vector Quantization), and SOFM (Self-Organizing
Feature Map).

e Multi Layer Feedforward Networks: Networks with two or more layers of
connections with weights that process the inputs in a forward direction, with
which data from neurons of a lower layer are propagated to neurons of an upper
layer include MADALINE (Multiple Adaptive Linear Element), RBF (Radial
Basis Function), RCE (Reduced Coulomb Energy), CCN (Cascade Correlation
Networks), GRNN (Generalized Regression Neural Networks), MLFF with BP

(Multilayer Feedforward Backpropagation), and Neocognitron.

Feedforward networks can only perform static processing; i.e., all free parameters

have fixed values. A typical feedforward network consists of an input layer, one
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or more middle layers and an output layer. The middle layer(s) is called hidden
because they only receive internal inputs from other processing units and produce
internal outputs to other processing units. Accordingly, they are hidden from the
outside world. Activation signals of neurons in one layer are transmitted to the next
layer through a set of links which either attenuate or amplify the signal based on the
corresponding weight.

The learning phase of a layered neuron is the process where all its weights are
adjusted according to a specified learning rule in order to minimize a specified cost
function (objective function). A commonly used cost function £ is the mean square
error between the actual neural network outputs and the specified targets for a set of
.V training patterns in case of off-line (or batch mode) method. The weight updating
problem is to find a set of weights that minimizes the predefined cost function. For
example of fixed connection weight. the outputs of the trained static network are
supposed to respond to a given input pattern to meet the defined objectives. This
is often achieved by gradient descent method. A variation of the descent method
suitable for the multilayer neural network structure is commonly used and called
Error Backpropagation algorithm. It is the most widely used method for
training.

Multilayer neural networks can be used for both classification and svstem identi-
fication. In classification. the neural network is trained to be the discriminant function
based on a collection of correctly classified examples. The success of the classifier
depends on its ability to correctly classify previously unseen patterns. Multilayer
perceptrons are known to have superior generalization and noise rejection capability
which makes them well-suited for the task. A distinct advantage in layered per-
ceptron classifiers is that their complexity is determined by the number of neurons.
the nature of the interconnections, and the type of nonlinear threshold used. This
leaves the question of how to determine the optimal neural network architecture for a
given problem. Conventional wisdom is that for good generalization ability, one has
to build into the neural network as much knowledge about the problem as possible

while limiting the number of interconnections. There are a couple of theorems and
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techniques related to the architecture itself that are worth noting. A single hidden
layer is always enough to approximate any continuous function although
how many hidden units are required is not generally known. Therefore,
particular diligence must be applied when choosing hidden layer configurations for
a multilayer perceptron. An architecture with too few hidden neurons results in a
network that is unable to distinguish patterns; an architecture with too many hidden
neurons can result in a network that is simply memorizing the training set patterns.
It will be unable to make generalizations required to correctly process the test data
upon presentation. An approach is to incrementally modify the architecture to suit a
particular task. One can remove non-useful connections during training. After con-
siderable training, the dead neurons can be dropped from the architecture. Rather
than pruning a larger network, another approach is to start with a small network that
is gradually enlarged. Both methods have given encouraging results but more studies

are needed before their applications can be Justified.

3.4.2 Recurrent Neural Networks

* Recurrent (Feedback) Neural Networks: Networks that have feedback
connections which propagate the outputs of some neurons back to the inputs of
other neurons sometimes through time-delayed elements (including self-feedback
and lateral connections) to perform repeated computations on the signals. These
networks are more suitable for dynamic models, which include RNN (Recurrent
Neural Networks), BAM (Bidirectional Associative Memory), ART (Adaptive
Resonant Theory), BSB (Brain-State-in-a-Box), Boltzmann Machine, Cauchy
Machine, and Hopfield.

There are ways to provide the mapping network with dynamic properties that make
it responsive to time-varying signals. In short, for a neural network to be dy-
namic, it must be given memory [12]. One way in which this requirement can
be accomplished is to introduce time-delay into the synaptic structure of the net-

work and to adjust their values during the learning phase. The use of time delays




88

in neural networks is neurobiologically motivated. since it is well known that signal
delays are omnipresent in the brain and play an important role in neurobiological
information processing [7. 36]. The time delay neural network (TDNN) was first
described by [29, 55]. Another way in which a neural network can perform
dynamic behavior is to make it recurrent, i.e., to build feedback into its design.
Recurrent neural networks (RN Ns) are constructed in a recurrent (feedback) manner
by connecting the output of one or more neurons to the inputs of one or more neurons
in the same or preceding layers. These feedback architectures may have lateral con-
nections among neurons of the same layer including self-feedback connections on the
same neuron as well. Incorporating feedback connections into feedforward networks
results in significant changes in the operation and learning processes of the networks
as compared to their static feedforward counterparts.

RNNs exhibit dynamic behavior unlike static feedforward networks. Therefore.
it can be said that the feedback signals are responsible for the dynamic behavior
of the recurrent network systems. They can perform mappings that are functions
of time. As a result. they are capable of performing more complex computations
than static feedforward networks. For some applications, a recurrent network may
need an arbitrarily large number of hidden-layer nodes in order to realize the same
performance levels. The behavior of RN Ns can be better understood with a knowledge
of nonlinear dynamic phenomena, such as turbulent fluid flows or nonlinear control
systems. Such systems also have coupled interdependencies and feedback paths.
Their behaviors or dynamics are governed by sets of coupled nonlinear differential
(or can be modeled by difference) equations. Likewise, the dynamics of RNNs can be
completely described by set of first order nonlinear differentjal (difference) equations

of the form:

Nonlinear differential equation:

= = g(w.x,y(t) =12 ..n
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Nonlinear difference equation:

yilk+1) = gi(w,x,y(k)) i=1.2.....n

where y(t) is the state vector while y;(k) is the output of the ith neuron at time £.
w the matrix of synaptic connection strengths, x the external input vector and ¢; is
a nonlinear differential function. For systems with recurrence or feedback, questions
of stability become relevant to the parameters x, w and the initial conditions of x(0).

w(0) and y(0). The behavior is involved in one of four ways:

® convergence to a stable attractor point,
e settle to cyclical oscillations,
* tend toward quasiperiodic behavior (oscillations at multiple frequencies). and

e exhibit a form of chaotic wandering behavior.

We will be concerned primarily with the stable convergence case where the network
converges to a single attractor point or performs some desired mapping on the in-
put vector. Otherwise, some conditions can be stated to insure a sufficiently stable
behavior. The behavior of RNNs have been studied and described by [22, 44. 43.
59. 62. 58, 13] among others, and RNNs have been used in a number of interesting
applications including control, optimization, forecasting, and pattern classification for

speech recognition.

3.5 Neural Network Training Algorithm

A training or learning of neural networks are associated with any change
in the neural connections as represented by the synaptic weights. (Training
does not imply a change in the structure of networks since structural learning is a
separate issue.) Training can be regarded as a parametric adaptation algorithm. A

process of automatic weights adjustment is generally called learning in the ANNs
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literature and adaptation in the control literature. Neural networks will either have
fixed weights or adaptable weights. Networks with adaptable weights use learning
algorithms to adjust the values of the synaptic strengths. Network with fixed weights
is to use fixed (constant) weights which are determined explicitly from the well defined
problem a priori. If the correct weights values are not known a priori, adaptable
weights by the training algorithms are essential.

There are two types of training (or learning) algorithms: supervised and unsu-
pervised depending on the use of an external teaching signal. Supervised learning
occurs when the network is supplied with both the input values and the correct output
value (or external teaching signal). and this learning algorithm adjusts the networks's
weights to minimize the error between the network output and the external teaching
output. Unsupervised learning occurs when the network is only provided with input
values, and this learning method adjusts the weights based solely on the input val-
ues and current network output. The training algorithms can also be classified into
off-line (batch mode) or on-line methods. Off-line and on-line training techniques
can be applied to a time-invariant system. and on-line training to a time-varying
system in the context of control applications. A variety of learning algorithms has
been proposed such as backpropagation (BP). competitive learning, and Boltzman
learning. BP, especially, is a systematic procedure to train multilayer ANNs and a

form of gradient descent optimization.

3.5.1 Supervised Training: Backpropagation Algorithm

The error backpropagation (BP) method is typical of one of the supervised learning
techniques, that was developed by Werbos [56]. and rediscovered and popularized
in an entirely different context by Rumelhart ef al. (49]. In fact, the popularity of
the Error BP algorithm made feedforward neural networks almost synonymous with
supertised learning. This training algorithm is an iterative gradient method designed
to minimize the mean square error between the actual output of a feedforward and

feedback (recurrent) net and the desired output. Above all, BP solves the problem
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of hidden layer learning for multilayer networks. which is why [49]™ contri-
bution is widely recognized. It requires continuous differentiable nonlinearities
of activation functions (49, 20]. During training, weights are updated to move the

network closer to the given network output target in the following manner:

e Each output unit’s computed activation is compared with its target value to

determine the associated error for a particular pattern.

¢ An error-dependent factor is calculated. This factor is propagated back to the
previous layer of neurons. Later, it is used to update the weights leading to the

output layer neurons.

e Similarly, error factors are propagated recursively back through each layer
of (hidden) neurons until the input layer is reached. Input neurons are not

changed.

* All weights are adjusted simultaneously at the end of each epoch based on the

error factors at each layer.

In the BP algorithm. the learning coefficient should be defined for the rate of learning.
and momentum value adds a tendency for weights to change in the direction they have
been changing. The BP algorithm can be seen as a gradient algorithm applied to a
nonlinear optimization problem. Briefly, the BP algorithm solves missing information

problems as follows:

e Inputs to the hidden layers are taken as the inputs to the first layers propagated

forward through the network.

® The effective reference signals for the hidden layers are obtained by back-
propagation of the error through the network. This is achieved by taking the

partial derivative of the squared error against the weight parameters.

Overall, supervised learning is an optimization process aimed at minimization of the

error cost function with respect to weights. Due to the nonlinearity of neural
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networks, the (error) cost function with respect to weights possesses many local
minima resulting in suboptimal solutions when gradient (a kind of hill climbing)
methods like standard BP are applied. Local minima problem should be def-
initely overcome in the context of training algorithm. In this supervised
learning scheme, two alternative approaches exist, namely, off-line training and on-
line training. In the off-line training scheme, a set of input-output samples of the
teachers are given in advance during a training period, while in the on-line training
scheme, a sample of each input-output of the teacher is observed at every sampling
instance and the training algorithm updates its weights only once during a sampling
period. Therefore. a time-varying system can be analyzed effectively based on on-line

training scheme.

3.5.2 Unsupervised Training

Unsupervised training attempts to cluster similar patterns together without using
training data. In theory. the patterns are classified based on similarities between
input vectors - there are no targets. Network weights are updated so that
similar input vectors are assigned to the same output cluster.

Classification decisions are made by assigning input vectors to the cluster that
features the most similar exemplar vector. An exemplar vector is the role model or
representative of a class of vectors. It is used as a basis of comparison prior to ad-
mitting another vector to the class. Some networks rigidly maintain their exemplars.
while others update exemplars to reflect the most recent addition. This is done either
by making the new entry to a class the exemplar vector or through some variation of
a weighted average of all of the vectors in a cluster.

For example, a feedforward neural network may be trained without a teacher
according to some learning rule which imposes a certain condition on its output.
Feedforward neural networks trained without a teacher may measure the correlation
of the input data, identify certain features, or perform principal component analysis.

The unsupervised training of feedforward neural networks was extensively studied
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during the past decade [32. 31. 30. 33. 38. 39. 40. 41. 60. 50. 51. 52. 6]. A common
ingredient in almost all these studies is the Hebbian learning rule. which is a biolo-

gically inspired scheme and has strongly influenced unsupervised learning [21. 3].

3.6 Remarks on ANNs

Although the actual working mechanism of the human brain has not been totally un-
derstood yet, ANNs are capable of simulating some functionalities of the human brain
by using a simplified model of the human neural system. Accordingly, the develop-
ment of artificial neural systems requires cross-disciplinary research. covering neural
science. biology, psychology. computer science. computer engineering. signal and im-
age processing, mathematics, physics, optics. and VLSI electronics technology. The
field of neural networks has so far attracted researchers from different backgrounds.
ANNSs provide a unified common language for many diverse disciplines. Therefore.
the ultimate goal is to attain a unified study on algorithms. architectures and ap-
plications for neural networks. If fundamental ANNs system theory is established. it

would serve as a foundation for future research advances and long-term applications.
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Chapter 4

Architecture Of Recurrent Neural

Networks

4.1 Introduction

In the area of control and signal processing, a designer often tries to find a mode/
capable of producing numerical values that match values measured from some phvs-
ical system or process or plant. This kind of work is known as system identification
[22].[21]. It is assumed that the model has a specific mathematical form expressed
in terms of a set of unknown parameter values and one can use a parameter estim-
ation method to find good parameter values. This estimation method requires the
consecutive data pair of input and output values from a teacher (or the plant to be
controlled).

In neural networks, the technique of determining a specific mathematical form
and a topology for the mathematical form is called neural network architecture. The
parameter (synaptic weight) estimation method is called learning or training. Since
the use of a neural network allows a more general parameter identification setup. a
nonlinear system can be identified using a neural network. Moreover, in a closed-loop
operation, the neural network can be trained to balance the requirements of identi-

fication and control. Frequently, it is shown that the neural identifier is better than
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an extended Kalman filter in terms of robustness [17]. Incorporation of time-delay
feedback into temporal dynamic models leads to the so-called recurrent neural net-
work (RNN) [26],(35]. A multi-layer network may be made recurrent by introducing
time-delay loops to the input, hidden, and/or output layers. Another way is to route
delay connections from one layer to another - called inter-layer connections in this
thesis. As a result of such a structural change, signals in the networks go through
both time and space. RNN models can learn more than Just static mapping between
the input and output due to their capability to store information and attractor dy-
namics [9],{10],(27],(15]. Thus, RNNs have a capability of dynamic mapping and are
better suited for dynamical systems than the feedforward networks. In this chapter.

some architectural techniques for recurrent and feedforward ANNs are devised.

4.2 Dynamic Properties By Feedback and Memory

In a static model, all free parameters have fixed values. Therefore, a static struc-
ture maps an input vector onto an output vector. This form of static input-output
mapping is well-suited for pattern-recognition applications like handwritten character
recognition, where input and output vectors represent spatial patterns which are in-
dependent of time. The static structure may also be used when a nonlinear prediction
is performed on a stationary time series, where its statics do not change with time.
However. dynamics of a fast time-varying nonlinear process is in general time-
history dependent and cannot be modeled by static input-output maps. One knows
that time is important in many of the cognitive-type tasks such as signal processing
(vision, speech, etc.) and control applications encountered in practice. The question
is how to represent time so that a time-varying form will be able to deal with time-
varying signals. One solution to this problem is to provide the mapping network with
dynamic properties which make it responsive to temporal sequences or time-varying
signals. In order for a neural network to be dynamic, it must be given memory or a
time-delay unit [6]. There are many ways in which this can be accomplished, and a

number of interesting proposals have appeared in the literature (14], [25],[30],[31].(32],
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(33],[34].

One way to do this is to introduce internal time-delay units into the synaptic
weights of the network and to adjust their values during the training phase[24], [8].
This is called a time-delay neural network (TDNN), which was first described by [13].
(32], and can be used for modeling nonlinear dynamics and reducing the number of
inputs needed for the modeling task. Thus, a TDNN can cope with multi-dimensional
processes[24]. By introducing more than one delay element at each unit any higher
dynamical model can be achieved without increasing the number of inputs. A similar
approach is reported in [13], where the authors propose different local ARMAX mod-
els being weighted by the associated basis function. The use of time delays in neural
networks is neurobiologically motivated, since it is well known that signal delays are
omnipresent in the brain and play an important role in neurobiological information
processing[2], [3].[4].[23].

Another way to provide a neural network with dynamic behavior is to make it
recurrent, that is, to build feedback into its design. External time-delay units can
be used for the recurrent signals to embed more temporal behavior in the model.
which is contrary to the spatial behavior prevalent in pattern recognition. A key
advantage of recurrent networks lies in their ability to use information about past
events for current computations. Thus they can provide time-dependent outputs for

both time-dependent as well as time-independent inputs.

4.3 Jordan’s RNN

Jordan([14] developed a network containing recurrent connections that were used to
associate a static pattern (a Plan) with serially ordered output patterns (a sequence
of Actions). The recurrent connections allow the network’s hidden units to see their
own previous output, so that the subsequent behavior can be shaped by previous
responses. These recurrent connections are what give the network memory. Jordan's
network played a useful role in motor control and robotics applications. The unique-

ness of Jordan’s model is that it dealt with time explicitly (as opposed to representing
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temporal information spatially in the TDNN [18],[32]). This is realized by adding
recurrent links from output to input and from input to itself, and by providing a time-
varying error function. This is shown in Figure 12. The architecture specified by the
Jordan employs first-order connections between units. Connections from output to

state units are one-for-one with a fixed weight of 1.0.
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Figure 12: Jordan's Recurrent Neural Network

Learning method for Jordan’s recurrent neural network is an extension of the
backpropagation learning method. A general learning algorithm is that of Williams
and Zipser [34]. Jordan's learning method is regarded as a special case of Williams
and Zipser algorithms as shown in [16]. Jordan's RNNs have appeared in a variety

of control applications.

4.4 FElman’s RNN

Elman [5],[6] developed a Simple Recurrent Network (SRN) or Elman’s RNN, which

has a two-layer network with feedback in the first layer as shown in Figure 13.
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Context Units

Input Units  Hidden Units Output Units
Figure 13: Elman’s Recurrent Neural Network

The Elman network has neurons with a hyperbolic-tangent transfer function in
its hidden layer, and neurons with linear transfer function in its output layer. This
combination is noticeable in that two-layer networks with these transfer functions can
approximate any function provided that a finite number of discontinuities are assumed
and the hidden layers have enough neurons. Therefore. more hidden neurons are
needed as the function being fit increases in complexity. It is noted that the Elman's
RNN differs from conventional two-layer networks in that the first layer (relatively
hidden layer) has a recurrent connection (fixed at 1.0) to the input level by additional
units called Contezt Units. These units are also hidden in the sense that they interact
exclusively with other nodes internal to the network, and not the outside world. The
importance of internalizing the recurrent links is that the internal layers’ activation
is only indirectly constrained through learning, whereas the activation in the input
and output layers is explicitly determined by the user.

The delay in this connection stores values from the previous time step, which
can be used in the current step. Thus, even if two Elman networks, with the same
weights and biases, are given identical inputs at a given time step, their outputs can
be different due to different feedback states. Elman’s network may be trained to
respond to temporal patterns as well as spatial patterns. The learning method for

Elman’s RNN is also an extension of the backpropagation algorithm as a special case
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of Williams and Zipser [34] shown in [16]. Elman’s RNNs have been often applied to
the problem of pattern recognition (or symbolic sequence prediction).

Elman’s RNN has been used by other authors (28},(29].[20], and may be useful in
various time-related sequences such as language. However, despite a few pioneering
efforts and a growing informal consensus on the strengths and weakness of the model.
little work has been done to determine the effect of its numerous parameters and to
evaluate the types of sequences it performs best. One of the many difficulties with
neural architecture is that formal analysis and detailed methods on a dynamical neural
model seldom exist for it. Hence, empirical exploration seems the only current way
of understanding such a neural model. [12] is of the opinion that Elman'’s Simple
Recurrent Networks may have problems when it is applied to difficult tasks such as
language processing, and when used for more sophisticated models for a complete

solution.

4.5 Proposed SERNN

This section proposes a new type of neural architecture called the Supercvision &
Error Recurrent Neural Network (SERNN). where supervision and error stand for
teaching signal and residual error between actual plant and neural model respectively-
A rough schematic diagram of the proposed recurrent neural net is shown in Figure 14.
The distinct features of the SERNN are that it introduces new feedback inputs from
teaching signals and from mapping (identification) errors between teaching signals
and neural outputs, and the feedforward inter-layer synaptic weights. The new inputs
create additional and meaningful synaptic weights for external teaching and error
signals respectively.

The ezternal supervision feedback is based on the intuitive assumption that more
precise information on the system being mapped will be obtained from the actual
system than from the output of a neural model. In all conventional recurrent archi-
tectures, the output feedback of the neural model has been performed, which may lead

to a side-effect of undesirable output-feedback especially at the beginning of neural
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training with improper initial weight values. This kind of side-effect is defined as
continuous vicious cycle of poverty in economics. Recurrent supervision is to remove
this side effect. Many neural training algorithms have resulted in poor performance
in terms of precision and speed in the learning phase. Therefore, supervision feed-
back imply the notion that the neural training is to reproduce the supervision signal
by the fast, robust and accurate manner.

Conventional neural nets do not have meaningful bias/threshold value and reas-
onable interpretation for that on each neuron. This research develops the automatic
way of selecting the bias/threshold value and presents its reasonable interpretation.
This is carried out by introducing feedback of the training error (or identification
error or mapping error). In a conventional neuron model the bias and threshold are
added externally and have the effect of increasing and lowering the network input of
the activation function respectively[8]. However, it is difficult for the ANN designer
to determine their magnitude and sign since they depend on the particular system
and to find the physical interpretation for different systems. In the new architecture
proposed in this thesis. these values are determined as follows: Input for threshold
or bias takes values from an error signal for the supervised training and the synaptic
weight is added for the recurrent error signals. This modification allows the neuron
model to make an automatic decision regarding sign and magnitude for threshold or
bias value instead of manual selections of —1.0 and +1.0 by a designer. Recurrent
error is expected to make a direct contribution to fast tracking for an identification
because it creates a new and meaningful input source for RN'Ns. This idea originated
in this thesis from the assumption that the neurons (spinal motor, for erample) of
human brain obtains and keeps using a kind of correction (error in ANNs) signal
from outside through sensors, and memory (experiences, that is, database) to make
decisions under an unfamiliar environment. Finally, the brain reaches a confident (=
stable in ANNs) status (= state in ANNs) with almost-zero skepticism (almost-zero
error) after repetitious corrections (updating the synaptic weights). This hypothesis
has been made by the author's imagination. This process is called learning. Error

feedback may simulate the correction process of the brain by using the discrepancy
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between the actual signal (sensed one from outside for human) and the neural output
(memory in human) to learn about a system (an external environment for human).
The effect of error feedback in ANNs is shown in Figure 31 in terms of the identific-
ation precision and speed.

New feedforward synaptic weights are also introduced to the RN Ns for the inter-
connections between layers, called the inter-layer as shown in Figure 14. This ad-
ditional link creates meaningful connections from the hidden layers to the output
layer. These inter-layer connections directly deflect the influence of inputs in the
hidden layers to the output layer. Generally external inputs and internal (recurrent)
inputs in the hidden layers pass to the next layer through internal synaptic weights
in each layer. If each layer has (unity) time-delay units. the output layer always
gets the old data from previous layers depending on how many lavers a signal passes
through. Therefore. it loses the influence of the most recent inputs data automatically
in the conventional multilayer feedforward neural nets resulting in narrow time-order
for time difference equation. Therefore. inter-layer synaptic weights play a role to
supply the most recent external-input data to the output layer directly leading to
wider time-order in terms of time difference equation. In conventional linear models
of ARX and ARMAX. the increment of time-order causes the number of parameters
to grow proportionally. which results in a drastically increased load to the estimation
algorithm. However. the computation load. which is produced by the addition of
inter-layer links for the purpose of getting more fresh data from the hidden layer. is
shared with layers in the SERNN. Since the training process in SERNN is carried out
layer by layer, the use of inter-layer synaptic weights can result in the reduced com-
putation load as well as similar time-order effects. In the SERNN model. time-delay
unit need not always confine to unity delay in each layer. The cascaded unityv-delay
in each layer can give the model more flexible (wider) time-order for both external

input and recurrent output signals.
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4.6 Architectural Techniques

The following sections introduce fundamental concepts and basic ways developed in

this thesis for the new recurrent architecture. This architecture is developed by using

mostly empirical knowledge and heuristics. This neural architecture has an objective

of fast, robust and accurate on-line system identification for the various dvnamic and

unknown systems. In this development, the following architectural nomenclature is

used in conjunction with Figures 15 ~ 26.

® Layer: There are three layers: hidden layer, output layer and virtual layer.

(Input layer is called one of the hidden layer in the following architecture since

the input layer is working for simple data-distributing points in the left-most

hidden layer.)

L.

(S
.

Output Layer (OL): is the right-most layer in a multilayer neural network.
which consists of input nodes, (internal) forward synaptic weights and

output nodes. (See Figure 15.)

Hidden Layer (HL): refers to all layers on the left-side of the output laver.
where forward direction is represented from left to right. HL consists of
input nodes, (internal) forward synaptic weights and output nodes. (See
Figure 15.)

Virtual Layer (VL): refers to all layers outside of a concerned neural net-

work. A VL consists of only one column of nodes, which can actually

be regarded as new external data points which play a role to supply the

available information from outside to the network. (See Figures 20, 21,

22, 23, 24, 25.) In this research, two kinds of VL are developed:

(a) VL of supervision signals: These data points are formed by feedback
of teaching (supervision) signals in each layer. This new input data-
source creates recurrent synaptic weights. (See Figures 21, 22.)

(b) VL of residual errors: These data points are formed from residual

errors between teaching signals and outputs in each layer. This new
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data source can replace the threshold or bias, and also create recurrent

synaptic weights. (See Figures 23, 24, 25.)

Input Node (IN): This is a data-point receiving signal in hidden and output

layers. (See Figure 15.)

Output Node (ON): This is a point of processing-unit sending signal out in

hidden and output layer. (See Figure 15.)

Virtual Node (VN): This is a simple data-point (distributor) in virtual layer

not having IN and ON. (See Figures 20, 21, 22, 23, 24, 25, where VNs are

different data points depending on Figures.)

Forward (FW): This indicates the direction of signal flow passing through from

the external input to the output in the output layer. FW links consist of internal
forward synaptic weights in each layer as shown in Figure 15 and inter-layer

forward synaptic weights between layers as shown in Figures 16, 17.

Backward (BW): Also called recurrent or feedback. BW links consist of internal

backward synaptic weights in hidden layers and output layer as shown in Fig-
ure 18, and inter-layer backward synaptic weights between lavers as shown in

Figures 19. 20, 21, 22, 23, 24, 25.

Synaptic Weight (SW): This is a connection from IN to ON or vice versa in

same layer and between layers. which is an adjustable variable.

Input: This is a signal flowing into the input nodes in the hidden and the output

layers.

Output: This is a signal going out from the output nodes in the hidden and the

output layers.

Time-Delay Unit: This means memory in discrete-time processing, which makes

a signal have the time-history such as oldest, older, old, etc., and present sig-
nals with respect to sampling instance. Each layer has unity time-delay in this
research as shown in Figure 26, where time-order is changed whenever a signal

passes through each layer until it gets to the output nodes in the output layer.
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OL-ON: Output Nodes (ON) in Output Layer (OL).

QL-IN: Input Nodes (IN) in Output Layer (OL).

HL-ON: Qutput Nodes (ON) in Hidden Layer (HL).

HL-IN: Input Nodes (IN) in Hidden Layer (HL).

VL-VN: Virtual Nodes (VN) in Virtual Layer (VL).

OL-FW-SW: ForWard (FW) Synaptic Weights (SW) in Output Layer (OL).
OL-BW-SW: BackWard (BW) Synaptic Weights (SW) in Output Layer (OL).
HL-FW-SW: ForWard (FW) Synaptic Weights (SW) in Hidden Layer (HL).
HL-BW-SW': BackWard (BW) Synaptic Weights (SW) in Hidden Layer (HL).
[L-FW-SW: ForWard (FW) Synaptic Weights (SW) in Inter Layer (IL).

IL-BW-SW: BackWard (BW) Synaptic Weights (SW) in Inter Layer (IL).
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Supervision Signals for Hidden Layer
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4.6.1 A New Neuron Model Of Error-Feedback

In the neural device (neuron) design, the bias is used such that it keeps a constant
level of activation in the absence of input and must be chosen to avoid a dead zone
[1]. Also, the introduction of the bias to the neural network design can contribute
significantly to the mean-squared error between the desired response and the neural
response [7], where the bias is said at least to be harmless. In essence, a bias is needed
for designing each specific application. A practical way of achieving such an objective
is to use a constrained network architecture, which usually performs better than a
general-purpose architecture. For example, the constraints and therefore the bias
may take the form of prior knowledge built into the network design using: (a) weight
sharing where several synapses of the network are controlled by a single weight; (b)
local receptive fields assigned to individual neurons in the network. as demonstrated
in the application of a multilayer perceptron to optical character recognition problem
[19].

However, the clear effect of bias and a global methodology to determine its value
do not seem to exist to date. In a general neuron model. the threshold (—1.0) or bias
(+1.0) applied externally has the effect of lowering and increasing the net input of
the activation function respectively [8] as shown in Figure 27.

+1: Bias
-1: Threshold O——=> @
0: No Addition ek

S8

Inputs X : @/—/

o> (@

Figure 27: A Conventional Neuron Model
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However. it is difficult for designers to determine their magnitude and sign which
depend on the system under consideration and to find their physical interpretation.

In this thesis, a new neuron model has an architecture such that:

e the threshold or the bias takes its value from error feedback with a time-delay
unit between actual (desired or supervisory) signal and model output for the

supervised training method.

® synaptic weights are added for the above recurrent error signal. This is shown

in Figure 28.

Figure 28: A New Neuron Model

The new neuron model having the feedback of error signal can make an automatic
decision on the sign and magnitude for threshold and bias values. and can avoid the

manual selection of ~1 or +1 by a designer such as:
6 = Wio -4y

The architecture based on the new neuron model has been shown in Figures 22. 24,
25. The error feedback is expected to make a direct contribution to fast training

performance because it creates a new and meaningful input source to the neural
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architecture. which leads to fast identification capability '. Its expected effect is

illustrated in Figures 29 which is exactly the same as shown in Figure 28.
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Figure 29: A New Neuron Model Observed By Feedback Control

In Figure 29, 6, replaces the bias signal in a conventional neuron model with 6, =
Wko - €k—1, but it plays a role of (adaptive) control signal for a certain neuron plant in
the new neuron model when the general training algorithm updates the bias synaptic
weight wig (including wiy, wga, ... . Wkp) to minimize the error of e.. The teaching
signal y,‘f and the input data r,, 1, ... . I, are given as a training set for the neural
networks. For the purpose of comparison between the conventional and the new
neuron models. a nonlinear plant is simulated and identified as shown in Figures 30
and 31. The left-hand side figures show the identification results based on the
conventional neuron model, while the right-hand side figures clearly show the
faster identification performance ? by the new neuron model. Both neural
networks built by the conventional and new neuron models use the same on-line
training method of the standard RLS algorithm with a clear supervision signal in the
hidden layer, whose development is explained in the next chapter. The new neuron

model solves the problem of the bias/threshold signal selection effectively and turns

'Published in IEEE International Conference on Systems, Man and Cybernetics, Vol.1, Oct.14-
17, pp.336-50,1996.
2Published in Journal of KIEE (Korean Institute of Electrical Engineers), July, 1997
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out to be very useful for fast, accurate and robust neural system identification through

the following simulations in this research.
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(a) based on a conventional neuron (b) based on a new neuron

Figure 30: Real-Time System Identification (Actual Output + Model Output)
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Figure 31: Identification Error

4.6.2 A New Feedback Of Supervision Signal

In all neural architectures published in the literature, the self-feedback of the output
from the hidden and/or output-layers (internal feedback) has been done for the re-
current neural structure. In this research, instead, the feedback of the supervision
signal from outside the neural model, that is output from the plant is heuristically
proposed. Both the internal (self) and external feedback creates new inputs to the

networks and thereby computes new synaptic weights for them. This novel recurrent
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neural architecture is made on the assumption that the external feedback is able to
transfer more accurate information about the plant to network inputs than the in-
ternal feedback can do alone. It may be mentioned that the memory capability of
networks comes from the recurrent connections described in the Section 4.2. Espe-
cially, at the beginning of the on-line identification, due to poor initial-weight values.
the network output has a greater identification error, i.e., plant-output tracking error.
A question arises whether it is prudent that the poor neural outputs at the beginning
of training should be fed as inputs in order to reduce the residual (modeling) error
for the next learning step. This self-feedback of poor neural model outputs may lead
to a vicious cycle of mal-information. Based on the above heuristics. the feedback
of supervision (desired) signals is designed for the recurrent neural net architecture
for the purpose of developing a fast, accurate, and robust system identification. This

architecture of the supervision feedback has been shown in the Figure 19, 20, 21.

4.6.3 Inter-Layer Forward Connections

As a further development in this thesis, the inter-layer forward synaptic weights
are inserted additionally between the input-nodes in the hidden-layer (HL-IN) and
the output-nodes in the output-layers (OL-ON) as shown in Figure 14. The inter-
layer connections can create wider time-order in the time difference equation for the
developed multi-layer recurrent neural network called the SERNN shown in Section
4.7. Each output and hidden layer is designed to have unity time-delay units at the
input nodes. Unity time-delay occurs whenever signals pass through a layer. In the
absence of inter-layer synaptic weights, only two-unity time-delayed external input
signals in the hidden-layer reach the output-nodes in the output-layer in case of two-
layer neural nets (See Figure 26). Therefore, unity time-delayed external inputs in
the hidden layer never go to the output-layer. By adding the inter-layer forward
synaptic connections, however, the output-layer is able to get both unity and dual
time-delayed signals simultaneously, which leads to a larger time-order. With the

multi-layer architecture consisting of more layers and inter-layers, the time-order can
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be theoretically increased to infinity as in a conventional ARX and ARMAX (linear
parametric) models. The inter-layer connection has a clear advantage over the non
inter-layer neural architecture with respect to the number of synaptic weights being
trained at a time since ANNs’ weights training is performed by means of layer by
layer, while the parameters in the conventional linear model are all estimated at one
time. It is well known that as the number of parameters to be estimated increases. the
estimation performance deteriorates (11]. In the time-delayed multi-layer recurrent
neural architecture, it is important to recognize that the time-order in the difference
equation should not be sacrificed under the name of the multi-layer networks. The

ways of inter-layer forward connection have been shown in F igure 16 and 17.

4.7 Schematic Diagram of SERNN

The following two schematic diagrams show typical network structures built by the
architecture proposed in the Section 4.6. The single-layer architecture for the SERNN
is shown in Figure 32 which is built as shown in Figures 15, 20. 23. 26. The multi-
layer architecture for the SERNN is also shown in Figure 33 which is built using
components as shown in Figures 15, 17, 20, 22, 23, 23, 26. Different combinations
of the proposed architectural techniques can create other functional nets depending
on the application. This section introduces the single-layer (3-input 3-output) and

multi-layer (multi-input multi-output) SERNN.




Supervision & Error Recurrent Neural Network (SERNN)

Figure 32: Single-Layer Schematic of SERNN



123

.
0 ¢ “ v € —
.

N
m .
— LA 2 : W
X !

Figure 33: Multi-Layer (Detailed) Schematic of SERNN




124
4.8 Remarks On the Developed SERNN

The architectural features of the proposed SERNN are as follows:

® One layer is divided into the three parts of the input nodes, the internal for-
ward synaptic weights and the output nodes. This allows a designer to enhance
the chance of observation for more connections and to make systematic links
instead of spaghetti® synaptic weights. The creation of the virtual layer can
be regarded as a result of the systematic link methodology. The proposed archi-
tectural techniques are useful to design diverse neural topologies for different

applications.

e The bias of a simple constant in a conventional neuron model is replaced with
error feedback in a new neuron model and a synaptic weight is added to this.
The bias of error-feedback is actually a time-varying signal, and thereby a time-
varying bias. The new bias can play a role of a (adaptive) controller inside
each neuron by the added synaptic weight with the time-varying bias. because
the weight for bias is updated continuously to minimize the error between the
desired response and the neural response. This method of automatic bias can
make a significant contribution to fast tracking systemn identification as shown

in Figure 31.

¢ The supervision-feedback is developed in designing the SERNN architec-
ture, while the conventional RNNs use the self-feedback of neural output. [t
is presumed that the self-feedback architecture for the RNNs is less desirable
than the supervision-feedback. This assumption is based on the fact that the
neural mapping performance gets poor at the beginning of neural training pro-
cess unless the optimal initial weights are selected. The feedback of a poorly
mapped neural output may be a vicious-cycle of the poor output which may

lead to the instability at the beginning of training process. However, the pro-

3Means unstructured or tangled synaptic links. In the Software Engineering, the spaghetti pro-
gram results from frequent use of the go to command and should be avoided.
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posed supervision-feedback can take more accurate information of the plant
under consideration by the recurrent actual plant output, because the aim is
to minimize the error between the actual plant output and the neural model

output, in other words, to track the actual output by the model output.

The SERNN architecture always requires clear supervision signals to train each
layer effectively. The BP algorithm is not adequate to train the novel SERNN
network because BP does not have clear teaching signals for the hidden layer.
but only ones for the output layer. To effect teaching the hidden layers, BP
uses the backpropagating of error occurring in the output layer to the hidden
layers. This may cause the slow learning because all hidden layers have the
same supervisors (i.e., the same error-gradient with different learning rates)
as that in the output layer. A question arises whether it is reasonable with
regard to the multi-layer ANNs topology which is generally cascaded. On this
matter. the novel teaching signals for the hidden layers are derived by the L,-
norm optimization method in the next chapter where the novel on-line training
algorithm called MRLS algorithm is also developed. The combination of the
SERNN architecture in this chapter and the MRLS training algorithm with
clear teaching signals presented in the next chapter leads to the development

of a fast, robust and accurate neural system identifier.
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Chapter 5

Real-Time Multi-layer Neural
Networks Training Algorithm

5.1 Introduction

Real-time (on-line) system identification refers to the process of developing a neural
network model described in Chapter 4. It involves estimating time-varying svn-
aptic weights recursively at each sampling period kT, by observing input and output
measurements for the system being considered. In this chapter. the typical training
algorithms for neural networks are discussed. and a fast. robust and accurate on-
line training algorithm is developed to improve the performance of dyvnamic system
identification based on recurrent neural nets.

In the literature a variety of training algorithms have been proposed. such as error
backpropagation (BP). competitive learning, Boltzmann learning, etc.. Each learning
scheme is useful for a specific type of application. The main problem in training the
multi-layer ANNs has been the absence of a desired output (a teaching signal) for the
hidden layers. This can be solved by the error BP algorithm in the form of gradient
descent optimization. (Also called generalized delta rule, and similar to steepest
descent.) In BP, the error for the hidden layer is calculated by the propagation of

errors back from the output laver to the hidden layer. and from this hidden layer to
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the previous hidden layer, and so forth. It can be shown that the synaptic weight
adjustment by the BP algorithm minimizes the summed square of the errors between
the desired and the actual outputs over the entire training set. The mathematical
details of the algorithm can be found in (16]. The error BP algorithm is a systematic
procedure to train the multi-layer feedforward/recurrent ANNs.

Here. the gradient-based training algorithms are briefly reviewed. and these for-
mulate the gradients of the cost functional with respect to the various parameters
of the neural architecture, i.e., synaptic weights, for the minimization process. In
a variety of the literature. major efforts have been devoted to two aspects: the ef-
ficacy of their computation (in the past) and efficient calculation of the gradients
of a system’s output with respect to different parameters of the neural architecture.
The following shows their efforts for the latter cases of above two aspects in the BP
algorithm clones.

[26] presented a scheme in which the gradients of an error functional with respect
to network parameters were calculated by direct differentiation of the neural activa-
tion dynamics. This approach is computationally very expensive and scales poorly
to large systems. The inherent advantage of the scheme is the small storage capacity
required. [14] described a variational method which vields a set of linear ordinary
differential equations for backpropagating the error through the system. These equa-
tions. however. need to be solved backward in time. and require storage of variables
from the network activation dynamics, thereby resulting in less desirable effects. [22]
has suggested a framework which, in contradiction to (14]'* formalism. enables the
error propagation system of equations to be solved forward in time. concomitantly
with the neural activation dynamics. A drawback of this preliminary approach comes
from the fact that these equations have to be analyzed in terms of distributions.
which preclude straightforward numerical implementation. [18] proposed a concep-
tual algorithm based on Lagrange multipliers. However, this algorithm has not vet
been validated by numerical simulatjons. [15] proposed combining the existence of
different time scales with a heuristic gradient computation. However, the underlying

assumptions and highly approximate gradient evaluation technique may place severe
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limits on the applicability of this method.

5.2 Error Backpropagation Algorithm

The error backpropagation algorithm can often find a good set of weights in a reason-
able amount of time. However, there are some drawbacks in most of the conventional

error BP training clones:

(a) BP learning speed is sometimes very slow when the global minima are well hid-
den among local minima [11]. Slow speed may also come from its hill-climbing
method for a minimum-seeking problem instead of optimization. Another con-
jecture for slow learning may arise from the fact that the error in the output
layer is backpropagated to the hidden layers in the equivalent manner. In other
words, this can mean that hidden and output layers use the same supervisory
signal, which may be less reasonable in conjunction with the topology of multi-
layer neural networks. The derivation of clear teaching signals is expected to

train the hidden layers reasonably.

(b) BP tends to get trapped at local minima since it is a method for calculating
the gradient of the error with respect to the weight. With enough momentum.
BP can escape these local minima. In this case. however. the next step weight

estimates will not always be a better one.

(c) BP has a scaling problem such that its performance falls off rapidly on increased

complexity networks even though it works well on simple training problems.

(d) BP’s rate of convergence is seriously affected by initial weights and the learning
rate. The development of a more robust method with respect to random initial
values of synaptic weights is expected. The systematic or generalized selection
of the learning rate is required for the various applications. BP can result in

divergence and continuous instability if the learning step size is too large.
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Many other researchers have proposed modifications of the classical BP algorithm
to improve the drawbacks of the BP algorithm. [24] incorporates several heuristics
laws in the BP algorithm, but they are difficult to describe systematically. [2]]
incorporated an extended Kalman filtering to improve the standard steepest descent
technique. However, computational complexity of this algorithm becomes intractable
as the size of the ANN increases. Recently, [19] and (10] partitioned a nonlinear
neuron into linear and nonlinear portions (which was proposed by [19]), and used the
Kalman filtering techniques to improve the learning speed and the sensitivity of the
initial weights. However, they may suffer from the sensitivity problem on learning
rate and similar drawbacks of BP algorithm due to the use of BP techniques for the

hidden layer training.

5.3 Application of RLS to ANNs Training

The undesirable nature of the BP algorithm as a neural net training method and
its close relative. Least-Mean-Square (LMS) algorithm leads to the use of recursive
least-squares (RLS) algorithm. As a parameter estimation method for linear models
such as ARX (AutoRegressive eXogeneous! input) and ARMAX (AutoRegressive
Moving Average eXogeneous input). The RLS algorithm has been attractive because
of its fast speed of convergence. But the direct application of the RLS parameter

estimation algorithm to the neural training is difficult because of:

e (a) its applicability only to linear system models having single-layer-like archi-
tecture due to the requirement of a clear supervision signal for all layers being

trained.

¢ (b) numerical instability like wind-up phenomenon when the covariance matrix

does not meet the condition of persistent ezcitation.

'Econometric term, sometimes called eXtra or eXternal
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e (c) crucial parameter setting problem like forgetting factor inside the RLS tech-

nique.

e (d) the non-universal justification of the Gaussian zero-mean noise assumption

on the model mismatch? error.

Therefore, an improved version of the RLS algorithm was developed and was applied
to the multi-layer ANNs training. This leads to the derivation of the Modified RLS
(MRLS) algorithm shown in the Section 5.4. Since the MRLS originated from RLS,
which in turn originated from the Least-Squares (LS) algorithm, the following two

sections introduce the LS and RLS algorithms in a simple manner.

5.3.1 Least-Squares (LS) Algorithm

We consider below the difference equation 5.1 for the linear parametric model.
(5.1) yi(k) = xJ(k - 1) w; + ¢, (k) J=1--.p

where y3¢*(k) € R'*! is the desired signal (the teaching signal in ANNs) from meas-
urement of a real system. x;(k — 1) € R**! is the input data vector (sometimes
called the regression vector). w; € R**! is the parameter vector assumed to be time-
invariant and unknown, xI'(k — 1) - w; is the model output, e;(k) € R'*! is the
residual (modeling) error between actual and model outputs, and p is the number
of the outputs for a system. To estimate the unknown parameter w;, the following

criterion function is formulated to minimize the modeling error €;(k):

(5.2) Jw;(N)] £ - Nk (k)

<l

[y k) ~ xT(k =~ 1) w2

ZI

*Sometimes, this mismatch between the behavior of the real system and that expected from the
model is called uncertainty
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where V is the number of measurements and 7, 1s a sequence of positive numbers. The
inclusion of the coefficients */_;V'k in the criterion 5.2 allows us to give different weights
to different observations in terms such as ezponential-weight constant forgetting factor
(EW-CFF). An optimal choice of v; can be related to the variance of the noise
term e;(k). The criterion is quadratic with respect to w,, which forms a bowl-
shaped (concave upward) quadratic error function or performance surface such as a
paraboloid (a hyper-paraboloid if there are more than two weights) [25]. This gets
free from a wrangle of local minima. The analytical minimization solution is shown

in equation 5.3 provided the inverse exists.

N -1 N
(3:3) % = [ (= 1) xTk = 1) [k — ) k)|

k=1 k=1
Equation 5.3 is called a celebrated least-squares (LS) algorithm by least sum of
squared errors method. The detailed derivation of LS algorithm is shown in Section
5.4. Since equation 5.3 is of batch-mode (off-line), it can be rewritten in a recursive

(on-line) fashion leading to the Recursive Least Squares (RLS) algorithm. In the

following section. the RLS algorithm is introduced and its features are analyzed.

9.3.2 Standard RLS (SRLS) Algorithm

In Section 5.3.1, the LS method is applied to determine the optimal parameters in
a given linear difference equation model. In using equation 3.3, all measurements
must be available before computing w(N). Thus, the computations are performed
oft-line. Suppose now that a new measurement y3(N + 1) and data vector X, ()
are obtained, and the new estimates W(NV + 1) must be computed on the basis of all
known measurements. If the LS algorithm of equation 5.3 is used, the entire sequence
of mathematical operations should be repeated. It is very inefficient in computation.
difficult to apply to real-time processing, and requires huge memory capacity while
the excursion keeps on going. Practically, off-line estimation algorithms are not
suitable for time-varying systems where N goes to infinity. It is possible, however, to

manipulate equation 5.3 into a difference form that requires much fewer mathematical
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operations. This leads to SRLS algorithm which will only update the last estimate.
The SRLS algorithm of equations 5.4 and 5.5 is obtained from LS method of equation
5.3 by forcing it into a recursive form. The detailed processes of deriving the SRLS

algorithm is shown in Section 5.4.

(5.4)
W (k) = Wy (k — 1) + Pj(k) - x;(k — 1)[y;°*(k) ~xT(k = 1) v, (k - 1)]
= W0k = 1)+ g0k = 1)« [53(k) = xT(k = 1) - o, (k - 1]
. . N _ Pilk = 1)x;(k — 1)xT(k - 1) P;(k — 1)
(5.3) "P"(A)_Z[Pf(k_l)_ v+ x (k= 1)P(k — 1)x;(k ~ 1) J

P; € R™" in the equation 5.5 is called the covariance matriz which is symmet-
ric. The estimates updating law of equation 5.4 can be explained by the following

representation.

New Previous N Algorithm A Priori

Estimates Estimates Gain Estimation Error

As a parameter estimation method, the SRLS algorithm has been attractive because
of fast speed of convergence. However, there are still some points that need to be
improved in order to apply it to practical projects and the neural network training.

The limitations on the SRLS algorithm are as follows:

¢ (a) The updating law of equation 5.4 for unknown parameters has been derived
under the assumption that the noise term in equation 5.1 is Gaussian zero-
mean white noise [9]. The expectation of errors is zero in the long run. This
assumption generally works reasonably with certain applications. However, the
early stage of estimation may not justify this assumption, especially with a
non-optimal initial parameter values. Real-life application can seldom meet

this conjecture, and thereby, instability can take place when SRLS is applied
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to various situations. The Modified RLS (MRLS) algorithm in this research is
derived in order to remove the assumption of Gaussian zero-mean noise on the

modeling error.

e (b) The covariance matrix P;(k) should be prevented from going to either zero
and infinity. The covariance matrix can gradually decay to a small value with
7 = 1, and the algorithm does not retain its alertness or adaptivity [20].
Since the second term on the right side of equation 5.5 is always positive or
zero, P;(k) gets smaller and smaller as time progresses. The smaller P,(k)
means smaller algorithm gain g;(k — 1) in equation 5.4. It is clear that smaller
algorithm gain will give smaller modification for the new estimates. On the
other hand, the divergence of the covariance matrix P ;(k) can also take place
under the incomplete or no persistent ercitation (PE). which is leading to the
estimates wind-up. For example. by the small input vector of xXj(k=1)=0
and the forgetting factor of v; < 1 in equation 5.5, the covariance matrix will
grow quickly. Therefore. the covariance matrix composed of input vector
and the forgetting factor plays an important role to keep the whole
algorithm alive. To do this, a certain process is necessary for the covariance

matrir modification or the periodic resetting.

e (c) The effective selection method of forgetting factor should also be devised
in terms such as erponential-weight variable forgetting factor to improve the

SRLS algorithm.

These topics are tackled in this chapter.

Analysis On Application Of SRLS Algorithm To ANNs Training

Application to nonlinear model: An ANN is a nonlinear system, which is characterized
by the activation function in an artificial neuron (except for linear activation
function such as ADALINE, MADALINE, etc.). Since the RLS algorithm can
be applied only to the parametric linear model, an adequate linearization pro-

cess is required on the nonlinear models or a linear observation is necessary.
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The Taylor series ezpansion is frequently used for linearization techniques. The
linear observation can be carried out to take effect of linearization by means of
applying the inversion process of the activation function to both neural network
output and its supervision signal. In other words. this is the process of dividing
a neuron model into linear and nonlinear portions, and the linear portion is
only observed for the purpose of the neural network linearization provided that
an activation function is invertable. The same inversion procedure is applied
to its supervision signal. Then both linearly-observed signals are compared for
the training. The linear observation method is preferred because of its reduced

computational load.

Multi-layer training: The output layer in the multi-layer ANNs can be trained by the
SRLS estimation method because the output layer can take an explicit teach-
ing signal from the measurement of an actual system under consideration. On
the other hand, in order to train the hidden (middle) layers, clear and reason-
able teaching signals need to be supplied. This makes the direct applic-
ation of SRLS to the multi-layer neural networks difficult because
SRLS requires the clear teaching signal. For this purpose, the error back-
propagation algorithms have used the error gradient from the output layer to
the hidden layers consecutively, which can cause the aforementioned side-effects
on BP clones. In this research, clear teaching signals for the hidden layers are

derived based on the L;-norm optimization technique.

Selection of forgetting factor: The proper value of the forgetting factor plays an im-
portant role for overall estimation performance in the SRLS algorithm. But, the
optimal selection of a constant forgetting factor (CFF) value is difficult. Fur-
ther the CFF may not be robust for various situations that arise in applying the
algorithm to different systems. For example, the SRLS algorithm may not track
the fast time-varying parameters even though they are able to chase the slow
time-varying parameters or vice versa. This is referred to as the adaptability

for both slow and fast time-varying parameters. It is generally known that the
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choice of forgetting factor (0 < A < 1) influences the trade-off between track-
ing ability and noise (error) sensitivity such that a smaller value of forgetting
factor gives faster discounting or forgetting of old signals, but leads to a great
sensitivity to contemporary situation such as noise, and the opposite is true for
forgetting factor close to one. A CFF can be used frequently for a slow time-
varying system under the constrained situation. A CFF, however, may not cope
with a more dynamic system under the diverse situation. This naturally leads
to use of the variable forgetting factor (VF F) to carry both the time-varying
and the time-invariant systems. A VFF requires an automatic decision of the
forgetting value on-line at each sampling instance depending on the situation.
But the use of VFF may not always guarantee the better performance over CFF
of a fixed value. because most of VFF algorithms are generally built based on
stochastic assumptions and the pre-knowledge of the system under considera-
tion. The stochastic assumption on the system cannot always be justified under
the real-life situation, and the use of the pre-knowledge on a system may result
in an ad-hoc algorithm for a specific system under consideration. Hence. the
algorithmic generality will frequently fail for a wide range of systems. In this
research. the exponential-weight VFF is proposed without making assumptions
and using pre-knowledge on the dynamic systems being studied. The proposed
VFF algorithm relies on only measurements from the plant, which avoids the
ad-hoc feature for the selection of forgetting factors. The proposed algorithm

for VFF should be able to cope with different plants without alteration.

Divergence of covariance matrix: If the regressive input vector x;(k) is not rich, the
covariance matrix of P;(k) will grow exponentially, what is called the burst
phenomenon in the covariance matrix. The required properties of the input
vector are, in loose terms, related to the fact that the input should excite all
modes of the system by keeping alert values. Such an input will be called
persistent ezcitation (PE), or general enough or rich enough. The requirement

of PE, therefore, means that the input must have sufficiently rich frequency
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content. For example, in the extreme case of xj(k) = 0, Pj(k) = P,(k —
1)/A goes to oo for 0 < A < 1. Therefore, the covariance matrix should be
suppressed in cases of the incomplete excitation without seriously losing the
original information on the plant being controlled if possible, or the estimates
updating law must have enough robustness to recover the lost information that
occurs in the process of suppressing the covariance matrix divergence. This is
a difficult task and is an active research topic. In this thesis, the periodical
resetting method together with the EW-VFF is used without degrading the
performance, and guarantees suppressing of the burst phenomenon at least for

the systems studied in this thesis.

Sensitivity on initial parameters: The poor selection of initial parameter values being
estimated causes serious convergence problems in the SRLS clones, and fre-
quently falls into the overall estimates wind-up. Other gradient algorithms in-
cluding BP and LMS are also prone to the sensitivity problem of initialization.
In this research, this problem is tackled by using of the Modified Recursive
Least-Square (MRLS) algorithm, which is based on different assumptions on
modeling error from that of the SRLS algorithm. The MRLS algorithm appears
to be less sensitive with respect to the selection of initial parameter values be-
cause it avoids zero-mean noise which is assumed to be a zero after summing
up. This assumption may not be true for the various systems, which can result
in biased estimates or failure of estimation. Especially. at the beginning phase
of the training, the side-effect of zero-mean noise assumption can become more
serious with the non-optimal initial parameters which produces naturally larger

initial modeling error.
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5.4 Modified RLS (MRLS) Algorithm

In this section, the SRLS algorithm is modified for the MRLS algorithm. We consider

the same difference equation 5.6 for the linear parametric model.

(5.6) yit(k) = xT(k = 1) - w;(k) + e;(k), j=1,---.p

9.4.1 Derivation of Estimates Update Law

The cost function of equation 5.7 is minimized at first to derive the LS algorithm batch
mode with an ezponential-weight variable forgetting factor (EW-VFF) as shown in

equation 5.8.

N
N
2 TRy (k) ~ xT(k = 1) - wy (V)2

where 0 < +,(k) < 1. % = 0 gives the following,

{—xj(k = 1) R k) - [yzetk) — xT(k - 1) - w,~<N)]} =0
k=1

(5.8)
N -1 N

(N = [0 7N k) -,k = 1) - xT(k - D] [y 4 k) k= 1) - = )]
k=1 k=1

In equation 5.8, the inside of the left bracket is defined as equation 5.9.

(5.9) R(N) = f:hj(k)]‘v"kxj(k —1)-xj(k-1)

k=1
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and
N-1
(5.10) RIN = 1) & 3 [w(k)¥ %%, (k — 1) - xT(k - 1)
k=1

where R(N) is a symmetrical matrix which gives the covariance matriz symmetry.

which will be detailed later. Equation 5.8 is replaced by equation 5.9 to get equation

] N
wi(V) = |R(V)| - Zhj(k)]“"*x,-(k—1)~y;“<k)J

I
By
=

[Nv-1 )
a3 {[‘/&(k)l’\ (k= 1) - ;< (k) } + [ (V)% (v ~ Dy e(N)
| S——

- - see eqs.12

12
d

where ¥ ! yi<(k) is replaced as shown below.

Removal of Zero-mean Assumption on Modeling Error

In equation 5.11, the expectation of the desired signal YN ! y;

(k) is rewritten as
equation 5.12, which is different from the SRLS algorithm where Z;?;]l €;(k) =0 is

assumed based on Gaussian zero-mean white noise on the residual error.




N N-1
Zy,“’(k Z{ ,-T(k—l)v'vj(k)Jrej(k)}

=1 1

= {[XJT(O)WJ‘(I) + (1] + [x] (1)%;(2) + €,(2)] + - --

+ [xJT(N - Z)WJ(.'V - 1) + 61‘(_\7 - 1)]}

7

= {[Xf(O)W,'(N = DI+ (V= 1))+ 4 [T (Y = 2)w,(NV ~1)

+e(1) +€(2) + - 4 (N - 1)]}

If 25 ej(k) = 0 is assumed as SRLS algorithm. the approximate equal sign of =
in equation 5.12 becomes much less reasonable especially when .V is small. Small
.\ represents the beginning phase of the estimation where the modeling errors are
generally large. However. equation 5.12 for the MRLS algorithm gets rid of the
assumption that the noise terms would disappear just by adding them up as time
progresses in SRLS algorithm. In equation 3.12. the use of the approximate equal
sign of = is accompanied by the error term. which can be a natural notion leading

to the overall algorithmic robustness.
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-1 N—
- [R(N)} - [f{[w(k)]*"-kx,-(k = D{xT(k = D#(N = 1) + (¥ - D}

k=1

+x(N — l)y;""(N)J

-1 N-1
= [RJ(N)J . [5‘_ {[~,,-(k)]”“°x,-(k ~ )xT(k = 1)W;(V — 1)} +
k=1
N-1

S { )Y x50k = Des(¥ — 1)} 43,V = 1)y;‘°'<.v>]

k=1

-1 N—1
= [R(N)] : [{ > LRV hes (k = 1DxT(k = 1) iy (¥ = 1)

7

—

(2) S€€ eq.5.15

N-l
+ { [ (k)Y 5 (k — 1)}6;(.\" — 1)+ x,(N — 1)y;C'(.\f)J
k

(b) see eq.5.16

(a) in equation 5.13 is written into equation 5.15 using the earlier definition of equa-

tion 3.9.

(5.14)

N
Ri(N) = 3 (k)Y 5k = 1)xT(k - 1)
k=1

N-1
= {Z [y (RN =% (k — 1)xT (k — 1)} + (1 ()% (N = xT(V = 1)
k=1

(5.15) .-. El[yj(k)]N-kxj(k —1)x](k=1) = Rj(N) — x;(N — 1xT(NV - 1)

k=1

(b) in equation 5.13 is written into equation 5.16 using below new definition:
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Q;(N) Z[’Y ‘\ ka(k_ 1)

U
N-1
Qi(N = 1) & 3 [y;(k)¥ 1 *x;(k - 1)

k=1

N-<-1 N—-1

{ ek~ )} 2 (v — 1) - ¥ {45k - 1)}
k=1
(5.16) =7(N=1)-Q;(N - 1)

By substituting equations 5.15 and 5.16 into (a) and (b) in equation 5.13 respectively.

vields,

(5.17)
- = [R;‘(N)J [{RJ(N) —x;(N = 1)xT(V ~ 1)}@,—(N ~1)+
{3V =1 Q¥ D}, - 1>+x,(:\'—1>y;°‘(.\')]

= RJ,—I(./\")RJ'(.N)W_,'(A’ -1) - Rj—l(N)Xj(N - l)xf(;V' — 1)W,(V = 1)
=(1]
+ BTN (N)(N = 1D)Q;(N = 1)e;(N — 1) + B7HN)x (N = 1)y N)
=W;(N=1)+ R;Y(N) - x,(N = 1) { TE(N) = xT(N = 1), (V - 1)}
+ R7HN) - %(N = 1) - Qi(N —1) - ¢;(V — 1)

where the error term is replaced by equation 5.18 which in turn is based on equation

5.6.

(5.18) ej(N —1) = yi(N - 1) — xI(N = 2)w;(V — 1),

Therefore, the parameter estimates update law for the MRLS is shown as:




(5.19)
W,(N) = W;(N = 1) + R7Y(N)x;(V — 1){ N = xT(N = 1), (N = 1)}

+ B (N Yy (N = 1)Q,(N — 1){y;°‘(N —1) = xT(V = 2w, (V — 1)}

The estimates update law of equation 5.19 for the MRLS algorithm is shown to be
different for the SRLS algorithm. Now the matrizr inversion lemma is applied since
equation 5.19 contains the matrix inversion process. This leads to the covariance

matrir update law.

9.4.2 Derivation of Covariance Matrix Update Law
Using Matrix Inversion Lemma

Since the matrix R;(:V) in equation 5.19 should be inverted in each updating step.
the matrix inversion lemma is used to avoid repeated matrix inversions. The matrix
inversion lemma of equation 5.20 is applied to the R;l(;V) based on its definition of

equation 5.14 as follows:

(5.20)
E -t
RIYN) = [ SRV *x,(k — 1)x (k—l)]
| k=1
( N-=1 -1
= {Z [ (R)Y =% (k= 1)x] (k - 1)}+xj(N - DxF(V - 1)}
k=1
F N-1 -1
= (N - 1){ > [y (k)Y sk — 1)xT(k — 1)} +%;(V — DxT (N ~ 1)}
I k=1 )
see €q.5.15
r -1
= ’)’j(N - 1) . RJ(N - 1) +XJ'(1V - 1) . XJT(N - 1)J
=—

where 7;(N — 1) is the scalar forgetting factor. Below is the general matriz inversion

lemma.
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N
R(NY = 3 (kN *x,(k = 1) - xT(k - 1)
k=1

4

R(N -1) £ El[7j(k)]N_'—kxj(k —1)-xf(k-1)
k=1

A-1 Al poAtt At
. -1 —_ _ a a . -1 -
[a- A+ BC) - [1 - CAQ;,BJ, [a- A -

where a is a scalar.

-1
— = ["/j(i\/' - I)RJ'(./V - l)J -

(N = DR(N = D]7'%,(V = 1)xT(NV = 1)[,(N - DR;(N —1)]!
[ L+ 3,(N = )[3(N = R;(N — D["'x7(N — 1) J

B 1 _1y, R;I(N—l)xj(N—1)xJ.T(N—1)R;1(N_1)

B (N =-1) ,:Rj ('V—l)—7,-(.1\/_1)+xJ-T(N—I)R;'(./V—-l)xj(./\’—l)
(5.21)
—1 A 1 -1 R7Y(N = 1)x,(N = DxT(N — 1)RjY(V — 1)
& (M—m[’@ ) D+ IV - DRV = (v = T)

The definition of equation 5.22 below is applied to equation 5.21 resulting in equation

5.23, where P; is called the covariance matriz® and is a symmetric matrix.

(522) P](IV) 2 Rfl(z’V)

N -1
= [ bt btk = 1) <k = )
k=1

3 [5) shows that the expectation of P;( ') is proportional to the covariance matrix of the parameter
estimates when the model equation 5.6 is a true linear regression. For this reason, Pj(K) is usually
referred to as the covariance matriz.
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(5.23)
) _ l , Pi(N — 1)x;(N — 1)xI(N = 1)P;(N — 1)
. R](-’V) - 7J(N -1) [PJ(IV_' 1) - 7j(N— 1) +XJT([V— I)PJ‘(“V— I)Xj(j\/'— 0

Equation 5.23 is called the covariance matrir update law with ezponential-weight
variable forgetting factor. In equation 5.23, one should restrict attention to the input
vector x;(k) as to whether it satisfies the persistent ezcitation (PE) condition shown

below,

(5.24) a-I<Rj(k)<3-1

where the positive constants a and 3 exist strictly for sufficiently large k. When the
PE condition is not satisfied, the covariance matrix in equation 5.23 can approach zero
or infinity, which leads the estimates update law to turn-off or wind-up. Therefore,
special attention to the covariance matrix update law is required depending on the
input regression vector x;(k) in order to avoid numerical problems. This topic will

be dealt with in Section 5.4.7.

5.4.3 Derivation of Input Vector Update Law

In equation 5.19 for the parameter updating law. Q;(V) vector is defined in non-

recursive form in equation 5.19 which is rewritten into the recursive form as follows:

N
Qi(N) & X [vi(k)N *x;(k — 1)

k=1
N-1
= {22 [V (k= 1)} + x;(V — 1)
k=1
N-1
= (N = D{ X lu(R)¥ "R, (k = 1)} + x,(V = 1)
k=1

N >
—

i

/_}h\
=%(N-1)-Q;(N -1) +x;(V —1)




(5.25) QM) = (N = 1) Q)N — )V — 1)

Equation 5.25 is called the input vector update law in this research.

5.4.4 Summary of MRLS Algorithm

In equations 5.19, 5.23 and 5.25, the dummy variable N is replaced by the time
sequence variable k, which results in equations 5.26, 5.27 and 5.28 composed of
estimates update law, covariance update law and input vector update law respect-
ively. These are called Modified Recursive Least-Squares (MRLS) algorithm with
Erponential-Weight Variable Forgetting Factor (EW-VFF) in this research. These

are shown as follows:
(I) Estimates Update Law:

(5.26)

W (k) = Wk — 1) + Py(k) - x;(k = 1) - {y@“(k) = xT(k = 1) - wj(k - 1)}

J

+ B(k) -k = 1) - Qi(k - 1) - {y}‘“(k— 1) = x (k= 2) - W, (k -

(IT) Covariance Matrix Update Law:

(5.27)

Pj(k) =

1 Pk —1 Pj(k—l)xj(k—l)xjr(k—l)Pj(k—1)
-0 | T T T DR Dx e T

(III) Input Vector Update Law:

(5.28) 5 Qi(R) = (k= 1) - Qj(k = 1) +x,(k - 1)
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5.4.5 Expected Features Of MRLS Algorithm

The MRLS algorithm has created a new polynomial term (the third term in the
right-hand side) and generated the input vector update law as shown in equations
3.26 and 5.28 respectively in contrast to the SRLS algorithm. The new term in
the equation 5.26 has been produced by removing the zero-mean assumption on the
modeling error in the process of its derivation. This new term is expected to smooth
the weight changes by over-relazation, that is, by adding a kind of momentum term
as does in the BP algorithm. By chance, this novel term resembles the momentum
term in the BP algorithm although the original motivation is totally different. This
addition may improve the convergence rate, steady state performance and robustness
together with the developed EW-VFF (exponential-weight variable forgetting factor)
under a wide range of operating conditions. The important difference is that the new
term in the MRLS is automatically computed at every step by the algorithm. while
the momentum rate a in the BP algorithm [16] has to be guessed by the user (tvpical
value. @ = 0.9). It is well known that a momentum term is useful for not only
on-line learning but also for a batch learning algorithm. Chapter 6 shows excellent

performance of the MRLS algorithm over the SRLS algorithm.

5.4.6 Design Of New Exponential-Weight Variable Forgetting

Factor
General Features Of the Forgetting Factor

An important requirement of the SRLS algorithm for adaptive control and adapt-
ive signal processing lies in their ability to track parameter changes. In the SRLS
algorithm with ezponential-weight constant forgetting factor (EW-CFF) of 7J‘~V_k for
0 < v, < 1, past measurements are discounted and the algorithm is forced to con-
centrate on more recent data. The choice of forgetting factor 7v; value becomes a
very important issue because a v; < 1 gives fast tracking while a v; — 1 sluggish

tracking ability. However, the lower the value of the forgetting factor, the higher
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the tracking velocity but more sensitivity of the noise. This motivates the use of

erponential-weight variable forgetting factor (EW-VFF) of */J"-V""(lc) instead of con-

stant */;V'k . However, it is difficult to determine automatically whether the parameter

estimation requires fast or slow parameter tracking during implementation. In this

author’s opinion, the necessary properties of a VFF should be:

1.

[AV]

Case (I): At the beginning of the estimation, an abrupt change of parameter
is expected due to the poor choice of the unknown initial estimates, and the
modeling error becomes large. In this phase v(ko) < 1 is desirable. To handle
this situation. [8] proposed the exponentially growing forgetting factor depend-
ing on the time k such that it forgets data during only the beginning phase by
a smaller v; and then let it go back to ¥ — 1 as the effect of initial condition

diminishes such that:
(5.29) (k) = 7(0) - 3(k = 1) + [1 = (0)]

where the initial values are 7(0) = 0.95 ~ 0.98. The natural interpretation
of equation 5.29 is that it simply grows from +(0) to 1 as time progresses.
k = 1.2.3,.... Therefore, this forgetting factor may not adaptively work for
abrupt parameter changes after the initial estimation phase is over. This method

cannot detect abrupt parameter changes in the middle of excursion.

Case (II): After the effect of the initial condition diminishes, the real parameters
in plant dynamics can be changed abruptly by the uncertainty in plant dynam-
ics: for example, when a robot arm picks up or releases the unknown payload
at any time, which causes quick change of link mass; when a fuel tank of the
rocket is released; and when unpredictable fluid dynamics change occurs to an
underwater vehicle. In these situations, the small forgetting factor of y(k) <« 1
is also required. To handle these situations, [13] devised a novel variable forget-
ting factor such that when the parameters are changed abruptly, the forgetting
factor is kept small, and when the estimates vector converges to the true value.

then (k) is increased to unity. This is performed by equation 5.30.




(5-30) (k) = Ymin + (1 — Ymin) - 2E0)
L(k) = =NINT[p-*(k)]]
= —-’WNT[p Ayt —xT(k—1)- v‘v(k))2]

where NINT([] is defined as the nearest integer to [-] by means of a rounding

operation, p = 5 called the sensitivity gain and the minimum VFF of Ymin = 0.7.

This is interesting in that situation for the true parameter value is recognized
in terms of the estimation error a(k) in equation 5.30. However. it is un-
clear whether it will work for continuously time-varying parameters due to its
binary-like decision rule in the algorithm. and whether the adjustable design
constants can be generalized for different plants. This research did not show

the simulation for a plant of continuously-changing system parameters.

3. Case (III): When a plant of continuously time-varying parameters is supposed to

track the profile of the variable desired signal. the role of the variable forgetting
factor becomes more serious than in case (I) and (II). A certain time-varyving
system to be controlled can be categorized into two cases: (a) A plant of
time-varying coeflicients, where its coefficients are not dependent on the output
states. does not create a serious difference between the regulator (a matter of
tracking the constant desired signal on a time-varying system) and the fracker
(a matter of tracking time-varying desired signal on a time-varying system). (b)
A plant of time-varying coefficients, where its coefficients are also a function
of the output states, does make a difference between the regulator and tracker
because the tracker requires a more robust parameter estimation algorithm
than the regulator does (These are different stories from the general regulating
and tracking problems for a time-invariant system). A typical example of the
tracking problem in (b) is a robot manipulator that is supposed to pick up a
fast-moving/heavy target and release it back along the desired path. This case

is a combination of an abrupt change plus a continuously time-variance in the




system parameters. This example motivates the development of a robust and

flexible variable forgetting factor.

Although the above cases present real-life situations, the task of how to develop a
remedy for situations involving fast, slow and/or constant variation in system para-
meters presents complex problems. Other research on the variable forgetting factor in
conjunction with RLS algorithm are shown as follows: Adaptive Forgetting Through
Multiple Models (AFMM) algorithm was introduced by [1]. Its ability to track sud-
den parameter changes can be good. The main drawback of the method is the use
of a Gaussian sum approximation in the algorithm and its heavy computation de-
mand since it requires multiple recursive least squares (RLS) algorithm. Besides.
the estimates of the unchanged parameters can be badly disturbed. It was tested on
a simple SISO system of only one time-varying parameter. [4] proposed a tracking
problem which uses a [/D factorization method in updating the covariance matrix
instead of updating itself to detect the information on parameter changes. For in-
stance, updating the covariance matrix is suspended by modifying the recursive gain
matrix of a RLS algorithm and putting the effect of forgetting factor to unity. This
algorithm is simpler than the AFMM algorithm. The disadvantage of this method is
a delay of several steps in detecting a parameter change. and this may cause a large
fluctuation in parameter estimates when a false alarm occurs. In general. a false
alarm is unavoidable. [23] improved the algorithm of [4] by forming more robust
detection signals for parameter changes. The method is considered for application to
a MIMO system. This RLS estimation algorithm uses a constant forgetting factor.
but dead zones are introduced to the recursive parameter update part under binary
criterion to determine the time of updating for constant parameters. A threshold
value for a detecting signal should be determined. This algorithm may have the pos-
sibility of a false alarm and may not work for a system with continuously changing
(updating) parameters since it uses a constant forgetting factor in the parameter
updating phase. This was tested on a system having both constant parameters and

short-range variable and long-range constant parameters in [23]. [13] presented a




153

new exponential-weight variable forgetting factor for the SRLS algorithm as shown
in equation 5.30. The presented method has good tracking adaptability with a small
forgetting factor in the nonstationary situation (i.e., at the beginning of estimation
and in the situation of sudden parameters change in the middle of estimation) and
with a unity in the stationary environments (i.e., in the situation of constant para-
meters). This algorithm was not tested for a continuously time-varying system with
an abrupt parameter change, and did not show the generality of the adjustable design

parameter for different systems to justify the non ad-hoc algorithm.

Design Of A New Variable Forgetting Factor

The new EW-VFF developed in this thesis meets two design criteria: (a) The VFF
algorithm avoids the prior knowledge and assumptions on systems under considera-
tion. This objective makes a more generalized FF for various systems possible. This
kind of FF can be built based on only measurements from the concerned systems.
(b) The VFF clearly indicates the methodology to determine the real VFF value
for on-line (real-time) applications. With rough range for the VFF, it is difficult to
determine the precise value for the on-line application which requires the continuous
update of VFF at each sampling instance. Then it needs to illustrate the time-history
profile of the VFF.

To carry out the above objectives in this research, the use of Cauchy function
is proposed as shown in equation 5.31 and Figure 34, where (k) depends on two

signals of y?¢*(k) and yaet(k - 1).

c

(5.31) (k) = Py Ay




Cauchy Function

1r - : 8.0/(8+x°x) ——
4.0/(4.04+x"x) -------

VFF

(o) 30
x(k)

Figure 34: Cauchy Function Profile of z,(k)

In Figure 34. the Y-axis represents the magnitude of +,(k) which always stays in the
range of 0 < =,(k) < 1 regardless of the Cauchy constant ¢ value. This meets one
of the requirements for the forgetting factor. Here the constant just determines the
envelope sharpness of the Cauchy function such that as ¢ gets smaller. the Cauchy
function envelop gets sharper. On the other hand. the X-axis for the variable I,(k)
has the dynamic range such that a visual interpretation of Figure 34 represents (1)
that z,(k) — 0 makes ~,(kj — 1 (represents the situation of constant or slowly time-
varving systems). and (ii)that | =r,(k) | of far-from-zero forces ~,{k) < 1 {implies the
situation of (fast) time-varying systems). Therefore. the algorithm for determining
the dynamic variable z,(k) plays a crucial role for the new variable forgetting factor
~,(&’). In equation 5.31. the Cauchy constant has been chosen for ¢ = 4.0 ~ %.0. and
+,(k) is forced to 0.7 for less than 0.7 empirically. But it does not lose the generality
for a variable forgetting factor because the time-variable property of +,(k) is given
by the variable z;(k). Later computer simulation shows good performance with an
almost-fixed ¢ = 5.0 and variable z;(k) for different svstems.

Now the algorithm to determine z,(k) is developed based on the hypothesis that
the main information about fast/slow parameter tracking situation can come from
the measurements of svstem outputs. Let y?®(k) and y;“(k — 1) be the present

and the previous actual measurements respectively at time instance k. The ratio of
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Y5 (k) y2(k — 1) determines r;(k) for the self-adjusting forgetting factor as shown

in equation 5.32 for a simple case.

c

P S e
C

(5.32) =

GRS
c+ [Ei:(—k_—l)

The philosophy behind equation 5.32 is explained such that the larger output change-
ratio of y#<*(k)/ y;¢(k—1) would imply that more change for the time-varying paramet-
ers is required and that vice versa could be justified as well. The detailed description
is examined by the following graphics and computer pseudo-codes depending on all

possible patterns for both yi°(k) and yi¢(k — 1) of outputs measurements.

Graphical Illustration For x;(k)

(I) In the case of yi(k = 1) - y2(k) > 0
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yj (t)
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(a) When both positive, and d; < d, (b) When both negative, and d, < d-

yact (k) ydCt (k_ l)

Figure 35: Then (a): z;(k) = m, (b): z;(k) = -JW




act

\yj (t)

(a) When both positive, and d, > d» (b) When both negative, and d; > d»

Figure 36: Then (c) : z;(k) = 2570 (4). (k) = 2

vER) = VERD)

(IT) In the case of yik—1) - y*(k) <0

act act

Y.(1) ?yj(z)

?J

S
|-
&Q
'
~

d;
(a) When d, negative, da positive, and (b) When d, positive, d» negative, and
same magnitude same magnitude

. act(py [ 8ct(f act
Figure 37: Then (¢) : (k) = MOl _
7
[lyget (k—1)[—|y2<* (k) J+y2et (k-1)
(f) : I](k) = 4 y;c{(k—l) < = ].
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d;
(a) When d; negative, da positive, and (b) When d, positive, d, negative, and
di magnitude smaller than d magnitude d) magnitude smaller than d» magnitude

Figure 35: Then (g)&(h) : z;(k) = WalGN=l<(k-Dli+ly7 “(k_”'y;-‘“(k —1)= Gk

act(r
w vy (k=1

(a) When d, positive, da negative, and (b) When d, negative, d positive, and

d) magnitude greater than d; magnitude d, magnitude greater than d> magnitude

. . . act -— P - 743 k act k act k—
Figure 39: Then (¢)&(j) : zj(k) = lyy™ (k1) ylfi,(k() M=l g’ﬁ(:(k)l)
2 J
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(III) In the case of yilk = 1) - yrt(k) =0

act
. (t
A yJ v
4 %
0| kI .
(a) When d; non-zero, and (b) When d; zero, and d- (c) When both zero

d» zero non-zero

o

Figure 40: Then (k) : r;(k) = l—s—ylm(k—_l) (0): z;(k) = m (m): r;(k) =1

1.0 1.0 1.

[e=]
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Computer Pseudo-Codes

These are computer pseudo-codes to implement the Cauchy-function variable z,(k) =
(numerator /denominator).
IF(y2<(k) * y3(k — 1) > 0.0) : Case(I)
IF(y3(k) > y2=(k — 1))
numerator = yi°(k); denominator = y2t(k —1);
ELSE
numerator = yi*(k — 1); denominator = yic(k);
END
ELSEIF (y?<(k) * y3(k — 1) < 0.0) : Case(II)
IF(ly;t(k)1 > 1yt(k - 1)1)
numerator = y?*(k); denominator = yaet(k —1);
ELSE
numerator = y?*(k — 1): denominator = yit(k);
END
ELSE : Case(III)
IF((y5(k) == 0)&(y2(k — 1) £ 0))
numerator = 1.5 - y?(k — 1); denominator = 1.0;

ELSEIF((y;(k) # 0)&(y3¢(k — 1) == 0))

ELSE
numerator = 1.0: denominator = 1.0;
END
END
vi(k) = 7

~ c+[numerator/denominator]?’
IF(~;(k) < 0.7)
END
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y. (k) vk Yik)

Supervision & Error Recurrent Neural Network (SERNN) J

-

Figure 41: Single-Layer SERNN With Three Inputs/Outputs

Performance Comparison Of the New Forgetting Factor

In order to compare the performance of the EW-CFF and the proposed EW-\VFF
developed in this thesis, the three-joint robot manipulator (PUMA 560) is used for
the identification of the angular velocity in each Joint. The SRLS algorithm with the
CFF= 0.950 and the new VFF algorithm is applied to the neural model of a single
layer SERNN* shown in Figure 41.

In computer simulation, the robot arm is supposed to pick up the payvload at a
random instance to reflect the dynamic uncertainty and the time-varying parameter
estimates, and to track the variable trajectories. It is assumed that a payload of 2.3
Kg was picked up after 8 second (that is, 800" iteration with sampling period of
0.01[sec]) as shown in Figures 46, 47 48, and that the initial parameter values are
reasonably chosen for the SRLS algorithm. F igure 42 shows the actual and model
outputs of angular velocities for joint 1, 2, and 3 being identified by the neural

network. Although left (a) and right (b) figures seem to look the same in F igure 42,

*Supervisor and Error Recurrent Neural Network devised in the previous chapter
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the identification error shows the distinct differences for all joints in the comparison
by Figures 46, 47. and 48. Figures 43, 44, and 45 represent the profiles of variable

forgetting factors which are built on-line by the output measurement only.

(a) With Conventional CFF= 0.950 (b) With Proposed VFF

Figure 42: Actual Outputs of Joint 1.2,3 Identified by Model Outputs

Figure 44: VFF Profile Used For Joint 2




Used For Joint 3

(a) With Conventional CFF= 0.950

(b) With Proposed VFF

Figure 46: Identification Error of Joint 1

(a) With Conventional CFF= 0.950

]

(b) With Proposed VFF

Figure 47: Identification Error of Joint 2
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(a) With Conventional CFF= 0.950 (b) With Proposed VFF

Figure 48: Identification Error of Joint 3
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(a) With Conventional CFF= 0.950 (b) With Proposed VFF

Figure 49: Initial Tracking Performances on Joint 1,2,3

As shown in Figures 46. 47. 48 and 49, the identification performance has clearly
been improved in terms of the identification error and the initial tracking speed as
shown in left (a) and right (b) figures. This research proposes for the first time
the use of Cauchy function with argument of output measurement such as v, (k) =
c/c + [measurements|?. Through this research, a Cauchy constant c¢ is derived to

vield a general constant value of ¢ & 5.0 for different nonlinear plants even though it

was chosen empirically.




5.4.7 Periodic Resetting of Covariance Matrix

In equation 5.23. the major problem with the forgetting factor is apparent that if the

data vector x;(k — 1) does not contain much information. or in the extreme case of

x;j(k — 1) = 0. then the covariance matrix P,;(k) becomes:

(5.33)

N P](k - 1)
P;(k)——%(k_l)

and will grow exponentially. This causes the estimator wind-up or burst phenomenon.

On the other hand. the adaptation gain in the estimates update law can converge to

zero as time increases. It implies that the algorithm gradually loses its adaptability

and will be turned off eventually as the algorithm runs. To avoid these phenomenon.

this work reviews the following three techniques:

1.

(8]

Periodic resetting of the covariance matrix. In this algorithm. the co-
variance matrix is generally reset to one of the old covariance matrices. The
main problems are the choice of the resetting times and non-smooth nature of
the resetting from the jumps. The estimates update law in the RLS algorithm
should be robust enough to recover the lost information in the input vector by

the periodic resetting. This methodology is mentioned in (8]. [17]. [2]. and [12].

Covariance matrix modification. In this algorithm. some positive definite
matrices are added to the covariance matrir update law. A certain perturbation
term of the square error or the exogenous input is added to the update law as
a driving force. These methods can achieve some of the desirable features. but
unfortunately this is at the expense of other features such as a trade-off between
the alertness and burst phenomenon. Some research on this concept is shown

in {17], [3], and [12].

- Dynamic forgetting factor is determined such that v,(k) < 1 when the

situation of parameter change is detected. and (k) = 1 otherwise to prevent

the covariance matrix from growing exponentially. Similar techniques are shown
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in 8] and [13]. Under the incomplete persistent excitation. however. these can be
prone to the estimates wind-up. [4] and (23] incorporate techniques to determine
when parameter updating should be suspended so as to avoid wind-up when new
information about parameters are not rich. The disadvantages of these clones
are a delay of some steps in detecting a parameter change. tracking an abrupt

variation. and the possibility of a false alarm or failure to detect a change.

One thus sees that the aforementioned techniques achieve some of the desirable fea-
tures but unfortunately these are at the expense of other features. In this research.
the following periodic resetting of the covariance matrir plus the variable forgetting
factor developed in Section 5.4.6 is effective and avoids the burst phenomenon while
keeping overall good performance of the MRLS algorithm. The periodic resetting
of the covariance matrix update law is carried out every 33 iterations where 335 was
chosen heuristically based on the fact that a certain robust SRLS estimation reaches

the steady state after 25 to 35 iterations.

1| P,(0)x,(0)xT(0)P,(0) |

P(1) = T _PJ(O) T L0 +xJT(0)]P,-(0)xJ(0)j

o 1| P,(1)x,(1)xT(1)Py(1) ]

SR Sm P S A e
P | __B34)x,(30)x](34) P,(34)
=B = 5 | B8 - e 69 B, 51w, 59
v L [ Pi(35)%,(69)xT(69)P,(35) |
70 = Steer | )~ e+ <1697, 35w, (697
v L o P(T0)x,(70)xT(70) P (70) ]
B = S | A0~ Sty + xTr0) By o 0]
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o= b [ b s P(35)x,(104)xT(104) Py(35)
= £(105) = ~+;(104) _P’(3°)  4,{104) + xT(104)P,(3 5)x,(104)J
1 [, P(105)x,(105)xT(105) P, (105)
F;(106) (105) | F(103) 1;(105) + x7(105 )P,»(loa)xj(ws)}

The following computer simulation clearly shows the performance improvement
by means of both the periodic resetting of covariance matrix and the developed
variable forgetting factor. For comparison purposes on the wind-up problem
of the covariance matrix, the following two methods are tested on a plant as shown

in Figure 50 to identify the system output.

¢ Conventional Methods:

[

- Test plant: SISO shown in Figure 50 with poor persistent excitation.
2. Neural model: Two-layer conventional RNN (bias=+1. self-recurrent).

3. Linearization: Linear observation by inverse of the activation function in

Section 5.5.1.
4. Algorithm for training: Estimates update law in the SRLS algorithm.

5. Hidden layer teaching: Clear derivation of an optimal teaching signal

shown in Section 5.5.2 (Novel).

6. Forgetting factor: Exponential-weight constant f.f (EW-CFF = 0.98).

=1

Covariance matrix update: Covariance update law in the SRLS

algorithm plus EW-CFF.
e Proposed Methods:

1. Test plant: SISO shown in Figure 50 with poor persistent excitation.
2. Neural model: Two-layer SERNN (Novel).

3. Linearization: Linear observation by inverse of the activation function in

Section 5.5.1.
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o

- Algorithm for training: Estimates update law in MRLS algorithm (Novel).

Hidden layer teaching: Clear derivation of an optimal teaching signal

Ot

shown in Section 5.5.2 (Novel).

6. Forgetting factor: Exponential-weight variable f.f (EW-VFF: Novel) .

~1

Covariance matrix update: Periodic resetting of covariance up-

date law (same as SRLS) in the MRLS algorithm plus EW-VFF.

The clear and present performance improvement is shown in Figures 51 to 57.
Figure 51 (a) shows the ezponential growth of covariance matrix by the conventional
method due to the prospective poor persistent ercitation, while 51 (b) represents the
proposed algorithm properly alive in the output layer. Thereby. the overall identi-
fication wind-up is clearly shown in Figures 53(a). 54(a) by use of the conventional
methodologies. But both methods show the alertness of the covariance matrix in the
hidden layer as shown in Figure 52. Besides the problem of the covariance diver-
gence. the proposed novel algorithm may improve the initial training (estimation)
speed represented by Figure 54. Even though the conventional method can adopt the
same periodic resetting of covariance matrix in conjunction with SRLS algorithm.
it frequently goes to the same burst phenomenon. This fact implies that the novel
MRLS algorithm is more robust than the SRLS algorithm with respect to the lost

information.

DUIPUTt - INDLI O Elant Y
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Figure 50: Input (short) and output (tall) for a test plant
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Figure 51: Trace of covariance matrix in output layer
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Figure 52: Trace of covariance matrix in hidden layer
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Figure 53: Plant output identified by conventional and proposed methods
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Figure 55: Forgetting factor profiles in output layer
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Figure 56: Forgetting factor profiles in hidden layer
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Figure 57: Trace of input vector update of Q(k) for MRLS algorithm

9.9 Application of MRLS to Neural Training

5.5.1 Linearization of Neural Model

The RLS algorithm clone can only be applied to a linear parametric form to estimate
the unknown parameters in the model. One way to apply the RLS algorithms to the
neural networks is to linearize the nonlinear neural model or to observe the linear part
by dividing a neuron into the linear and the nonlinear blocks. This section introduces
two methods called the Taylor series expansion derived effectively in this thesis for the

recursive estimation algorithms, and the linear observation by the inverse activation
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function techniques. Both methods are suitable for practical neural training.

Linearization by Taylor Series

A nonlinear neuron characterized by the nonlinear activation function is linearized
by the use of the Taylor series such that the activation function g(-) is expanded
with respect to the previous weight vector Ww(k — 1), which is known at the present
sampling instance k. The following processes show the detailed Taylor ezpansion on
the neuron output.

Let y?"(k) be the jth neuron output, which is differentiated with respect to the

known weight estimate of W(k — 1) as shown in equation 5.34.

J

=ql(k~1)-w,(k) +g[x- (k — )W, (k — 1)] — qT(k = 1)W;(k — 1) + €™ (k)

where e?“(k) is the residual error of the higher-order-terms occurring in the process

of Taylor series expansion, and

q}-.(k —-1) égl(v)la,t:vivj(k—l) ) xJT(k —-1)
For a hyperbolic tangent activation function:

gv)=5b- tanh(g - v), b: Saturation Limit and @ : Slope,

1 —e9
- b - [_]
1 4 eg-av

2ab - e~%Y

g(v) = Tremp



e—a-xf(k-l)-w,(k-l)

(1 +e-a-xf(k-1)-w,(k-1))

q}-‘(k—l)QQ-a-b- . -x]-T(k—l)

Then, the neural training is described by the process of minimizing the modeling
error e7*°(k) between the teaching signal (actual measurement) y2¢(k) and the neural

network output y?"(k) shown in equation 5.35.

(5.35) yi(k) = y; (k) + e7o(k)

By combining equations 5.35 and 5.34, and rearranging the linearized model on a

Jth neuron output is written as.

(5.36) oo | zi(k) = qf (k- 1)- wi(k) + ei™ (k)

where z;(k) and e?m(k) are defined by equations 5.37 and 5.38 respectively.

(5:37)  25(k) £y (k) — glxf(k = 1) - Wk = )] + Q] (k = 1) - W, (k ~ 1)

(5.38) eim(k) £ eb!(k) + emo(k)

J J

Now z;(k) and qf(k — 1) are computable signals at the current sampling instance
k. Based on equation 5.36, the neural training process is interpreted such that the
filtered signals z;(k) and ql (k—1) are used for a new teaching signal and a new input
vector respectively to estimate the unknown synaptic weight w;(k). By making use
of the prerequisites in terms of a linear parametric model, a teaching signal and an
input vector, the RLS algorithm can be carried out to minimize both the linearizing
error €°*(k) and the modeling error eT°(k). This linearizing method turns out to be
very accurate for time-varying systems with reasonable sampling frequency compared

to the similar way shown in [7).
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Linear Observation By Inverse Activation Function

Referring to Figure 58, [19] suggests that a nonlinear neural network problem could
be partitioned into linear and nonlinear portions. This means that if all inputs to
summation and summation outputs were specified, the problem would be reduced to
a linear problem, i.e., a system of linear equations that relates the summation outputs
to the weight vector and node inputs. In other words, the training process uses the
supervising signal v?“ and the neuron output vi"(k) in the linear part instead of the
yi(k) and y?*(k) in the nonlinear part as shown in Figure 58, provided that the
activation function g(-) is invertible. This linear observation can be considered as
one linearization method for a nonlinear neuron model by taking the inverse activ-
ation function of supervising signal. The main advantage of this methodology is its

simplicity in implementation in the presence of an activation function inverse.
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Figure 58: Linear Observation of A Neuron

The application of the linear observation is shown in (19] and [10] to train the multi-
layer neural networks. They used the Kalman filtering method for better conver-
gence rate and less sensitivity to the initial weight values. However, they use the
backpropagation algorithm to train the hidden layer, which still gives rise to similar
shortcomings from the use of backpropagation clone. The following section proposes a
new teaching signal for the hidden-layer training based on the optimal method.

The new hidden-layer teaching method is expected to be free from most of BP draw-
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backs.

9.5.2  Derivation Of Explicit Supervisory Signal For Hidden

Layers

A network can have several layers. A layer that produces the network output is called
an output layer. All other layers are called hidden layers. Even though multiple layer
networks are quite powerful compared to single layer ones, their training method
is generally more difficult due to the problem of hidden layer training. The main
obstacle in training the multi-laver ANNs has been the absence of a teaching (desired)
output for the hidden layers. This has been treated by the error backpropagation
algorithm or generalized delta rule developed by [16]. Although the BP algorithm has
worked successfully for a wide variety of applications, general BP learning algorithms
have several limitations. The long and unpredictable training process is the most
troublesome. for example the rate of convergence is seriously affected by the initial
weights and the learning rate of the parameters. In general. increasing the learning
step size can speed up the convergence rate of the learning process, but it may
also lead to divergence, paralysis. or continuous instability. Many research activities
focus on how to increase the learning rate. The learning rate can be especially
important in real-time applications. where the training set is not known in advance.
may be time-varying and non-repeatable. In this research, the derivation of a clear
supervisory signal for the hidden layer is tackled to overcome the drawbacks of error
BP algorithms.

Referring to Figure 59, the mathematical form of the teaching signal for the hidden
layer is derived to minimize the residual error in the output layer with respect to the
hidden layer output vector (")Y""(/c—l). The cost function for the linear least-squares
(L2-norm) problem (which is a special case of the nonlinear least-squares problem)

is formulated as follows:
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Figure 59: Schematic Diagram of Multi-Layer SERNN
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(5.39)
2
1
J[(h)y-nn(k _ 1)] — ; g—l[(o)}fact(k)] _ g—l[(o)y/nn(k)]
= 2
2
= é (O)Vact(k) _ (O)Vnn(k)
= 2
1 (o) (o) A .
— 2|t act T _(o)vy-act T (A)ynngp _
= 3]V {4 Yotk — 1)+ B Y™k — 1) +

(ho) {ho)

(O)CT-(O)S(AT— ) DT (h)YaCt(A. ) ET (I'A)L/(]L )+

2
CUET Mgk - 1))

2

where g~!'[-] is the inversion of the activation function; (VY eet(k :) € RP*Vand Py (k) €
RP*! are the actual teaching signal and the neural output in the output layer respect-
ively, O)Vect(k) € RPx1 a4 )y "(k) € RP*! are the linearized signals in the output
layer, ©)E(k) € RP*! is the modeling error between (°)Ya<t(k) and )y "t(k) in the
output layer, (M g&( (k) € RP*! is the modeling error between (")Y““(k) and (")Y’"‘(k)
of the hidden layer, MU(k) € RM*! s the (external) input vector in the hidden
layer, superscript of (%) stands for inter-layer weights between hidden and output
layers in the forward direction. P. N. and M are the numbers of output nodes in
the output layer. output nodes in the hidden layer. and external inputs in the hidden

. ~ (A A h
layer respectively. and (0) B C ( o) ( O)E ( O)F are the weight matrices.
which are known from the first training in the output layer. They are shown below

in conjunction with Figure 59:

- ~T
an a2 -+ ayp
(o) a1 Q22 -+ Agp
(5.40) A= : X =lar a --- ap
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Now, the linear least-squares (L, norm) technique is applied to the equation 5.39 to

derive the optimal teaching signal of " Y™a<t (k)= by setting up equation 5.46.

(5.46)

aJ
Py — 1)

=0

The solution of equation 5.46 can be grouped into three categories depending on the

size of P and N, that is, the relation of the number of equations and the number of

variables to be solved.

1.

[SV]

Case I : The number of the neurons in the output layer is the same as that in

the hidden layer.

. Case II : The number of the neurons in the output layer is larger than that in

the hidden layer.

. Case III : The number of the neurons in the output layer is smaller than that

in the hidden layer.

The solutions are shown as the following mathematical forms:

l.

o

Case I:rank(B)=N =P = A unique solution exists:

(5.47)

-1 . o)
(h)}"n"(k —1) = [(O)BT] [(o)‘/'act(k) _ (0)‘47' . (o)y’act(k —-1) - ( )CT . (o)g(k _

(ko) (ho) (ho)

DT . (h)y'act(k _ 1) _

with J{®ly"™(k - 1)*] = 0,

. Case II : rank(B) = N < P = An exact solution does not exist, but the

least-squares error solution is:

(5.48)

(R)ynn/q. - (o) 4 T ! (o) (o) act (o) 27 . (0)y act (@) AT
Yok —1)7 = [TBYBT| @ pleyee gy _ 4T @ymery _ gy _@aT

Ok —1) = DT . Wyserg 1y _ P pT g ) -

(hO)ﬁ'T . (")é‘(k _ 1)]

ET WGk — 1) =" ET thg(p _

1) —

]
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where [(O)B(O)BT]'l (B is called the Moore-Penrose pseudo-inverse [6]

with J[®y "k —1)7] >0,

3. Case III : rank(B) = N > P = The solution is not unique and the minimum

L,-norm solution is:

(5.49)
\ T(0) ~m(o) ~1~1 o ’ o
(h)Y'nn(k _ 1). — (O)B[( )BT( )B] . [(a)v’act(k) _( )47‘ . (o)},gct(k _ 1) _( )CT

Ce(k—1) = DT Wyect(ge _ gy BT g gy

(ho)ﬁq‘ ) (")E(k _ 1)]

with J[MY (& — 1)7] = 0.

then. the optimal teaching signal of (M)y“act( k)= for the hidden layer becomes:

(550) (h)y-act(k)- — (h)y'nn(k _ 1)-

It is noted that (My™mn(f — 1) (its own previous output of the hidden layer) and
Alynn (g — 1) (desirable previous output of the hidden layer minimizing the present
training error in the output layer) in equations 48 and 5.50 are different signals. From
equations 5.47, 5.48, 5.49 and 5.50, the hidden layer’s clear teaching signal has
been derived for on-line training based on the minimization of the La-norm. The
derivation of the hidden layer's teaching signal has a very important meaning for the
training of multi-layer ANNs (ML-ANNS). So far, the error BP algorithm has been
used for ML-ANNSs training even though there exists lots of known shortcomings in
BP because of the absence of the reasonable hidden layer’s teaching signal. In this
author’s opinion, the hidden layer’s teaching method, except for using the error BP

clone, has not been researched.
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5.6 Remarks On MRLS Algorithm For ANNs Train-
ing
In order to improve the performance of the error BP algorithms. the use of the
SRLS algorithm is proposed for the training of the ML-ANNs. However, since the
SRLS algorithm still has undesirable features, such as the numerical wind-up, the
MRLS algorithm was derived with the improved characteristics on the variable for-
getting factor, the robust resetting of the covariance matrix along with EW-VFF and
the hidden layer teaching by the clear supervision signal in the hidden layer. The
combination of the novel MRLS algorithm in this chapter and the new SERNN ar-
chitecture developed in the previous chapter has desired features such as fast initial
learning speed, robustness, and accuracy to minimize the mismatch (called uncer-
tainty) between the behavior of the real system and that expected from the ANNs
model. These improved performances will be shown in the next Chapter through the
computer simulation for nonlinear system identification which has been known

as a crucial part in the adaptive processing area.
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Chapter 6

Simulations Of Neural Nonlinear

System Identification

6.1 Objectives Of Simulation

The previous chapters have discussed the recurrent neural network architecture called
the SERVN and its fast, accurate and robust training method called the MRLS
algorithm. This chapter investigates how these methods perform for the identification
of a dynamic nonlinear system. One way to evaluate this performance is known as
simulation. Simulation is a very useful tool to investigating new on-line identification
algorithms especially for nonlinear and time-varying systems. Many analyses on
the SRLS clones have been carried out based on assumptions about input vector.
linear time-invariant system, and zero-mean residual error. However, the numerical
problem, for example, burst phenomenon on the SRLS algorithm, is still observed
frequently for a variety of nonlinear systems’ identification. In this chapter. the
performance of the proposed on-line system identification method developed in this
thesis will be shown by comparing it to conventional methods. This performance
improvement can be described in terms of the tracking speed, the accuracy of the
identification error and the robustness with respect to a variety of situations between

the two approaches. The two methods are listed as follows:



1. Conventional Methods:

e Neural Architecture: Two-layer RNN
e Training Algorithm: SRLS Algorithm

o Features: application of the SRLS algorithm to hidden-layer training based
on Lj-norm optimization technique (novel); exponential-weight constant
forgetting factor (EW-CFF); linearization by the inverse of activation func-

tion; periodic updating of covariance update law to keep alertness.
2. Proposed Methods (developed in this thesis):

e Neural Architecture: Two-layer SERNN (novel)
e Training Algorithm: MRLS Algorithm (novel)

o Features: variable bias by error recurrent (novel): supervision recurrent
(novel): application of MRLS algorithm to hidden-layer training based on
L2-norm optimization technique (novel): measurement based exponential-
weight variable forgetting factor (novel); linearization by the inverse of
the activation function: periodic updating of covariance update law with

EW-VFEF to keep alertness all the time.

These algorithms were applied to four nonlinear SISO plants and one nonlinear
MIMO system under four different initial weight values for diverse simulation scen-
arios. The plant dynamics and simulation results are shown in the following sections

where details are given through performance tables and graphs.



6.2 Test On A Nonlinear SISO Plant 1

6.2.1 Dynamics Of Plant 1

Input of Plant1:
if ( £ <100)

u(k) =0.5-cos(27 - f; - kT,/5.0) — 0.8 - sin(27 - f; - kT, +/30.0) + 0.05
elseif (100 < & < 250)

u(k

l\)

) kT, — 1.2
(250 < k& £ 460)
u(k) = —0.05- kT, + 0.4
(
)

elseif

elseif (460 < k )
u(k) = 0.6 - sin(27 - kT,/120.0) + 0.3 - cos(2m - fo - kT5/45.0)
end
where f, = 90.0(Hz]. f, = 100.0[Hz] and T, = 0. 01[sec]
Output of Plant1:
YAk) = 0.25 - y2(k = 1)2 4+ 0.2 g3k — 1) + 0.2 - y¥(k — 2)+
0.45 -sin (0.5 - (y¥(k — 1) + y¥(k — 2)) x cos(0.4- (yi(k — 1)+
yi(k=2)) + 0.3 u(k ~ 1) - 0.01

DuUtP Ut = INPWT of Planty

o 800 1000 1800 2000 2800

Figure 60: Input and OQutput of Nonlinear Plant]
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6.2.2 Performance Table Of Identification On Plant 1

Application to Nonlinear Plant1

Using Conventional Architecture & Training

Initial Weight Sets | I II II1 IV(Random No.)
Identifiability O.K. Wind-up Wind-up Wind-up (Frequently)
Initial Tracking Good Not Bad Not Bad Good
Error Margin of .
Good Divergent | Divergent | Divergent

Steady State (< 0.1)
Trace of P with ,

o ) Alert Alert Alert Poorly
Periodic Resetting Alert
Sum of Q Elements None Exists | None Exists | None Exists | None Exists

Table 6.1: Identification Performance of Conventional Methods on Plant 1

Application to Nonlinear Plant1
Using Proposed Architecture & Training

Initial Weight Sets | I I1 I11 [V(Random No.)
Identifiability O.K. O.K. O.K. O.K. (Always)
Initial Tracking Good Good Good Good
Error Margin of

Excellent Excellent Excellent Excellent
Steady State (< 0.1)
Trace of P with

Alert Alert Alert Alert
Periodic Resetting
Sum of @ Elements Alert Alert Alert Alert

Table 6.2: Identification Performance of Proposed Methods on Plant 1




6.3 Test On A Nonlinear SISO Plant 2

6.3.1 Dynamics Of Plant 2

Input of Plant2:
if ( & < 250)
u(k) =0.5- cos(2x - f, - kT,/50.0) — 0.8 - sin(27 - f, -kT,/30.0) + 0.075
elseif (250 < k£ < 380)
u(k) =0.2-kT, - 1.2
elseif (380 < & < 560)
u(k) = ~0.05- kT, + 0.4
elseif (560 < k)
u(k) = 0.3 -sin(2x - f, - £T,/120.0) + 0.3 - cos(27 - fp - kT,/45.0)
end
where f, = 70.0[Hz].f, = 10.0[Hz] and T, = 0.01{sec]
Output of Plant?2:
yHk) =025 yH(k ~1)2 = 0.2 - y¥(k — 1) + 0.45 - sin(0.5 - (y*(k — 1)
x cos(0.4 - (y*(k — 1)) + 0.3 - u(k — 1) - 0.02

OuUtout « Input of Plantt

190

Figure 61: Input and Output of Nonlinear Plant?2
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6.3.2 Performance Table Of Identification On Plant 2

Application to Nonlinear Plant2

Using Conventional Architecture & Training

Initial Weight Sets | I I1 IIT IV(Random No.)
Identifiability O.K. O.K. Wind-up Wind-up (Often)
Initial Tracking Not Bad Good Not Bad Not Good
Error Margin of . .

Excellent Excellent Divergent | Divergent
Steady State (< 0.1)
Trace of P with .

Alert Poorly Not Alert Poorly
Periodic Resetting Alert Alert
Sum of @ Elements None Exists | None Exists | None Exists | None Exists

Table 6.3: Identification Performance of Conventional Methods on Plant 2

Application to Nonlinear Plant2

Using Proposed Architecture & Training

Initial Weight Sets | [ II I1I IV(Random No.)
Identifiability O.K. O.K. O.K. O.K. (Always)
Initial Tracking Good Good Good Good
Error Margin
Excellent Excellent Excellent Excellent
(<0.1)
Trace of P with
Alert Alert Alert Alert
Periodic Resetting
Sum of Q Elements Alert Alert Alert Alert

Table 6.4: Identification Performance of Proposed Methods on Plant 2




6.4 Test On A Nonlinear SISO Plant 3

6.4.1 Dynamics Of Plant 3

Input of Plant3:
if ( k < 100)
u(k) = 0.3-cos(2m - f, - kT,/25.0) — 0.5 - sin(27 - fy - kT,/70.0)
elseif (100 < k < 200)
u(k) = 0.005 - £T, — 0.3
elseif (200 < & < 300)
u(k) = —0.005 - kT, + 1.72
elseif (300 < k)
u(k) = 0.4 -sin(27 - f, - kT,/120.0) + 0.3 - cos(2x - f, - kT, /45.0)
end
where f, = 1.0[Hz].f, = 1.0[Hz] and T, = 1.0[sec]
Output of Plant3:
yHR) =02y (k — 1)2 - 0.2 y¢(k — 1) +0.25 - yik —2)+
0.45 - sin (0.5 - (y¥(k — 1) + y¥(k — 2)) x cos(0.5 - (y¥(k — 1)+
vk =2)) +0.25 - u(k — 1)

QuUtput « INPut of Planty

E N o -

\A_J Ny bt i
S0 VR WY WY WY e

o 500 O oo 2000 20800
llllllllll

Figure 62: Input and Output of Nonlinear Plant3
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6.4.2 Performance Table Of Identification On Plant 3

Application to Nonlinear Plant3

Using Conventional Architecture & Training

Initial Weight Sets | [ IT III [V(Random No.)
Identifiability O.K. O.K. Wind-up Wind-up (Frequently)
Initial Tracking Bad Bad Not Bad Bad
Error Margin of
Bad Bad Divergent | Divergent
Steady State (< 0.1)
Trace of P with Alert Poorly Poorly Poorly
Periodic Resetting . Alert Alert Alert
Sum of Q Elements None Exists | None Exists | None Exists | None Exists

Table 6.5: Identification Performance of Conventional Methods on Plant 3

Application to Nonlinear Plant3

Using Proposed Architecture & Training

Initial Weight Sets | [ I1 IT1 [V(Random No.)
Identifiability O.K. O.Kk. O.K. O.K. (Always)
Initial Tracking Good Good Good Good
Error Margin
Excellent Excellent Excellent Good
(<0.1)
Trace of P with
Alert Alert Alert Alert
Periodic Resetting
Sum of Q Elements Alert Alert Alert Alert

Table 6.6: Identification Performance of Proposed Methods on Plant 3
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6.5 Test On A Nonlinear SISO Plant 4

6.5.1 Dynamics Of Plant 4

Input of Plant4:

u(k) = (0.3 - cos(2x£/300.0) ~ 0.05 - sin(27k/120.0)) x 1.5

Output of Plant4:

(k) = (0.2 -exp (u(k) +sin(10.0 - u(k))) + 0.9 - sin (u(k) + 20.0-
exp(0.5 - u(k)))) x 1.5

ODUtput « INPput of Plamty

I AAUS

soo 1000 1800 2000 2800

Figure 63: Input and Output of Nonlinear Plant4




6.5.2 Performance Table Of Identification On Plant 4

Application to Nonlinear Plant4

Using Conventional Architecture & Training

Initial Weight Sets | I II III [V(Random No.)
I[dentifiability 0.K. Wind-up Wind-up Wind-up(Frequently)
Initial Tracking Very Bad Good Not Bad Very Bad

Error Margin of ) ]
Very Bad Divergent | Divergent Divergent
Steady State (< 0.1)

Trace of P with

Poorly Poorly Poorly Poorly
Periodic Resetting Alert Alert Alert Alert
Sum of @ Elements None Exists | None Exists | None Exists | None Exists

Table 6.7: Identification Performance of Conventional Methods on Plant 4

Application to Nonlinear Plant4

Using Proposed Architecture & Training

Initial Weight Sets | I II I11 IV(Random No.)
Identifiability O.K. O.K. O.K. O.K. (Always)
Initial Tracking Good Better Good Good
Error Margin
Good Good Good Good
(<0.1)
Trace of P with
Alert Alert Alert Alert
Periodic Resetting
Sum of @ Elements Alert Alert Alert Alert

Table 6.8: Identification Performance of Proposed Methods on Plant 4
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6.6 Test On A Nonlinear MIMO Plant 5 Of Swing
Leg

6.6.1 Dynamics Of Plant 5

i i 1 "
v - - - e

Figure 65: Two Inputs of Nonlinear MIMO Plant 5 of Swing Leg

The dynamics profiles of two-input and two-output are shown in Figures 64 and 635
for the swinging leg [2] being identified. This is a two dimensional, two-segment
compound pendulum with the hip joint fixed in an inertial frame of reference. The
ankle joint is assumed to be fused at a right angle. Nonlinear elastic reactions were

applied to the joints to simulate tendon activity at extreme angles and linear damping
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was applied at both joints. Body parameters for an average person with 65 Kg weight

and 170 cm height were used [3]. The swing leg was actuated by two means:
o The first was an external motor torque applied at the hip joint (inputl).

o The second was artificial stimulation of the quadriceps muscles creating an
internal torque at the knee joint (input2). The muscle stimulation is represented

by a normalized value between 0 (no stimulation) and 1 (full stimulation).

Given these two input signals, the swing leg model returns two output signals: the hip
(outl) and knee (out2) angles. The fast, accurate and robust identification techniques
for above neuromuscular system can play a crucial role to develop a powered hvbrid

FES (functional electrical stimulation) orthosis for paraplegics!.

!By W.-K. Son, S. Madan. A. Thrasher and B.J. Andrews
Fast Neural System Identification: Application to Rehabilitation Engineering published in 1997
IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, vol.2. pp.539-
542. August 20-22, Victoria. B.C., Canada,1997.
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6.6.2 Performance Table Of Identification On Plant 5
Application to Nonlinear Plant5
Using Conventional Architecture & Training
Initial Weight Sets | [ I1 III IV(Random No.)
Identifiability O.K. Wind-up Wind-up Wind-up(Frequently)
Initial Tracking Excellent Excellent Excellent Excellent
Error Margin of .
Bad Divergent | Divergent Divergent
Steady State (< 0.1)
Trace of P with Poorly Poorly Poorly Alert
Periodic Resetting Alert Alert Alert ’
Sum of Q Elements None Exists | None Exists | None Exists | None Exists

Table 6.9: Identification Performance of Conventional Methods on Plant 5

Application to Nonlinear Plant 5

Using Proposed Architecture &: Training

Initial Weight Sets | [ { I1 III IV(Random No.)
[dentifiability O.K. O.K. O.K. O.K. (Always)
Initial Tracking Excellent Excellent | Excellent Excellent
Error Margin of

Excellent Good Excellent Excellent
Steady State (< 0.1)
Trace of P with

Alert Alert Alert Alert
Periodic Resetting
Sum of Q Elements Alert Alert Alert Alert

Table 6.10: Identification Performance of Proposed Methods on Plant 5
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6.7 Conclusions and Simulation Results

The computer simulation results of the on-line system identification have been presen-
ted to show the outstanding performance of the proposed methodologies compared to
the existing methods when used for the same purpose. All performance comparisons
have been summarized in the shown tables. In this research. the application of the
RLS algorithm to training of multi-layer neural networks has been successfully tried
for the first time. to the author's best knowledge. In order for the conventional RLS
algorithm to be used for the multi-layer neural nets training, the following problems

should have been solved for its direct application.

e The RLS can be applied only to the linear parametric model. But ANNs are

not.

e The RLS requires a clear supervisory signal to train the desired laver. But
the hidden layer does not have an explicit teaching signal. The RLS cannot be
used for hidden layer training. That is why the BP algorithm uses the error
backpropagation principle for the hidden layer training even though there exist
lots of drawbacks. The combination of the Kalman filter and the BP algorithm
are sometimes used for the output and hidden layer training respectively to
circumvent the absence of teaching signal in the hidden layer. However. this

combinational method still has the drawbacks of the BP algorithm.

¢ The RLS has the crucial heel-of- Achilles of numerical burst phenomenon.
This makes the use of conventional RLS for neural training difficult. The nu-

merically related problems in the RLS are listed below:

— The RLS is also very sensitive to the initial estimates. For example.
when the random numbers are used for initialization, it frequently diverges

during the identification.

— The RLS is not robust with respect to the periodical resetting of covariance

matrir to keep the estimation gain alert under poor persistent excitation
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conditions. It may lack the capability of recovering the lost information

by the resetting method. and thereby it diverges.

* Asafast weights training algorithm, the RLS performance can easily deteriorate
during initial tracking, highly dependent on initial weights and the system being

considered. Thus the RLS is not robust.

Therefore, the direct application of the standard RLS algorithm to neural
networks is not adequate. All aforementioned problems have been successfully
solved and/or improved by the proposed SERNN neural architecture and MRLS
training algorithm which incorporate several novel features. The performance tables
shown in the previous section and the detailed simulation graphs in the following sec-
tion clearly demonstrate the superior performance of developed algorithms
for the purpose of on-line system identification. The SERNN architecture and
MRLS algorithm show fast, accurate and robust performance for on-line neural sys-
tem identification. The speed is shown by the prompt transient-behavior at the begin-
ning of training and for sudden changes in the input. The accuracy represents a small
identification error in the steady state. and the robustness by the sure-identifiability
under diverse situations without changing any of the adjustable free-parameters in the
proposed algorithms. Although these results may not be used to generalize its super-
tor performance for other systems not shown here. the proposed methods clearly show
the solution/improvement over the existing methods of the RLS clone in conjunction
with neural nets training. It is also clear that the developed algorithms would at least
promise better-than or equal performance for other unknown nonlinear systems. The
detailed simulation results are presented in the next subsections.

The proposed training algorithm and neural architecture have lots of potential
for the excellent design of the adaptive control by their powerful capability of on-line
system identification. For the design purpose here, the controller should not be an ad-
hoc device for the specific plant. The ad-hoc controller becomes useless when different
plants are considered or the dynamic uncertainty is serious for a certain environment.

As a matter of fact, the design of an ideal universal nonlinear controller should not
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use any pre-knowledge about the plant except for few input/output measurements.
The robust system identification methodology developed in this thesis may suggest
intuitions and possible solutions for this universal control concept. These techniques
use only I/O measurements and do not adjust the free-parameters for a specific
system under consideration. The performance of the proposed system identification
algorithms can be said to satisfy these requirements to a large extent. The next
chapter presents the design of an optimal (self-tuning) adaptive control which is
heavily dependent on the performance of the on-line neural system identification based

on the certainty-equivalence principle.




6.7.1 With Initial Weight Set 1 On Plant 1
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(a) By conventional method (b) By proposed method

Figure 66: Actual output identification by model output
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(a) By conventional method (b) By proposed method

Figure 67: Identification error between actual and model outputs
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(2) Conventional CFF= 0.95 (b) Proposed VFF

Figure 68: Constant and Variable Forgetting Factors in output layer
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(a} Conventional CFF= 0.95

(b) Proposed VFF

Figure 69: Constant and Variable Forgetting Factors in hidden layer
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(a) Periodic resetting with CFF
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(b} Periodic resetting with VFF

Figure 70: Trace of covariance matrices in output layer
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(a) conventional method

A A

D

(b) proposed method

Figure 71: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer

(b) For proposed method in hidden layer

Figure 72: Sum of Q Elements

6.7.2  With Initial Weight Set 2 On Plant 1
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(a) By conventional method (Wind-up) (b) By proposed method
Figure 73: Actual output identification by model output
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(a) By conventional method (Burst)

(b) By proposed method

Figure 74: Identification error between actual and model outputs
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(a) Conventional CFF= 0.98 (b) Proposed VFF

Figure 75: Constant and Variable Forgetting Factors in output layer
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(a) Conventional CFF= 0.98 (b) Proposed VFF

Figure 76: Constant and Variable Forgetting Factors in hidden layer
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(a) Periodic resetting with CFF

(b) Periodic resetting with VFF

Figure 77: Trace of covariance matrices in output layer
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(a) Periodic resetting with CFF (Not alert) (b) Periodic resetting with VFF

Figure 78: Trace of covariance matrices in hidden layer

(a) For proposed method in output layer (b) For proposed method in hidden layer
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Figure 79: Sum of Q Elements

6.7.3 With Initial Weight Set 3 On Plant 1
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(a) By conventional method (Wind-up) (b) By proposed method

Figure 80: Actual output identification by model output
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(a) By conventional method (Burst) (b) By proposed method
Figure 81: Identification error between actual and model outputs
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(a) Conventional CFF= 0.98 (b) Proposed VFF
Figure 82: Constant and Variable Forgetting Factors in output layer
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(a) Conventional CFF= 0.98

(b) Proposed VFF

Figure 83: Constant and Variable Forgetting Factors in hidden layer
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(a) Periodic resetting with CFF (b) Periodic resetting with VFF

Figure 84: Trace of covariance matrices in output layer
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(a) Periodic resetting with CFF (Not alert) (b) Periodic resetting with VVFF

Figure 85: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 86: Sum of Q Elements
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6.7.4 With Initial Weight Set 4 (Random Number) On Plant
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(a) By conventional method (Wind-up) (b) By proposed method

Figure 87: Actual output identification by model output
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(a) By conventional method (Burst) {b) By proposed method
Figure 88: Identification error between actual and model outputs
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(a) Conventional CFF= 0.98 (b) Proposed VFF

Figure 89: Constant and Variable Forgetting Factors in output laver
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(a) Conventional CFF= 0.98 (bj Proposed VFF

Figure 90: Constant and Variable Forgetting Factors in hidden laver
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(a) Periodic resetting with CFF (b} Periodic resetting with VFF
Figure 91: Trace of covariance matrices in output laver
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(a) Periodic resetting with CFF (Not alert) (b) Periodic resetting with V'FF

Figure 92: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 93: Sum of Q Elements
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6.7.5 With Initial Weight Set 1 On Plant 2
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(a} By conventional method (b) By proposed method

Figure 94: Actual output identification by model output
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(a) By conventional method (b) By proposed method

Figure 95: Identification error between actual and model outputs
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(2) Conventional CFF= (.98 (b) Proposed VFF

Figure 96: Constant and Variable Forgetting Factors in output layer
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{a) Conventional CFF= 0.98 (b) Proposed VFF

Figure 97: Constant and Variable Forgetting Factors in hidden layer
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(a) Periodic resetting with CFF (b) Periodic resetting with VFF

Figure 98: Trace of covariance matrices in output layer
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(a) Periodic resetting with CFF (b) Periodic resetting with VFF

Figure 99: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 100: Sum of Q Elements

6.7.6 With Initial Weight Set 2 On Plant 2
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{a) By conventional method (b) By proposed method

Figure 101: Actual output identification by model output
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(a) By conventional method (b) By proposed method

Figure 102: Identification error between actual and model outputs
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(a) Conventional CFF= (.98 (b) Proposed VFF

Figure 103: Constant and Variable Forgetting Factors in output layer
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(a) Conventional CFF=0.98 {b) Proposed VFF

Figure 104: Constant and Variable Forgetting Factors in hidden layer
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(2) Periodic resetting with CFF (b) Periodic resetting with VFF

Figure 105: Trace of covariance matrices in output layer
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(2) Periodic resetting with CFF (Poorly

alert)

(b) Periodic resetting with VFF

Figure 106: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer

(b) For proposed method in hidden layer

Figure 107: Sum of Q Elements




6.7.7 With Initial Weight Set 3 On Plant 2
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(a) By conventional method (Wind-up) (b) By proposed method

Figure 108: Actual output identification by model output
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(a) By conventional method (Burst) (b) By proposed method

Figure 109: Identification error between actual and model outputs
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(2) Conventional CFF= 0.98 (b) Proposed VFF

Figure 110: Constant and Variable Forgetting Factors in output layer
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(a) Conventional CFF= 0.98

(b) Proposed VFF

Figure 111: Constant and Variable Forgetting Factors in hidden layer
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(2) Periodic resetting with CFF (Poorly
alert)
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(a) Periodic resetting with CFF (b) Periodic resetting with VFF
Figure 112: Trace of covariance matrices in output layer
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(b) Periodic resetting with VFF

Figure 113: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 114: Sum of Q Elements

6.7.8 With Initial Weight Set 4 On Plant 2
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(a) By conventional method (Wind-up) (b) By proposed method

Figure 115: Actual output identification by model output
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(a) By conventional method (Burst) (b) By proposed method

Figure 116: Identification error between actual and model outputs
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Figure 117: Constant and Variable Forgetting Factors in output layer
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Figure 118: Constant and Variable Forgetting Factors in hidden layer

(a) Periodic resetting with CFF (b) Periodic resetting with VFF

Figure 119: Trace of covariance matrices in output layer
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(a) Periodic resetting with CFF (Poorly (b) Periodic resetting with VFF
alert)

Figure 120: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 121: Sum of Q Elements
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6.7.9 With Initial Weight Set 1 On Plant 3
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(a) By conventional method
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(b) By proposed method

Figure 122: Actual output identification by model output
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{a) By conventional method

(b) By proposed method

Figure 123: Identification error between actual and model outputs
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(a) Conventional CFF= 0.98

(b) Proposed VFF

Figure 124: Constant and Variable Forgetting Factors in output laver
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(a) Conventional CFF= .98 (b) Proposed VFF

Figure 125: Constant and Variable Forgetting Factors in hidden layer
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(a) Periodic resetting with CFF (b) Periodic resetting with \'FF

Figure 126: Trace of covariance matrices in output layer
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(2) Periodic resetting with CFF (b) Periodic resetting with VFF

Figure 127: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 128: Sum of Q Elements

6.7.10 With Initial Weight Set 2 On Plant 3
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(2) By conventional method (b) By proposed method

Figure 129: Actual output identification by model output
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(a) By conventional method

(b) By proposed method

Figure 130: Identification error between actual and model outputs
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(a) Conventional CFF= 0.98 (b) Proposed VFF
Figure 131: Constant and Variable Forgetting Factors in output layer
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(a) Conventional CFF= (.98 (b) Proposed VFF
Figure 132: Constant and Variable Forgetting Factors in hidden layer
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(2) Periodic resetting with CFF (b) Periodic resetting with VFF

Figure 133: Trace of covariance matrices in output layer
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(a) Periodic resetting with CFF (Poorly (b) Periodic resetting with VFF
alert)

Figure 134: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 135: Sum of Q Elements




6.7.11 With Initial Weight Set 3 On Plant 3
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(2) By conventional method (Wind-up)

(b) By proposed method

Figure 136: Actual output identification by model output
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(a) By conventional method (Burst)

Figure 137: Identification error between actual and model outputs

Qarmma

(b) By proposed method
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(a) Conventional CFF= (.98

Figure 138: Constant and Variable Forgetting Factors in output layer

(b) Proposed VFF



N
[
on

- 1 .
Foesf 4 Fom}f —;
(2) Conventional CFF= 0.98 (b) Proposed VFF

Figure 139: Constant and Variable Forgetting Factors in hidden layer
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(a) Periodic resetting with CFF (b) Periodic resetting with VFF

Figure 140: Trace of covariance matrices in output layer
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Figure 141: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 142: Sum of Q Elements

6.7.12  With Initial Weight Set 4 (Random Number) On Plant

(a) By conventional method (Wind-up) (b) By proposed method

Figure 143: Actual output identification by model output
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(a) By conventional method (Burst) (b) By proposed method

Figure 144: Identification error between actual and model outputs
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(a) Conventional CFF= 0.98 (b) Proposed VFF
Figure 145: Constant and Variable Forgetting Factors in output layer
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(a) Conventional CFF= 0.98 (b) Proposed VFF
Figure 146: Constant and Variable Forgetting Factors in hidden layer
(a) Periodic resetting with CFF (b) Periodic resetting with VFF

Figure 147: Trace of covariance matrices in output layer
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(a) Periodic resetting with CFF (Poor fre- (b) Periodic resetting with VFF

quency)

Figure 148: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden laver

Figure 149: Sum of Q Elements

With regard to simulation results of plant 3 with initial weights set 4 (random
number), a clear clue was not found for the conventional method leading to wind-up.
because at least. the trace of the covariance matrices in the output and hidden layers
looks alert as shown in (a) Figure in 147 and 148. One possible interpretation for the
burst phenomenon by the conventional method is its lack of capability to recover the
lost information occurring from periodic resetting of the covariance matrix. Another
explanation can be made from having violated the fact that the input for persistent
excitation must have sufficiently rich frequency content. However, Figure 148 (a)

does not show rich frequency.
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6.7.13 With Initial Weight Set 1 On Plant 4
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(a) By conventional method (b) By proposed method
Figure 150: Actual output identification by model output
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(a) By conventional method (Poor)

(b) By proposed method

Figure 151: Identification error between actual and model outputs
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(a) Conventional CFF= 0.98

(b) Proposed VFF

Figure 152: Constant and Variable Forgetting Factors in output layer
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{a) Conventional CFF= 0.98

(bj Proposed VFF

Figure 153: Constant and Variable Forgetting Factors in hidden layver
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(a}) Periodic resetting with CFF

(b Periodic resetting with \V'’FF

Figure 154: Trace of covariance matrices in output laver
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(a) Periodic resetting with CFF (Poorly
alert)

(b) Periodic resetting with VFF

Figure 155: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 156: Sum of Q Elements

6.7.14 With Initial Weight Set 2 On Plant 4

faj By conventional method {(Wind-up) [bj By proposed method
Figure 157: Actual output identification by model output
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(2) By conventional method ( Burst) (b) By proposed method

Figure 158: Identification error between actual and model outputs
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(a) Conventional CFF= 0.98

(b) Proposed VFF

Figure 159: Constant and Variable Forgetting Factors in output layer
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{(a) Conventional CFF= 0.98

(b) Proposed VFF

Figure 160: Constant and Variable Forgetting Factors in hidden layer
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(a) Periodic resetting with CFF
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(b) Periodic resetting with VFF

Figure 161: Trace of covariance matrices in output layer
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(a) Periodic resetting with CFF (Poorly (b) Periodic resetting with VFF
alert)

Figure 162: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 163: Sum of Q Elements




6.7.15 With Initial Weight Set 3 On Plant 4
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(a) By conventional method (Wind-up) (b) By proposed method

Figure 164: Actual output identification by model output

Sarererr & rrar Crvar

(a) By conventional method (Burst) (b) By proposed method

Figure 165: Identification error between actual and model outputs
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(a) Conventional CFF= 0.98 (b) Proposed VFF

Figure 166: Constant and Variable Forgetting Factors in output layer
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(a) Conventional CFF= (.98

(b) Proposed VFF

Figure 167: Constant and Variable Forgetting Factors in hidden layer
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(a) Periodic resetting with CFF

(b) Periodic resetting with VFF

Figure 168: Trace of covariance matrices in output layer
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(a) Periodic resetting with CFF (Poorly
alert)

(b) Periodic resetting with VFF

Figure 169: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 170: Sum of Q Elements

6.7.16 With Initial Weight Set 4 (Random Number) On Plant
4
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(a) By conventional method (Wind-up) (b) By proposed method

Figure 171: Actual output identification by model output

Ibarnontgn € reae

[ Lt

-zf

-3

s &
T

(a) By conventional method (Burst) (b) By proposed method

Figure 172: Identification error between actual and model outputs
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(a) Conventional CFF= (.98 (b) Proposed VFF
Figure 173: Constant and Variable Forgetting Factors in output layer
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(a) Conventional CFF= 0.98 (b) Proposed VFF

Figure 174: Constant and Variable Forgetting Factors in hidden laver
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(a) Periodic resetting with CFF (b) Periodic resetting with VFF

Figure 175: Trace of covariance matrices in output layer
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(a) Periodic resetting with CFF (Not alert) (b) Periodic resetting with VFF
Figure 176: Trace of covariance matrices in hidden layer
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(a) For proposed method in output layer (b) For proposed method in hidden layer

Figure 177: Sum of Q Elements
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6.7.17 With Initial Weight Set 1 On MIMO Plant 5 (Swing
Leg)
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(a) By conventional method (b) By proposed method

Figure 178: Actual outputl identification and error by model outputl
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(a) By conventional method (Poor Id. er- (b) By proposed method

ror)

Figure 179: Actual output?2 identification and error by model output2

The proposed method is better than the conventional method in terms of the

identification error with initial weight set 1.
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(a) Conventional CFF= 0.95 (b) Proposed VFF

Figure 180: Constant and Variable Forgetting Factors at outputl in output layer

aer - -

]

J

d

!

Foosf {1 fom /\ /\-/"‘3
/

1 | M\

(a) Conventional CFF= 0.95 (b) Proposed VFF

Figure 181: Constant and Variable Forgetting Factors at output?2 in output layer
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Figure 182: Constant and Variable Forgetting Factors at outputl in hidden layer
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Figure 183: Constant and Variable Forgetting Factors at output2 in hidden layer
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Figure 184: Trace of covariance matrices at outputl in output layver
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Figure 185: Trace of covariance matrices at output?2 in output layer

(b) Periodic resetting with VFF
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Figure 186: Trace of covariance matrices at outputl in hidden layer
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Figure 187: Trace of covariance matrices at output2 in hidden layer




ey

NN EEEENR
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Figure 188: Sum of Q elements (proposed) in output layer
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Figure 189: Sum of Q (proposed) elements in hidden layer
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6.7.18 With Initial Weight Set 2 On MIMO Plant 5 (Swing

Leg)
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(a) By conventional method (Wind-up)

Figure 190: Actual outputl identification and error by model output!
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Figure 191: Actual output? identification and error by model output?2
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Figure 192: Constant and Variable Forgetting Factors at outputl in output layer
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Figure 193: Constant and Variable Forgetting Factors at output2 in output layer

Foasf - fu-i WV
(a) Conventional CFF= 0.95 (b) Proposed VFF

Figure 194: Constant and Variable Forgetting Factors at outputl in hidden layer
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Figure 195: Constant and Variable Forgetting Factors at output2 in hidden layer
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Figure 196: Trace of covariance matrices at outputl in output layer
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Figure 197: Trace of covariance matrices at output2 in output layer
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Figure 198: Trace of covariance matrices at outputl in hidden layer

(a) Periodic resetting with CFF (Not alert) (b) Periodic resetting with VFF

Figure 199: Trace of covariance matrices at output2 in hidden layer
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Figure 200: Sum of Q elements (proposed) in output layer
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Figure 201: Sum of Q elements (proposed) in hidden layer

6.7.19 With Initial Weight Set 3 On MIMO Plant 5 (Swing
Leg)
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Figure 202: Actual output] identification and error by model outputl
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Figure 203: Actual output2 identification and error by model output?
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Figure 204: Constant and Variable Forgetting Factors at outputl in output layer
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Figure 205: Constant and Variable Forgetting Factors at output?2 in output layer
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(b) Proposed VFF

Figure 206: Constant and Variable Forgetting Factors at outputl in hidden layer
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(a) Conventional CFF= 0.95

(b) Proposed VFF

Figure 207: Constant and Variable Forgetting Factors at output?2 in hidden layer
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Figure 208: Trace of covariance matrices at outputl in output layer




ey

i PR
P28 b 8§ § o3
T

n

~y

Trose o am2 «va’ Traee o oS3

e

oef -

(a) Periodic resetting with CFF (b) Periodic resetting with VFF

Figure 209: Trace of covariance matrices at output2 in output layer
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Figure 210: Trace of covariance matrices at outputl in hidden layer
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Figure 211: Trace of covariance matrices at output2 in hidden layer
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Figure 212: Sum of Q elements (proposed) in output layer
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Figure 213: Sum of Q elements (proposed) in hidden layer
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6.7.20 With Initial Weight Set4 (Random Number) On Plant
5 (Swing Leg)

Sttt SRS et ) wrvmr
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Figure 214: Actual outputl identification and error by model outputl
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Figure 215: Actual output2 identification and error by model output?2
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Figure 216: Constant and Variable Forgetting Factors at outputl in output layer
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Figure 217: Constant and Variable Forgetting Factors at output? in output layer
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Figure 218: Constant and Variable Forgetting Factors at outputl in hidden layer
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(b) Proposed VFF

Figure 219: Constant and Variable Forgetting Factors at output?2 in hidden layer
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Figure 220: Trace of covariance matrices at outputl in output laver
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Figure 221: Trace of covariance matrices at output2 in output layer
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Figure 222: Trace of covariance matrices at outputl in hidden layer
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Figure 223: Trace of covariance matrices at output2 in hidden laver
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Figure 224: Sum of Q elements (proposed) in output layer




(a) At Output 1 (b) At Output 2

Figure 225: Sum of Q elements (proposed) in hidden layer

With regard to simulation results of MIMO plant 5 with initial weights set 4
(random number), the clear clue is not found for the conventional method being
wound-up, since at least, the trace of the covariance matrices in the output and
hidden layers looks alert as shown in (a) Figures 220, 221, 222, 223. One possibility
for the burst phenomenon in this case (conventional) is put on its lack of capability
to recover the lost information occurring from periodic resetting of the covariance

matrix with a CFF (constant forgetting factor).

6.8 Remarks on Simulation Results

In this chapter, simulation results show the comparative performance of neural system
identification between the conventional and developed methods, which have been
tested on five nonlinear plants with four initial synaptic weight sets including a
randomly-initialized weight set respectively. The developed methods represent fast.
accurate and robust neural system identification with 100% success rate while the
conventional method achieved 35%. Simulation results indicated that conventional
methodology (in recurrent neural network architecture and its training algorithm)

turns out to be prone to incompetency such as:

1. Susceptibility to initial synaptic weights.
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[S)

Lacking capability of keeping the covariance matrix alert regardless of persist-

ent excitation condition for the input vector.

3. Less robustness about the lost information occurring in process of periodically

resetting of the covariance matrix.

4. Insufficiency of using the exponential-weight constant forgetting factor to cope

with various plants under consideration.

[¥)]

Inaccuracy of the identification error of nonlinear dynamic systems.

The developed neural architecture and training algorithms show clear and present
performance improvement for the on-line system identification. These results will be
useful for a wide range of adaptive signal processing applications. For example.
FES (functional electrical stimulation) control requires good system identification
techniques [1] because a neuromuscular system cannot exactly be characterized by
mathematical modeling methods due to lots of dynamic uncertainties (structured and
unstructured) in human body. The off-line supervised learning approach may not be
adequate for the FES control application because it suffers from the same uncertainty
problem after learning by a typical training set [2]. The fast, accurate and robust
on-line neural system identification techniques developed in this thesis have a wide
range of application areas where various dynamic uncertainties are inevitable such as
underwater robotic vehicles, neuromuscular system, free-floating robot manipulators

with inherently unclear mass-related properties, etc..
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Chapter 7

Application of Neural System
Identification To Adaptive Control

Processing

7.1 Introduction

The main objective of this chapter is to show how an on-line neural system identifica-
tion is synthesized with the optimal LQ (linear quadratic) control processing leading
to an adaptive self-tuning control scheme. The neural network based adaptive con-
trol is expected to exhibit desirable properties such as no restrictions about system
linearity, robustness with respect to different variable trajectories, good capability
for uncertainties including sudden dynamic changes in the middle of an excursion.
reasonable noise rejection ability, and no pre-information about a system under con-
sideration. This is tested through the scenario of picking up a moving target (an
unknown payload) by the PUMA robot manipulator without using the mathematical
robotic dynamics (i.e., computed torque method). The robotic dynamics has com-
plicated characteristics of a time-variance, high nonlinearity, strong coupling-effects
among joints, and structured and unstructured uncertainties, which are all undesir-

able factors for the controller design. Since the overall control scheme assumes a
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plant being structured as a black-box in this thesis. the same control method can be
applied to other unknown nonlinear systems. This is one of the most distinct features
between the black-box model based control and mathematical model based control.
If the mathematical dynamics of a system is exactly known in advance, the control
design tasks will be much easier and the performance could be accurate. However.
this classical method has limitations of an ad-hoc controller, short competency about
uncertainties, and less feasibility for a real-life environment. Many adaptive con-
trols [20], (18], [17] [1], [16] (7], [8], [11], [3], (4], [14] have been developed to resolve
these kinds of problems. These adaptive control schemes have common components
of identification and control blocks to cope with aforementioned difficulties on the
control aspect. Generally speaking, there are different features between before and

after 1990 research as follows:

e before 1990:

—_

. Use of linear parametric models (e-g.. ARX clone) for the identification.

o

- Use of adaptive self-tuning regulators (STR) instead of a tracker.

[

. Test on mostly time-invariant and deterministic systems.

NN

. Lack of compensating uncertainties.

Therefore. these methods can be prone to being less adaptive for highly nonlinear
time-varying systems having dvnamic uncertainties for the purpose of a tracking con-
trol. As a result robot control frequently fails to work for different reference profiles
of the position and velocity, especially at the high velocity [19]. To circumvent this
kind of incapability, [9] and [10] suggested the combination of a variational (adaptive
part) and a nominal (computed torque method) controls. The nominal control uses
the direct calculation of manipulator dynamics along the desired trajectory, which
requires full information of the plant dynamics [5]. The drawback on these con-
trols is indicated as an ad-hoc control working for a restricted plant, reference signal
and situation. The direct reason for this is postulated by the less robust identifica-

tion part. For a more intelligent adaptive (control) performance, the neural networks
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have actively been used after 1990 based on the expectation that they can have super-
tor capabilities for the nonlinear signal processing to the conventional methodology.
However, there exist difficulties to alloy the relatively less matured ANNs techniques

into the individual application as follows:

e after 1990:

. Unclear optimum ANNs architecture for an application.

[S]

. Insufficient learning capabilities in terms of the speed, the sensitivity about

learning parameters, and the side-effects in each training strategy.
3. Unclear effective-implant of ANNSs results to the application.

4. Difficulties for guaranteed stability.

In this thesis, the developed SERNN (supervision & error recurrent neural net-
work) architecture and MRLS (modified recursive least-squares) training algorithm
are combined into the control block leading to the development of the adaptive op-
timal LOQ (linearly-observed quadratic) self-tuning control. The nonlinear system
consisting of a robot arm is used to simulate the overall performance for a tracking
control without using the pre-information about plant. Since the system identifica-
tion procedures and results have been shown in Chapters 4, 3, and 6, this chapter
presents a nonlinear tracking control law by use of LOQ optimal techniques based
on the on-line system identification result. A system with uncertainties is assumed as
a black-bozr by the trained neural network model after system identification. Hence.
the control is carried out through (a) the on-line neural synaptic weights training,
(b) the mathematical formulation of the neural model output with learned weights,
(c) the model-based optimal control law, derived by replacing a real system with the
mathematical input and output equation depending on the neural architecture.

The model-only based adaptive control has the advantage when no physical pre-
knowledge about a system being controlled is available or cannot be used in the
process of control design. Therefore, the control design is carried out depending only

on measurements while the designer does not know how the internal mechanism in
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the real systern converts inputs to outputs. Therefore. the system identifier plays an
important role for the overall control performance. Accordingly. an identifier (or es-
timator) having fast, accurate, robust and generalized on-line estimation capabilities
is required for the on-line optimal control synthesis procedure. This kind of control

is attractive under situations:

* (a) when the derivation of complex mathematical dynamics for a plant being

concerned is difficult, inaccurate, or sometimes impossible,

(b) when there exist dynamic uncertainties under unknown environments,

(c) when more universal control is required to avoid an ad-hoc controller under

diverse environments, and

¢ (d) when easy replacement of different control laws is necessary.

7.2 Adaptive Self-tuning Control

The basic architecture of an adaptive self-tuning (explicit) control (STC) is shown in
Figure 226. The STC is a discrete-time method which attempts to overcome problems
of model-plant mismatch by automating the overall design procedure and repeating
the steps of identification and control gain during each sampling period. The STC.
therefore, has the ability to tune the change of plant dynamics continuously. One
notes that the system identifier replaces a real system output into the mathematical
expression of the model output with estimated parameters. In the adaptive STC
case, the on-line control synthesis block treats the estimated model (or trained neural
network) as if it were the true plant, which is leading to the model following control.

This strategy is generally known as certainty equivalence adaptive control.
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Figure 226: Adaptive Self-tuning Scheme

7.3 Optimal LOQ Controller Design For MIMO Sys-
tem

Optimal LQ (linear quadratic) control has been presented by [15], [13], [12], and [6]
mostly based on the linear time-invariant state-space model. The LQ control penal-
izes the tracking error and control energy by means of minimizing the cost-function

although it is not clear what is the most appropriate cost-function. In this section.
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the LQ concept is combined into the neural model which is linearly observed by in-
version of the activation function. Therefore, a linearly-observed-quadratic (LOQ)
cost-function is built, and an optimal LOQ control law is constructed by minimizing
the position and velocity squared-errors and the energy (control signal) as specified

by the weighted quadratic cost-function below:

(7.1)
JeU) = E{| (g7 7= (k + 1) = g™ ¥k 4 D)) +p - (g7 [V *(k + 1)] — g [¥4(k + i,

+ow], / s}

where superscripts act and d stand for the (measured) actual and desired signals
respectively, || -[|% indicates the generalized norm with weight R, for example. |[-||% =
UT-R-U, and cost-function weighting matrices p, Q and R are the design parameters
which are chosen in view of the operational objects. For example, p emphasizes the
relative importance of position tracking errors over velocity tracking errors; Y (k +
1) and Y¢(k + 1) describe the measured and desired (position) trajectory vector as a
sequence of discrete points respectively, where Y¢(k+1) is approximately represented
by Y4k + 1) = Y(k) + Y4(k) - T, because Y(k + 1) is unknown at time kT. A
prediction algorithm may be used for desired signals, for example, the Yk +1)is
predicted one sampling period early in real applications of vision feedback servoing
[2]. [8]; g'[] is the inversion of the activation function; the expectation operation
E{-/(k)} is conditioned on the available measurements up to and including time & T.
The control input U(k) is admissible when it is a function of available measurements
up to and including time k - T,.

The problem is to minimize the cost-function with respect to the admissible con-
trol while satisfying the constraint equation for the measured output on the neural
model. The measured joint velocities of the robot arm are taken as the output
variables of the proposed neural model. These actual velocities can be measured
by tachometer or calculated from adjacent positional readings. The neural output

equation based on the SERNN model (output layer) is written from the velocity




measurements as follows:

(7.2)
-1 [Y“‘(k)] ~ AT(k) - YT(k = 1)+ BT(k)- Uk — 1) + CT(k) - E™(k — 1) + Eme(k)

The unknown synaptic matrices A(k), B(k) and C(k) are estimated by the on-line
neural network training in the identification block as shown in the Chapter 6. Equa-

tion 7.2 can be rewritten as one sampling period advanced form as equation 7.3.

(7.3)
g7 Yotk 4+ )] m AT(k) - ¥T(k) + BT(K) - U(k) + CT(k) - €7(k) + £70(k + 1)

The solution for the discrete LOQ control law is obtained by substituting equation
7.3 into the cost-function equation 7.1 and by minimizing the resulting equation with

respect to control gain U(k). The resulting controller is expressed as follows:

(7-4)
U*(k)=[R+B-Q-BT)]'B-Q. {}dk+1 — AT(k) - Vot (k) — BT (k). £™(k)

o (7 Ik + 1)) = g7 Yk + 1))}

where the weight matrices are selected such as p=pl = diaglp,---pp]T, R=RT > 0
and Q = QT > 0; A(k) € RP*P, B(k) € RP*P, C(k) € RP*P represent the the
estimated synaptic weight matrices at sampling instant k- T,. Only measurements of
Joint velocity are assumed to be available because the measurement of joint position
can be computed by integrating joint velocity measurements in the controller unit

provided that the initial (rest) position Y2<(0) is known:
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(7.5)
Yotk + 1) = Yo (k) + Yo k) - T,

. I .
~ Y’act(k — 1) + }’ad(k —_ 1) . T’ + ;Y'(k - 1) . Ts2 + YaCt(k) . Ts

LYeet(h) = Yotk = 1)y oy
~Y ‘(k—1)+Y“(k—1)'Ts+§[ T, ]'T’
+ Yact(k) . Ts
=Y*'(k—1)+ é"’“‘(k —1)-T. + gym(“ L

where Y°*(k — 1), Yo (k — 1), Y"“‘(k) are all available at present instant k.
In equation 7.3, g[-] is the hyperbolic tangent activation function with slope and

saturation constants a. b. Its inverse function is given as follows:

g y]l=v= al ~ln(zj—z) for yéb'tanh(g-v), a#0,b>y
Figure 227 presents the adaptive self-tuning control scheme based on the fast on-
line neural system identification, where the recurrent neural architecture (SERNN).
MRLS training algorithm, and LOQ optimal law developed in this thesis are used

for a moving-target tracking task.
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7.4 Simulation Results

The proposed neural-model based STC is tested on the simulated robot arm motion
(three d-o-f) which implies forward dynamics matter. The kinematic parameters and
the closed forms of D(-) € ®%*3, C(-) € ®%*! and G() € R**! in Lagrange-Euler
robotic forward dynamics equation are given in the Appendix A. The optimal control
input vector U(k) € R**! represents three generalized torques to Joint 1. 2 and 3
which are computed on-line at every sampling instant k. The following two sections

show two tracking scenarios to grasp a moving target:

1. with the assumption that there is no (velocity) measurement noise and no abrupt

dynamic change such as picking up the payload at a random time, and

2. when measurement noise is added by a random number generator with zero-
mean Gaussian distribution. the robot end-effector picks up the 2.3 Kg payload
at a random time, and different desired trajectories are applied without adjust-

ing the design parameters.

Both control simulations count on only measurement information without using
the pre-knowledge on robot dynamics such as symmetry of inertia matrix. linear-
parameterization property based on the closed form of the robotic dynamics equation.
off-line pre-training, etc.. Both situations result in good tracking performances for

variable position and velocity references.
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7.4.1 Without Measurement Noise and Abrupt Dynamic Change
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Figure 228: Jointl Position Tracking and Error
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Figure 229: Joint2 Position Tracking and Error
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Figure 230: Joint3 Angular Position Tracking and Error

Figures 228, 229, and 230 present angular position tracking performances between
desired and actual position profiles. while Figures 231, 232, and 233 show the angular
velocity tracking ability. Maximum angular velocity of 2.0[rad/sec] in Figure 232
is assumed as being fast. Neural system identification results to characterize the
measured velocity are shown in Figures 234, 235, and 236, which are the internal
on-line calculation processes, but their performance directly influences the overall
adaptive control performance. A neural position identification to characterize the

position information is not required to control the position in this architecture.
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(a) Joint1 Velocity Tracking (desired + meas- (b) Jointl Velocity Tracking Error
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Figure 231: Jointl Angular Velocity Tracking and Error
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Figure 232: Joint2 Angular Velocity Tracking and Error
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Figure 233: Joint3 Angular Velocity Tracking and Error
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Figure 234: Joint]l Angular Velocity System Identification and Identification Error
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Figure 235: Joint2 Angular Velocity System Identification and Identification Error
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Figure 236: Joint3 Angular Velocity System Identification and Identification Error
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7.4.2 Addition of Measurement Noise and Abrupt Dynamic
Change On Different Trajectories

In this simulation, velocity measurement noise of o2 = 0.01 [rad/sec] has been added
to each joint. In the middle of the excursion, the robotic end-effector has picked the
payload 2.3 Kg at the random instant k = 300 equivalent to 3 seconds (at T, = 0.01
[sec]) after starting moving. This is to simulate the sudden dynamic change. (The
mass of payload has been added to that of the third link after k& = 300.) Different
desired profiles for the position and velocity are also applied. These simulation res-
ults show good compensation ability against quickly changed environments although
the tracking performance is somewhat detracted from the measurement error. The
initial tracking speed is fast fallen into the range of 0.3 [sec]. Since the black-box.
model-based control only counts on measurement information about a system. it is
intrinsically prone to be sensitive to measurement noise. This drawback has been
resolved to some good extent by modifying the exponential-weight variable forgetting

factor (EW-VFF) developed in the Chapter 5 as follows:

Cc

7i(k) =

o+ |

2
O (R)+37m (k) +§% (k) /u, (k)
(97 (k= 1)+47™ (k=1)+§¥(k—1))/u, (k—1)

(7.6) ¢

1

R RO Ry ey o o

2
( (920 (K577 (£)4 §(k))-u, (k=1)4e }

where € is a small number to prevent the value from going to zero. In equation 7.6,
the average of measured actual (y2(k) : corrupted by noise), internal neural (g7 (k)
: no noise), and desired (yf(k) : no noise) outputs is used for the Cauchy function
variable of the EW-VFF to alleviate the measurement noise sensitivity, since three
values are to be same theoretically. This is in effect a low pass filter to get rid of
noise which is generally known as having high frequency. The following simulation
results reasonably justify aforementioned design objectives for a pure-model based

nonlinear control.
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Figure 237: Jointl Position Tracking and Error
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Figure 238: Joint2 Position Tracking and Error
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Figure 239: Joint3 Angular Position Tracking and Error
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Figure 240: Jointl Angular Velocity Tracking and Error
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Figure 241: Joint2 Angular Velocity Tracking and Error
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Figure 242: Joint3 Angular Velocity Tracking and Error
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Figure 243: Jointl Angular Velocity System Identification and Identification Error
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Figure 244: Joint2 Angular Velocity System Identification and I[dentification Error
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Figure 245: Joint3 Angular Velocity System Identification and Identification Error
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7.5 Remarks

This chapter has presented the feasibility of neural system identification techniques
for the adaptive control processing through robot trajectory tracking tasks under
diverse references, sudden dynamics changes, with the unknown nonlinearity, time-
variance, and coupling-effects. The subject of tracking control for the robot end-
effector is neither new nor innovative if the pre-information can be fully characterized
under a known and certain environment mostly through the mathematical dynamic
equation with known kinematic parameters and the analysis of each nonlinear term
based on the Lagrange-Euler closed form dynamics. However, the robot control (a
control for a nonlinear, time-varying and coupled system with dynamic uncertainties)
depending on only measurement information has high potential to achieve a universal
nonlinear control for various systems. The pure-model based adaptive control without
using pre-knowledge has seldom been found in the literature. For this. [4] recently
presented a neuro-adaptive trajectory tracking control based on RBF neural network
and extended Kalman filter technique. This made use of the intrinsic linearity (linear
function of its weight) in the RBF network architecture, and the conventional RLS
algorithm to avoid using the BP algorithm. The BP algorithm is prone to the slow
convergence and other drawbacks as indicated there. But some weak points of their
strategy are that they used an off-line method to compensate the structured and
unstructured uncertainties' along a priori training data (pre-knowledge) generated
from robot dynamic equation. They had to normalize and scale the input/output
training data differently for the RLS algorithm with the unity forgetting factor and
generic updating of the covariance matrix, which is not robust for other training sets
especially when the persistent excitation condition is not met as shown in Chapter
6. This did not overcome the category of the pure-model based adaptive processing.

This has led to large trajectory tracking error in showing generalization capability for

! The structured uncertainties are due to uncertainties in parameter values while the unstructured
uncertainties are because of unmodeled effects such as friction, Joint flexibility, motor/gear backlash,
external disturbances, etc..
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the different desired trajectory. because time-invariant synaptic weights were used
through the off-line learning strategy to avoid drawbacks of the conventional RLS
algorithm as an on-line neural network trainer. But their use of the Kalman filter for
the control part is worthy of attention. Meanwhile, the pure on-line and model based
signal processing strategy in this thesis can be more suitable for an application to the
creature like a human body, because its mathematical modeling is very difficult, and

more uncertainties exist there.
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Chapter 8

Conclusions

This research presents a fast. accurate, robust and generalized on-line neural svs-
tem identification technique for dynamic nonlinear systems and its application to
the adaptive control processing. The neural system identification performance has
been successfully tested on four diverse SISO systems and two MIMO systems using
computer simulations. The speed of the developed system is confirmed in each case
by the transient tracking speed at the beginning of the identification sequence. The
identification accuracy was bench-marked by the steady-state error. The robustness
of the developed architecture and training techniques is proved by the determination
of the algorithm stability for different initial parameters (including random num-
ber) and sudden dynamic changes of the parameters. For example, when the robot
arm was picking up a variable payload at a random instant. The generality of the
proposed methodologies is shown by successful tests on different systems of diverse
initial weight values without changing the adjustable free parameters. The improved
performance was shown by comparing simulation results between existing methods
and the developed/modified strategies using dynamic system identification on-line.
The generality of these algorithms is important since it avoids the use of ad-hoc
methodology for a specific system.

Another objective of this thesis was to show how the developed identification

techniques can be applied to the adaptive control processing using a neural network.
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The synthesis of neural system identification skills and optimal LOQ control strategy
was satisfactorily carried out on-line through simulation scenarios of a moving target
grasp by the PUMA robot arm. The clear composition of identification and control
blocks leads to the control scheme called the adaptive self-tuning control. The robust-
ness with respect to measurement noise, generality on different variable trajectories
and compensation capability for dynamic uncertainties were successfully presented
as an adaptive controller only based on measurement signals. This black-box model
control has high potential and diverse advantages for various nonlinear time-varying
systems with lots of uncertainties whose mathematical modeling is difficult or im-
possible, because it does not use the pre-information about a plant being controlled.
The significance of the measurement-only based signal processing strategy shown
in this thesis can become more profound when a system under consideration is a
living body. The powerful system identification ability becomes the basis for the

measurement-only based signal processing scheme.

8.1 Contributions and Findings

This thesis proposes and develops a new type of neural architecture called the Super-
vision & Error Recurrent Neural Network (SERNN) and its training method called
the Modified Recursive Least-Squares (MRLS) algorithm. The synthesis of the neural
system identification and optimal control law is also shown through robotic position
tracking problems. The main contributions of this research are described below and

their features are summarized as follows:

1. Application of fast RLS algorithm to the training of the multi-layer
RNNs: As a parameter estimation method, the RLS clone is well known as a
fast estimation tool. However, its direct application to neural training is dif-
ficult due to the absence of the hidden-layer teaching signal. It is only
applicable for linear parametric models, but has a serious limitation of nu-
merical wind-up phenomenon. These problems have been solved through

the research presented in this thesis.
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2. Derivation of New Teaching Signal for Hidden Layers: The hidden-laver
training has so far been carried out by the BP algorithm or by its modified clone
of hill-climbing which has various side effects. In this thesis. a clear supervisory
signal in the hidden layer is derived by the use of the Lr-norm minimization
technique. This result plays a major role for the RLS algorithm to be applied to
the multi-layer ANNs. Although other researchers have also tried to apply the
RLS clone for the neural nets training, they fail to clearly show the solution for
the absence of the teaching signal in the hidden layer. Recently [11] and
[9] applied the Kalman filtering method to the output layer training and the BP
algorithm to the hidden layer training. The shortcomings of the BP algorithm
still remain. [3] applied the RLS algorithm with unity forgetting factor to
a Radial Basis Function (RBF) network where the hidden layer training is
unnecessary because all the hidden laver weights have unity values. The RLS
algorithm here was for training only of the output layer which does not have
the activation function automatically leading to the linear parameter formula for
the output layer. Moreover. these works ignore issues of the forgetting factor

selection and numerical burst-phenomenon.

3. Effective Linearization Techniques: The Tavlor series linearization expan-
sion techniques with respect to weights at the previous sampling instant and
the linear observation by the inversion of the activation function are used for the
ANNSs training by the RLS algorithm. The Taylor series expansion performed
on the recursive parameter form in this thesis leads to a fairly accurate lineariz-
ation method by using all terms occurring in the first-order differentiation. The
latter method is preferred because of its computational simplicity although no

performance difference between the two methods was noticed.

4. Derivation of Modified RLS Algorithm: By alleviating the restriction to
Gaussian zero-mean noise on the modeling error in the Standard RLS ( SRLS)
algorithm, the Modified RLS algorithm called the MRLS algorithm developed in

this research improves the speed, accuracy and robustness of the neural network
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for on-line system identification. The derivation processes and performance

improvement are shown through simulation results in Chapters 5 and 6.

Development of Exponential-Weight Variable Forgetting Factor: This
thesis developed an exponential-weight variable forgetting factor (EW-VFF) to
cope with diverse and dynamic environments for the MRLS algorithm. The de-
veloped algorithm makes use of the shape of the C auchy function profile based
on outputs measurements. This research uses the Cauchy function’s character-
istics in an adaptive manner which has not been reported in the literature. The
performance improvement is compared with the exponential-weight constant
forgetting factor (EW-CFF) in terms of the identification error as shown in the
Chapter 5. The combination of the EW-VFF and periodic resetting of the cov-
ariance matrix turned out to be very robust with respect to even non-persistent

excitation condition.

Periodic Resetting of Covariance Matrix: When persistent excitation is
not met for the regression (input) vector. the combined effect of periodic reset-
ting of the covariance matrix and EW-\'FF developed in this thesis prevented
the MRLS from going to wind-up phenomenon as shown in the Chapter 5. This
is a major drawback of all the RLS clones. The periodic resetting method turns
out to be more robust with MRLS algorithm than with conventional SRLS al-

gorithms. This robustness has been also shown in Chapter 6.

- Decomposition of One Layer into Three Parts: During this research one

layer of the ANN was divided into three components called the input nodes
(IN), the (internal) forward synaptic weights (FW-SW) and the output nodes
(ON), i.e.. neurons. This decomposition method makes the neural net archi-
tecture easily visible, and contributes to the creation of systematic and diverse
neural links. In the conventional architecture, the neuron outputs in the previ-
ous hidden layer are simply connected to the neurons in the next output layer
through (internal) FW-SW. This makes it look as if there are no other data

points between the prior and posterior layers, which may always result in same
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number of hidden-layer neurons and IN in the next layer by easily discarding
additional input nodes ‘points) from remote layers. By introducing the defini-
tion of IN, more data points can effectively be found inside multi-layer ANNs.
For example, both the Jordan and the Elman's RNNs do not have the recur-
rent connections in the middle layers, where new and meaningful connections
might be able to be developed by introducing the IN. Besides. the decomposi-
tion method enables multi-layer SERNN to have a systematic calculation of the
number of synaptic weights and IN for output and hidden layers as follows.
For Output Layer:
(Numberof IN) =2 x P+ NV

=3 x P for V=P: abest supervisor in hidden-laver

(Number of Weights) = (2 x P + N)x P

For Hidden Layer:
(Number of IN) =2 x ¥V 4+ \f
(Number of Weights) = (2 x N + M) x N

where P. N and A are the number of outputs in the output layer. hidden neur-
ons and external inputs in the input layer respectively for the system under
consideration. Since P and M are determined to be same as the number of
inputs and outputs for a real plant under consideration. the .V becomes the
only architectural free (variable) parameter. .V was determined to be the same
as P without loss of general performance through this research. If the size of
the proposed neural architecture (SERNN) is not enough for the required per-
formance as an identifier, then N can be selected such that N > P. Meanwhile,
there are no theoretical limits on the number of hidden layers, but usually in
practice there will be only one or two hidden layers. This research uses two-
layer SERNN without loss of performance. This resolves the issue about ANNs’
size determination to some extent when the size of networks is defined by the
number of input nodes in the hidden and output layers, the number of output

neurons (N, P) per layer and the number of layers.
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8. Use of Feedforward Inter-layer Synaptic Weights: Another contribution
from this research is the introduction of feedforward inter-layer synaptic weights
to the RNNs. This creates meaningful additional-connection from the hidden
layers to the output layer by forcing the input signals in the hidden layer not
to go through the (internal) forward synaptic weights in the middle layer. This

enables an input signal to go through at least two channels:

e (a) internal synaptic weights in each middle layer.

e (b) inter-layer synaptic weights which is making an input to skip a certain

middle layer(s).

Therefore, this makes use of the direct influence of the (external) inputs in the
hidden-layer to the output layer especially when each layer has (unity) time-
delay units for the memory. This leads to wider time-order in the context of
time difference equation. This may also simplify the inverse process of a neural
network to derive the input signals given the (desired) neural network output
signals with known inter-layer synaptic weights after training. One application
of these connections may be found in deriving the control law on-line effectively
(i.e., external input signal to neural identification nets) called the inverse neural
control, where the desired variable-output signals are given with the trained net

as a neural emulator for a plant being controlled.

9. New Neuron Model for Automatic Bias Selection: A further contribution
involves the modification of a conventional neuron model. Although the bias
value in an artificial neuron model plays an important role as shown in the
Chapter 4, not enough research has been carried out to show its determination.
[2] showed that the bias keeps a constant level of activation in the absence
of input and must be so chosen to avoid a dead zone. [5] stated that the
introduction of the bias to the neural network design will contribute to mean-
square error between the desired and neural responses. (8] suggests the use of a

constrained network architecture where the constraints and, therefore, the bias




10.

[SV]
[{=]
[SV)

may take the form of prior knowledge built into the network design. However.
a global methodology to determine its value and its effect on the bias does not
seem to exist to date. In a general neuron model, the threshold (=1.0) or bias
(+1.0) is applied for lowering and increasing the net input of the activation
function respectively. This may be seen as the manual trial and error method
for the ad-hoc application purpose, which causes difficulty in determining its
magnitude and sign and to analyze their eligibility for generalization. The new

neuron model in this thesis has a topology such that:

e (a) the bias or the threshold takes its value from the feedback of error

between supervisory signal and neuron output.

¢ (b) the synaptic weight is added for the above error feedback signal.

The new neuron model can make an automatic decision on the sign and the
magnitude for the threshold and bias values. The error feedback can contribute
to the bias/threshold implementation and to the performance improvement of
neural network training in terms of speed and robustness with respect to the
initial weights and the dynamic uncertainties. The idea behind the development
of the new neuron model originates from the spinal motor neuron of the human
brain, which have been used for most of the artificial neurons. Human neurons
may have an intrinsic structure which uses a sort of error correction methodo-
logy to learn the unfamiliar environment. This error correction function results
in realization of the classical feedback P-control in the new neuron model, where
feedback gain P is adjusted by the added synaptic weight to the variable bias
of recurrent error to minimize the modeling error. In the conventional neuron

model, however the error correction function is not found in the model itself.

Supervision Feedback: The research presented in this thesis uses the recur-
rent supervision signal (external feedback) from outside the neural net for the
RNNs, that is the output from the plant. In the literature, for all recurrent

neural architecture, the self-feedback (or internal feedback) of the output from
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hidden and/or output layers has been done. The novel recurrent architecture
developed in this thesis is based on the assumption that the external feedback
is able to transfer more accurate information about the system into the net-
works than the internal feedback can do alone. At the beginning of on-line
training with poor initial weights, a neural system identifier generally is poor
in the transient tracking. This poor neural output may lead to a vicious-cycle
of mal-information by its seif-feedback. Based on this heuristics. the feedback
of the desired (supervision) signal is designed for an improved recurrent neural
network architecture which makes a more robust neural system identifier with

less optimal initial weights.

Use of Hyperbolic Tangent for Activation Function with Slope and
Saturation: Many kinds of nonlinear activation functions for an artificial
neuron exist such as the sigmoid (logistic) function, Gaussian function, Signum
function (hard limiter), saturation limiter. Schrmitt trigger (hard limiter with
hysteresis), dead zone limiter. deadspace comparator (hard limiter with dead-
zone), quadratic function. absolute value function, etc.. Although the biological
basis for a general activation function has not been established. most neural
system identification processes are performed based on the following preferable

features:

® The Activation function (AF) is desirable to have boundedness from negat-
ive to positive for real-valued dynamic systems, unless input/output data

are normalized and scaled differently.

® The AF must be easily differentiable and invertible for a flexible training

purpose.

® The AF must have flexible parameters with features such as slope (sharp-
ness) and saturation (magnitude). It is most desirable that the selected
parameter values can be generalized for other applications or they have an

adaptive variable scheme.
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The research presented in this thesis uses the hyperbolic tangent for the ac-
tivation function shown below which reasonably satisfies the aforementioned

features.

where constants b and a control the saturation value and the slope of the ac-
tivation function respectively. The fixed values were heuristically selected and
worked for the on-line system identification tested on all six different nonlinear

plants shown in the Chapters 5 and 6.

12. Combination of Neural System Identification and Optimal control: For
an adaptive tracking control problem in this thesis. the optimal LOQ control
law has been derived based on the developed neural system identifier leading
to the adaptive self-tuning control for a nonlinear time-varying system. This
control scheme satisfies the following design objectives:

(a) It depends on only measurements of input and output signals.

(b) It is robust with respect to different variable trajectories.

(c) It has the compensation ability for dynamic uncertainties.

(d) It shows less sensitivity about measurement noise.

(e) It is easy to replace the existing controller with a different one without

changing the control structure.

The developed adaptive processing scheme is adequate for a system whose math-

ematical modeling is difficult or impossible.
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8.2 Recommendations for Further Research Direc-
tions

This research describes the development of a fast, accurate, robust and on-line neural
network for system identification, and application to adaptive tracking problem . The
following work has been identified as future research.

The first area to address is to replace the constant design parameters with adapt-
ive variables for a more flexible neural identifier. This research uses three constants
for free design parameters: c, a and b are called the Cauchy function constant in the
design of EW-VFF, the slope of hyperbolic tangent activation function and the saturq-
tion value of same activation function. respectively. Heuristically selected, these fixed
values have been shown to work suitably for all simulated plants and test scenarios
because their outputs still remain as variables. However, the comprehensive design
for a more flexible and generalized system identifier is desjred. Some suggestions are

given below:

e Since c is related to the determination of exponential-weight variable forgetting
factor (EW-VFF) by controlling the sharpness of the Cauchy function profile. an
adaptive form of ¢ = f(situation for EW-VFF through every measurements) is

desired to cope with unknown systems and environments more flexibly.

o In the activation function of b- tanh($ - v), an adaptive slope a(k) can be used.
and expected to increase the learning speed and to improve the generalization.
Similar ideas for the varying activation function are shown in [7] in conjunction
with the BP learning algorithm. The saturation value b does not have a specific
value for its optimal selection, but its value needs to avoid the normalization
process of the system output under consideration and to take account of the

range of real-value outputs.

In this thesis, the periodic resetting of the covariance matrix has been successfully
used with the newly derived MRLS algorithm to cope with the situation of non-

persistent ercitation. The primary issue on the use of resetting method is that the
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training algorithm should be robust enough to recover the lost information which
occurs during the periodic resetting process. The MRLS algorithm turns out to be
robust with respect to the lost knowledge. The next issue is to determine the time
of the periodic resetting. The determination of the resetting time has to make two

decisions to keep reasonable PE conditions such as:

e (a) optimal sampling-instance for the seed covariance matrix.

e (b) optimal interval in resetting periodically.

In this research, the value for first resetting instance and optimal interval has been
heuristically selected as 35(= k). This means updating the covariance matrix every
35 iterations by the covariance matrix sampled at instant k = 35. The value of 35
was selected based on fact that the RLS clones generally take 20 ~ 35 iterations
for steady estimates. An alternative method to determine the optimal, or variable.
updating-time for the guaranteed-alertness of the covariance matrix could be taken
up as future work. One plausible way for this is to transform the covariance matrix
information (e.g. Trace) in time domain into frequency domain and then. to find the
critical (minimum) frequency and magnitude with which the covariance matrix can
always stay alert.

The development of an advanced neuron model is demanded for more dexterous
artificial neural processing. Since the conventional neuron has been modeled after the
biological one in simple manner, the introduction of the feedback control concept (for
example, PID) to a neuron model inside may lead to more power for the advanced
neural function depending on applications. The capability of the noise rejection is
the one of well-known feedback control functions.

For the MRLS algorithm, a rigorous mathematical proof of its stability may be
desired for its application to various disciplines. This mathematical task meets many
inherent difficulties when the concerned system has features of time-variance, non-
linearity, uncertainties, etc.. The proof for stability has not yet matured enough for
the neural networks research especially for a universal-purpose neural identifier. The

mathematically rigorous proof of the stability for general neural nets may remain as
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an open-problem to neural networks researchers for the time being except for ad-hoc
networks.

In the adaptive self-tuning control scheme, since the certainty-equivalence prin-
ciple is not applicable during the initial learning phase, the input (control) signal can
be infinitely large and not realizable at the beginning of training. This leads to the
difficult implementation of the STC scheme with the random initialization. This is
because the control block regards the neural identifier (emulator) as a real system
even during the learning period. One partial remedy for this problem lets the control
block take part in both training of the identification block and minimizing the control
tracking error during the learning phase, and then decaying the training role after the
learning phase. The key technique for this will be how the identification error model
is effectively included in the control block.

Hardware development for the artificial neural networks. microelectronic or opto-
electronic neural network technology has matured over the past few vears. A reliable
performance can be obtained from VLSI circuits under carefully controlled conditions
as shown in [6]. [10], [4]. The use of analogue VLSI allows low power, low cost and
area efficient hardware realizations which can perform the computationally intensive
neural operation at high speed. Meanwhile. optoelectronic neural networks may im-
prove the performance of microelectronic neural networks limited by the capacity of
their interconnections as operating speeds are increased. The use of optical connec-
tions to link electronic elements can offer a way to overcome this problem. These
implementation trials are shown in [1] and [12]. This author suggests real-life applic-
ations using the neural architecture and training method developed in the thesis for
future neural research. The neural system identification has found many important
applications [13] in the areas of model-based adaptive control, signal processing, as
well as in a variety of other fields such as medicine and bio-engineering, physical

sciences, economics, and social sciences.
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Appendix A

Customized L-E Dynamics Equation

for Three-DOF PUMA Robot

The following equations are source codes for the MATLAB based on the Lagrange-

Euler closed form of the three-joint (revolute) robotic dynamics.

(1) u: generalized input torque vector (3x1).

(2) p: angular joint-position vector (3x1).

(3) v: angular joint-velocity (3x1).

(4) acc: angular joint acceleration vector (3x1).

(5) kt: sampling instant.

(6) payload: mass of the payload (Kg) .

(7) time_payload: sampling instant when picking up the payload.

WRRRARRAADALAANLYL MATLAB CODES YUA%UN A b L s b b LT UL YL,
function [acc]=dof3pu_nm(u,p,v,kt,payload,time_payload)
ARl L b LRl Rl l Tl h ok ke L L L%

if ( (size(u) ~= size(p)) | (size(p) ~= size(v)) | ...
(size(v) "= size(u)) )
disp(’Dimension Errorl in dof3puma.m”);
break;
end

VYN AA AN A AN NS A AN AN SN SRV
W4k Kinematic Parameters %Y%%

YA N ANA AN A Y YN S YA A AN A YA AR A

m6=0.17047; 4 Kg
mi=m6*33.5; m2=m6%77.3; m3=m6%36.3; 4 All are [Kg].




a2=0.382; a3=0.039 ;d2=0.1375; d3=0.1235; Y% All are [(meter].

r2x=0.05; r3x=0.03; % All are [meter].
M2x=m2#r2x; M3x=m3#+r3x;
k1xx=0.0451; kiyy=0.0451;k1zz=0.00579; % unit:[meter-2]

k2xx=0.05657; k2yy=0.18470; k2zz=0.1408; Y% kixx reprsents kixx~2
k3xx=0.06728; k3yy=0.06791; k3zz=0.0036;
J1xx=0.5#*mi*(-kixx+kiyy+kizz) ;
J1yy=0.5*mi*(kixx-kiyy+kizz);
J122=0.5*mi*(kixx+klyy-kizz) ;
J2xx=0.5*m2* (~k2xx+k2yy+k2zz) ;
J2yy=0.5*m2* (k2xx-k2yy+k2zz) ;
J222=0.5*m2* (k2xx+k2yy-k2zz) ;
J3xx=0.5*m3*(-k3xx+k3yy+k3zz) ;
J3yy=0.5+m3* (k3xx-k3yy+k3zz) ;
J322=0.5*m3* (k3xx+k3yy-k3zz) ;

GR=9.80; ¥ ([m/sec~2]

4k Picks up a payload at sampling instant "time_payload"
if(kt == time_payload)
disp(“Robot picking up payload at :°), kt, payload
disp(“Pause: Press any key to continue...”);
pause
end
if(kt >= time_payload)
m3 = m3 + payload;
end

p1=p(1,1); p2=p(2,1); p3=p(3,1); p23=p2+p3;
vi=v(1,1); v2=v(2,1); v3=v(3,1);

ZZ%%ZZZZZ%Z%%ZZZ%ZZZZZZZ%%%Z%Z%ZZZ%Z%%Z%%%%ZZZ%
W% Inertial Coefficients (3x3): Symmetric %%%
ZZZ%%Z%%Z%ZZXZZZZZZ%ZZ%%%%%ZZ%Z%ZZZ%Z%ZZ%Z%ZZ%Z

WA DL1,1] %%%

d3x3(1,1)= ...
J3xx#cos(p23)‘2+J3yy*sin(p23)‘2+J3zz+(d3)‘2*m3+2*H3x*a2*cos(p2)...
*cos(p23)+(a2)“2*m3tcos(p2)‘2+2*d2*d3*m3+(d2)“2*m3+2*M3x*a3*...
cos(p23)“2+2*a2*a3*m3*cos(p2)*cos(p23)+(a3)“2*m3*cos(p23)“2+...
J2xx*cos(p2)“2+J2yy*sin(p2)‘2+J222+2*M2x*a2#cos(p2)‘2+(a2)“2*...
m2*cos(p2) “2+(d2) "2#m2+J1xx+J1zz;

WAL DL1,2] %%

d3x3(1,2)= ...
H3x*d3*sin(p23)+a2*d3*m3*sin(p2)+a3*d3*m3*sin(p23)+M3x*d2*sin(p23)
+a2*d2*m3*sin(p2)+a3*d2*m3*sin(p23)+H2x*d2*sin(p2)+a2*d2*m2*sin(p2);
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AL DL2,11 %A%%
d3x3(2,1) = d3x3(1,2);

Wi DL2,21 %%

d3x3(2,2) = ...
J3xx+J3yy+2*M3x*a2*cos(p3)+(a2)‘2*m3+2*H3x*a3+2*a2*a3*m3*cos(p3)+ .
(a3) "2#m3+J2xx+J2yy+2%M2x*a2+ (a2) “2+m2:

W44 DL1,3] %%
d3x3(1,3) = ...
H31*d3*sin(p23)+a3*d3*m3*sin(p23)+M3x*d2*sin(p23)+a3*d2*m3*sin(p23);

W% DE3,1] %%Y%
d3x3(3,1) = d3x3(1,3);

w4 Dl2,3] 4%%
d3x3(2,3) = ...
J3xx+J3yy+M3x*a2*cos(p3)+a2*a3*m3*cos(p3)+2*M3x*a3+(a3)‘2*m3;

A% DE3,27 %YY%
d3x3(3,2) = d3x3(2,3):

W% D3,31 %4%
d3x3(3,3) = JI3xx+J3yy+2#M3x*a3+(a3) "24m3;

WAL bl Al Rt T sl bt L
A4%% Centrifugal and Coriolis Forces (3x1) %%%Y
Wt h ol Tl ol sk o e e Al

AL CC1,1] %%%

c3x1(1,1) = ...
M3x*d3*cos(p23)*(v3)‘2+M3x*d2*cos(p23)*(v3)‘2+a3*d3*m3*cos(p23)* -
(v3)“2+a3*d2*m3*cos(p23)*(v3)‘2+2*M3x*d3*cos(p23)*v2*v3+2*M3x*d2* ce
cos(p23)*v2*v3+2*a3*d3*m3*cos(p23)*v2*v3+2*a3*d2*m3*cos(p23)*v2*v3 ..
-2*J3xx*cos(p23)*sin(p23)*vl*v3-2*M3x*a2*cos(p2)*sin(p23)*vl*v3+2*J3yy* e
cos(p23)*sin(p23)*vl*v3-4*H3x*a3*cos(p23)*sin(p23)*vi*v3-2#a2*a3*m3* -
cos(p2)*sin(p23)*v1*v3-2*(a3)“2*m3*cos(p23)*sin(p23)*v1*v3+M3x*d3* RN
cos(p23)*(v2)‘2+M3x*d2*cos(p23)*(v2)‘2+a2*d3*m3*cos(p2)*(v2)‘2 .
+a2*d2*m3*cos(p2)*(v2)“2+a3*d3*m3*cos(p23)*(v2)‘2+a3*d2#m3*cos(p23)* e
(v2)‘2+H2x*d2*cos(p2)*(v2)‘2+a2*d2*m2*cos(p2)*(v2)‘2-2*a2*a3*m3* ce
sin(2*p2+p3)*vi*v2—2*M3x*a2*sin(2*p2+p3)*vi*v2-2*J3xx*cos(p23)*sin(p23)* -
v1*v2+2*J3yy*cos(p23)*sin(p23)*v1*v2-2*(a2)‘2*m3*cos(p2)*sin(p2)*v1*v2 . e
-4*H3x*a3tcos(p23)*sin(p23)*v1*v2—2*(a3)“2*m3*cos(p23)*sin(p23)*v1*v2 cee

-2*J2xx*cos(p2)*sin(p2)*v1*v2+2*J2yy*cos(p2)*sin(p2)*vl*v2-4*M2x*a2*cos(p2)* -

sin(p2)*v1*v2—2*(a2)“2*m2*cos(p2)*sin(p2)*vl*v2;
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WAL CL2,1] W%
c3x1(2,1) = ...
~M3x*a2+sin(p3) *(v3) "2-a2+a3*m3+sin(p3) *(v3) “2-2¢M3x*a2*sin(p3) +v2*v3- ...

2*a2*a3*m3*sin(p3)*v2*v3+a2*a3*m3*sin(2*p2+p3)*(vi)’2+H3x*a2*sin(2*p2+p3) e

*(v1)"2+J3xx#*cos(p23) *sin(p23) *(v1) ~2-J3yy*cos (p23) *sin(p23) *(v1) "2+ ...
(a2)‘2*m3*cos(p2)*sin(pz)t(v1)‘2+2*H3x*a3*cos(p23)*sin(p23)*(vl)“2+ .
(a3)‘2tm3*cos(p23)*sin(p23)*(v1)‘2+J2xx*cos(p2)*sin(p2)*(v1)“2-J2yy* -
cos(p2) *sin(p2)*(v1) ~2+2#M2x*a2*cos(p2) *sin(p2) *(v1) ~2+(a2) ~2¢m2* ...
cos(p2)*sin(p2)*(v1)~2;

A4 c3,13 %

c3x1(3,1) = ...
H3x*a2*sin(p3)t(v2)“2+a2*a3*m3*sin(p3)*(v2)‘2+J3xx*cos(p23)*sin(p23)* e
(v1)“2+M3x*a2*cos(p2)*sin(p23)*(v1)‘2—J3yy*cos(p23)*sin(p23)*(vl)‘2 -
+2*M3x*a3*cos(p23)tsin(p23)*(v1)‘2+a2*a3*m3*cos(p2)*sin(p23)*(v1)‘2 e
+(a3) “2#m3*cos(p23) *sin(p23) *(vi) ~2;

AN AN NN AN AN AN A AN YA A
AAA% Gravitational Forces (3x1) %%%Y%
AN AN YA SR NN A AN AN AN NSNS AN A

WAL GL1, 1] %uA
g3x1(1,1) = 0.0;

WA GL2,1] %%

g3x1(2,1) = ...
—a3*GR*m3*cos(p23)—a2*GR*m3*cos(p2)-M3x*GR*cos(p23)-a2*GR*m2*cos(p2) e
-M2x*GR*cos(p2) ;

WA GI3,1] 4%
g3x1(3,1) = -a3*GR*m3*cos(p23)-M3x*GR*cos(p23);

L e e e s L L h ey

[row,col]l=size(d3x3);

if( (row "= col) | (row "= length(c3x1)) | (row = length(g3x1)) )
disp(°Dimension Error2 in dof3puma.m’);
break;

end

acc=inv(d3x3)*(u - c3x1 -g3x1); %%4% "acc" is the angular acceleration
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