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Abstract

Many studies have examined flow of water and a non-aqueous phase liquid (NAPL) in
a discrete fracture, but few have attempted to examine the effect that dissolution and
aqueous-phase transport have on NAPL flow. Various researchers have shown that
mass can be removed from the fracture via diffusion into the porous fracture walls.
They have also shown that fracture walls can act as a significant storage medium
until water with a lower concentration flushes the dissolved material out.

A finite-difference computer program was written to simulate NAPL flow with
dissolution and aqueous-phase transport in a vertical, discrete, rough-walled fracture
embedded in a porous, but non-permeable matrix. The rate of NAPL flow through a
fracture, the distribution of NAPL in the fracture, the dissolved mass concentration
distribution in the fracture and the matrix, and the amount of mass that diffuses into
the porous matrix surrounding the fracture were examined as a means of defining
the total system behaviour, including the effects that coupling flow and transport
together have. The sensitivity of these model outputs to differing input parameters
was also examined.

The coupling, or the effect that both dissolution and aqueous phase transport
have on flow, was found to be weak at low to moderate NAPL solubilities. Matrix
diffusion was very sensitive to the diffusion coefficient, NAPL solubility, and matrix
porosity. The sensitivity of NAPL flow to other factors such as fracture aperture
field statistics, NAPL properties, and boundary conditions was also examined and
found to have varying degrees and types of sensitivity. In particular, mean aperture

and variance have a great effect on NAPL travel time and distribution.
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Chapter 1

Introduction and Objectives

The widespread use of non-aqueous phase liquids (NAPLs) such as trichloroethy-
lene and other chlorinated solvents in recent history has led to a large number of
intentional or inadvertent releases of NAPL into the subsurface. These chemicals
can migrate into irrigation or drinking water supplies and be difficult and costly to
remediate (Mackay and Cherry, 1989; Imhoff and Miller, 1996). Efforts to contain
subsurface contamination are often hampered by the existence of subsurface materi-
als containing fractures because fractures may act as high permeability conduits for
flow and contaminant transport. Knowledge of the processes that control flow and
transport through fractures is limited; furthermore, the parameters needed to de-
scribe flow and transport through fractures are not easily characterized. This study
enhances our understanding of two-phase flow and transport processes in fractures
by exploring the degree to which coupling of dissolved aqueous phase transport with
immiscible phase flow should be a significant consideration. Also examined is how
dissolution and matrix diffusion rates might affect the distribution of NAPL in a
rough-walled fracture, and if the matrix serves as an important storage mechanism
for contamination.

Traditional fracture flow and transport studies often assume that a fracture can be
represented by two smooth parallel plates. However, as virtually all natural fractures
are non-smooth and non-parallel, the validity of this representation must be evalu-

ated. Many researchers have done so (Witherspoon et al., 1980; Brown, 1987; Ge,
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1997). Their major findings are, generally, that the cubic law is an acceptable repre-
sentation of a rough-walled fracture on a local scale; however, this characterization
can be sensitive to stress exerted on the fracture as well as microscale fracture rough-
ness. The cubic law is, at best, a reasonable (if simplified) conceptual representation
of a rough-walled fracture.

The computer program FaTMatD was written to simulate NAPL flow with dis-
solution and aqueous-phase transport in a vertical, discrete, rough-walled fracture
embedded in a porous, but non-permeable matrix. A log-normally distributed, expo-
nentially correlated aperture field was assumed, with permeability on the local scale
estimated by the cubic law. Model inputs were either taken from the literature or
assumed, as appropriate. The rate of NAPL flow through the fracture, the distribu-
tion of NAPL in the fracture, the dissolved mass concentration distribution in the
fracture and the matrix, and the amount of mass that diffuses into the porous matrix
surrounding the fracture were examined as a means of defining the total perceived
system behaviour, including the effects that coupling flow and transport have. The
sensitivity of these model outputs to differing input parameters was also examined.

Traditional studies (Mackay and Cherry, 1989; Mercer and Cohen, 1990) assume
that dissolved phase NAPL cannot dissolve and/or diffuse into a porous matrix.
Other studies, such as the study conducted by Mayer and Miller (1986), consider
NAPL flow with dissolution and transport sequentially, where NAPL dissolution
has no effect on the bulk movement of NAPL. Parker et al. (1994; 1997) quantified
dissolution and matrix diffusion in the absence of bulk NAPL or aqueous-phase flow.
The novel aspect of the study conducted here is the simulated coupling between the
flow of NAPL and transport of the dissolved phase in a fracture and the surrounding
porous matrix. It combines aspects of the above mentioned studies to provide a more
conceptually correct solution for NAPL flow with dissolution in a single, rough-walled

fracture.



Chapter 2

Background and Theoretical

Development

Schwille (1988), Kueper and McWhorter (1991), Parker et al. (1994), Banack (1996),
and others have offered conceptual models similar to that shown in Figure 2.1. Here,
a dense non-aqueous phase liquid (DNAPL), such as creosote or a chlorinated sol-
vent, has been released into the subsurface where it percolated down through the
unsaturated zone. Upon reaching the watertable, the DNAPL continued to migrate
downward because it is denser than water. The free-phase DNAPL’s downward mi-
gration might be arrested by capillary barriers such as a low permeability aquitard
or bedrock; however, if this barrier contains fractures, low may continue downwards.
This study addresses migration processes through such fractures.

The way that DNAPL moves through fractures depends on several factors. Some
of the chemical constituents that make up the DNAPL may dissolve and subsequently
be transported in the aqueous phase. The dissolved phase is also subject to diffu-
sion into the porous medium that surrounds the fracture. Matrix diffusion acts to
attenuate the migration of dissolved-phase constituents (Ross and Lu, 1999).

The fractures shown in Figure 2.1 interconnect with one another, thus forming a
network. The network may act to expand the range of a spill or leak by facilitating
movement of both the free-phase NAPL and its dissolved constituents. This in turn

may increase the extent of subsurface contamination, even though the concentrations
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Figure 2.1: Conceptual model of a contamination scenario.



of dissolved phase contaminant may decrease substantially. These contaminants,
even at reduced concentrations, can migrate into and contaminate aquifers used for
drinking water or irrigation.

There are many ways that fractures, either singly or in fracture networks, may be
conceptualized. The three major conceptual models are the equivalent porous media
model, the dual porosity model, and the discrete fracture model. The equivalent
porous media model attempts to approximate fracture and surrounding matrix prop-
erties, such as porosity and permeability, with average porous media properties. The
dual porosity model acknowledges that the fracture and the matrix have very differ-
ent properties with respect to porosity and permeability. As a result, the fracture is
characterized by a high permeability and low porosity, while the medium surrounding
the fracture is characterized by a low permeability and high porosity. The discrete
fracture approach treats the fracture by itself, often without the consideration of in-
teraction with the surrounding porous media. The following three sections describe

these three conceptual models in greater detail (Anderson and Woessner, 1992).

2.0.1 Equivalent Porous Media Approach

The equivalent porous media approach replaces the fracture/matrix porosity and
permeability with a continuous porous medium which attempts to approximate the
fractured system with effective hydraulic properties. Tsang and Tsang (1989) used
this approach to simulate water flow and tracer transport in a single fracture. This
surrogate system tries to achieve the same overall flow pattern as the original fracture
system, contingent upon the assumption that the fractured material can be treated as
a continuum and that a representative elementary volume (REV) can be defined and
assigned effective hydraulic parameters. An REV is defined as the smallest volume
that can be assigned constant, unique properties such as porosity and permeability
(Baveye and Sposito, 1984).

The equivalent porous media approach is commonly used to represent fracture

networks at a regional scale (Moreno et al., 1988), as the difficulty in determining the



appropriate REV size for smaller scale problems precludes it from being an effective
conceptual model at the local scale. Additionally, this conceptual model is used to
emulate very densely fractured systems. As this thesis study involves neither regional

nor densely fractured systems, this approach has not been taken.

2.0.2 Dual Porosity Approach

The concept of dual porosity representation is directly applicable when explicitly
considering fractures in a porous matrix. The porous matrix that surrounds a discrete
fracture may have a very low permeability (ie., low ability to transmit fluid), but
very good storage characteristics due to high porosity; porosities of up to 70% are
not uncommon (Parker et al., 1994) for commonly fractured materials. Conversely,
fractures typically have a very high capacity to transmit fluid, or a high permeability,
but make up only a very small volume of void space (porosity) of the medium. So,
it is often not acceptable to define a single representative elementary volume that
can be characterized with a single permeability and porosity for fractured media, as
these permeabilities and porosities are functions of space and time. Nor is it feasible
to completely separate the fractures and the matrix from one another. So, it must
suffice to define a small block of porous medium as having two conductivities and
two porosities, collectively known as dual porosity.

The dual porosity model is usually applied to fracture networks in low perme-
ability porous media (Rossen and Shen, 1989; Peng et al., 1990; Fung, 1991). This
model has also been used to represent matrix diffusion in areas where the fractures
in the network exist below the modelling scale (Sudicky and McLaren, 1992). The
study here involves examination of only a single fracture embedded within a porous

matrix; therefore, the dual porosity conceptual model was not utilized. -

2.0.3 Discrete Fracture Approach

The discrete fracture conceptual model treats each fracture in a porous matrix as a

discrete entity, where the fracture may or may not be considered as part of a bigger



network of fractures. This approach often assumes that free-phase movement (of
water, NAPL, or air) occurs only in the fracture, and not in the surrounding porous
matrix. As such, the discrete fracture approach is typically applied to fractures
embedded in matrices with low permeability; however, it is possible to include free-
phase movement in the matrix. This makes this approach very widely adaptable, yet
costly in terms of computational time and efficiency.

The classical discrete fracture approach considers a fracture as being characterized
by a set of parallel plates with uniform aperture along its length. This leads to
the development of the “cubic law”, which states that the volumetric flow rate per
unit width of fracture is directly proportional to the cube of the aperture if flow is
laminar (Wang, 1991). It can also be determined from the cubic law that the effective

permeability of a fracture or fracture segment is given by (Pruess and Tsang, 1990):
b2

k= —
12

(2.1)

where b is the aperture width. The cubic law has been shown to be locally valid
for small fracture lengths (Witherspoon et al., 1980; Brown, 1987; Ge, 1997). In
order to simulate a rough-walled, or variable aperture, fracture, many workers have
assumed that the apertures within a fracture conform to log-normal distributions
with an exponential correlation structure (Kueper and McWhorter, 1991; Mendoza
and Sudicky, 1992). These fracture aperture distributions are biased towards having
a large number of apertures considerably smaller than the mean aperture and a
relatively small proportion of large apertures (Pruess and Tsang, 1990). At the
microscale, each of these aperture segments are assumed to conform to the parallel
plate ideology.

Other discrete fracture models include conceptualizing the matrix surrounding
the fracture as cones of equal size in a closely packed configuration (Wang, 1991) or
considering the fracture as having a composite topography (Brown, 1995). Composite
topography views the fracture as having one flat side and the other rough-walled, with
the aperture width forming the distance in between them. Fractal geometry is another

method of fracture characterization used (Fetter, 1993), sometimes in combination



with other methods. This is a field of mathematics postulating that irregular objects
such as fracture apertures tend to have patterns which repeat themselves at different
scales.

As implied above, the discrete fracture approach is suitable for describing fractures
on the small scale, especially when the primary interest is describing what occurs in
the fracture itself. Complications of this approach include the efficacy of applying
the solution to an actual fracture and its flow system in the field. In almost all
cases, it is extremely difficult or impossible to determine reliable estimates of the
small scale fracture aperture statistics required from field studies; in addition, the

necessary computational requirements for this method can be very large.

2.1 Aqueous and Non-aqueous Phase Flow

In many studies (e.g., Parker et al. ,1994; Esposito and Thomson, 1999), the flow
of water and NAPL is considered to occur separately and distinctly from each other
in time and space. Parker et al. (1994) and Banack (1996) assume the fracture
is occupied with free-phase NAPL at residual saturation, with water subsequently
flushing the fracture. Because the NAPL is at residual saturation, it is assumed to
be immobile in the fracture and therefore does not flow into or out of the fracture as
a free-phase. The processes of water imbibition and drainage within fractures, with
the corresponding cocurrent influx and outflux of free-phase NAPL, are considered

in this study.

2.1.1 Wettability, Capillary Pressure, Entry Pressure, and
Saturation

The conditions under which NAPL enters into or exits from a fracture arise from a
number of fluid and fracture characteristics. Consider again the conceptual model
given in Figure 2.1. Upon NAPL initially reaching the fractured material interface,
some will pool above the fracture entry points. When the NAPL has accumulated



sufficient potential energy, it will enter the fracture. The dynamics that cause NAPL
to flow in a rough-walled fracture are very complex; the theory behind NAPL flow will
be discussed more thoroughly in this section. Note that the physics of flow through
a discrete, rough-walled fracture has many similarities to flow in porous media. As

such, both fields of study can be drawn upon.

Wettability

As a precursor to the discussion of NAPL and water flow, it is necessary to define
the average spatial distribution that NAPL and water will have in the subsurface.
This introduces the concept of wettability. In a two fluid system, one fluid can be
characterized as the primary wetting fluid, and the other as the primary non-wetting
fluid (Mercer and Cohen, 1990). The wetting fluid tends to coat the surface of grains
and occupy the small pore spaces in a porous medium, whereas the non-wetting
fluid will tend to be restricted to the large pore spaces or openings (cf., Figure 2.2).
The degree of wettability depends on the interfacial tension, or free surface energy,
between water, NAPL, and porous medium. T he interfacial tension is the difference
between the cohesive and adhesive forces in the fluids, which in turn depends on the
thermal energy of the molecules (Bear, 1972). The constitutive relationships between
the interfacial tensions for NAPL/solid grains (ons), water/solid grains (ows), and
NAPL/water (dny) are given by the Young-Laplace equation:

(Onw) COSO = Ony — Ouws (2.2)

where @ is the contact angle between the fluids. The special case where water is
considered to be perfectly wetting, and hence NAPL perfectly non-wetting, occurs
when the difference in interfacial tension between the NAPL/solid grains and wa-
ter/solid grains exactly equals the interfacial tension of the NAPL /water interface.
This means that the contact angle, or the angle that is formed between the wetting
and non-wetting fluids, is 0°. In many cases, the simplifying assumption is made that

water is perfectly wetting (Parker, 1989; Pruess and Tsang, 1990; Mendoza, 1992;
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Figure 2.2: Capillary interface in porous media for the case where the wetting fluid
perfectly wets the matrix (modified from Abdul, 1988).

Banack, 1996); however, the theory may be easily generalized for small angles.

Saturation

The fraction of the total void space in a porous medium that a fluid phase occupies
is called the saturation of that phase (Mercer and Cohen, 1990). As such, the sum
of the saturations of all fluid phases must equal unity. For a two-phase system (i.e.,

water-NAPL), this translates to:
Sw+Sn=1 (2.3)

where S,, and S, are the wetting and non-wetting phase saturations, respectively.
This equation forms a fundamental constraint that must be satisfied when solving

problems involving multiphase flow.

Capillary Pressure and Entry Pressure

When two fluids, such as water and non-aqueous phase liquid, coexist in the subsur-
face, there exists a pressure difference across the fluid-fluid interface (Parker, 1989).
This pressure difference is termed the capillary pressure (P,) and is defined as the dif-

ference between the non-wetting phase pressure (P,) and the wetting phase pressure
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(Pu):
P.=PFP,—-P, (2.4)

At equilibrium, the capillary pressure at the base of the NAPL pool is given by:

P. = (pn — pu)9H (2.3)

where py is non-wetting (NAPL) phase density, p, is wetting (water) phase density,
g is gravitational acceleration, H is the height of the NAPL pool, and P, and F,
are the pressures exerted by the wetting and non-wetting phases, respectively. This
assumes that the top of the pool exists at zero capillary pressure and that hydrostatic
conditions prevail.

NAPL will enter a water-filled fracture only if the capillary pressure at the lead-
ing edge is greater than the fracture entry (or displacement) pressure (Kueper and
McWhorter, 1996). This means that the NAPL pressure must exceed the pressure
needed to penetrate the fracture. If a rough-walled fracture can be considered to
locally behave like a pair of parallel plates (rather than as tubes), the entry pressure
of the fracture is given by (Pruess and Tsang, 1990; Reitsma and Kueper, 1994):

P = 20p COS 8

; ; (2.6)

where b is the aperture width of interest. If water is assumed to be perfectly wetting,

the contact angle is 0° and (2.6) reduces to:

20
. 2.7
Pl=% (2.7)
NAPL enters the fracture when:
P.>P; (2.8)

Conversely, for NAPL already occupying a fracture, exit of NAPL from the fracture
occurs when:

P.< P (2.9)
where the pressure required to exit the fracture may be different than the fracture

entry pressure due to a locally different aperture value at the exit point.

11



So, fractures with smaller apertures have larger entry pressures and hence require
larger capillary pressures and, in turn, higher pool heights to force entry. Equations
2.8 and 2.9 collectively mean that the larger apertures are the first to receive and to
discharge NAPL. These processes are somewhat temperature dependent; however, as
temperature only shows a very small variation in the subsurface, it is valid in most
cases to consider it to be constant.

The theory of capillary/entry pressure relationships has applications for tradi-
tional percolation theory. This approach assumes that fluid is distributed through-
out the domain of interest in a steady-state distribution (Mendoza, 1992), implying
that all accessible areas of a fracture where the capillary pressure exceeds the en-
try pressure are invaded by NAPL. This assumes that sufficient time is available for
equilibration, and that capillary forces dominate over viscous forces. Quantification
of whether or not the latter criterion is met has been expressed as the dimensionless

capillary number (modified from McWhorter and Kueper, 1996):
N.=H (2.10)

where v is the average linear velocity and  is the fluid viscosity. When N, is small (on
the order of 10™* or less), capillary forces dominate. What traditional percolation
theory often does not account for, however, is that all areas of the fracture may
not be available for flow. Further, some areas of the fracture may be disconnected
from others due to contact points where the fracture closes off; also, some areas may
not receive flow due to preferential channelling by the NAPL through the fracture.
This has implications for dissolution and matrix diffusion as areas of the fracture
that have more NAPL will be subject to these processes to a greater extent than
“cleaner” areas. Although it is possible to modify traditional percolation theory
using accessibility and trapping criteria, it still cannot be used in transient scenarios.
Furthermore, traditional percolation theory does not consider viscous effects of active
flow. With these restrictions, percolation theory precluded itself from being used in

this study.
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Capillary Pressure and Saturation

Small capillary numbers, where capillary forces dominate over viscous forces, val-
idate the use of capillary pressure versus saturation curves. A capillary pressure
versus saturation curve is considered to be primarily a function of pore/grain size
and orientation, and hence is “unique” to a particular porous medium. The corollary
to pore/grain size in porous media for fractures is the aperture width, where NAPL
migration into the aperture segment is presumably “step-like” in nature. This means
that the NAPL saturation in the segment increases rapidly after NAPL reaches the
required entry pressure. These curves can be experimentally derived as a best-fit
curve on a plot of capillary pressure versus saturation. Alternatively, several workers
have put forth empirical equations to represent capillary pressure-saturation curves.
Perhaps two of the most notable capillary pressure versus saturation relationships
were presented by Brooks and Corey (1964) and van Genuchten (1980). The Brooks-
Corey relationship is given by (Brooks and Corey, 1964):

Se = (%) - (2.11)

where P, represents the entry (or displacement) pressure, A is the pore size distribu-

tion index, and S, is the effective saturation of the given phase given by:
S, =2—=0 i=w,n (2.12)

with S; representing the phase saturation and S,, the phase saturation at residual.

The relationship given by van Genuchten (1980) is:

(BT 219

where m is a fitting parameter based on model calibration.

Se =

Curves of capillary pressure versus saturation are useful in modelling two-phase
flow because saturation is usually more easily measured than capillary pressure (Fet-
ter, 1993), although both functions are quite difficult to measure in fractures at the

microscale. An example curve of capillary pressure versus saturation typical of a
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Figure 2.3: Sample capillary pressure versus saturation curve typical of a fine-grained
sand.
fine-grained sand is shown is Figure 2.3. In addition, the concept of maintaining a
small capillary number also means that, in most cases, the “viscous coupling effect”
(Rose, 1993), or viscous drag that occurs across the macroscopic interface between

different fluid phases, can be justifiably neglected.

Capillary Pressure Scaling

For similar media, it is often convenient to define a single dimensionless capillary
pressure versus saturation curve and then “scale” the curve to account for differences
in intrinsic permeability. Leverett (1941) derived the following relationship between

capillary pressure and dimensionless capillary pressure:

P (kY
Pi=" ( ¢) (2.14)

where P! is the dimensionless capillary pressure. Leverett originally found a = 0.5;
it is often treated in the literature as a fitting parameter (Kueper and McWhorter,

1991).
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Figure 2.4: Typical relative permeability versus saturation curves for the wetting
phase (k,,) and the non-wetting phase (k.,) (after Peaceman, 1977).

2.1.2 Relative Permeability and Saturation

For a single phase flowing by itself in a medium, the ability that the medium has
to transmit fluid is given by its intrinsic permeability (Fetter, 1993). In two-phase
flow, however, the presence of the second fluid phase may significantly impede the
progress of the first phase, and vice versa. This effect requires the introduction
of a dimensionless relative permeability term into Darcy’s Law to account for the
interference between phases. This term is usually taken to be a function of the fluid
saturation. The relative permeability is expressed as a number between 0, which
applies when none of the phase of interest is present (S; =0,i = w, n), to 1, which
applies when the medium is totally saturated with that phase (S; = 1.0,i = w,n)
(Parker, 1989). As such, the permeability of the medium for a given fluid phase
is given by the product of its intrinsic permeability and its relative permeability.
Each phase will have its own intrinsic and relative permeability. Typical relative

permeability versus saturation curves for two-phase flow are shown in Figure 2.4.



The relationship between relative permeability and saturation has been widely
studied (Mercer and Cohen, 1990; Reeves and Celia, 1996). Brooks and Corey (1964)
have presented the following two equations to describe relative permeability for both

the wetting and non-wetting phases:
ky, = SN/ (2.15)

b, = (1= S,)2 (1 = SE+HIA) (2.16)

where ) is determined from 2.11.
van Genuchten (1980) also derived a different representation using Mualem’s

(1976) k, model for relative permeability versus saturation:

ko= /S L= (1- sym)™)* (2.17)

k. = /(1= 5.) (1= 8™ (2.18)

n

where m is the van Genuchten fitting parameter in 2.13.

2.1.3 Flow Equations

The mathematical equations used to represent the flow process are fundamental to
any rigorous study into multiphase flow. Parker (1989) gives the following equations

to represent multiphase flow in porous media:

k,’j -an 0z

G = —kro e | 33; + Pug 61-,-] (2.19)
_ k,’j 'BPn 0z

G, = k,,““ %z, + png 0:1:,-] (2.20)

where g is the volumetric flux density, or Darcy velocity, of phase w or n in the ith
coordinate direction; k, is the relative permeability of each respective phase; k;; is the
intrinsic permeability, with direction indices 1 and j repeated indicating summation
in tensor notation; z is the elevation head; z; is the jth Cartesian coordinate; p is the

phase density (which may vary in space and time); and g is gravitational acceleration.
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Note that the above equations are dependent upon the implicit assumption that
flow is laminar so that it may be characterized by Darcy’s Law, which states that flow
velocity is directly proportional to hydraulic conductivity K and hydraulic gradient
dh/dl (encompassing pressure, elevation, fluid density and viscosity, and gravitational
acceleration). This also means that the Reynold’s number, which gives the ratio of
inertial forces to viscous forces, must be sufficiently low (Brown, 1987). In most
cases, groundwater flows slowly enough that this requirement is easily met; however,

forced advection in fractured media may be an important exception.

2.1.4 Continuity Equations

Also important in the study of flow is the idea of mass continuity, which requires that
the amount of mass in a system be preserved. For multiphase flow, the continuity
equations for each phase based on their simultaneous flow can be described in the
following equations (Parker, 1989):

595 i) [’2& (an 9z )1

- . -

R az; 9581,

95, _ 0 [kghrs (0P 0]
ot 6x,~ Hn 62,- p"ga:c,- ]

where ¢ is the medium porosity; pw and p, are the wetting and non-wetting phase

+Qu=0 (2.21)

+Qn=0 (2.22)

viscosities, respectively; and @, and Q. are source/sink terms for the wetting and
non-wetting phases, respectively. In numerical modelling, a mass balance is often
performed as a check on the stability of the solution (Celia et al., 1990; Celia and
Binning, 1992); however, Celia et al. (1990) also point out that even solutions which
are perfectly mass conservative may still suffer from instability. These continuity

equations provide the basis for the two-phase flow implementation.

2.2 Dissolution

To this point, fundamental equations describing flow and continuity of water and

NAPL have been presented without the inclusion of chemical interaction between
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the two phases. Although NAPL is commonly considered to be immiscible with wa-
ter, it does undergo limited dissolution into the aqueous phase to a maximum of
its solubility limit. This creates a cause for concern as residual NAPL, or NAPL
that is immobilized by capillary forces, may dissolve for very lengthy time periods
at levels that create dissolved phase aqueous concentrations that are orders of mag-
nitude higher than drinking water standards (Mercer and Cohen, 1990; Kueper and
McWhorter, 1991). In addition, non-uniform dissolution may result in fingering, or
NAPL ganglia which are disconnected from each other (Parker et al., 1996); these
immobile “blobs” reduce the permeability of the medium or fracture to aqueous flow
(Imhoff and Miller, 1996). This, in turn, may hinder remediation of contaminated
media as most remediation strategies involve mobilizing the contaminants.
Dissolution will continue until either equilibrium is reached or the system is al-
tered. A discussion of equilibrium versus kinetic or rate-controlled dissolution will

be presented later in this section.

2.2.1 Dissolution as a Diffusive Process

Miller et al. (1990) and Powers et al. (1992), based on much earlier work, postu-
late that dissolution is a diffusive process that can be expressed as a quasi-steady

approximation of Fick’s first law:
J = —ks(C —3) (2.23)

where J is the net mass flux per unit volume of the species [M]/[LT], C is the dis-
solved aqueous concentration for that constituent, s is the equilibrium concentration
(solubility limit) for that constituent, and k; is the mass transfer coefficient. The
mass transfer rate is limited by diffusion across a boundary layer (Powers et al., 1992).
As such, the mass transfer coefficient is directly proportional to the NAPL diffusion
coefficient and inversely proportional to the thickness of the boundary layer. It is
assumed that the concentration gradient is linear (i.e., that steady-state has been

reached). For application to fractures, Equation 2.23 must be modified to account
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for the interfacial area of the NAPL/water contact for fracture geometry (Banack,
1996). The modified form is:

J = —bwk(C - s) (2.24)

where J' is the total mass flux for the fracture [M L?]/[T], b is the aperture and w is
the width of an aperture segment.

Other models, such as the two-stage model and the dual-resistance model (Weber
et al., 1991), are alternatives to the linear diffusion model. Discussion of these is

beyond the scope of this thesis, but may be considered at a later time.

2.2.2 Equilibrium versus Rate-controlled Dissolution

Many studies (e.g., Parker et al., (1994)) consider dissolution as being an equilibrium
process. This means that at all times, NAPL has dissolved to its solubility limit.
This viewpoint does not consider the time that NAPL takes to dissolve into the
aqueous phase. In reality, due to the presence of low NAPL saturations, the presence
of heterogeneities in the porous media, or the effects of aqueous phase bypassing,
residual NAPL saturation, or immobile NAPL blobs, result. These can be formed by
“snap-off” mechanisms where pore throats are much smaller than pore bodies (Mercer
and Cohen, 1990). The residual NAPL blobs contribute to long-term subsurface
contamination in porous media and fractures as they may continue to dissolve and
contaminate adjacent water for very lengthy time periods. In this case, aqueous phase
concentrations that are significantly out of equilibrium may be observed (Mayer and
Miller, 1996). In addition, residual NAPL may be remobilized as a result of increased
hydraulic gradients (Kueper and McWhorter, 1991), and significantly expand the
range of dissolved phase contamination.

Note that whether equilibrium or kinetic dissolution is appropriate may depend
quite strongly on scale. It is very difficult to quantify the kinetic dissolution factor
for a large problem, and it may not be feasible to define an equilibrium model for a

problem when great levels of detail are required. The question of equilibrium versus
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rate-controlled dissolution continues to be an area of active research (Frind et al,

1999).

2.3 Aqueous Phase Transport

After some of the NAPL has dissolved into the aqueous phase, it can then be trans-
ported in porous media and fractures with bulk advection of water or due to concen-
tration gradients. The dissolved phase is subject to the process of matrix diffusion,
where some of the solute diffuses into the adjacent porous blocks. Calculations by
Parker et al. (1994) postulate that the process of matrix diffusion is a significant

mechanism for removing NAPL from the fracture.

2.3.1 Transport Equation

Aqueous phase transport may also be described by equations that mathematically
represent the relevant physical and chemical processes that occur. The two-dimension,
non-reactive transport equation as given by Freeze and Cherry (1979) for uniform
porosity is:

ac o oc ac

—v,-gx—i + EL‘: .'j'a—a = R—a-t— L) =5,y (2.25)

where D;; is the hydrodynamic dispersion coefficient, C is the aqueous phase con-
centration, £ and y are Cartesian coordinate directions, v; is the velocity in the ith
direction, and R is the retardation factor. The first term represents advective (or
bulk) movement of solute with groundwater flow, the second term represents dis-
persive movement of the tracer, and the right-hand term represents storage. The
dispersion coefficient is a tensor that describes spreading due to the tortuous path
the contaminant must take around soil grains through the pore space. To repre-
sent two-dimensional advection and dispersion in a fracture, Equation 2.25 may be

rewritten as (Sudicky and Frind, 1982):

oCc 0 oC oCc .
—bv.--é?i + —a—z—ibDijgz—j = bRB? LI=I,Y (2.26)
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to take into account fracture aperture (b). Note that the hydrodynamic disper-
sion term, D;;, is a function of fracture dispersivities oy (along flowpath) and ar
(transverse to flowpath), respectively; Dy; is also a function of the average ground-
water velocity in the ith or jth coordinate direction v; and vj, their Euclidean norm
v= m , and the effective diffusion coefficient D* (Fetter, 1993). The preceding

statements may be described mathematically by the following relationship:

UiV;
D,’j = (C!L - aT)-ﬁ]-'i + arlvl +D* (2.27)
where oy and ar are the longitudinal and transverse dispersivities, respectively.

Matrix Diffusion

After the water and NAPL have been introduced into the fracture and dissolution
has begun, the dissolved phase may migrate into the surrounding porous blocks.
This process, known as matrix diffusion, removes dissolved phase NAPL from the
fracture by diffusion into the matrix. Note that this is predicated on the need for the
matrix to have appreciable porosity. If this is not the case, NAPL will continue to
dissolve until it is completely flushed away by invading water (after NAPL invasion
has halted).

Diffusion in one dimension is commonly described by Fick’s first and second laws

(Fetter, 1993):

ocC
F=-¢D" | — 2.28
acC . [8C
= =D (&;) (2.29)
where F; is the mass flux of solute per unit area per unit time in the ith coordinate
direction.
Sorption

Sorption is a process which may remove contaminants from the mobile aqueous so-

lution. It involves chemical interaction between the dissolved contaminant and the
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solid matrix, and is described by a partitioning coefficient K;. Both matrix diffusion
and sorption create an additional obstacle for subsurface remediation, as fresh wa-
ter flushing by the NAPL-adsorbed sites is subject to NAPL contamination by the
reverse concentration gradient created from the porous matrix, where NAPL concen-
trations are high, to the fresh water in the fracture. Clean water in the fracture may
also be subject to contamination from reverse partitioning from the matrix. Sorp-
tion is not considered in this study; therefore, concentrations in the fracture may be

overestimated.
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Chapter 3

Model Development and

Verification

A numerical model was developed to simulate coupled two-phase flow and dissolved-
phase transport in a rough-walled fracture and the surrounding porous matrix. This
model, FaTMatD (Flow and Transport with Matrix Diffusion) is based on Swan-
flow2D (Faust and Rumbaugh, 1990), which simulates the flow of oil and water in

porous media.

3.1 Overview of Swanflow2D

Swanflow2D is a block-centered finite-difference model which simulates simultaneous
flow of water and a completely immiscible fluid in two-dimensional heterogeneous
porous media. The model is capable of performing the simulations either in the
saturated zone or in the unsaturated zone. A passive air phase, which moves only in
response to displacement by other phases, is assumed in the unsaturated zone. Due to
the non-linearities inherent in a two-phase flow simulation, a full Newton-Raphson
iteration scheme is used to solve for the dependent variables of water saturation
and non-aqueous phase liquid pressure. Heterogeneity and anisotropy are permitted.
Two-phase flow implementation specifics of the Swanflow2D model are discussed in

detail in Faust (1985) and Faust and Rumbaugh (1990), and hence are not repeated
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here.

The original model was verified as working correctly for a number of test cases,
which included a comparison between Swanflow2D, another numerical model, and the
analytical solution presented by Buckley and Leverett (1942) for a linear waterflood of
a petroleum reservoir. A petroleum reservoir with an initial NAPL saturation of 0.84
was subsequently flooded with water. These verification simulations were repeated
following modifications to the code for this study to confirm that the two-phase flow

component was not inadvertently altered.

3.1.1 Summary of Dependent Variables

The coupled two-dimensional equations describing simultaneous water and NAPL

flow posed in terms of the dependent variables of water saturation and NAPL pressure

are given by:
0Sy 0 [kijk,, (0P, - F. 0z _
e_c'it_ 0z; [ Pw ( 0z; p‘”gax,-)] TQu=0 (3.1)
8(1 - Sw) 0 kijk,-" BPn 0z _
g at axi [ fin (ax:’ pﬂgaz‘])] + Qn =0 (3'2)

Initial conditions must be specified by the user for both of the dependent variables.
Type I boundary conditions may be specified by the user, where selected grid blocks
are constrained to the water saturation and NAPL pressure values initially assigned
by the user. All other boundary blocks default to Type II (zero flux normal tc the
boundary).

Equations 3.1 and 3.2 are coupled though the water saturation and capillary

pressure equations, given in Section 2.1 as:
Su+Sn=1 (3.3)
P.=P,-P, (3.4)

Swanflow2D solves 3.1 and 3.2 simultaneously for the dependent variables of water
saturation and NAPL pressure, and then uses these and 3.3 and 3.4 to calculate the

other output parameters (water pressure, NAPL saturation).
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3.2 Grid

Simulations were carried out on three-dimensional grids composed of grid blocks with
constant width and height but variable depth (to represent the aperture). Figure 3.1
shows the fracture grid block conceptualization, as well as the nodal points at which
parameters are defined and dependent variables determined. The plane which cuts
the fracture in half acts as a symmetry boundary for matrix diffusion.

The fracture was conceptualized as being embedded in a low permeability, porous
rock matrix. This representation assumes that the matrix permeability is sufficiently
low so as to not allow advective free-phase fluid flow to a significant degree. Conse-
quently, diffusion into and within the matrix are the only transport processes mod-
elled in the matrix. Figure 3.2 schematically demonstrates the matrix grid block
discretization used in model simulations. The spacing was chosen to approximate a
semi-infinite domain for diffusion. The number of grid blocks required orthogonal to
the fracture is largely a function of the strength of the diffusive process as well as the
physical size of the domain. The dimensions of the grid blocks were chosen so as to

approximate as closely as possible continuous planes of nodal points (see Figure 3.2).

3.3 Solver

One of the primary drawbacks of using Swanflow2D in its original form included
Swanflow2D’s use of a Gauss-Doolittle direct solver. Behie and Vinsome (1982)
indicate that, because iterative solvers are less memory-intensive and may require
fewer computations, an iterative solver would likely increase computational speed
and efficiency compared to a direct solver. The iterative block solver FIVEPTB,
developed at the University of Alberta by Mendoza, was implemented and verified as
working correctly through a reverification of the linear waterflood simulation (Section

3.1).
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Figure 3.2: Cross section of fracture and matrix showing grid block spacing into the
matrix. The first matrix block has variable spacing such that all blocks terminate
along the same plane. The second matrix block has a depth of the largest half
aperture. Each subsequent matrix block after the second increases geometrically by
a factor of four times the depth of the block preceding it. Note that the horizontal
scale is exaggerated relative to the vertical scale.
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3.3.1 Iterative Solver

Behie and Vinsome (1982) give the following outline for the development of an itera-
tive solver. The iterative block solver FIVEPTB solves simultaneously for more than
one equation or unknown at each nodal point. In this case, the unknowns are water
saturation and NAPL pressure. The matrix equation for cne unknown, in general
terms, is given by:

Az =r1° (3.3)

where A is the original matrix, z is the solution vector, and r° is the original residual.
The matrix A is subsequently approximated by the sum of a lower triangular matrix
L, a diagonal matrix D, and an upper triangular matrix U, so that A = LDU. This is
known as incomplete LU factorization, and is generally carried out because it can be
very costly to factor the original matrix directly. A forward substitution is performed,
followed by a backward substitution, to obtain a first approximation to the change
in z. The process is then repeated until convergence is achieved. Convergence will
be discussed more fully in Section 3.9.

In addition, ORTHOMIN acceleration is used as it is the most suitable technique
for strongly non-symmetric matrices arising from a fully implicit oil-water flow sim-
ulation. This technique involves performing a number of orthogonalizations which
act to reduce the number of iterations required considerably. Further details of this

acceleration technique are given in Behie and Vinsome (1982).

3.3.2 Results of Direct Versus Iterative Solver Comparison

For the base flow run used (see Chapter 4), the iterative solver increased computa-
tional efficiency, and hence decreased central processing unit (CPU) time, by roughly
nine times. Thus, the implementation of the iterative solver was very important in
the timely completion of the study, and, because iterative solvers are less prone to
accumulated roundoff errors (Behie and Vinsome, 1982), this implementation may

also have led to more accurate solutions.
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3.4 Aperture Characterization

Fields of exponentially-correlated, log-normally distributed apertures were generated
with the computer program FGen (Robin et al,, 1993). The resulting output was then
read into the model such that each grid block on the fracture plane was assigned an
aperture. Each aperture field had a specified log mean aperture (Y) and log-aperture
variance (0% ), as well as a degree of spatial correlation (Asp). The degree of correlation
expresses the likelihood of the aperture of one grid block being statistically similar
to the apertures of its surrounding neighbors. This type of aperture distribution has
been shown to reasonably emulate the aperture distribution observed in real fractures
(Moreno et al., 1988; Reitsma and Kueper, 1994; Abdel-Salam and Chrysikopoulos,
1996). Figure 3.3 shows one fracture aperture distribution used in the model studies.

The parameters are given in the figure caption.

3.5 Capillary Pressure and Saturation Relations

To reiterate what was stated in the previous section, each fracture grid block was
assigned an aperture. Hence, each grid block has an associated intrinsic permeabil-
ity characterized by the “cubic law” (see Section 2.0.3). Grid blocks with different
apertures will exhibit different capillary pressure and relative permeability behaviour
for given water saturations. As a result, each unique aperture requires the definition
of unique capillary pressure versus saturation and relative permeability versus sat-
aration curves. For the large number of grid blocks with differing aperture values
simulated, it is prohibitively expensive in terms of memory and computational effi-
ciency to input all of these different curves as model inputs. As a result, the capillary
pressure scaling procedure developed by Leverett (1941) was implemented.

The basic theory behind Leverett-J capillary pressure scaling was outlined in
Section 2.1.1. For the purposes of modelling, a reasonable assumption was made that
small-scale heterogeneities were similar from one block to another. A dimensionless

capillary pressure curve was generated using Brooks-Corey relationships (Equations
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Figure 3.3: Fracture aperture distribution for Y =-8.8 (corresponding to a geometric-
mean aperture of approximately 150 x10~° m) and o = 0.65. The dark coloured
areas show smaller apertures. The grid is composed of 75 aperture blocks each with a
width and height of 0.05 m. This aperture field is used for the base case (see Chapter
4).
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Figure 3.4: Dimensionless capillary pressure versus saturation curve used in base flow
runs. The curve was generated with A =1, S,, = 0.1, and ¢y = 1.

2.11 and 2.12) and was subsequently scaled to become a unique, dimensional capillary
pressure curve for each unique aperture. As only one curve was used, with a simple
one-line calculation to convert from dimensionless to dimensional capillary pressure,
a considerable savings in computational time and memory were expected. A similar
procedure was used to scale dimensionless relative permeabilities to dimensioned
relative permeabilities. The primary dimensionless capillary pressure curve used is
shown in Figure 3.4.

The relative permeability versus saturation curves used are shown in Figure 3.5.
The parameters for both graphs are given in the figure captions. The parameters
chosen for simulations are consistent with previous work by Kueper and McWhorter
(1991) and Slough et al. (1999) as being representative of real aperture capillary

pressure behaviour.

31



1.0 —= 1

N\ i

\ 5

208 - \ ---- watercurve -

= . —— NAPLcurve '

2 06 | N =
: o \ &
& \\\ /J ‘
o 04 ) L.
2 |
s | |
L 0.2 I \ i
0.0 ' 1
00 02 04 06 08 1.0

water saturation

Figure 3.5: Relative permeability versus saturation curve used in base flow runs. The
curve was generated with A =1, §;, = 0.1, and ¢y = 1. Refer to Figure 3.4 for the
capillary pressure versus saturation curve.

3.6 Flow Simulation

All of the simulations were conducted in essentially the same fashion. A water Aow
run with a specified average gradient up or down the fracture was initially set up and
run until the solution for water pressure reached steady state, or did not change from
one time step to the next. Then NAPL, with a specified saturation consistent with
the NAPL pressure, was placed at the top of the fracture and the simulation was
restarted. This latter procedure more accurately represents the true physical system,
where water is assumed to be flowing for some time before NAPL is introduced.
Due to the non-linearities inherent in the flow formulation, the original authors
implemented into Swanflow2D a fully-implicit treatment of the non-linear terms,
with the relative permeability terms having upstream weighting. The nonlinear equa-
tions are then linearized using a residual formulation with Newton-Raphson iteration
(Faust and Rumbaugh, 1990). In the Newton-Raphson iteration scheme, a Taylor

Series expansion is performed about an assumed solution for the finite difference
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equations, leading to a linearized matrix equation. This assumed solution is the so-
lution at the previous iteration or time level. Huyakorn and Pinder (1983) observed
that this method tends to converge quite rapidly. Convergence is determined by per-
forming a mass balance for each fluid and comparing them to the given tolerances
(Faust and Rumbaugh, 1990). The reader is referred to Faust (1985) and Faust and
Rumbaugh (1990) for details regarding the implementation of the flow equations into

the original code.

3.7 Transport Implementation

As NAPL flows in the fracture, mass is transferred from the free-phase to the aqueous
(dissolved) phase via dissolution. This mass is then available to bz transported in the
fracture by advection and hydrodynamic dispersion, and is also available to diffuse
into the porous matrix via molecular diffusion. These processes were incorporated

into the model.

3.7.1 Governing Matrix Equation

The partial differential equations for transport were given in Equation 2.25. The

overall matrix equation implemented into the numerical model is given by:

(5141 - AR () = (- P4+ LRI} @8)

where 3 is the time weighting factor, A is the coefficient matrix, At is the time step
size, R is the retardation factor, T is the contaminant storage matrix, and {c‘t4¢}

and {c'} are the concentrations at time ¢ + At and time t, respectively.

B - Time Weighting

The time weighting factor defined above expresses the degree to which the solution
is evaluated based on known (old) values or on unknown (new) values. It may range

from 0 for a fully explicit solution to 1 for a fully implicit solution. When g is equal
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to 0, the solution becomes a forward difference approximation as {ct*4t} is evaluated
based on known or old values of c (i.e., {c'}). Conversely, the fully implicit time
weighting scheme (8=1) is known as the backward difference approximation. That
is, values of {c!*2*} are obtained as a simultaneous solution of linear equations at the
t + At time level (Wang and Anderson, 1982). One advantage of the fully implicit
scheme is that it is unconditionally stable for linear problems, while the explicit
scheme, particularly with relatively large time steps, is often unstable and prone to
oscillations. One disadvantage of using implicit time weighting is that solutions are
often smeared. Common alternatives to using either of these time weighting schemes
are to use the Galerkin (8 = 0.66) or Crank-Nicholson (3 = 0.3) time weighting
factors (Huyakorn and Pinder, 1983).

A - Coefficient Matrix

The coefficient matrix is calculated as the nodal sum of several components. The
first component describes the contribution of the transport of mass via advection. It
is the product of the surface area of connection between the blocks and the average
linear groundwater velocity. A central difference approximation in space, where the
advective term is averaged across the block between its neighbors, was used on all
internal blocks. However, at boundaries, either a forward difference or backward
difference approximation (as appropriate) was used to avoid extrapolating outside
the domain. In these cases, the advective term was calculated from the grid block in
question to its internal neighbor.

The second and third components of the coefficient matrix are calculated in a
similar fashion to one another. They are the nodal contributions from mechanical
dispersion and molecular diffusion, respectively. They are calculated as the product of
the surface area of connection between blocks divided by the distance between nodes,
the dispersion (or diffusion) coefficient, and the block porosity. In the fracture, these
are calculated for all blocks; in the matrix, however, the contribution for molecular

diffusion is the only transport mechanism considered. Harmonic weighting of the
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apertures was used in all cases when calculating the surface area between blocks for

processes acting parallel to the fracture plane.

T - Contaminant Storage Matrix

The contaminant storage matrix expresses how much mass is stored internally in a
block in one time step, and is very important in ensuring that all mass is accounted
for. It is calculated as the product of the retardation factor, the block volume, the

block porosity, and the water saturation.

3.7.2 Solution Procedure

Initially, the Darcy velocities for the aqueous phase are calculated from the flow
solution. Subsequently, coefficient matrix A is formed, which is followed by the
creation of the full left- and right-hand sides of Equation 3.6 with the exception of
the unknown concentrations. The matrix equation is then solved using a seven-point
iterative solver SEVNPT developed by Mendoza. The solver description is similar to
that given for the flow solver; however, only one set of equations is solved at each grid

block in three directions (two parallel, and one orthogonal, to the fracture plane).

3.8 Coupling of Flow and Transport

Recall that the major objective of this study was to investigate system behaviour
when flow, dissolution, and transport happen simultaneously. Therefore, a method
to numerically couple flow and transport was required.

The basic algorithm is illustrated in Figure 3.6. The solution begins a step for-
ward in time with the calculation of the flow solution as described in Section 3.6.
Blocks which contain a minimum NAPL saturation value of 0.1% could subsequently
participate in dissolution. The implementation of a threshold required saturation
was required for the numerical stability of the model; with insufficient NAPL in a
block for dissolution, the NAPL front jumps back and forth between iterations. As
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Figure 3.6: Model flow in FaTMatD.



a result, the solution does not converge. The dissolution-eligible blocks are subse-
quently given a concentration value equal to their user-inputted aqueous solubility.
The transport solution is then obtained as discussed in Section 3.7.

After the transport solution has been completed, the dispersive mass flux or
dissolution rate in the constrained blocks is determined. This is accomplished by
multiplying the original coefficient matrix by the new concentration vector and then
subtracting the right hand side (see Equation 3.6). The original flow solution is then
resolved with the dissolution rate acting as the sink term Q, in the two-phase flow
equations (see Equations 2.22 and 3.2). The process is repeated until both the flow
and transport solutions converge to within their respective convergence tolerances or

convergence norms.

3.9 Implementation of Convergence Norms

3.9.1 Flow Solution

Due to the added consideration of dissolution, the mass balance convergence criteria
implemented for flow was made more rigorous by insisting that the dependent vari-
ables of water saturation and NAPL pressure must also have reached steady values
from one iteration to the next. To this end, the widely accepted concept of the norm,
or metric, was adapted (Protter and Morrey, 1991; Medina and Carrera, 1996).

In the flow iteration, for the dependent variable of water saturation (see Section

2.1.4), a “Euclidean norm” is used:

i=Ny 2
E¥ = J Y (Sur-sa) (3.7)

i=1

where E? is the Euclidean norm for the Newton-Raphson iteration, Ny is the total
number of blocks in the fracture, Sy is the water saturation solution at block ¢ after
the present Newton-Raphson iteration, and Sir~' is the water saturation solution
after the previous Newton-Raphson iteration. The calculated Euclidean norm is

then compared to an input Euclidean tolerance (Ea). The flow solution continues
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to iterate until E, < Euy.
The Euclidean norm is suitable for comparisons where the range of dependent
variables is expected to vary between 0 and some small, predetermined value (in this
case, 1). It then becomes relatively easy to choose an appropriate value for Eyy. In
cases where the values of the dependent variable are not known ahead of time, it
is much more difficult to assign a value to E,. To circumvent this difficulty, the /
norm, which is very well known in mathematical analysis (Protter and Morrey, 1991),
was adopted by normalizing the norm to the average test value. For the dependent
variable of NAPL pressure, the formulation of this norm is:
i=N, nr nr—1
" = Zb IIPN.' N I

= i (P + PR

where " is the normalized /i norm for the Newton-Raphson iteration, PyT is the

(3.8)

NAPL pressure of block ¢ after the present Newton-Raphson iteration, and P,’\‘,f‘l
is the NAPL pressure of block i after the previous Newton-Raphson iteration. This
formulation allows greater ease in determining an appropriate NAPL pressure norm.
The Newton-Raphson iteration was considered to be converged when at least one of

the calculated norms was less than the norm criteria values given in the input file.

3.9.2 Coupled Solution

With minor differences, the norms described above were also used to define con-
vergence of the coupled flow and transport solution. The equations are adapted as

follows:

E? = J‘%’“ (8, - s51)° (3.9)

i=1

™ l Pti - Pt:l |

P _
I = ‘2;: . (P& " Pt:l) (3.10)
Eo™ = Jii (ct — ct-1)? (3.11)

where the variables are as described above, with the superscript cp indicating that the

norm applies to the coupled solution and the superscript con indicating that the norm
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applies to the concentration solution. The dependent variables were compared at the
¢ — 1 and t time level, respectively. Two of the three norms (saturation, pressure,
and concentration) must have converged to below their input tolerances before the
coupled solution is considered converged, although convergence of all three norms

generally occurred.

3.10 Model Verification

Due to the complexity of the finished numerical model, a suitable model for a com-
prehensive, overall verification was not available. Therefore, as is commonly done
with numerical models (Zheng, 1990; Guiguer et al., 1994), simplified simulations
were tested against various analytical solutions. The following sections outline the

verification exercises undertaken in the model development.

3.10.1 Flow Verification

The verification exercise for two-phase flow performed by Faust and Rumbaugh (1990)
was described in Section 3.1. Each time the code was significantly altered, this veri-
fication exercise was rerun to ensure that the model was still running correctly. This

verification exercise was the only one originally run by the authors of Swanflow2D.

3.10.2 Transport Verification

The transport solution was tested against a number of analytical solutions. The

following sections summarize these verifications.

Molecular Diffusion

A test case run was set up such that a specified concentration of 1000 mg/1 was placed
at the top of the fracture and at the top of the porous matrix. A transport solution

was then run in the absence of advective water flow. The results of the test case
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Figure 3.7: Crank’s diffusion solution versus FaTMatD for one-dimensional diffusion
only, plotted as a function of concentration relative to source concentration.

were verified against the diffusion solution reported by Crank (1956). The analytical

solution is given as follows:

C z
-CTO = erfc (———(4D't)) (312)

where C is the concentration solution, C, is the source concentration at z =0,t 2> 0,
z is the position in space, D* is the molecular (free) diffusion coefficient, ¢ is the
time, and erfc is the complementary error function. The results for one verification

run are given in Figure 3.7. The diffusion coefficient used was 0.01 m?/d.

Advective-Dispersive Transport

In order to test the advection and dispersion implementation, a simulation was set up
such that the top row of the fracture was constrained with a specified concentration of
1000 mg/1. Diffusion into the matrix was not simulated for this verification exercise.

The simulation parameters are given in Table 3.1.
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| parameter name value units |
grid discretizationz x z | 0.1 x 0.1 | m
flow velocity v 0.1 m/d
diffusion coefficient D* | 0.01 m*/d
dispersion coeflicient D; | 0.01 m?/d

Table 3.1: Parameters for Ogata-Banks and Craflush verification exercises.

The advection and hydrodynamic dispersion capabilities were tested against the
advection/dispersion solution developed by Ogata and Banks (1961). The analytical

solution is given as follows:

C 1 z—ut vXx X+ vt .
=3 [erfc (\/—TT—J + exp ('f)") erfc (ﬁ[Tt)] (3.13)

where C is the concentration solution, C, is the specified concentration, z is the

position in space, v is the groundwater velocity, D is the hydrodynamic dispersion
coefficient, ¢ is the time, and erfc is the complementary error function. The results
for one verification run are given in Figure 3.8.

In addition, the model was verified against the pseudo-analytical model Craflush
(Sudicky, 1988). Results similar to those seen in Figure 3.8 were obtained. The

results are not presented here.

Full Advective-Dispersive Transport with Matrix Diffusion

A total comparison of all transport components was completed against Craflush (Su-
dicky, 1988). Simulation parameters are again given in Table 3.1, with constrained
concentrations on the top of the fracture. The parameters are given in Table 3.1.
In addition to full advective-dispersive transport in the fracture, diffusion into the
porous matrix was also simulated. The results of one such simulation are shown in

Figure 3.9.
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transport in the fracture only, plotted as a function of concentration relative to
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Figure 3.9: Craflush versus FaATMatD for full advective-dispersive transport with ma-
trix diffusion, plotted as a function of concentration relative to source concentration.



3.11 Summary

The final numerical model solves for coupled two-phase flow with dissolution and
advective-dispersive transport in the fracture, with matrix diffusion into the sur-
rounding porous matrix. Care was taken to perform the smallest number of neces-
sary operations and limit the amount of memory used. The finished product enabled
further research to be conducted. The results of some of the simulations run will be

presented in the next chapter.
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Chapter 4

Results and Sensitivity Analysis

The computer model developed was used to simulate flow, dissclution, and aqueous
phase transport with matrix diffusion in a rough-walled fracture. A variety of different
conditions were tested in order to determine the sensitivity of the system to different
input parameters. Most simulations were conducted with some form of dissolution;
however, a flow simulation in the absence of dissolution was also simulated as a basis
for comparison.

Other researchers have conducted studies in this area. For example, Kueper and
McWhorter (1992) examined the behaviour of DNAPLS in a rough-walled fracture in
the absence of dissolution, and Parker et al. (1994) examined the behaviour of dissolu-
tion and matrix diffusion from parallel plate fractures in the absence of NAPL /water
flow. Sudicky and Frind (1982) simulated matrix diffusion in rough-walled fractures
in the absence of free-phase contaminant. Ross and Lu (1999) demonstrated through
the use of a computer model that matrix diffusion can be important in allowing the
remobilization of free-phase NAPL pooled above small apertures after a potentially
long period of residence time, where the decrease in mass flux from the fracture into
the matrix over time allows the capillary pressure to increase and eventually exceed
the entry pressure of the next aperture segment. Recently published is a study by
Esposito and Thomson (1999), who developed a numerical model that also couples
DNAPL flow with transport and matrix diffusion in a discrete fracture, although

dissolution is only simulated after a number of transport solutions. It was not clear
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from this research the criteria that they used in order to determine when coupling
flow and transport together becomes important in the course of a simulation. This

study did not focus on this issue.

4.1 Base Flow Scenario

A base case simulation was developed to act as a basis for comparison in the ensuing
sensitivity analysis. This simulation was designed to be sufficiently simple while
providing a clear picture of system behaviour. The base flow simulation is described

in the following sections.

4.1.1 Grid Discretization

A 3.75 m by 3.75 m grid composed of 75 grid blocks in each of the z and z coordi-
nate directions and 7 blocks in the orthogonal (y) coordinate direction was specified.
The blocks had a discretization of 0.05 m in each of the z and z directions, with dis-
cretizations in the y direction given by the aperture. The discretization procedure for
subsequent “layers” into the matrix (i.e., in the y direction) was described in Section

3.2. Figure 3.2 shows the conceptual grid discretization used in the y direction.

4.1.2 Aperture Characterization

The base flow simulation was simulated with an aperture field with ¥ = —8.8 and
0% = 0.65. This corresponds to a geometric-mean aperture of approximately 150 x
10~ m, with apertures ranging from 15 x10~° m to 2300 x10~® m. The aperture
field is shown in Figure 3.3.

4.1.3 Capillary Pressure Scaling

As explained in Section 3.5, a dimensionless capillary pressure curve was generated
using Brooks-Corey relationships. The curve parameters are reiterated in Table 4.1.

The graph of the dimensionless capillary pressure versus saturation curve used is



| Parameter Name | Symbol | Value | Units
pore size distribution index a 1.0 -
residual wetting phase saturation | Sy, 0.1 -
fracture porosity of 1.0 -
interfacial tension 4 004 | N/m

Table 4.1: Parameters for Brooks-Corey capillary pressure definition and Leverett-J
capillary pressure scaling.

shown in Figure 3.4. The curve created from the parameters listed in Table 4.1 has
been determined by other researchers (Kueper and McWhorter, 1991; Slough et al.,
1999) as being a reasonable conceptual representation of a real fracture; therefore,

the implementation of other capillary pressure curves was not undertaken.

4.1.4 Boundary Value Problem

The boundary value problem used is demonstrated in Figure 4.1. A 0.6 m column of
NAPL is placed on the centre third of the top of a discrete, rough-walled fracture;
that is, NAPL extends from z = 1.25 m to z = 2.5 m. The height of the column of
NAPL placed on the fracture in this case corresponds to a NAPL pressure of 3500
Pa. Initial constrained NAPL saturations in each of the grid blocks under the column
were obtained by comparing the NAPL pressure at the base of the column with the
entry pressure at the top of the fracture. The saturations for the 26 grid blocks
under the column are given in Figure 4.2. A hydrostatic water column is defined
for the fracture prior to the introduction of NAPL. Subsequent simulations test the
sensitivity to differing initial flow conditions and NAPL column heights. The sides of
the fracture are considered to be symmetry boundaries with respect to both NAPL

and water flow as well as aqueous phase transport.
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Figure 4.1: Conceptual diagram of boundary value problem used in model simula-
tions. The grid discretization has been simplified for illustrative purposes.
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4.1.5 Base Flow Simulation Parameters

Parameters for the base flow simulation were chosen to be representative of plausible
conditions in a real fracture embedded in low permeability material. The fracture
characterization described above is similar to the characterization used by other re-
searchers (Kueper and McWhorter, 1991; Parker et al., 1994; Banack, 1996; Slough
et al., 1999). The parameters chosen to represent the non-aqueous phase liquid
(NAPL) are similar to tetrachloroethylene (PCE), a dense chlorinated solvent typi-
cally used in drycleaning and other operations. The specific parameters are given in

Table 4.2.

4.1.6 General Considerations With Respect to Flow

All simulations were run until the maximum saturation of NAPL at the bottom of
the fracture reached 2%. This criteria was arbitrarily chosen in order to compare
simulation times for different runs and is the same as the criteria chosen by Kueper
and McWhorter (1991). Figure 4.3 shows the general NAPL distribution at several
times, ending with the point at which NAPL reaches the bottom of the fracture. As
the fracture apertures range over several orders of magnitude, a variable distribution
of free-phase NAPL was expected and observed.

Figure 4.4 shows an overlay of NAPL saturation contours on the aperture field
at the final time step. This diagram shows that, in general, the NAPL preferen-
tially follows the path with the largest apertures (the lighter areas in Figure 4.4).
This phenomenon is consistent with results of a study conducted by Kueper and
McWhorter (1991), who offer that “... DNAPL will preferentially migrate through
a fracture along the larger aperture pathways.” In addition, NAPL is attenuated
near areas with small apertures, as high NAPL pressures are required to exceed the
entry pressures for these blocks (cf., Equation 2.6). The distribution of NAPL is
also strongly influenced by the aperture distribution at the base of the NAPL col-

umn, as the centre of the fracture begins with much lower saturations relative to the
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[ Parameter Name Symbol | Value Units |
number of columns nz 75 -
number of rows nz 75 -
number of slices ny 7 -
In-mean aperture value Y -8.8 -
geometric-mean aperture value b 150 um
In-aperture variance ay 0.65 -
fracture spacing fap 0.985 m
spatial aperture correlation Asp 0.5 m
grid discretization Az =Az | 0.05 m
fracture porosity 3] 1.0 -
matrix porosity Om 0.2 -
norm for S,, convergence (Newton-Raphson it.) EnT 1.0 x 1077 -
norm for P, convergence (Newton-Raphson it.) T 1.0 x 104 -
norm for S,, convergence (coupled iteration) Esp 1.0 x 10™° -
norm for P, convergence (coupled iteration) L 1.0x 107° -
norm for concentration convergence (coupled iteration) Egem 1.0x 10™° -
density of water Puw 1000 kg/m®
density of NAPL Pn 1620 kg/m?®
viscosity of water Ly 0.001 Pa-s
viscosity of NAPL bn 0.0018 Pa-s
interfacial tension c 0.04 N/m
column height of NAPL H 0.6 m
wetting phase hydraulic head at top of fracture h, 30 m
initial wetting phase gradient down fracture dhjdz |0 m/m
longitudinal dispersivity ajy, 0.1 m
transverse dispersivity ar 0.1 m
retardation factor for the fracture Ry 1 -
retardation factor for the matrix R, 1 -
NAPL solubility limit s 0.15 kg/m°

"effective diffusion coefficient D* 1.0 x 10¥ | m%/s
time weighting factor for transport (] 1 -

Table 4.2: Parameters for base flow simulation.
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B D

Figure 4.4: The final NAPL distribution for the base flow simulation, overlain on
the fracture aperture field. An explanation of contour values is given in Figure 4.3.
Profiles A-A’, B-B/, C-C', and D-D’/, with Intersections 1-4, are annotated on the
figure. Table 4.3 provides locations and aperture sizes for Intersections 1-4.



| Intersection # | column # | row # | x coord. (m) [z coord. (m) [ b (um) |
1 25 16 1.225 0.775 182 :
2 49 16 2.425 0.775 216 |
3 25 o7 1.225 2.825 47
4 49 a7 2.425 2.825 o272

Table 4.3: Intersections as shown on Figure 4.4, with their location and aperture
information.
saturations closer to the sides (Figure 4.2).

To examine how the NAPL distribution changes with time, two horizontal and
two vertical profiles were arbitrarily taken (Figure 4.4). Figures 4.5 and 4.6 show =
and z profiles corresponding to the distributions shown in Figure 4.3.

To elucidate the behaviour of NAPL flow in terms of aperture distribution, graphs
comparing NAPL saturation to aperture sizes were prepared. Figure 4.7 shows aper-
ture overlays for profiles A-A’ and B-B'. From these graphs, it is clear that saturations
correspond, in a general sense, to aperture sizes, such that larger apertures gener-
ally have higher saturations. It also appears that NAPL accumulates above areas
with smaller apertures, as a higher entry pressure is required for the NAPL to enter
into these areas. In the B-B' profile in Figure 4.7, NAPL has passed through the
higher aperture blocks (at approximately 2.1 m) and then has built up above the
adjacent, smaller, aperture blocks. It is important to note that these profiles are
one-dimensional representations of a two-dimensional simulation, and as such these
observations may be oversimplified. NAPL flow is, however, primarily vertically

downwards at this point.

4.1.7 General Considerations With Respect to Transport

Transport results for the base flow simulation were also examined. The measures
chosen for this analysis were the mass flux behaviour from the fracture to the porous
matrix, the total mass diffused into the matrix, and an examination of spatial con-

centration profiles, both in the fracture and into the matrix, and temporal curves for
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arbitrarily selected fracture blocks.

Mass Flux Behaviour

The definition of mass flux, in general, includes the concentration in the block as
well as the diffusion coefficient (Equation 2.28). The concentration in the matrix
immediately adjacent to the fracture also has a profound effect on the strength of the
mass flux from the fracture into the matrix. The maximum mass flux was seen at
the leading edge of NAPL migration, where the concentration gradient was greatest.
The strength of the mass flux from the fracture to the matrix at a given block over
time decreased as more mass was introduced into the matrix at that block. The mass
flux at a given block was typically on the order of 107! kg/m?s for the base case,
with the flux near the source decreasing from roughly 4 x107!% kg/m?s initially to 2

x10~'0 kg/m?s at the end of the simulation.

Total Mass Diffused

The total mass diffused into the matrix was deemed an important measure of the
transport characteristics and of the coupling between flow and transport. This model
output also has implications for remedial alternatives at real fractured sites, as the
amount of mass that diffuses into the matrix would conceivably diffuse out if the
fracture were flushed with clean water. Figure 4.8 shows the amount of mass diffused
into the matrix as a function of time, normalized to the total amount of mass in the
fracture.

From this figure, it can be seen that a significant amount of mass can be stored in
the porous matrix, relative to the total mass in the fracture. At the final time of 642
seconds, more than 15% of the total mass of NAPL in the fracture at that point in
time has diffused. This is even more impacting considering that the source of NAPL
in the fracture is continuous; this means that a proportionally greater mass of NAPL

is diffusing as more mass is introduced into the fracture.
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Figure 4.8: Total mass diffused into the porous matrix for the base case, expressed
as a percentage of the total amount of mass in the fracture.



Concentration Profiles

In addition to examining the free-phase NAPL migration in the fracture, dissolved
phase transport in the fracture and in the porous matrix is of interest. In order to
examine this, spatial and temporal concentration profiles were taken in the fracture

and the surrounding porous matrix.

Spatial profiles

As outlined in Chapter 3, concentrations in the fracture were constrained to their
solubility limit wherever free-phase NAPL exceeded a threshold saturation. Because
of this constraint, concentrations in the fracture tend to closely mimic the migration
pattern of the NAPL. Very little dissolved phase migration is visible in the fracture
due to diffusion. Therefore, comparative spatial profiles in the fracture were not
taken.

The profiles from the fracture into the porous matrix are of greater interest, as
they show the distribution of mass in the matrix. Figure 4.9 shows profiles from
Intersection 1 (Figure 4.4) into the matrix for various times. The concentrations
are plotted relative to the solubility limit. From Figure 4.9, it can be seen that the
strength of the diffusive process decreases with time, as the concentrations in the
matrix blocks increase at a slower rate as time progresses. This is consistent with
the observation given in Section 4.1.7, where the mass flux decreases with time at
any position in the domain. Parker et al. (1997) also observed this phenomenon,
where the rate at which concentrations increase in the matrix declines with time as
the matrix storage capacity diminishes.

Figure 4.10 shows image maps of the concentrations in the fracture and in the
first two matrix slices adjacent to the fracture for the final distribution. This figure
demonstrates that concentration distributions in the matrix are dependent on both
the distribution as well as the residence time of NAPL in the fracture. Areas closer
to the source, where NAPL has resided longer, have higher concentrations in the

matrix, whereas areas closer to the bottom of the fracture have lower concentrations.
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Figure 4.9: Profiles from Intersection 1 in the fracture into the first two matrix slices
at various times.
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Temporal profiles

Temporal profiles were taken at Intersections 1-4 in the fracture to examine dissolved
phase behaviour. Figure 4.11 shows the results for profiles at Intersections 1-4. Each
profile shows a characteristically different shape, all ending with the relative concen-
trations increasing rapidly to 1.0 as NAPL reaches the required threshold saturation
to constrain the grid block concentration.

NAPL reaches Intersection 1 before any of the other Intersections, and hence there
is little time for much of the dissolved phase to flow. Recall that the initial water
column flow field is hydrostatic, and all water flow is induced by the free NAPL flow
displacing the water. At Intersection 2, there is more time between the beginning of
the simulation (i.e., the commencement of dissolution) and when free-phase NAPL
reaches it. Hence, one would expect to see a more gradual increase in concentration
at Intersection 2 than at Intersection 1.

Intersections 3 and 4 are much further down the fracture than Intersections 1
and 2; therefore, one might expect somewhat different behaviour. The profile for
Intersection 3 on Figure 4.11 shows a more gradual increase to a relative concentration
of 1 than do the other profiles. It was unclear, however, whether the difference in the
behaviour of concentration increase is due to its position in the fracture or to some
other factor. Therefore, temporal concentration profiles for the blocks immediately
above Intersection 3 were taken to test this hypothesis. The resultant profiles for two
blocks immediately above Intersection 3 are shown in Figure 4.12.

Figure 4.12 shows that aperture size can be directly correlated to the rate of
increase in concentration. This correlation is, in turn, related to free-phase NAPL
flow, where the grid block with the smaller aperture takes much longer to reach the
required threshold NAPL saturation. In fact, it takes about 200 seconds longer for
NAPL to fill the grid block at Intersection 3 with 0.01% saturation of NAPL than
for the block directly above it. That block, having an aperture of roughly twice that
of Intersection 3, only takes about 50 seconds longer than the block above it to reach

the same threshold saturation. This phenomenon occurs because smaller aperture
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for Intersections 1 to 4.
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blocks have a higher entry pressure, and larger volumes of NAPL are required to

accumulate above the block before entry can occur.

4.2 Preliminary Simulations

A number of different simulations were conducted to examine the behaviour of a
system subject to varying conditions. The following four sections will outline these

simulations.

4.2.1 Comparison to Case Without Dissolution

In order to compare the effect that dissolution has on the simulation, a similar simu-
lation with a NAPL solubility of 0 kg/m3 was performed. The greatest difference in
NAPL saturation between the simulations with and without dissolution was at lower
saturations, where the saturations were just above the threshold saturation value.
The total travel time, defined as the time that the NAPL takes to get to a
maximum of 2% saturation at the bottom of the fracture, increases only 2 seconds
from the simulation without dissolution to the base simulation with dissolution. It is
clear that, for the base case, the coupling between flow and transport, or the effect
that dissolution has on the flow solution, is minimal. Other cases that increase the

strength of the coupling will be examined in subsequent sections.

4.2.2 Homogeneous Fracture

A simulation was conducted where every fracture aperture was assigned ¥ = —8.8;
that is, the aperture variance was specified as 0. All of the other parameters are as
given in Tables 4.1 and 4.2.

The total real simulation time, or the time that NAPL took to reach the bottom
of the fracture, was 730 seconds. This is approximately 88 seconds, or 1.5 minutes,
longer than the base flow simulation. This makes intuitive sense as the homogeneous

fracture simulation does not have correlated flow paths of larger apertures in which



to flow (as the base case simulation does). Subsequently, NAPL in the homogeneous

fracture does not have the opportunity to bypass areas with smaller apertures.

4.2.3 Low Permeability Lens

In order to examine the behaviour around low permeability (or small aperture) grid
blocks, a simulation was run where most of the aperture blocks were assigned the
same (mean) aperture. Within this uniform aperture field, two layers of grid blocks,
oriented horizontally across the entire fracture in its approximate centre, were as-
signed apertures one order of magnitude lower than the mean.

The simulation demonstrated that low permeability/smaller aperture blocks are a
significant impediment to free-phase NAPL flow. Upon reaching the low permeability
rows, NAPL began to pool, and subsequently spread outward towards the edges of the
fracture with time. Breakthrough beyond the low permeability layers only occurred in
the area directly below the source, where the maximum amount of NAPL had pooled,
and the saturations below the low permeability rows were very small. This supports
what is seen in the base case simulation, where the highest NAPL saturations (the
red areas in Figure 4.13(a)) are confined to the region near the top of the fracture,

as the NAPL first encounters grid blocks with smaller apertures.

4.2.4 Aperture Binning

A simulation was conducted where the apertures were placed into statistically re-
lated “bins” or groupings, rather than being treated uniquely. The objective of this
substudy was to determine if an alternative to Leverett-J capillary pressure scaling
could be developed that would be more efficient with respect to CPU time, while still
maintaining an acceptable solution. -

Initially, one standard deviation was considered to be one bin. That is, upper
and lower bounds for 4 standard deviations larger than the mean aperture and for 4
standard deviations smaller than the mean aperture were determined. All apertures

occurring in one bin were then assigned the (harmonic) mean aperture of that bin.
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This effectively reduced the number of unique apertures from up to 5625 (75 x 735
blocks) to only 8. While it is conceded that placing all apertures into only 8 bins
is a very coarse approximation of real aperture values, it was sufficient to fulfill the
objective of the substudy. Simulations with a larger number of bins were therefore
not performed.

Using aperture binning, a savings in CPU time on the order of 10% was realized,
with the real simulation time decreasing by roughly 7%, to 601 seconds from 642
seconds for the base flow simulation. Also, it can be seen from Figure 4.13 that the
NAPL distributions are somewhat different. This is particularly evident on in the
lower right hand quadrant of the binned simulation, where NAPL has been attenuated
much more so than in the base flow simulation. It does not appear that the base flow
simulation can be effectively pared down to 8 unique apertures and still maintain the
same properties. It also does not appear that there is a significant CPU time savings

in doing so.

4.3 Numerical Instability in FaTMatD

Accepted accuracy criteria (Fetter, 1993) were satisfied at all times for both flow
and transport for all simulations. However, when the analysis of the simulations
began, it became apparent that the coupling (dissolution) between flow and transport
required more stringent criteria, translating to a smaller time step size. This was
deduced from Figure 4.14, a plot showing total mass diffused versus time for the base
flow simulation as well as a simulation done with higher solubility (increased-s?). It
can be seen that the instability increases as dissolution increases. Because of this,
all of the simulations were re-run with much smaller time steps, typically at 25% to
50% of what had been used previously. Simulations that affected the matrix diffusion
component of transport, such as solubility and matrix porosity, generally required
smaller time steps than did runs that provided a greater sensitivity to NAPL flow.
The time step size was not precalculated, but instead each run was checked with

respect to total mass diffused to determine its stability. Adaptive time stepping was
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implemented into the model; however, it was not utilized due to the difficulty in

determining appropriate accuracy criteria a priori.

Sensitivity Analysis

A sensitivity analysis was performed in order to test system behaviour against changes
in input parameters. In most cases, a triangular distribution was assumed, with
reasonable low, mean, and high values chosen either from the literature or arbitrarily,
as appropriate.

Table 4.4 provides a summary of the simulations performed. In every case, only
one parameter was perturbed at a time, with the remainder of the parameters as-
signed as they were in the base case (Table 4.2). Four different categories of sensitivity

have been defined. These are given as follows:
1. properties of the contaminant:

e NAPL density
e dynamic viscosity
o diffusion coefficient

e solubility
2. properties of the aperture field:

e mean
e variance

e correlation length
3. properties of the porous matrix:

e fracture spacing

e matrix porosity
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[ Simulation ID | Changed Parameter and Value | Units | Total Travel Time (s) ]
base - - 642
tncreased-Y Y=-78 - 70
decreased-Y Y =-98 - 11000
increased-03 | o =0.80 - 636
decreased-02 | 0% = 0.10 - 790
decreased-fop | fop = 0.0058 m 642
increased-Asp | Agp = 1.0 m 490
decreased-Agp | Agp = 0.25 m 820
increased-s* 5=10.30 kg/m® 644
increased-s* | s =0.90 kg/m’ 651
increased-p, | pn = 1820 kg/m® 490
decreased-p, | pn = 1200 kg/m® 1700
increased-D D*=1.0x10"" m?/s 647
decreased-D | D* =1.0 x 1010 m?/s 640
increased-¢;, | ¢m = 0.4 - 643
increased-¢2, | ¢m = 0.8 - 645
decreased-¢y, | dm = 0.05 - 641
increased-piy pn = 0.0024 Pa-s 870
decreased-u, | pyn = 0.0010 Pa-s 370
increased-H H=08 m 570
decreased-H H=04 m 800
increased-4 dh/dl =0.1 - 460
decreased-0 dh/dl = -0.1 - 1200

Table 4.4: Summary of parameters tested in sensitivity analysis.



4. properties relating to the boundary value problem definition:

e NAPL column height

e gradient of water flow field

4.4 Effect of Parameter Sensitivity on NAPL Flow

The first arena of interest is the extent to which parameter perturbations affect overall
NAPL flow velocity and NAPL distribution in the fracture. A similar analysis to
that performed for the base case was carried out, with an examination of travel time,

intermediate and final NAPL distributions, and profiles across the fracture.

4.4.1 Total NAPL Travel Time

Figure 4.15 shows a graphical summary of the sensitivity that each parameter had
on the total time taken for 2% saturation of NAPL to reach the base of the fracture.
The actual travel times are given in Table 4.4.

From Figure 4.15, it can been seen that the simulations have varying degrees of
sensitivity for different parameters. NAPL density, NAPL viscosity, mean aperture,
aperture variance, correlation length, NAPL column height, and initial water column
flow field definition appear to affect the NAPL flow velocity to the greatest degree.

Other parameters have a much smaller effect.

Total NAPL travel time - Contaminant properties

NAPL density provided the greatest simulation sensitivity for this category. The
reason for this is partially derived from the fact that NAPL column height is kept
constant at 0.6 m. For a NAPL with a lower density, this means that a smaller
pressure is exerted at the top of the fracture (see Equations 2.4 and 2.5), because
the capillary pressure P, is directly proportional to the NAPL density. A smaller

pressure corresponds, in turn, to lower NAPL saturations constrained at the top of
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boundary condition properties. The charts are plotted on the same vertical scale.

taminant properties, (b) aperture field properties, (c) matrix properties, and (d)
An explanation of the parameter changes is given in Table 4.4.

Figure 4.15: Bar charts showing sensitivity to total NAPL travel time for (a) con-



[SimulationID [ ¥ [b (um) [ gy | Ay (m) | min. b (um) | max. b (um) |

base -8.8| 150 |0.65 0.5 15 2306
increased-Y -7.8 409 | 0.65 0.5 41 6268
decreased-Y -9.8 35 0.65 0.5 5 848
increased-oi |-88| 154 |0.80 0.5 12 3258
decreased-oy | -89 | 134 |0.10 0.5 32 408
increased-A,, | -8.7| 168 |0.57 1.0 24 1604
decreased-A,, |-89| 134 |0.64| 0.25 9 2515

Table 4.5: Parameters for simulations varying in aperture field properties.

the fracture. In addition, for the same aperture fields, a decrease NAPL density
requires an increase in accumulated NAPL mass at any point in the fracture to
allow migration; the converse is also true. For these reasons, the NAPL travel time
increases or decreases inversely to the change in NAPL density.

NAPL viscosity also affects the total travel time for the simulation. From Equa-
tion 2.20, it can be easily seen that Darcy velocity and NAPL viscosity are inversely
related to one another. Therefore, as viscosity increases, so must total NAPL travel
time, as the Darcy velocity, and hence average linear groundwater velocity, must

decrease accordingly.

Total NAPL travel time - Aperture field properties

Table 4.5 shows mean, minimum, and maximum aperture values for perturbations
in aperture field properties. The small variations in Y for perturbations in aperture
variance and correlation lengths are an artifact of the field generation algorithm and
could not be avoided.

More than any other parameter, the mean aperture value caused the greatest
change in total NAPL travel time. There are a number of reasons as to why this is
the case. The geometric-mean aperture increases by approximately 2.5 times from
the base case to case increased-Y, and decreases by approximately 0.5 times from the

base case to case decreased-Y. From Equation 2.1, this corresponds to an increase
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and decrease in permeability of roughly an order of magnitude in each direction.
As flow rate is directly proportional to permeability, and travel time is inversely
proportional to flow rate, a dramatic decrease in travel time for an increase in mean is
observed; a dramatic increase in travel time for a decrease in mean is correspondingly
observed. The other factor leading to the differences in travel time comes from the
apparent relative change in geometric aperture variance, even though the In-variance
remains constant. It can be seen from Table 4.5 that in addition to the means
changing, there are corresponding changes in the minimum and maximum aperture
values. Therefore, changing the mean also tends to homogenize the smaller mean
aperture field somewhat, while making the larger mean aperture field simulation more
heterogeneous. The changes in total travel time for these simulations are consistent
with observations made in the homogeneous fracture case, where travel time increased
in the case where the fracture was more homogeneous. This analysis is also consistent
with the increases and decreases seen in simulations increased-o% and decreased-o?,
where travel time increases when aperture variance is decreased. The aperture fields
for these two simulations are shown in Figure 4.16. This analysis holds in cases where
the correlation lengths, or the degree to which an aperture is statistically similar to
other apertures around it, does not vary.

Correlation lengths also appear to affect the total travel time for the simulation.
The aperture fields corresponding to perturbations in correlation lengths are shown
in Figure 4.17. Large correlation lengths increase the statistical probability that one
fracture aperture is similar to other fracture apertures around it. This acts to effec-
tively increase the overall permeability of the fracture, in the sense that there are
more and/or longer interconnected paths of higher permeability (larger apertures).
For this reason, the travel time decreases in simulation increased-A,,. Similarly, when
the correlation length is reduced, the fracture effectively has a lower permeability,
where the incidence of interconnected higher permeability flow paths is decreased.
Therefore, total travel time increases. Pruess and Tsang (1990) also found that rela-

tive permeabilities depend sensitively on the spatial correlation scale of the aperture
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distribution.

Total NAPL travel time - Boundary condition definition

The last category that appears to significantly affect the NAPL travel time deals
with how the boundary conditions are assigned. When the NAPL column height
is reduced, the pressure exerted on the top of the fracture is also correspondingly
lowered (Equation 2.5). Therefore, the constrained NAPL saturations at the top of
the fracture are also reduced (just as they were for the case where NAPL density
was made smaller). For this reason, an increase in NAPL travel time is observed.
Conversely, when the NAPL column height is increased, the pressure is also increased,
and the saturations at the top increase. This leads to a decrease in NAPL travel time.

The effect of the initial water flow field in the fracture on NAPL flow was also
considered to be of importance. The rate of flow of NAPL increased when water
flowed down the fracture with a gradient of 0.1 (simulation increased-d); the total
NAPL travel time decreased accordingly. Correspondingly, the upward flow of water
attenuated the flow of NAPL somewhat, causing the NAPL to take longer to traverse
the fracture. This is similar to observations made by Kueper and McWhorter (1991);
in fact, they found that if they applied a high enough gradient, they could completely
halt the downward migration of NAPL.

4.4.2 Intermediate and Final NAPL Distributions

Total travel times provide some indication of the sensitivity of results to input param-
eters; however, the distribution of NAPL in the fracture was also considered to be an
important sensitivity measure. To this end, the sensitivity parameters were analyzed

in terms of both intermediate (same time) and final (different time) distributions.

NAPL distributions - Contaminant properties

Figure 4.18 shows intermediate and final NAPL distributions in the fracture for the

base case, the case where NAPL density was increased, and where NAPL density

78



. -
o)
| g [
200 - - 2.004 A ;
3 i base | 0O el o
, 2 <8
l

200 increased-py,

8

3.

2004 decreased-py,

|r
3.004 !—

100 200 300 100 200 300

Figure 4.18: Intermediate (a,c,e) and final (b,d,f) NAPL distributions for variations
in NAPL density. Intermediate saturations are at t=300 s, and final saturations are
at the point where NAPL reaches the base of the fracture (i.e., variable time). Refer
to Table 4.4 for an explanation of density perturbations. The contour interval is as
given in Figure 4.3.
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was decreased. It appears that at the intermediate time (t=300 s), the NAPL front
is advanced (increased-p,) or attenuated (decreased-pn). This is consistent with the
variation in total travel times. It is difficult to tell if there are significant changes
in NAPL distributions that cannot only be attributed to variations in NAPL flow
velocity. It is clear, however, from the final distributions, that the NAPL distributions
are ultimately different. The final distribution for simulation increased-p,, when
compared with the base case, does not show much difference. This suggests that
the density chosen for the base case was already reasonably high, and the effect of
further upward perturbations would be minimal. The final distribution for simulation
decreased-p, is somewhat different than the base case. Figure 4.19 shows intermediate
and final NAPL saturation profiles from B-B’ (Figure 4.4). It can again be seen
that there is little difference in NAPL distribution from the base case to simulation
increased-pn, while in simulation decreased-p, the NAPL saturations are both lower
and attenuated. When the NAPL density is reduced, the force which drives the
NAPL to flow downwards is also reduced due to a decrease in capillary pressure.
Lower capillary pressures result in lower saturations (cf., Figure 3.4). The area in
the lower left near Intersection 3 shows this particularly well. The total travel time
taken also influences the final NAPL distributions in the case where NAPL density
is reduced. The additional simulation time allows NAPL to move further in areas
with higher saturations (i.e., near the source).

Figure 4.20 shows the intermediate and final saturation distributions for pertur-
bations in NAPL viscosity. Changing NAPL viscosity does not affect final NAPL
distributions, but does affect quite dramatically the distributions at the intermediate
time levels. The reasons behind why increasing or decreasing NAPL viscosity change
NAPL travel time were given in Section 4.4.1. To summarize, changing the NAPL
viscosity serves to increase or decrease the rate of flow; that is, distributions are

constant but scaled in time.
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Figure 4.20: Intermediate (a,c,e) and final (b,d,f) NAPL distributions for variations
in NAPL viscosity. Intermediate saturations are at t=300 s, and final saturations are
at the point where NAPL reaches the base of the fracture (i.e., variable time). Refer
to Table 4.4 for an explanation of viscosity perturbations. The contour interval is as
given in Figure 4.3.



NAPL distributions - Aperture field properties

As noted above, the choice of mean aperture appears to significantly impact the total
real simulation time. From Figure 4.21, it is also clear that in addition to the travel
time changing, the final NAPL distributions are strongly affected, particularly in the
case where the mean is decreased. It was also noted above that the apparent net
aperture field variance decreases in the case where a smaller mean aperture is chosen.
This is supported in Figure 4.21(c), as a much more evenly distributed NAPL front
is observed. There is little change from the base case to simulation increased-Y. This
suggests that the mean chosen for the base case is sufficiently large such that upward
perturbations make little difference in terms of NAPL occupancy. The minimum and
maximum aperture values are also more similar than in simulation decreased-Y .

Figures 4.22 and 4.23 show horizontal and vertical final NAPL profiles for simula-
tions corresponding to Figure 4.21. These profiles demonstrate that the NAPL fronts
are advanced or attenuated as the mean aperture is increased or decreased. The D-
D' profile, however, shows a slightly different NAPL distribution. For the simulation
decreased-Y, there is a visible “spike” at roughly z = 1.25 m, where the saturation
is larger than that for the base case and simulation increased-Y. The reason for
this spike and for the other differences is that in the case with a smaller aperture
mean, the NAPL has had longer to accumulate because the overall rate of migration
is slower. This manifests itself more strongly in larger aperture blocks above very
small aperture blocks, where NAPL tends to pool, and at lower saturations, where
the relative change in saturation between the base and decreased-Y cases is more
pronounced.

Figure 4.24 shows that the final distributions for perturbations in field variance
are strikingly similar to those of Figure 4.21. This supports the assertion made above,
that reducing the mean for the same In-variance results in a similar, albeit scaled,
aperture field. Here, the total travel time is less affected than in cases increased-Y
and decreased-Y; however, the final NAPL distributions are similarly affected.

In Figure 4.25(d), it can be seen that the NAPL distribution is much less spread
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Figure 4.24: Intermediate (a,c.e) and final (b,d,f) NAPL distributions for variations
in o2. Intermediate saturations are at t=300 s, and final saturations are at the point
where NAPL reaches the base of the fracture (i.e., variable time). Refer to Table 4.4
for an explanation of 0 perturbations. The contour interval is as given in Figure
4.3.
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Figure 4.25: Intermediate (a,c,e) and final (b,d,f) NAPL distributions for variations
in correlation lengths. Intermediate saturations are at t=300 s, and final saturations
are at the point where NAPL reaches the base of the fracture (i.e., variable time).
Refer to Table 4.4 for an explanation of correlation length perturbations. The contour
interval is as given in Figure 4.3.



out across the fracture. Increasing the correlation length serves to provide the NAPL
with more interconnected apertures of similar (larger) size, leading to this distribu-
tion. Conversely, reducing the correlation length effectively makes the aperture field
more spatially heterogeneous, thereby resulting in a more distributed NAPL front as

NAPL encounters more small apertures in its preferential flow path.

NAPL distributions - Boundary condition definition

Changes in intermediate and final NAPL distributions result from changes in the
height of the column of NAPL above the fracture. Figure 4.26 illustrates these dis-
tributions. In the case where the NAPL column height is decreased (decreased-H),
the NAPL does not exert as much pressure at the top of the fracture and hence
there are lower initial saturations at the top of the fracture; the converse is true for
an increase in NAPL column height. At the final time step, there is little appar-
ent difference between the base case and simulation increased-H. There is a more
pronounced difference between the base case and simulation decreased-H, where a
significant amount of time had passed such that NAPL had the opportunity to enter
and accumulate in more areas in the interior of the fracture.

Changing the water flow field had a significant impact on the intermediate and
final NAPL distributions in the fracture (Figure 4.27). Clearly, the water flow as-
sisted and impeded NAPL flow through the fracture in simulations increased-§ and
decreased-d, respectively. In Figure 4.27(d), a vertically thinner distribution of NAPL
is manifested, whereas in Figure 4.27(f), a much wider distribution of NAPL, espe-
cially near the source, can be seen.

Recall that capillary pressure is defined as the difference between NAPL pressure
and water pressure. Thus, as water flows upwards in the fracture, the capillary
pressure at the NAPL/water interface is lowered such that advancement of the front
is impeded. This encourages NAPL to flow to the sides, where water pressures are
lower. The NAPL can still flow downwards in areas with larger apertures, which

correspond to lower required entry pressures (Equation 2.6). However, as less NAPL
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Figure 4.26: Intermediate (a,c,e) and final (b,d,f) NAPL distributions for variations in
NAPL column height. Intermediate saturations are at t=300 s, and final saturations
are at the point where NAPL reaches the base of the fracture (i.e., variable time).
Refer to Table 4.4 for an explanation of NAPL column height perturbations. The
contour interval is as given in Figure 4.3.
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Figure 4.27: Intermediate (a,c,e) and final (b,d,f) NAPL distributions for variations
in water flow field gradient. Intermediate saturations are at t=300 s, and final satu-
rations are at the point where NAPL reaches the base of the fracture (i.e., variable
time). Refer to Table 4.4 for an explanation of water flow field gradient perturbations.
The contour interval is as given in Figure 4.3.



is permitted to low downwards, a much smaller area of NAPL is observed in the

lower left quadrant of the fracture.

4.5 Effect of Parameter Sensitivity on Transport

Recall that concentrations in the fracture blocks are constrained to the solubility
limit whenever a threshold volume of NAPL occupies the block. Therefore, the
distribution of dissolved contaminant in the fracture, and correspondingly in the
matrix, is strongly dependent on the distribution of free-phase NAPL in the fracture.
The total amount of mass that is available to diffuse into the matrix is similarly
linked to the free-phase distribution of NAPL. In addition, the total travel time is
also expected to influence the total amount and distribution of mass in the fracture
and in the matrix, as mass will continue to diffuse according to the concentration
gradient until such a time as the gradient becomes negligible. The importance of
matrix diffusion as a mechanism for mass removal from a fracture is noted by Ross
and Lu (1999) as increasing for longer NAPL migration times. For these reasons,
only those parameters that do not have a major impact on NAPL migration times

are chosen for further analysis with respect to transport.

4.5.1 Mass Flux Behaviour and Total Mass Diffused

The magnitude of the mass flux and the amount of mass that diffuses into the ma-
trix are very closely related, and thus will be treated concurrently. Figure 4.28 shows
summaries of the total mass diffused into the matrix for each of the four sensitivity
categories. Clearly, contaminant properties and matrix properties are the two most
sensitive classes of parameters. In particular, diffusion coefficient, matrix porosity,
and NAPL solubility seem to influence the total amount of mass diffused into the
matrix the most, because these parameters factor directly into the definition of mass
flux across the fracture/matrix interface. This observation is consistent with obser-

vations by Parker et al. (1994), who found that the mass lost from the fracture,
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Figure 4.28: Total mass diffused into the matrix versus time for variations in (a)
contaminant properties, (b) aperture field properties, (c) matrix properties, and (d)
boundary condition properties. The graphs are plotted on the same scale. An expla-
nation of the parameter changes is given in Table 4.4.



and hence the mass gained by the matrix, is proportional to the matrix porosity,
solubility, effective diffusion coefficient, and time of diffusion.

As the solubility increases, the total amount of mass that can diffuse into the
matrix increases correspondingly. This leads to an increase in the concentration
gradient out of the fracture, and subsequently more mass diffuses out. An increased
diffusion coefficient also increases the strength of the diffusive process, by defining a
faster rate of diffusion for the same concentration gradient. It is conceded that the
diffusion coefficient chosen for the base case and most of the sensitivity simulations is
high for diffusion in water; however, this parameter was chosen to enhance the overall
processes occurring and make the data analysis more straightforward. In addition
to the initial sensitivity simulations, the most sensitive parameters, NAPL solubility
and matrix porosity, were simulated with a more realistic diffusion coefficient of 1.0
x 1079 m/s. The results of these simulations are given in Section 4.5.3.

Figure 4.29 shows the total mass diffused out of the fracture for simulations
base, increased-D, increased-¢?,, and increased-s, plotted on log-log axes. It can
be clearly seen that the case where the diffusion coefficient is increased shows a
characteristically different slope from the other simulations. This implies that the
rate of diffusion decreases more with time than for the other simulations. This is
consistent with the gradient of the mass flux in time, which also decreases more
rapidly. Figure 4.30 shows temporal relative concentration profiles at the first matrix
block behind Intersection 1. The relative concentrations clearly are much higher
earlier for simulation increased-D, and finish with higher concentrations in the matrix.
That the relative concentration lines for the base case and simulation increased-s*,
where the solubility is increased, are concurrent supports the earlier supposition that
the increase in the total mass diffused can be entirely attributed to the increase in
the amount of mass in the fracture.

It still remains to be demonstrated why the total mass diffused increases so much
for the case where matrix porosity is increased. From Fick’s second law of diffusion

(Equation 2.29), it can be seen that concentrations in the matrix are independent
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Intersection 1.
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of porosity, if porosity is uniform in space and time. However, from Fick’s first
law (Equation 2.28), the mass flux is directly proportional to the matrix porosity.
Therefore, the total mass diffused into the matrix must increase with increased matrix
porosity. Also, the amount of mass in any one block is defined as the concentration in
the block multiplied by its porosity. It follows that the blocks in the matrix contain

more mass in case increased-¢., and increased-¢2, than in the base case.

4.5.2 Concentration Profiles

For reasons stated above, the analyses of concentration profiles spatially and tempo-
rally were not considered valuable in cases where NAPL distributions in the fracture
vary considerably from the base case. As such, the only profiles considered were
those for the simulations base, increased-s', increased-s?, increased-D, decreased-D,

increased-¢.., increased-¢2,, and decreased-@p,.

Spatial Profiles

The spatial distribution of diffused NAPL in the matrix was plotted for all of the
above cases. In all cases except for increased-D and decreased-D, the relative concen-
tration profiles did not change. The profile comparing the base case and simulation
increased-D is presented in Figure 4.31. The concentration in the matrix block is
independent of the porosity; only the mass flux and total mass diffused are affected.
For NAPL solubility perturbations, the relative concentrations remain unaffected,
even though the absolute (non-normalized) concentrations increase. For the case
where the fracture spacing was made smaller, only a very small difference in total
mass diffused into the matrix was seen; that is, the total mass increased by roughly
4%. This increase can be attributed to the accumulation of mass at the end of the
matrix blocks, where the zero diffusive flux boundary does not allow mass to continue

to diffuse.
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[ Simulation ID | Changed Parameter and Value | Units D* Units |
incr-s/decr-D | s=0.90 kg/m3 [ 1.0x10710 | m%/s
incr-gm, /decr-D | ¢;=0.8 - 1.0x107"% | m*/s

Table 4.6: Summary of parameter changes for additional simulations involving a
lower value for D*.

4.5.3 Additional Diffusion Simulations

In order to examine the relationship between the diffusion coefficient and other pa-
rameters of sensitivity, two additional simulations were performed. The first per-
turbed both the NAPL solubility (s = 0.9 kg/m3) and the diffusion coefficient
(D* = 1.0 x 107'° m?/s). The second perturbed both the matrix porosity (¢, = 0.8)
and the diffusion coefficient (D* = 1.0 x 107'% m2/s). Table 4.6 summarizes these
simulations. Figure 4.32 shows the total mass diffused results for these simulations.

From Figure 4.32, it can be seen that the general shape of each of the curves
remains unaffected for perturbations in the diffusion coefficient. In addition, the
spacing between the simulations where the porosity and solubility were perturbed
remains virtually unaffected with changes in the diffusion coefficient. This plot again
demonstrates the importance of the choice of diffusion coefficient in model inputs.
From this analysis, it appears that the diffusion coefficient acts to scale the mass
diffused in time in more or less the same manner from one sensitivity simulation to

the next.

4.6 Coupling of Flow and Transport

Total travel time, NAPL distributions, total mass diffused, and concentration dis-
tributions are all considered to be important indicators of the strength of coupling
between flow and transport. The parameter perturbations of NAPL solubility, diffu-
sion coefficient, fracture spacing, and matrix porosity all provide direct insight into

how the system is impacted by dissolution and subsequent aqueous phase transport.
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Of these parameters, NAPL solubility appeared to provide the greatest sensitivity
to simulation results. When the NAPL solubility was increased, the time taken for
the NAPL to traverse the fracture was the most significantly impacted, increasing by
about 1.5%. In addition, increasing the NAPL solubility led to larger increases in the
amount of mass diffused into the matrix than for the other parameters. Increasing
the solubility acts to increase the absolute concentrations in the fracture and in the
matrix, but does not affect the relative concentration values. These values are scaled
by the absolute solubility. It follows from this analysis that for a NAPL with a
much higher solubility, such as bromochloromethane with a solubility of 16700 mg/L
(Cohen and Mercer, 1993), this coupling could become far more significant. These
simulations were not undertaken due to the numerical instability of the model in
solving simulations with very strong coupling. Modifications would have to be made
to the model before attempting to solve such a difficult problem.

The diffusion coefficient also had an impact on the apparent coupling between
flow and transport. When the diffusion coefficient was increased, the travel time for
NAPL to reach the base of the fracture was increased, although by a smaller amount
than for solubility. This factor is most directly related to the strength of the mass
transfer from the fracture to the porous matrix. In addition to altering the total
NAPL travel time, the simulation results demonstrate that the diffusion coefficient
also affects the distribution of diffused NAPL in the porous matrix. This can have
implications for remediation of NAPL contaminated sites, as the further into the
matrix dissolved mass diffuses, the longer it will take to diffuse back out (Parker

et al., 1994).

4.7 Summary

Flow of NAPL with simultaneous dissolution and aqueous phase transport in a dis-
crete, rough-walled fracture has been simulated with the aid of the computer program
FaTMatD. This model also simulates matrix diffusion out of the fracture into the

surrounding porous matrix. It was found that the NAPL density, NAPL viscosity,
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mean aperture, aperture variance, correlation length, NAPL column height, and ini-
tial water column flow field definition affect the NAPL flow velocity to the greatest
degree. Final NAPL distributions were the most sensitive to perturbations in NAPL
density, mean aperture, aperture variance, correlation length, and initial water col-
umn flow field. Solubility, matrix porosity, and diffusion coefficient had the greatest

direct affect on matrix diffusion.
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Chapter 5

Conclusions and Suggestions for

Further Study

The primary objective of this study was to investigate the relationship between non-
aqueous phase liquid flow and subsequent aqueous phase transport in a discrete,
rough-walled fracture and the surrounding porous matrix. The strength of the cou-
pling between two-phase flow and transport, including matrix diffusion, is an area of
study that has been largely ignored in the literature, particularly in the context of a
discretely fractured system.

A finite-difference numerical model was developed and used to simulate simul-
taneous flow of water and NAPL in a discrete, rough-walled fracture. Equilibrium
dissolution, full advective-dispersive transport in the fracture, and diffusion from the
fracture into the matrix blocks were also simulated as water and NAPL flowed. In

order to define system behaviour, several types of outputs were examined:
e total travel time for the NAPL to reach the base of the fracture,
o influence on NAPL distributions in the fracture,

e distribution of the dissolved phase in the fracture and the diffused phase in the

matrix,

e mass flux from the fracture to the matrix, and
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e total mass diffused into the matrix.

The analyses show that the total NAPL travel time and NAPL distribution were
the most sensitive to changes in NAPL density, In-aperture mean, In-aperture vari-
ance, and the initial water flow field gradient. These parameters all directly affect
the pressure field definition in slightly different ways. Increasing (or decreasing)
NAPL density increases (or decreases) the capillary pressure at the aperture entry
point. Larger densities therefore allow smaller apertures to be invaded, facilitating
the movement of NAPL in the fracture.

Changes in the In-aperture mean affect the pressure requirements for entry into
an aperture segment. For a given capillary pressure, an aperture field with a higher
average In-mean aperture allows NAPL to flow more easily and uniformly, as the
entry pressure will be exceeded in more aperture segments than in the case with
smaller apertures. This parameter shows a particularly high degree of sensitivity to
simulation results as the local fracture permeability is proportional to the square of
the aperture. A smaller In-aperture variance tends to homogenize the aperture field
somewhat such that there are fewer very small or very large apertures. The result is
a more uniform entry pressure field, where more apertures can be invaded but overall
with lower saturations.

The initial water flow gradient also affects the pressure distribution at the capil-
lary interface. Large water pressures (for given NAPL pressures) decrease the cap-
illary pressure and hence lower the driving force behind NAPL flow; the converse is
also true. The result is an attenuated NAPL flow field that flows much slower and is
more spread out.

The distribution of the dissolved phase in the fracture and matrix and the total
mass diffused in the matrix are strongly influenced by the NAPL solubility, matrix
porosity, and effective diffusion coefficient chosen. Perturbations in choices of dif-
fusion coefficient show characteristically different behaviour from the solubility or
matrix porosity. All three parameters influence the strength of the mass flux from

the fracture to the matrix, but in different ways. Solubility and matrix porosity re-
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late to the amount of dissolved mass present, while the diffusion coefficient directly
defines the rate at which mass can move via diffusion.

This research project showed that, for any appreciable volume flow of NAPL,
the coupling between free-phase NAPL flow and transport is quite weak at lower
solubilities. It remains for further study how the coupling strength increases with
larger solubilities.

Matrix diffusion can be an important storage mechanism for dissolved phase
NAPL in a rough-walled fracture. Even for the relatively short time scales con-
sidered here, appreciable amounts of mass were still able to diffuse into the matrix,
particularly when compared to the amount of mass in the fracture. Because the
drinking water standards of most NAPLs are orders of magnitude smaller than their
aqueous solubilities, this mass, spread out into the matrix, can conceivably act as a
source for groundwater contamination for long periods of time.

Many studies have examined dissolution and/or matrix diffusion for a static
NAPL case. The model written for this thesis research was intended to provide
insight into the interaction between simultaneous flow of NAPL and water and aque-
ous phase transport with matrix diffusion. Only two other studies were found to
simulate all of the processes discussed. The study by Ross and Lu (1999) only sim-
ulated a one-dimensional fracture with a single aperture value in two-dimensional
porous media, and the porous matrix was not impervious to advective water flow.
Esposito and Thomson (1999) did not couple the flow and transport solution at ev-
ery time step. Clearly, this is a relatively new area of research that requires further
study.

Suggestions for continued research in this area would be to directly test the hy-
potheses put forth by Parker et al. (1994; 1997) and Ross and Lu (1999). That is,
further knowledge could be gained by adapting the numerical model to test condi-
tions of diffusive disappearance for slowly moving or immobile NAPL in a fracture
or fracture network at longer time scales. More work could also be done in exam-

ining the micro-scale NAPL behaviour above extremely small apertures in at least
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two dimensions, in order to test Ross and Lu’s hypothesis that immobile NAPL can
remobilize after large periods of time due to a decrease in diffusion gradient into the

matrix.
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