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Abstract

Image registration and segmentation are two most fundamental tasks in medical image analysis.

In practice, these tasks are usually performed manually, but this is tedious, time consuming and

prone to human errors. Therefore, efficient and reliable automatic medical image registration and

segmentation methods need to be developed. This is difficult because medical images are generally

corrupted by noise, image artifacts and the various anatomical regions of interest in medical images

often do not have distinct sharp boundaries. However, these anatomical regions frequently exhibit

consistent shape and topological characteristics which is an advantage when compared to natural

images.

In our proposed work, we take into account the above mentioned aspects and devise automatic

registration and segmentation methods using the popular energy minimization framework, with an

application to medical images. In contrast to the widely used level set based segmentation approach,

we follow the template-based segmentation approach, which is more suitable for medical images as

it can easily handle multi-region segmentation and also has the desirable property of preserving the

known topology of the anatomical structures. However, unlike the traditional template-based seg-

mentation and registration methods that use uniform meshes along with the finite difference method

(FDM) to solve the partial differential equations (PDEs) that arise in these methods, we use the fi-

nite element method (FEM) and solve the PDEs on a non-uniform mesh to obtain solutions whose

accuracy is well adapted to the salient features in the image domain. In this work, we present a

unified FEM-based registration and segmentation framework where the goal is to estimate a defor-

mation field following the minimization of an energy that consists of a common diffusion-based

regularization term and data term that depends on the appropriate segmentation or registration ob-

jective. Further, we extend this framework through the incorporation of an additional shape prior

based regularization term that is learned from training data. Lastly, we propose a novel variational

formulation for discrete deformable registration and show that interestingly it can be cast into the

proposed unified FEM-based registration and segmentation framework.

We validated our proposed unified FEM-based segmentation and registration framework on real

medical images including some of the popular benchmark datasets. We present a thorough evalu-

ation of the various registration and segmentation algorithms developed in our work by comparing

their performance with the other established methods in image registration and segmentation.
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Chapter 1

Introduction

Nowadays, non-invasive medical imaging techniques are a de facto standard in clinical settings

for diagnosis and treatment planning of various types of cancers and other pathologies in the hu-

man body. Further, medical images are also extensively used in medical science research studies

that strive to understand the physiological and pathological processes underlying the normal and

diseased human anatomy. Before clinically or scientifically relevant inferences can be made from

medical images, two fundamental image processing tasks of registration and segmentation need to

be undertaken. Performing these tasks manually is in general too cumbersome, time consuming and

often produces results that suffer from inter (intra)-expert variability. Hence, there is a great motiva-

tion to develop accurate and efficient automatic methods for reliable medical image registration and

segmentation.

The tasks of automatic medical image registration and segmentation are quite challenging be-

cause of following main issues:

(1) Weak boundaries (poor contrast): The inability of a particular medical image modality to ac-

quire sufficient contrast results in weak image edges or boundaries between the various anatom-

ical regions of interest. This makes the automatic segmentation task difficult because it heavily

relies on the intensity information to disambiguate between the various anatomical regions of

interest. Additional information can be incorporated through the use of an atlas image to aid

in segmentation, but this requires the need for automatic image registration, which in itself is a

non-trivial task.

(2) Sensor noise: In medical images, sensor noise and other image artifacts are ubiquitous, resulting

in spurious image features. This can seriously mislead automatic segmentation methods that

are based on image edge information in the image, as these methods can confuse the spurious

image features with the true boundaries of the anatomical regions of interest. Also, automatic

registration methods can obtain incorrect correspondences between the spurious image features

and the actual anatomical regions of interest.

The popular trend in medical image segmentation is to use region-based energies (which effectively
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address the issues of weak boundaries and sensor noise) within a level set based optimization frame-

work [23], [79]. But, the most desired feature of level sets, which is their ability to freely allow to

for topological changes is actually a disadvantage in the case of medical images where the topology

of the anatomical regions of interest is already known and needs to be maintained throughout the

segmentation process. Besides, it is not trivial to extend the level set framework for multi-region

segmentation (which is often required in medical images), as the evolving level sets corresponding

to different regions might overlap with each other. Although, there exist level set based multi-

region segmentation methods [17], [123] that solve this overlap problem, they still cannot prevent

the undesired topology changes. Therefore, an alternate template-based approach for multi-region

segmentation can be considered, where a template containing the topology and layout of the re-

gions of interest is smoothly deformed according to the minimization of a region-based energy. The

template-based segmentation task is similar to the deformable registration task in the sense that,

in both template-based segmentation and deformable registration an unknown smooth deformation

field is estimated via the minimization of an energy functional. Further, the regularization strategies

used in both these tasks for achieving a smooth deformation field are often identical. However, in

template-based segmentation a region-based energy is minimized as opposed to the image similarity

measure in deformable registration. A common drawback among the existing template-based seg-

mentation methods [102], [55] and most of the popular deformable registration methods [25], [112],

[72], [99] is that the partial differential equations (PDEs) that arise in these various deformable reg-

istration and template-based segmentation methods are solved using uniform meshes and using the

finite difference method (FDM). This approach achieves solutions with an uniform accuracy across

the problem domain. This is not desirable in medical image problems where usually more accurate

solutions are required near the boundaries of the anatomical regions and an inferior quality solution

can be tolerated elsewhere.

Despite the similarity between the template-based segmentation and deformable registration

tasks, currently there does not exist a framework that considers these tasks in a unified manner.

In this work, we provide such a unified framework for template-based segmentation and deformable

registration. Here, we address the main shortcoming of the traditional template-based segmentation

and registration methods, which is the use of uniform discretizations, by solving the PDEs in a more

computationally efficient and accurate manner using the finite element method (FEM). This facil-

itates the use of non-uniform meshes with a variable mesh resolution that can be well adapted to

the salient features in the image domain. Specifically, in this work we present a unified FEM-based

registration and segmentation framework where the goal is to estimate a deformation field follow-

ing the minimization of an energy that consists of a common diffusion-based regularization term

and data term that depends on the appropriate segmentation or registration objective. We propose

two approaches, namely, variational-like and demons-like approaches for the numerical solution of

this energy minimization using the FEM method. Although, there are some segmentation methods
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that have been proposed using the non-uniform FEM mesh [106], [39], these methods do not take

the template-based approach but rather use the FEM parametrization of the popular snakes model

[60]. Likewise, a few FEM-based registration methods have also been proposed [40], [89], [56], but

these methods use complex bio-mechanical models to model the elastic behavior of the underlying

anatomy in medical images and hence they are not applicable for general image registration tasks.

The diffusion-based regularization that we propose can impose a gamut of smoothness constraints,

from isotropic homogeneous to anisotropic inhomogeneous depending on the specific registration

task.

An advantage in medical images compared to natural images is the availability of a priori knowl-

edge about the shape characteristics of the various anatomical regions of interest. Therefore, in order

exploit this advantage, we investigate an extension to our unified FEM-based registration and seg-

mentation framework through the incorporation of an additional shape prior based regularization

term. Lastly, we propose a novel variational formulation for discrete deformable registration which

results in a convex energy and show that it can be cast into our unified FEM-based registration and

segmentation framework.

1.1 Contributions of this thesis

To summarize, the list of our theoretical contributions are below:

• Propose a unified FEM-based registration and segmentation framework.

• A new convex variational formulation of the discrete deformable registration task using the

FEM method.

• Formulate a shape prior on the FEM-based nodal deformation fields and incorporate them into

the unified FEM-based registration and segmentation framework.

• Perform an extensive validation of the proposed FEM-based registration and segmentation

methods on synthetic and real medical images.

• Provide an application of the proposed FEM-based registration method to the task of muscle

and fat tissue segmentation in thoracic computed tomography (CT) images for body compo-

sition estimation.

1.2 Thesis outline

The rest of this thesis is organized as follows:

• Chapter 2 presents a detailed review of the existing methods on deformable image registration

and image segmentation using deformable models.
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• Chapter 3 discusses the basic concepts in the finite element method (FEM).

• Chapter 4 presents the proposed unified FEM-based framework for image registration and seg-

mentation. In this chapter, the FEM-based continuous deformable registration and template-

based segmentation methods are developed and evaluated on synthetic and real medical image

data.

• Chapter 5 presents the novel FEM-based variational discrete registration method.

• Chapter 6 presents a comparative evaluation between the proposed FEM-based continuous

and discrete registration methods and the other popular deformable registration methods on

two 3D benchmark data sets.

• Chapter 7 discusses the application of the proposed unified FEM-based registration and seg-

mentation framework for the segmentation of computed tomography (CT) images.

• Chapter 8 presents the conclusion and discusses the future work.

1.3 Publications related to this thesis

1.3.1 Peer-reviewed journals

• Karteek Popuri, Dana Cobzas and Martin Jägersand, “Random walker based discrete de-

formable registration”, Medical Image Analysis (in preparation).

1.3.2 Peer-reviewed conferences

• Karteek Popuri, Dana Cobzas, and Martin Jägersand, “A variational formulation for dis-

crete registration”, Medical Image Computing and Computer Assisted Intervention (MIC-

CAI), 2013 (accepted).

• Karteek Popuri, Dana Cobzas, Martin Jägersand, Nina Esfandiari, and Vickie Baracos,

“FEM-based automatic segmentation of muscle and fat tissues from thoracic CT images”,

International Symposium on Biomedical Imaging (ISBI), 2013 (to appear).

• Karteek Popuri, Dana Cobzas, and Martin Jägersand, “A FEM deformable mesh for active

region segmentation”, International Symposium on Biomedical Imaging (ISBI), 2013 (to ap-

pear).

• Karteek Popuri, Dana Cobzas, and Martin Jägersand, “Fast FEM-based non-rigid registra-

tion”, Computer and Robot Vision (CRV), 2010.
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Chapter 2

Literature review

In this chapter, a comprehensive yet concise survey of the vast amount of existing literature on

deformable registration methods and image segmentation methods using deformable models is pre-

sented. Broadly, the structure of our discussion adheres to the dichotomy of non-parametric or

parametric approaches, that naturally emerges in both deformable registration and segmentation us-

ing deformable models. The deformable registration methods are categorized as non-parametric

or parametric depending on the regularization strategy used. On the other hand, the segmentation

methods using deformable models are classified as non-parametric or parametric based on the cho-

sen representation of the deformable model. We also shortly discuss the coupled registration and

segmentation methods that aim to solve the registration and segmentation tasks simultaneously.

2.1 Deformable image registration

ΩT

ISIT

ΩS

ϕ = ?

Figure 2.1: Illustration of deformable image registration

Given a source image IS : ΩS → R, ΩS ⊂ R
ν and a template image IT : ΩT → R, ΩT ⊂

R
ν , ν = 2 or 3, the goal of deformable or non-rigid registration is to find a dense transformation

ϕ : ΩT → ΩS such that the warped source image IS ◦ ϕ : ΩT → R is similar to the template

image IT . The non-rigid transformation ϕ can be conveniently split into the identity part and a non-

linear transformation represented by the deformation or displacement field U : ΩT → R
ν , such that

ϕ(x) = x + U(x) and (IS ◦ ϕ)(x) = IS(ϕ(x)) = IS(x + U(x)), ∀x ∈ ΩT . Now, the task of

deformable registration can be formulated as finding an optimal deformation field U∗ through the

minimization of the data term ED , which measures the similarity between the warped source image

5



and the template image:

U∗ = argmin
U

ED[U; IT , IS ], (2.1)

where ED[U; IT , IS ] = ESSD
D [U; IT , IS ] =

1

2

∫

ΩT

(IS(x+U(x)) − IT (x))2 dx.

Remarks.

1. Data term: The particular data term ESSD
D shown above is the most commonly used Sum

of Squared Differences (SSD) similarity measure. Other popular choices for the data term

include the Correlation Coefficient (CC), Correlation Ratio (CR), Joint Entropy (JE), Mutual

Information (MI) and the Normalized Mutual Information (NMI) (see [113] for detailed ex-

pressions of these data terms). In the following discussion unless otherwise specified the SSD

data term is being used.

2. Ill-conditioned problem: The above mentioned data term minimization is inherently ill-

posed, as small changes in the input data might lead to large changes in the output. Also,

the data term is typically non-convex and thus there exist multiple local minima. Hence, a di-

rect minimization of the data term is not possible. Therefore, the regularization or smoothing

constraints are required to make the minimization problem tractable.

Over the years, various regularization approaches have been proposed for the task of deformable

registration. These approaches can be broadly categorized into two groups:

• Non-parametric approaches: An explicit regularization term (regularizer) is added to smooth

the deformation field.

• Parametric approaches: The regularization is enforced in an implicit manner through the

parametrization of the deformation field using a finite set of basis functions.

Another way to regularize the minimization problem in Eq. 2.1 is by restricting the deformation

field to Sobolev spaces Hs, which by construction contain only functions with certain regularity

properties, that are in turn desirable for deformable registration [24], [12], [140].

Diffeomorphisms: A good space of non-rigid transformations In general, it might be desir-

able to estimate a non-rigid transformation ϕ (or equivalently the deformation field U) that is

not only smooth but is also invertible, i.e. there exists a smooth ϕ−1 : ΩS → ΩT such that

ϕ−1(x) = x +U−1(x) ∀x ∈ ΩS , where U−1 : ΩS → R
ν is the corresponding inverse deforma-

tion field. Such smooth transformations which are invertible and have smooth inverses are known as

diffeomorphisms. Particularly, in medical image registration the estimation of diffeomorphic trans-

formations is a natural choice because the space of diffeomorphisms is ideally suited to capture the

actual real world deformations that the underlying anatomical regions can undergo. In other words,

6



the estimation of a diffeomorphic transformation preserves the smoothness and also ensures that no

“foldings ” (or “tears”) occur while mapping the anatomical regions in the template image to the

source image and vice-versa. As a consequence, connected (disjoint) anatomical regions in the tem-

plate image also remain connected (disjoint) in the source image. Although, the above mentioned

regularization approaches (parametric, non-parametric and the restriction to Sobolev spaces) can

ensure smoothness of the non-rigid transformation they cannot guarantee that the transformation is

diffeomorphic. Therefore, apart from the regularization constraints, additional constraints have to

be imposed such that the minimization of the data term (see Eq. 2.1) is performed in the space of

diffeomorphisms. Most of the existing works on deformable registration methods do not attempt to

estimate diffeomorphic deformation fields. However, there do exist a few diffeomorphic deformable

registration methods employing the following two basic frameworks to compute diffeomorphic non-

rigid transformations:

• Large deformations diffeomorphic metric mapping (LDDMM): In this approach [36],

[12], the diffeomorphic transformation ϕ is generated as the endpoint ϕ = φ(1) of a path

φ(t) in the space of diffeomorphisms which is obtained as solution of the ordinary differential

equation (ODE) φ̇ = vt(t, φ(t)) with an initial condition φ(0) = Id, where vt : [0 1]→ T is

a time-dependent velocity field and Id is the identity transformation. T is the tangent space of

the Riemannian manifold corresponding to the space of diffeomorphisms.

• Stationary velocity fields (SVF): Here [51], [8], [121], [122], stationary velocity fields, i.e.

time-independent velocity fields, v ∈ T are employed instead of the time-dependent velocity

fields vt : [0 1]→ T and the diffeomorphic transformation ϕ is computed by the exponential

map ϕ = exp(v) of the stationary velocity field v.

Apart from the above mentioned two basic frameworks, there also have been efforts to construct

diffeomorphic transformations by combining a set of locally affine transformations [7], [6].

In the following sections, we present a discussion on the existing deformable registration meth-

ods (including some of the diffeomorphic registration methods) structured according to the regular-

ization strategy employed. The major works discussed in this review are summarized in Table 2.1.

2.1.1 Non-parametric approaches

Among the non-parametric approaches, the variational approaches incorporate the regularizer di-

rectly as an additional term into Eq. 2.1, whereas in contrast the demons approaches smooth the

deformation field using the regularizer in a separate step.
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Deformable registration methods Deformable models in segmentation

Non-parametric Parametric Non-parametric Parametric

Variational [15],[25], Radial basis [90], [94] Level set (Implicit): Explicit:

[72],[41] B-spline [101],[99], Edge-based [20],[21] Snakes [60]

Demons [117],[81],[19], [91],[50],[110] Region-based: Balloon [29]

[112],[121],[122] FEM [40],[89],[56],[84] [23],[79],[80],[16] GVF [133]

DFT [4],[26] Template-based: AVM [107]

DCT [9] TGCV [102], FEM snakes [30],[39]

TCV [65] B-spline snakes [68]

AVM-FEM [106]

Fourier [114], SH [61],

[11], SW [77] snakes

Template-based:

Metamorphs [55]

Active-image [67]

Table 2.1: Summary of the various deformable registration methods and the segmentation methods

using deformable models

Variational approaches

In the variational approach to deformable registration an energy functional consisting of the data

term ED and the regularizerER is minimized:

E[U] = ED[U; IT , IS ] + γER[U], (2.2)

U∗ = argmin
U

E[U],

where the regularization parameter γ controls the relative weighting of the data and regularization

terms. The minimization of the above energy functional is typically performed by solving the cor-

responding Euler-Lagrange equation of the functional E which is a non-linear partial differential

equation (PDE) of the form [72]:

A[U]− f(U) = 0, (2.3)

where f(U) is known as the force and corresponds to the functional or variational derivative (gra-

dient) of the data term, i.e., f(U) = ∇UED = (IS(x + U) − IT (x))∇IS |(x+U) and A is

a partial differential operator corresponding to the variational derivative of the regularizer such

that A[U] = γ∇UER. Here, ∇U denotes the variational derivative operator with respect to

U. The above non-linear PDE is typically solved by setting up a semi-implicit fixed-point iter-

ation scheme A[Uk+1] = f(Uk). Alternatively, an explicit gradient descent scheme Uk+1 =

Uk − τ(A[Uk]− f(Uk)) can also be employed [72].

In the earliest work on variational deformable registration, Broit [15] introduced the concept of

elastic regularization, where he considered the template and source images as two different instances

of an elastic body before and after deformation respectively. The deformations were modeled using

a linear elastic model and the deformation model was introduced into the variational framework by
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choosing the linear elastic potential as the regularizer:

ER = Eelas
R [U] =

∫

ΩT

̺1 trace(Stlin[U]TStlin[U]) +
̺2
2

trace(Stlin[U])2 dx, (2.4)

with Stlin[U] =
1

2
(∇U +∇UT),

where Stlin is the linear strain tensor and ̺1, ̺2 are the Lamé constants. For the choice of the elastic

regularizer the PDE is given by:

Aelas[U]− f(U) = 0, where Aelas = ̺1△+ (̺1 + ̺2)∇ div. (2.5)

The main drawback of elastic registration is that it does not allow large deformations. This is because

the linear elasticity model is based on the assumption of infinitesimal deformations. Further, in the

linear elasticity model the internal stress opposing the external force f(U) increases monotonically

with the strain and thus preventing larger deformations. To address this issue, Yanovsky et al. [135]

proposed the use of a nonlinear elastic deformation model which would allow large deformations:

Enlin−elas
R [U] =

∫

ΩT

̺1 trace(Stnlin[U]TStnlin[U]) +
̺2
2

trace(Stnlin[U])2 dx, (2.6)

with Stnlin[U] =
1

2
(∇U+∇UT +∇UT∇U),

where Stnlin is the non-linear strain tensor and ̺2, ̺2 are the Lamé constants. The direct compu-

tation of the Euler-Lagrange equation of Enlin−elas
R is cumbersome, therefore the variable splitting

method [70] is used to aid in the minimization of Eq. 2.2. Alternatively, large deformations can also

be obtained using the viscous fluid deformation model proposed by Christensen et al. [25], where

the elastic regularization is enforced on the velocity field instead of the deformation field. This en-

ables the fluid model to achieve the desired large deformations given enough time as the internal

stress in the fluid model disappears over time. The PDE for the fluid registration is as follows:

̺1△v + (̺1 + ̺2)∇ divv − f(U) = 0, (2.7)

where v denotes the velocity field, which is related to the deformation field U as ∂tU = v−∇Uv.

Comparing Eq. 2.7 with Eq. 2.5 we can see that the fluid registration PDE is in fact obtained by

applying the linear elastic operatorAelas to the velocity field v.

In the spirit of the Horn-Schunck variational optic flow method [53], Fischer et al. [72] proposed

the diffusion-based registration method, using a gradient-based regularizer:

Ediff
R [U] =

1

2

ν
∑

i=1

∫

ΩT

‖ ∇Ui ‖2 dx, (2.8)

whereU = [Ui]
ν
i=1. In contrast to elastic and fluid regularizations, the diffusion based regularization

is not physically motivated but motivated by the smoothing properties of the Laplacian (or diffusion)

operator△, which results from the Euler-Lagrange equation of the diffusion regularizer:

Adiff[U]− f(U) = 0, where Adiff = γ△. (2.9)
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The diffusion regularizer essentially minimizes the oscillations in first-order derivative (the gradient)

in order to smooth the deformation field. In [41], Fischer et al. explored the use of second-order

derivative to characterize the smoothness of the deformation field and proposed the curvature regu-

larizer:

Ecurv
R [U] =

1

2

ν
∑

i=1

∫

ΩT

(△Ui)
2 dx, (2.10)

where U = [Ui]
ν
i=1. Here, the term (△Ui)

2 can be seen as an approximation to the curvature

of the components of the deformation field. The main advantage of curvature based registration

is that, in contrast to the other deformable registration methods it is less sensitive to the initial

affine pre-registration step. This is because the curvature regularizer Ecurv
R does not penalize affine

transformations, i.e., Ecurv
R [Cx + b] = 0 for all C ∈ R

ν×ν , b ∈ R
ν . The PDE for the curvature

based registration is given by:

Acurv[U] − f(U) = 0, where Acurv = γ△2. (2.11)

Demons approaches

The basic idea in a demons approach to deformable registration is to decouple the minimization of

the data term ED (see Eq. 2.1) from the smoothing of the deformation field using the regularizer

ER. This is in contrast to the variational approach, where the minimization of the combined data

and regularization terms is performed.

In the seminal paper [117], Thirion presented the original formulation of the demons algorithm

motivated by an analogy to Maxwell’s demons. However, this formulation was based on heuristics,

where image forces derived from optic flow equations were iteratively added to the current esti-

mate of the deformation field and in each iteration Gaussian smoothing of the deformation field was

performed. Subsequently, Pennec et al. [81] proposed a more rigorous formulation of the demons

algorithm, where they showed that the image forces in the Thirion’s demons algorithm were equiv-

alent to minimizing the data term ED using an approximate second-order gradient descent method.

Further, they proposed two variants of the demons algorithm, the elastic demons in which the defor-

mation field is smoothed (same as the original demons by Thirion) and the fluid demons in which

the update to the deformation field is smoothed. The smoothing was performed by convolution with

a Gaussian kernel Gσ . In [72], Modersitzki showed that smoothing by Gaussian convolution is

equivalent to diffusion regularizationEdiff
R . In [19], Cahill et al. extended this idea of equivalence to

the curvature Ecurv
R and elastic Eelas

R regularizers and devised the corresponding smoothing kernels

for the curvature and elastic regularizers respectively. To summarize, the contributions of the above

discussed works in the general demons registration algorithm are shown in Algorithm 1.

Over the past few years, a few extensions to the general demons algorithm (see Algorithm 1)

have been proposed. In [112], Stefanescu et al. replaced the additive update in step 5 with the

compositional update (Uk+1 ← Uk ◦uk) and accordingly the warped gradient of the source image

10



Algorithm 1 General Demons registration

Require: IS , IT , ER

Ensure: U∗

1: At iteration k = 0, initialize U0

2: while convergence not reached do

3: uk = −F(∇UED[Uk]) //compute the update to the deformation

= −F((IS(x+Uk)− IT (x))∇IS |(x+Uk)) field using some function F(.) of the

gradient of the data term ED

4: uk ← KR ∗ uk //fluid smoothing, convolution kernel KR corresponds

to the regularizerER

5: Uk+1 ← Uk + uk //update the current estimate of the deformation field

6: Uk+1 ← KR ∗Uk+1 //elastic smoothing, convolution kernel KR corresponds to the

regularizerER

7: end while

∇IS |(x+Uk) in step 3 was replaced with the gradient of the warped source image ∇IS(x + Uk).

They, empirically justified the better performance of the compositional update. Further, in their

work smoothing of the deformation and update fields (steps 4, 6) was performed by solving a dif-

fusion equation instead of convolution with a Gaussian kernel (which is equivalent to the simple

linear diffusion regularizer Ediff
R ). We can see that the general demons algorithm performs opti-

mization (of the data term) on the entire space of deformation fields. Hence, the deformation fields

estimated using the general demons algorithm are not guaranteed to be diffeomorphic. In order to

compute diffeomorphic deformation fields, Veracauteren et al. [121] proposed the diffeomorphic

demons algorithm which adapts the general demons algorithm to the space of diffeomorphic trans-

formations, using the concept of stationary velocity fields. In the diffeomorphic demons algorithm,

at each iteration the update uk in step 3 is computed in the space of the stationary velocity fields

and then mapped into the space of diffeomorphisms using the exponential map of the velocity field

update, i.e., uk → exp(uk). Then, accordingly, the additive update in step 5 is replaced with

Uk+1 ← Uk ◦ exp(uk), which ensured a final diffeomorphic deformation field. In a subsequent

work, Veracauteren et al. [122] proposed an extension to the diffeomorphic demons algorithm where

the current deformation field Uk itself is represented as an exponential of a smooth velocity field

vk , i.e., Uk = exp(vk). The advantage of this representation is that the “true” inverse of the defor-

mation field can simply be written as U−1k = exp(−vk). The deformation field and its true inverse

were then computed using the diffeomorphic demons approach employing a symmetric data term

ÊD = ED[U; IT , IS ] + ED[U−1; IT , IS ].

2.1.2 Parametric approaches

In the parametric approach to deformable registration, the deformation field U (or the non-rigid

transformation ϕ itself) is parametrized using a finite set of basis functions Bn : ΩT → R, n ∈

11



{1, 2, . . . , N} as:

U(x) (orϕ(x)) =
N
∑

n=1

αnBn(x), ∀x ∈ ΩT , (2.12)

where {αn}Nn=1, αn ∈ R
ν are the basis coefficients which are considered as the parameters. The

minimization problem corresponding to the deformable registration task in Eq. 2.1 can now be

re-formulated as:

{α∗
n}Nn=1 = argmin

{αn}N
n=1

ED[U (orϕ); IT , IS ], (2.13)

i.e., find the optimal set of parameters {α∗
n}Nn=1, α∗

n ∈ R
ν such that the data term ED is minimized.

Thus, parametric deformable registration is posed as a finite-dimensional optimization problem.

In general, the numerical solution to the above problem can be obtained using any of the standard

optimization methods, e.g. gradient descent, Gauss-Newton, LevenbergMarquardtetc. Furthermore,

additional regularization is often enforced on U( orϕ) through the use of regularizersER[U (or, ϕ)]

either by adding them directly to the data term and performing the minimization similar to the

variational approach or by employing them in a separate step similar to the demons approach.

In the following sections, we present a discussion on some of the existing approaches for para-

metric deformable registration. These approaches can be broadly divided into two groups based

on the type of the basis functions used in the parametrization of the deformation field [141]. The

first group consists of approaches that employ local basis functions, where each of the basis func-

tions Bn(x) has a compact support centered around a point xn ∈ ΩT . The second group contains

approaches that use global basis functions which do not have a particular center of influence. Be-

low, we discuss a few representative methods from each of the two groups. For, local basis ap-

proaches: parametrization by the radial basis functions (RBF), the B-spline based free form defor-

mations (FFD) and the finite element method (FEM) basis functions. For global basis approaches:

parametrization based on trigonometric functions, e.g. Fourier series basis and discrete cosine trans-

form basis functions.

Local basis

Radial basis functions The radial basis functions (RBFs) depend on the distance between a given

point x and basis function center xn, such that BRBF
n (x) := BRBF

n (‖ x − xn ‖), where ‖ . ‖ is the

Euclidean norm. Traditionally, RBFs have been used for landmark-based parametric registration,

where a set of user-defined correspondences between the landmark points (chosen as some salient

image features) in the template and source images {xn}Nn=1 → {yn}Nn=1, xn ∈ ΩT ,yn ∈ ΩS

are used to estimate the non-rigid transformation ϕ such that the constraints ϕ(xn) = yn, ∀n ∈
{1, 2, . . . , N} are satisfied. In [92], [93], Rohr et al. employed the thin-plate spline (TPS) based

RBFs (BRBF-TPS
n (r) = r2 log r) and Fornefett et al. [42] employed Wendland function based RBFs

[130] to parametrize ϕ for landmark-based registration of medical images. A disadvantage of the
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Figure 2.2: An uniform B-spline FFD lattice undergoing deformation.

RBF based parameterization is that the local spatial influence of the non-rigid transformation ϕ

cannot be controlled, except through the introduction of additional landmark points, which is im-

practical. In order to overcome this limitation, recently Rohr et al. [94] proposed a new type of

RBFs called the Gaussian thin-plate splines (GTPS):

BRBF−GTPS
n (r) = − 1

8π

(

4πσ4Gσ(r) +

(

r +
σ2

r

)

erf

(

r√
2σ

))

, (2.14)

where erf(r) = ( 2√
π
)
r
∫

0

exp(−ξ2) dξ is the error function and Gσ(r) =
1

(
√
2πσ)ν

exp(− r2

2σ2 ) is the

Gaussian kernel. It is possible to control the local influence of the GTPS based RBFs by varying

the standard deviation σ of the Gaussian kernel. Note that landmark-based registration differs from

the intensity-based registration approaches discussed until now, that use a data term ED measuring

the similarity between the template and source images in the intensity space. However, Rohde et al.

[90] have used RBFs for intensity-based parametric registration of medical images. In their work,

RBFs proposed by Wu [131] (BRBF-WU
n (r) = max(1− r, 0) (3r3 + 12r2 + 16r+ 4), ∀ r ≥ 0) were

used to parametrize the deformation field U (instead of ϕ) and the Normalized Mutual Information

(NMI) similarity metric was used as the data term.

B-spline free form deformations In the B-spline based free from deformation (FFD) registration

approach the deformation field is essentially parametrized using the deformation field values at a set

of regularly spaced control points. Consider a uniform lattice of N control points Υ = {xi,j,k =

(xi,j,k, yi,j,k, zi,j,k)}Nx,Ny,Nz

i=1,j=1,k=1, N = Nx ×Ny ×Nz overlaid on the the 3D image domain ΩT =

{x = (x, y, z)|0 ≤ x ≤ X, 0 ≤ x ≤ 0 ≤ x ≤ Y, 0 ≤ x ≤ Z} as shown in see Figure 2.2. The

B-spline based free form deformations (FFD) basis functions BFFD
i,j,k corresponding to each lattice

point can then be written as a 3D tensor product of one-dimensional cubic B-spline basis functions
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BB−spline := {b0, b1, b2, b3}:

BFFD
i,j,k (x) =

{

bi−l(u)bj−m(v)bk−n(w) if 0 ≤ i− l, j −m, k − n ≤ 3,

0 otherwise,
(2.15)

where l = ⌊ x
X
(Nx − 1)⌋ + 1, m = ⌊ y

Y
(Ny − 1)⌋ + 1, n = ⌊ z

Z
(Nz − 1)⌋ + 1 and u = x

X
(Nx −

1) − ⌊ x
X
(Nx − 1)⌋, v = y

Y
(Ny − 1) − ⌊ y

Y
(Ny − 1)⌋, w = z

Z
(Nz − 1) − ⌊ z

Z
(Nz − 1)⌋ and

the cubic B-spline basis functions are given by b0(u) = (1−u)3

6 , b1(u) = 3u3−6u2+4
6 , b2(u) =

−3u3+3u2+3u+1
6 , b3(u) =

u3

6 . From the above we can see that the span of the support of each basis

function is four lattice points in each direction.

In a popular work, Rueckert et al. [101] employed the FFD basis functions for the registration

of breast MRI images where they parametrized the non-rigid transformation ϕ as:

ϕ(x) =

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

xi,j,kB
FFD
i,j,k (x). (2.16)

Here, the coordinates of the lattice points (Υ = {xi,j,k}Nx,Ny,Nz

i=1,j=1,k=1) are the unknown parameters that

were estimated through the minimization of an energy based on the Normalized Mutual Information

(NMI) for data term and an additional smoothing term given by the bending energy:

Ebending
R [ϕ] =

∫

ΩT

[(∂2xxϕ)
2 + (∂2yyϕ)

2 + (∂2zzϕ)
2 + 2(∂2xyϕ)

2 . . .

. . .+ 2(∂2yzϕ)
2 + 2(∂2zxϕ)

2] dx. (2.17)

The minimization was performed using a multiresolution framework in which the resolution of the

lattice Υ was increased in a coarse-to-fine manner. In a later work, Rueckert et al. [99], proposed

a diffeomorphic registration method based on their FFD registration methodology. In this work,

a diffeomorphic transformation was constructed by composing a sequence of FFD transformations,

while ensuring that each of the individual FFD transformations was diffeomorphic by imposing con-

straints on the maximum displacement of the lattice points. Rohlfing et al. [91] showed an improved

performance of the FFD registration method using the following Jacobian-based incompressibility

regularization constraint instead of the above mentioned Ebending
R regularizer:

Eincompress
R [ϕ] =

∫

ΩT

log(Jϕ(x)). (2.18)

Recently, Shi et al. [110] found that instead of estimating the FFD deformations separately at each

multi-resolution level, a more accurate solution is obtained by solving for the FFD deformations at

all the levels simultaneously with a single energy minimization step while using an addtional sparsity

constratint. Hansen et al. [50] extended FFD deformable registration to non-uniform lattices, where

instead of the regularly placed points in uniform lattices, the density of these points is varied such

that the resolution of the lattice is finer in image regions with salient features and it is coarser in the

homogenous regions. They parametrized the deformation field using multivariate B-splines which

can be defined on non-uniform lattices as opposed to the above discussed tensor product B-splines

that correspond to uniform lattices.

14



Pn+1Pn−1 Pn

1

φLagrange
n

1D domain

1

Pn−1

Pn−2 Pn

Pn−3

Pn+1

Pn+2

φLagrange
n

2D domain

Figure 2.3: Illustration of the Lagrange nodal basis function.

Finite element method Consider a discrete tesselation M = ({Pn}Nn=1,∆h) of the template

domain ΩT , where {Pn}Nn=1 denote the nodes of the mesh and ∆h is the set of elements (triangles

in 2D and tetrahedra in 3D). The deformation field U can be approximated by a set of finite element

method (FEM) basis functions {BFEM
n := φLagrangen }Nn=1, which are commonly chosen as piece-

wise linear polynomials (but sometimes also chosen as quadratic piece-wise polynomials):

U(x) =

N
∑

n=1

Unφ
Lagrange
n (x), ∀x ∈ ΩT , (2.19)

where Un is the value of deformation field at the node Pn. We assign a piece-wise linear basis

function φLagrangen to each node Pn which is uniquely defined as (see Figure 2.3):

φLagrangen (x) =











is linear within each adjacent element,

1 at each node Pn,

0 at every other node Pm 6= Pn.

(2.20)

Here, we note that the nodal deformations {Un}Nn=1 are the unknown parameters that need to be

estimated.

The FEM-based approach is in general suitable for deformable registration (and especially

for medical image registration) because it naturally allows for the use of non-uniform meshes

adapted to the salient features (anatomical structures) in the image. Such adaptive non-uniform

meshes can improve both the computational efficiency and accuracy of the solution to the de-

formable registration task. Despite the attractiveness of the FEM-based approach, there exist rel-

atively few works in the area of FEM-based deformable registration. In [40], Ferrant et al. pro-

posed a FEM-based elastic registration method, where they employed the linearized SSD data term

ELIN−SSD
D ≈

∫

ΩT
(IS(x)+∇IS(x)U(x)−IT (x))2 dx along with the linear elastic regularizerEelas

R

(see Eq. 2.4). Due to the linearization of the data term, setting the partial derivative of the energy

with respect each of the N parameters {Un}Nn=1 to zero, i.e, ∂Un
(ELIN−SSD

D + γEelas
R ) = 0 yields

a system of N linear equations which were solved to obtain the nodal deformations {Un}Nn=1 and

hence the deformation field U. Typically, determining the elasticity parameters (Lamé constants) ̺2
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and ̺1 involved in the elastic regularizerEelas
R is a difficult task (especially for the various tissues in

medical image registration). Recently, Risholm et al. [89] proposed a Markov Chain Monte Carlo

(MCMC) optimization approach for FEM-based elastic registration to simultaneously estimate the

elasticity parameters along with the deformation field parameters. Apart from the linear elastic reg-

ularizer, more complex regularizers based on constitutive models have been proposed [56]. Popuri

et al. [84] employed a simple diffusion-based regularization in a demons-like framework for FEM-

based deformable registration.

Global basis

As an alternative to the local basis parametrization of the deformation fields, there have been works

that parametrize the deformation fields using trigonometric functions which have a global support

[141]. The basic idea in these works is to parametrize the deformation field using either a discrete

Fourier transformation (DFT) [4], [26] or a discrete cosine transform (DCT) [9]. The basis functions

{BDFT
n }Nn=1 and {BDCT

n }Nn=1 corresponding to the DFT and DCT parametrization respectively es-

sentially represent signals of frequency n = {1, 2, . . . , N} (see [4] and [9] for definitions of the

BDFT
n and BDCT

n respectively). Typically, these N frequencies are chosen from the low-frequency

end of the spectrum. This provides an inherent regularization of the deformation field as only smooth

functions are generated by the linear combination of such low-frequency basis functions. Another

motivation for the use of trigonometric basis functions is that the trigonometric basis form the eigen-

functions of the operator A correspond to the variational derivative of the regularizer ER, which

facilitates in the solution of the Euler-Lagrange equation in Eq. 2.3.

2.2 Deformable models in image segmentation

Image segmentation in general refers to the task of partitioning an image I : Ω → R into “mean-

ingful” regions. More specifically in the context of medical imaging, segmentation involves the de-

lineation of the various anatomical structures (or tissues) present in the medical image. Deformable

models have been widely used for medical image segmentation with considerable success. A de-

formable model is basically a closed curve C defined on the image domain Ω. The goal of image

segmentation using a deformable model can be formulated as finding an optimal curve C∗ that aligns

with the boundary of the object of interest in the image such that an energy E is minimized :

E[C] = Eimage[C; I] + γEsmooth[C], (2.21)

C∗ = argmin
C

E[C],

where Eimage is the image-based energy term that incorporates edge/gradient information (edge-

based) or region intensity statistics (region-based) derived from the image data,Esmooth is the smoothness-

based energy term that purely contains regularization constraints defined on the curve and γ is the

regularization parameter that controls the relative weighting between the two terms.
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Figure 2.4: Different representations of the curve C employed by the deformable models in segmen-

tation.

The minimization of the energy E in Eq. 2.21 is typically performed using a gradient descent

strategy. Thus, starting with an initialization C ≡ C0, the deformable model given by the curve C is

deformed according to the following evolution equation:

∂tC = fimage(C) + fsmooth(C), (2.22)

until a local minimum ofE at C ≡ C∗ is reached, corresponding to the segmentation of the image. In

the above, fimage = −∇CEimage is the image-based force that drives the deformable model towards

the boundary of the object of interest in the image and fsmooth = −γ∇CEsmooth is the smoothness-

based force that keeps the deformable model smooth during evolution. Here,∇C denotes the gradi-

ent with respect to the curve C.

In the practical application of the image segmentation framework using deformable models,

the most important choice to be made is the representation of deformable model itself, meaning

the representation of the curve C. This choice determines the space in which the minimization of

the energy E (see Eq. 2.21) is performed. That is, if the deformable model is represented using a

specific parametrization, then the optimal curve is searched in the space of parameters corresponding

to that parametrization. Such deformable models are called as parametric deformable models in

this review. On the contrary if the deformable model is represented in a “parameter-free” manner

using a function belonging to a particular class of functions defined on the image domain, then the

optimization is restricted to the space of that function class. Such deformable models are referred to

as non-parametric deformable models in this review.

In the last few decades, numerous deformable models have been proposed for the purpose of im-

age segmentation under various names like snakes, active contours, balloons, active regions, meta-

morphs etc. Among these deformable models, we encounter three particular representations of the

curve C (see Figure 2.4). In the following, we discuss each of these representations in the context of

the above introduced dichotomy of parametric and non-parametric models:

• Explicit representation: The curve C is represented using a vector function Γ : [0 1] → Ω,

such that for r ∈ [0 1], Γ(r) = (x(r), y(r)) are points on C (see Figure 2.4a). In this

representation, the point coordinates (x(r), y(r)), r ∈ [0 1] are considered as the parameters.

Further, the function Γ can itself be expressed in terms of a finite set of basis functions, i.e.,
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Γ(r) =
N
∑

n=1
αnBn(r), r ∈ [0 1]. In this case, the curve is parametrized using the finite set

of basis function coefficients {αn}Nn=1. Hence, in deformable models that use an explicit

representation of the curve C, the energy minimization is performed either in the space of

the point coordinate parameters (x(r), y(r)), r ∈ [0 1] or in the space of the basis function

coefficient parameters {αn}Nn=1, which places the explicit representation based deformable

models in the group of parametric deformable models.

• Implicit representation: The curve C is encoded as a zero isocontour of the level set function

Φ : Ω → R, i.e., C = {x|Φ(x) = 0, x ∈ Ω} (see Figure 2.4b), where the function Φ is

commonly chosen as the signed distance function [78]. Therefore, in deformable models that

employ an implicit representation of the curve C, the energy optimization is carried out in the

space of level set functions and thus the implicit representation based deformable models can

be categorized as non-parametric deformable models. In practice the computation is limited

to only a narrow band around the zero level set.

• Template-based representation: The curve C is represented using a template image (or sim-

ply template) IT : ΩT → R which is deformed through a deformation field U : Ω → ΩT

(see Figure 2.4c). The template IT essentially embeds the topological shape of the curve C
using either a level set function (signed distance function) or a binary image. The curve C
is then embedded into the warped template IT ◦ ϕ : Ω → ΩT , where ϕ : Ω → ΩT is the

transformation corresponding to the deformation field U, such that ϕ(x) = x + U(x) and

(IT ◦ϕ)(x) = IT (ϕ(x)) = IT (x+U(x)), ∀x ∈ Ω. Thus, in deformable models that employ

a template-based representation of the curve C, the segmentation energyE in Eq. 2.21 is opti-

mized over the space of the deformation fields (or directly over the space of transformations).

This optimization task can be performed using any of the deformable registration approaches

discussed previously in Section 2.1. We can then classify the deformable models using the

template-based representation of the curve as non-parametric or parametric deformable mod-

els depending on whether non-parametric or parametric deformable registration models are

used for energy optimization. We note that alternatively the curve C can also be represented

through the inverse transformation ϕ−1 : ΩT → Ω and the corresponding inverse deforma-

tion field U−1 : Ω → ΩT , where ϕ−1(x
′

) = x
′

+ U−1(x
′

). Although, the representation

of the curve C using the inverse transformation might seem un-intuitive, it is popularly used

by the parametric deformable models which employ local basis functions. This is because it

facilitates the use of a discrete mesh (or lattice) overlaid on the template domain on which the

local basis functions can be conveniently defined.

In the next sections, we present a review on some of the existing non-parametric and parametric

deformable models in image segmentation.

We note that the discussion until now pertained to 2D deformable models (i.e. deformable
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curves). However, the general energy minimization based segmentation framework using 2D de-

formable models presented above is also applicable to 3D deformable models (i.e. deformable

surfaces). Likewise, even though most of the segmentation techniques presented in the following

sections are discussed in the context of 2D deformable models, they can be readily extended to 3D

deformable models as well.

2.2.1 Non-parametric deformable models

The non-parametric deformable models can be further divided into two groups based on whether the

segmentation is being driven by the edge or region information in the image. Below, we discuss both

the edge- and region-based non-parametric deformable models. In all the non-parametric deformable

models discussed below, the implicit representation of the curve is employed with the exception of

works by Saddi et al. [102] and Le Guyader et al. [65], where a template-based representation of

the curve is used.

Edge-based

The edge-based non-parametric deformable models essentially perform segmentation by evolving a

curve in the direction of its normal with a speed dependent on the curvature until it encounters an

edge in the image. According to the energy minimization based segmentation framework described

in the previous section, segmentation using the edge-based non-parametric deformable model can be

described as minimizing the curve length (length of the curve) subject to the edge-based constraints

derived from the image. Using the implicit level set representation (see Figure 2.4b), consider a

segmentation energy containing just the smoothness-based term, which is chosen as the length of

the curve C:

ELength[Φ] = ELength
smooth[Φ] = Length(C) =

∫

Ω

|∇H(Φ(x))| dx, (2.23)

where H(.) is the Heaviside function defined as: H(Φ) = 1 if Φ ≥ 0 and H(Φ) = 0 if Φ < 0. The

evolution of a non-parametric deformable model according to the above energy is given as:

∂tΦ = f
Length

smooth [Φ] = div

( ∇Φ
|∇Φ|

)

|∇Φ| = κ|∇Φ|, (2.24)

where κ = div
( ∇Φ
|∇Φ|

)

is the curvature of the curve C. The above evolution is known as the mean

curvature motion, where the smoothness-based force f
Length
smooth moves the non-parametric deformable

model with a speed proportional to the curvature κ in the direction of the normal to the curve. In

order to perform segmentation, the edge-based non-parametric deformable models either incorporate

an edge detector into the energy ELength
smooth or directly modify the force f

Length
smooth using an edge detector.

The earliest edge-based non-parametric deformable model for segmentation called geometric

active contour was proposed by Caselles et al. [20], using a edge-detector of the form:

g(|∇I|) = 1

1 + |(∇Gσ ∗ I)|
, (2.25)
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where Gσ is a Gaussian kernel. Note that g(|∇I|) → 0 as |∇I| → ∞, i.e., the edge detector takes

very small values in the presence of edges, which are defined by high gradients in the image. In the

geometric active contours model, a new force using the edge-detector was defined as:

∂tΦ = F geometric

smooth [Φ] = g(|∇I|) div

( ∇Φ
|∇Φ|

)

|∇Φ|. (2.26)

In the above, the edge-detector is used as a multiplicative stopping-term which is supposed to stop

the evolution of the curve near the edges. However, in practice this multiplicative stopping-term

only slows down the evolution and in the absence of strong edges this stopping-term is unable to

prevent the curve from “leaking” into the object boundary. To address this problem, in a subsequent

work Caselles et al. [21] proposed the popular geodesic active contour (GAC) model, where the

edge-detector is used to formulate an energy that corresponds to the curve length in a Riemannian

space (according to a metric induced by the image) as:

EGAC[Φ] = EGAC
smooth[Φ] =

∫

Ω

g(|∇I|)|∇Φ| dx. (2.27)

The minimization of the above energy leads to the following evolution:

∂tΦ = fGAC
smooth[Φ] = g(|∇I|) div

( ∇Φ
|∇Φ|

)

|∇Φ|+∇g · ∇Φ. (2.28)

Comparing the above GAC evolution equation with Eq. 2.26 we can see that there is an additional

stopping-term∇g · ∇Φ, that “pulls back” the curve in case it crosses the object boundary.

The main limitation of the above discussed edge-based non-parametric deformable models is that

they are solely dependent on the edge information in the image and hence often fail (even the GAC

model) when images do not have sufficient contrast between the object of interest and background

(this is especially true for medical images). One way to address this issue is by introducing region-

based information into the non-parametric deformable model.

Region-based

In the seminal work by Mumford et al. [75], the segmentation problem was modeled as partitioning

the image into two piecewise smooth regions separated by the curve C, where one of the regions

corresponds the object of interest in the image and the other to the background. The Mumford-Shah

(MS) functional for segmentation is given by:

E[C, Ĩ] = EMS
image[C, Ĩ] + γEMS

smooth[C], (2.29)

where EMS
image[C, Ĩ] =

∫

Ω

(Ĩ − I)2 dx+ β

∫

Ω\C
|∇Ĩ|2 dx and EMS

smooth[C] = Length(C),

where Ĩ is the “solution” image containing the two piecewise smooth regions. A simplified version

of the MS functional known as the cartoon limit, is obtained by setting β = 0 and replacing the

piecewise smooth approximation with a piecewise-constant approximation. Based on the cartoon

limit version of the MS functional and using the level set representation, Chan et al. [23] proposed
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the extremely popular Chan-Vese (CV) region-based non-parametric deformable model for segmen-

tation:

ECV[Φ] = ECV
image[Φ] + γE

Length

smooth[Φ], (2.30)

with ECV
image[Φ] =

∫

Ω

H(Φ)(I − µ1)
2 + (1 −H(Φ))(I − µ2)

2 dx,

where µ1, µ2 denote the mean intensities of the two piecewise constant regions Ω1 = {x|Φ(x) >=
0, x ∈ Ω} and Ω2 = {x|Φ(x) < 0, x ∈ Ω} respectively, which are separated by the curve

C = {x|Φ(x) = 0, x ∈ Ω}. We also note that the Heaviside function H(Φ) = 1 in region Ω1 and

H(Φ) = 0 in region Ω2. The evolution equation for the CV model is given by:

∂tΦ = fCV
image[Φ] + γfLength

smooth[Φ], (2.31)

with fCV
image[Φ] = ((I − µ2)

2 − (I − µ1)
2)|∇Φ|,

and the means of the regions Ω1, Ω2 are updated at every evolution step as:

µ1 =

∫

Ω
IH(Φ) dx

∫

Ω
H(Φ) dx

, µ2 =

∫

Ω
I(1−H(Φ)) dx

∫

Ω
(1−H(Φ)) dx

. (2.32)

Thus, the minimization of the CV energy attempts to find a smooth curve C that separates the image

into two distinct regionsΩ1 (say object) and Ω2 (say background) such that the corresponding means

µ1 and µ2 are distinct while each of the regions Ω1 and Ω2 are as homogeneous as possible.

The CV model employs the simplest of statistics namely, the mean, to characterize the regional

intensity information in the image. Consequently, the CV model is not appropriate to distinguish

regions that are highly inhomogeneous, i.e., violate the piecewise constancy assumption and hence

cannot be represented by a single mean value. One way to overcome this shortcoming is through

the incorporation of more complex region statistics into the CV model. For this purpose, Paragios

et al. [79] re-formulated the original CV model using a probabilistic framework, where image

segmentation is posed as a Bayesian inference task and proposed the following generalized Chan-

Vese (GCV) energy functional:

EGCV[Φ] = EGCV
image[Φ] + γELength

smooth[Φ], (2.33)

with EGCV
image[Φ] =

∫

Ω

−H(Φ) log p1 − (1−H(Φ)) log p2 dx,

where p1(x) := p(I(x)|x ∈ Ω1), p2(x) := p(I(x)|x ∈ Ω2) are the probability densities that

model the intensity distributions in the two regions Ω1, Ω2 of the image. Minimization of the above

GCV energy attempts to find a smooth curve C that separates the image domain into two regions

Ω1 (object) and Ω2 (background) such that the likelihood of the observed image intensity values is

maximized given the two region probability densities p1, p2 corresponding to regions Ω1, Ω2. The

CV energy ECV in Eq. 2.30 is a special case of the above energy and is obtained by choosing a

Gaussian probability density p1(x) =
1√
2πσ1

exp
− (I(x)−µ1)2

2σ2
1 , p2(x) =

1√
2πσ2

exp
− (I(x)−µ2)2

2σ2
2 , with

σ1 = σ2 =
√
0.5 to model the region intensity distributions. The Parzen density has also been
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employed for image segmentation based on the GCV model [16]. The evolution corresponding to

the above energy in Eq. 2.33 is given by:

∂tΦ = fGCV
image[Φ] + γfLength

smooth[Φ], (2.34)

with fGCV
image[Φ] = (log p1 − log p2)|∇Φ|,

where p1,p2 are re-estimated at every evolution step.

The non-parametric deformable models discussed until now formulate energies either purely

based on edge cues (see Section 2.2.1) or purely based on the region information in the image.

Contrary to these formulations, Paragios et al. [80] integrated the edge-based GAC model into the

region-based GCV model and proposed the geodesic active region (GAR) model:

EGAR[Φ] = EGCV
image[Φ] + γEGAC

smooth[Φ]. (2.35)

The evolution corresponding to the GAR model is given by:

∂tΦ = fGCV
image[Φ] + γfGAC

smooth[Φ]. (2.36)

Template-based curve representation: Saddi et al. [102] re-formulated the GCV energy in Eq.

2.33 by replacing the level set representation with the template-based representation of curve C (see

Figure 2.4c) and proposed the following template-based generalized Chan-Vese (TGCV) energy:

ETGCV [U] = ETGCV
image [U] =

∫

Ω

−IT (x +U(x)) log p1 . . .

. . .− (1 − IT (x+U(x))) log p2 dx, (2.37)

where IT was chosen as a binary template image. Comparing the above with Eq. 2.33, we see that

the warped template IT (x+U(x)) can be seen as the Heaviside functionH(Φ). The minimization

of the above energy was performed using the fluid demons approach (see Section 2.1.1 and algorithm

1). In this approach, an update field uk was computed at each evolution step k as:

uk = fTCGV
image [Uk] = (log p1 − log p2)(∇IT (x+Uk(x))). (2.38)

Then, this update field was smoothed at each step using a Gaussian kernel Gσ , i.e., uk ← Gσ ∗ uk.

As mentioned before (see Section 2.1.1), this can be regarded as using the diffusion regularizerEdiff
R

(see Eq. 2.8) as the smoothness-based energy, i.e.,ETCGV
smooth = Ediff

R and it follows that FTCGV
smooth[u] =

Adiff [u] = △u. This smoothed update field was then used to update the current estimate of the

deformation field Uk using a compositional update rule, i.e, Uk+1 ← Uk ◦uk. A similar template-

based segmentation method was recently proposed by Le Guyader et al. [65], where the level set

based CV energy in Eq. 2.30 was re-formulated using the template-based curve representation and

the nonlinear elastic regularizer in Eq. 2.6 as follows:

ETCV−nlin−elas[U] = ETCV
image[U] + γEnlin−elas

R [U], (2.39)

with ETCV
image[U] =

∫

Ω

H(IT (x+U))(I − µ1)
2 + (1−H(IT (x+U)))(I − µ2)

2 dx.
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where the template image IT was chosen as a signed distance function. As mentioned previously in

Section 2.1.1, the minimization of the above energy functional ETCV−nlin−elas is performed using

the variable splitting method [70].

2.2.2 Parametric deformable models

In parametric deformable models, the curve is represented explicitly through the use of either a local

or a global parametrization. The curve can be locally parametrized simply by using the coordinates

of the points on the curve as the parameters. An alternative way to locally parametrize the curve is

to express the curve in terms of finite set of basis functions with a local support. In a similar manner,

basis functions with a global support are employed to achieve a global parametrization of the curve.

We discuss both the local and global parametrization based approaches below. In all the parametric

deformable models discussed below, the explicit representation of the curve is employed with the

exception of works by Huang et al. [55] and Li et al. [67] where a template-based representation of

the curve is used.

Local parametrization

The easiest way to locally parametrize the curve C is by using a vector function Γ : [0 1] → R
2,

such that Γ(r) = (x(r), y(r)), r ∈ [0 1] are the coordinates of the points on the curve C (see Figure

2.4a). In the seminal work [60], Kass et al. employed this point coordinate parametrization of the

curve and proposed the popular snake or active contour parametric deformable model:

Esnake[Γ] = Esnake
image[Γ] + Esnake

smooth[Γ], (2.40)

with Esnake
image[Γ] =

∫ 1

0

−|∇(Gσ ∗ I)|2 ds,

Esnake
smooth[Γ] =

1

2

∫ 1

0

w1(r)|∂sΓ|2 + w2(r)|∂2ssΓ|2 ds,

where Gσ is a Gaussian kernel. In the above energy, the image-based energy Esnake
image was defined

using the edge map −|∇(Gσ ∗ I)|2 of the image and smoothness-based energy Esnake
smooth consists of

two terms, the tension and rigidity of the curve Γ. The corresponding evolution for the snake energy

is given by:

∂tΓ = f snakeimage[Γ] + f snakesmooth[Γ], (2.41)

with f snakeimage[Γ] = ∇(|∇(Gσ ∗ I)|2), f snakesmooth[Γ] = ∂s(w1∂sΓ)− ∂2ss(w2∂
2
ssΓ).

As the snake model is purely dependent on the edge map of the image, a limitation of the snake

model is that, for the snake model to get attracted to the boundary of the object of interest, it has to

be initialized near the object boundary. In order to increase the “range of attraction” of the snake

model, Cohen et al. [29] added a new force to the original snake forces in Eq. 2.41, the balloon
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force which moves the snake model in the normal direction, resulting in the following evolution:

∂tΓ = f snakeimage[Γ] + fballoonimage [Γ] + f snakesmooth[Γ], (2.42)

with fballoonimage [Γ] = wballoonN(Γ).

where the magnitude of wballoon controls the strength of the balloon force and sign of wballoon

determines the direction of the force along the normal N(Γ) to the curve. One of the drawbacks of

the balloon forces is that the magnitude of wballoon needs to be chosen carefully or else the balloon

force might become too strong and move the snake model past the weak edges. Subsequently, Xu et

al. [133] proposed the gradient vector flow (GVF) force which increases the attraction range of the

snake model without the drawback entailed in the use of the balloon force. The basic idea behind the

GVF force is to diffuse the gradient of the edge map to the regions away from the object boundary

by solving the following diffusion PDE:

∂tυ = c∇2υ − |∇g|2(υ −∇g), (2.43)

where g = −|∇(Gσ ∗ I)|2 is the edge map of the image and υ is the desired smooth edge map. The

GVF force is defined as fGVF
image[Γ] = υ∗, where υ∗ is the steady state solution to the above PDE.

The GVF evolution is then given by:

∂tΓ = f snakeimage[Γ] + fGVF
image[Γ] + f snakesmooth[Γ]. (2.44)

Recently, in an effort to incorporate region information into the snake model, Shen et al. [107]

proposed the active volume model (AVM), by introducing an additional image-based energy term

EAVM
image computed based on the region statistics into the snake energy in Eq. 2.40:

EAVM[Γ] = Esnake
image[Γ] + EAVM

image[Γ] + Esnake
smooth[Γ], (2.45)

with EAVM
image[Γ] =

∫ 1

0

ΦΓ(Γ)ΦR(Γ) ds,

where ΦΓ the signed distance function corresponding to the current estimate of the segmentation

boundary Γ and ΦR is the signed distance function corresponding to the current prediction of the

object region, the Region-of-Interest (ROI). The AVM evolution is given by:

∂tΓ = f snakeimage[Γ] + fAVM
image[Γ] + f snakesmooth[Γ], (2.46)

with fAVM
image[Γ] = −∇(ΦΓΦR).

Segmentation using the AVM model proceeds by alternating the above evolution with the ROI pre-

diction step until the true object boundary is reached. Given the current estimate of the segmentation

boundary Γ, the image domain Ω is partitioned into two disjoint regions, Ω1 = {x|ΦΓ(x) ≥ 0, x ∈
Ω} corresponding to the object and Ω2 = {x|ΦΓ(x) < 0, x ∈ Ω} corresponding to the background.

Then, the probability distributions p1, p2 corresponding to the object, background respectively are
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estimated from the region intensity statistics. Now, the ROI is predicted as the largest connected

region in the image where p1 ≥ p2, i.e., the largest connected region which has the higher proba-

bility of belonging to the object than the background. A signed distance function ΦR is computed

on this ROI so that it can be used to evolve the segmentation boundary according to the above AVM

evolution equation.

As an alternative to the above discussed continuous parametrization of the curve C using the

coordinates of the points, Γ(r) = (x(r), y(r)), r ∈ [0 1], a discrete parametrization of the curve C
using a finite set of basis functions can be defined as:

Γ(r) =
N
∑

n=1

αnBn(r), r ∈ [0 1], (2.47)

where the basis function coefficients α = [αn]
N
n=1 are the parameters representing the curve C.

Using this discrete parametrization of the curve C, the snake evolution in Eq. 2.41 can be written as:

∂tα = Ssnake
stiff α− f snakeimage, (2.48)

where Ssnake
stiff is the stiffness matrix which is related to the smoothness force f snakesmooth and f snakeimage is a

vector of the image forces corresponding to f snakeimage. This discrete parametrization based snake model

has been employed for image segmentation using basis functions with local support, such as FEM

basis functionsBFEM [30],[39], B-spline basis functionsBB−spline [68] (see Section (2.1.2) for the

definition of the FEM and B-spline basis functions). Shen et al. [106] also employed the FEM basis

functions into the AVM model (see Eq. 2.46) resulting in the evolution:

∂tα = Ssnake
stiff α− f snakeimage − fAVM

image, (2.49)

where fAVM
image is the vector of region-based forces corresponding to fAVM

image. We emphasize that the

parametrization of the AVM model using FEM basis functions still corresponds to an explicit repre-

sentation of the curve (see Figure 2.4a) and not to a template-based representation of the curve (see

Figure 2.4c) as employed by Huang et al. [55] (discussed below), where the deformation field is

parametrized using a set of local basis functions.

Template-based curve representation: Huang et al. [55] proposed a parametric deformable

model called the metamorphs using the template-based representation of the curve C (see Figure

2.4c). The metamorphs energy contains both edge-based and region-based image terms and is given

by:

Emetamorphs[ϕ−1] = Emetamorphs
image [ϕ−1], (2.50)

with Emetamorphs
image [ϕ−1] =

∫

Ω1

(IT (x)− Φ(ϕ−1(x)))2 dx+

∫

∂Ω1

Φ(ϕ−1(x))2 dx . . .

. . .+

∫

Ω1

(IT (x)− ΦR(ϕ
−1(x)))2 dx−

∫

∂Ω1

log p1 dx,
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where IT is the template chosen as a signed distance function, Ω1 = {x|IT (x) ≥ 0, x ∈ Ω} is

the region corresponding to the object and p1 is the probability modeling the region statistics in re-

gion Ω1, Φ is the un-signed distance function corresponding to the edge map of the image I , ΦR is

the signed distance function corresponding to the Region-of-Interest (ROI), where the ROI is com-

puted as the largest connected region that has the probability p1 of being an object greater than a

certain threshold. In the above, the first two terms of the image-based energy terms Emetamorphs
image

are dependent on the edge information in the image and the last two terms are derived from re-

gion statistics. The minimization of the above energy is performed using B-spline based free form

deformation (FFD) deformable registration approach (see Section 2.1.2) where the transformation

ϕ−1 is expressed using a set of FFD basis functions BFFD. We observe that the smoothness-based

energy term was not incorporated in the above energy Emetamorphs, this is because the regulariza-

tion through the FFD parametrization was sufficient to guarantee a smooth transformation. On the

other hand, Li et al. [67] used the bending regularizer Ebending
R in Eq. 2.17 as the smoothness-

based energy term and incorporated the FFD deformation model into the region-based GCV energy

in Eq. 2.33 and proposed the following “active image” (AI) deformable model for template-based

segmentation:

EAI[ϕ] = EAI
image[ϕ] + Ebending

R [ϕ], (2.51)

with EAI
image[ϕ] =

∫

Ω

−IT (ϕ(x)) log p1 − (1− IT (ϕ(x))) log p2 dx.

where IT is chosen as a binary template image.

Global parametrization

Typically, most of the segmentation methods based on parametric deformable models employ a local

parametrization of the curve C (as discussed in the previous section) because, they do not incorporate

global properties of the curve like size, orientation into the segmentation process. However, there

exist a few parametric deformable models that take into account the global shape properties of the

curve for segmentation, and hence find the global parametrization of the curve useful.

The Fourier snake model proposed by Székely et al. [114] exemplifies the idea of employing a

global parametrization of the curve C for image segmentation using parametric deformable models.

In this work, the curve C is parametrized following Eq. 2.47 with a set of Fourier basis functions

BFourier := {1, cos(2πnr), sin(2πnr)}Nn=1 which have a global support. The curve C can be con-

veniently expressed using the Fourier representation as:

Γ(r) =

[

x(r)
y(r)

]

=

[

a0
b0

]

+

N
∑

n=1

[

an bn
cn dn

] [

cos(2πnr)
sin(2πnr)

]

, r ∈ [0 1], (2.52)

where α = [a0 . . . aN b0 . . . bN c0 . . . cN d0 . . . dN ] are the parameters describing the curve C. In

particular, the parameters a0, c0 define the global translation of the curve. Further, each term in the

Fourier representation corresponds to the parametric representation of an ellipse and thus roughly
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the global size and orientation of the curve C is defined by the linear combination of the sizes and

orientations of the individual ellipses. Using the Fourier representation of the curve C in conjunction

with the snake model in Eq. 2.40 yields an evolution of the form given in Eq. 2.48, through which

image segmentation can be performed. Other basis functions with a global support like the spherical

harmonics (SH) [61],[11] and spherical wavelets (SW) [77] have also been proposed for image

segmentation.

2.3 Coupled registration and segmentation

Although prima facie image registration and segmentation might appear unrelated to each other,

both of these image processing tasks are in fact complementary to one another. The registration of

two images can be guided through the improved segmentation of the corresponding common objects

of interest in those images and in turn segmentation of an object of interest in a given image can be

guided by mapping the segmentation boundary of the corresponding common object of interest in

another image into the given image through registration. In the previous sections, we have only dis-

cussed deformable energy minimization approaches that deal with registration and segmentation in

isolation from each other. However, there also have been research efforts directed towards develop-

ing methods that can jointly achieve the goals of registration and segmentation. These methods take

advantage of the aforementioned interdependence between registration and segmentation through a

coupled energy minimization framework where the registration and segmentation energies are uni-

fied or coupled into a single energy functional, which is then minimized to achieve the objective of

joint registration and segmentation. More formally, given two images I : Ω → R, I
′

: Ω
′ → R

with a corresponding common object of interest, let C, C′

be two closed curves defined on Ω and Ω
′

respectively and let ϕ : Ω → Ω
′

be a transformation between the two images, such that C′

= ϕ(C),
i.e., the curve C′

is obtained by mapping the curve C into the image domain Ω
′

using the transforma-

tion ϕ. Then, the goal of coupled registration and segmentation is to find the optimal curves C∗, C′∗

that define the segmentation boundary of the corresponding common object of interest in the images

I , I
′

respectively while simultaneously estimating the transformation ϕ∗ that registers the image

I
′

with the image I . This is achieved through the minimization of an energy that is formulated by

coupling the registration and segmentation energies using the relation C′

= ϕ(C):

E[ϕ, C, C′

; I, I
′

] = E[ϕ, C, ϕ(C); I, I ′

],

ϕ∗, C∗ = argmin
ϕ,C

E[ϕ, C, ϕ(C); I, I ′

]. (2.53)

In the above, we note that the segmentation boundary C′∗ in the image I
′

is obtained as C′∗ =

ϕ∗(C∗), i.e., mapping the segmentation boundary C∗ in the image I using the registration transfor-

mation ϕ∗ into the image I
′

.

The earliest work on coupled registration and segmentation is by Yezzi et al. [136], who coupled

the region-based Chan-Vese (CV) segmentation energy functional ECV with a rigid transformation
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ϕrigid(x) = Rx + t, ∀x ∈ Ω, where R is the rotation matrix, t is the translational vector and

proposed the following coupled energy functional:

ECV−rigid[R, t,Φ] = ECV
image[Φ] + ECV

image[Φ
′

] + E
Length

smooth[Φ], (2.54)

where Φ : Ω → R, Φ
′

: Ω
′ → R are the level sets representing the curves C, C′

respectively such

that Φ(x) = Φ
′

(ϕrigid(x)) = Φ
′

(Rx + t), ∀x ∈ Ω. Unal et al. [119] extended the above to the

non-rigid registration case by adding a diffusion regularizerEdiff
R :

ECV−diff [U,Φ] = ECV
image[Φ] + ECV

image[Φ
′

] + ELength

smooth[Φ] + γEdiff
R [U], (2.55)

where U : Ω → Ω
′

is the deformation field corresponding to the transformation ϕ, such that

ϕ(x) = x + U(x) and Φ(x) = Φ
′

(ϕ(x)) = Φ
′

(x + U(x)), ∀x ∈ Ω. Instead of the Chan-Vese

energy ECV, Lord et al. [69] coupled the more general Mumford-Shah (MS) functional EMS with

the Sum of Squared Differences (SSD) data term ESSD
D and the bending energy regularization term

Ebending
R , to perform joint non-rigid registration and region-based segmentation:

EMS−SSD[ϕ, C, Ĩ, Ĩ ′

] = EMS
image[C, Ĩ] + EMS

image[C
′

, Ĩ
′

] . . .

. . .+ ESSD
D [ϕ, Ĩ, Ĩ

′

] + Ebending
R [ϕ]. (2.56)

They minimized the above energy using the level set representation Φ, Φ
′

of the curves C, C′

re-

spectively such that Φ(x) = Φ
′

(ϕ(x)), ∀x ∈ Ω, and the transformation ϕ was parametrized using

the thin-plate spline (TPS) basis functions BRBF-TPS
n (r) = r2 log r. The TPS parametrization of the

transformation was also employed by Bertelli et al. [14], but along with the pairwise similarity (PS)

image-based energy term EPS
image to jointly register and segment images taken from two different

views of the same scene:

EPS−TPS[ϕ,Φ] = EPS
image[ϕ,Φ; I, I

′

], (2.57)

where EPS
image[ϕ,Φ; I, I

′

] =

∫

Ω

∫

Ω′

|I(x)− I ′

(x̂)|H(Φ)H(Φ
′

) dxdx̂ . . .

. . .+

∫

Ω

∫

Ω′

|I(x) − I ′

(x̂)|(1 −H(Φ))(1 −H(Φ
′

)) dxdx̂. (2.58)

We can see that the pairwise similarity term EPS
image essentially measures the similarity between a

given pixel in the object (background) region of image I with every pixel corresponding to the object

(background) region in image I
′

.

The coupled registration and segmentation methodology is particularly useful for solving the

atlas-based segmentation task commonly encountered in medical image analysis. In atlas-based

segmentation, the goal is to find the segmentation boundary C∗ of an object of interest in the image

I using the atlas image IA : ΩA → R which is already segmented, i.e., the segmentation boundary

C∗A of the corresponding object of interest in IA is known (see Figure 2.5). By choosing I
′ ≡ IA,

Wang et al. [126] proposed the following energy for atlas-based segmentation using the coupled
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ΩA

IA

ϕ

Ω

C∗

A
C

Figure 2.5: Illustration of atlas-based segmentation. The known boundary (C∗) of the object of

interest (shaded) in the atlas image IA is mapped (using ϕ) into the image I to obtain the evolving

segmentation boundary C.

registration and segmentation methodology:

ECV−CCRE[U,Φ] = ECV
image[Φ] + ECCRE

D [U; I, IA] + Eatlas
couple[Φ,U; Φ∗

A] + γEdiff
R [U], (2.59)

where Eatlas
couple[Φ,U; Φ∗

A] = dist(Φ(x),Φ∗
A(x+U(x))).

where Φ∗
A : ΩA → R is the level set corresponding to the segmentation boundary C∗A. In the

above energy, the CV energy ECV has been coupled with the cross cumulative residual entropy

(CCRE) data term EMI
D using a special “coupling” term Eatlas

couple, that measures the distance between

the evolving segmentation boundary Φ in image I and the warped atlas segmentation boundary

Φ∗
A(x + U(x)). In [98], Rousson et al. proposed an atlas-based segmentation method for the

sequential segmentation of the multiple anatomical structures. Here, they employed a spatial or

probabilistic atlas IspatialA : Ωspatial
A → [0 1], which encodes the probabilities pS(x), pS̄(x) of

a pixel x belonging to the inside or outside of an anatomical structure S respectively. The basic

idea of their segmentation methodology was to introduce an additional image-based energy term

EGCV−spatial
image based on the spatial atlas into the region-based generalized Chan-Vese (GCV) seg-

mentation framework (see Eq. 2.33) as follows:

EGCV−spatial[Φ] = EGCV
image[Φ] + EGCV-spatial

image [Φ] + γELength
smooth[Φ], (2.60)

with EGCV-spatial
image [Φ] =

∫

Ω

−H(Φ) log pS(U(x)) − (1−H(Φ)) log pS̄(U(x)) dx.

Here, the probabilities pS(U(x)), pS̄(U(x)) are determined by mapping the probabilities defined in

the spatial atlas domain Ωspatial
A into the image domain Ω using the deformation field U. The above

segmentation methodology was then employed iteratively for the segmentation of multiple structures

{Sn}Nn=1 in a sequential manner. At each iteration, the deformation field U was obtained through

the registration of the spatial atlas IspatialA with the image I based on only those structures that are

segmented in the image I . Pohl et al. [83] employed the spatial IspatialA atlas with intensity priors

for the segmentation of anatomical structures using the Expectation-Maximization (EM) algorithm.
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Deformable registration methods Deformable models in segmentation

Non-parametric Parametric Non-parametric Parametric

Variational [15],[25], Radial basis [90], [94] Level set (Implicit): Explicit:

[72],[41] B-spline [101],[99], Edge-based [20],[21] Snakes [60]

Demons [117],[81],[19], [91],[50],[110] Region-based: Balloon [29]

[112],[121],[122] FEM [40],[89],[56] [23],[79],[80],[16] GVF [133]

DFT [4],[26] Template-based: AVM [107]

DCT [9] TGCV [102], FEM snakes [30],[39]

Proposed FEM TCV [65] B-spline snakes [68]

diffusion-based AVM-FEM [106]

in Section 4.2 [84] Fourier [114], SH [61],

[11], SW [77] snakes

Template-based:

Metamorphs [55]

Active-image [67]

Proposed FEM

region-based

diffusion-based

in Section 4.3

Table 2.2: Summary of the various deformable registration methods and the segmentation methods

using deformable models updated with the FEM-based continuous registration and segmentation

methods proposed in this thesis.

2.4 Discussion

The above review provides us with a context for placing the various algorithms proposed in the

rest of this thesis among the existing works on deformable registration and segmentation using de-

formable models (see Table 2.2). In general, the proposed registration and segmentation algorithms

belong to the group of parametric approaches (see Sections 2.1.2 and 2.2.2). Further, the proposed

segmentation algorithms use the template-based curve representation (see Figure 2.4) similar to [55],

[102], [67], [65]. More importantly, the proposed registration and segmentation methods extensively

use the finite element method (FEM) as opposed to the finite difference method (FDM) which is used

in the implementation of all the registration and segmentation methods discussed above, with ex-

ception of [40], [56], [89], [30], [39], [106]. The advantage in using the FEM method is that it

allows for the use of non-uniform meshes leading to very computationally efficient registration and

segmentation algorithms.

The existing FEM-based registration methods [40], [56], [89] employ complex bio-mechanical

regularization terms which restrict their applicability to specific medical image registration tasks.

But, the proposed FEM-based registration method uses the more general diffusion-based regular-

izer and thus can address a wider range of image registration tasks. The current works on FEM-

based segmentation [30], [39], [106] use the explicit snakes-like curve representation as opposed

to the template-based curve representation used in the proposed FEM-based segmentation method.

Whereas, the popular template-based segmentation approaches [55], [102], [67], [65] use the FDM

method along with a uniform mesh in contrast to the more computationally efficient non-uniform
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mesh based implementation of the proposed FEM-based template-based segmentation method.

As a last note, it is important to understand that, in this thesis image registration and segmen-

tation are treated as two separate tasks, even though a unified approach is developed to solve the

energy minimization formulations that correspond to image registration and segmentation. There-

fore, the proposed unified FEM-based registration and segmentation methodology should not be

confused with the coupled registration and segmentation approach in Section 2.3.
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Chapter 3

Introduction to the finite element

method (FEM)

Ω

xi

Pn

△h

Uniform mesh

Pn
xi

Ω △h

Non-uniform mesh

Figure 3.1: A schematic of uniform and non-uniform meshes on the rectangular 2D domain is shown

here. A sample node Pn, sample point xi of the Cartesian grid overlapping the rectangular and

triangular elements (shaded) of the uniform and non-uniform meshes respectively are highlighted.

Note that, in image registration and segmentation formulations xi corresponds to the image (pixel)

co-ordinates.

The finite element method (FEM) is a powerful alternative to the finite difference method (FDM)

for computing the numerical solution of partial differential equations (PDEs). While the FDM

method is restricted only to use a uniform discretization of the problem domain, the FEM method

can facilitate the use of both uniform and non-uniform meshes. The main advantage of using a

non-uniform mesh is that, the mesh resolution can be chosen based on the desired accuracy of the

solution in the various regions of the problem domain. In this chapter, we discuss some of the

important aspects related to the FEM method.
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3.1 Preliminaries

In the FEM method, the first step is to divide the problem domain Ω ⊂ R
ν † into a set of subdomains

or finite elements denoted by a uniform or a non-uniform meshM = ({Pn}Nn=1,△h) (see Figure

3.1), where △h is a set of elements (triangles or rectangles in 2D and tetrahedra or cuboids in 3D)

and {Pn}Nn=1 is a set of points called the nodes. Then, the unknown solution u : Ω→ R of the PDE

is approximated by the linear combination of a set of nodal basis functions {φn}Nn=1 with a compact

support defined on the meshM as follows:

u(x) ≈ πhu(x) =
N
∑

n=1

unφn(x;M), x ∈ Ω. (3.1)

The different possible choices for the nodal basis functions are discussed in Section 3.3. Henceforth,

the approximation of the unknown solution u using the nodal basis {φn}Nn=1 is referred to as the

finite element approximation. The finite element approximation essentially reduces the problem of

solving the PDE to finding the unknown nodal parameters {un}Nn=1, un ∈ R.

3.2 Solving the reaction-diffusion PDE

f(u)− g

xi xi + dxi

Mass balane:

Rearranging we get:

d

Σ
i=1

γeTi W∇u|xi+dxi
−γeTi W∇u|xi

dxi
≈

d

Σ
i=1

γ∂i(W∇u) = γ∇(W∇u) = f(u)− g

γeTi W∇u|xi γeTi W∇u|xi+dxi

f(u)− γ∇(W∇u) = g

Figure 3.2: Illustration of the steady state mass-balance corresponding to the reaction-diffusion

process across a small element in problem domain Ω.

We discuss the use of the FEM method for solving the following reaction-diffusion PDE (which

is a non-linear elliptic PDE), that is extensively encountered in our proposed work on image regis-

tration and segmentation:

f(u)− γ∇(W∇u) = g, x ∈ Ω, (3.2)

(W∇u)Tn = 0, x ∈ ∂Ω,

where f : Ω → R, g : Ω → R, n is the outer normal vector to the boundary ∂Ω and γ is a

constant. The reaction-diffusion PDE basically corresponds to the steady state mass balance in a

†ν = 2 for 2D domain and ν = 3 for 3D domain
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reaction-diffusion process (see Figure 3.2), where the term f(u) denotes the reaction process and

g ≡ g(x) is the spatially varying generation term independent of u. Further, the term γ∇(W∇u)
denotes the diffusion process, where the diffusivity or stiffness field W ≡ W (x) in general varies

over the domain Ω. It is a scalar in the case of isotropic diffusion, and a symmetric ν × ν matrix in

the case of anisotropic diffusion. We present two different formulations of the FEM method, namely

the Galerkin FEM method and the Ritz FEM method.

3.2.1 Galerkin FEM method

In the Galerkin FEM method, the first step is to derive the weak form of the PDE in Eq. 3.2 by

multiplying a “test” function v to both sides of the PDE and integrating by parts as below:

∫

Ω

f(u)v dx− γ
∫

Ω

∇(W∇u)v dx =

∫

Ω

gv dx,

⇔
∫

Ω

f(u)v dx+ γ

∫

Ω

(W∇u)T∇v dx− γ
∫

∂Ω

(W∇u)Tn v ds =
∫

Ω

gv dx,

⇔
∫

Ω

f(u)v dx+ γ

∫

Ω

(W∇u)T∇v dx =

∫

Ω

gv dx (as

∫

∂Ω

(W∇u)Tn = 0). (3.3)

The problem of solving the PDE in Eq. 3.2 is equivalent to finding the unknown u that satisfies the

above weak form for any test function v. Substituting the finite element approximation (see Eq. 3.1)

into the above weak form and choosing the “test” function v as each one of the nodal basis functions

{φn}Nn=1, we obtain the following set ofN non-linear equations to be solved for the unknown nodal

parameters {un}Nn=1:

∫

Ω

f({un}Nn=1)φn dx+ γ

N
∑

m=1

um

∫

Ω

(W∇φm)T∇φn dx =

∫

Ω

gφn dx, (3.4)

n ∈ {1, 2, . . . , N}.

3.2.2 Ritz FEM method

The Ritz FEM method proceeds by first transforming the problem of solving the PDE in Eq. 3.2

into a variational energy minimization problem as below:

u∗ = argmin
u

E[u], (3.5)

where:

E[u] =

∫

Ω

F (u) dx+
γ

2

∫

Ω

∇uTW∇u dx−
∫

Ω

gu dx with F
′

(u) = f(u).

We can observe that the PDE in Eq. 3.2 is in fact the Euler-Lagrange equation of the above energy

functional E, which is obtained by setting the variational derivative of the energy E to zero, i.e.,

∇uE = f(u)− γ∇(W∇u)− g = 0 ≡ f(u)− γ∇(W∇u) = g, where∇u denotes the variational

derivative with respect to u. Thus, solving the PDE in Eq. 3.2 is equivalent to the minimization

of the energy functional E in Eq. 3.5. Now, incorporating the finite element approximation of u
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(see Eq. 3.1) into the energy functional E, we obtain a finite-dimensional approximation to the

variational energy minimization problem as:

{u∗n}Nn=1 = argmin
{un}N

n=1

E({un}Nn=1), (3.6)

where:

E({un}Nn=1) =

∫

Ω

F ({un}Nn=1) dx+
γ

2

N
∑

n=1

un

N
∑

m=1

um

∫

Ω

(W∇φn)T∇φm dx−
N
∑

n=1

un

∫

Ω

gφn dx,

with ∂un
F ({un}Nn=1) = f({un}Nn=1)φn n ∈ {1, 2, . . . , N}.

Thus, the problem of solving the PDE in Eq. 3.2 is transformed into to the multivariate minimization

of the energy in Eq. 3.6 with respect to the nodal parameters {un}Nn=1. In order to perform the min-

imization, we the set partial derivatives of the energyE with respect to each of the nodal parameters

{un}Nn=1 to zero, i.e., ∂un
E = 0 n ∈ {1, 2, . . . , N}. This results in exactly the same set of N

non-linear equations as in Eq. 3.4, that are needed to be solved for the unknown nodal parameters

{un}Nn=1.

From the above discussion, it can be seen that the Galerkin and Ritz FEM methods are essen-

tially equivalent and in fact yield the same set of non-linear equations corresponding to the PDE in

Eq. 3.2 †. However, it can also be seen that it is more natural to use the Galerkin FEM method

when the problem is posed as a PDE whereas in problems that are inherently posed using the varia-

tional energy minimization formulation, the use of the Ritz FEM method becomes obvious. In our

proposed work on registration and segmentation, we encounter both PDEs and variational energy

minimization formulations, therefore in our work we use both the Galerkin and Ritz FEM methods

depending on how the problem is posed. Further, we note that the Ritz FEM method was previously

referred to as parametrization using the FEM basis functions in Section 2.1.2 and Section 2.2.2, in

the context of parametric deformable registration (see Section 2.1.2) and segmentation using para-

metric deformable models (see Section 2.2.2) respectively.

3.3 Nodal basis functions

In this section, we present three types of nodal basis functions that can be used in the FEM method.

3.3.1 Lagrange basis

The Lagrange nodal basis functions, also known as hat or tent functions due their shape (see Figure

3.3) are the most commonly used basis functions in FEM-based solution schemes. The main attrac-

tion of the Lagrange basis is that it is naturally suited for non-uniform meshes and thus lends itself

to the flexibility of the FEM method. The Lagrange basis functions are given by piece-wise linear

†When the same nodal basis functions {φn}Nn=1 are used for approximating u and also choosing the “test” functions v

in the Galerkin FEM method.
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Pn+1Pn−1 Pn

1

φLagrange
n

1D domain

1

Pn−1

Pn−2 Pn

Pn−3

Pn+1

Pn+2

φLagrange
n

2D domain

Figure 3.3: Illustration of the Lagrange nodal basis function.

polynomials that can be defined on both non-uniform and uniform meshes as [88]:

φLagrangen (x) =











is linear within each adjacent element,

1 at each node Pn,

0 at every other node Pm 6= Pn.

(3.7)

Interestingly, when the Lagrange basis are used for the finite element approximation of u (see Eq.

3.1), the unknown nodal parameters {un}Nn=1 actually correspond to the value of the solution of the

PDE at the nodes {Pn}Nn=1 respectively. This can be shown based on the definition of Lagrange

basis in Eq. 3.7 as follows, for each n ∈ {1, 2, . . . , N}:

u(Pn) =

N
∑

n=1

unφ
Lagrange
n (Pn) = unφ

Lagrange
n (Pn) +

∑

m 6=n

umφ
Lagrange
m (Pm) = un. (3.8)

(as φLagrangen (Pn) = 1 and φLagrangem (Pm) = 0)

3.3.2 B-spline basis

The B-spline basis functions have been originally employed for data fitting and geometric modeling

applications. However, Höllig [52] extensively studied the use of B-splines as the nodal basis func-

tions in the FEM method. Consider a uniform mesh N = Nx × Ny × Nz overlaid on the domain

Ω, with a spacing hx × hy × hz . The B-spline basis is then defined by a tensor-product of a set of

cubic B-spline polynomials {b0, b1, b2, b3} as follows :

φB−spline
n (x) =

∏

r

φB−spline
nr

(r), r ∈ {x, y, z}, (3.9)

where:

φB−spline
nr

(r) =































b0(
r
hr
− (nr − 2)) (nr − 2)hr ≤ r < (nr − 1)hr,

b1(
r
hr
− (nr − 1)) (nr − 1)hr ≤ r < nrhr,

b2(
r
hr
− nr) nrhr ≤ r < (nr + 1)hr,

b3(
r
hr
− (nr + 1)) (nr + 1)hr ≤ r < (nr + 2)hr,

0 otherwise.
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1

φB−spline
n

2

3

Pn−1 Pn

1
6

Pn+1Pn−2 Pn+2

B-spline basis

φLinear
n

Pn+1

1

Pn−1 Pn

Multi-linear basis

Figure 3.4: Illustration of the B-spline and Multi-linear nodal basis functions on the 1D domain.

Here, nr = ⌊ r
hr
⌋ and the cubic B-spline polynomials are given by b0(t) =

t3

6 , b1(t) =
−3t3+3t2+3t+1

6 ,

b2(t) = 3t3−6t2+4
6 , b3(t) = −t3+3t2−3t+1

6 , ∀ t ∈ [0 1]. In Figure 3.4a, a schematic of the 1D B-

spline nodal basis function is shown. Note that, unlike the Lagrange basis, in the case of the B-spline

basis the nodal parameters {un}Nn=1 do not necessarily represent the actual solution of the PDE at

the corresponding nodes {Pn}Nn=1.

3.3.3 Multi-linear basis

Similar to the B-spline basis, the multi-linear nodal basis functions are defined on a uniform mesh

by a tensor product of a set of linear polynomials {b0, b1} as [140]:

φLinearn (x) =
∏

r

φLinearnr
(r), r ∈ {x, y, z}, (3.10)

where:

φLinearnr
(r) =











b0(
r
hr
− (nr − 1)) (nr − 1)hr ≤ r < nrhr,

b1(
r
hr
− nr) nrhr ≤ r < (nr + 1)hr,

0 otherwise.

Here, nr = ⌊ r
hr
⌋ and the linear polynomials are given by b0(t) = t, b1(t) = 1 − t, ∀ t ∈ [0 1]. A

schematic of the 1D multi-linear basis function is shown in Figure 3.4b. It is interesting to note that,

when the mesh spacings {hx, hy, hz} are chosen equal to the underlying Cartesian grid resolution,

the use of multi-linear basis with the FEM method can be seen as equivalent to the finite difference

method (FDM). Further, the nodal parameters {un}Nn=1 arising from the use of the multi-linear basis

correspond to the actual solution of the PDE at the nodes {Pn}Nn=1 respectively.

3.4 Non-uniform mesh generation

The non-uniform discretization of the problem domain is an important aspect of the FEM method.

As opposed to the FDM method where the discretization has to be uniform, the FEM method allows

for non-uniform meshes that can be adapted depending on the accuracy of the solution desired in

the different regions of the problem domain. One of the standard approaches for non-uniform mesh

generation is to choose (either manually or automatically) the mesh nodes such that the density of
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the mesh nodes is dependent on the desired accuracy of the solution, i.e., the density of the mesh

nodes is chosen to be relatively higher in regions where a more accurate solution is desired than in

regions where an inaccurate solution can be tolerated. Then, Delaunay triangulation (tetrahedraliza-

tion) is performed based on these chosen mesh nodes, which tessellates the domain into triangles

(tetrahedra) to obtain a non-uniform mesh which has a finer resolution in the regions where a higher

density of mesh nodes was chosen as opposed to a coarser resolution in the regions where a lower

density of mesh nodes was chosen. In particular, if the domain can be represented using an image, as

is the case in our work on image registration and segmentation, we can then use the image features

to automatically guide the placement of mesh nodes. This is because, in general we desire a more

accurate solution (hence a higher density of mesh nodes) in regions with high number of image fea-

tures as opposed to homogeneous regions with fewer features. Therefore, in our work the following

image-adaptive mesh generation procedure proposed by Yang et al. [134] is employed:

(1) Given an image I : Ω→ R, the feature map If : Ω→ R is computed such that If (x) = ζ(x)/ζ̄

where ζ(x) = max |I ′′

θ (x)|, θ ∈ [0, 2π] and ζ̄ is a normalizing constant. I
′′

θ denotes the second

order directional derivative of I .

(2) Halftone the feature image If to obtain a binary image Ib : Ω→ {0, 1}.

(3) Input the locations of the “white” pixels in the binary image Ib as initial mesh nodes to a Delau-

nay mesh generation algorithm.

(4) Refine the mesh to obtain the final non-uniform mesh adapted to the salient image features.

In Figure 3.5, the above steps are illustrated on a 2D image. In the case of 3D images, we

consider the 3D image as a collection of 2D slices and therefore input the union of all the initial

mesh nodes chosen on each of the 2D slices to a Delaunay tetrahedralization algorithm. We used

TRIANGLE [109] and TETGEN [111] packages for Delaunay triangulation and tetrahedralization

respectively.

3.5 Summary

We introduced the basic concepts involved in devising finite element method (FEM) based solu-

tions to partial differential equations (PDEs) and the equivalent variational energy minimization

formulations. Specifically, we explored the various nodal basis functions that can be used for the

finite element approximation and also discussed a content-adaptive strategy for the generation of a

non-uniform mesh which is important for harnessing the full potential of the FEM method.
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Image (I) Feature map (If )

Halftoned (Ib) Non-uniform mesh

Figure 3.5: Illustration of the non-uniform mesh generation. The basic idea here is to first compute

a feature map If corresponding to the image I . Then, the feature map is converted into a binary

halftoned image Ib. The “white” pixels in the halftoned image are input as initial node locations to

a Delaunay mesh generation and refinement algorithm to obtain the final non-uniform mesh.
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Chapter 4

A unified FEM-based framework for

image registration and segmentation

In this chapter, new methods for image registration and segmentation are presented that comprise the

core of the proposed work in this thesis. The registration and segmentation methods developed here

make an extensive use of the finite element method (FEM) for computational efficiency. Firstly, a

FEM-based parametric deformable registration method that employs diffusion-based regularization

is presented. Then, a template-based parametric deformable model for multi-region segmentation

is introduced, which uses a FEM deformable mesh smoothed by a diffusion-based regularizer. One

of the main contributions in this thesis is to cast both these methods into a single unified FEM-

based energy minimization framework with a common diffusion-based regularizer and a data term

dependent on the specific method. Hence, an abstract construct is formulated under which both the

deformable registration and template-based segmentation tasks can be seen as having the same goal.

Further, this abstract formulation is general to also encompass the discrete deformable registration

method proposed later in Chapter 5.

4.1 Abstract formulation of registration and segmentation

The fundamental abstraction to consider is that, all the registration and segmentation methods pro-

posed in our work involve two images, IA : ΩA → R, ΩA ⊂ R
ν and IB : ΩB → R, ΩB ⊂ R

ν ,

ν = 2 or 3. In the proposed registration methods, IB is chosen as the source image to be regis-

tered to the template image IA, whereas in the template-based segmentation method IA is chosen

as the template image that is used to segment the image IB . Further, Ω is denoted as the abstract

domain on which the data term is defined. In the registration methods, the data term is computed

on the template domain Ω ≡ ΩA. In the template-based segmentation method, it is defined on the

image domain Ω ≡ ΩB . Next, abstractly the goal in all our proposed registration and segmentation

methods can be seen as estimating an unknown vector field V : ΩA → R
K , K ∈ N between the

images IA and IB . This vector field V corresponds to the unknown deformation field in the con-
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tinuous registration and template-based segmentation methods presented in this chapter. Lastly, we

unify the terminology across the registration and segmentation methods and henceforth refer to the

image-based Eimage and smoothness-based Esmooth terms as data ED and regularization ER terms

respectively. The terminology of image-based Eimage and smoothness-based Esmooth terms was

previously used in the context of segmentation using deformable models discussed in Section 2.2.

With these abstractions in place, the data ED and diffusion-based regularization Ediff
R terms

corresponding to the unified FEM-based energy minimization framework are defined as:

ED[V; IA, IB] =
1

2

∫

Ω

Ψ(V; IA, IB) dx, Ediff
R [V] =

1

2

K
∑

k=1

∫

ΩA

∇V T
k W∇Vk dx, (4.1)

where V = [Vk]
K
k=1. The diffusivity or stiffness field W defines the “type” of diffusion-based

smoothing constraints that are being enforced on the unknown vector field V. If an isotropic (i.e.,

uniform in all directions) smoothing of the vector field is desired then W is chosen as a scalar.

However, if an anisotropic smoothing is needed then W is chosen as symmetric ν × ν matrix.

A typical anisotropic strategy would be to smooth mostly along the direction of the edges in the

image while avoiding smoothing across the edges [129]. In both the isotropic and anisotropic cases,

smoothing can be made inhomogeneous by choosing W ≡ W (x) to vary over the image domain

ΩA. In general, it is desirable to perform more smoothing in the image regions with homogeneous

intensities when compared to the regions with salient image features.

The finite element approximation (see Eq. 3.1) of the vector field V over a uniform or non-

uniform meshM = ({Pn}Nn=1,△h) can be written as:

V(x) =

N
∑

n=1

Vnφn(x;M), x ∈ ΩA, (4.2)

where {Vn}Nn=1, Vn ∈ R
K are the unknown nodal vector field parameters corresponding to the

nodes {Pn}Nn=1 respectively. Further, the nodal basis functions {φn}Nn=1 can be chosen from the

Lagrange, cubic B-spline or multi-linear basis functions, as described in Section 3.3. Following the

Ritz FEM method discussed in Section 3.2.2, the finite element approximation of the vector field V

is incorporated into Eq. 4.1 and the data and regularization terms are re-written as:

ED({Vn}Nn=1; IA, IB) =
1

2

∫

Ω

Ψ({V}Nn=1; IA, IB) dx,

Ediff
R ({Vn}Nn=1) =

1

2

K
∑

k=1

N
∑

n=1

Vkn

N
∑

m=1

Vkm

∫

ΩA

(W∇φn)T∇φm dx, (4.3)

where Vn = [Vkn]
K
k=1. Note that the parametrization using the Ritz FEM method is similar to

the parametric deformable registration methodology discussed in Section 2.1.2 and the parametric

deformable models approach described in Section 2.2.2. The goal of our unified FEM-based energy

minimization framework for registration and segmentation is to find the optimal nodal vector field

parameters {V∗
n}Nn=1 through the minimization of the data term ED , while ensuring the smooth-

ness of the deformation field based on the regularization constraints encoded in the diffusion-based
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regularization term Ediff
R . Below, two different approaches are presented for estimating the optimal

nodal vector field parameters {V∗
n}Nn=1 that arise in Eq. 4.3: (1) the variational-like approach where

the diffusion-based regularization term Ediff
R is added to the data term ED which is followed by the

minimization of this combined energy; (2) the demons-like approach where the minimization of the

data term ED and smoothing of the deformation field using the diffusion-based regularization term

Ediff
R are performed in separate steps.

4.1.1 Variational-like approach

In the variational-like approach, the data term ED and the regularization term Ediff
R are combined

together to obtain the following energy which is minimized:

E({Vn}Nn=1) = ED({Vn}Nn=1; IA, IB) + γEdiff
R ({Vn}Nn=1), (4.4)

{V∗
n}Nn=1 = argmin

{Vn}N
n=1

E({Vn}Nn=1),

where the regularization parameter γ controls the relative weighting of the data and regularization

terms. In order to minimize the above energy, the gradient of the energy with respect to the nodal

vector field parameters {Vn}Nn=1 is set to zero, which yields the following set of N ×K non-linear

equations:

∂Vn
E = ∂Vn

ED + γ∂Vn
Ediff

R = 0 n ∈ {1, 2, . . . , N}, (4.5)

with ∂Vn
ED =

1

2

∫

Ω

∂Vn
Ψ(x; {Vn}Nn=1, IA, IB) =

∫

Ω

ψ(x; {Vn}Nn=1, IA, IB)ρn(x) dx,

∂Vn
Ediff

R =

N
∑

m=1

Vm

∫

ΩA

(W∇φm)T∇φn dx,

whereψ(x; {Vn}Nn=1, IA, IB) = [ψk(x; {Vn}Nn=1, IA, IB)]
K
k=1 are the referred to as the forces and

ρn(x) are referred to as the weights.

An iterative scheme is now discussed for solving the set of N × K non-linear equations in

Eq. 4.5 to determine the unknown nodal vector field parameters {Vn}Nn=1. By choosing Θ =

[Θk]
K
k=1, where Θk = [Vkm]Nm=1 is as a N × 1 vector of nodal parameter values corresponding to

the dimension k, the above system of non-linear equations can be compactly written in the following

matrix form as:

SΘk − fk(Θ) = 0, k ∈ {1, 2, . . . ,K}, (4.6)

where S = [sm,n]
N,N
m=1,n=1 is the N ×N stiffness matrix and fk(Θ) = [fkm(Θ)]Nm=1 is the N × 1

force vector defined as:

sm,n = γ

∫

ΩA

(W∇φn)T∇φm dx, fkm(Θ) = −
∫

Ω

ψk(x;Θ, IA, IB)ρm dx. (4.7)

Then, an incremental semi-implicit fixed-point iteration scheme can be formulated as follows:

∂tΘk + SΘk − fk(Θ) ≈ (Θt+1
k −Θt

k)

τ
+ SΘt+1

k − fk(Θ
t) = 0, (4.8)

k ∈ {1, 2, . . . ,K},
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Algorithm 2 Variational-like unified FEM-based framework for registration and segmentation

Require: IA, IB ,M({Pn}Nn=1,∆h)
Ensure: {V∗

n}Nn=1

1: At iteration t = 0, initialize Vn = V0
n

2: while t <= max iter and convergence not reached do

3: Compute the forcesψ(x; {Vt
n}Nn=1, IA, IB) for all pixels (voxels) x ∈ Ω

4: Compute the weights as ρtn(x) for all pixels (voxels) x ∈ Ω
5: Assemble the stiffness matrix S and the force vector f according to Eq. 4.7

6: Solve the linear system of equations in Eq. 4.11 to compute the nodal updates {δVt
n}Nn=1

7: Update Vt+1
n = Vt

n + δVt
n

8: end while

where τ is a small time-step. Rearranging the above we get:

(IdN + τS)Θt+1
k = Θt

k + τfk(Θ
t), k ∈ {1, 2, . . . ,K}, (4.9)

where IdN is a N × N identity matrix. Now, Θt+1
k can be expressed in terms of the nodal update

field δΘt
k as:

Θt+1
k = Θt

k + δΘt
k, k ∈ {1, 2, . . . ,K}. (4.10)

By substituting the above into Eq. 4.9 and rearranging we obtain the following set of N ×K linear

equations to be solved for the nodal update δΘt
k at every iteration t:

(IdN + τS)δΘt
k = (−τSΘt

k + τfk(Θ
t)), k ∈ {1, 2, . . . ,K}. (4.11)

To summarize, in this scheme the final unknown nodal vector field parameters {V∗
n}Nn=1 ≡ Θ∗

are computed incrementally by adding the current estimate of the unknown nodal vector field pa-

rameters {Vt
n}Nn=1 ≡ Θt with a nodal update field {δVt

n}Nn=1 ≡ δΘt according to Eq. 4.10, i.e.,

{Vt+1
n = Vt

n+δV
t
n}Nn=1. The nodal updates {δVt

n}Nn=1 ≡ δΘt at each iteration t are computed by

solving the system of N ×K linear equations in Eq. 4.11. The variational-like unified FEM-based

minimization framework for registration and segmentation is outlined in Algorithm 2.

4.1.2 Demons-like approach

In the demons-like approach, the nodal update field parameters {δVt
n}Nn=1 are computed solely

based on the gradient of the data term as follows:

δVt
n = −F((∂Vn

ED)t) = −ǫ
∫

Ωψ(x; {Vt
n}Nn=1, IA, IB)ρ

t
n(x) dx

∫

Ω ρ
t
n(x) dx

, (4.12)

n ∈ {1, 2, . . . , N},

where ǫ is a small time-step. The current estimate of the nodal deformation field parameters {Vt
n}Nn=1

is updated using the current nodal update field parameters {δVt
n}Nn=1 as {Vt+1

n = Vt
n+ δVt

n}Nn=1.

Then, the updated estimate of the deformation field Vt+1 is smoothed using the diffusion-based

43



regularization term Ediff
R through the minimization of the following energy functional:

E[V̂] =
1

2

∫

ΩA

||V̂ −V||2 dx+ γEdiff
R [V̂], (4.13)

where V̂ is the regularized deformation field we wish to estimate using the initial non-smooth de-

formation field V and γ is a parameter that controls the effect of the diffusion-based regularizer.

We can see that the Euler-Lagrange equation corresponding to the above energy is given by the

following reaction-diffusion PDE of the form given in Eq. 3.2:

∇
V̂
E = (V̂ −V)− γ∇(W∇V̂) = 0 ≡ V̂ − γ∇(W∇V̂) = V. (4.14)

Solving the above reaction-diffusion PDE is equivalent to smoothing the deformation field using the

diffusion-based regularizer. Therefore, in order to solve the above PDE, the Ritz FEM method is

followed and the finite element approximation in Eq. 4.2 is used to parametrize both the unknown

smooth deformation field V̂ and the known non-smooth deformation field V to obtain a finite-

dimensional approximation to the energy E in Eq. 4.13 as:

E({V̂n}Nn=1) =
1

2

∫

ΩA

∣

∣

∣

∣

N
∑

n=1

(V̂n −Vn)φn
∣

∣

∣

∣

2
dx+ γEdiff

R ({V̂n}Nn=1). (4.15)

In order to minimize the above energy, it’s gradient with respect to the nodal deformation field

parameters {V̂n}Nn=1 is set to zero, which results in the following set of N ×K linear equations:

∇
V̂n
E =

N
∑

m=1

(V̂m −Vm)

∫

ΩA

φmφn dx+ γ
N
∑

m=1

V̂m

∫

ΩA

(W∇φn)T∇φm dx = 0, (4.16)

n ∈ {1, 2, . . . , N}.

Again, by choosing Θ̂ = [Θ̂k]
K
k=1, where Θ̂k = [V̂km]Nm=1 is as a N × 1 vector of nodal parameter

values corresponding to the dimension k, the above system of linear equations can be compactly

written in the following matrix form as:

SΘ̂k − fk = 0, k ∈ {1, 2, . . . ,K}, (4.17)

where S = [sm,n]
N,N
m=1,n=1 is the N × N stiffness matrix and fk = [fkm]Nm=1 is the N × 1 load

vector defined as:

Sm,n =

∫

ΩA

φnφm dx+ γ

∫

ΩA

(W∇φn)T∇φm dx, fkm = Vkm

∫

ΩA

φnφm dx. (4.18)

The above system of linear equations can be easily solved to obtain the unknown smooth vector field

Θ̂ ≡ {V̂n}Nn=1. The demons-like unified FEM-based minimization framework for registration and

segmentation is summarized in Algorithm 3.

In the rest of this chapter, our proposed continuous deformable registration and template-based

segmentation methods are discussed in detail following the unified FEM-based energy minimization

framework developed until now. The discussion primarily pertains to the data terms used in these

methods as both these methods use the common diffusion-based regularization term.
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Algorithm 3 Demons-like unified FEM-based framework for registration and segmentation

Require: IA, IB ,M({Pn}Nn=1,∆h)
Ensure: {V∗

n}Nn=1

1: At iteration t = 0, initialize Vn = V0
n

2: while t <= max iter and convergence not reached do

3: Compute the forcesψ(x; {Vt
n}Nn=1, IA, IB) for all pixels (voxels) x ∈ Ω

4: Compute the weights as ρtn(x) for all pixels (voxels) x ∈ Ω
5: Compute the nodal updates according to Eq. 4.12:

δVt
n = −ǫ

∫
Ω
ψ(x;{Vt

n}N
n=1,IA,IB)ρt

n(x) dx∫
Ω
ρt
n(x) dx

6: Update Vt+1
n = Vt

n + δVt
n

7: Smooth the deformation field Vt+1 by solving a reaction-diffusion PDE on the mesh M
using the FEM framework (see Eq. 4.13 - Eq. 4.17)

8: end while

4.2 FEM-based continuous deformable registration

Traditionally, uniform meshes along with the finite difference method (FDM) have been used in the

implementation of deformable registration methods, as discussed in Section 2.1. However, such a

uniform discretization approach is inefficient for deformable registration. This is because a finer

resolution is needed to capture the deformation field in the regions that have a high number of

image features, whereas in the homogeneous regions with fewer features relatively coarser resolution

is sufficient. In this regard, the less explored FEM-based approach is ideal for the deformable

registration task, especially for medical image registration. The main advantage in the FEM-based

approach is that it allows for the use of a non-uniform discretization of the problem domain. By

employing a non-uniform mesh well adapted to the image-features and the Lagrange basis functions

(see Eq. 3.7), the deformation field can be parametrized with a significantly lower number of degrees

of freedom (DOF) compared to the traditional deformation models defined on uniform meshes.

Consequently, this leads to a more computationally efficient solution to the deformable registration

problem. As discussed earlier in Section 2.1.2, there have been a few efforts [40], [56], [89] towards

using the FEM method for deformable image registration. However, these methods use complex

bio-mechanical models to model the elastic behavior of the underlying anatomy in medical images.

These models are usually tuned to a specific type of medical image registration task and hence are

not applicable for general deformable image registration. On the contrary, we propose the use of the

FEM method for solving the problem of deformable registration using diffusion-based regularization

constraints, which can be imposed in a wider range of image registration tasks. Further, apart from

the Lagrange basis based deformation model, our FEM-based deformable registration method can

also incorporate the traditional deformation models defined on uniform meshes. In particular, the

diffusion-based non-parametric deformation model [72] discussed in Section 2.1.1 and the popular

cubic B-spline free form deformation (FFD) model [101] discussed in Section 2.1.2 can be integrated

into our FEM-based registration method through the use of the multi-linear basis functions in Eq.
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3.10 and the cubic B-spline basis functions in Eq. 3.9 respectively.

4.2.1 Problem formulation

Consider a source image IS : ΩS → R, ΩS ⊂ R
ν to be registered to a template image IT : ΩT → R,

ΩT ⊂ R
ν and U : ΩT → R

ν be the unknown dense deformation field to be estimated between the

source and template images. The data term corresponding to the proposed FEM-based parametric

deformable registration method with diffusion-based regularization is given by the sum of squared

differences (SSD) similarity measure:

ED[U; IT , IS ] =
1

2

∫

ΩT

(IS(x+U(x)) − IT (x))2 dx. (4.19)

The finite element approximation of the deformation field U =
N
∑

n=1
Unφn in Eq. 4.2 can be incor-

porated into the data term ED in equation Eq. 4.19 to obtain:

ED[{Un}Nn=1; IT , IS ] =
1

2

∫

ΩT

(IS(ξ(x; {Un}Nn=1))− IT (x))2 dx, (4.20)

where ξ(x; {Un}Nn=1) = x+

N
∑

n=1

Unφn(x).

Following the unified FEM-based energy minimization framework in Section 4.1, the goal of our

FEM-based parametric deformable registration method is to find the optimal nodal deformation

field parameters {U∗
n}Nn=1 that minimize the data term ED while ensuring smoothness using the

diffusion-based regularizer Ediff
R . The minimization can be performed either using the variational-

like approach in Algorithm 2 or the demons-like approach in Algorithm 3. Accordingly, the forces

ψ(x; {Un}Nn=1, IT , IS) and the weights {ρn(x)}Nn=1 corresponding to the data termED in Eq. 4.20

can be derived as:

ψ(x; {Un}Nn=1, IT , IS) = (IS(ξ(x; {Un}Nn=1))− IT (x))∇IS |x=ξ(x;{Un}N
n=1)

, (4.21)

ρn(x) = φn(x), n ∈ {1, 2, . . . , N}.

In the variational-like approach, as an alternative to the additive update in step 7, Algorithm 2, the

following compositional update can also be used:

Ut+1
n = Ut

n ◦ δUt
n =

N
∑

m=1

Ut
mφm(Pn + δUt

n) + δUt
n, n ∈ {1, 2, . . . , N}. (4.22)

In the case when the compositional update is employed, the warped gradient of the source image

∇IS |x=ξ(x;{Un}N
n=1)

in the force term of Eq. 4.21 needs to be replaced with the gradient of the

warped source image ∇IS(ξ(x; {Un}Nn=1)). Similarly, the compositional update can also be used

in place of the additive update in step 6 of the demons-like approach given in Algorithm 3. Further,

in the demons-like approach, the value of the nodal update field parameter δUt
n computed using

Eq. 4.12 at a node Pn of the mesh M can be interpreted as the weighted average of the forces
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Source Template Non-uniform mesh

Figure 4.1: Binary image data used in the sanity check of the proposed FEM-based continuous

deformable registration method. A binary circle was considered as the source to be registered to

a binary ellipse template. The non-uniform mesh required for the Lagrange basis functions was

generated on the binary ellipse template using the image-adaptive mesh generation procedure in

Section 3.4.

ψ(x; {Ut
n}Nn=1, IT , IS) computed at each pixel (voxel) xi overlapping the elements adjacent to the

node Pn in the meshM. This weighted averaging implicitly acts as fluid-like regularization of the

deformation field.

4.2.2 Sanity check

In this section, a sanity check of the proposed FEM-based continuous deformable registration method

is performed before proceeding to the more elaborate validation experiments in Section 4.2.3. The

goal of the sanity check testing was to determine if the proposed FEM-based minimization frame-

work obtains a valid solution to the deformable registration problem. In particular, the focus was on

testing whether the use of the Lagrange basis parametrization yields a valid solution. Also, both the

variational-like approach in Algorithm 2 and the demons-like minimization approach in Algorithm

3 along with the additive and the compositional updates were tested for validity. In this regard, a bi-

nary circle source image was chosen to be registered to a template ellipse image as shown in Figure

4.1. Here, the isotropic homogeneous diffusivity model W (x) = 1.0 was chosen and the regular-

ization parameter was set to γ = 1.0. The corresponding results obtained using the four different

minimization strategies, namely, demons-like with additive update, demons-like with compositional

update, variational-like with additive update and variational-like with compositional update were

shown in figures Figure 4.2-4.5 respectively. It can be observed that in all the four cases the FEM-

based continuous registration method was able to deform the circle into the ellipse. Further, the

recovered deformation fields were smooth and invertible as displayed by the vector (color) plots and

the Jacobian maps. Also, it should be noted that the obtained solutions were stable as shown by the

convergence plots of the sum of squared differences error (SSDE). Hence, in summary the FEM-

based minimization framework using the Lagrange parametrization is a valid approach to solve the

deformable registration problem.
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Source Template Color wheel

Registered source Deformation field (vector plot) Deformation field (color plot)

Jacobian map
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Figure 4.2: Simple illustration of the proposed FEM-based continuous deformable registration

method implemented using Lagrange basis functions and the demons-like minimization with the

additive update. Based on the Jacobian map and the color (vector) plot of the deformation field, it

can be seen that a smooth and an invertible transformation was recovered between the circle and the

ellipse. Further, this corresponds to a stable solution as shown by the convergence plot of the sum

of squared differences error (SSDE). In the upcoming experiments on synthetic 2D brain MRI data

shown in figures Figure 4.6 - 4.11, only the color plot of the deformation field is displayed.
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Source Template Color wheel

Registered source Deformation field (vector plot) Deformation field (color plot)

Jacobian map
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Figure 4.3: Simple illustration of the proposed FEM-based continuous deformable registration

method implemented with Lagrange basis functions and the demons-like minimization using the

compositional update. Based on the Jacobian map and the color (vector) plot of the deformation

field, it can be seen that a smooth and an invertible transformation was recovered between the circle

and the ellipse. Further, this corresponds to a stable solution as shown by the convergence plot of the

sum of squared differences error (SSDE). In the upcoming experiments on synthetic 2D brain MRI

data shown in figures Figure 4.6 - 4.11, only the color plot of the deformation field is displayed.
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Registered source Deformation field (vector plot) Deformation field (color plot)
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Figure 4.4: Simple illustration of the proposed FEM-based continuous deformable registration

method implemented with Lagrange basis functions and the variational-like minimization using the

additive update. Based on the Jacobian map and the color (vector) plot of the deformation field, it

can be seen that a smooth and an invertible transformation was recovered between the circle and the

ellipse. Further, this corresponds to a stable solution as shown by the convergence plot of the sum

of squared differences error (SSDE). In the upcoming experiments on synthetic 2D brain MRI data

shown in figures Figure 4.6 - 4.11, only the color plot of the deformation field is displayed.
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Registered source Deformation field (vector plot) Deformation field (color plot)
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Figure 4.5: Simple illustration of the proposed FEM-based continuous deformable registration

method implemented with Lagrange basis functions and the variational-like minimization using the

compositional update. Based on the Jacobian map and the color (vector) plot of the deformation

field, it can be seen that a smooth and an invertible transformation was recovered between the circle

and the ellipse. Further, this corresponds to a stable solution as shown by the convergence plot of the

sum of squared differences error (SSDE). In the upcoming experiments on synthetic 2D brain MRI

data shown in figures Figure 4.6 - 4.11, only the color plot of the deformation field is displayed.
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4.2.3 Experiments

In this section, the proposed FEM-based deformable registration method is tested on synthetic and

real medical images. The general objective of the following experiments is to determine the best

possible settings for the proposed FEM-based registration method with respect to the nodal basis

functions, the optimization scheme and the diffusivity model. These settings are then fixed and

the proposed FEM-based registration method is compared against the other popular deformable

registration methods on a benchmark medical image data in Chapter 6. A short description of the

three data sets used in the following experiments is given below and they are illustrated in Figure

4.6 and Figure 4.7:

• Synthetic 2D MRI data: A synthetic 353×354magnetic resonance image (MRI) was chosen

as the source image and 5 different template images were generated using known sinusoidal

ground truth deformation fields, as shown in Figure 4.6. The use of sinusoidal deformation

fields for the validation of registration algorithms is quite common [128], [18], [104].

• Real 3D MRI brain data: A subset of 6 MRI scans was chosen from the publicly available

LPBA40 brain MRI database [105]. One of the 6 MRI images was arbitrarily fixed as the

source image and the remaining 5 MRI images were chosen as the template images. The

resolution of each scan was 217 × 181 × 181 with a voxel spacing of 1mm × 1mm × 1mm.

Manual segmentations of 56 anatomical regions were provided for each of the images (see

Figure 4.7a).

• Real 4D CT lung data: A set of 5 pairs of 4D computed tomography (CT) images were

selected from the DIR-Lab lung CT database [22]. Each image pair corresponds to the inhale

and exhale phases of a breathing cycle. The inhale phase image was chosen as the template

and the exhale phase image was selected as the source image. The resolution of the images

was around 256 × 256 × 100 with a voxel spacing of ∼ 1mm × 1mm × 2.5mm. Manual

annotations of 300 corresponding landmark locations were provided for each image pair (see

Figure 4.7b).

Note that, in order to ensure that the following experiments could be completed within a reasonable

amount of time, only the synthetic 2D synthetic MRI data set was used in the basis comparison

and optimization scheme comparison experiments. However, all three of the above data sets were

used in the final diffusivity model comparison experiment. In all the following experiments, the

proposed FEM-based registration method was implemented in a multi-resolution framework with

4 levels. Further, the regularization parameter was chosen manually as γ = 0.1. It should be

noted that, as an alternative to the manual choice of the regularization parameter, the regularization

parameter could be determined using the cross-validation experiments on a training dataset. In the

below experiments, an isotropic homogeneous diffusivity model W (x) = 1.0 was assumed unless
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(a) The axial, saggital and coronal 2D slices of a sam-

ple brain from the LPBA40 dataset are shown with

the various manually labeled anatomical regions (im-

age was taken from Klein et al. [62]).

(b) A coronal 2D slice of the inhale phase image

(which is used as the template) from the DIR-LAB

4D dataset is shown with the projected manually an-

notated landmarks (green triangles).

Figure 4.7: Illustration of the 3D data sets used for the evaluation of the registration methods.

specified otherwise. The proposed method was coded in MATLAB using the MEX facility and the

experiments were performed on a Intel i7 3.60 GHZ machine with 64GB RAM.

Basis functions comparison

In the implementation of the proposed FEM-based registration method, the first choice is to decide

the type of nodal basis functions to be used for the parametrization of the deformation field. In this

regard, the comparative performance of the Lagrange, B-spline and multi-linear basis functions was

evaluated on the synthetic 2D MRI data set. The B-spline and multi-linear basis parametrizations

used a uniform mesh whereas the Lagrange basis parametrization employed a non-uniform mesh

well adapted to the image features. The non-uniform mesh was generated on each of the 5 tem-

plate images using the image-adaptive strategy described in Section 3.4. For this experiment, the

demons-like minimization scheme in Algorithm 3 was used along with the compositional update.

The demons minimization strategy with a compositional update is commonly used in diffusion-based

deformable registration methods [112], [31]. The results obtained by registering the source image to

each of the 5 template images using the different basis functions are reported in Table 4.1. Here, the

registration accuracy was quantified using 4 measures, namely, the sum of squared difference error

(SSDE) between the warped source and template images, the average angular error (AAE) between

the ground truth and estimation deformation fields, the number of degrees of freedom (DOF) given

as twice the number of nodes in the mesh and the computational time in seconds. The computational

times reported in Table 4.1 correspond to the time taken for solving the set of linear equations in Eq.

4.17, which is the most computationally expensive step in the demons-like minimization scheme.

Further, a plot of the deformation fields recovered using the different basis parametrizations between
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Source Lagrange B-spline multi-linear

before basis basis basis

regis. parametrization parametrization parametrization

Case SSDE SSDE AAE DOF Time SSDE AAE DOF Time SSDE AAE DOF Time

1 5589.95 140.39 12.18 12184 0.45 524.04 14.86 43520 13.50 137.13 12.75 331588 24.34

2 4599.06 46.22 2.98 10624 0.53 240.29 2.50 43520 13.29 38.36 3.54 331588 24.23

3 5681.54 35.02 3.24 11140 0.35 300.52 2.13 43520 13.69 22.67 3.34 331588 24.18

4 4582.57 36.41 1.64 11276 0.32 352.19 2.83 43520 13.23 15.75 2.26 331588 24.34

5 5678.33 23.62 1.74 11582 0.43 357.62 1.72 43520 13.20 11.04 1.69 331588 24.65

Mean 5226.29 56.33 4.36 11361 0.42 354.93 4.81 43520 13.38 44.99 4.72 331588 24.35

Std. 581.30 47.67 4.43 576 0.08 105.73 5.63 0 0.21 52.54 4.56 0 0.18

Table 4.1: Comparative results obtained by the FEM-based deformable registration method with the

different basis functions on the synthetic 2D MRI dataset. Here, the sum of squared differences error

(SSDE), average angular error (AAE) in degrees, computational times in seconds and the number of

degrees of freedom (DOF) are reported.

the source and the template images for case 1 are also shown in Figure 4.8. Based on the small mean

SSDE and AAE values in Table 4.1, it can be inferred that the FEM-based registration method was

successful in recovering the ground truth deformation fields using any of the three basis parametriza-

tions. However, it can be clearly seen that the Lagrange basis parametrization of the deformation

field offers a significant computational advantage over the other two basis parametrizations that are

defined on uniform meshes. On an average, the use of the Lagrange basis parameterization resulted

in at least 3 times lower DOF and hence made the FEM-based registration method run more than

30 times faster compared to when the B-spline and multi-linear basis parametrizations were used.

More importantly, it can be clearly seen from the deformation field plots that the Lagrange basis

parametrization obtained a higher accuracy near the skull regions compared to the B-spline basis

parametrization. This better accuracy can be attributed to the spatially adaptive non-uniform mesh

used by the Lagrange basis parametrization as opposed to the uniform mesh with a fixed resolution

that was used by the B-spline parameterization. In Figure 4.8, notice that the non-uniform has a

high node density near the skull region containing important image features leading to an improved

performance of the Lagrange basis parametrization.

Optimization schemes comparison

In this experiment, the effect of the chosen optimization strategy on the accuracy of the proposed

FEM-based registration method is investigated. Here, the deformation field was parametrized using

the Lagrange basis functions. Both the variational-like approach in Algorithm 2 and demons-like

approach in Algorithm 3 were considered along with the two possible update rules, i.e., additive

and compositional updates. In Table 4.2, the performance of the different optimization schemes on

the synthetic 2D MRI data set is presented. The computational times shown correspond to the time

taken for solving the equations in Eq. 4.11 and Eq. 4.17 for the variational-like and demons-like

minimization schemes respectively. It can be seen that both the variational-like and demons-like

schemes require similar computational times. This is not surprising as both the schemes use the
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Source demons demons variational variational

before additive compositional additive compositional

regis. scheme scheme scheme scheme

Case SSDE SSDE AAE Time SSDE AAE Time SSDE AAE Time SSDE AAE Time

1 5589.95 89.63 10.12 0.36 140.39 12.18 0.51 50.39 4.22 0.49 57.90 4.40 0.59

2 4599.06 37.46 2.47 0.35 46.22 2.98 0.39 21.99 1.32 0.51 42.51 1.60 0.52

3 5681.54 26.44 2.95 0.52 35.02 3.24 0.39 4.31 0.56 0.53 14.05 1.08 0.44

4 4582.57 19.49 1.63 0.40 36.41 1.64 0.45 2.07 0.42 0.44 18.33 0.89 0.59

5 5678.33 14.02 1.15 0.43 23.62 1.74 0.49 2.89 0.44 0.46 9.87 0.75 0.55

Mean 5226.29 37.41 3.66 0.41 56.33 4.36 0.45 16.33 1.39 0.49 28.53 1.74 0.54

Std. 581.30 30.48 3.68 0.07 47.67 4.43 0.06 20.74 1.62 0.04 20.73 1.52 0.06

Table 4.2: Comparative results obtained by the FEM-based deformable registration method using

the Lagrange basis parametrization with the different optimization schemes on the synthetic 2D

MRI dataset. Here, the sum of squared intensity errors error (SSDE), average angular error (AAE)

in degrees and the computational times in seconds are reported.

same non-uniform mesh. However, the variational-like scheme achieves slightly more accurate reg-

istration results compared to the demons-like approach, as shown by the lower mean SSDE and AAE

measures. Further, in the variational-like scheme, a small improvement in the registration accuracy

is obtained by using the additive update instead of the compositional update. Particularly, it can

seen from the deformation plots corresponding to case 1 in Figure 4.9 that the variational scheme

(using either of the update rules) exhibits an improved accuracy in the tongue region (bottom-left

region). Note in Figure 4.9 that the tongue region is relatively more homogeneous compared to the

rest of the image. This implies that the variational scheme produced accurate results even in homo-

geneous regions with a lower node density (see the non-uniform mesh in Figure 4.8). Additionally,

the variational-like scheme with the additive update exhibits a faster and a more stable convergence

behavior as can be seen in Figure 4.10.

Diffusivity models comparison

The previous two experiments have established the Lagrange basis parametrization with a variational-

like minimization scheme using the additive update as the ideal choice for the proposed FEM-based

deformable registration method. However, until now only the simple homogeneous isotropic diffu-

sivity model was considered. In this experiment, the more complex diffusivity models, namely, the

Perona-Malik isotropic inhomogeneous diffusivity model [82] and the Nagel anisotropic inhomo-

geneous [76] diffusivity model are explored for a better registration performance of the FEM-based

registration method, while using the Lagrange basis parametrization with the variational-additive

minimization strategy. Here, the proposed FEM-based registration method was also tested on the

3D real MRI and 3D real CT data sets in addition to the 2D synthetic MRI data set. For the 3D real

MRI data set, the registration accuracy was evaluated by mapping the 56 manual anatomical labels

defined in the source image onto the template using the estimated deformation field. The Jaccard

overlap measure was computed between the warped source labels and the template labels. For the

3D real CT data set, to evaluate the registration accuracy the 300 manual landmark positions in
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Figure 4.10: Convergence plots of the sum of squared intensity error error (SSDE) obtained using

the FEM-based registration with Lagrange basis functions and the different optimization schemes

on a sample case (case 1) of the synthetic 2D MRI data set. Note that the variational-like scheme

with the additive update achieves a faster and a more stable convergence behavior compared to the

other optimization schemes.
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Source homogeneuous Perona-Malik Nagel

before isotropic isotropic anisotropic

regis. diffusivity diffusivity diffusivity

Synth. CT MRI Synth. CT MRI Synth. CT MRI Synth. CT MRI

2D 3D 3D 2D 3D 3D 2D 3D 3D 2D 3D 3D

Case SSDE TRE Jacc. SSDE AAE TRE Jacc. SSDE AAE TRE Jacc. SSDE AAE TRE Jacc.

1 5589.95 3.89 35.81 50.39 4.22 1.00 52.90 52.09 3.95 1.00 53.03 33.04 2.49 1.02 53.48

2 4599.06 4.34 47.18 21.99 1.32 1.00 56.76 20.82 1.27 0.99 57.51 17.03 1.19 1.01 57.15

3 5681.54 6.94 41.46 4.31 0.56 1.21 51.65 4.12 0.61 1.16 51.99 4.84 0.63 1.16 50.71

4 4582.57 9.83 38.68 2.07 0.42 1.47 56.11 2.25 0.48 1.44 56.00 1.34 0.35 1.43 56.72

5 5678.33 7.48 32.60 2.89 0.44 1.85 54.73 3.04 0.57 1.65 54.09 2.83 0.63 1.57 54.31

Mean 5226.29 6.50 39.15 16.33 1.39 1.30 54.43 16.46 1.38 1.25 54.52 11.81 1.06 1.24 54.48

Std. 581.30 4.83 13.73 20.74 1.62 1.07 9.73 21.35 1.47 0.95 9.86 13.39 0.86 0.92 10.25

Table 4.3: Comparative results obtained by the FEM-based deformable registration method using the

Lagrange basis parametrization and the variational-additive optimization scheme with the different

diffusivity models on the synthetic 2D MRI dataset, the real 3D brain MRI dataset and the real 3D

CT lung dataset. Here, the sum of squared differences error (SSDE), average angular error (AAE) in

degrees, Jaccard overlap score (%) and the target registration error (TRE) in millimeters are reported.

the inhale phase image were propagated to the exhale phase image using the estimated deformation

fields. The target registration error (TRE) measure was computed between the warped and the actual

landmark locations. The TRE measure is the Euclidean distance in millimeters (mm). In Table 4.3,

the results obtained using the three different diffusivity models are shown and a sample visual result

is shown in Figure 4.11 and Figure 4.12. It can be clearly seen that the use of an inhomogeneous

diffusivity model (Perona-Malik or Nagel) results in a much better performance of the FEM-based

registration method compared to the homogeneous diffusivity model on all the three data sets. How-

ever, the use of the anisotropic Nagel diffusivity model does not seem to improve results by much

when compared to the isotropic Perona-Malik diffusivity. While the anisotropic Nagel diffusivity

outperforms the isotropic Perona-Malik diffusivity on the 2D synthetic data set, it achieves similar

results on the 3D real CT and 3D real MRI data sets. In fact it obtains a slightly worse average

Jaccard score on the 3D MRI data set. In summary, the Perona-Malik inhomogeneous isotropic dif-

fusivity model is chosen in the implementation of the proposed FEM-based deformable registration

method.

4.3 FEM-based template-based multi-region segmentation

In medical image analysis tasks, the first step is often the segmentation of relevant anatomical struc-

tures from medical images. This is quite challenging as it typically involves the segmentation of

multiple non-overlapping anatomical regions of interest (ROIs) with weak boundaries. The state-of-

the-art methods for anatomical structure segmentation [98], [83], [87], [127] follow the atlas-based

approach discussed previously in Section 2.3, where the image is segmented via deformable regis-

tration with a labeled intensity atlas. Similarly, our proposed method also employs the registration

framework for multi-region segmentation. However, instead of using a labeled intensity atlas, a
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label image defining the topology and layout of the ROIs is chosen as the template. Further, in con-

trast to the atlas-based approaches where a similarity score is minimized, in our proposed method

the template is smoothly deformed such that a region-based segmentation energy is minimized.

Such region-based segmentation energies were originally used within a level set based optimization

framework [33], as discussed earlier in Section 2.2.1. But, in the context of anatomical structure seg-

mentation the proposed template-based approach is more advantageous when compared to the level

set approach. This is because the level sets are prone to topological changes which is not desirable,

as the topology of the anatomical ROIs is already known and needs to be maintained throughout

the segmentation process. On the other hand, in the template-based approach, the evolving segmen-

tation boundaries are implicitly given by the contours of the initial ROIs defined in the template

and the current estimate of the smooth deformation field between the template and the image. This

template-based encoding of the segmentation boundaries naturally ensures that the topology of the

ROIs is preserved. Moreover, it also allows us to directly handle multi-region segmentation that is

not trivial within a level set formulation [132].

As discussed in Section 2.2.1 and Section 2.2.2, existing methods on template-based segmen-

tation represent the deformation field between the template and the image using either a non-

parametric deformation model [102], [65] or the popular cubic B-splines based free form defor-

mation (FFD) model [55], [67]. However, a common drawback in both of these deformation models

is that a uniform mesh is used to discretize the problem domain. This is inefficient because the de-

formation field is computed with the same accuracy everywhere even though detailed deformations

are only needed along the contours of the ROIs. To address this issue, we propose to use the FEM

method and parametrize the deformation field on a non-uniform mesh well adapted to the contours

of the ROIs using the Lagrange basis functions defined in Eq. 3.7. This results in a computationally

efficient solution to the template-based segmentation problem, as it involves minimization over a

far fewer number of degrees of freedom (DOF) compared to the non-parametric and FFD deforma-

tion models. Further, the proposed FEM-based segmentation method is generalized so that it also

encompasses the deformation models defined on uniform meshes. Specifically, the non-parametric

and FFD deformation models are incorporated into the proposed FEM-based segmentation method

through the use of multi-linear and cubic B-spline basis functions given in Eq. 3.10 and Eq. 3.9

respectively. Finally, it should be noted that the proposed FEM-based segmentation method is con-

siderably different from the snakes energy based works [39], [106] discussed in Section 2.2.2. These

works also use a FEM mesh for segmentation, but employ a explicit representation (see Figure 2.4a)

of the segmentation boundary instead of the template-based representation used in our method (see

Figure 2.4c).

In the template-based approach for segmentation, it is desirable to formulate the data term on the

image domain using the original image I as opposed to formulating it on the template domain using

the warped image I(U). This is because the warped image I(U) is a function of the deformation
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field U and hence a data term formulated using the warped image I(U) would result in a more

complex overall energy landscape compared to the data term that was formulated using the original

image I . While using a uniform mesh, it is quite straightforward to formulate the data term on the

image domain [102], [65]. However, when a non-uniform mesh is used, this task becomes challeng-

ing because the non-uniform meshes are generated and defined on the template instead of the image.

To address this issue, in the following sections, two different formulations, namely, the inverse and

the forward formulations are developed for the proposed FEM-based multi-region template-based

segmentation method. While the inverse formulation strictly assumes a non-uniform discretization

and the Lagrange basis parametrization, the forward formulation can incorporate deformation mod-

els that are parametrized on either uniform or non-uniform meshes.

4.3.1 Inverse formulation

Consider an image I : Ω→ R, Ω ⊂ R
ν to be segmented using a template IT : Ω→ {1, 2, . . . , R},

Ω ⊂ R
ν , where R is the number of regions defined in the template. The segmentation task is for-

mulated as finding the unknown dense deformation field U : ΩT → R
ν to be estimated between the

source and templates, where the region segmentation labels {1, 2, . . . , R} defined in the template

IT are mapped onto the image I using the inverse deformation field U−1 : Ω → R
ν . The defor-

mation field U corresponds to a transformation ϕ : ΩT → Ω, such that x
′

= ϕ(x) = x + U(x)

and the inverse deformation field U−1 corresponds to a transformation ϕ−1 : Ω → ΩT , such that

x = ϕ−1(x
′

) = x
′

+ U−1(x
′

) as depicted in Figure 4.13. The inverse deformation field U−1 is

used to formulate a data term similar to the one in the region-based Generalized Chan-Vese (GCV)

energy in Eq. 2.33, on the image domain Ω as:

ED[U; IT , I] = −
1

2

R
∑

r=1

∫

Ω

ITr(x
′

+U−1) log(pr(I(x
′

))) dx
′

, (4.23)

where the probability density pr(I(x
′

)) defines the intensity statistics for region r in Ω and ITr :

ΩT → {0, 1} is a binary “region template” corresponding to each of the separate regions r ∈
{1, 2, . . . , R} defined in the template IT . It can be seen in Figure 4.13 that the deformation field

U induces a deformed meshM′

= ({P ′

n}Nn=1,△h) on the image domain Ω corresponding to the

original mesh M = ({Pn}Nn=1,△h). Consequently, the deformed mesh might not preserve the

properties of the original mesh. Due to this reason the original meshM needs to be strictly chosen

as non-uniform mesh in the inverse formulation case. This is because, while a deformed non-uniform

mesh would still behave as a non-uniform mesh, a deformed uniform mesh is not guaranteed to retain

the uniform mesh characteristics. Hence, the following discussion is only valid for a non-uniform

mesh and not for a uniform mesh. Similar to the finite element approximation of the deformation

field U =
N
∑

n=1
Unφn in Eq. 4.2, the inverse deformation field U−1 can be approximated using the
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Figure 4.13: Illustration of the deformed mesh in the inverse formulation case. The dashed closed

curve in the template (IT ) represents the boundary of the region of interest. The solid closed curve

in the image I represents the actual region boundary.

nodal basis functions on the deformed meshM′

as:

U−1(x
′

) =

N
∑

n=1

U−1
n φn(x

′

;M′

), x
′ ∈ Ω, (4.24)

where {U−1
n = U−1(P

′

n)}Nn=1 are the unknown nodal inverse deformation field parameters corre-

sponding to the values of the inverse deformation field U−1 at the nodes {P ′

n}Nn=1 of the meshM′

.

Further, it can be easily shown that the nodal deformation field parameters {Un}Nn=1 are related to

the nodal inverse deformation field parameters {U−1
n }Nn=1 as follows:

P
′

n = Pn +Un and Pn = P
′

n +U−1
n

=⇒ Pn = Pn +Un +U−1
n

=⇒ U−1
n = −Un (4.25)

meaning that the value of the inverse deformation field at the nodes of the deformed mesh M′

is

the negative of the deformation field at the nodes of the original non-uniform meshM. The finite

element approximation of the inverse deformation field in Eq. 4.24 along with the relation in Eq.

4.25 can be used to obtain a finite dimensional approximation of the data term ED in Eq. 4.23 as:

ED({Un}Nn=1; IT , I) = −
1

2

R
∑

r=1

∫

Ω

ITr
(ξ(x

′

; {−Un}Nn=1)) log(pr(I(x
′

))) dx
′

. (4.26)

where ξ(x
′

; {−Un}Nn=1) = x
′ −

N
∑

n=1

Unφn(x
′

;M′

).

Following the unified FEM-based framework in section 4.1, the goal of the proposed template-based

multi-region segmentation using the FEM method is to find the optimal nodal deformation field

parameters {U∗
n}Nn=1 such that the data term ED is minimized while ensuring the smoothness of the

deformation field using the diffusion-based regularization termEdiff
R . The minimization can proceed

using either the variational-like approach in Algorithm 2 or the demons-like approach in Algorithm

3. Accordingly, the forces ψ(x
′

; {Un}Nn=1, IT , I) and the weights {ρn(x
′

)}Nn=1 corresponding to
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the data term ED in Eq. 4.26 are given by:

ψ(x
′

; {Un}Nn=1, IT , I) =
1

2

R
∑

r=1

log(pr(I(x
′

)))∇ITr |x′=ξ(x′ ;{−Un}N
n=1)

,

ρn(x
′

) =
N
∑

m=1

∂φm(x
′

;M′

)

∂Un

Um + φn(x
′

;M′

), n ∈ {1, 2, . . . , N}. (4.27)

As discussed before in Section 4.2, the additive update in step 7, Algorithm 2 of the variational-like

approach and step 6, Algorithm 3 of the demons-like approach can be replaced with the composi-

tional update in Eq. 4.22. Similarly, while using the compositional update the warped gradient of

the region template∇ITr |x′=ξ(x′ ;{−Un}N
n=1)

in the force term in Eq. 4.27 needs to be replaced with

the gradient of the warped region template ∇ITr(ξ(x
′

; {−Un}Nn=1)). Further, in the demons-like

approach, the value of the nodal update field parameter δUt
n computed using Eq. 4.12 at a node

Pn of the original meshM can be interpreted as the negative of the weighted average of the region

forces ψ(x
′

; {Ut
n}Nn=1, IT , I) at the pixels (voxels) in the image I that neighbor the corresponding

node (P
′

n)
t of the deformed mesh (M′

)t at the iteration t. Again, this weighted averaging implicitly

acts as fluid-like regularization.

4.3.2 Forward formulation

A disadvantage with the inverse formulation presented above is that, the nodal basis functions

{φn(x; (M
′

)t)}Nn=1 corresponding to the deformed mesh (M′

)t have to be recomputed at every

new iteration t. This adds considerably to the computational burden and therefore increases the

overall run time of the proposed FEM-based multi-region template-based segmentation method. In

order to avoid the recomputation of nodal basis functions, an alternate forward formulation of the

template-based segmentation problem is devised. The basic idea in the forward formulation is to de-

fine the original meshM = ({Pn}Nn=1,△h) on the image domain Ω instead of the template domain

ΩT . This is accomplished by mapping the original mesh generated on the template IT at iteration

t = 0 onto to the image domain Ω using an identity transformation, as illustrated in Figure 4.14.

Consequently, the unknown deformation field U : Ω → R
ν now corresponds to the transformation

from the image domainΩ to the template domainΩT , i.e., ϕ : Ω→ ΩT , such thatϕ(x) = x+U(x).

This is in contrast to the inverse formulation case, where the deformation field U represents a map-

ping from the template domain ΩT to the image domain Ω. As a result of this modification, the

region segmentation labels {1, 2, . . . , R} defined in the template IT can then be mapped onto the

image I directly using the “forward” deformation field U : Ω → R
ν , without having to rely on the

inverse deformation field U−1 : ΩT → R
ν . Accordingly, the region-based data term ED in Eq.

4.23 can be re-defined using the deformation field U as:

ED[U; IT , I] = −
1

2

R
∑

r=1

∫

Ω

ITr(x +U) log(pr(I(x))) dx. (4.28)
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ΩΩT

Identity transformation

iteration t = 0

x x

P3P3

P1 P1

P2 P2

△h △h

Template (IT ) Image (I)

Figure 4.14: Illustration of mapping the original mesh on to the image domain in the forward for-

mulation case. The dashed closed curve in the template (IT ) represents the boundary of the region

of interest. The solid closed curve in the source image I represents the actual region boundary.

Further, the diffusion-based regularization term Ediff
D in Eq. 4.1 is now be computed on the image

domain Ω as opposed to the template domain ΩT :

Ediff
R [U] =

1

2

ν
∑

k=1

∫

Ω

∇UT
k W∇Uk dx. (4.29)

Also, the finite element approximation in Eq. 4.24 can be re-written on the image domain Ω as

follows:

U(x) =

N
∑

n=1

Unφn(x;M), x ∈ Ω, (4.30)

where {Un}Nn=1 are the unknown nodal deformation field parameters corresponding to the values

of the deformation field U at the nodes {Pn}Nn=1 of the meshM. Note that in the above there is no

restriction on the choice of the meshM. It can be chosen as either a uniform or a non-uniform mesh

and hence any of the Lagrange, cubic B-spline and multi-linear nodal basis functions discussed in

Section 3.3 can used for the parametrization of the deformation field U. This is in contrast to the

inverse formulation where a non-uniform mesh with a Lagrange basis parametrization is required.

The finite element approximation in Eq. 4.30 can be incorporated into the modified data ED and

regularization Ediff
R terms in Eq. 4.28 and Eq. 4.29 respectively to obtain:

ED[{Un}Nn=1; IT , I] = −
1

2

R
∑

r=1

∫

Ω

ITr
(ξ(x; {Un}Nn=1)) log(pr(I(x))) dx,

Ediff
R ({Un}Nn=1) =

1

2

ν
∑

k=1

N
∑

n=1

Ukn

N
∑

m=1

Ukm

∫

Ω

(W∇φn)T∇φm dx, (4.31)

where ξ(x; {Un}Nn=1) = x+

N
∑

n=1

Unφn(x). (4.32)

The corresponding modified expressions for the forces and weights are given as:

ψ(x; {Un}Nn=1, IT , I) = −
1

2

R
∑

r=1

log(pr(I(x)))∇ITr |x=ξ(x;{Un}N
n=1)

,

ρn(x) = φn, n ∈ {1, 2, . . . , N}. (4.33)

67



However, if the compositional update is used in either the variational-like approach in step 7, Algo-

rithm 2 or the demons-like approach in step 6, Algorithm 3, then the warped gradient of the region

template ∇ITr|x=ξ(x;{Un}N
n=1)

in the force term in Eq. 4.33 has to be replaced with the gradient

of the warped region template ∇ITr(ξ(x; {Un}Nn=1)). Finally, it should be noted that, when the

demons-like minimization approach is used with the forward formulation, the nodal update field

parameters {δUt
n}n=1 have a slightly different interpretation compared to the inverse formulation

case. Here, δUt
n computed using Eq. 4.12 at a node Pn of the original meshM corresponds to the

negative of the weighted average of the region forces ψ(x; {Ut
n}Nn=1, IT , I) at the pixels (voxels)

in the image I that neighbor the respective node Pn of the original meshM.

4.3.3 Experiments

In this section, the proposed FEM-based method for template-based multi-region segmentation is

evaluated on real medical images containing various anatomical structures of interest. Three sets

of experiments have been performed. The first two sets of experiments correspond to the binary

segmentation case, where a single anatomical structure of interest needs to be segmented from the

image. Further, in these two experiments the best settings for the proposed FEM-based segmentation

method were determined in the context of basis functions, inverse or forward formulations and the

optimization schemes. After fixing these settings, in the last set of experiments the performance of

the proposed FEM-based template-based segmentation method was evaluated in the case of multi-

region segmentation. Here, two instances were considered: one where the anatomical structures

of interest share a common boundary and the other where the structures have separate boundaries.

In the following experiments, the templates were obtained from available manual segmentations of

the corresponding anatomical structures. The region intensity statistics in the image were modeled

using the Parzen probability density in all the experiments and a homogeneous isotropic diffusivity

model W (x) = 1 was used. Further, the FEM-based segmentation method was implemented using

a multi-resolution pyramid with three levels.

Basis functions comparison

In this experiment, the segmentation of three different anatomical structures namely, liver, spleen,

muscle from 2D abdominal CT images and the segmentation of the left ventricle (LV) from a 3D

MRI image was considered. For the purpose of this experiment, the proposed FEM-based segmen-

tation method was implemented using the forward formulation discussed in Section 4.3.2 and the

demons-like minimization strategy in Algorithm 3 with a compositional update. Here, the results ob-

tained using the Lagrange, B-spline and multi-linear basis parametrizations of the deformation field

were compared. The Lagrange parametrization employed a non-uniform mesh that is well adapted

to the contours of the regions of interest (ROI) defined in the template. The non-uniform mesh was

generated using the image-adaptive strategy described in Section 3.4. In Table 4.4 and Figure 4.15
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Lagrange B-spline multi-linear Level set

basis basis basis Chan-Vese

parametrization parametrization parametrization [33]

Case Jacc. DOF Time Jacc. DOF Time Jacc. DOF Time Jacc.

Liver 93.32 942 0.14 93.60 43008 16.75 90.53 172032 14.17 83.65

Spleen 91.28 774 0.08 91.39 43008 13.65 92.53 172032 13.87 87.28

Muscle 89.59 3310 0.13 91.15 43008 13.55 86.68 172032 11.29 60.67

LV (3D) 80.87 7551 0.78 81.38 229467 2411.84 81.04 935031 2859.36 27.29

Mean 88.76 3144 0.28 89.38 89623 613.95 87.70 362782 724.67 64.72

Std. 5.48 3158 0.33 5.45 93230 1198.60 5.06 381500 1423.13 27.60

Table 4.4: Comparative binary segmentation results obtained by the FEM-based template-based

segmentation method using the forward formulation with the different basis functions. Here, the

Jaccard overlap score (%), the number of degrees of freedom (DOF) and the computational time in

seconds are reported.

the Jaccard scores and the visual segmentation results obtained using the three basis parametriza-

tions on the four different images are shown respectively. In Table 4.4, the number of degrees of

freedom (DOF) corresponding to each of these parametrizations was computed as twice the sum

of the number of nodes used in the mesh at each multi-resolution level. The computational times

reported in Table 4.4 correspond to the time taken for solving the set of linear equations in Eq. 4.17.

Further, the results obtained using the classic level set based Chan-Vese segmentation method [33]

are also shown in Table 4.4, Figure 4.15 and Figure 4.16. All the methods were initialized with same

the template. Firstly, it can be clearly observed that the proposed FEM-based method outperforms

the Chan-Vese segmentation method irrespective of the basis functions used for the parametrization

of the deformation field. This is due to the fact that the proposed FEM-based method was successful

in preserving the initial topology of the anatomical structures defined in the template. Whereas,

the naive region based Chan-Vese segmentation method “leaked” into surrounding structures with

overlapping intensities, disturbing the initial topology. Secondly, it can be seen that the use of a

Lagrange basis parametrization leads to a significantly lower DOF (1 − 2 orders of magnitude) de-

formation model compared to the B-spline and multi-linear basis parametrizations. Consequently,

the Lagrange basis parametrization also obtains the lowest computational times among all the three

different basis parametrizations, while achieving Jaccard scores similar to the B-spline and multi-

linear basis parametrizations.

Inverse versus forward formulation and optimization schemes comparison

The objective of this experiment is two fold. Firstly, to compare the performance of the inverse

and forward formulations with each other. Secondly, to determine the best optimization strategy

among the four possible strategies, namely, variational-like (see Algorithm 2) with an additive or

compositional update and demons-like (see Algorithm 3) with an additive or compositional update.

Based on the inference from the previous experiment, the Lagrange basis parametrization is chosen

to implement the proposed FEM-based template-based segmentation in this experiment. Here, the
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Non-uniform Lagrange result Color

mesh (3D rendering) encoding

Figure 4.16: The 3D rendering of the segmentation surface obtained by the FEM-based template-

based segmentation method using the Lagrange basis and the forward formulation in the left ven-

tricle (LV) case. The color of the surface denotes the deviation between the estimated and ground

truth segmentation surfaces. The deviation is computed as the Hausdorff distance between the two

surfaces. The corresponding non-uniform mesh is also shown.

same set of images from the previous experiment are used for evaluation. In Table 4.5, the Jaccard

scores and the computational times corresponding to the different implementations of the proposed

FEM-based segmentation method are shown. In the forward formulation case, the computational

times shown correspond to the time taken for solving the equations in Eq. 4.11 and Eq. 4.17, for

the variational-like and demons-like minimization schemes respectively. However, in the inverse

formulation case, the additional computational time incurred in the re-computation of the nodal

basis functions on the deformed mesh at every iteration is also taken into account. It can be seen

in Table 4.5 that the computational times for the inverse formulation case are considerably greater

than the forward formulation as expected. Further, the variational-like minimization strategy with

an additive update obtains the highest mean Jaccard score among all the optimization schemes in

both the inverse and forward formulation cases.

Multi-region segmentation

In this experiment, the proposed method was implemented using the forward formulation with a

Lagrange basis parametrization and the variational-additive optimization scheme and was tested on

real medical images with multiple anatomical structures of interest. Here, a combined segmentation

of the cerebral white matter (WM) along with the ventricle and cerebral white matter along with

the brain stem from 2D brain MRI images was performed. The corresponding visual segmentation

results and the Jaccard scores are shown in Figure 4.17. It can be seen that the cerebral white matter

and the ventricle share a common boundary, whereas the brain stem has separate boundaries from

the cerebral white matter. In both cases, the proposed method achieves good segmentation results.
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demons demons variational variational

additive compositional additive compositional

scheme scheme scheme scheme

Forward Inverse Forward Inverse Forward Inverse Forward Inverse

formulation formulation formulation formulation formulation formulation formulation formulation

Case Jacc. Time Jacc. Time Jacc. Time Jacc. Time Jacc. Time Jacc. Time Jacc. Time Jacc. Time

Liver 90.17 0.05 90.42 7.60 93.32 0.12 92.92 7.45 93.31 0.16 93.25 7.60 93.14 0.12 92.31 7.67

Spleen 91.93 0.08 93.43 7.47 91.28 0.15 89.51 7.40 92.66 0.13 92.41 7.49 92.46 0.16 91.57 7.44

Muscle 86.45 0.13 83.50 9.06 89.59 0.13 85.59 8.88 86.97 0.20 86.66 9.10 86.74 0.25 86.71 9.10

LV (3D) 75.18 0.72 51.55 127 80.87 0.67 63.69 117 82.19 0.69 77.39 117 80.11 0.80 71.37 114

Mean 85.93 0.25 79.73 38 88.76 0.27 82.93 35 88.78 0.30 87.43 35 88.11 0.33 85.49 35

Std. 7.52 0.32 19.24 59 5.48 0.27 13.17 55 5.24 0.26 7.31 54 6.06 0.32 9.73 53

Table 4.5: Comparative results obtained by the FEM-based template-based segmentation method

using the forward and inverse formulations with the Lagrange basis parametrization and using dif-

ferent optimization schemes. Here, the Jaccard overlap score (%), the computational time in seconds

are reported.

4.4 Discussion

This chapter presented an elaborate unified theoretical framework for image registration and seg-

mentation using the less explored finite element method (FEM) and the non-uniform discretization

of the problem domain. In addition, algorithms have also been developed for the practical imple-

mentation of the proposed FEM-based registration and segmentation methods. The experimental

analysis in this chapter focused on tuning the proposed FEM-based registration and segmentation

methods. Based on this analysis, the general conclusion was that the Lagrange basis parametriza-

tion along with an variational-like minimization strategy was the best choice for the FEM-based

proposed registration and segmentation methods.
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Case Jacc. Jacc.

WM (1) + Ventricle (2) 83.36 79.31

WM (1) + Brain stem (2) 73.40 74.71

Mean 78.38 77.01

Std. 7.04 3.25

Figure 4.17: Multi-region segmentation results obtained by the FEM-based template-based seg-

mentation method using the forward formulation with the Lagrange basis parametrization and

variational-additive optimization scheme. Here, the Jaccard overlap score (%) is reported.
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Chapter 5

FEM-based variational discrete

deformable registration

This chapter introduces a new discrete deformable registration method that counts as one of the main

contributions of this thesis. The primary novelty of the proposed method is in the variational formu-

lation of the discrete deformable registration task, which entails the minimization of a convex en-

ergy functional involving diffusion-based regularization. It is shown that a finite difference method

(FDM) based solution of the variational formulation is equivalent to a continuous-valued Gaussian

Markov random field (MRF) energy minimization formulation previously proposed as the random

walker (RW) based discrete registration method [28]. However, in this chapter, a more computa-

tionally efficient discrete deformable registration methodology is devised through the integration of

the variational formulation into the unified FEM-based minimization framework developed earlier

in Section 4.

5.1 Introduction

Most of the existing works on deformable registration estimate the unknown deformation field be-

tween the template and source images through the continuous optimization of energy functionals,

as discussed in Section 2.1. Alternatively, there has been some interest towards formulating the

deformable registration task as a discrete labeling problem. The basic idea in this approach is to

discretize the space of possible deformations and minimize a Markov random field (MRF) energy

corresponding to the deformable registration objective. As the MRF energy minimization is NP-hard

in general, graph cuts [115] and linear programming [45] optimization methods have been explored

for finding good quality approximate solutions to the MRF-based discrete deformable registration

problem. A common feature among these discrete registration formulations was that, they were

inherently discrete in both the spatial image domain and the space of possible deformations. In

this chapter, a formulation that keeps the spatial image domain continuous is sought, resulting in a

variational formulation for discrete deformable registration. The proposed formulation results in a
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convex functional which can be conveniently minimized to obtain a unique solution. Specifically,

a continuous prior probability map is associated with each of the possible deformation values us-

ing image similarities. The prior probability maps denote how likely the corresponding deformation

value is at a particular spatial location in the continuous image domain. The discrete deformable reg-

istration task is then posed as a variational problem corresponding to the diffusion-based smoothing

of prior probability maps. For solving this variational problem, the FEM method is used along with

the Lagrange nodal basis functions defined on a non-uniform mesh well adapted to the salient im-

age features. This significantly reduces the number of degrees of freedom (DOF) involved in the

minimization compared to conventional uniform mesh based finite difference method (FDM) and

therefore results in a highly computationally efficient solution. Moreover, it is shown that the FDM-

based solution to the variational formulation is equivalent to the random walker (RW) based discrete

registration method recently proposed by Cobzas et al. [28].

The closest related works to the proposed FEM-based discrete registration method are the above

mentioned MRF-based discrete registration methods [115], [45]. Similar to these MRF-based meth-

ods, the proposed method also determines the unknown deformation field using a quantized search

space of possible deformation values. However, in contrast to the MRF-based methods, the de-

formation field is not directly estimated through the minimization of a formal registration energy.

Instead, the desired deformation field is constructed by pooling the solutions obtained from a set of

convex energy minimization problems. These convex minimizations correspond to the smoothing

of prior probability maps using a diffusion-based regularizer. Finally, it should be noted that, in the

proposed FEM-based discrete registration method, the Lagrange nodal basis functions are only used

to parametrize unknown smooth probability maps and not the deformation field. This is a major

difference from the earlier proposed FEM-based continuous registration method in Section 4.2 and

also from the other FEM-based parametric registration methods [40], [56], [89] discussed in Section

2.1.2, which use the Lagrange basis functions for the interpolation of the deformation field.

Formally, consider a source image IS : ΩS → R, ΩS ⊂ R
ν to be registered to a template

image IT : ΩT → R, ΩT ⊂ R
ν , ν = 2 or 3 and the unknown deformation field U : ΩT → R

ν

to be estimated between the source and template images. In a discrete approach to deformable

registration, the space of possible deformations is discretized or quantized such that it corresponds

to a finite set of K vectors, i.e., U : ΩT → D, where D = {dk}Kk=1, dk ∈ R
ν . In the following

sections, three different approaches for discrete deformable registration are discussed:

• Discrete-valued Markov random field: The traditional discrete registration approach based

on the Markov random field (MRF) is presented in Section 5.2. This formulation employs a

uniformly discretized image domain along with a set of discrete-valued variables to represent

the unknown deformation values at the respective discrete spatial locations.

• Continuous-valued MRF or random walker (RW): The random walker (RW) based dis-

crete deformable registration method proposed by Cobzas et al. [28] is described in Sec-
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tion 5.3. This method follows a convex Gaussian MRF energy formulation, where a set of

continuous-valued variables are used to denote the unknown deformations at spatial locations

on a uniformly discretized image domain.

• Variational formulation: The proposed novel variational formulation of discrete registra-

tion on a spatially continuous image domain is introduced in Section 5.4. This involves the

minimization of a convex energy functional that corresponds to diffusion-based smoothing.

It is shown that a FDM-based solution to this variation problem is exactly equivalent to the

Gaussian MRF-based or RW-based discrete registration. However, here a more computation-

ally efficient solution to the variational formulation of discrete registration is proposed by

employing the unified FEM-based minimization framework developed earlier in Chapter 4.

5.2 Discrete-valued MRF-based discrete registration

Let G = ({xi}Pi=1,N ) be a uniform discretization of the template image domain ΩT , where {xi}Pi=1

is the set of pixels (voxels) and N denotes the pixel (voxel) neighborhood. Now, consider a set of

discrete-valued variables {Li}Pi=1, Li ∈ {1, 2, . . . ,K} such that Li = k corresponds to the un-

known deformation field value U(xi) = dk ∈ D at the pixel (voxel) xi. Here, D = {dk}Kk=1 is the

space of all possible deformations. The discrete deformable registration task can be formulated as a

finding the optimal values of the discrete-valued variables {L∗
i }Pi=1 at the pixels (voxels) {xi}Pi=1,

through the minimization of the following discrete-valued MRF energy:

L∗ = argmin
L∈{1,2,...,K}P

P
∑

i=1

Ai(Li; IT , IS) + γ

P
∑

i=1

∑

j∈N (i)

Vij(Li, Lj), (5.1)

where L = [Li]
P
i=1, L∗ = [L∗

i ]
P
i=1 and γ is the regularization constant. The terms Ai(Li; IT , IS)

and Vij(Li, Lj) can be interpreted as the pixel-wise (voxel-wise) data and regularization terms re-

spectively. They are commonly chosen as the squared difference similarity measure and the squared

Euclidean distance measure respectively [115], [45]:

Ai(Li = k; IT , IS) = Ψ(xi;d
k, IT , IS) = (IS(xi + dk)− IT (xi))

2,

Vij(Li = k, Lj = r) = ||dk − dr||2. (5.2)

In previous work, the discrete-valued MRF energy in Eq. 5.1 was minimized using the popular

graph cuts technique in [115] or using the linear programming method [45]. The estimated optimal

deformation field value at each of the pixels (voxels) {xi}Pi=1 is obtained as U(xi) = dk, where

L∗
i = k.
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5.3 Continuous-valued MRF or random walker (RW) based dis-

crete registration

Recently in [28], the above discussed standard discrete-valued MRF based registration approach

was modified to formulate a discrete deformable registration method based on the random walker

(RW) with priors algorithm [47]. The key idea in this method was to relax the set of unknown

discrete-valued variables {Li}Pi=1 to a set of continuous-valued variables {Lk
i }P,K

i=1,k=1, such that

Lk
i ∈ R denotes the unknown probability of the pixel (voxel) xi having the deformation field value

U(xi) = dk. Then, following the RW with priors framework [47], the so-called pixel-wise (voxel-

wise) prior probabilities {λki }P,K
i=1,k=1 are defined using the squared difference similarity measure Ψ

(see Eq. 5.2) as:

λki = exp(−βΨ(xi;d
k, IT , IS)). (5.3)

In the above, it can be noted that the pixel-wise (voxel-wise) prior λki essentially encodes the belief

that the deformation value dk is more likely at a pixel (voxel) xi, when the similarity measure

between the warped source image and the template image at the pixel (voxel) xi is small. The

discrete deformable registration task can be re-formulated as the minimization of a continuous-

valued Gaussian MRF energy (as opposed to the discrete-valued MRF energy in Eq. 5.1) given

by:

L∗ = argmin
L∈RKP

P
∑

i=1

Ai(Li; IT , IS) + γ
P
∑

i=1

∑

j∈N (i)

Vij(Li,Lj), (5.4)

where L = [Li]
P
i=1, Li = [Lk

i ]
K
k=1, L∗ = [L∗

i ]
P
i=1, L∗

i = [L∗k
i ]Kk=1 and γ is the regularization

constant. Here, the data term Ai(Li; IT , IS) is defined using the pixel-wise (voxel-wise) priors

{λki }P,K
i=1,k=1and the regularization term Vij(Li,Lj) is chosen again using the RW framework [47]

as:

Ai(Li; IT , IS) =

K
∑

k=1

∑

m 6=k

λmi (Lk
i )

2 + λki (1 − Lk
i )

2,

Vij(Li,Lj) =
K
∑

k=1

wij(L
k
i − Lk

j )
2, (5.5)

wherewij = exp(−̺(IT (xi)−IT (xj))
2) are image dependent edge weights. It can be seen that the

data term encourages a high probabilityLk
i for the deformation value dk at the pixel (voxel) xi when

the pixel-wise (voxel-wise) prior λki is large at that pixel (voxel) xi. Whereas, the regularization term

encourages the neighboring pixels (voxels) with similar intensity values in the template image IT to

have a similar probability distribution over the deformation values. Further, it can be seen that unlike

the standard discrete-valued MRF energy in Eq. 5.1, the continuous-valued Gaussian MRF energy

in Eq. 5.4 does not correspond to a formal registration energy. Consequently, minimization of the

Gaussian MRF energy in Eq. 5.4 does not directly yield the unknown deformation field. Instead, at
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first the optimal probabilities L∗ are obtained through the minimization of the energy in Eq. 5.4 and

then the unknown deformation field is constructed using these optimal probabilities.

A desirable aspect of the Gaussian MRF energy in Eq. 5.4 is that it is convex and thus has a

unique minimum. In order to find this unique minimum, the energy in Eq. 5.4 is first compactly

re-written as:

L∗ = argmin
L∈RKP

K
∑

k=1

K
∑

m 6=k

LkTΛmLk + (1− Lk)TΛk(1− Lk) + γ(LkT△GL
k), (5.6)

where Λk = diag(λk), λk = [λki ]
P
i=1, Lk = [Lk

i ]
P
i=1 and△G is the discrete mesh Laplacian defined

on the uniform mesh G as:

(△G)ij =















∑

r∈N (i)

wir if i = j

−wij if j ∈ N (i)

0 otherwise

. (5.7)

The unique minimum is found by setting the gradient of Eq. 5.6 with respect to each of {Lk}Kk=1 to

zero. This leads to the following set of P linear equations for each k ∈ {1, 2, . . . ,K} as:

( K
∑

m=1

Λm + γ△G

)

Lk = λk. (5.8)

Then, the optimal probabilities L∗ = [L∗
i ]

P
i=1, L∗

i = [L∗k
i ]Kk=1 at the pixels (voxels) {xi}Pi=1 are

found by solving the above K systems of P linear equations. Now, the estimated deformation field

value at each pixel (voxel) {xi}Pi=1 is obtained as follows:

U(xi) = dk, (5.9)

where k = argmax
r∈{1,2,...,K}

L∗r
i .

However, it should be noted that even though the above deformation field is constructed from the

optimal probabilities L∗, this estimated deformation field by itself does not necessarily minimize

any formal registration energy.

5.4 Variational formulation of discrete deformable registration

A major drawback in the random walker (RW) based discrete deformable registration method [28]

discussed in the previous section is the use of a uniform mesh G for spatial discretization. As

emphasized before in Section 4.2, the use of a uniform discretization is inefficient in the case of

deformable registration. This is because, it leads to the computation of the deformation field with

the same accuracy in every region of the domain, while it is desirable to be able to compute the

deformation field with variable accuracy in different regions of the domain depending on the density

of salient image features. Therefore, we propose the use of a non-uniform mesh and the FEM

method to devise a new discrete deformable registration method. The proposed method borrows the
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idea of deformation value priors from the RW-based discrete registration method [28] discussed in

Section 5.3. To begin with, consider the following variational energy minimization problem defined

on the unknown spatially continuous probability maps Lk : ΩT → R corresponding to each of the

deformation values dk ∈ D:

L∗ = argmin
L

ED[L; IT , IS ,D] + γEdiff
R [L], (5.10)

with ED[L; IT , IS ,D] =
1

2

∫

ΩT

||L(x) − λ̄(x;D)||2 dx,

Ediff
R [L] =

1

2

K
∑

k=1

∫

ΩT

∇LkT(x)W (x)∇Lk(x) dx,

where L = [Lk]Kk=1, L∗ = [L∗k]Kk=1 and γ is a regularization constant. Further, λ̄ = [λ̄k]Kk=1,

λ̄k : ΩT → [0 1] are the normalized prior probability maps corresponding to each of the deformation

values dk ∈ D defined as follows:

λ̄k(x;dk) =
λk(x;dk)
K
∑

r=1
λr(x;dr)

, (5.11)

with λk(x;dk) = exp(−βΨ(x;dk, IT , IS)),

where Ψ is the squared difference similarity measure defined in Eq. 5.2. The above energy mini-

mization formulation in Eq. 5.10 essentially corresponds to the anisotropic diffusion-based smooth-

ing of the normalized prior probability maps {λ̄k}Kk=1. In other words, the minimization attempts to

find a smooth probability map Lk associated with the deformation value dk such that it is as “close”

as possible to the corresponding normalized prior probability map λ̄k . The smoothness is enforced

through the anisotropic diffusion-based regularization term Ediff
R , where W is a ν × ν symmetric

matrix denoting the diffusivity or the stiffness field. Note that, in the above there is no need for an

explicit constraint to make sure that the unknown probability maps {Lk}Kk=1 sum to 1. This because

the unique minimizer of Eq. 5.10 should naturally satisfy this constraint, as the normalized prior

probability maps {λ̄k}Kk=1 were defined such that they sum to 1 (like in [47]). The estimated defor-

mation field U(x) at a spatial location x ∈ ΩT is obtained by choosing the deformation value dk

with the highest optimal probability at that spatial location:

U(x) = dk ∀x ∈ ΩT , (5.12)

where k = argmax
r∈{1,2,...,K}

L∗r(x).

5.4.1 Equivalence to random walker (RW) based discrete registration

We claim that the variational formulation of discrete registration in Eq. 5.10 is equivalent to the

continuous-valued Gaussian MRF energy minimization formulation in Eq. 5.4 referred to as the

random walker (RW) based discrete registration method [28]. This can be easily proved by con-

sidering the Euler-Lagrange equations corresponding to the energy functional in Eq. 5.10 for each
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k ∈ {1, 2, . . . ,K}:

∇Lk(ED + γEdiff
R ) = (Lk − λ̄k)− γ∇(W∇Lk) = 0. (5.13)

Rearranging we get for each k ∈ {1, 2, . . . ,K}:

Lk − γ∇(W∇Lk) = λ̄k. (5.14)

Multiplying both sides by
K
∑

r=1
λr and setting the arbitary regularization constant γ ≡

(

K
∑

r=1
λr

)

γ we

get for each k ∈ {1, 2, . . . ,K}:
( K
∑

r=1

λr
)

Lk − γ∇(W∇Lk) = λk. (5.15)

Now, choosing a diffusivity W (x) = exp(−̺(diag(∇IT ))2)), it is easy to observe that a FDM

discretization (on the uniform grid G) of the Euler-Lagrange equations in Eq. 5.15 corresponds to

the set of linear equations in Eq. 5.8 that arise from the minimization of the continuous-valued

Gaussian MRF-based discrete registration problem in Eq. 5.4. Hence, the equivalence between

the proposed variational formulation of discrete registration and the RW-based discrete registration

method [28] is established.

5.4.2 FEM-based solution for variational discrete registration

We present a computationally efficient solution to the proposed variational formulation of discrete

registration in Eq. 5.10 using the FEM method. In this regard, it can be clearly seen that the data

term ED in Eq. 5.10 is essentially of the same form as the data term in Eq. 4.1 corresponding to

the unified FEM-based minimization framework proposed in Section 4.1. Note that, the diffusion-

based regularization term Ediff
R is of course the same. Therefore, the variational problem in Eq. 5.10

can be solved using the unified FEM-based energy minimization framework. Accordingly, based

on Eq. 4.2, the finite element approximation of the probability map L over the non-uniform mesh

M = ({Pn}Nn=1,△h) using the Lagrange nodal basis functions {φn}Nn=1 in Eq. 3.7 can be written

as:

L =

N
∑

n=1

Lnφn(x;M), x ∈ ΩT , (5.16)

where Ln = L(Pn) represents the value of the probability map at node Pn of the non-uniform

meshM. Using the above, the finite dimensional approximation of the data term ED in Eq. 5.10 is

obtained as:

ED({Ln}Nn=1; IT , IS ,D) =
1

2

∫

ΩT

||
N
∑

n=1

Lnφn(x)− λ̄(x;D)||2 dx, (5.17)

Thus, following the unified FEM-based minimization framework in Section 4.1, the goal of the vari-

ational formulation of discrete registration is to find the optimal nodal probability map parameters
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{L∗
n}Nn=1 such that the data term ED is minimized while ensuring the smoothness of the defor-

mation field using the diffusion-based regularization term Ediff
R . However, as the data term ED in

Eq. 5.17 is convex, the iterative demons-like scheme in Algorithm 3, Section 4.1.2 becomes re-

dundant and hence only the variational-like scheme in Algorithm 2, Section 4.1.1 is relevant in this

case. Further, as the data term ED in Eq. 5.17 is not only convex but also quadratic in terms of

{Ln}Nn=1, the set of equations in Eq. 4.6 resulting from the variation-like scheme are linear. This

is in contrast to the continuous deformable registration and template-based segmentation cases dis-

cussed in Section 4.2 and Section 4.3 respectively, where a set of non-linear equations arise. The

forces ψ(x; {Ln}Nn=1, IT , IS) and weights {ρn(x)}Nn=1 corresponding to the data term in Eq. 5.17

are given as:

ψ(x; {Ln}Nn=1, IT , IS) =

N
∑

n=1

Lnφn(x)− λ̄(x;D),

ρn(x) = φn(x), n ∈ {1, 2, . . . , N}. (5.18)

After the system of linear equations in Eq. 4.6 is solved to obtain the optimal nodal probabilities

{L∗
n}Nn=1, L∗

n = [L∗k
n ]Kk=1, the optimal probabilities L∗(x) = [L∗k(x)]Kk=1 at any spatial location

x ∈ ΩT can found through interpolation of the optimal nodal probabilities {L∗
n}Nn=1 based on the

finite element approximation in Eq. 5.16. Then, the estimated deformation field U(x) at x ∈ ΩT is

obtained by choosing the deformation value dk with the highest optimal probability at that spatial

location, i.e., U(x) = dk where k = argmax
r∈{1,2,...,K}

L∗r(x).

5.5 Experiments

The proposed FEM-based variational discrete registration method was evaluated on real and syn-

thetic medical images. The proposed FEM-based discrete method was implemented in a multi-

resolution framework with 4 levels. The range of deformations used in each of the 4 levels were

as follows: [0,±0.125, . . . ,±0.5]ν , [0,±0.25, . . . ,±1.0]ν, [0,±0.5 , . . . ,±1.5]ν , [0,±1.0]ν, where

ν = 2 or 3. Further, β = 1.0 was fixed. In the following, two experiments were performed. The goal

of the first experiment was to determine the right type of diffusivity to be used with the proposed

FEM-based discrete registration method. After the diffusivity model was chosen, in the second

experiment the proposed FEM-based discrete registration method was compared with the random

walker (RW) based discrete registration method [28]. In the experiments below, the 2D synthetic

MRI, the 3D real CT and the 3D real MRI data sets previously described in Section 4.2.3 were con-

sidered (see Figure 4.6 and Figure 4.7). Again, in order to ensure reasonable completion times of

the experiments, only the synthetic 2D synthetic MRI data set was used in the RW-based registration

comparison experiment . However, all the three data sets were used for the initial diffusivity model

comparison experiment. The image-adaptive meshing strategy described in Section 3.4 was used to

generate the non-uniform mesh on the template image. The proposed method was coded in MAT-
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Source homogeneuous Perona-Malik Nagel

before isotropic isotropic anisotropic

regis. diffusivity diffusivity diffusivity

Synth. CT MRI Synth. CT MRI Synth. CT MRI Synth. CT MRI

2D 3D 3D 2D 3D 3D 2D 3D 3D 2D 3D 3D

Case SSDE TRE Jacc. SSDE AAE TRE Jacc. SSDE AAE TRE Jacc. SSDE AAE TRE Jacc.

1 5589.95 3.89 35.81 270.73 15.88 1.34 50.95 223.49 13.67 1.40 51.12 206.12 13.27 1.50 51.32

2 4599.06 4.34 47.18 142.89 6.55 1.41 55.02 130.08 6.92 1.48 55.46 132.38 7.10 1.72 54.21

3 5681.54 6.94 41.46 76.33 5.62 2.28 51.73 72.04 6.41 2.31 51.72 73.88 6.66 2.35 51.44

4 4582.57 9.83 38.68 98.87 8.43 2.67 53.81 88.30 8.22 2.75 53.97 94.87 8.99 3.03 53.93

5 5678.33 7.48 32.60 77.94 4.84 2.76 53.24 73.36 4.80 2.52 53.63 77.52 5.61 2.72 53.50

Mean 5226.29 6.50 39.15 133.35 8.26 2.09 52.95 117.45 8.00 2.09 53.18 116.95 8.33 2.27 52.88

Std. 581.30 4.83 13.73 81.35 4.47 2.24 9.44 63.76 3.39 2.33 9.63 54.97 3.02 2.53 9.76

Table 5.1: Comparative results obtained by the FEM-based variational discrete registration method

with the different diffusivity models on the synthetic 2D MRI (with γ = 5), the real 3D MRI

(with γ = 20) and the real 3D CT (with γ = 10) datasets. Here, the sum of squared differences

error (SSDE), average angular error (AAE) in degrees, Jaccard overlap score (%) and the target

registration error (TRE) in millimeters are reported.

LAB using the MEX facility. All the experiments below were run on an Intel i7 3.60 GHz machine

with 64GB RAM.

5.5.1 Diffusivity models comparison

The first model considered was the simple homogeneous isotropic diffusivity. Next, the Perona-

Malik diffusivity [82] which was inhomogeneous but still isotropic was chosen. Lastly, the Nagel

diffusivity [76] which was not only inhomogeneous but also anisotropic was considered. The imple-

mentations using the different diffusivity models were tested on the three data sets mentioned earlier.

On the 2D synthetic MRI data set the registration accuracy was evaluated using the sum of squared

differences error (SSDE) and the average angular error (AAE) measures. In order to evaluate the

registration accuracy on the 3D MRI data set, the 56 manual anatomical labels defined in the source

image were mapped onto the template using the estimated deformation field. The Jaccard overlap

measure was computed between the warped source labels and the template labels. For the 3D real

CT data set, registration accuracy was evaluated by propagating the 300 manual landmark positions

in the inhale phase image to the exhale phase image using the estimated deformation fields. The

target registration error (TRE) measure was computed between the warped and the actual landmark

locations. The TRE measure is the Euclidean distance in millimeters (mm). In Table 5.1 the regis-

tration results corresponding to the three different diffusivity models are shown and a sample visual

result is shown in Figure 5.1 and Figure 5.2. It can be seen that the Perona-Malik inhomogeneous

diffusivity performs considerably better that the basic homogeneous model on the 2D synthetic MRI

and 3D real MRI data sets and obtains identical results on the 3D CT data set. Further, it can be

observed that the use of the more complex Nagel anisotropic diffusivity model does not improve

the results. In fact a decrease in the registration accuracy is exhibited across all the three different

data sets. Therefore, the Perona-Malik diffusivity is chosen for the implementation of the proposed
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Before FEM-based variational Random walker (RW) based

regis. discrete registration discrete registration [28]

No. SSDE SSDE AAE DOF Time SSDE AAE DOF Time

1 5589.95 223.49 13.67 12184 0.11 156.75 13.80 331588 2.52

2 4599.06 130.08 6.92 10624 0.07 101.13 7.01 331588 2.58

3 5681.54 72.04 6.41 11140 0.08 57.42 5.60 331588 2.88

4 4582.57 88.30 8.22 11276 0.12 64.47 8.12 331588 2.84

5 5678.33 73.36 4.80 11582 0.10 58.91 4.59 331588 2.73

Mean 5226.29 117.45 8.00 11361 0.10 87.74 7.82 331588 2.71

Std. 581.30 63.76 3.39 576 0.02 42.53 3.60 0 0.16

Table 5.2: Comparison between the proposed FEM-based variational discrete registration method

(with γ = 5) with the Perona-Malik diffusivity and the random walker (RW) based discrete reg-

istration method on the synthetic 2D MRI dataset. Here, the sum of squared intensity errors error

(SSDE), average angular error (AAE) in degrees, computational times in seconds and the number of

degrees of freedom (DOF) are reported.

FEM-based discrete registration method.

5.5.2 Comparison with random walker (RW) based discrete registration

In this section, the better performance of the proposed FEM-based variational discrete registration

method compared to the random walker (RW) based discrete registration method [28] was empiri-

cally demonstrated. In Table 5.2, the comparative results obtained using the proposed FEM-based

discrete registration method and the RW-based discrete registration method on the synthetic 2D

MRI data set are shown. The FEM-based discrete registration method was implemented using the

Perona-Malik diffusivity model. The RW-based registration method uses a uniform mesh, while the

proposed FEM-based discrete registration method employs a non-uniform mesh well adapted to the

image features. The number of DOF associated with a mesh was given as twice the number of nodes

in the mesh. Further, the computational time reported in Table 5.2 corresponds to the time taken

for solving the equation system in Eq. 4.6 for the proposed FEM-based discrete registration method

and it corresponds to the time required to solve the equation system in Eq. 5.8 for the RW-based

discrete registration method. Based on the low mean SSDE and AAE values, it can be inferred that,

both the FEM-based discrete registration method and the RW-based discrete registration method

were successful in recovering the ground truth deformation fields. Further, both the methods exhibit

similar spatial distribution of registration accuracy as can be seen from the plots of the recovered

deformation fields in Figure 5.3. However, the proposed FEM-based discrete registration method

entailed a significantly lower computational effort (∼ 30 times lower DOF and ∼ 30 times faster)

when compared to the RW-based registration method.

The reader is referred to Chapter 6 for a more extensive evaluation of the proposed FEM-based

discrete registration method in comparison to other popular deformable registration methods on

benchmark medical image data sets.
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5.6 Discussion

We developed a computationally efficient FEM-based discrete deformable registration method using

the squared differences similarity measure and diffusion-based regularization. A salient aspect of

the proposed method was the use of an image-adaptive discretization of the problem domain. This

resulted in the proposed method being multiple orders of magnitude faster than the existing random

walker (RW) based discrete registration method that was implemented using a uniform mesh.

There is a definite scope to improve the proposed FEM-based variational discrete registration

method. In the future, the following aspects require further investigation:

• A drawback of the proposed method is that the estimated deformation field is not diffeomor-

phic. This is mainly due to the fact that the deformation field is not explicitly regularized

and the regularization is only implicit through the smoothing of prior probability maps. An

obvious solution would be to explore the use of an additional regularization step that would

yield diffeomorphic deformation fields. Another promising idea is to employ an incremental

approach, where small diffeomorphic steps taken at each iteration are composed together to

obtain the final diffeomorphic deformation field.

• In this work, the squared differences similarity measure was considered, which is only useful

for mono-modality registration tasks. A desirable extension would be the use of more complex

similarity measures for multi-modality registration. As the proposed method does not involve

taking gradient of the similarity measure, the incorporation of any other similarity measures

into our method would be straightforward.

• Interesting insights are gained by drawing a parallel between our proposed method and the

optic flow methods using the block matching algorithm (BMA) [43], [139]. Firstly, like our

proposed method, the BMA-based optic flow methods also use a discrete space of possible

deformation values. Furthermore, akin to our proposed method the BMA-based optic flow

methods do not minimize a formal global energy for the deformation field estimation. In-

stead, they perform a brute-force search to find the deformation value that leads to the highest

similarity map value (computed over block neighborhood) at each spatial location. However,

as opposed to the BMA-based optic flow methods, our proposed method employs smoothed

similarity maps obtained through diffusion-based regularization that implicitly lead to smooth

deformation fields. In light of these observations the applicability of our proposed method for

the computation of optic flow between images can be examined.
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Chapter 6

Comparison with popular

registration methods on benchmark

datasets

In this chapter, the utility of the proposed FEM-based continuous and discrete deformable registra-

tion methods for practical medical image registration tasks is evaluated using benchmark datasets.

The FEM-based continuous registration method (FEM-CONT) was developed in Section 4.2 and

the FEM-based discrete registration method (FEM-DISC) was introduced in Section 5.4. Here, both

the proposed methods were tested on two publicly available datasets; the POPI-model chest 4D CT

dataset [120] that has a set of manually annotated landmarks available and the CUMC12 brain MRI

database [1] that has various anatomical regions labeled by an expert.

The following settings were used in the implementation of the FEM-CONT and FEM-DISC

registration methods:

• FEM-CONT: The Lagrange basis parametrization was employed along with the variational-

like minimization strategy with an additive update. A multi-resolution strategy with 4 levels

was chosen. The Perona-Malik diffusivity model [82] was chosen. The regularization param-

eter was fixed as γ = 0.1. The non-uniform mesh generated using the procedure described in

Section 3.4.

• FEM-DISC: The Perona-Malik diffusivity model [82] was used and β = 1.0 was set. The

regularization parameters were chosen as γ = 10 and γ = 200 for evaluation on the POPI-

model and CUMC12 datasets respectively. The FEM-DISC method used a multi-resolution

pyramid with 4 levels. The range of deformations used in each of the 4 levels were as follows:

[0,±0.125, . . . ,±0.5]3, [0,±0.25, . . . ,±1.0]3, [0,±0.5 , . . . ,±1.5]3, [0,±1.0]3. Again, the

non-uniform mesh generation strategy in Section 3.4 was followed.

The FEM-CONT and FEM-DISC methods were coded in MATLAB using the MEX facility. All the

experiments were run on an Intel i7 3.50 GHz machine with 32GB RAM.
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Figure 6.1: A coronal 2D slice of the end-inhalation phase image (which is used as the template)

from the POPI-model 4D dataset is shown with the projected manually annotated landmarks.

6.1 Validation on the POPI-model chest 4D CT dataset

The POPI-model chest 4D CT dataset [120] consisted of ten 3D CT volumes representing ten dif-

ferent phases of one breathing cycle. Each of the volumes had been acquired at resolution of

360 × 482 × 141 with a voxel spacing of 0.98mm × 0.98mm × 2.0mm. Further, in the lung re-

gion of these ten breathing phases, 37 manually annotated corresponding landmarks were provided

(see Figure 6.1). The image corresponding to the end-inhalation phase of the breathing cycle was

chosen as the template and the remaining 9 breathing phase images were registered to it using the

FEM-CONT and FEM-DISC registration methods respectively. The overall computational time for

each registration using the FEM-CONT method was 28 minutes from which 7 minutes were taken

for solving the equation system in Eq. 4.11. For the FEM-DISC registration method, the overall

run-time for each registration was about 18 minutes of which 3 minutes were taken for solving the

equation system in Eq. 4.6. In order to evaluate the registration accuracy, the landmark positions in

the template image was propagated to the other breathing phase images using the estimated defor-

mation fields. The target registration error (TRE) measure was computed between the warped and

the actual landmark locations. The TRE measure is the Euclidean distance in millimeters (mm).

In Table 6.1, the mean and standard deviation of the TREs obtained by the FEM-CONT and FEM-

DISC methods over all the phases and landmarks is shown. In addition, the mean of the upper 10%

quantile (MU10) statistic, which is more robust to outliers than the maximum value is also reported.

Kabus et al. [57] reported the mean, standard deviation and MU10 of the TREs obtained by 6 other

existing deformable registration methods on the POPI-model dataset. Further, sample visual results

obtained by FEM-CONT and FEM-DISC are shown in Figure 6.2. It can be seen that the FEM-

CONT and FEM-DISC registration methods rank 3rd and 7th among the 8 methods listed in Table

6.1 based on the mean TRE values.
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Method TRE

before registration 3.68 ± 2.97 (9.6)

elsatix [63] 0.96 ± 0.56 (2.1)

DROP [45] 0.98 ± 0.56 (2.2)

FEIR [57] 1.05 ± 0.57 (2.2)

FEM-CONT 1.05 ± 0.58 (2.3)

POPI-par [34] 1.07 ± 0.56 (2.2)

MBS [124] 1.11 ± 0.65 (2.5)

FEM-DISC 1.13 ± 0.74 (2.7)

POPI-nonpar [103] 1.28 ± 0.42 (2.1)

Table 6.1: Results on the POPI-model lung 4D CT dataset. Target registration errors (TREs) for the

various deformable registration methods. Except for the FEM-CONT and FEM-DISC registration

methods, the results corresponding to all the other methods were taken from Kabus et al. [57]. Here,

the mean ± standard deviation (MU10) of the TREs over all phases and landmarks are reported.
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Figure 6.2: A sample visual result (for the 4th breathing phase) on the POPI-model lung 4D CT

dataset. Here, the estimated (red) and actual (green) deformation vectors at each of the landmark

points are depicted.
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Figure 6.3: The axial, saggital and coronal 2D slices of a sample brain from the CUMC12 dataset

are shown with the various manually labeled anatomical regions (image was taken from Klein et al.

[62]).

6.2 Validation on the CUMC12 MRI database

The CUMC12 dataset [1] consisted of 3D brain MRI scans from 12 subjects (6 male and 6 female)

taken at 256 × 256 × 124 resolution with a 0.86mm × 0.86mm × 1.5mm voxel spacing. Manual

segmentations of 128 anatomical regions were provided for each of these images (see Figure 6.3).

These images were first aligned with a MNI152 atlas (181 × 217 × 181 resolution and 1.0mm ×
1.0mm× 1.0mm voxel spacing) [46] using a 9-parameter linear registration. Then, 12× 12− 12 =

132 pair-wise registrations were performed between the images using the proposed FEM-CONT and

FEM-DISC registration methods respectively. The overall computational time for each registration

using the FEM-CONT method was 19 minutes from which 11 minutes were taken for solving the

equation system in Eq. 4.11. For the FEM-DISC registration method, the overall run-time for each

registration was about 10 minutes of which 4 minutes were taken for solving the equation system in

Eq. 4.6. For evaluating registration accuracy, anatomical labels on the source image were mapped

to the template using the estimated deformation field. The Jaccard overlap measure was computed

between the warped source labels and the template labels. In Figure 6.4, the Jaccard scores obtained

by averaged over 128 anatomical regions and 132 pair-wise registrations using the proposed FEM-

CONT and FEM-DISC methods is reported. Klein et al. [62] reported average Jaccard scores

obtained by 14 popular deformable registration methods on the CUMC12 dataset. It can be seen

that the FEM-CONT and FEM-DISC methods rank 4th and 6th among the 16 methods listed in

Figure 6.4. Further, sample visual results obtained by FEM-CONT and FEM-DISC are shown in
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Figure 6.4: Results on the CUMC12 MRI brain database. Average Jaccard scores (over 132 pair-

wise registrations and 128 anatomical regions) for the various deformable registration methods are

shown. Except for the proposed FEM-CONT and FEM-DISC registration methods the results cor-

responding to all the other methods were taken from Klein et al. [62].

Figure 6.5.

6.3 Discussion

The proposed FEM-CONT and FEM-DISC methods were demonstrated to be practically useful

for real world medical image registration tasks based on the feasible computation times and good

registration accuracies reported in Section 6.1 and Section 6.2. Even though the FEM-DISC method

was faster than the FEM-CONT method, the FEM-CONT method achieved significantly greater

registration accuracies. In fact, the performance of the FEM-CONT method was close to the top

ranking registration methods in both the POPI-4D and CUMC12 cases. In summary, the FEM-

CONT method can be readily employed for practical medical image registration tasks, whereas

further research needs to done to improve the registration accuracies obtained using the FEM-DISC

method.

92



Before registration FEM-CONT FEM-DISC

H
ip

p
o
ca

m
p
u
s

T
h
al

am
u
s

C
au

d
at

e
P

u
ta

m
en

Figure 6.5: A sample visual result (registration of patient 7 to patient 9) on the CUMC12 MRI

brain database using the FEM-CONT and FEM-DISC registration methods. Here, the segmentation

surfaces corresponding to 4 different subcortical structures (hippocampus, thalamus, caudate and

putamen) mapped from the source image onto the template image before and after registration are

shown. The color denotes the deviation between the warped source segmentation surface and the

template segmentation surface. The deviation is computed as the Hausdorff distance between the

two surfaces.
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Chapter 7

FEM-based segmentation of muscle

and fat tissues from thoracic CT

images

In this chapter, a particular medical imaging application of the unified FEM-based image registration

and segmentation framework introduced earlier in Chapter 4 is presented. A completely automatic

segmentation pipeline is developed for the estimation of muscle and fat tissue proportions from tho-

racic computed tomography (CT) images. The novel aspect of the proposed segmentation method-

ology is the use of a statistical deformation model (SDM) to incorporate a priori shape knowledge

learned from training data into the unified FEM-based registration and segmentation framework.

Further, a study of the relationship between the patient survival data and the cross-sectional area

estimates of muscle tissue computed using the proposed automatic segmentation framework is also

presented.

7.1 Introduction

Body composition, i.e., the proportion of fat and muscle tissues in the human body is related to the

risk factors associated with a host of medical conditions such as growth failure in children, obesity,

cachexia syndromes (in chronic disease of lung, liver, heart or kidney), malnutrition, lipodystropy,

metabolic syndrome and frailty. In particular, body composition has important implications for

cancer patients. It has been found that the presence of a relatively high body fat content makes

the patients more vulnerable to the onset or recurrence of several types of cancers. On the other

hand, sarcopenia, a wasting syndrome which involves the loss of muscle tissues has been correlated

with poor response to chemotherapy treatment and reduction in overall survival of the patients. The

muscle and fat tissues are target locations for the water- and fat-soluble drugs respectively used

for cancer treatment. Consequently, the proportions of these tissues are believed to determine the

chemotherapy toxicity and efficacy. Similarly, in patients suffering from diabetes, body composition

has been linked with metabolic alteration such as insulin resistance. Therefore, it is of considerable
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(a) Original CT (b) Manual segmentation (c) Thresholded segmentation

Figure 7.1: Illustration of the challenges in thoracic CT segmentation. (a) 1 denotes the heart, 2
denotes the T4 vertebra, 3 denotes scapula (shoulder blades), 4 denotes ribs and 5 denotes lungs. (b)-

(c) Muscle tissue (red), fat tissue (blue) and thoracic cavity (green). It can be seen that segmentation

solely based on thresholding the muscle and fat HU ranges results in a lot of errors due to the

significant overlap of intensities between the muscle tissues and neighboring organs in the thoracic

cavity.

interest to understand the complex relationships between body composition and the various health

ailments.

Revolutionary advances in body composition research were brought about by the introduction of

computed tomography (CT) imaging technique, which has a very high precision and specificity for

different tissues in the human body [10], [95]. In body composition studies using CT images, 2D

cross-sectional images acquired at specific skeletal landmarks are commonly used instead of whole

body 3D scans. This is because the proportion of muscle and fat tissues at these specific skeletal

landmarks correlates well with the whole body muscle volume and the whole body fat volume [108],

[73]. Further, this localized image acquisition also prevents the patients from unnecessary radiation

exposure. In current practice, abdominal and thoracic 2D CT images taken at the 3rd lumbar vertebra

(L3) and the 4th thoracic vertebra (T4) respectively have been widely used for body composition

analysis [85], [86]. These studies rely on the manual segmentation of muscle and fat tissue regions

from CT images using pre-defined windows of Hounsfeld units (HU, units of radiation attenuation)

for each tissue. However, the manual segmentation of large databases of CT images used in these

studies is not practical and hence automatic segmentation methods are needed.

The segmentation of the fat region from CT images using automatic methods [137], [138] is

relatively straightforward due to the unique HU range of the fat tissue [−190 − 30]. But, the

automatic segmentation of the muscle region is quite challenging as there exists a significant overlap

between the HU ranges of the muscle tissue [−29 150] and surrounding organs (see Figure 7.1).

Very few works exist on muscle segmentation from CT images [58], [59]. Moreover, these works

only consider the segmentation of a specific muscle group as opposed to the segmentation of the

total muscle region captured in the image. Recently, Chung et al. [27] addressed the segmentation

of whole muscle and fat regions from abdominal CT images with great success. In their work, the

difficult step of segmenting the muscle region was achieved by taking advantage of the well defined

muscle shape present in abdominal CT images using a shape prior based segmentation method. But,

this approach cannot be used for the segmentation of muscle regions in thoracic CT images as in the
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thoracic CT images the shape of the muscle does not conform to a specific class of shapes. However,

in thoracic CT images, the thoracic cavity containing the lungs, ribs and other organs (see Figure 7.1)

exhibits a consistent shape across the patient population, modulo the inter-patient variation and the

variability in the manual identification of the T4 vertebrae. Hence, a priori shape knowledge about

the thoracic cavity’s shape can be used to disambiguate the muscle tissue from the other organs in

the thoracic cavity that have overlapping intensities. Based on this idea, an automatic segmentation

framework is proposed for thoracic CT images, where the thoracic cavity is first segmented using

a shape prior model learned from training data and then the muscle and fat regions are obtained by

thresholding the rest of the image using their respective HU ranges.

The proposed segmentation framework takes a template-based approach, where a binary tem-

plate defining an initial shape is deformed via deformable registration to match the region of interest

(ROI) in the input image. This corresponds to a template-based representation of the segmentation

boundary as shown in Figure 2.4, where the desired segmentation boundary is implicitly defined by

the contour of the initial shape and the deformation field estimated between the template and the

input image. Existing works on template-based segmentation either use a non-parametric represen-

tation of the deformation field [102], [65] or parametrize the deformation field using B-spline basis

functions [55], [67] on a uniform discretization of the image domain. As highlighted before in Sec-

tion 4.3, the use of a uniform discretization is inefficient in the case of template-based segmentation.

This is because, it leads to the computation of the deformation field with the same accuracy every-

where even though detailed deformations are only needed along the contours of the ROI. Therefore,

in the proposed framework, following the FEM-based deformable registration methodology dis-

cussed in Section 4.2, the deformation field is efficiently parametrized using the Lagrange basis

functions (see Eq. 3.3) on a non-uniform mesh well adapted to the contours of the initial shape in

the template. Further, in order to better capture the shape variations of the thoracic cavity, a shape

prior based on a statistical deformation model (SDM) is constructed from a set of training shapes

which are encoded as deformations of a non-uniform mesh. The FEM-based deformable registration

methodology is then extended using the SDM to perform a shape prior constrained segmentation of

the thoracic cavity.

7.2 Related work

In this section, the relevant literature on the segmentation of muscle and/or fat tissues from medical

images is briefly reviewed. Further, as the template-based shape modeling approach is used for

image segmentation in this work, a short survey of the current works on statistical deformation

model (SDM) based shape prior segmentation is also presented.

As mentioned before, owing to the distinct HU range of the fat tissues, CT images are a natural

choice for the estimation of fat content in the human body [137], [138]. However, there have been

efforts to delineate fat tissue regions from magnetic resonance images (MRI) as well, using user-
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defined thresholds [48], [71] or automatic image-adaptive thresholding techniques [64], [74]. We

note that these works additionally sub-segment the fat region into subcutaneous fat tissue (SFT) and

visceral fat tissue (VFT) respectively.

The general focus of the existing works on muscle segmentation has been to extract a specific

group of muscles from whole body CT or MRI scans using statistical shape models. Kamiya et al.

devised a rule-based expert system for the segmentation of the psoas major [58] and rectus abdomi-

nis [59] muscles from CT images, where the muscle shape was approximated by a simple quadratic

function. A more elaborate representation of the muscle shape can be considered through the use

of a point distribution model (PDM) constructed from a set of training shapes with manually anno-

tated landmark correspondences. Such PDMs have been employed for providing shape information

during the Markov random field (MRF) based segmentation of the calf muscle [125] and the snake

based segmentation of the quadratus lumborum muscle [37] from MRI images. Alternatively, in [5]

an isometric log-ratio (ILR) space embedding of the muscle shape was employed for the segmenta-

tion of extensor and flexor muscles from MRI images via a convex energy minimization framework.

The popular approach for the construction of shape prior models has been to use the level set

embedding functions (see Figure 2.4) for representing the shape of the region of interest (ROI)

[66], [96], [118], [97], [32], [97]. Alternatively, Rueckert et al. [100] introduced the idea of using

shape priors based on a statistical deformation model (SDM), where the general shape of the ROI

is represented using a binary template image and then the shape variations are defined using a set

of deformation fields which are obtained by the deformable registration of each of the binary train-

ing shapes to the template image. The two important choices in the construction of a SDM are the

parametrization of the deformation field and the statistical model to compactly encode shape varia-

tions (given by the deformation fields) in the training data. Originally, Rueckert et al. [100] used the

B-spline basis parametrization on a uniform mesh and employed the multivariate Gaussian proba-

bility density to model the mesh deformations in the training data. Such a B-spline based Gaussian

SDM has been used for general shape prior constrained segmentation in [54]. In fact, the above

mentioned work by Chung et al. [27] on muscle segmentation from abdominal images also uses

the B-spline based Gaussian SDM approach. However, these works used the principal component

analysis (PCA) to encode only the major modes of shape variations in the training data. Albrecht

et al. [2] extended the Gaussian-PCA SDM to span a wider range of shape variations through the

use of an augmented covariance matrix while employing a non-parametric representation of the de-

formation field. As an alternative to the simple Gaussian density, the more general Parzen or kernel

density has been explored for the construction of a SDM using the B-spline parametrization [116].

More recently, Glocker et al. [44] proposed a MRF-based statistical modeling framework that takes

advantage of the dependencies between the B-spline mesh deformations to obtain a more compact

SDM without compromising its ability to capture the wide range of shape variations present in the

training data.
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In the proposed segmentation framework, as opposed to above discussed B-spline based SDMs

[100], [54], [27], [116], [44], a SDM is constructed using the Lagrange basis parametrization of

the deformation field on a non-uniform mesh . The nodal deformations of the non-uniform mesh

obtained from the training data are compactly encoded following the augmented Gaussian-PCA

approach proposed in [2].

7.3 Segmentation via FEM-based deformable registration with

a Gaussian SDM

This section presents the theory behind the central aspect of the proposed CT image segmentation

framework, which is the segmentation of the thoracic cavity using a SDM based shape prior.

7.3.1 FEM-based deformable registration

For the reader’s convenience, we briefly review the description of the particular FEM-based de-

formable registration methodology proposed earlier in Section 4.2. Given input I : Ω → R and

template IT : ΩT → R images, where Ω,ΩT ⊂ R
ν , ν = 2 or 3, the task of deformable registration

is to find a dense deformation field U : ΩT → R
ν such that the input image warped using the

deformation field, I(x + U(x)) is similar to the template image IT . In a FEM-based framework,

the deformation field U is approximated as a linear combination of a set of nodal basis functions

{φn}Nn=1 on the uniform or non-uniform meshM:

U(x) =

N
∑

n=1

Unφn(x;M), ∀x ∈ ΩT . (7.1)

Following the variational-like approach discussed in Section 4.1.1, the deformable registration task

is transformed into finding the unknown nodal deformation field parameters Θ = [Un]
N
n=1 ∈ R

Nν

through the finite-dimensional multivariate minimization of an energy:

Θ∗ = argmin
Θ∈RNν

ED(Θ; IT , I) + γRE
diff
R (Θ), (7.2)

where γR is the regularization constant and the sum of squared differences (SSD) data term ED in

Eq. 4.20 and the diffusion-based regularization term in Eq. 4.3 are given as:

ED(Θ; IT , I) =
1

2

∫

ΩT

(I(x+

N
∑

n=1

Unφn)− IT (x))2 dx,

Ediff
R (Θ) =

1

2

ν
∑

k=1

N
∑

n=1

Ukn

N
∑

m=1

Ukm

∫

ΩT

∇φTn∇φm dx, (7.3)

where Un = [Ukn]
ν
k=1. Note that, in the above a homogeneous isotropic diffusivity modelW (x) =

1.0 has been assumed.
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7.3.2 Segmentation via FEM-based registration

The above described FEM-based deformable registration methodology can be readily used for the

template-based segmentation of binary input images I : ΩT → {0, 1} which are considered in the

context of thoracic cavity segmentation from CT images (see Figure 7.3). For this purpose, a binary

image IT : ΩT → {0, 1} defining an initial shape of the region of interest (ROI) is chosen as the

template. This template is then deformed through the energy minimization in Eq. 7.2 and the final

segmentation label I∗ : Ω → {0, 1} is given by inverse warping the template using the optimal

nodal deformation parameters Θ∗ = [U∗
n]

N
n=1 as:

I∗(x) = IT (x−
N
∑

n=1

U∗
nφn) ∀x ∈ Ω. (7.4)

Different types of nodal basis functions, namely, the Lagrange, the cubic B-spline and the multi-

linear basis functions described in Section 3.3 can be used for the parameterization of the deforma-

tion field in Eq. 7.1. However, in the proposed segmentation approach, the Lagrange basis functions

which are defined on a non-uniform mesh well adapted to the contours of the ROI in the template

are used. The computational advantage in using the Lagrange basis parametrization as opposed

to the uniform mesh based B-spline and multi-linear basis parametrizations has been empirically

demonstrated before in Section 4.2.3 and Section 4.3.3. Note that, the above described segmentation

approach is only valid for binary input images. This is in contrast to the more general FEM-based

template-based segmentation methodology discussed in Section 4.3 where a region-based data term

was used instead of the SSD data term in Eq. 7.3.

7.3.3 Gaussian statistical deformation model

Assume that a set of M nodal deformation field parameters {Θ(m) = [U
(m)
n ]Nn=1}Mm=1 are ob-

tained by registering M training images {I(m) : Ω → R}Mm=1 to a template image IT , using the

FEM-based deformable registration method. For introducing a priori shape knowledge into com-

ing registration tasks, a statistical deformation model (SDM) is now constructed from these nodal

deformation field parameters {Θ(m)}Mm=1. Following [2], the space of deformation parameters is

modeled using a multivariate Gaussian densityN (Θ,ΣΘ), with a sample mean Θ and a Nν ×Nν
sample covariance matrix ΣΘ. Further, the dominant modes of shape variation are computed using

principal component analysis (PCA) and they are used to devise an additional shape-based regular-

ization term as follows:

EPCA
S (Θ) = ||B (Θ−Θ)||2 + 1

2(̺σ2
0)
||Θ−Θ||2, (7.5)

B = diag(η1 . . . ηK)[B1 . . . BK ]T,

Σ
Θ

= (1− ̺)ΣΘ + ̺σ2
0IdNν ,

η2k = ((1− ̺)σ2
k + ̺σ2

0)
−1 − (̺σ2

0)
−1,
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Figure 7.2: Overview of the proposed muscle and fat segmentation framework

where {Bk}Kk=1 is the PCA basis corresponding to the augmented covariance matrix Σ
Θ

. Here, σ2
k

are the eigen values of the matrix ΣΘ and ̺, σ0 are constants. The above regularizer can be seen as

imposing a shape prior on the deformation fields by penalizing deviations from the Gaussian SDM as

opposed to strictly restricting the deformation fields to the span of the PCA basis. Incorporating the

shape-based regularizer into Eq. 7.2, the following statistically constrained FEM-based deformable

registration formulation is obtained:

Θ∗ = argmin
Θ∈RNν

ED(Θ; IT , I) + γRE
diff
R (Θ) + γSE

PCA
S (Θ), (7.6)

where γR, γS are regularization constants. Here, it is more efficient to perform the energy minimiza-

tion using an explicit line search based gradient-descent strategy as opposed to the semi-implicit

scheme described in Algorithm 2, Section 4.1.1. This is because the gradient of the shape-based

term ∇EPCA
S (Θ) yields a very large non-sparse system of equations at every iteration correspond-

ing to step 6 in Algorithm 2, that would require a large computational time to solve. The line search

based gradient descent strategy is given as:

Θ(k+1) = Θ(k) − τ(∇ED(Θ(k); IT , I) + γR∇Ediff
R (Θ(k)) + γS∇EPCA

S (Θ(k))), (7.7)

where∇ ≡ ∇Θ and τ is the time step determined using line search.

7.4 Framework for automatic segmentation of muscle and fat

tissues

The main idea of our segmentation framework is to first determine the thoracic cavity (see Fig-

ure 7.1b) in an input CT image through shape prior based segmentation using the FEM-based de-

formable registration with a Gaussian SDM presented in the section 7.3. Then, the muscle and fat
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(a) (b) (c)
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Figure 7.3: (a) Input image I (b) Thresholded input image BI initialized with mean shape L (green

contour) (c) BI with final estimated thoracic cavity shape L∗ (green contour) (d) Mean shape L (e)

Initial FEM mesh on L (f) Deformed FEM mesh on estimated thoracic cavity shape L∗

regions are segmented by thresholding the points in the input CT image that do not belong to the

thoracic cavity using the pre-defined HU ranges of muscle and fat tissues respectively. But, before

these segmentation steps are performed, a shape prior of the thoracic cavity shape is constructed

from training data which involves the computation of a mean shape and encoding the deviations

from the mean shape using a Gaussian SDM. The proposed segmentation framework is depicted in

Figure 7.2 and we describe its various components in detail below:

1. Computation of thoracic cavity mean shape: Given a training set of binary thoracic cavity

shapes {L(m) : Ω → {0, 1}}Mm=1, the backward approach [49] for mean shape computation is

followed. In this approach, L(1) is arbitrarily (without loss of generality) chosen as the reference

shape and all the other training shapes {L(m)}Mm=2 are non-rigidly registered (after an initial affine

alignment) to L(1) using the FEM-based deformable registration method (see section 7.3.1). The

unbiased mean thoracic cavity shape L (see Figure 7.3d) is obtained by warping back the average of

the registered training shapes using the inverse of the average deformation field.

2. Building a SDM of thoracic cavity shape: The possible variations of the thoracic cavity

shape are represented by the set of nodal deformation field parameters {Θ(m)}Mm=1 that are esti-

mated through the FEM-based deformable registration (after an initial affine alignment) of the train-

ing shapes {L(m)}Mm=1 with the mean shape L. A Gaussian SDM is built to compactly encode these

shape variations and the corresponding PCA-based regularizerEPCA
S (see Eq. 7.5) is formulated for

enforcing shape prior constraints in the next step.

3. Segmentation via SDM constrained FEM-based registration: The segmentation of the

thoracic cavity in the input image I is performed on a binary thresholded version of the input image

BI : Ω → {0, 1}, which is obtained by setting the points in the input image that lie outside the

HU ranges of muscle and fat tissues to 1. In order to initialize the segmentation, the mean shape
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Tissue Jaccard (%)

Thresholding Proposed framework

Muscle 86.82 ± 5.31 94.95± 2.10

Fat 87.51 ± 8.74 94.82± 5.05

Table 7.1: Comparison of Jaccard scores obtained by thresholding-based segmentation and the pro-

posed FEM-based segmentation framework with a SDM on 116 CT images. All values are reported

as mean ± SD

Tissue Area (cm2) Raw diff. Diff. COV. Jaccard

Manual Automatic (cm2) (%) (%) (%)

Muscle 197.8 ± 44.7 199± 45.2 1.3± 6.0 0.6± 2.9 1.39 ± 1.58 94.95± 2.10

Fat 168.1 ± 84.4 172.5± 90 4.4± 8.4 0.7± 5.6 2.57 ± 3.03 94.82± 5.05

Table 7.2: Comparison of manual and automatic segmentation of thoracic CT images (n = 116).

All values are reported as mean ± SD. Raw difference = (automated− manual).

L is affinely-aligned with the thresholded image BI (see Figures 7.3b, 7.3e). The mean shape L

is then deformed towards the thresholded image BI according to the minimization of the energy

in Eq. 7.6 incorporating the shape-based regularizer EPCA
S . This corresponds to the FEM-based

deformable registration of BI to L where the deformations that deviate from the learned Gaussian

SDM are penalized. The desired final thoracic cavity shape L∗ (see Figure 7.3c, 7.3f) is determined

by warping back the mean thoracic cavity shapeL using the inverse of the optimal nodal deformation

field parameters Θ∗−1 = −Θ∗, i.e., L∗(x) = L(x−
N
∑

n=1
U∗

nφn), where Θ∗ = {U∗
n}Nn=1.

4. Muscle and fat region segmentation: The muscle and fat region segmentation is simply

performed by thresholding points in the input image that do not belong to the estimated thoracic

cavity using the respective muscle and fat HU ranges (see Figure 7.4).

7.5 Experiments

Our experimental data set consisted of 146 axial 2D thoracic CT images of size 512 × 512 taken

at the level of T4 from patients with head and neck cancers. Out of these 30 images were used for

training the SDM and 116 images were used for testing.

7.5.1 Comparison with manual segmentation

The performance of the proposed automatic segmentation framework was evaluated by compari-

son with manual segmentations on all the 116 images in the test data set. The manual segmenta-

tions were performed by a single expert operator using Slice-O-Matic V4.3 software (Tomovision,

Montreal, Canada), while the proposed automatic framework was implemented in MATLAB. The

regularization parameters were chosen as γR = 1.5 and γS = 1.0 (see Equation 7.6). The non-

uniform mesh on the mean shape of the thoracic cavity consisted of 503 nodes. It was generated

by manually selecting a few seed points along the contour of the mean shape followed by Delaunay

triangulation and refinement using the TRIANGLE [109] package. The experiments were run on a
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Pct. of T4 SMI (cm2/m2) Men Women

95 th 92.7 68.4

75 th 77.0 59.0

Median 50 th 69.3 53.7

25 th 62.4 48.6

5 th 52.2 36.6

Sex specific distribution of SMI

Pct. of SMI (cm2/m2) HR Days of survival

< 5 th 4.5∗ 611∗

5th−25th 2.5∗ 965∗

25th−50th 1.6 1382

> 50 th 1 1540

Univariate relationship between SMI and survival. ∗

denotes p < 0.05 Log rank test.

Table 7.3: Distribution of muscularity and relationship with survival. Here, the harzard ratio (HR)

and the T4 skeletal muscle index (SMI) are reported. The sample size was n = 116 out of which 88
images were from males and 28 were from females.

3.2GHz Quadcore machine with 4GB of RAM. The automatic segmentation took about 1 min for

each image. The Jaccard score was used to measure the overlap between the manual and automatic

segmentations. In Table 7.1, it can be seen that a significant improvement in the Jaccard scores is

achieved using the proposed framework compared to the simple thresholding-based segmentation.

Further, the tissue cross-sectional areas (cm2) were estimated from segmentations by summing up

tissue pixels and multiplying by the pixel surface area. In Table 7.2, it can be seen that the coefficient

of variation (COV) between the automatic and manual methods is within (1− 3)% which is similar

or less than inter- or intra- operator COVs reported for manual segmentation [35]. In Figure 7.4,

visual segmentation results obtained using the proposed framework are also shown on 3 images.

7.5.2 Study of relationship between patient survival and muscularity

As previously mentioned, sarcopenia a muscle loss syndrome that commonly occurs in cancer pa-

tients is known to be associated with reduced patient survival. Conventional measures like body

mass index (BMI) and body surface area (BSA) have been shown to be poor indicators of sarcope-

nia, because patients with similar BMI/BSA could still have widely different muscle masses [86].

A more direct estimate of the muscularity is the muscle tissue area (cm2) which can be easily ob-

tained from the segmentation of thoracic CT images using the proposed automatic segmentation

method. Here, the use of the T4 skeletal muscle index (SMI) which is defined as the ratio of the

height-adjusted cross-sectional muscle tissue area at the 4th thoracic vertebra and the square of the

body height (cm2/m2) are investigated for detection of sarcopenia and thus as a predictor of patient

survival. For this purpose, SMI was normalized over the male and female patient populations in our

dataset using a percentile (pct.) distribution as shown in Table 7.3a. The result of a univariate log

rank test performed between the pct. of SMI and the days of survival are shown in Table 7.3b. Here,

for patients below the 25th SMI percentile (which indicates low muscularity hence sarcopenia), a

statistically significant decrease in the survival times and a high harzard ratio (HR) is observed. This

suggests that SMI is a good correlate of patient survival.
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Original CT Muscle region Fat region

Figure 7.4: Muscle and fat region segmentation results. Manual label (red), automatic label (green)

and overlap (yellow).

7.6 Discussion

The proposed automatic framework for thoracic CT images provides fast and accurate segmenta-

tions of both the muscle and fat tissues, which permits the undertaking of large scale cancer research

studies involving measures based on muscle and fat proportions in the human body. The proposed

thoracic CT segmentation approach can be directly extended to the segmentation of abdominal CT

images. Therefore, in the future it is desirable to unify thoracic and abdominal CT segmentation

using the FEM-based deformable registration with Gaussian SDM methodology. Further, currently

the 2D CT slices are selected manually from the 3D volumetric CT scans of the patient body, corre-

sponding to the 3rd lumbar vertebra (L3) and the 4th thoracic vertebra (T4) skeletal landmarks in the

abdominal and thoracic cases respectively. Due to this manual selection, there is an element of hu-

man operator variability in the identification of these landmarks. To remedy this issue, a promising

idea is to devise a method for the automatic localization of these vertebral landmarks by performing

segmentation of the spinal cord in the 3D volumetric patient scans using the unified FEM-based

registration and segmentation framework in Chapter 4 by taking advantage of the a priori known

shape of the spinal cord through SDMs.
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Chapter 8

Conclusion and future work

In this thesis, the powerful yet less explored finite element method (FEM) has been extensively

employed for devising computationally efficient image registration and segmentation methods. In

this chapter, the proposed FEM-based registration and segmentation methods are reviewed taking

into account their experimental performance and areas for their future improvement are identified.

8.1 Conclusion

One of the main contributions in this thesis was to address both the registration and segmentation

tasks using a unified FEM-based energy minimization framework. The applicability of the unified

FEM-based minimization framework was not just limited to continuous registration and it was also

extended for discrete deformable registration. This owed to the proposed novel variational min-

imization formulation of discrete registration. In the following, a brief review of the three main

FEM-based registration and segmentation models proposed in this thesis is presented. A summary

of the experimental results obtained by these FEM-based registration and segmentation methods is

given in Table 8.1.

8.1.1 FEM-based continuous deformable registration

The traditional approach to deformable registration was to parametrize the unknown deformation

field on a uniform mesh and solve the ensuing minimization problem corresponding to the de-

formable registration using the finite difference method (FDM). The main disadvantage of this ap-

proach was the computationally inefficiency that stemmed from the use of a high degrees of freedom

(DOF) parametrization of the deformation field using a uniform discretization of the problem do-

main. The proposed FEM-based registration approach addressed this issue through the use of an

image-adaptive non-uniform mesh which allows for a low DOF parametrization of the deforma-

tion field using Lagrange basis functions. The unified FEM-based energy minimization framework

was then used to obtain a highly computationally efficient solution to the deformable registration

problem. Another important aspect of the FEM-based deformable registration model was the use
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Accuracy

Computational Benchmark data

Method Task efficiency Test data CUMC12 POPI-model

FEM-based

registration

30x faster 2D synthetic

rank 4/16 rank 3/8continuous 30x lower 5 images

registration DOF AAE ∼ 1.4◦

FEM-based continuous registration 116 images

with a segmentation - Muscle J. ∼ 95% - -

statistical deformation model Fat J. ∼ 95%

FEM-based

segmentation

> 100x faster 3 2D 1 3D images

- -
template-based 10x-100x Binary J. ∼ 89%

multi-region lower 2 2D images

segmentation DOF Mlt.-rgn. J. ∼ 78%

FEM-based variational

registration

30x faster 2D synthetic

rank 6/16 rank 7/8discrete 30x lower DOF 5 images

deformable registration than RW [28] AAE ∼ 8◦

Table 8.1: Summary of the experimental results obtained using the various proposed FEM-based

registration and segmentation methods. Here, the computational efficiency refers to the relative

computational efficiency achieved by using the Lagrange basis parametrization compared to the B-

spline and multi-linear parametrizations unless specified otherwise. On the test data, accuracy for

the segmentation task corresponds to the mean Jaccard scores (%) and for the registration task it

corresponds to the mean average angular error (AAE) in degrees.

of a general diffusion-based regularization term as opposed to the task specific bio-mechanical reg-

ularizers that were generally used in previous works on deformable registration using the FEM

method. Further, the FEM-based registration model was generalized to include the deformation

models defined on uniform meshes using the B-spline and multi-linear basis functions. The ex-

perimental results on synthetic and real medical images unambiguously established the superior

performance of the Lagrange basis parametrization over the conventional B-spline and multi-linear

basis parametrizations in terms of computational efficiency that was achieved without compromising

registration accuracy. Additional validation on benchmark datasets demonstrated that the proposed

FEM-based registration method was very suitable for practical medical image registration tasks as

it achieved registration accuracies similar to the current best available deformable registration meth-

ods.

Extension for shape prior constrained segmentation

The FEM-based continuous deformable registration model was extended to perform a shape prior

constrained segmentation of binary images. The main idea here was to perform segmentation by

deforming a binary template image towards the desired region of interest (ROI) in the input binary

image through the minimization of the same energy functional that was used in FEM-based contin-

uous deformable registration. However, to obtain a more accurate and robust segmentation, a priori

shape information was introduced into the segmentation process using a Gaussian statistical defor-

mation model (SDM) learned from a training set of deformations defined on a non-uniform mesh.

The SDM was incorporated into the FEM-based continuous registration model as an additional reg-
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ularization term apart from the diffusion-based regularizer. The motivation behind developing the

SDM constrained FEM-based continuous registration method was the particular medical imaging

application of muscle and fat tissue segmentation from 2D thoracic computed tomography (CT) im-

ages. The proposed method yielded excellent results for the muscle and fat tissue segmentation task

when evaluated on a large database of CT images.

8.1.2 FEM-based template-based multi-region segmentation

In contrast to the popular level set optimization framework, a template-based approach was adopted

along with the unified FEM-based minimization framework to develop a region-based segmenta-

tion methodology. The proposed FEM-based template-based segmentation method was inherently

free from the drawbacks of the standard level set approach such as undesirable topological changes

and difficulty in deal with multi-region segmentation. Further, it exploits the computational ad-

vantage offered by unified FEM-based minimization framework through the use of a non-uniform

mesh well adapted to the contours of the ROIs in the template for a low DOF parametrization of

the deformation field using Lagrange basis functions. Two different formulations of the FEM-based

template-based segmentation method were proposed, both of which avoid the “more” non-convex

data terms containing the warped input image and formulate the data terms using the original input

image. The testing of the proposed template-based segmentation method on a set of real medical

images validated the computational gains in using a Lagrange basis parametrization instead of the

B-spline and multi-linear basis parametrization even in the case of a region-based energy minimiza-

tion. Further, the proposed method obtained encouraging segmentation accuracies on the set of real

medical images.

8.1.3 FEM-based variational discrete deformable registration

As an alternative to the standard Markov random field (MRF) based discrete deformable registra-

tion approaches, a novel variational formulation for discrete registration was developed. Borrowing

the idea of assigning prior probabilities to each of the quantized deformation field values from the

random walker (RW) based discrete registration method [28], a convex variational energy functional

that corresponds to the diffusion-based smoothing of prior probability maps was formulated for

discrete deformable registration. Interestingly, the FDM method based solution to this variational

problem was shown to be exactly equivalent to the RW-based discrete registration method. But, a

more computationally efficient solution was obtained by solving the convex variational formulation

as a special case of the unified FEM-based energy minimization framework. The greater computa-

tional efficiency again arose from the use of a image-adaptive non-uniform discretization and the use

of a low DOF Lagrange basis parametrization of the probability maps. The evaluation on synthetic

medical images showed an improvement of multiple orders of magnitude in terms computational

efficiency compared to the RW-based discrete registration method. The good registration accuracies
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obtained on the benchmark datasets made evident the practical usefulness of the proposed FEM-

based variational discrete registration method.

8.2 Future work

The registration and segmentation methods presented in this thesis were primarily unsupervised, ex-

cept for the FEM-based continuous registration method extended using the basic Gaussian statistical

deformation model (SDM) discussed in Section 7.3.3. In the future, the plan is to investigate more

elaborate approaches for the incorporation of statistical models learned from training data into the

proposed unified FEM-based registration and segmentation framework. Specially, the future work

would focus on two main areas, shape priors using the SDMs for registration and segmentation, and

multi-modal region intensity priors for image segmentation.

8.2.1 SDM-based shape priors for FEM-based registration and segmentation

The statistical deformable models (SDMs) were previously discussed in Section 7.1 and Section

7.3.3. The main challenge in the construction of SDMs is to efficiently model the space of nodal

deformation parameters {Θ(m) = {U(m)
n }Nn=1}Mm=1 given in the training data using a statistical

model that not only accurately captures the shape variations in the training data but also allows for

the SDM to be easily incorporated into the FEM-based deformable registration or template-based

segmentation method. Below, few ideas related to the statistical modeling of the space of training

nodal deformation field parameters are explored.

Multivariate probability models

As an alternative to the standard multivariate probability models like the Gaussian and Parzen den-

sity, a promising idea is to extend the graph-based SDM [44] which was originally proposed using

uniform meshes and a B-spline parametrization to the FEM parametrization on non-uniform meshes.

In the graph-based SDM, the high dimensional multivariate probability model is factored into a set

of local low dimensional multivariate probability models by grouping the nodal points into a set of

clusters. This clustering is usually performed based on the co-dependencies in the deformation field

values between the nodes. The proposed approach would augment this clustering procedure with

the adjacency information of the non-uniform mesh.

Manifold learning based models

A major difficulty encountered while estimating the above discussed multivariate probabilities is

the very high dimensionality Nν of the data compared to the number of training data samples M ,

i.e., Nν >> M . The manifold learning techniques such as ISOMAP, Diffusion-maps, LLE [3]

overcome this issue by observing that even though the training data is represented as points in high

dimensional space, i.e., Θ(m) ∈ R
Nν , this data only occupies a small part of this high dimensional
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space . In other words, the set of training nodal deformation field parameters {Θ(m)}Mm=1 are

assumed to lie on a low dimensional manifold R
p embedded into the high dimensional space R

Nν

where p << Nd. Therefore, the goal in manifold learning is to estimate the low dimensional

representation {Θ̂(m)}Mm=1, with Θ̂
(m) ∈ R

p of the original training data, which better captures

the shapes variations than the multivariate probability models learned using the high dimensional

representation. However, a key limitation in the use of manifold learning based SDMs, is the lack

of explicit projection functions from the low dimensional space R
p back to original space R

Nν .

Specifically, this causes difficulties in the formulation of shape based regularization terms that can be

directly incorporated into the FEM-based deformable registration and template-based segmentation

methods. There is a recent work [38] in the area of level set based segmentation using shape priors,

that deals with this issue of unavailability of the projection functions, by endowing the level set based

shape prior manifold with an approximate projection operator. The plan is to extend the ideas in this

work to devise regularization terms using manifold learning based SDMs that can be integrated into

the FEM-based deformable registration and template-based segmentation methods.

8.2.2 Multi-modal region intensity priors in FEM-based segmentation

This section advocates the incorporation of region intensity priors into the proposed FEM-based

template-based multi-region segmentation method discussed in Section 4.3 for medical image seg-

mentation tasks. Although, in general many anatomical structures of interest do not show sharp

boundaries in single modality medical images, they might exhibit better contrast in the high-dimen-

sional feature space of multi-modality medical images. In order to take advantage of multi-modality

medical images, the region-based energy in Eq. 4.28 used for the FEM-based template-based multi-

region segmentation method can be simply extended using multivariate densities to model the region

statistics in the high-dimensional feature space. Further, the idea is to explore the learning of region

intensity priors in this high-dimensional feature space. Another extension worth pursuing is the

introduction of region-overlap priors [13] into the proposed FEM-based multi-region segmentation

method.
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