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Abstract

Inflectional morphology presents numerous problems for traditional computa-

tional models, not least of which is an increase in the number of rare types in

any corpus. Although few annotated corpora exist for morphologically com-

plex languages, it is possible for lay-speakers of the language to generate data

such as inflection tables that describe patterns that can be learned by machine

learning algorithms.

We investigate four inflectional tasks: inflection generation, stemming,

lemmatization, and morphological analysis, and demonstrate that each of these

tasks can be accurately modeled using sequential string transduction methods.

Furthermore, expert annotation is unnecessary: inflectional models are learned

from crowd-sourced inflection tables.

We first investigate inflection generation: given a dictionary form and a tag

representing inflectional information, we produce inflected word-forms. We

then refine our predictions by referring to the other forms within a paradigm.

Results of experiments on six diverse languages with varying amounts of train-

ing data demonstrate that our approach improves the state of the art in terms

of predicting inflected word-forms.

We next investigate stemming: the removal of inflectional prefixes and suf-

fixes from a word. Unlike the inflection generation task, it is not possible

to use inflection tables to learn a fully-supervised stemming model; however,

we exploit paradigmatic regularity to identify stems in an unsupervised man-

ner with over 85% accuracy. Experiments on English, Dutch, and German

show that our stemmers substantially outperform rule-based and unsuper-

vised stemmers such as Snowball and Morfessor, and approach the accuracy

of a fully-supervised system. Furthermore, the generated stems are more con-
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sistent than those annotated by experts. We also use the inflection tables to

learn models that generate lemmas from inflected forms. Unlike stemming,

lemmatization restores orthographic changes that have occurred during inflec-

tion. These models are more accurate than Morfette and Lemming on most

datasets.

Finally, we extend our lemmatization methods to produce complete mor-

phological analyses: given a word, return a set of lemma / tag pairs that may

have generated it. This task is more ambiguous than inflectional generation or

lemmatization which typically produce only a small number of outputs. Thus,

morphological analysis involves producing a complete list of lemma+tag anal-

yses for a given word-form. Experiments on four languages demonstrate that

our system has much higher coverage than a hand-engineered FST analyzer,

and is more accurate than a state-of-the-art morphological tagger.
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Preface

The work presented in this dissertation was previously published at computa-
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Chapter 5 was published as Nicolai and Kondrak, 2016).

Chapter 6 was published as Nicolai and Kondrak, 2017).

Chapter 7 was published as Nicolai et al., 2016a). The author was the team

lead, as well as responsible for experiments in German, Spanish, Finnish, and
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You keep using that word. I do not think it means what you think it means.

– Inigo Montoya, The Princess Bride.

Caesar non supra grammaticos.

– attributed to the Council of Constance, when Holy Roman Emperor

Sigismund inflected a word incorrectly
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Chapter 1

Introduction

Like many European languages, the English of a thousand years ago was a

highly inflected language: nouns used case to indicate if they were the subject

or object of a sentence, adjectives marked the gender and role of the nouns

they were modifying, and verbs needed to distinguish between many different

tenses and aspects. Consider the first lines from Beowulf (Garnett, 1912),

given below:

Hwæt! We Gar-Dena in gear-dagum
þeod-cyninga, þrym gefrunon,
hu ða æþelingas ellen fremedon!
Oft Scyld Scefing sceaþena þreatum
monegum mægþum meodo-setla ofteah;

Lo! We of the Spear-Danes’, in days of yore,
Warrior-kings’ glory have heard
How the princes heroic deeds wrought.
Oft Scyld, son of Scef, from hosts of foes,
From many tribes, their mead-seats took;

Note that the plural marker is not simply an -s , as in modern English, but

also marks case: Gar-Dena ‘Spear-Danes’ and cyninga ‘kings’ are inflected

with a genitive plural -a suffix in lines 1 and 2, as is meodo-setla:“mead-

seats” in line 5, while æþelingas ‘princes’ is inflected with a nominative plural

-as . The dative plural -um is evident in dagum ‘days’, þreatum ‘tribes’, and

mægþum ‘foes’, as well as the modifying adjective monegum ‘many’. Similarly,

Scyld inflects in the 3rd person preterite singular -ah: ofteah ‘took’, but theWe

‘we’ of line 1, enforce a a 1st person plural preterite -on on the verb gefrunon

‘heard’, while the æþelingas of line 3 enforces the 3rd person plural preterite

-on on fremedon ‘wrought’.
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As the language evolved, information that had previously been indicated

through the shapes of words began to be replaced by other linguistic cues:

nominal cases began to be represented by a strict word order and the increased

use of prepositions; verbal tenses that were previously marked by suffixes began

to be constructed with auxiliary verbs; adjectival inflection almost completely

disappeared. What remains today is typically noted for being inflectionally

poor, maintaining only a small subset of the morphology that marked its

ancestors.

The same cannot be said for many other modern languages: German marks

nouns for 4 different cases; Finnish marks over a dozen. French and Spanish

have over fifty different verb forms, depending on tense, mood, aspect, and

other features. This large number of types negatively impacts the results of

computational methods that rely on the construction of representative sta-

tistical models: a Finnish text of billions of words is not sufficiently large to

include all of the possible forms of any single word. Conversely, a Finnish

speaker may never use a great proportion of the possible forms for any given

word, but is able to construct or decipher them, if the need arises.

1.1 Morphology

Broadly speaking, morphology is the sub-discipline of linguistics that deals

with the systematicity in the relationship between the form and meaning of

words (Booij, 2012). Morpheme-based morphology posits that words are made

up of morphemes : the minimal linguistic units with a lexical or a grammatical

meaning. It is typically divided into two sub-categories: derivational morphol-

ogy and inflectional morphology .

Derivational morphology is a process by which new words are created, form-

ing complex words by means of affixation or non-concatenative morphology,

and often alters the part-of-speech of the root word. For example, the ad-

jective quick can become the adverb quickly : “performed in a quick manner”

through the addition of -ly . Both quick and quickly will have entries in the

dictionary. Although derivational morphology presents its own set of issues
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for computational methods, in this dissertation, we are strictly concerned with

inflection.

Inflectional morphology, on the other hand, does not create new lexemes .

Rather, inflection creates variant instantiations of the same lexeme that often

demonstrate grammatical categories such as aspect, mood, tense, etc. Under

the morpheme-based paradigm, inflection involves modifying a prototypical

word form called the lemma with morphemes that contain grammatical in-

formation. Unlike derivation, inflection never changes the part-of-speech of

its lemma: eat , eats , ate, eating , and eaten all describe the act of consuming

food; they only differ in whether the act has been completed and who has been

doing the consuming.

Inflection is often realized through affixation, where inflectional morphemes

are bound to the stem. These morphemes do not occur on their own, and as

such, are referred to as bound morphemes. Prefixation binds the morpheme

before the stem; suffixation attaches the morpheme after the stem; infixation

interrupts the contiguity of the stem, and circumfixation is a combination

of prefixation and suffixation. Inflection can also be realized through stem

alteration, which modifies the stem itself (cf. goose → geese). The languages

in this dissertation largely realize inflection through suffixation, although they

also make use of circumfixation and stem alteration.

Throughout this paper, we refer to the lemma as the prototypical form

of an inflection table, and describe our algorithms as modifying the lemma,

instead of the stem. This may not be linguistically accurate, but within the

context of the character-based algorithms we implement, it is an accurate

representation of the processes being performed. Realistically, we are inflecting

the citation form, which happens to be the lemma for all of the languages we

are investigating. The lemma provides a consistent form that we can leverage

to learn inflectional patterns in a supervised manner.
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Figure 1.1: A partial inflection table for the German verb atmen “to breathe”.

      lüten            ϯSgSuďPres 

lüt + e 

lüte 

MorphologiĐal   
                       Analysis 

                    ;Chapter ϲͿ 

InleĐion 
Generaion
;Chapter ϰͿ 

       Steŵŵing   ;Chapter ϱͿ 

AďstraĐt level 

Morph level 

SurfaĐe level 

Leŵŵaizaion   ;Chapter ϱͿ 

Slot PrediĐion    

lütest 

ReinleĐion 
;Chapter ϳͿ 

Figure 1.2: The inflectional tasks described in this dissertation.

1.2 Sequential Transduction of Inflection Ta-

bles

We propose that inflectional morphology can be effectively modeled as sequen-

tial string transduction. Sequential transduction is a deterministic process

whereby each character in an input sequence is transformed into an output

character via a set of transduction rules. These rules can be learned auto-

matically from data, using computational methods for sequential prediction.

Furthermore, we propose that expert annotation is not required to learn inflec-

tional models. Rather, all necessary information is present, or can be inferred,

from publicly available inflection tables. These tables can be constructed by

moderately-skilled speakers of a language, without the need to consult experts

in morphology. We present a sample inflection table in Figure 1.1.

Figure 1.2 outlines the inflectional tasks that we model in this dissertation.

If we consider a word as being representable on three separate inflectional
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levels, then inflection is the process of moving between these levels. On the

surface level, a word appears as it does in text. The morph level represents a

word as a sequence of morphs : orthographic representations of the stem and

affixes. On the abstract level, a word is represented by its lemma and a number

of inflectional features. Inflection generation is the transformation from the

abstract level to the surface level. Inflection generation is unambiguous: except

in rare cases, a form on the abstract level will only produce a single form on

the surface level. Re-inflection is similar to inflection generation, but instead

of forcing inflectional features to apply to a lemma, it applies the features to

an already inflected form, essentially replacing one set of inflectional features

with another one.

The transformation from the surface to the morph level is called inflectional

segmentation, and subsumes the task of stemming . Transforming a word from

the surface level to the abstract level is called morphological analysis. Mor-

phological analysis consists of two equally important sub-tasks: lemmatization,

which restores inflectional changes made to the stem of a word, and slot pre-

diction, which analyzes the inflectional information present in the surface form

to identify the inflectional features indicated by the word. Because of the pro-

cess of syncretism, a single surface form may have multiple correct analyses;

for example, the form played may be either a preterite form, a past participle,

or an adjectival form (i.e., a well-played game). Stemming and morphological

analysis fall under the umbrella of inflectional simplification, which reduces

the large number of surface forms to a smaller number of representative forms.

1.3 Summary

We model inflectional morphology as a specific application of sequential string

transduction. We model each task in Figure 1.2.

In Chapter 2, we describe the various tools and resources we use to model

inflectional morphology.

In Chapter 3, we report related work in inflection, and describe how our

work approaches the task differently.
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In Chapter 4, we describe our process for modeling inflectional generation,

which corresponds with a transformation from the abstract level to the surface

level in Figure 1.2. We achieve state-of-the art results, even when restricting

the training data to low-resource situations.

In Chapter 5, we reverse the process from Chapter 4, and tackle inflec-

tional simplification; namely, stemming and lemmatization. While continuing

to show the suitability of sequential transduction as a method for modeling in-

flection, we also show that inflection tables are sufficient to learn high-quality

stemming annotations, despite the lack of explicit information in the tables.

Chapter 6 extends the work of Chapter 5, modifying the methods to pro-

duce full morphological analyses. Unlike previous work, we show that accurate

analysis sets can be obtained without expert annotation. We also approach

the accuracy of a hand-constructed analyzer, but with much higher coverage.

In Chapter 7, we provide an extrinsic evaluation of our lemmatization and

generation methods, presenting our results for the First Shared Task on Mor-

phological Reinflection. We confirm early results in the low-resource setting,

but demonstrate that our methods are suitable not only for fusional languages,

but for agglutinative and templatic languages as well.

Chapter 8 concludes the dissertation.
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Chapter 2

Tools of the Trade

We approach inflection as a specialized form of sequential string transduction.

Generally speaking, inflection occurs as one of two processes within a word:

either the addition of meaning carrying affixes , or as the changing of a root

form of a word to represent a desired inflection. For example, English is

a largely suffixing language, where inflection is indicated by the addition of

inflectional morphemes to the end of a word, such as the plural morpheme -s ;

however, English also occasionally represents inflectional properties through

stem changes, such as the past tense of swim: “swam”.

String transduction is the process of converting one set of characters to

another, using contextual cues to establish transduction rules. Characters can

be converted via three common operations: insertion, whereby new characters

are added to the input sequence to arrive at the output; deletion, where char-

acters in the input are removed from the sequence, and substitution, which

can be viewed as a deletion followed by an insertion.

We are not the first to propose that inflection be modeled as transduc-

tion: the prevailing methodology of hand-built morphological analyzers is

finite-state transducers. These transducers are built upon many contextually-

conditioned rules that determine inflectional operations.

2.1 Character Alignment

The training of a transduction model requires a set of aligned source and target

strings, which are often of different lengths. Alignment ensures that for each
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character in the source string, there is a corresponding character in the target

string. Deletion of characters in the source string is easily handled, as the

operation is anchored by the sequence being deleted and its context.

However, insertion operations quickly lead to prohibitively expensive trans-

duction models, and are not allowed by our transducer. We mimic insertion by

allowing a many-to-many alignment between source and target: several char-

acters in the source can be aligned to one or more characters in the target. The

aligned source-target pairs are then given to the transducer as a training set,

and atomic character transformations are extracted from these alignments.

Figure 2.1 demonstrates an example alignment between a form on the ab-

stract level, and one on the surface level. Deletion of the lemma-final ‘e’ is

represented with an alignment to an underscore (representing null). Con-

versely, the insertion of the second ‘t’ on the surface level is accomplished via

a one-to-many alignment. The morphological tag, along with a morphemic

boundary marker, is aligned to the affix. Individual characters are separated

by a space; the morphological tag is treated as a single atomic character.

w r  i  t    e  +  PastPart 

w r  i  t t  _   e n 

 

Figure 2.1: An aligned source-target pair for the past participle of write.

We infer the alignment with a modified version of the M2M aligner of Ji-

ampojamarn et al., 2007). The program applies the Expectation-Maximization

algorithm with the objective to maximize the joint likelihood of its aligned

source and target pairs. The source and target pairs are task-specific, and

described more fully in the respective chapters, but we make several mod-

ifications to the core alignment algorithm to be able to handle inflectional

morphology.

M2M makes use of an extension of the forward-backward training of a

one-to-one stochastic transducer (Ristad and Yianilos, 1998). During the ex-

pectation step, the forward part of the algorithm calculates the sums of all
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left-to-right paths through the transducer that generate an aligned source-

target sequence pair xs, yt. Likewise, the backward part of the algorithm

calculates the sums of the right-to-left paths through the transducer. An ini-

tially uniform probability table is used to transform these sums into partial

counts. The maximization step simply normalizes the partial counts by the

number of paths that generate the entire sequence. The algorithm proceeds

until convergence. Once probabilities are learned, the Viterbi algorithm can

be applied to produce the most likely alignment.

In our systems, affixation is modeled as a transduction operation between

the word-form of the affix (e.g., ‘-s’ ), and an atomic morphological tag repre-

senting the desired inflectional category (e.g., PLURAL). While stem changes

within a word are often confined to sequences of two or fewer characters, af-

fixes often require longer sequences, such as the French suffix for the 3rd Person

Plural Conditional Present: -eraient.

Representing inflectional classes within M2M requires no modification, as

it is capable of accepting multi-character strings as atomic units. However, a

modification was required to allow differing alignment lengths between affixes

and other characters1. Preliminary experiments were conducted that simply

increased the maximum alignment length, however it was discovered that this

led to a decrease in performance during transduction, as it requires our system

to learn transduction rules that are far too precise.

Instead, we mark all inflectional tags with a special marker, and modify

the expectation step of M2M. If a character does not contain the tag marker,

then M2M proceeds as before. However, if the marker is present on the source

side of the alignment, the expectation step is modified to allow an alignment

to consist of an alternative maximum number of characters on the target side.

Some tasks require the morphological tag to appear on the target side; for

these tasks, we simply align the data with the tag on the source side, and

reverse the source and target after alignment.

Furthermore, in order to encourage alignments between identical charac-

1The modified versions of M2M and DirecTL+ are available at
https://github.com/GarrettNicolai
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ters, we modify the aligner to generalize all identity transformations into a

single match operation. This feature can be activated via a run-time param-

eter. After source-target pairs have been aligned, they can be used to train a

transducer.

2.2 Transduction

We perform string transduction by adapting DirecTL+, a tool originally de-

signed for grapheme-to-phoneme conversion (Jiampojamarn et al., 2010). Di-

recTL+ is a feature-rich, discriminative character transducer that searches

for a model-optimal sequence of character transformation rules for its input.

The core of the engine is a dynamic programming algorithm capable of trans-

ducing many consecutive characters in a single operation. Using a structured

version of the MIRA algorithm (McDonald et al., 2005), training attempts

to assign weights to each feature so that its linear model separates the gold-

standard derivation from all others in its search space.

DirecTL+ follows the online training paradigm: during the training step,

each instance is evaluated in turn using the current weights. Loss can then

be calculated and the weights can be adjusted to make the model favor the

correct target over incorrect ones.

At each update, DirecTL+ produces an n-best list of possible targets.

The Margin Infused Relaxed Algorithm (MIRA) attempts to update the weights

of the model in such a way that the new weights will separate the correct target

from each of the incorrect predictions in the n-best list, within an acceptable

margin. The loss function is binary: 0 if the target prediction is correct, and

1 otherwise. SVMlight is used to approximate the hard margin required by

MIRA, and is used to learn an optimum weight update.

The derivation is dependent upon the training alignment: rather than treat

each character in a source or target word independently, DirecTL+ learns

features on character sequences corresponding to an aligned segment. Only

those features that exactly match the focus sequence are allowed to produce a

given derivation.
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DirecTL+ uses a number of feature templates to assess the quality of

a transduction operation: source context, target n-gram, and joint n-gram

features. Context features conjoin the operation with indicators for all source

character n-grams within a fixed window of where the operation is being ap-

plied. Target n-grams provide indicators on target character sequences, de-

scribing the shape of the target as it is being produced, and may also be

conjoined with our source context features. Joint n-grams build indicators on

operation sequences, combining source and target context, and memorizing

frequently-used rule patterns.

 

sĐhreiďen+2SgIndPst 

Input  

sĐhri 

Generated Output 

 

ei,rei,eiď,reiďe,... 

Context  

i_ 

Target 

 

ei& i_, rei & i_, ... 

Linear Chain  

e:i_, re:ri_, hre:hri_, ... 

Joint 

Figure 2.2: An example generation.

An example of the generation process is given in Figure 2.2. The generation

proceeds character by character, applying the operations that fit the given

context. In this example, the correct output is schriebst, and DirecTL+ has

currently processed every source character up to ‘e’, and is now focused on ‘i’.

Likewise, every target character up to ‘i’ has been generated, and DirecTL+

must transform the ‘i’ of the lemma into an ‘e’. With this focus, the context

features look at every n-gram up to length x that apply focus on the segment

‘i’ on the source side. For example, if x = 3, context unigrams, bigrams, and

trigrams around the focus character will be used to select appropriate context

features. Target features are only applied if they contain an ‘i’ as a previously

generated character. Linear-chain features combine the context and target

features, i.e., a linear chain rule must satisfy an appropriate source context
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1: for each word w in set W do

2: for each prediction p in n-best list L do

3: Fp = Extract Features(p)

4: for each prediction i in L do

5: if Training then

6: for each prediction j != i do

7: if i == Gold(w) then
8: Class = 1 //i should be ranked > j
9: else if j == Gold(w) then
10: Class = -1 //j should be ranked > i
11: else

12: continue

13: RerankInstance = Fi - Fj

14: Write Class and RerankInstance to TrainFile
15: else

16: Write Fi to TestFile

Figure 2.3: Algorithm to frame reranking as a classification problem.

and target context. Joint rules look at the aligned source and target to the

left of the focus character. Since the alignment is unknown at test time, all

reasonable alignments are considered; in this example, it is possible that ‘ei’

will be a single focus sequence, and thus a different series of rules will apply.

Following Toutanova and Cherry, 2009), we modify the out-of-the-box ver-

sion of DirecTL+ by implementing an abstract copy feature that indicates

when a rule simply copies its source characters into the target, e.g. b → b. The

copy feature has the effect of biasing the transducer towards preserving the

source characters during transduction, and is analogous to the one described

in Section 2.1.

2.3 Reranking

Alignment followed by transduction is suitable for learning sequential trans-

duction rules, but DirecTL+ has no method to incorporate observation

statistics into its model. While incorporating such a feature into DirecTL+

would be useful, it is not clear how to implement word-level features on a

character-level transduction model. Furthermore, many of these features are

task-dependent, and would need to be re-engineered for each task and lan-
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guage, forcing a significant investment for the development of features.

Instead, we make use of the more flexible paradigm of n-best reranking.

Under this paradigm, a system first generates a list of prediction candidates ,

which are then re-scored according to separate criteria. DirecTL+ already

provides functionality to output an n-best list, along with confidence scores.

This list can then be reranked using features unrelated to the transduction

model itself.

At its core, our reranker makes use of a Support Vector Machine (SVM) to

classify instances into one of two classes: rerank or not. We rerank according

to the method of Joachims, 2002), which converts the reranking problem into

a classification one. This process is outlined in Figure 2.3. After generating

the n-best list with DirecTL+, we transform each prediction into a feature

vector in lines 2 and 3. This step is often task-dependent, and we leave the

details of feature selection to the individual chapters. The transformation from

a ranking problem to a classification one occurs in line 13. When creating the

training file for the reranker, we compare each pair of predictions from the

n-best list, and learn to classify the difference between the two. This trick

encourages the model to reward features that occur in instances that should

be highly ranked, while punishing instances that should be ranked lower. At

test time, we no longer classify differences, but instances: we then rank the

n-best list based on the scores produced by the SVM.

2.4 CELEX

Many of the morphological tasks that we address in this dissertation tradi-

tionally require the careful construction of annotated data sources by experts

with years of study in morphological processes. Supervised machine learning

algorithms can generalize over new forms, but still require training data to

be annotated for morphological phenomena such as stemming, analysis, and

lemmatization.

One such resource is CELEX (Baayen et al., 1995). CELEX is a lexicon for

English, German, and Dutch, and provides linguistic annotation in several cat-

13



egories. Morphologically, CELEX provides both derivational and inflectional

annotation, and thus provides a high-quality gold-standard for morphological

tasks.

The CELEX lexicon covers the full inflection paradigms for more than

50,000 lemmas for English and German, and 120,000 for Dutch, accounting for

more than 160,000, 365,000 and 380,000 word-forms, respectively. Along with

morphological information, CELEX also provides pronunciation and hyphen-

ation data, orthographic variants, and corpus frequency statistics. Figure 2.1

gives an example of the type of inflectional information stored in CELEX.

Access to this lexicon strongly dictated the languages we worked upon in

this dissertation. While we propose that high-quality tools for inflection can be

trained on crowd-sourced inflection tables, we required a high-confidence set

for the evaluation of our methods. Furthermore, while inflection tables provide

lemmatization and analysis information, they do not explicitly provide stems

or segmentations; a lexicon such as CELEX is still required for the evaluation

of these tasks.

The data in Figure 2.1 illustrates two inflectional issues: first, of the seven

different surface forms for lüften: “to ventilate”, only one was observed more

than 5 times in a corpus of more than 5 million tokens. Secondly, if capital-

ization is ignored, two forms from a completely different lemma (Luft : “air”)

can be confused with inflected forms of lüften; this is of particular concern for

morphological analysis.

Unfortunately, access to morphological lexicons is limited. Although they

are of inestimable value to researchers, they are very expensive to create. Their

construction requires an immense effort on the part of a limited set of individ-

uals with the knowledge required to build them. As a result, these lexicons are

only available for a small number of languages. Furthermore, although they

can be periodically updated, they often suffer from limited coverage. These

limitations motivate our search for other morphological sources.

14



TypeID Surface Form Count Lemma Morphological Tags
21808 lüfte 3 lüften 1SIE, 13SKE, rS
21809 lüftest 0 lüften 2SIE, 2SKE
21810 lüften 4 lüften 13PIE, 13PKE, i
21811 lüftete 4 lüften 13SIA, 13SKA
21812 lüfteten 1 lüften 13PIA, 13PKA
21813 lüftetet 0 lüften 2PIA, 2PKA
21814 gelüftet 6 lüften pA
308264 Lüfte 18 Luft nP, gP, aP
308265 Lüften 5 Luft dP

Table 2.1: The representation of the forms of lüften, as observed in a morpho-
logical lexicon.

2.5 Wiktionary

We claim that expert-annotated data is not required for the training of high-

quality inflection tools. To justify this claim, we perform many of our experi-

ments on data acquired from the crowd-sourcedWiktionary (www.wiktionary.org).

Wiktionary follows the typical wiki process of data collection, in that a

commonly accessible internet database is modifiable by a large number of

anonymous users. As with any crowd-sourced data, Wiktionary has the po-

tential to be noisy, however in practice tends to provide relatively reliable

information.

Although its name and project statement both imply that Wiktionary is

an online dictionary, it often provides information that is not present in a

traditional dictionary, such as inflectional information. Many words are ac-

companied by complete inflection tables, and many others are accompanied by

partially completed tables. The inflection table shown in Chapter 1 was taken

from Wiktionary. Projects such as Unimorph (www.unimorph.org) have been

active in collecting these tables and adapting them to a format suitable for

research.

We distinguish Wiktionary data from CELEX data by noting that it is

non-expert data. By non-expert, we mean that the contributors to Wiktionary

typically do not need to be trained in morphology to complete the inflection
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tables contained on the website: any lay-person with a moderate knowledge

of a language can contribute to the inflection tables on Wiktionary.
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Chapter 3

Related Work

We are hardly the first to recognize the need for computational processing

of inflection, and recently, there has been a significant amount of work that

tries to model inflection, particularly inflection generation and morphological

analysis.

3.1 Stemming

Stemming is a sub-task of the larger problem of morphological segmentation.

Because of the scarcity of morphologically-annotated data, many segmentation

algorithms are unsupervised or rule-based.

The Porter stemmer (Porter, 1980) and its derivatives, such as Snowball

(snowballstem.org), apply hand-crafted context rules to strip affixes from a

word. Creation of such rule-based programs requires significant effort and

expert knowledge. We use structured inflection tables to create training data

for a discriminative transducer.

Linguistica (Goldsmith, 2001) and Morfessor (Creutz and Lagus, 2002) are

unsupervised word segmenters, which divide words into regularly occurring

sub-sequences by applying the minimum description length (MDL) principle.

While these methods are good at identifying common morphemes, they make

no distinction between stems and affixes, and thus cannot be used for stem-

ming. Morfessor Categories-MAP (Creutz and Lagus, 2004; Creutz and Lagus,

2005) distinguishes between stems and affixes, but not between derivational

and inflectional affixes. We adapt a more recent version (Grönroos et al., 2014)
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to be used as an approximate stemmer for comparison against our stemming

methods. Our stemming method differs from the methods of Morfessor in

the amount of structure present in the training data. The Morfessor stemmer

is completely unsupervised, determining common morphemes from a lexicon.

Our method does not require explicit stem annotations, but does require that

the data be collected into inflection tables.

Poon et al., 2009) abandons the generative model of Morfessor for a log-

linear model that predicts segmentations in sequence. The discriminative

approach allows for the incorporation of several priors that minimize over-

segmentation. Their unsupervised model outperforms Morfessor, and they are

also able to report semi- and fully-supervised results. We also approach the

problem using a discriminative method, but by aligning structured inflection

tables, we can learn stemming annotations indirectly.

Ruokolainen et al., 2014) obtain further improvements by combining a

structured perceptron CRF with letter successor variety (LSV), and the unsu-

pervised features of Creutz and Lagus, 2004). Their system requires that the

data be annotated with stem boundaries. While our system requires structured

inflection tables, we are able to infer stem boundaries automatically.

Cotterell et al., 2015) introduce Chipmunk, a fully-supervised system for

labeled morphological segmentation. Extending the sequence-prediction mod-

els, Chipmunk makes use of data that is annotated not only for stem or affix,

but also for inflectional role, in a task that the authors refer to as labeled

morphological segmentation. While highly accurate, Chipmunk is limited in

that it requires data that is fully-annotated for both segmentation and inflec-

tion. Our system has access to the morphological tags in inflection tables, but

segmentation and tag alignment are performed in an unsupervised way.

3.2 Morphological Analysis

Unlike stemmers, which can be unsupervised, morphological analyzers and

lemmatizers typically require annotated training data, although like stemmers,

rule-based systems also exist.
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Traditionally, morphological analysis has been performed by hand-crafted

Finite State Transducers (FSTs), such as Morphisto (Zielinski and Simon,

2009) and Omorfi (Pirinen, 2015). FSTs consist of weighted or unweighted

transduction rules that provide lists of morphological analyses for given words,

with no respect to context. They are also typically bidirectional: rules can

be applied in reverse to perform inflection generation. We take significant

motivation from FSTs; however, we look to remove the necessity of an expert

in the construction of the transduction rules.

Whereas we concentrate on predicting analyses context-free, much of the

work in automated morphological analysis provides a single analysis in running

text. Toutanova and Cherry, 2009) also learn a joint model for morphologi-

cal analysis from a morphologically annotated lexicon. Their joint model is

very similar to our own, making use of a discriminative lemmatizer and then

reranking the results with an unannotated corpus. However, where they have

component tagger and lemmatizers, we make use of the transducer to also

generate our tags. Without access to their code, it is difficult to make a direct

comparison.

Fraser et al., 2012) use CRFs in the context of translation from English to

German, but their method assumes the existence of a hand-crafted morpho-

logical generator. Unlike our work, which is concentrated on the generation of

analyses, Fraser et al., 2012) frame the problem much more like a traditional

part-of-speech tagging task: predicting tags based on the tags that have come

before. Once the tags are acquired, the lemma and tags are presented to a

morphological generator, which re-creates the word-form. Where our methods

predict morphological analyses and inflections context-free, Fraser et al., 2012)

makes use of the generated analyses to disambiguate in context, and serves as

more of a complement to our methods.

Morfette (Chrupala et al., 2008) is a fully-supervised maximum entropy

morphological analyzer, which includes a lemmatization module based on the

Shortest Edit Script (SES). Unlike our system, Morfette performs analysis

along a pipeline, first predicting a likely morphological tag, and then producing

a lemma dependent upon the generated tag.
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Like Morfette, Marmot (Mueller et al., 2013) and Lemming (Müller et al.,

2015) predict morphological analyses in context through the use of a log-

linear model; however, Marmot predicts tags and lemmas jointly. We are able

to directly compare our method of morphological analysis against a modified,

context-free version of Marmot. Furthermore, we investigate the utility of

obtaining morphological analyses not from an expert lexicon, but rather from

crowd-sourced inflection tables.

3.3 Inflection Generation

In some ways, inflection generation can be seen as the converse operation of

morphological analysis, and thus many of the constraints of the latter task also

apply to the former: inflection generation is usually a fully-supervised task.

However, there is much less ambiguity in inflection generation than morpho-

logical analysis, and inflectional regularity means that some latent information

can be used in the prediction of inflected forms.

Clifton and Sarkar, 2011) use Conditional Random Fields and a morpheme-

based language model to predict the most likely final morpheme of each word

in English-to-Finnish translation. Unlike our method for inflection generation,

however, Clifton and Sarkar, 2011)’s method produces running text. Further-

more, rather than inflecting lemmas, their method instead learns to predict

the correct allomorph from a set of options. This method is meant to capture

variations such as consonant gradation and vowel harmony, which we model

through target-side context.

Dreyer and Eisner, 2011) use a Dirichlet process mixture model and loopy

belief propagation, seeded with a small number of complete inflection tables, to

predict inflections of German verbs. They make use of unannotated corpora to

aid the prediction task. Like our work, context n-grams are used to determine

the appropriate verbal paradigm, but where the authors use Bayesian inference

to predict word-forms, we view the problem as a string transduction task.

Furthermore, whereas Dreyer and Eisner, 2011) only look at German verbs,

we consider verbal inflection for five languages, as well as nominal inflection

20



for two.

Durrett and DeNero, 2013) align all inflected forms in a paradigm in order

to extract string transformation rules that can then be applied to unseen lem-

mas. After alignment, rule sets are extracted that dictate the morphological

changes that occur across an inflection table. Their factored model is similar

to our DirecTL+ model, as it learns rules without access to other forms in

the paradigm. The joint model, like our reranked model, uses information

from all forms in the paradigm when learning morphological rules.

Ahlberg et al., 2014) also align multiple forms within an inflection table;

however, where Durrett & DeNero extract a rule for each changed charac-

ter span, Ahlberg et al., 2014) replace each unchanged span with a variable,

allowing rules to apply to an entire inflection table. Both of these methods

differ from ours in that we do not enforce any table-level constraint: each rule

applies only to a single inflection. By removing this constraint, we extend the

flexibility of our rules at the cost of reduced interpretability.

Détrez and Ranta, 2012) focus on the task of determining the correct

paradigm for a lemma on the basis of the inflected forms that were seen in

training. This is similar to the task of a language learner identifying the cor-

rect inflection paradigm for a given word, and then applying the inflection

rules of that paradigm to correctly inflect the word. Our work can be seen to

mimic this behavior without the linguistic knowledge necessary to build ex-

plicit inflection paradigms. DirecTL+ must choose the correct paradigm for a

word based on only one form. The reranker then provides further information

to correct incorrect forms.

Eskander et al., 2013) construct paradigms from morphologically anno-

tated text by attempting to fill gaps in the inflection tables. Making use of

similar morphological operations across tables, they are able to learn inflec-

tional classes that are applicable to many lemmas. This system requires a

morphologically annotated corpus, from which it can then infer inflectional

similarity across tables. Our system does not explicitly look for similarities

across inflection tables, although this information is used to derive an align-

ment before transduction. While our task is significantly different than the

21



one in this paper, our system would be able to provide the lemma and stem

information required by their method.

Similarly, Cotterell et al., 2017) is also concerned with the complete gener-

ation of inflection tables, which they refer to as paradigm completion. Using a

generative neural model, they identify key inflections that are indicative of pat-

terns across entire tables. Inspired by the linguistic theory of principal parts,

their method then completes inflection tables through joint consideration of

these key inflections. Although DirecTL+ is not capable of sharing infor-

mation across inflection slots, our reranker takes advantage of paradigmatic

regularity.

Neural models have also been adapted for inflection generation. Faruqui

et al., 2016) employ a neural encoder-decoder model with attention to inflec-

tion generation, with results comparable to our best models from DirecTL+.

Likewise, Kann and Schütze, 2016) make use of a bidirectional LSTM encoder-

decoder, achieving the best results in the SIGMORPHON Shared Task on

Reinflection (Cotterell et al., 2016).
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Chapter 4

Inflection Generation as

Discriminative String

Transduction

Word-forms that correspond to the same lemma can be viewed as paradigmat-

ically related instantiations of the lemma. For example, take, takes, taking,

took, and taken are the word-forms of the lemma take. Many languages have

complex morphology with dozens of different word-forms for any given lemma:

verbs inflect for tense, aspect, person, etc.; nouns can vary depending on their

role in a sentence, and adjectives can agree with the nouns that they modify

and demonstrate comparative relationships. For such languages, many forms

will not be attested even in a large corpus. However, different lemmas often

exhibit the same inflectional patterns, called paradigms, which are based on

morphological criteria. The paradigm of a given lemma can often be identified

and applied to generate unseen forms.

Inflection prediction has the potential to improve Statistical Machine Trans-

lation (SMT) into morphologically complex languages. In order to address

data sparsity in the training bi-text, Clifton and Sarkar, 2011) and Fraser

et al., 2012) reduce diverse inflected forms in the target language into the cor-

responding lemmas. At test time, they predict an abstract inflection tag for

each translated lemma, which is then transformed into a proper word-form.

Unfortunately, hand-crafted morphological generators such as the ones that

they use for this purpose are available only for a small number of languages,

23



and are expensive to create from scratch. The supervised inflection generation

models that we investigate in this chapter can instead be trained on publicly

available inflection tables.

The task of an inflection generator is to produce an inflected form given a

lemma (e.g., an infinitive) and desired inflection, which can be specified as an

abstract inflectional tag. The generator is trained on a number of inflection

tables, such as the one previously shown in Figure 1.1, which enumerate inflec-

tion forms for a given lemma. At test time, the generator predicts inflections

for previously unseen lemmas. For example, given the input atmen + 1SIA,

where the tag stands for “first person singular indicative preterite,” it should

output atmete.

Recently, Durrett and DeNero, 2013) and Ahlberg et al., 2014) have pro-

posed to model inflection generation as a two-stage process: an input lemma

is first matched with rules corresponding to a paradigm seen during train-

ing, which is then used to generate all inflections for that lemma simultane-

ously. Although their methods are quite different, both systems account for

paradigm-wide regularities by creating rules that span all inflections within a

paradigm.

In this chapter, we approach the task of supervised inflection generation

as discriminative string transduction, in which character-level operations are

applied to transform a lemma concatenated with an inflection tag into the

correct surface word-form. We carefully model the transformations carried out

for a single inflection, taking into account source characters surrounding a rule,

rule sequence patterns, and the shape of the resulting inflected word. To take

advantage of paradigmatic regularities, we perform a subsequent reranking of

the top n word-forms produced by the transducer. In the reranking model,

soft constraints capture similarities between different inflection slots within a

table. Where previous work leveraged large, rigid rules to span paradigms,

our work is characterized by small, flexible rules that can be applied to any

inflection, with features determining what rule sequence works best for each

pairing of a lemma with an inflection.

Since our target application is machine translation, we focus on maximizing
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inflection form accuracy, rather than complete table accuracy. Unlike previous

work, which aims at learning linguistically-correct paradigms, our approach is

designed to be robust with respect to incomplete and noisy training data.

We conduct a series of experiments which demonstrate that our method can

accurately learn complex morphological rules in languages with varying levels

of morphological complexity. In each experiment we either match or improve

over the state of the art reported in previous work. In addition to providing

a detailed comparison of the available inflection prediction systems, we also

contribute four new inflection datasets composed of Dutch and French verbs,

and Czech verbs and nouns, which are made available for future research.

4.1 Inflection Generation

Durrett and DeNero, 2013) formulate the specific task of supervised generation

of inflected forms for a given lemma based on a large number of training

inflection tables, while Ahlberg et al., 2014) test their alternative method on

the same Wiktionary dataset. In this section, we compare their work to our

approach with respect to the following three sub-tasks:

1. character-wise alignment of the word-forms in an inflection table (Sec-

tion 4.1.1),

2. extraction of rules from aligned forms (4.1.2),

3. matching of rules to new lemmas (4.1.3).

4.1.1 Table alignment

The first step in supervised paradigm learning is the alignment of related in-

flected forms in a table. Though technically a multiple-alignment problem,

this can also be addressed by aligning each inflected form to a lemma. Dur-

rett & DeNero do exactly this, aligning each inflection to the lemma with a

paradigm-aware, position-dependent edit distance. Ahlberg et al use finite-

state-automata to implement a multiple longest-common-sub-sequence (LCS)

alignment, avoiding the use of an explicit lemma. Both systems leverage the
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intuition that character alignment is mostly a problem of aligning those char-

acters that remain unchanged throughout the inflection table.

Our alignment approach differs from previous work in that we use an EM-

driven, many-to-many aligner, as described in Section 2.1. Instead of focusing

on unchanged characters within a single paradigm, we look for small multi-

character operations that have statistical support across all paradigms. This

includes operations that simply copy their source into the target, leaving the

characters unchanged.

4.1.2 Rule extraction

The second step involves transforming the character alignments into inflection

rules. Both previous efforts begin addressing this problem in the same way:

by finding maximal, contiguous spans of changed characters, in the lemma for

Durrett & DeNero, and in the aligned word-forms for Ahlberg et al. Given

those spans, the two methods diverge quite substantially. Durrett & DeNero

extract a rule for each changed span, with the rule specifying transformations

to perform for each inflection. Ahlberg et al instead replace each unchanged

span with a variable, creating a single rule that specifies complete inflections

for the entire table. The latter approach creates larger rules, which are easier

to interpret for a linguist, but are less flexible, and restrict information sharing

across paradigms.

We move in the opposite direction by extracting a rule for each minimal,

multi-character transformation identified by our aligner, with no hard con-

straint on what rules travel together across different inflections. We attempt

to learn atomic character transformations, which extends the flexibility of our

rules at the cost of reduced interpretability.

The differences in rule granularity are illustrated on the German verb schle-

ichen “to sneak” in Figure 4.1. The single rule of Ahlberg et al comprises three

vertical rules of Durrett & DeNero, which in turn correspond to eleven atomic

rules in our system. Note that this is a simplification, as alignments and word

boundary markers vary across the three systems.
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Figure 4.1: Competing strategies for rule extraction: (a) an aligned table;
(b) a table-level rule; (c) vertical rules; (d) atomic rules. $ is a word boundary
marker.

4.1.3 Rule selection

The final component of an inflection generation system is a mechanism to de-

termine what rules to apply to a new lemma, in order to generate the inflected

forms. The strongest signal for this task comes from learning how the training

lemmas use the rules. With their highly restrictive rules, Ahlberg et al can

afford a simple scheme, keeping an index that associates rules with lemmas,

and employing a longest suffix match against this index to assign rules to new

lemmas. They also use the corpus frequency of the inflections that would be

created by their rules as a rule-selection feature. Durrett & DeNero have much

more freedom, both in what rules can be used together and in where each rule

can be applied. Therefore, they employ a more complex semi-Markov model

to assign rules to spans of the lemma, with features characterizing the n-gram

character context surrounding the source side of each rule.

Since our rules provide even greater flexibility, we model rule application

very carefully. Like Durrett & DeNero, we employ a discriminative semi-

Markov model that considers source character context, and like Ahlberg et

al, we use a corpus to re-evaluate predictions. In addition, we model rule

sequences, and the character-shape of the resulting inflected form. Note that

our rules are much more general than those of our predecessors, which makes

it easy to get statistical support for these additional features. Finally, since
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our rules are not bound by paradigm structure, we employ a reranking step to

account for intra-paradigm regularities.

4.2 Discriminative Transduction

The core of our transduction method is built around discriminative string

transduction with DirecTL+, as described in Section 2.2. In this section,

we describe the details of our approach for inflection generation, including the

affix representation, the string alignment and transduction, and the paradigm

reranking.

4.2.1 Affix representation

Our inflection generation engine is a discriminative semi-Markov model, simi-

lar to a monotonic phrase-based decoder from machine translation (Zens and

Ney, 2004). This system cannot insert characters, except as a part of a phrasal

substitution, so when inflecting a lemma, we add an abstract affix representa-

tion to both provide an insertion site and to indicate the desired inflection.

Abstract tags are separated from their lemmas with a single ‘+’ character.

Marking the morpheme boundary in such a way allows the transducer to gen-

eralize the context of a morpheme boundary. For example, the third person

singular indicative present of the verb atmen is represented as atmen+3SIE.

We use readable tags throughout this dissertation, but they are presented

to the transducer as indivisible units; it cannot translate them character-by-

character.

German and Dutch past participles, as well as several Czech inflections,

are formed by circumfixation. We represent such inflections with separate

copies of the circumfix tag before and after the lemma. For example, the past

participle gebracht “brought” is represented as PPL+bringen+PPL. In the

absence of language-specific information regarding the set of inflections that

involve circumfixation, the system can learn to transduce particular affixes

into empty strings.

During development, we experimented with an alternative method, in
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which affixes are represented by a default allomorph. Allomorphic representa-

tions have the potential advantage of reducing the complexity of transductions

by the virtue of being similar to the correct form of the affix. However, we

found that allomorphic affixes tend to obfuscate differences between distinct

inflections, so we decided to employ abstract tags instead.

In addition to the general model that is trained on all inflected word-

forms, we derive tag-specific models for each type of inflection. Development

experiments showed the general model to be slightly more accurate overall,

but we use both types of models in our reranker.

4.2.2 Reranking

Morphological processes such as stem changes tend to be similar across dif-

ferent word-forms of the same lemma. In order to take advantage of such

paradigmatic consistency, we perform a reranking of the n-best word-forms

generated by DirecTL+. The correct form is sometimes included in the

n-best list, but with a lower score than an incorrect form. We propose to

rerank such lists on the basis of features extracted from the 1-best word-forms

generated for other inflection slots, the majority of which are typically correct.

We perform reranking using the method described in Section 2.3. An initial

inflection table, created to generate reranking features, is composed of 1-best

predictions from the general model. For each inflection, we then generate

lists of candidate forms by taking the intersection of the n-best lists from the

general and the tag-specific models.

In order to generate features from our initial inflection table, we make pair-

wise comparisons between a prediction and each form in the initial table. We

separate stems from affixes using the alignment. Our three features indicate

whether the compared forms share the same stem, the same affix, and the

same surface word-form, respectively. We generate a feature vector for each

aligned pair of related word-forms, such as past participle vs. present partici-

ple. In addition, we include as features the confidence scores generated by

both models.

Two extra features are designed to leverage a large corpus of raw text.
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Language / POS Set Lemmas Infl.
German Nouns DE-N 2764 8
German Verbs DE-V 2027 27
Spanish Verbs ES-V 4055 57
Finnish Nouns FI-N 64001 28
Finnish Verbs FI-V 7249 53
Dutch Verbs NL-V 11200 9
French Verbs FR-V 6957 48
Czech Nouns CZ-N 21830 17
Czech Verbs CZ-V 4435 54

Table 4.1: The number of lemmas and inflections for each dataset.

A binary indicator feature fires if the generated form occurs in the corpus.

In order to model the phonotactics of the language, we also derive a 4-gram

character language model from the same corpus, and include as a feature the

normalized log-likelihood of the predicted form.

4.3 Experiments

We perform five experiments that differ with respect to the amount and com-

pleteness of training data, and whether the training is performed on individual

word-forms or entire inflection tables. We follow the experimental settings es-

tablished by previous work, as much as possible.

The parameters of our transducer and aligner were established on a de-

velopment set of German nouns and verbs, and kept fixed in all experiments.

We limit stem alignments to 2-2, affix alignments to 2-4, source context to

8 characters, joint n-grams to 5 characters, and target Markov features to 2

characters.

4.3.1 Inflection data

We adopt the Wiktionary inflection data made available by Durrett and DeN-

ero, 2013), with the same training, development, and test splits. The develop-

ment and test sets each contain 200 complete inflection tables, and the training

sets consist of the remaining data. Table 4.1 shows the total number of tables
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Case Singular Plural
Nominative Buch Bücher
Accusative Buch Bücher
Dative Buch Büchern
Genitive Buches Bücher

Table 4.2: All word-forms of the German noun Buch.

in each language set. We convert their inflectional information to abstract tags

for input to our transducer.

We augment the original five datasets with four new sets: Dutch verbs from

the CELEX lexical database (Baayen et al., 1995), French verbs from Verbiste,

an online French conjugation dictionary2, and Czech nouns and verbs from the

Prague Dependency Treebank (Böhmová et al., 2003). For each of these sets,

the training data is restricted to 80% of the inflection tables listed in Table

4.1, with 10% each for development and testing. Each lemma inflects to a

finite number of forms that vary by part-of-speech and language (Table 4.1);

German nouns inflect for number and case (Table 4.2), while French, Spanish,

German, and Dutch verbs inflect for number, person, mood, and tense.

We extract Czech data from the Prague Dependency Treebank, which is

fully annotated for morphological information. This dataset contains few com-

plete inflection tables, with many lemmas represented by a small number of

word-forms. For this reason, it is only suitable for one of our experiments,

which we describe in Section 4.3.5.

Finnish has a morphological system that is unlike any of the Indo-European

languages. There are 15 different grammatical cases for nouns and adjectives,

while verbs make a number of distinctions, such as conditional vs. potential,

and affirmative vs. negative. We derive separate models for two noun classes

(singular and plural), and six verb classes (infinitive, conditional, potential,

participle, imperative, and indicative). This is partly motivated by the number

of individual training instances for Finnish, which is much larger than the other

languages, but also to take advantage of the similarities within classes.

2http://perso.b2b2c.ca/sarrazip/dev/verbiste.html
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For the reranker experiments, we use the appropriate Wikipedia language

dump. The number of tokens in the corpora is approximately 77M for Czech,

200M for Dutch, 6M for Finnish, 425M for French, 550M for German, and

400M for Spanish.

4.3.2 Individual inflections

In the first experiment, we test the accuracy of our basic model which excludes

our reranker, and therefore has no access to features based on inflection tables

or corpus counts. Table 4.3 compares our results against the Factored model of

Durrett & DeNero(DDN) the neural system of Faruqui et al., 2016)(FTND),

and the CRF system of Liu and Mao, 2016)(LM), which also make independent

predictions for each inflection. The numbers marked with an asterisk were not

reported in the original paper, but were generated by running their publicly-

available code on our new Dutch and French datasets. For the purpose of

quantifying the effectiveness of our reranker, we also include the percentage of

correct answers that appear in our 10-best lists.

Our basic model achieves higher accuracy that Durrett & DeNero on all

datasets, which shows that our refined transduction features are consistently

more effective than the source-context features employed by their system. We

see that our results are also competitive with the neural system of Faruqui

et al., 2016). Their system seems to be particularly well suited to Finnish,

where their system is able to generalize phenomena such as vowel harmony

and consonant gradation. The system of Durrett & DeNero, as well as the

system of Ahlberg et al., 2014), is intended for whole-table scenarios, which

we test next.

4.3.3 Complete paradigms

In this experiment, we assume the access to complete inflection tables, as well

as to raw corpora. We compare our reranking system to the Joint model of

Durrett & DeNero (DDN), which is trained on complete tables, and the full

model of Ahlberg et al., 2014) (AFH), which is trained on complete tables, and

matches forms to rules with aid of corpus counts. To provide a fair comparison
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Set DDN LM FTND Ours 10-best
DE-V 94.8 96.1 96.7 97.5 99.8
DE-N 88.3 83.8 88.1 88.6 98.6
ES-V 99.6 99.6 99.8 99.8 100
FI-V 97.2 97.2 97.8 98.1 99.9
FI-N 92.1 92.3 95.4 93.0 99.0
NL-V 90.5* NA 96.7 96.1 99.4
FR-V 98.8* NA 98.8 99.2 99.7

Table 4.3: Prediction accuracy of models trained and tested on individual
inflections.

Set DDN AFH14 Ours
DE-V 96.2 97.9 97.9

DE-N 88.9 91.8 89.9
ES-V 99.7 99.6 99.9

FI-V 96.4 96.6 98.1

FI-N 93.4 93.8 93.6
NL-V 94.4* 87.7* 96.6

FR-V 96.8* 98.1* 99.2

Table 4.4: Individual form accuracy of models trained on complete inflection
tables.

with our reranker, which incorporates information from raw data, we compare

against systems that also make use of a corpus. Again, we calculated the

numbers marked with an asterisk by running the respective implementations

on our new datasets.

The results of the experiment are shown in Table 4.4. Our reranking model

outperforms the Joint model of DDN on all sets, and the full model of AFH on

most verb sets. Looking across tables to Table 4.3, we can see that reranking

improves upon our independent model on 5 out of 7 sets, and is equivalent on

the remaining two sets. However, according to single-form accuracy, neither

our system nor DDN benefits too much from joint predictions. Table 4.5 shows

the same results evaluated with respect to complete table accuracy.

Ahlberg et al., 2015) report improved results over the previous paper, but

fail to report results augmented with a corpus. To maintain a fair comparison

with regards to the available information, we do not report those results here.
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Set DDN AFH Ours
DE-V 85.0 76.5 90.5

DE-N 79.5 82.0 76.5
ES-V 95.0 98.0 99.0

FI-V 87.5 92.5 94.5

FI-N 83.5 88.0 82.0
NL-V 79.5* 37.7* 82.1

FR-V 92.1* 96.0* 97.1

Table 4.5: Complete table accuracy of models trained on complete inflection
tables.

4.3.4 Incomplete paradigms

In this experiment, we consider a scenario where, instead of complete tables,

we have access to some but not all of the possible word-forms. This could

occur for example if we extracted our training data from a morphologically

annotated corpus. We simulate this by only including in our training tables

the forms that are observed in the corresponding raw corpus. We then test our

ability to predict the same test forms as in the previous experiments, regardless

of whether or not they were observed in the corpus. We also allow a small

held-out set of complete tables, which corresponds to the development set. For

Durrett & DeNero’s method, we include this held-out set in the training data,

while for our system, we use it to train the reranker.

The Joint method of DDN and the methods of AFH are incapable of train-

ing on incomplete tables, and thus, we can only compare our results against

the Factored model of DDN. However, unlike their Factored model, we can

then still take advantage of paradigmatic and corpus information, by applying

our reranker to the predictions made by our simple model.

The results are shown in Table 4.6, where we refer to our independent model

as Basic, and to our reranked system as Reranked. The latter outperforms

DDN on all sets. Furthermore, even with only partial tables available during

training, reranking improves upon our independent model in every case.

34



4.3.5 Partial paradigms

We run a separate experiment for Czech, as the data is substantially less

comprehensive than for the other languages. Although the number of 13.0%

observed noun forms is comparable to the Finnish case, the percentages in

Table 4.6 refer only to the training set: the test and held-out sets are complete.

For Czech, the percentage includes the testing and held-out sets. Thus, the

method of Durrett & DeNero and our reranker have access to less training

data than in the experiment of Section 4.3.4.

The results of this experiment are shown in Table 4.7. Our Basic model

outperforms DDN for both nouns and verbs, despite training on less data.

However, reranking actually decreases the accuracy of our system on Czech

nouns. It appears that the reranker is adversely affected by the lack of complete

target paradigms. We leave the full investigation into the effectiveness of the

reranker on incomplete data to future work.

4.3.6 Seed paradigms

Dreyer and Eisner, 2011) are particularly concerned with situations involving

limited training data, and approach inflection generation as a semi-supervised

task. In our last experiment we follow their experimental setup, which simu-

lates the situation where we obtain a small number of complete tables from

an expert. We use the same training, development, and test splits to test our

system. Due to the nature of our model, we need to set aside a hold-out set

for reranking. Thus, rather than training on 50 and 100 tables, we train on

40 and 80, but compare the results with the models trained on 50 and 100,

respectively. For reranking, we use the same German corpus as in our previous

experiments, but limited to the first 10M words.

The results are shown in Table 4.8. When trained on 50 seed tables, the

accuracy of our models is comparable to both the basic model of Dreyer and

Eisner (DE) and the Factored model of DDN, and matches the best system

when we add reranking. When trained on 100 seed tables, our full reranking

model outperforms the other models.
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Set % of Total DDN Ours
Basic Reranked

DE-V 69.2 90.2 96.2 97.9

DE-N 92.7 88.3 88.4 89.8

ES-V 36.1 97.1 95.9 99.6

FI-V 15.6 73.8 78.7 85.6

FI-N 15.2 71.6 78.2 80.4

DU-V 50.5 89.8 94.9 96.0

FR-V 27.6 94.6 96.6 98.9

Table 4.6: Prediction accuracy of models trained on observed forms.

Set % of Total DDN Ours
Basic Reranked

CZ-N 13.0 91.1 97.7 93.5
CZ-V 6.8 82.5 83.6 85.8

Table 4.7: Prediction accuracy of models trained on observed Czech forms.

4.4 Error analysis

In this section, we analyze several types of errors made by the various systems.

Non-word predictions are marked with an asterisk.

German and Dutch are closely-related languages that exhibit similar errors.

Many errors involve the past participle, which is often created by circumfixa-

tion. For the German verb verfilmen “to film,” we predict the correct verfilmt,

while the other systems have verfilmen*, and geverfilmt*, respectively. DDN

simply select an incorrect rule for the past participle. AFH choose paradigms

through suffix analysis, which fails to account for the fact that verbs that begin

with a small set of prefixes, such as ver-, do not take a ge- prefix. This type of

error particularly affects the accuracy of AFH on Dutch because of a number

of verbs in our test set that involve infixation for the past participle. Our

system uses its source and target-side n-gram features to match these prefixes

with their correct representation.

The second type of error is an over-correction by the corpus. The past

participle of the verb dimmen is gedimmt, but AFH predict dimmt*, and then

change it to dummen with the corpus. Dummen is indeed a valid word in
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Seed Tables DE DDN Ours
Basic Full Factored Joint Basic Full

50 89.9 90.9 89.6 90.5 89.7 90.9

100 91.5 92.2 91.4 92.3 92.0 92.6

Table 4.8: Prediction accuracy on German verb forms after training on a small
number of seed inflection tables.

German, but unrelated to the verb dimmen. It is also far more common, with

181 occurrences in the corpus, compared with only 28 for gedimmt. Since AFH

use corpus frequencies, mistakes like this can occur. Our system is trained

to balance transducer confidence against a form’s existence in a corpus (as

opposed to log frequency), which helps it ignore the bias of common, but

incorrect, forms.

The German verb brennen “to burn” has an irregular past participle: ge-

brannt. It involves both a stem vowel change and a circumfix, two processes

that only rarely co-occur. AFH predict the form brannt*, using the paradigm

of the similar bekennen. The flexibility of DDN allows them to predict the

correct form. Our basic model predicts gebrennt*, which follows the regu-

lar pattern of applying a circumfix, while maintaining the stem vowel. The

reranker is able to correct this mistake by relating it to the form gebrannt in

the corpus, whose stem is identical to the stem of the preterite forms, which

is a common paradigmatic pattern.

Our system can also over-correct, such as with the second person plural

indicative preterite form for the verb reisen, which should be reistet, and

which our basic model correctly predicts. The reranker, however, changes

the prediction to rist. This is a nominal form that is observed in the corpus,

while the verbal form is not.

An interesting example of a mistake made by the Factored model of DDN

involves the Dutch verb aandragen. Their model learns that stem vowel a

should be doubled, and that an a should be included as part of the suffix -agt,

which results in an incorrect form aandraaagt*. Thanks to the modeling of

phonotactics, our model is able to correctly rule out the tripling of a vowel.
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Finnish errors tend to fall into one of three types. First, words that involve

harmonically neutral vowels, such as “e” and “i” occasionally cause errors in

vowel harmony. Second, all three systems have difficulty identifying syllable

and compound boundaries, and make errors predicting vowels near boundaries.

Finally, consonant gradation, which alternates consonants in open and closed

syllables, causes a relatively large number of errors; for example, our system

predicts *heltempien, instead of the correct hellempien as the genitive singular

of the comparative adjective hellempi “more affectionate”.

4.5 Discussion

We have proposed an alternative method of generating inflected word-forms

which is based on discriminative string transduction and reranking. We have

conducted a series of experiments on nine datasets involving six languages,

including four new datasets that we created. The results demonstrate that

our method is not only highly accurate, but also robust against incomplete or

limited inflection data.

Now that we are confident that our methods can produce high quality

inflections, we reverse the direction of inflectional modeling. In the next chap-

ter, we use our sequential prediction methods and inflection tables to model

stemming and lemmatization.
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Chapter 5

Leveraging Inflection Tables for

Stemming and Lemmatization

Many languages contain multiple inflected forms that correspond to the same

dictionary word. Inflection is largely a grammatical procedure that keeps the

core meaning of a word. For example, the German words in Table 5.1 all

refer to the action of giving. When working with these languages, it is often

beneficial to establish a consistent representation across a set of inflections.

This is the task that we address here.

There are two principal approaches to inflectional simplification: stemming

and lemmatization. Stemming aims at removing inflectional affixes from a

word form. It can be viewed as a kind of word segmentation, in which the

boundaries of the stem are identified within the word; no attempt is made to

restore stem changes that may occur as part of the inflection process. The

goal of lemmatization is to map any inflected form to its unique lemma, which

is typically the word form that represents a set of related inflections in a

dictionary. Unlike stemming, lemmatization must always produce an actual

word form.

In this chapter, we present a discriminative string transduction approach

to both stemming and lemmatization. Supervised stemmers require morpho-

logically annotated corpora, which are expensive to build. We remove this

constraint by extracting stems from semi-structured inflection tables, such as

the one shown in Table 5.2, in an unsupervised manner. We design two trans-

duction models that are trained on such stems, and evaluate them on unseen
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Word form Meaning Tag Stem
geben “to give” INF geb
gibt “gives” 3SIE gib
gab “gave” 1SIA gab
gegeben “given” PP geb

Table 5.1: Examples of German word-forms corresponding to the lemma geben.

Singular Plural
1st 2nd 3rd 1st

Present doy das da damos
Imperfect daba dabas daba dábamos
Preterite di diste dio dimos
Future daré darás dará daramos

Table 5.2: A partial inflection table for the Spanish verb dar “to give”.

forms against a supervised model. We then extend our stemming models to

perform the lemmatization task, and to incorporate an unannotated corpus.

We evaluate them on several datasets. Our best system improves the state of

the art for Dutch, German, and Spanish.

5.1 Stemming Methods

We approach stemming as a string transduction task. Stemming can be

performed by inserting morpheme boundary markers between the stem and

the affixes. For example, the German verb form gegeben is transduced into

ge+geb+en, which induces the stem geb.

5.1.1 Supervised Transduction

Using the methods described in Section 2.1, we align source and target pairs to

train a stemming model. The source consists of a word-form, while the target

is identical, except that it also includes boundary markers between the stem

and affixes. For example, one pair might be geschrieben, ge+schrieb+en.

Once we have aligned the source and target pairs, we proceed to train a

word-to-stem transduction model for stemming unseen test instances. The
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STEM|INF geb|en setz|en tu|n
STEM|1SIA gab|- setz|te tat|-
STEM|2SIE gib|st setz|t tu|st
PP|STEM|PP ge|geb|en ge|setz|t ge|ta|n

Table 5.3: Stemming of the training data based on the patterns of regularity
in inflectional tables. Stemmas are shown in bold.

word-to-stem model learns where to insert boundary markers. We refer to a

model that is trained on annotated morphological segmentations as our super-

vised method.

5.1.2 Unsupervised Segmentation

In order to train a fully-supervised model for stemming, large lists of morphologically-

segmented words are generally required. While such annotated corpora are

rare, semi-structured, crowd-sourced inflection tables are available for many

languages on websites such as Wiktionary (Table 5.2). In this section, we in-

troduce an unsupervised method of inducing stems by leveraging paradigmatic

regularity in inflection tables.

Sets of inflection tables often exhibit the same inflectional patterns, called

paradigms, which are based on phonological, semantic, or morphological cri-

teria (cf. Table 5.3). Each table consists of lists of word forms, including the

lemma. The number of distinct stems, such as ‘geb’ and ‘gib’ for the verb

geben, is typically very small, averaging slightly over two per German verb

inflection table. The number of distinct affix forms corresponding to the same

inflectional form across different lemmas is also small, averaging below three

for German verbs. For example, the second person singular indicative present

suffix is always either -st, -est, or -t.

We take advantage of this relative consistency to determine the boundaries

between the stems and affixes of each word form in an unsupervised manner.

We first associate each word form in the training data with an abstract tag

sequence, which is typically composed of the STEM tag and a suffix tag rep-

resenting a given inflection slot (Table 5.3). We then apply the unsupervised
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Source g i b t
Target g i b +t
Tags STEM 3SIE
Joint g e b +3SIE

Table 5.4: Alignment of the various representations of the word gibt.

aligner to determine the most likely alignment between the character sequences

and the tags, which are treated as indivisible units. The aligner simultane-

ously learns common representations for stems within a single inflection table,

as well as common representations for each affix across multiple tables.

Some inflections, such as the German past participle (PP in Table 5.3) in-

volve a circumfix, which can be analyzed as a prefix-suffix combination. Prior

to the alignment, we associate all forms that belong to the inflection slots

involving circumfixation with tag sequences composed of three tags. Occa-

sionally, a word form will only have a suffix where one would normally expect

a circumfix (e.g. existiert). In order to facilitate tag alignment in such cases,

we prepend a dummy null character to each surface word form.

After the stem-affix boundaries have been identified, we proceed to train

a word-to-stem transduction model as described in Section 5.1.1. We refer to

this unsupervised approach as our basic method (cf. Figure 5.1).

5.1.3 Joint Stemming and Tagging

The method described in the previous section fails to make use of a key piece

of information in the inflection table: the lemma. The stem of an inflected

form is typically either identical or very similar to the stem of its lemma, or

stemma (Table 5.3). Our joint method takes advantage of this similarity by

transducing word-forms into stemmas with tags.

The format of the training data for the word-to-stemma model is different

from the word-to-stem model. After the initial segmentation of the source

word-forms into morphemes by the unsupervised aligner, as described in Sec-

tion 5.1.2, the stems are replaced with the corresponding stemmas, and the

affixes are replaced with the inflection tags. For example, the form gibt is
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Words Noun Verb Adj
English 50,155 2 5 3
Dutch 101,667 2 9 3
German 96,038 8 27 48

Table 5.5: The number of words and distinct inflections for each language in
the CELEX datasets.

paired with the sequence geb+3SIE, with the stem and stemma re-aligned at

the character level as shown in Table 5.4.

Unlike the basic method, which simply inserts morpheme breaks into word-

forms, the joint method uses the tags to identify the boundaries between stems

and affixes. At test time, the input word-form is transduced into a stemma and

tag sequence. The character string that has generated the tag is then stripped

from the input word-form to obtain the stem. By making use of both the

tags and the stemma, the word-to-stemma model jointly optimizes the stem

and affix combination. We refer to this unsupervised approach as our joint

method.

5.2 Stemming Experiments

Precise evaluation of stemming methods requires morphologically annotated

lexicons, which are rare. Unlike lemmas, stems are abstract representations,

rather than actual word forms. Unsurprisingly, annotators do not always agree

on the segmentation of a word. In this section, we describe three experiments

for evaluating stem extraction, intrinsic accuracy, and consistency.

We evaluate our methods against three systems that are based on very

different principles. Snowball1 is a rule-based program based on the method-

ology of the Porter Stemmer. Morfessor FlatCat (Grönroos et al., 2014) per-

forms unsupervised morphological segmentation, and approximates stemming

by distinguishing stems and affixes.2 Chipmunk (Cotterell et al., 2015), is a

fully-supervised system that represents the current state of the art.

1http://snowball.tartarus.org
2Morfessor is applied to the union of the training and test data.
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EN NL DE

Our method 85.9 88.0 85.7
Snowball 48.2 58.8 49.5
Morfessor 61.4 71.4 61.4

Table 5.6: Unsupervised stemming accuracy of the CELEX training set.

5.2.1 Data

We perform an evaluation of stemming on English (EN), Dutch (NL), and

German (DE) lexicons from CELEX (Baayen et al., 1995). The three lan-

guages vary in terms of morphological complexity (Table 5.5). We use the

morphological boundary annotations for testing all stemming systems, as well

as for training our supervised system.

For both unsupervised systems, we could build training sets from any in-

flection tables that contain unsegmented word-forms. However, in order to

perform a precise comparison between the supervised and unsupervised sys-

tems, we extract the inflection tables from CELEX, disregarding the segmen-

tation information. Each system is represented by a single stemming model

that works on nouns, verbs, and adjectives. Due to differences in representa-

tion, the number of training instances vary slightly between models, but the

number of words is constant (Table 5.5).

In order to demonstrate that our unsupervised methods require no seg-

mentation information, we create additional German training sets using the

inflection tables extracted from Wiktionary by Durrett and DeNero, 2013).

The sets contain 18,912 noun forms and 43,929 verb forms. We derive sepa-

rate models for verbs and nouns in order to compare the difficulty of stemming

different parts of speech.

The test sets for both CELEX and Wiktionary data come from CELEX,

and consist of 5252, 6155, and 9817 unique forms for English, Dutch, and

German, respectively. The German test set contains 2620 nouns, 3837 verbs,

and 3360 adjectives.
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EN NL DE

Supervised 98.5 96.0 91.2

Basic 82.3 89.1 80.9
Joint 94.6 93.2 86.0

Snowball 50.0 58.4 48.2
Morfessor 65.2 60.9 51.8

Table 5.7: Stemming accuracy of systems trained and tested on CELEX
datasets.

Chipmunk3 requires training data in which every morpheme of a word is

annotated for morphological function. Since this information is not included

in CELEX, we train and test Chipmunk, as well as a version of our super-

vised model, on the data created by Cotterell et al., 2015), which is much

smaller. The English and German segmentation datasets contain 1161 and

1266 training instances, and 816 and 952 test instances, respectively.

5.2.2 Stem Extraction Evaluation

First, we evaluate our unsupervised segmentation approach, which serves as

the basis for our basic and joint models, on the union of the training and de-

velopment parts of the CELEX dataset. We are interested how often the stems

induced by the method described in Section 5.1.2 match the stem annotations

in the CELEX database.

The results are presented in Table 5.6. Our method is substantially more

accurate than either Snowball or Morfessor. Snowball, despite being called

a stemming algorithm, often eliminates derivational affixes; e.g. able in un-

bearable. Morfessor makes similar mistakes, although less often. Our method

tends to prefer longer stems and shorter affixes. For example, it stems ver-

wandtestem, as verwandte, while CELEX has verwandt.

5.2.3 Intrinsic Evaluation

The results of the intrinsic evaluation of the stemming accuracy on unseen

forms in Tables 5.7-5.9 demonstrate the quality of our three models. The joint

3http://cistern.cis.lmu.de/chipmunk
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Noun Verb

Basic 76.8 90.3
Joint 85.2 91.1

Snowball 55.5 39.8
Morfessor 61.9 34.9

Table 5.8: German stemming accuracy of systems trained on Wiktionary data,
and tested on the CELEX data.

EN DE

Supervised 94.7 85.1

Chipmunk 94.9 87.4

Table 5.9: Stemming accuracy of systems trained and tested on the Chipmunk
data.

model performs better than the basic model, and approaches the accuracy of

the supervised model. On the CELEX data, our unsupervised joint model

substantially outperforms Snowball and Morfessor on all three languages (Ta-

ble 5.7).4 These results are further confirmed on the German Wiktionary data

(Table 5.8). Our supervised model performs almost as well as Chipmunk on

its dataset (Table 5.9).

A major advantage of the joint model over the basic model is its tag aware-

ness (cf. Table 5.4). Although the tags are not always correctly recovered on

the test data, they often allow the model to select the right analysis. For

example, the basic model erroneously segments the German form erklärte as

erklärt+e because +e is a common verbal, adjectival and nominal suffix. The

joint model, recognizing er as a verbal derivational prefix, predicts a verbal

inflection tag (+1SIA), and the correct segmentation erklär+te. Verbal stems

are unlikely to end in ärt, and +te, unlike +e, can only be a verbal suffix.

5.2.4 Consistency Evaluation

When stemming is used for inflectional simplification, it should ideally pro-

duce the same stem for all word-forms that correspond to a given lemma. In

4The decrease in Morfessor accuracy between Tables 5.6 and 5.7 can be attributed to a
different POS distribution between training and testing.
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EN NL DE

Gold 1.10 1.17 1.30

Supervised 1.13 1.64 1.50

Basic 1.06 1.21 1.25
Joint 1.09 1.08 1.20

Snowball 1.03 1.45 2.02
Morfessor 1.11 1.68 3.27

Table 5.10: Average number of stems per lemma.

many cases, this is not an attainable goal because of internal stem changes (cf.

Table 5.1). However, most inflected words follow regular paradigms, which

involve no stem changes. For example, all forms of the Spanish verb can-

tar contain the substring cant, which is considered the common stem. We

quantify the extent to which the various systems approximate this goal by

calculating the average number of unique generated stems per inflection table

in the CELEX test sets.5

The results are presented in Table 5.10. The stems-per-table average tends

to reflect the morphological complexity of a language. All systems achieve

excellent consistency on English, but the Dutch and German results paint a

different picture. The supervised system falls somewhat short of emulating the

gold segmentations, which may be due to the confusion between different parts

of speech. In terms of consistency, the stems generated by our unsupervised

methods are superior to those of Snowball and Morfessor, and even to the

gold stems. We attribute this surprising result to the fact that the EM-based

alignment of the training data favors consistency in both stems and affixes,

although this may not always result in the correct segmentation.

5.3 Lemmatization Methods

In this section, we present three supervised lemmatization methods, two of

which incorporate the unsupervised stemming models described in Section 5.1.

5Chipmunk is excluded from the consistency evaluation because its dataset is not com-
posed of complete inflection tables.
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Figure 5.1: Three lemmatization methods.

The different approaches are presented schematically in Figure 5.1, using the

example of the German past participle gedacht.

5.3.1 Stem-based Lemmatization

Our stem-based lemmatization method is an extension of our basic stemming

method. We compose the word-to-stem transduction model from Section 5.1

with a stem-to-lemma model that converts stems into lemmas. The latter

is trained on character-aligned pairs of stems and lemmas, where stems are

extracted from the inflection tables via the unsupervised method described in

Section 5.1.2. The inflection tables in our training data always contain the

lemma, making the creation of stem / lemma pairs a trivial task.

5.3.2 Stemma-based Lemmatization

Our stemma-based lemmatization method is an extension of our joint stem-

ming method. We compose the word-to-stemma transduction model described

in Section 5.1.3 with a stemma-to-lemma model that converts stems into lem-

mas. The latter is trained on character-aligned pairs of stemmas and lemmas,

where stemmas are extracted via the method described in Section 5.1.3. Typ-
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ically, the model simply appends a lemmatic affix to the stemma, as all stem

changes are handled by the word-to-stemma model.

5.3.3 Direct Lemmatization

Our final lemmatization method is a word-to-lemma transduction model that

directly transforms word-forms into lemmas and tags. The model is trained

on word-forms paired with their lemmas and inflectional tags. If a word-

form has multiple tags, we present all of them to the algorithm, shuffling

them in training to prevent a single tag from having any bias over others,

other than biases incurred through frequency of affix / tag alignments. A

potential advantage of this direct method lies in removing the possibility of

error propagation that is inherent in pipeline approaches. However, it involves

a more complex transduction model that must simultaneously apply both stem

changes, and transform inflectional affixes into lemmatic ones.

5.3.4 Reranking

Intuitively, lemmatization accuracy could be improved by leveraging large,

unannotated corpora. After generating n-best lists of possible lemmas, we

rerank them using the method described in Section 2.3. We employ four

features of the prediction:

1. normalized score from DirecTL+,

2. rank in the n-best list

3. presence in the corpus,

4. normalized likelihood from a 4-gram character language model derived

from the corpus.

5.4 Lemmatization Experiments

Unlike stemming, lemmatization is a completely consistent process: all word-

forms within an inflection table correspond to the same lemma. In this section,

we describe intrinsic and extrinsic experiments to evaluate the quality of the
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Wiki CELEX CoNLL
ES EN NL DE EN DE ES

Stem-based 97.1 89.1 82.3 76.3 90.2 71.1 83.2
Stemma-based 94.5 96.4 85.2 85.8 92.5 75.9 91.2

Direct 98.8 96.4 89.5 88.7 92.5 80.1 91.5

Morfette 98.0 96.0 80.2 81.3 92.5 73.5 91.5

Lemming 98.6 96.7 86.6 88.2 92.5 77.9 90.4

Table 5.11: Lemmatization results without the use of a corpus.

lemmas generated by our systems, and compare the results against the current

state of the art.

5.4.1 Data

As in our stemming experiments, we extract complete English, Dutch, and

German inflection tables from CELEX. We use the same data splits as in

Section 5.2.1. We also evaluate our methods on Spanish verb inflection tables

extracted from Wiktionary by Durrett and DeNero, 2013), using the original

data splits. Spanish is a Romance language, with a rich verbal morphology

comprising 57 inflections for each lemma.

A different type of dataset comes from the CoNLL-2009 Shared Task (Hajič

et al., 2009). Unlike the CELEX and Wiktionary datasets, they are extracted

from an annotated text, and thus contain few complete inflection tables, with

many lemmas represented by a small number of word-forms. We extract all

appropriate parts-of-speech from the test section of the corpus for English,

German, and Spanish. This results in a test set of 5165 unique forms for

English, 6572 for German, and 2668 for Spanish.

For reranking, we make use of a word list constructed from the first one

million lines of the appropriate Wikipedia dump.6 A character language model

is constructed using the CMU Statistical Language Modeling Toolkit.7 20% of

the development set is reserved for the purpose of training a re-ranking model.

For Lemming and Morfette, we provide a lexicon generated from the corpus.

6All dumps are from November 2, 2015.
7http://www.speech.cs.cmu.edu
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Recall that these systems were constructed for contextual lemmatization; we

remove context to make their results comparable to our own.

Spanish marks unpredictable stress by marking a stressed vowel with an

acute accent (e.g. cantó vs. canto). In order to facilitate generalization, we

perform a lossless pre-processing step that replaces all accented vowels with

their unaccented equivalent followed by a special stress symbol (e.g. canto’).

For consistency, this modification is applied to the data for each system.

5.4.2 Intrinsic Evaluation

We evaluate lemmatization using word accuracy. In cases where a surface

word-form without a morphological tag may correspond to multiple lemmas,

we judge the prediction as correct if it matches any of the lemmas. For exam-

ple, both the noun Schrei and the verb schreien are considered to be correct

lemmas for the German word schreien.8

The results without the use of a corpus are shown in Table 5.11. Thanks to

its tag awareness, the stemma-based method is more accurate than the stem-

based method, except on the verb-only Spanish Wiktionary dataset. However,

our best method is the direct word-to-lemma model, which outperforms both

Morfette and Lemming on most datasets.

We interpret the results as the evidence for the effectiveness of our dis-

criminative string transduction approach. The direct model is superior to the

stemma-based model because it avoids any information loss that may occur

during an intermediate stemming step. However, it is still able to take advan-

tage of the tag that it generates together with the target lemma. For example,

Lemming incorrectly lemmatizes the German noun form Verdienste “earnings”

as verdien because +ste is a superlative adjective suffix. Our direct model,

however, considers dien to be an unlikely ending for an adjective, and instead

produces the correct lemma Verdienst.

The results with the use of a corpus are shown in Table 5.12. We omit the

results on Spanish Wiktionary and on both English datasets, which are almost

identical to those in Table 5.11. We observe that both the stemma-based and

8The capitalization of German nouns is ignored.
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CELEX CoNLL
NL DE DE ES

Stem-based 82.3 76.9 71.9 90.6
Stemma-based 87.3 88.4 79.0 93.3

Direct 92.4 90.0 81.3 91.9

Lemming 86.9 88.5 77.9 90.6

Table 5.12: Lemmatization results boosted with a raw corpus.

direct methods achieve a substantial error rate reduction on the Dutch and

German datasets, while Lemming improvements are minimal.9 The Spanish

CoNLL results are different: only the stem-based and stemma-based methods

benefit noticeably from re-ranking.

Error analysis indicates that the re-ranker is able to filter non-existent

lemmas, such as wint for Winter, and endstadie for Endstadien, instead of

Endstadium. In general, the degree of improvement seems to depend on the

set of randomly selected instances in the held-out set used for training the

re-ranker. If a base model achieves a very high accuracy on the held-out set,

the re-ranker tends to avoid correcting the predictions on the test set.

5.5 Discussion

We have presented novel methods that leverage readily available inflection

tables to produce high-quality stems and lemmas. In the next chapter, we

describe the logical extension of our lemmatization method: the production of

complete morphological analyses.

9We were unable to obtain any corpus improvement with Morfette.
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Chapter 6

Morphological Analysis without

Expert Annotation

The task of morphological analysis is to annotate a given word-form with its

lemma and morphological tag. Since word-forms are often ambiguous, the

goal is to produce a complete list of correct analyses, which may involve not

only multiple inflections, but also distinct lemmas and parts of speech (c.f.

Table 6.1). Hand-built lexicons, such as CELEX (Baayen et al., 1995), contain

this kind of information, but they exist only for a small number of languages,

are expensive to create, and have limited coverage. Finite-state analyzers,

such as Morphisto (Zielinski and Simon, 2009) and Omorfi (Pirinen, 2015),

provide an alternative to lexicons, but their construction also requires expert

knowledge and substantial engineering effort. However, they are often more

general than lexicons, although they may require a lemmatic lexicon to ensure

high precision.

Morphological tagging is a distinct but related task, which aims at de-

termining a single correct analysis of a word-form within the context of a

sentence. Machine learning taggers, such as Morfette (Chrupala et al., 2008)

and Marmot (Mueller et al., 2013), are capable of achieving high tagging ac-

curacy, but they need to be trained on morphologically annotated corpora,

which are unavailable for most languages. Often, morphological tagging can

be performed as a downstream application of morphological analysis: tools

such as Marmot and the Zurich Dependency Parser (Sennrich et al., 2009)

have the functionality to incorporate the output of a morphological analyzer
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Lemma POS Inflection Tag
luft Noun Nom. Pl. NP
luft Noun Acc. Pl. AP
luft Noun Gen. Pl. GP
lüften Verb 1st Sg. Ind. Pres. 1SIE
lüften Verb 1st Sg. Subj. Pres. 1SKE
lüften Verb 3rd Sg. Subj. Pres. 3SKE
lüften Verb Sg. Imperative RS

Table 6.1: An example of morphological analysis: multiple correct interpreta-
tions of the German word-form lüfte.

to perform morphological tagging.

In this chapter, we propose a novel discriminative string transduction ap-

proach to morphological analysis, which is designed to be trained on plain

inflection tables, thus obviating the need for expert rule engineering or mor-

phologically annotated corpora. In addition, our system is capable of leverag-

ing raw unannotated corpora to refine its analyses by re-ranking. The accuracy

of the system on German approaches that of a hand-engineered FST analyzer,

while having much higher coverage. The experimental results on English,

Dutch, German, and Spanish demonstrate that it is also more accurate than

the analysis module of a state-of-the-art morphological tagger.

6.1 Methods

Our approach to morphological analysis is based on string transduction be-

tween a word-form (e.g. lüfte) and an analysis composed of a lemma and a tag

(e.g. lüften+1SIE), where the tag corresponds to the predicted inflection slot.

Our system consists of four modules: alignment, transduction, re-ranking, and

thresholding.

We perform alignment and transduction using the modified versions of

M2M and DirecTL+ described in Chapter 2. For the analysis task, the

source side consists of the surface form of the word, while the target side is

a lemma + tag combination. This input format is identical to that of the

direct model from Chapter 5. Whereas in that chapter, we only used the tag
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s c h r e i b et
s c h r e i b en+2PKA X

s c h r e i b en+2PKE X

s c h r e i b en+3SIA ×
s c h r e i b en+3PIE ×
s c h r e i b en+2PIA X

Table 6.2: Example alignments of hypothetical analyses of the German word-
form schreibet . The check marks indicate which of the analyses satisfy the
affix-match constraint.

to provide information for the lemmatization task, here we are interested in

the ability of our method to produce accurate tags, as well.

Unlike lemmatization or inflection generation, a single word may have mul-

tiple correct analyses. This could prove to be a problem forDirecTL+, which

was designed with the assumption that there is one correct target form for each

input form. We randomly shuffle the order of tags for words with multiple anal-

yses, to prevent a single tag from biasing the model. In practice, we find that

this method allows DirecTL+ to produce multiple correct analyses that are

only biased by the frequency of affix / tag pairs in training.

We use the induced alignment as an additional constraint for the genera-

tion of morphological tags, which we call the affix-match constraint. During

training, we record all substring alignments that involve affixes and tags. At

test time, the source-target alignment is implied by the substring transduc-

tion sequence. We say that a lemma+tag analysis generated from a word-form

satisfies the affix-match constraint if and only if the resulting affix-tag pair oc-

curs in the alignment of the training data. Table 6.2 shows the alignments of

five possible analyses to the corresponding word-form schreibet , of which three

satisfy the affix-match constraint. Only analysis #2 (in bold) is correct.

Likewise, we introduce a new constraint to the transduction process, which

we call the mirror constraint. In addition to training an analyzer model that

transforms a word-form into an analysis, we also train an inflector model that

converts an analysis back into a word-form. This opposite transformation

corresponds to the task of morphological inflection (i.e, Chapter 4). By de-
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Source Target
schreiben + 2PKA schriebet ×
schreiben + 2PKE schreibet X

schreiben + 3SIA schrieb ×
schrieben + 2PKE schriebet ×
schreiben + 2PIA schriebt ×

Table 6.3: Example source-target pairs of the inflector model. The check marks
indicate which of the analyses of the German word-form schreibet satisfy the
mirror constraint.

riving two complementary models from the same training set, we attempt to

mimic the functionality of a genuine finite-state transducer. We say that a

lemma+tag analysis generated by the analyzer model satisfies the mirror con-

straint if and only if the inflector model correctly reconstructs the original

word-form from the analysis by returning it as its top-1 prediction. Table

6.3 shows five possible analyses of the word-form schreibet , of which only one

satisfies the mirror constraint. Only analysis #2 (in bold) is correct.

6.1.1 Reranking

In order to produce multiple morphological analyses, we take advantage of the

capability of DirecTL+ to output n-best lists of candidate target strings. To

promote the most likely lemma+tag combinations, we re-rank the n-best lists

using the Liblinear SVM tool (Fan et al., 2008), converting the classification

task into a ranking task with the method described in Section 2.3.

The reranker employs several features, which are enumerated in Table 6.4.

The first three features consider the form of the predicted lemma. Feature 1

indicates whether the lemma occurs at least once in a text corpus. Feature 2

is set to the normalized likelihood score of the lemma computed with a 4-gram

character language model that is derived from the corpus. Feature 3 is the

normalized confidence score assigned by DirecTL+.

Features 4-6 refer to the affix-match constraint defined in Section 6.1, in

order to promote analyses that involve correct tags. Features 4 and 5 are

complementary and indicate whether the alignment between the affix of the
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Description Type
1 lemma in Corpus binary
2 LM score real
3 DirecTL+ score real
4 affix match binary
5 no affix match binary
6 no affix match, top-1 binary
7 mirrored binary
8 not mirrored binary
9 not mirrored, top-1 binary

Table 6.4: Features of the re-ranker.

given word-form and the tag of the predicted analysis was generated at least

once in the training data. Feature 6 accounts for unusual affix-tag pairs that

are unattested in the training data: it fires if the affix-match constraint is not

satisfied but the analysis is deemed the most likely by DirecTL+.

Features 7-9 refer to the mirror constraint defined in Section 6.1, in order

to promote analyses that the inflector model correctly transduces back into

the initial word-form. These three features follow the same pattern as the

affix-match features.

6.1.2 Thresholding

Each word-form has at least one analysis, but the number of correct analyses

varies; for example, lüfte has seven (Table 6.1). The system needs to decide

where to “draw the line” between the correct and incorrect analyses in its n-

best list. Apart from the top-1 analysis, the candidate analyses are filtered by

a pair of thresholds which are defined as percentages of the top analysis score.

The thresholds aim at reconciling two types of syncretism: one that involves

multiple inflections of the same lemma, and the other that involves inflections

of different lemmas. The first threshold is unconditional: it allows any analysis

with a sufficiently high score. The second, lower threshold is conditional: it

only allows a relatively high-scoring analysis if its lemma occurs in one of

the analyses that clear the first threshold. For example, the fourth analysis

in Table 6.3, schrieben + 2PKE, needs to clear both thresholds, because its
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lemma differs from the lemmas of the analyses that clear the first threshold.

Both thresholds are tuned on a development set.

6.2 Experiments

In this section, we evaluate our morphological analyzer on English, German,

Dutch, and Spanish, and compare our results to two other systems.

6.2.1 Data

English German Dutch Spanish

P R F1 P R F1 P R F1 P R F1

DirecTL+ 93.5 88.9 91.2 87.3 88.7 88.0 87.3 90.3 88.8 99.3 99.5 99.4

Marmot 87.5 94.3 90.8 85.3 88.5 86.9 81.3 84.7 82.9 99.2 98.9 99.1

Table 6.5: Macro-averaged results on four languages.

We extract complete inflection tables for English, German, and Dutch from

the CELEX lexical database (Baayen et al., 1995). The number of inflectional

categories across verbs, nouns, and adjectives is 16, 50, and 24, respectively,

in the three languages. However, in order to test whether an analyzer can

handle arbitrary word-forms, the data is not separated according to distinct

POS sets. For consistency, we ignore German noun capitalization.

CELEX data already exists in a format conducive to creating source / tar-

get pairs. We first collect all word-forms that share a lemma. The word-form

itself forms the source form in the training data, with the lemma and provided

inflectional tag forming the target. Training, development, and testing sets

are constructed such that there is no lemma overlap between them.

The Spanish data is from Wiktionary inflection tables, as provided by

Durrett and DeNero, 2013). and includes 57 inflectional categories of Spanish

verbs. We convert accented characters to their unaccented counterparts fol-

lowed by a special symbol (e.g. cantó → canto’), with no loss of information.

The data is split into 80/10/10 train/dev/test sets; for Spanish, we use the

same splits as Durrett and DeNero, 2013). We eliminate duplicate identical

word-forms from the test data, and hold out 20% of the development data to
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System P R F1
DirecTL+ 78.7 92.6 85.1

Morphisto 65.1 52.7 58.2

Table 6.6: Micro-averaged results on German.

train the re-ranker. The training instances are randomly shuffled to eliminate

potential biases.

For reranking, we extract word-form lists from the first one million lines of

the November 2, 2015 Wikipedia dump for the given language, and derive our

language models using the CMU Statistical Language Modeling Toolkit.1

6.2.2 Comparison to Morphisto

We first compare our German results against Morphisto (Zielinski and Simon,

2009), an FST analyzer. Beyond morphological analysis, Morphisto also per-

forms some derivational analysis, converting compound segments back into

lemmas. For a fair comparison, we exclude compounds from the test set. In

addition, because the lexicon of Morphisto has a limited coverage, we report

micro-averaged results in this section.

Table 6.6 shows that overall our system performs much better on the test

sets than the hand-engineered Morphisto, which fails to analyze 43% of the

word-forms in the test set. If we disregard the word-forms that Morphisto

cannot handle, its F-score is actually higher: 89.5% vs. 84.0%.

6.2.3 Comparison to Marmot

Marmot (Mueller et al., 2013) is a state-of-the-art, publicly available morpho-

logical tagger2, augmented with a lemmatizing module (Müller et al., 2015),

which can also take advantage of unannotated corpora. In order to make a fair

comparison, we train Marmot on the same data as our system, with default

parameters. Because Marmot is a morphological tagger, rather than an ana-

lyzer, we provide the training and test word-forms as single-word sentences. In

1http://www.speech.cs.cmu.edu
2http://cistern.cis.lmu.de/marmot
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addition, we have modified the source code to output a list of n-best analyses

instead of a single best analysis. No additional reranking of the results is per-

formed, as Marmot already contains its own module for leveraging a corpus,

which is activated in these experiments. Separate thresholds for each language

are tuned on the development sets. (c.f. Section 6.1.2).

Table 6.5 presents the results. We evaluate the systems using macro-

averaged precision, recall, and F-score. Our system is consistently more accu-

rate, improving the F-score on each of the four languages. Both systems make

few mistakes on Spanish verbs.

The English results stand out, with Marmot achieving a higher recall at

the cost of precision. English contains more syncretic forms than the other

three languages: 3 different analyses per word-form on average in the test set,

compared to 1.9, 1.3, and 1.1 for German, Dutch, and Spanish, respectively.

Marmot’s edit-tree method of candidate selection favors fewer lemmas, which

allows the lemmatization module to run efficiently. On the other hand, Di-

recTL+ has no bias towards lemmas or tags. This may be the reason of

the substantial difference between the two systems on Dutch, where nearly a

quarter of all syncretic test word-forms involve multiple lemmas.

An example of an incorrect analysis is provided by Spanish lacremos . Both

systems correctly identify it as a plural subjunctive form of the verb lacrar.

However, Marmot also outputs an alternative analysis that involves a bizarre

lemma lacr. Our system is able to exclude this word-form thanks to a low

score from the character language model, which is taken into consideration by

the re-ranker.

6.3 Discussion

We have presented a transduction-based morphological analyzer that can be

trained on plain inflection tables. Our system is highly accurate, and has a

much higher coverage than a carefully-crafted FST analyzer. By eliminating

the necessity of expert-annotated data, our approach may lead to the creation

of analyzers for a wide variety of languages.
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Now that we’ve shown that our methods are highly accurate modeling

inflection in both directions, we combine our generation and lemmatization

tools for the task of reinflection. The next chapter discusses our participation

in the first Shared Task on Morphological Reinflection.
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Chapter 7

Morphological Reinflection via

Discriminative String

Transduction.

Many languages have complex morphology with dozens of different word-forms

for any given lemma. It is often beneficial to reduce the data sparsity intro-

duced by morphological variation in order to improve the applicability of meth-

ods that rely on textual regularity. The task of inflection generation (Task 1)

is to produce an inflected form given a lemma and desired inflection, which is

specified as an abstract tag. The task of labeled reinflection (Task 2) replaces

the input lemma with a morphologically-tagged inflected form. Finally, the

task of unlabeled reinflection (Task 3) differs from Task 2 in that the input

lacks the inflection tag. Reinflection removes a dependence on the lemma,

generalizing the task to inflection from any form into any form. Such a gener-

alization may prove beneficial in languages where the lemma is only used for

traditional reasons, and bears little resemblance to many inflected forms.

In this chapter, we describe our system as participants in the SIGMOR-

PHON 2016 Shared Task on Morphological Reinflection (Cotterell et al., 2016).

We perform Task 1 using the inflection generation approach of Chapter 4,

which we refer to as the lemma-to-word model. For Task 3, we first determine

the best way to perform reinflection by evaluating the models from Chapter 5

on German, and using the best system to perform reinflection. We reduce

Task 2 to Task 3 by simply ignoring the input inflection tag.
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7.1 Methods

In this section, we describe the application of our string transduction and

reranking approaches to the three shared tasks.

7.1.1 Task 1: Inflection

For Task 1, we derive a lemma-to-word model, which transforms the lemma

along with an inflection tag into the inflected form. Our method models af-

fixation with atomic morphological tags. For example, the training instance

corresponding to the past participle dado of the Spanish verb dar “to give”

consists of the source dar+PP and the target dado. The unsupervised M2M

aligner matches the +PP tag with the do suffix on the basis of their frequent

co-occurrence in the training data. DirecTL+ then learns that the PP tag

should be transduced into do when the lemma ends in ar. Similarly, prefixes

are represented by a tag before the lemma. The transducer can also memorize

stem changes that occur within the context of a tag. For example, the training

pair PP+singen+PP → gesungen can inform the transduction PP+ringen+PP

→ gerungen at test time.

7.1.2 Task 2: Labeled Reinflection

Task 2 is to generate a target inflected form, given another inflected form and

its tag. Since our current approach is not able to take advantage of the tag

information, we disregard this part of the input, effectively reducing Task 2 to

Task 3.

7.1.3 Task 3: Unlabeled Reinflection

In general, Task 3 appears to be harder than Tasks 1 and 2 because it provides

neither the lemma nor the inflection tag for the given word-form. In essence,

our approach is to first lemmatize the source word, and then proceed as with

Task 1 as described in Section 7.1.1. We chain the lemma-to-word model from

Task 1 with a word-to-lemma model, which is derived from the same data,

but with the source and target sides swapped. The word-to-lemma model
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transforms the inflected word-forms into sequences of lemmas and tags; e.g.

dado → dar+PP.

The only difference between the two models involves empty affixes (e.g.

the plural of fish in English). The lemma-to-word model can simply delete

the tag on the source side, but the word-to-lemma model would need to insert

it on the target side. In order to avoid the problem of unbounded insertions,

we place a dummy null character at the boundaries of the word, effectively

turning insertion into substitution.

Lemmatization is not the only method of inflection simplification; we ex-

perimented with three alternative approaches, as first described in Chapter 5:

1. stem-based approach, which is composed of the word-to-stem and stem-

to-word models;

2. stemma-based approach, which instead pivots on stemmed lemmas;

3. word-to-word model, which directly transduces one inflected form into

another.

We experiment with all three simplification methods before determining

which one to use in our final system.

7.1.4 Corpus Reranking

The shared task is divided into three tracks that vary in the amount of in-

formation allowed to train reinflection models. Track 1 (“Standard”) allows

the training data from the corresponding or lower-numbered tasks. We did

not participate in Track 2 (“Restricted”) because it was formulated after the

release of the training data. For Track 3 (“Bonus”), the shared task organizers

provided unannotated text corpora for each language.

Our Track 3 approach is to rerank the n-best list of predictions gener-

ated by DirecTL+ for each test word-form using the method described in

Section 2.3. For each language, we take the first one million lines from the cor-

responding Wikipedia dump as our corpus, removing the XML markup with

the html2text utility. Our reranker contains three features:
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1. normalized score of the prediction generated by DirecTL+;

2. presence in the corpus;

3. normalized log likelihood of the prediction given a 4-gram character lan-

guage model derived from the corpus.

7.2 Language-Specific Heuristics

Each language has its own unique properties that affect the accuracy of rein-

flection. While our approach is designed to be language-independent, we also

investigated modifications for improving accuracy on individual languages.

7.2.1 Spanish Stress Accents

In Spanish, vowels are marked to indicate irregular stress (e.g. á in darás).

This introduces several additional characters that are phonetically related to

their unaccented counterparts. In an attempt to generalize unstressed and

stressed vowels, we represent each stressed vowel as a pair of an unaccented

vowel and the stress mark. (e.g. darás becomes dara's). After inflecting the

test word-forms, we reverse this process: any vowel followed immediately by

a stress mark is replaced with the corresponding accented vowel; stress marks

not following a vowel are deleted.

7.2.2 Vowel Harmony

In agglutinative languages such as Finnish, Turkish, and Hungarian, vowels

in stems and suffixes often share certain features such as height, backness, or

rounding. We augment DirecTL+ with features that correspond to vowel

harmony violations. Since our development experiments demonstrated a sub-

stantial (13%) error reduction only for Turkish verbs, the vowel harmony fea-

tures were restricted to that subset of the data.
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7.2.3 Georgian Preverbs

Georgian verbs may include preverb morphemes, which act more like a deriva-

tional affix than an inflectional one. We observed that the Georgian training

data contained many preverbs da and ga, but only some of the instances in-

cluded the preverb on the lemma. This forced the models to learn two separate

sets of rules. Removing these preverbs from the training word-forms and lem-

mas led to an 8% error reduction on the development set.

7.2.4 Arabic Sun Letters

In Arabic, consonants are divided into two classes: sun letters (i.e. coronal

consonants) and moon letters (all others). When the definite article al- is

followed by a sun letter, the letter lām assimilates to the following letter.

Thus, al+shams “the sun” is realized as ash-shams. We observed that almost

half of the errors on the adjectives could be attributed to this phenomenon.

We therefore enforce this type of assimilation with a post-processing script.

7.3 Experiments

Our transduction models are trained on the pairs of word-forms and their

lemmas. The word-to-lemma models (Section 7.1.1), are trained on the Task

1 training dataset, which contains gold-standard lemmas. These models are

then employed in Tasks 2 and 3 for lemmatizing the source word-forms. The

lemma-to-word models (Section 7.1.3) are derived from the training data of all

three tasks, observing the Track 1 stipulations (Section 7.1.4). For example,

the lemma-to-word models employed in Task 2 are trained on a combination

of the gold-standard lemmas from Task 1, as well as the lemmas generated

by the word-to-lemma models from the source word-forms in Task 2. Our

development experiments showed that this kind of self-training approach can

improve the overall accuracy.1

1Because of time constraints, we made an exception for Maltese by training on the gold
lemmas from Task 1 only.
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Task 1 Task 3

Baseline 89.4 81.5
Chipmunk 82.0 88.3

Stem-based 86.9 89.3
Stemma-based 84.0 89.5
Lemma-based n/a 90.7
Source-Target 94.8 88.2

Table 7.1: Accuracy on the German dataset using alternative methods of
morphological simplification.

7.3.1 Lemmatization method

In order to determine the best morphological simplification method for reinflec-

tion, we evaluate four different methods that combine the models introduced

in Chapter 5. For Task 1, the stem-based method chains a lemma-to-stem

and a stem-to-word model; the stemma-based method is similar, but pivots on

stemmas instead; and the source-target method is a lemma-to-wordmodel. For

Task 3, a lemma-to-stem and lemma-to-stemma models are replaced by word-

to-stem and word-to-stemma models, respectively. The lemma-based method

chains a word-to-lemma and a lemma-to-word model; and the source-target

method is a word-to-word model with no simplification. In addition, we com-

pare with a method that is similar to our stem-based method, but pivots on

Chipmunk-generated stems instead. As a baseline, we run the transduction

method provided by the task organizers.

The results are shown in Table 7.1. On Task 1, none of the stemming

approaches is competitive with a direct lemma-to-word model. This is not

surprising. First, the lemmatic suffixes provide information regarding part-

of-speech. Second, the stemmers fail to take into account the fact that the

source word-forms are lemmas. For example, the German word überhitzend

“overheated” can either be an adjective, or the present participle of the verb

überhitzen; if the word is a lemma, it is obviously the former.

The lemma-based method is the best performing one on Task 3. One ad-

vantage that it has over the word-to-word model lies in the ability to reduce

the potentially quadratic number of transduction operations between various
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related word-forms to a linear number of transduction operations between the

word-forms and their lemmas, and vice-versa. For the remaining experiments

in this chapter, we use the lemma-based method.

7.3.2 Development Results

Selected development results are shown in Table 7.2. The Task 1 results are

broken down by part-of-speech. Because of an ambiguity in the initial shared

task instructions, all development models were trained on a union of the data

from all three tasks.

Task 1 Task 2 Task 3 VB NN ADJ

ES 98.0 96.3 96.3 96.0 95.9 100
DE 94.4 92.2 92.2 90.5 88.6 97.7
FI 90.0 88.4 88.4 92.1 89.7 63.9
RU 89.5 86.3 86.3 81.9 91.7 96.7
TR 78.6 74.9 74.9 78.8 78.5 n/a
KA 96.8 95.5 95.5 62.9 99.0 99.2
NV 91.3 90.0 90.0 88.5 99.1 n/a
AR 81.1 76.2 76.2 85.7 61.2 84.6

Table 7.2: Word accuracy on the development sets.

7.3.3 Test Results

Table 7.3 shows our test results. In most cases, these results are close to our

development results. One exception is Navajo, where the test sets were signifi-

cantly harder than the development sets. We also note drops in accuracy from

Task 1 to Task 2 and 3 that were not evident in development, particularly

for Arabic and Turkish. The drops can be attributed to the different train-

ing conditions between development and testing. In Section 7.4, we describe

language specific issues; Arabic and Turkish were particularly affected by less

training data.

Table 7.3 also contains the results for the “Bonus” track (RR). The rerank-

ing yields an improvement in almost all cases. Arabic is a clear exception. The

data provided for the task was presented in a transliterated Latin script, while

the Wikipedia corpus was in the original Arabic text. While a transliterated
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Task 1 Task 2 Task 3
ST RR ST RR ST RR

ES 97.8 98.0 96.2 96.4 96.5 96.6
DE 94.1 93.8 91.1 91.6 91.1 91.6
FI 88.5 88.7 85.6 85.7 85.8 85.9
RU 88.6 89.7 85.5 86.6 85.5 86.6
TR 82.2 87.5 62.5 59.2 63.1 59.2
KA 96.1 96.3 94.1 94.2 94.1 94.4
NV 60.3 60.3 50.4 50.8 48.8 49.1
AR 82.1 53.1 71.8 44.1 72.2 58.5

HU 86.7 89.6 86.3 88.8 86.4 88.9
MT 42.0 42.5 37.5 37.8 37.5 37.8

Table 7.3: Word accuracy on the test sets.

version of the text was eventually provided, it was not a complete translitera-

tion: certain vowels were omitted, as they are difficult to recover from standard

Arabic. This affected our reranker because it depends on correct forms in the

corpus and a character language model.

7.4 Error Analysis

In this section, we discuss a few types of errors that we observed on the de-

velopment sets for each language.

Spanish The highest overall accuracy among the tested languages confirms

its reputation of morphological regularity. A handful of verb errors are related

to the interplay between orthography and phonology. Our models appear

to have difficulty generalizing the rigid rules governing the representation of

the phonemes [k] and [T] by the letters q, c and z. For example, the form

crucen, pronounced [kruθEn], is incorrectly predicted with z instead of c, even

though the bigram ze is never observed in Spanish. This demonstrates that

the character language model feature of the reranker is not able to completely

prevent orthographically-invalid predictions.

German Nouns and verbs fall into several different inflectional classes that

are difficult to predict from the orthography alone. For example, the plural
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of Schnurrbart, “moustache”, is Schnurrbärte. Our system incorrectly misses

the umlaut, applying the pluralization pattern of the training form Wart,

“attendant”, which is indeed pluralized without the umlaut.

Finnish A phenomenon known as consonant gradation alternates variants

of consonants depending on their context. Given the amount of the training

data, our method is unable to learn all of the appropriate gradation contexts.

Russian The results indicate that verbs are substantially more challenging

than nouns and adjectives. Most of the errors involve vowel changes. The

reranker reduces the error rate by about 10% on Task 1. In particular, it

filters out certain predictions that appear to violate phonotactic constraints,

and reduces the number of errors related to lexically-conditioned prefixes in

the perfective forms.

Turkish Occasionally, the forms in crowd-sourced data are incorrect, which

can lead to spurious transduction rules both during lemmatization and inflec-

tion. For example, the form çıkaracağım of the verb çıkarmak “to subtract” is

erroneously associated in the training data with the lemma toplamak “to add”,

which causes the word-to-lemma model to learn a spurious çı → to rule. At

test time, this leads to incorrect lemma predictions, which in turn propagate

to multiple inflected forms.

Georgian The highly unpredictable preverbs (Section 7.2.3) were the cause

of a large number of errors on verbs. On the other hand, our system did very

well on nouns and adjectives, second only to Spanish.

Arabic Errors were mainly constrained to irregular forms, such as the nom-

inal broken plurals. Unlike sound plurals that inflect via suffixation, broken

plurals involve consonantal substitution. This is a difficult transduction to

learn, given its low frequency in training. Another type of errors involves weak

roots, which contain semi-vowels rather than full consonants.
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Navajo In contrast with the test results, our development results were very

promising, with near-perfect performance on nouns. After the submission

deadline, we were informed that the test set differed in significant ways from

the training and development sets, which lead to increased difficulty for this

language.

Hungarian As it was one of the surprise languages, we applied no language-

specific techniques. Nevertheless, the test results were on par with the other

agglutinative languages. We speculate that adding customized vowel harmony

features could further improve the results.

Maltese A complicated morphology is represented by an extremely large

tag set (3184 distinct tags). For nouns and adjectives, the number of tags is

very close to the number of training instances, which precludes any meaningful

learning generalization. While many features within tags are repeated, taking

advantage of this regularity would require more development time, which was

unavailable for the surprise languages. The results highlight a limitation of

the atomic tags in our method.

7.5 Discussion

Previous work in morphological generation was largely limited to a small num-

ber of western European languages. The methods proposed in Chapter 4 were

originally developed on such languages. The results on the shared task data

show that those methods can be adapted to the task of reinflection, and per-

form well on various morphologically-complex languages. On the other hand,

there is room for improvement on languages like Maltese, which provides mo-

tivation for future work.
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Chapter 8

Conclusions

In this dissertation, we investigate several problems concerning inflection, and

propose methods to model them computationally using sequential string trans-

duction.

In Chapter 4, we achieve state-of-the-art results in inflection generation by

training our transducer on inflection tables. The results reported in Chapter 4

remain among the state-of-the-art: Faruqui et al., 2016) compare these results

against a neural model, and are unable to better our results on five of seven

languages sets.

In Chapter 5, we turn our transduction methods to inflectional simplifica-

tion. We show that with a small number of modifications, the methods that

produce state-of-the-art inflection generation models can also produce high

quality lemmatizers. We also demonstrate that although inflection tables in-

clude no explicit stemming annotation, there is enough implicit information

to obtain accurate, consistent stems, using the same tools used to produce

inflections and lemmas.

Chapter 6 goes beyond lemmatization; we demonstrate that our trans-

duction methods can also predict inflectional categories with high accuracy,

producing analyses that improve upon the previous state of the art. Like

our generation and stemming methods, we do not require expertly-annotated

training corpora, but instead analyze words after training on corpora that can

be constructed by speakers with little explicit knowledge.

In Chapter 7, we show that our lemmatization and generation methods are
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suitable across a variety of languages, while also demonstrating how explicit

linguistic knowledge can be used to modify methods for individual languages.

At this point, we make no effort to combine our methods with neural

sequential models, such as (Bahdanau et al., 2014) or Kann and Schütze, 2016),

which have shown large improvements in similar tasks. As a future direction for

study, we propose a combination of our methods with neural methods, which

can take advantage of the positive aspects of both systems. Many of the gains

seen in neural models can be attributed to an increased context provided

by attention mechanisms, an ability to share information across inflectional

classes, and the ability to ensemble multiple systems. However, what these

systems gain in accuracy, they lose in transparency. By combining neural

models with our own, we can preserve the transparency of our system, while

gaining access to the benefits of the neural model.

We live in an increasingly international community that will require more

and more processing of languages with inflectional complexity that far out-

strips that of English. The problem of what to do with inflectional morphol-

ogy is far from solved, but we have shown that it is possible to use sequential

prediction tools to accurately model inflectional processes such as those given

in Figure 1.2: inflection generation, stemming, lemmatization, and analysis

can be modeled via sequential string prediction, and require no more training

data than publicly available inflection tables.
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