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Abstract

Many works of art are created through the process of an artist sketching and

then incrementally increasing the ődelity of the artwork. This requires sig-

niőcant amounts of work and effort throughout, but not all steps require the

same amount of artistic input. Certain parts only require following the logical

consequences of an earlier decision. Other parts require multiple iterations to

visualize the effect of a decision before it is executed. This thesis provides two

contributions, each of which integrates with existing artist workŕows.

Firstly, we propose SketchBetween, a VQ-VAE-based system which auto-

mates a part of the animation workŕow which leaves full creative control in

the hands of the artist. This system takes as input fully rendered keyframes

and sketched in-between frames and returns a fully rendered animation. We

evaluate the system by comparing it to a baseline and performing an ablation

study. We also analyze a case study of its performance on human-generated

input. The results of all evaluations demonstrate the systems effectiveness at

automating the rendering of in-between frames based on sketches.

Secondly, we propose the task of generating images conditioned on sketches

and palettes, and propose a preliminary system to perform this task using a

VQ-VAE. We performed an error analysis in order to identify current limita-

tions, to which we propose mitigations and future work.
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Preface

The work in Chapter 3 of this thesis has been published at the 17th Inter-

national Conference on the Foundations of Digital Games (FDG) 2022, and

further presented at the Creative AI Across Modalities workshop at the 37th

AAAI conference on artiőcial intelligence (AAAI) 2023. Other work in this

thesis may be expanded upon and submitted for publication at relevant re-

search avenues.
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Chapter 1

Introduction

1.1 Motivation

When creating a frame-by-frame 2D animation, an artist must make many

artistic decisions that shape the őnal artifact. However, there is more to anima-

tion than making decisions, one must also execute on the logical consequences

of making these decisions. For example, certain animation workŕows involve

a large amount of time spent following through on the logical consequences of

the choices that have already been made. Frame-by-frame 2D animation is a

medium of art where this is especially true. In large-scale productions, this

manifests in certain parts of the process being exported to studios of workers

who do not make as many decisions. For smaller scale productions, this is not

feasible, and animators must themselves take on this labor.

With the spread and advancement of automation of labor-intensive pro-

cesses via machine learning, the prospect of automating parts of animation has

a certain appeal. However, many existing approaches are formulated without

considering the existing workŕows and processes developed by artists, and are

therefore not easily adopted. To many artists, the author included, creative

control plays a key role in art creation, which detracts from the appeal of ex-

isting systems. It is paramount to consider the current practices in a domain

when envisioning ways to improve it. Therefore, we suggest a system which

closely adheres to a common workŕow of frame-by-frame 2D animation and

retains creative control to a great extent by automating a part of the workŕow

that is known by practitioners to be largely a matter of execution.
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1.2 Animation

Animation is an artform in which frames of art are shown to the viewer at a

rate which gives the artwork the illusion of motion. There are many different

kinds of animation, but the focus of this thesis is so-called frame-by-frame

animation, wherein each frame is a two-dimensional illustration. Certain media

necessitate the creation of 2D animations for cutscenes, backgrounds, effects,

objects or characters. The creation of these types of art assets takes both a

high level of skill and a great deal of time [46]. The process of 2D animation

typically breaks down into őrst creating keyframes that outline some action,

and then őlling in the frames between these keyframes to give the appearance

of continuous motion. The frames between keyframes are called in-between

frames. This is a resource intensive process as it requires someone skilled in

visual arts to render many frames for every second of animation. However,

this task is not the most demanding of an animator’s particular skillsket, as

rendering these in-between frames involves rote, repetitive work.

We propose a system which takes as input fully rendered keyframes that

deőne the design and art style of the subject, and sketches for in-between

frames. The system then produces a fully rendered sprite animation. Existing

approaches to video generation and synthesis thus far have not adhered to this

standard workŕow for animation. Many of the existing methods use previous

frames as a prior to generate future frames [32], [35], [48], which requires the

full rendering of several adjacent frames and surrenders creative control of the

overall motion. Others rely on transferring a complete motion onto a source

image [43]. Both of these methods cannot handle certain common motions,

such as turning around. This is because they offer only one perspective of

the subject at hand to the model at inference time. Therefore, the model

must itself őll in details of things that are occluded early in the animation

and revealed later. This may leave a character off-model and decreases the

consistency of generated animation snippets over a larger context. We propose
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a task for the automated rendering of in-between frames given sketches to

deőne the motion, and keyframes to deőne style. Our input includes both a

keyframe at the start and at the end to capture information about parts of

the subject that may be obstructed in either single keyframe. We additionally

propose SketchBetween, a system to solve this task. Our system consists

of a VQ-VAE [32] that encodes rich information in its latent space about

both the desired style and motion and uses this to generate a fully rendered

animation. As seen in Figure 3.1, SketchBetween can capture stylized motion

with accurate character designs.

There is no direct comparison we can make to other work, as our proposed

task is not one that has been studied before. However, it builds upon work

in adjacent őelds and similar tasks. We evaluate SketchBetween against a

strong baseline method adapted to our task using the structural similarity

index metric (SSIM) [52] and the peak signal-to-noise ratio (PSNR) measured

between the original animation and the model’s recreation. Compared to the

baseline, we see a clear indication of its appropriateness for the target task.

1.3 Thumbnail Generation

Many artistic processes involve making decisions about the placements of

colour. There are good practices and guidelines that can help an artist achieve

an aesthetically pleasing composition, but the artist must choose between in-

őnitely many different ways to lay out colours. Therefore, artists will often

make quick drafts of different variations of a piece, or make different versions

of a character to visually explore the effects of different decisions. The process

of making previews of different ideas for a piece or designing different versions

of a character is often referred to as thumbnailing. Different compositions of

colour can change the mood of a piece, and different distributions of colours

can communicate different things about a character.

This process can be time consuming as an artist may need to produce

many variations of the same idea before committing to a single version. We

propose a method that automates colouring in an image given a sketch and a
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palette. This method allows an artist to generate multiple different outputs

for the same palette, or generate outputs for multiple different palettes for the

same sketch. This can help facilitate the ideation process when designing a

character or creating a composition. This could help reduce the amount of

labour while allowing artists to consider more variations.

Automated colouration is a task which has existing approaches, however

these approaches have issues with controllability, which is important to pre-

serve an artist’s creative control. Existing work proposes changing the colour

scheme of a given image, but in order to use these methods the image must

already have been fully rendered, and not just a sketch [1]. Other methods

allow for the use of un-coloured lineart as input but do not produce outputs

that are faithful to the colours chosen by the artist [6].

1.4 Research Questions

The research questions of this thesis are as follows:

• Can a VQ-VAE be used to automate the rendering process of in-between

frames given rendered keyframes and sketches of the in-between frames?

• Can a VQ-VAE be used to generate thumbnails given a sketch and a

palette as input?

1.5 Contributions

Our contributions are summarized as follows:

• We introduce a problem formulation for the conditional generation of

in-between frames which adheres to existing animation workŕows.

• We propose a system using a VQ-VAE as a solution to this problem

formulation, which we call SketchBetween.

• We construct a baseline for the evaluation of SketchBetween based on a

system developed for an adjacent problem. We then evaluate SketchBe-

tween against this baseline.
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• We evaluate the soundness of the problem formulation through an abla-

tion study where we evaluate models trained on variations of the prob-

lem.

• We introduce a problem formulation for conditional image generation

using sketches and palettes.

• We explore a system constructed for conditional generation via sketches

and palettes which is based on a VQ-VAE.

• We evaluate this system and examine its outputs to identify future work.

1.6 Thesis Outline

This thesis consists of seven chapters. This őrst chapter is an introduction

to the thesis, and the rest of the thesis is structured as follows: Chapter 2

provides relevant background information to understand the context of the

thesis as well as its technical aspects. Chapter 3 introduces SketchBetween,

a problem formulation and a proposed system to automate part of a common

2D animation workŕow. Chapter 4 introduces a problem formulation and

proposed system to automate sketch colourization to allow artists to iterate

on ideas faster. In the őnal chapter, Chapter 5 we review the conclusions of

this thesis, propose future work and speculate on potential impact.
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Chapter 2

Background & Related Work

In this chapter we cover the background required to engage with this thesis.

We explain the area of visual arts the thesis touches on along with concepts

and prior work in computing science. In section 2.1 we delve into visual art,

speciőcally digital frame-by-frame animation. In section 2.2 we discuss the

prior technical works on which we base our research. In the following section,

section 2.3 we perform a literature review for our work on sprite animation

synthesis.

2.1 Art

In order to contextualize this thesis, we must introduce the reader to relevant

areas within visual art. Firstly, we broadly discuss the medium of digital art

in subsection 2.1.1. Following this, we discuss frame-by-frame 2D animation

in section 2.1.3.

2.1.1 Digital art

Humans have a long history of creating art. The mediums we use to make

art have evolved as humans invent new technologies, allowing for new forms of

expression. A recent example of this was the development of digital mediums,

colloquially referred to as digital art. These mediums are a product of software

that allows a human to produce a fully digital artifact. Algorithmic tools

have been created which allow artists to both work faster and create in new

ways.This development introduced new art movements and styles [33].
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2.1.2 Colour representations

Colour is perceived by humans using cones and rods in the eyes. The defacto

colour representation on computers uses the same three colours that humans

have cones to perceive. This representation is called RGB, which stands for

red, green and blue. However, there exist different ways to represent colour

[20]. Relevant to this thesis is the HSV colour space, which is a transforma-

tion of the RGB colour space that encodes colours in properties that align

better with human perception of colours. HSV stands for hue, saturation and

value. Additionally, the YUV colour space is relevant to a metric used in our

evaluations. The YUV colour space, similarly to HSV, isolates the value of a

colour to one channel, Y. The U and V channels encode the remaining colour

information, but are not analogous to any colour concepts on their own.

2.1.3 Frame-by-Frame Animation

Animation is a genre of visual art where multiple images give the illusion

of motion. This is a popular artform for storytelling, as well as appearing

frequently in video games. Animation is an expensive medium, requiring both

expertise and signiőcant manual labor [46].

In two-dimensional frame-by-frame animation the images are all produced

by hand. This involves drawing multiple images called frames and showing

them to the viewer in quick succession such that there are multiple frames per

second. In frame-by-frame animation, many different methods and workŕows

exist. However, there is a common process broken down in steps, going from

a rough to polished animation. Certain steps and general ideas are common

enough for a shared vocabulary amongst practitioners.

Generally, animations are őrst sketched, then inked, then rendered. The

sketching process can be further broken down into őrst creating keyframes

and then in-betweens. Keyframes are the frames which deőne the action of

the animation. After they are completed, in-betweens are added łbetweenž

the keyframes to give the illusion of motion. At this point the animation is

then inked and rendered. The rendering can also be broken down further into
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steps, but this process is not strictly relevant to the thesis, so it is omitted.

This process is illustrated in Figure 2.1.

Technological advancements have led to the birth of new styles of anima-

tion. Notably, puppet-based animation and 3D animation. Both of these

modes of animation involve the use of a model. The model is a collection

of 2D images for puppet-based animation and a 3D model for 3D animation.

The animation itself then consists of moving parts of the model. These styles

of animation have their own workŕows and processes, parts of which have

been inherited from the more traditional frame-by-frame method. However,

two-dimensional frame-by-frame animation is still frequently used as it inher-

ently allows for a signiőcant freedom of expression, which in some cases one

can lose due to the constrictions imposed by puppet-based animation and 3D

animation.

2.2 Machine Learning

Machine learning is an area of artiőcial intelligence which involves learning

approximations of functions. There are three branches of machine learning,

supervised learning, unsupervised learning and reinforcement learning [28].

The őrst two, supervised learning and unsupervised learning are relevant to

this thesis.

Supervised learning is the branch of machine learning that describes meth-

ods which approximate a function F (X) = Y , where X is an input and Y is

the desired output. For these methods, examples of X and Y are used to learn

a function f(X) = Y ′ such that Y ′ = Y for all X in some distribution. This

group of methods is useful for learning mappings between inputs and outputs,

such as learning to predict the sentiment of a given piece of text or predicting

what part of an image is the background.

Unsupervised learning is the branch of machine learning where the goal is

to learn some underlying structure in data without having any known outputs

or labels. This area of machine learning is useful for uncovering patterns in

large amounts of data, and is used for tasks such as grouping similar things

8



Figure 2.1: Three rows of images. The top row shows sketched keyframes
which deőne the entire action of a cat-apple yawning. The second row shows
the second and third keyframes with two in-between frames added. These two
in-betweens help to add the illusion of motion. The third row is the őnalized
version of the four frames in the second row.
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together and detecting outliers.

In this thesis, we make use of both supervised and unsupervised learning.

We use supervised learning to go from an input of őve frames, two of which

are rendered, to an output of those same frames fully rendered. We also use

supervised learning to take an input of a sketch and palette and output a ren-

dered image based on the sketch with the given palette. We use unsupervised

learning to extract palettes from training images.

2.2.1 Artiőcial Neural Networks

Artiőcial neural networks (ANNs) [16], [27] are approximation algorithms that

operate on data. The data consists of input-output pairs for which the arti-

őcial neural network learns a mapping. It learns this mapping by processing

a signiőcant number of input-output pairs and optimizing the parameters be-

longing to the neurons in the network.

Neurons are the fundamental building block of an artiőcial neural network.

They take one or more inputs and transform them according to learned pa-

rameters for each input, sum up all of the transformed inputs, then apply a

non-linear function, producing a single output. The simplest version of an

artiőcial neural network consists of multiple neurons, organized in layers such

that the outputs of one layer become the inputs to each neuron in the next

layer. There exist many variations of neural networks for different use-cases,

but they largely make use of the same fundamental idea of a neuron.

The parameters of neurons in a neural network are optimized to minimize

a loss function. Intuitively, this loss function describes the difference in the

generated output and the desired output on a given batch of data. This op-

timization happens through a process called back-propagation. This process

calculates each parameter’s contribution to the loss in order to make a small

nudge in whatever direction would decrease the loss. This nudging of param-

eters is called gradient descent, since the direction of the nudge is determined

by calculating the gradient of the loss function with respect to the parame-

ter. Calculating a gradient is required, therefore the network and loss function

must be differentiable.
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Artiőcial neural networks are powerful function approximators and we

make use of them throughout this thesis.

Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) [31] are a type of ANN (See section

2.2.1) which are particularly useful in processing images. The typical image is a

grid of pixels where each pixel stores the value of red, green and blue intensity

to represent the pixel’s colour. Therefore, an image is a three-dimensional

tensor containing H × W × 3 numbers. If each of these numbers were used

as input to a neural network it would quickly become intractable to process

images of any reasonable size. To mitigate this problem, a CNN does not

connect the output of every neuron as input to every neuron in the next layer.

Instead, the neurons are arranged in three-dimensional tensors called kernels

that are applied to the entire image through discrete convolution. Intuitively

this means that the kernel slides across the image and calculates outputs at

őxed intervals. This produces intermediate outputs at each layer that are

also three-dimensional tensors. The beneőts of this method are that the same

parameters are shared across the entire image, meaning that it can recognize

the same features located anywhere in the image. This sharing of parameters

also signiőcantly reduces the cost of processing images.

Given that the premise of this thesis has to do with visual art, we make

use of convolutional neural networks because of their compatibility with image

data.

2.2.2 Vector-Quantized Variational Autoencoders (VQ-
VAEs)

Autoencoders are a type of artiőcial neural network[2] (See section 2.2.1). They

embed their inputs into a latent space through an encoder, and then translate

from the latent space to an output via a decoder. The networks are trained

simultaneously, learning to both encode and decode the data. The purpose

of embedding the data into a latent space is to condense information. The

dimensionality of the embedding is smaller than that of the input, meaning it
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contains less information. The encoder must then learn to encode only what

is most valuable to the decoder in order to translate it back into a larger

dimensionality.

This model beneőts a variety of tasks. It has been used for error-detection

and to map one image to another while retaining some semantic information.

There are a number of extensions to autoencoders which have further use-cases.

One such model is the variational autoencoder [18]. One shortcoming of

the standard autoencoder is that its latent space can be sparse, which makes

sampling from it difficult. Sampling a point in the latent space of a typical

autoencoder between two well-deőned points is not guaranteed to be well de-

őned.. In this case, there is limited value in the latent space since it cannot be

easily used to generate new things. The variational autoencoder mitigates this

problem by constraining the latent space to be biased towards a normal distri-

bution. Another kind of autoencoder which has shown great performance in

image generation is the vector-quantized variational autoencoder (VQ-VAE)

[32]. It offers similar guarantees as a VAE through discretizing the latent

space. It does this through constraining the latent space to a deőned code-

book of latent vectors. When encoding, a VQ-VAE encoder takes the input

X and embeds it into a latent space as a set of vectors, where each vector

describes a part of the original image. Each of these vectors is swapped out

for its closest member in a learned codebook. This discretizes the latent space.

We include the structure of this model in Figure 2.2.

VQ-VAEs have proven useful, particularly in image-related tasks. The

quality of VQ-VAEs to represent parts of the image as vectors in its latent

space helps VQ-VAEs represent pixel art [40]. Certain art styles, such as pixel

art, have a more discrete quality than photorealistic images. Throughout

this thesis we seek to learn a mapping from sketches and some additional

information to rendered artistic images. VQ-VAEs were therefore chosen as a

candidate model. VQ-VAEs and other discrete autoencoders have additionally

shown success in a variety of image generation tasks [30], [32].
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Figure 2.2: The model structure of a VQ-VAE. The arrows in the image show
data ŕowing through the model in a forward pass. Data ŕows from left to
right, through the encoder, then the vector quantizer, then the decoder. This
diagram is based on the diagram in the original VQ-VAE paper [32].

2.2.3 Clustering

Clustering is a kind of unsupervised machine learning process. This means that

the task is not to approximate a function with known outputs, but instead

to try to approximate some pattern in the input data itself. Clustering in

particular is the task of splitting data into groups. In this thesis, we make use

of K-means clustering [24], which is a method of creating groups, or clusters,

out of data through calculating points which represent the centroid or center

of the different clusters. K-means clustering őnds K different clusters, each

represented with a centroid of the mean of the points in the cluster. In this

thesis we use K-means clustering in order to extract palettes from images.

2.3 Animation via Machine Learning

Our proposed task is not one that has previously been researched speciőcally.

However, there is existing research on adjacent tasks which informed the work

in this thesis.

2.3.1 Video Frame Interpolation

Video Frame Interpolation is a task with the goal of predicting a frame between

two adjacent frames in a video. Machine-learning based methods have shown
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success on this task, benchmarked on real-life video [3], [23]. Most relevant

to our work, Siyao Li et al. [22] introduce the problem of video interpolation

on animated video. Their method uses segment-guided matching and a recur-

rent ŕow reőnement network to generate the interpolated frame. This task,

however, differs from ours since these methods only produce a single frame at

a time via interpolation whereas we transform frames from sketches to fully

rendered frames.

2.3.2 Video Generation

Video generation involves a model which predicts future frames given a set of

prior frames. There are many approaches in prior work to achieve this goal.

VQ-VAEs [32] have shown success at this task from their conception, as the

original paper demonstrates their ability to generate future frames conditioned

on prior frames. Expanding upon this work, a number of researchers have used

transformers to predict future frames in the latent space of a VQ-VAE [35],

[48]. This system would not őt into an animation workŕow, due to the effort

required to render several frames at the start of an animation, and because of

the loss of control over the motion itself.

2.3.3 Video-to-Video Synthesis

The őeld of video-to-video synthesis is concerned with mapping one video do-

main to another [50]. An example of this would be mapping semantic segmen-

tation masks to fully rendered video or mapping video of an action performed

by one human onto video of another human. Our task can be considered a

subtask of video-to-video synthesis as both the input and output are videos.

However, our task relates speciőcally to animation and not to the more gen-

eralized video-to-video synthesis of prior work.

Generative adversarial networks (GANs) and methods built on them have

previously been applied with good success to several tasks in this őeld [26], [49],

[50]. But GAN-based models cannot be applied to new subjects without őne-

tuning to the new subject. In our case, we want to generate a speciőc output

that’s strongly conditioned on an input sketch. As such, a GAN would be less
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suited to this task than more freeform animation. However, the structure of

a VQ-VAE should prove well-suited to this task without requiring a second

discriminator model.

2.3.4 Image Animation

Image animation refers to the task of transferring the motion from a video

onto an image. The result of this is the subject of the image moving in the

same way as the subject of the video. Yoon et al. [54] present a method of

animating humans from a single image guided by body poses. Their method

puts an emphasis on preserving the identity of textures and garments in the

synthesized images. Siarohin et al. [43] demonstrate a method which transfers

motion from a driving video onto a source image, using keypoint detection

and local affine transformations, which are transformations that preserve lines

and points locally. The keypoints and their transformations provide additional

context to the generator model that produces the frames. However, sprite ani-

mation, as described in section 2.5.1, often involves stylized motion that cannot

be described with the same methods that perform well with real-life video. An

artist may choose to exaggerate shapes and certain aspects of movement to

achieve their desired effect to imbue the animation with feelings of weight,

speed, or emotion [46]. We found in our experiments that the work of Siarohin

et al. performed less well on these stylized animations as we demonstrate in

chapter 3.

2.4 Conditional Image Generation

Chapter 4 is about the generation of artistic images given a sketch and a

palette. The generation of images given some context is called conditional im-

age generation and is a őeld with signiőcant amounts of prior research which

we used to inform our work. Common conditional image generation tasks

include conditioning on segment masks, edges, depth maps and text descrip-

tions. This section is also relevant to the work in Chapter 3 as one could think

of the task of őlling in sketches in an animation as an extension of conditional
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image generation.

2.4.1 Creating conditional features

Extracting Sketches

For the purpose of training a model conditioned on both sketches and colour

palettes, we require both for every image in the training data. However, we

found no dataset that contained hand-curated triplets of images, sketches and

palettes. Therefore, we decided to generate both the sketch and palette. Both

the task of generating sketches and the task of generating palettes have existing

approaches. Sketches are an intermediate step in the process of creating an

artwork. What constitutes a sketch can vary greatly across artists and pieces,

but the purpose of a sketch is to make some of the broader artistic decisions

early on. This helps the artist have context for further decisions, as well as

allowing them to correct things that look off before more time is invested.

Sketches often take the form of rough linework that may include strokes only

meant to aid an artist in making more technically accurate artistic decisions.

This is not always the case, but for the purpose of this thesis, we went with

this kind of sketch.

Prior work has generated lineart and sketches for images using edgemaps

as a proxy in the past [13], [15]. This method creates thin lines where there is

high contrast in an image. This results in a sort of lineart in some cases, but

can produce unwanted results. One case where this type of method performs

poorly is when lineart is already present in the image. In this case, it may

outline the lineart itself, which is undesirable. It also fails to generate sketches

appropriate for certain artstyles, such as pixel art. Additionally, this creates

thin lines which run sparsely along the contours of an image. This is not

a common method of sketching, as creating such detailed and high-ődelity

lines contradicts the idea of using sketches to quickly make some broader

artistic decisions. Artists frequently sketch with many overlapping strokes and

emphasize certain strokes, making heavy use of abstraction in early stages [8].

To achieve something closer to this version of a sketch, we adapt the edgemap
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method. We use Canny edge detection [4] to őnd the edgemap. To do this

we must őrst blur the image. Instead of running Canny edge detection only

once at one level of blurriness, we run it multiple times at different blurriness

levels. This results in a softer looking sketch which is more abstract. However,

it still suffers from some of the same issues as typical edge detection, it will

sometimes outline lineart, and struggles for some art styles.

Extracting Palettes

Palettes are a list of colours that are representative of the colours in an image.

In certain situations, an artist may already have a desired colour palette in

mind for their work before committing to a larger piece. The practice of

thumbnailing can bridge the gap between choosing a palette and applying it

in a őnal piece, allowing an artist to preview the effect it has [8]. In Chapter 4

we present initial research steps towards the automation of the generation of

thumbnails based on sketches and palettes. As we discussed above, we need

palettes in order to condition on them. There is no database of image-sketch-

palette triplets, so we must generate both sketches and palettes. In order to

generate palettes we make use of K-means clustering (see section 2.2.3) on RGB

format images. We chose to use K-means clustering as it is a known method of

producing palettes given an image [58]. Other methods use greedy algorithms

to create a palette given an image [12]. On large images, K-means is too slow to

use to compute palettes [58]. However, for the purpose of creating thumbnails

and character sketches, low ődelity images are acceptable as they are not the

end product, but instead a tool for ideation. We are therefore able to use

K-means clustering. We also note that in the literature, palette extraction

is largely proposed for the task of image editing, speciőcally recolouring an

image. This is fundamentally a different task than ours, and many methods of

palette extraction are designed to facilitate this goal, such as making all blue

objects in an image green.
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2.4.2 Text-conditioned Image Generation

Text-conditioned image generation models have seen a boom in popularity

recently. Both the discrete VAE based model DALL-E [37] and the diffusion-

based models GLIDE and DALL-E 2 [30], [36] have shown a strong ability to

generate different art styles through text-to-image generation, however they

can’t be sufficiently conditioned on temporal information such as adjacent

frames for use in our task of rendering in-between frames. This method is also

not sufficient for the task of generating images conditioned on sketches and

palettes.

2.4.3 Image colourization and colour Editing

Changing the colours in an image without altering its semantic information

is a task which has a history, and lends context to the task of colourizing a

sketch [1]. Generating an image given a sketch can be considered a subtask

of this task. However, colourizing using only sketches and colours is a task

which provides less information to a model, as in more typical image colour-

ization tasks a model receives either a greyscale image or a full-colour image

to recolour.

2.4.4 Sketch-conditioned Image Generation

In a seminal paper, Isola et al. propose pix2pix, a generative adversarial net-

work [11] which can synthesize images conditioned on various things, including

edgemap sketches [15]. pix2pix produces a number of artifacts which makes

it a difficult tool to use for the ideation process of creating artwork, as the

artifacts can alter the colours present in the image.

Sangkloy et al. propose Scribbler [39], a method of generating images based

on sketches which have had colour strokes painted onto the sketches to imply

an object should be that colour. Scribbler is a GAN-based network and was

trained on photorealistic images. When applied to artwork it produces images

which are rendered in a photorealistic way, albeit with signiőcant artifacts in

the form of soft gradients in colour. The results are nonetheless impressive,
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but the model does not adhere well to the colour added onto the sketch. It

will use similar colours, but this deviation from the chosen colour as well as

the soft gradient artifact makes this method less useful for thumbnails where

a designer may want speciőc colours to communicate their ideas.

Similarly, Ci et al. [6] use a GAN to generate images using sketches and

colour scribble hints in the same way as Scribbler. However, they speciőcally

train on illustrations. Their method shows impressive results but also suffers

from having subtle gradients and low ődelity to the speciőc colours a user

scribbles.

More recently, diffusion models [53] have been prominent in conditional

image generation [7], [13], [30], [56]. In their proposed system ControlNet,

Zhang and Agrawala use edgemap-sketches and text prompts to generate im-

ages [56]. ControlNet operates on top of a large diffusion model to allow for

the additional inputs, including sketches, to be used. Their method allows

for a great deal of additional control when compared with the more standard

prompt-based diffusion models.

Huang et al. propose Composer, a method for altering an image by decom-

posing it into eight different components, including a sketch and palette [13].

A user can then edit any or all of these components and output an altered

version of the original image. The suggested framework shows good results

as a tool for image editing, which could in theory be used to condition on

sketches and palettes alone. However, they do not explicitly evaluate this set

of conditions, and they have not made their model or code available. They

also do not provide results on sprites or similar illustrations.

Both Composer and ControlNet are diffusion models [53] with 5 billion pa-

rameters. Recent research has cast doubts on the novelty of images generated

via diffusion, demonstrating that large diffusion models have in some cases

memorized images from their training data [44]. Data leakage is problematic

when the output is expected to be relatively novel, such as when creating

thumbnails. For example, plagiarism of character designs is an unwanted out-

come to most artists.
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2.5 Downstream Tasks

The research conducted for this thesis was done with certain downstream tasks

in mind, which will be detailed in this section.

2.5.1 Sprite Animation

A sprite animation is a 2D animation used primarily in video games to give

the illusion of motion in a virtual world. These can be important to the

immersion and visual storytelling of a game. However, animation is a difficult

skill to master and a time-consuming process. The process of frame-by-frame

animation is described in Section 2.1.3. We believe that SketchBetween, which

is introduced in Chapter 3 can be used to cut down on time spent rendering

in-between frames, a part of the animation workŕow which typically involves

very little artistic decision making.

2.5.2 Thumbnailing for concept art

Artist sometimes produce thumbnails before committing to the creation of

a larger artwork. This is true both for digital and traditional mediums. A

thumbnail allows an artist to evaluate their ideas and composition before

putting in the time and resources to complete a full piece. Often an artist

will create many thumbnails, exploring different variations of a piece and chal-

lenging themselves to expand on ideas in multiple ways [8]. Thumbnails can

vary in ődelity and abstraction, but the value of thumbnails is to outline a

piece at a high level and make some of the more abstract artistic decisions

before starting work on the őnal artwork. An artist may have ideas or feelings

they want to express through an artwork. To this end, they may want to use

shapes, colours and symbols that are understood by their audience as tools to

evoke those ideas and feelings. Iterating on a thumbnail allows an artist to

optimize the use of these tools in their work. Character designs can also be

iterated on through the creation of thumbnails.

We propose that our tool, as described in Chapter 4, can allow artists

to more quickly iterate on thumbnails. An artist can make changes to the
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sketch and palette quickly, allowing them to explore different shape and colour

combinations to effectively communicate their ideas.
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Chapter 3

SketchBetween: Video-to-Video

Synthesis for Sprite Animation

Games and other media often necessitate the creation of 2D animations for

cutscenes, backgrounds, effects or sprites, which are animated art assets of

objects or characters in a game. The creation of these types of art assets

takes both a high level of skill and a great deal of time [46]. The process of

2D animation typically breaks down into őrst creating keyframes that deőne

some action, and then őlling in the frames between these keyframes to give the

appearance of motion. This is a resource intensive process as it takes someone

with a high skill level a long time, but parts of this process are not the most

demanding of their skill.

We propose a system which takes as input fully rendered keyframes that

deőne the design and art style of the subject, and sketches for each frame that

deőne the motions in between these keyframes. The system then produces

as an output a fully rendered sprite animation. Existing approaches to video

generation and synthesis thus far have not adhered to this standard workŕow

for animation. Many of the existing methods use previous frames as a prior

to generate future frames [32], [35], [48], which requires the full rendering of

several adjacent frames. Others rely on transferring a complete motion onto

a source image [43]. Both of these methods offer only one perspective of the

subject at hand and any information required for the full motion relies only

on what was present in the training set, which may leave a sprite off-model.

We propose a task for the automated rendering of in-between frames given
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Figure 3.1: Selected input samples and the corresponding output from Sketch-
Between.

sketches to deőne the motion, and keyframes to deőne style. Both a keyframe

at the start and at the end are included to capture information about parts of

the subject that may be obstructed in either single keyframe. We additionally

propose SketchBetween, a system to solve this task. Our system consists of

a VQ-VAE [32] that encodes rich information in its latent space composed of

the desired style and motion and leverages this to generate a fully rendered

animation. As can be seen in Figure 3.1, SketchBetween is able to capture

stylized motion while staying accurate to character designs.

There is no direct comparison we can make to other work, as our proposed

task has not appeared in prior work. However, it builds upon work in adjacent

őelds and similar tasks. We evaluate SketchBetween against a strong baseline

method adapted to our task in terms of the structural similarity index metric

(SSIM) [52] and the peak signal-to-noise ratio (PSNR) measured between the

original animation and the model’s recreation. Compared to the baseline, we

see a clear indication of its appropriateness for the target task.

3.1 System Overview

In this section we overview the process of training and applying our SketchBe-

tween system. SketchBetween consists of a VQ-VAE which takes as input two

keyframes and the sketches between them and outputs a fully rendered ani-
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mation. We train this system using the MGIF dataset [42], which consists of

animations of cartoon animals in motion. We chose őve frames for our exper-

iments, but experiments performed with three frames had comparable results.

We implemented and trained the system using Keras [5]. Where parameter

values are not speciőcally mentioned in this text we used the default values of

the implementation.

3.1.1 Data

To train our model we require a dataset of existing animations. We chose

the MGIF dataset [42]. The MGIF dataset consists of 1000 videos of cartoon

animals walking, running and jumping. Each video has been resized to 128×

128 pixels and has a white background. There is a good deal of variance in

terms of species and art styles present in the data. We use the included train-

test split, where 900 gif format videos are for training and another 100 are

reserved for testing. The videos are of different lengths, and we had to exclude

any that were shorter than 5 frames since we chose N = 5 for our experiments.

This exclusion criteria applied to 33 videos in the training set and 2 in the test

set.

Given our problem formulation in which we transform from keyframes and

sketch in-between frames to a őnal animation we needed to reprocess the data.

A dataset including hand-drawn sketches of animations as well as the őnal out-

put would be ideal. Datasets of still images and corresponding artist sketches

exist in the literature [21], [51], [55]. However, no such dataset exists for

animations. To generate the input to our model we sample N frames of an an-

imation and generate sketches of all but the őrst and last frames using Canny

edge detection [4], inspired by the method used to train the pix2pix image-to-

image translation method pix2pix. In order to be able to generate convincing

sketches for the many different art styles present in the dataset, we opted to

average the Canny edges detected for four different kernel sizes (3, 5, 7 and 9).

The generated input can be seen on the left-hand side of Figure 3.1. The task

is to generate the full N frames, and as such we use the original frames not

processed into sketches as our expected output during training. To achieve
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Figure 3.2: Diagram of the structure of the SketchBetween model.

better generalization during training, we augment the data by randomly shift-

ing the hue and saturation as well as ŕipping horizontally before the sketch

generation step. Each of these augmentations was applied with a 50% chance.

The hue was shifted randomly by up to 180° and the saturation was randomly

increased or decreased by up to 20%.

3.1.2 Model

Our problem formulation requires a model which can take in N frames where

frame 0 and frame N−1 are fully rendered and frames 1 to N−2 are sketches.

This model must then output a fully rendered animation. We chose to train a

vector-quantized variational auto-encoder (VQ-VAE) DBLP:journals/corr/abs-

1711-00937 due to their success as a generative model, particularly in the task

of art generation and representation [37], [40]. The inputs to our VQ-VAE are

the stacked input frames in RGB format consisting of the keyframes and the

sketches between them. The size of our input, barring the batch-size dimen-

sion, is 5 × 128 × 128 × 3. We chose to use RGB because this is the default

format of the MGIF dataset. However, this method should work just as well,

if not better, if the images are transformed into the HSV format. We expect

this due to the previous success of the HSV format applied to sprite-generating

procedural content generation (PCG) tasks [10].

An overview of the model structure can be seen in Figure 3.2. The encoder

consists of six layers of convolutions with ReLu [29] activation functions and

batch normalization [14] between each layer of convolutions. We use mostly
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3×3×3 kernels, analogous to the encoder structure of GLIDE [37], throughout

our encoder. The exception to this structure are layers of 1×1×1 convolutions

in the őnal two layers to adjust the size of each encoding vector, much like

in PixelVQ-VAE [40]. To increase the size of the patch each encoding vector

represents, we use a stride of 2 along the x and y axes of each frame in the

őrst two layers. We found that the performance of our model was sensitive

to the dimensionality of our encodings (D) and the size of our codebook (C),

and our őnal values for these hyperparameters were D = 8 and C = 256.

The progression of the őlter sizes is 3 → 32 → 64 → 64 → 128 → 64 →

D. The decoder consists of transposed convolutions with ReLu and batch

normalization to project the encoding vectors to the output images. The

structure is similar to the encoder, with 3× 3× 3 convolutions in most layers.

The second-to-last layer has 1× 1× 1 convolutions to decrease the őlter sizes

towards the end goal of having only 3 őlters for the red, green and blue channels

of the output images. However, we found empirically that the őnal decoder

layer performed better with a 3 × 3 × 3 kernel size. The progression of the

őlter sizes for the decoder is D → 128 → 64 → 64 → 64 → 32 → 16 → 3. We

additionally found that we achieved better performance with a slightly larger

decoder than encoder. We anticipate this is because the task of generating

an embedding representation from the animation is in some way easier than

generating the fully rendered animation from the embedding representation.

3.1.3 Training

The model was implemented and trained using Keras [5]. To train Sketch-

Between we use a loss based on the structural similarity index metric (SSIM)

[52], deőned as 1 − SSIM , which produced better recreations than a mean-

squared-error (MSE) loss. We optimize with a lookahead [57] adam optimizer

[19]. The model is trained for 100 epochs, with a learning rate of 0.001.

The empirical analysis used to determine certain parameters and parts of

the model structure were performed on the training set SSIM loss.
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3.2 Evaluation

We created SketchBetween as part of a push to make 2D animation more ac-

cessible. Therefore, human evaluation would be ideal, but as an approximation

we provide two forms of quantitative evaluation of our proposed contributions.

To evaluate SketchBetween we construct a baseline from a method developed

for a related task. To evaluate our proposed problem formulation we perform

an ablation study to validate the efficacy of our chosen formulation for the

task.

To evaluate our model on the test set we take every őve neighboring frames,

including all overlapping sections, and generate inputs for our model. The

numbers presented are the reconstruction metrics of only the three in-between

frames, excluding the őrst and last frame as their reconstruction is less relevant

to the task. The metrics improve marginally if the two keyframes’ reconstruc-

tions are included, but we felt the relevant component of our model was the

reconstruction of the sketched in-between frames. We use two metrics to eval-

uate the quality of reconstructions. The structural similarity index metric

(SSIM) [52] as well as the peak signal-to-noise ratio (PSNR) between the orig-

inal frame and the recreation. The SSIM measures the structural similarity

between the original and the reconstruction in terms of luminance, contrast

and structure. The PSNR measures the ratio between the maximum values of

a signal and the noise present. As such, it gives a low value when the value

of noise in a signal is stronger and a high value when noise is less present.

This is useful to evaluate the amount of noise introduced via a process, such

as reproduction through a VQ-VAE.

3.2.1 Baseline

We evaluate our method against a baseline we constructed by adapting a őrst-

order motion model (FOMM) [43] to our task. FOMM transfers motion from a

video onto an image. It is only trained on videos which drive the motion, and

makes the assumption that an input image derives from the same distribution.

To adapt it to our task we train the FOMM on a dataset consisting of the
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original MGIF dataset with the addition of sketched versions of each gif using

our sketch generation method. This ensures that keypoint detection is trained

on both sketches and rendered images simultaneously and therefore should

provide a model which can transfer sketch motion onto a rendered keyframe.

We use this baseline to transfer the motion from the generated sketches of the

test set onto the őrst fully rendered frame. We average the measured SSIM

and PSNR over every frame in the generated animation. FOMM generates

each animation in full from the sketched version and the őrst frame so there

is a difference in the number of datapoints being evaluated as SketchBetween

generates 3 frames from sketches for every 5 adjacent frames.

3.2.2 Ablation Study

We perform an ablation study to show the efficacy of the key components of

our problem formulation. Ideally we would use human evaluation, but as an

approximation our ablation study evaluates the reconstruction metrics of the

ablated models with and without certain components. Firstly, we compare our

system with and without the sketches between the keyframes. To do this we

train a SketchBetween model on our dataset without generating sketches for

the in-between frames, leaving them blank. We did this because we believe

the sketches provide valuable information about the motion present in the

animation. Secondly we compare our system with and without the second

keyframe in place. To do this we train a SketchBetween model on our dataset

but generate a sketch for the őnal frame in place of the fully rendered image.

We believe that both the őrst and last keyframe are of value to the model to

properly handle cases where parts of the subject are obstructed at the start

or end and become revealed during the motion. In both cases the metrics

are reported on a version of the test set which has the same ablation to its

structure.
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Table 3.1: Comparison between our method and baselines on the MGIF
dataset. ↑ means that a higher value is better.

Model SSIM (↑) PSNR (↑)
FOMM 0.799 19.46
Ours 0.943 27.48

Table 3.2: Comparison between our complete method and ablated versions of
it. ↑ means that a higher value is better.

Model SSIM (↑) PSNR (↑)
No sketch 0.883 20.19
No őnal image 0.938 25.4
Full model 0.943 27.48

Figure 3.3: Visual comparison of the recreation of a horse running animation.
The top row is the original animation. The middle animation is the FOMM
recreation and the bottom row is the SketchBetween recreation.
Three rows of images. The top row shows an artist rendered animation of a

horse running. The middle row shows a recreation of that animation with the
FOMM baseline. The bottom row shows a recreation of that animation with

SketchBetween.

Figure 3.4: Visual comparison of the recreation of a cat leaping animation.
The top row is the original animation. The middle animation is the FOMM
recreation and the bottom row is the SketchBetween recreation.
Three rows of images. The top row shows an artist rendered animation of a
cat running. The middle row shows a recreation of that animation with the
FOMM baseline. The bottom row shows a recreation of that animation with

SketchBetween.
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Figure 3.5: Visual comparison of the recreation of a pixel-art donkey jumping
animation. The top row is the original animation. The bottom row is the
animation generated by SketchBetween.
Three rows of images. The top row shows an artist rendered animation of a

pixel-art donkey jumping. The middle row shows a recreation of that
animation with the FOMM baseline. The bottom row shows a recreation of

that animation with SketchBetween.

3.3 Results

A comparison of the results of our model and the baseline can be seen in

Table 3.1. Our method achieves higher scores on this task for both metrics.

Additionally, a visual comparison of selected representative recreations can

be seen in Figures 3.3 and 3.4. The baseline fails to capture changes in the

shapes of objects that are not affine transformations of a part of the subject,

but instead animated stylistically, such as the horse’s mane and tail ŕowing

behind it.

The results of our ablation study on the task formulation can be seen in

Table 3.2. We identify that the inclusion of all elements does provide the best

results according to our metrics. The inclusion of the sketches is especially

important. This is in line with the intuition of sketches providing valuable

information about how the subject should be rendered in the in-betweens.

However, for our dataset, the inclusion of the őnal keyframe is not hugely

signiőcant. This is perhaps because the animations provided in the MGIF

dataset have similar motions where obstructed portions of the subject are

most frequently limbs, which are typically symmetrical.

3.4 Case Study

Since SketchBetween is intended to be used as a tool by animators we per-

formed a case study of how it might work on real-life examples, such as walk
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cycles for game characters. We obtained 4 animations from 3 different artists,

where the artists rendered the őrst and last frames and sketched three frames

of motion in between. The artists were asked to provide a short animation

of an animal in motion. Artwork was provided by Twitter users @TeethyFish

(ősh, chinchilla) and @K3rryberry (bunny) and the author of this thesis (fox).

We ran these animations through SketchBetween to see how the model han-

dles human-made sketches. The results of this can be seen in Figure 3.6. No-

tably some patterns on the animals that would have been added to the sketches

via the canny edge detection are not present in the human-made sketch. The

model still attempts to generate them, but they are less consistent and crisp

than patterns seen in Figure 3.1. Prior to running SketchBetween on these

animations we were convinced that it would work best on the chinchilla and

fox, and worst on the ősh. We were surprised to see that the model performed

best on the ősh and the fox and worst on the chinchilla. We speculate that

the large areas with low texture on the chinchilla may have contributed to the

amount of artifacts in the output. It should be noted that while the model per-

forms well on the fox, this was drawn by the thesis author and thus they could

have unconsciously drawn a well-suited example to SketchBetween. Notably

this example includes smaller motion than in the other examples. Conversely,

the bunny example is of a creature jumping like in Figure 3.5 which depicts a

large motion at a low framerate which the model seems to handle poorly.

The artists have visibly different sketching styles but notably all the human-

made sketches are fairly clean and do not contain much of the artifacts that

artists may use to assist in structuring the form of their artwork. It is therefore

unclear to what extent SketchBetween can handle the variance of sketching

methods used by different artists. We leave a full investigation of this topic to

future work.

3.5 Discussion and Future Work

We have shown through our experiments that our model outperforms a base-

line for our task, and that the formulation of this task provides sufficient
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Figure 3.6: Animations by various artists. For each section the top row is an
animation with artist-drawn sketches between the őrst and last frame. The
bottom row is the SketchBetween output for this animation.
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information to construct models with good outcomes. The system may there-

fore be able to save artists’ time when producing animations. It is difficult

to quantify how much time can be saved by using a tool such as this due to

the high variance in how artists operate, resulting from differences in process

and level of skill. However, the proposed tool could address one of the more

tedious parts of the animation process.

Our model does have certain shortcomings. There are a number of videos

in the test set for which our model performs quite poorly. These are videos

with motions that are not common in the training set, one example can be

seen in Figure 3.5. Jumping is an action that is not common in the dataset

and the particular stylization of this donkey’s jump makes it an outlier. This

effect can also be seen in the bunny in Figure 3.6.

Additionally, our output videos are more blurry than desired, and details

tend to be lost. A future avenue of research could be to explore diffusion-

based video-to-video synthesis, since our method is analogous to a sort of

inpainting of the in-between frames, and diffusion models have shown success

at inpainting [30]. Another potential direction is to apply an adversarial loss

[26], [49], [50], or to use a more reőned loss than our SSIM-based one. For

example, one based on analogs between frames, inspired by previous work in

deep visual analogy-making [38].

The case study exposed further avenues for improvement. It highlights a

weakness of the dataset used to train the model, which is that it consists of only

three types of movements: walking, running and jumping. The dataset also

largely contains animations that are produced at a high frames-per-second

(fps) and therefore only have subtle changes between adjacent frames. The

effect of this is that animations with more drastic changes, such as the bunny

in Figure 3.6 are poorly handled. This could be mitigated with more data,

but also by omitting some number of frames during training to artiőcially

decrease the fps. The case study also suggests that adding more variance into

the generated sketches to capture more art styles would be valuable. Adapting

this method to be more iterative could also prove to be useful, as design tools

with iterative design processes have been shown to be effective [17]
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The ablation study shows that while the system performs better with the

sketches available between the keyframes, there is value in exploring a system

which omits this additional work for artists. In animations with a high fps this

may shave additional time off, however it may negatively impact animations

with large motions between keyframes such as the bunny in Figure 3.6 where

there is more motion information in the sketches.

3.6 Conclusions

This chapter proposes a problem formulation and model solution for sprite ani-

mation generation. We focus on rendering sketches between rendered keyframes.

We additionally propose a method to do this using a VQ-VAE called Sketch-

Between. We showed that our method outperforms a strong baseline, and

that the formulation of the task is valuable through an ablation study. Given

our results we believe that this research direction has the potential to help

democratize 2D animation in game development.
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Chapter 4

Generation of Thumbnails

Conditioned on Sketches and

Palettes

In this chapter we present the second contribution of this thesis, a preliminary

investigation of the generation of images conditioned on sketches and palettes.

We provide an overview of the motivation and justify the value in solving

such a task. We then detail the structure of a preliminary system designed

for this task. The system is evaluated via a preliminary error analysis where

its output is analyzed to identify shortcomings. We propose mitigations and

outline future work.

4.1 Introduction

When creating visual artwork there is often an ideation phase. Artists may

put time and effort into deciding what the subjects of a piece will look like,

especially to optimize the effect of visual language. An artist may want to

make an enemy in a game look as scary as possible, but the protagonist of

a children’s book look cute. Achieving the desired effect sometimes requires

iterating on a character design. Similarly, the visual composition of a piece

may be őnalized by considering lower-ődelity versions to preview the effect of

a certain colour palette or composition of subjects in the piece. This too is

often an iterative process, resulting in multiple of these lower-ődelity pieces

called thumbnails [8].
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There exists a body of work focusing on similar tasks to the one we propose.

However, they are not easily used by artists for the purpose of quickly iterat-

ing on design decisions. The task of recolouring artwork has been extensively

researched, and has many existing approaches. However, prior work gener-

ally includes as an input an image where objects have already been coloured

in, pixels contain information about colour intensity, and segments of colour

blocks exist [1]. Other work exists that does go from lineart to rendered works,

but they require that the input indicates where colours should go, and they

do not adhere well to the speciőc chosen colours [6], [39].

We propose the task of automatically generating thumbnails given a sketch

and a colour palette. This could allow artists to iterate faster, and the gener-

ated works may also inspire an artist with a variation they had not thought of

themselves. We additionally provide a preliminary system for this task. The

system consists of a VQ-VAE [32] trained on images and sketches and palettes

generated from those images. The preliminary system performs somewhat

poorly, and we provide an analysis of the output as well as proposed mitiga-

tion strategies and future work.

4.2 System Overview

In this section we overview the process of training a system for the proposed

task. The system consists of a VQ-VAE trained on sketches and palettes to

produce rendered images. We trained the system using the MGIF dataset [42],

which contains animations of creatures in motion. This system is implemented

and trained using Keras [5]. Where parameter values are not speciőcally men-

tioned in this text we used the default values of the implementation.

4.2.1 Data

Training a model on the proposed task requires relevant data. There is

no dataset containing the equivalent stages of an artist’s workŕow, namely

sketches, palettes and subsequent őnished thumbnails. Furthermore, there is

no dataset containing image, sketch and palette triplets. Fortunately we can
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generate proxies for the missing sketch and palett information, such that we

require only images. Most image datasets consist of photographs, while we

are interested in datasets containing digital illustrations or high-quality scans

of physical artwork. At this preliminary stage, we propose using the MGIF

dataset [42] which we used in Chapter 3, as it contains images similar to certain

thumbnails, namely characters in a neutral pose with minimal rendering.

MGIF

The MGIF dataset is a dataset of illustrated animations of animals in mo-

tion [42]. It is a useful dataset for this project due to the presence of eccentric

and colourful characters on a white background, illustrated in a variety of dif-

ferent styles. The dataset animations are variable in length, but were split

into individual frames for this project. In total there are 1000 animations in

the dataset. The authors of the dataset provide a split of 900 animations for

training and 100 for testing. We reserved 100 of the 900 training animations

for validation. We extracted the frames from each animation, resulting in

20713 individual images in the training dataset, 939 in the validation dataset

and 2426 in the witheld test dataset.

4.2.2 Preprocessing

In order to train a model to generate images conditioned on sketches and

palettes, we must have triplets of sketch, palette, and image on which to train.

However, no such dataset exists, so we opted to estimate both the sketches

and palettes.

Sketch Generation

Sketch generation is the process of generating approximations of sketches given

an image. This process is described in Chapter 3. We use the same method

in this work.
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Figure 4.1: Diagram of the structure of the VQ-VAE-based model. Each vector
in the quantized latents has the entire palette appended to it.

Palette Generation

Palette generation has been attempted in prior work (see Chapter 2.4.1). For

our approach. we used K-means clustering [24] on the image pixel data in RGB

format to identify 8 clusters of colours present in the image. The number of

clusters we chose was somewhat arbitrary and based only on a visual analysis of

the data. The illustrations are largely ŕat and cartoony, resulting in relatively

few colours present in each character. The centers of the identiőed clusters

are the colours used to create the palette. We arrange the colours in a palette

in decreasing order of cluster size. We used the scikit-learn implementation of

K-means [34]

We chose to cluster the colours in the RGB colour space instead of the HSV

colour space because the RGB colour space has no non-unique colours, whereas

in the HSV colour-space there are multiple representations of certain colours,

namely all colours with zero saturation or value. The palette is converted to

HSV format before being used in the system.

4.2.3 Model

We propose using a VQ-VAE due to its performance in our previous work

relating to sketch-conditioned generation in Chapter 3. For this formulation,
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we use an encoder and vector-quantizer EV Q() which takes the input sketch

X̂ of size H × W × 3 and produces a quantized latent representation Z =

EV Q(X̂) ∈ R
L×R×V , where L and R are the height and width of the latent

representation and V is the size of each embedding. The dimensionality of the

two inputs poses a problem. A H ×W image, such as a sketch, has the shape

H × W × 3, but a palette of 8 colours has the shape 8 × 3. These sizes are

by default not compatible with each other when using a convolutional model,

such as convolutional VQ-VAEs. However, there are ways to mitigate this.

To condition the model on the palette as well, we ŕatten the 8 × 3 palette

and append a vector of size 24 to every embedding vector in the quantized

latents, producing a new latent of size L×R× (V + 24). This is then passed

to the decorder in order to produce a reconstruction of the original artwork.

We include a diagram of the model structure in Figure 4.1

We tried a number of conőgurations of hyperparameters, and found that

empirically the following structure worked best, although we believe that fur-

ther work in tuning hyperparameters would be worthwhile. The encoder

consists of a series of convolutional blocks, where each block is a convo-

lutional layer followed by a ReLu activation [29], batch normalization [14]

and a 10% dropout [41]. The kernel size is 5 × 5 throughout the network,

with the exception of the őnal layer, which has a 1 × 1 convolution. The

őrst three layers have a stride of 2 × 2 and the progression of features is

3 → 32 → 64 → 64 → 128 → 8 The encoder outputs an embedding which is

fed to the vector quantizer. The vector quantizer has a learned codebook of

size C = 128, and each vector in this codebook is of size V = 8. The size of

the quantized embedding is 16× 16× 8, and in order to include the palette in

the context we append the 24 length palette vector to each encoding, resulting

in a 16× 16× 32 őnal embedding. This is passed to the decoder. The decoder

has a very similar structure to the encoder, but instead of convolution layers

it uses transposed convolution layers to project the encoding into image space.

The őrst three layers use a stride of 2 × 2 to upscale the image back to the

appropriate size, and the kernels are similarly 5 × 5 throughout the decoder

with the exception of a 1 × 1 transposed convolution in the last layer. The
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progression of features is 8 → 128 → 128 → 64 → 64 → 32 → 3

4.2.4 Training

Our system is implemented and trained using the machine learning Python

library Keras [5]. To train this system we use a custom loss function in place

of the standard reconstruction loss for the VQ-VAE. This custom loss is a

weighted sum of an SSIM-based loss, deőned as 1 − SSIM and the mean

squared error (MSE) between the original image and the output. The custom

loss is thus deőned as α(1 − SSIM) + β(MSE), and we empirically found

an α of 0.7 and a β of 0.3 to work well. We previously used only a SSIM-

based loss in Chapter 3. The addition of the MSE component is to improve

the model’s ability to correctly apply the colours in the palette to the image.

SSIM was originally deőned for grayscale images but is often calculated on the

YUV colour-space, of which the őrst channel is the grayscale representation

of an image. SSIM is averaged over all channels when calculated for a YUV

image. This results in SSIM reŕecting colour similarity, but the differences in

the U and V channels independently may not reŕect the difference perceived

by humans as well as in the HSV colour space.

We optimize with a lookahead [57] adam optimizer [19]. The model is

trained with an early stopping mechanism that stops the training if no im-

provement is observed for 20 epochs, starting after the 40th epoch. The model

trained for 71 epochs before stopping due to this mechanism.

Data Augmentation

To achieve better generalization during training, we augment the data by

randomly modifying it. Each batch of images is ŕipped with a 50% chance,

and the hue and saturation are randomly shifted up or down by between 0

and 50% of their maximum values, with a 50% chance to do so per batch of

images. We randomly select up to four additional transformations, zooming,

shearing, shifting and rotating the image slightly, each with a 30% chance of

application. Every augmentation done to the image is also applied to both the

sketch and the palette as appropriate. We note that only hue and saturation
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Table 4.1: Quantitative results from running our model on the MGIF dataset.
↑ means that a higher value is better.

Model SSIM (↑) PSNR (↑)
Ours 0.442 13.55

transformations are applied to the palette as the other transformations are

unlikely to majorly affect the colour distribution.

4.3 Evaluation

This system was motivated by a desire to produce something useful to artists

in the ideation and development of thumbnails. Therefore, the most reasonable

way to evaluate it would be to perform a human subject study. However, this

is not feasible at this time and perhaps ill-advised at such a preliminary stage.

Therefore we use quantitative metrics measured on the held-out test portions

of our datasets to evaluate the system’s ability to reconstruct an image given

the image’s approximated sketch and palette.

In order to evaluate the models we use the structural similarity image

metric (SSIM) [52] as well as the peak signal-to-noise ratio (PSNR) between

the reconstruction and the original image as we did in Chapter 3.

This work is preliminary and this initial progress does not warrant eval-

uating against a baseline, or a human expert evaluation other than our own,

as the resulting artifacts are still lacking in many ways. For this reason, we

simply report the metrics for various hyperparameters as well as visualizations

of outputs given these hyperparameters.

4.4 Results

In this section we present the results of our evaluation of this preliminary

work. In Table 4.1 we present the SSIM and PSNR values of the model on the

held-out training set. When contrasted with the metrics for a similar model

on a similar task in Table 3.1 in Chapter 3, it becomes clear that this model

has a signiőcantly lower capacity to reconstruct the original image.
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Figure 4.2: A cherry-picked sample of images from the test set which demon-
strate the model inappropriately colouring the background. There are three
rows of four images each, each row is one sample. In each row, from left to
right are the input palette, the input sketch, the model output and the actual
image from the test set.
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Figure 4.3: A cherry-picked sample of images from the test set which demon-
strate the model only using one of the palette colours on the character. There
are three rows of four images each, each row is one sample. In each row, from
left to right are the input palette, the input sketch, the model output and the
actual image from the test set.
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Figure 4.4: A cherry-picked sample of images from the test set which demon-
strate the model leaving white space in the middle of a character. There are
three rows of four images each, each row is one sample. In each row, from
left to right are the input palette, the input sketch, the model output and the
actual image from the test set.
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Figure 4.5: A cherry-picked sample of images from the test set which demon-
strate the model overőtting to characters or patterns that are overrepresented
in the training set. There are three rows of four images each, each row is one
sample. In each row, from left to right are the input palette, the input sketch,
the model output and the actual image from the test set.
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In Figures 4.5, 4.4, 4.2, 4.3 we show cherry-picked examples of model out-

puts from the test dataset which exhibit some characteristic we őnd to be of

interest. Namely, we have chosen these images as they exemplify problematic

output from the model. The model produces, with little predictability, several

types of unwanted artifacts. The groups of unwanted artifacts were determined

by the author of this thesis through examining the output of the model on the

test set and noting common errors.

The model sometimes fails to őll in the middles of creatures, as can be

seen in Figure 4.4, and it also sometimes őlls the background with the inap-

propriate colour as can be seen in Figure 4.2. In addition to this, the model

tends to produce creatures which only contain the most common colour in the

palette aside from the omnipresent white background, as is shown in Figure

4.3. However, the model does show some capacity for using more colours as

can be seen in Figure 4.5. This may not be cause for celebration, however,

as we noted that this largely happened in cases where the character had an

expected colouration, such as an orange tiger with white stripes, or the char-

acter was a popular one. In both cases, we expect these colourations to exist

in other animations present in the training set.

4.5 Discussion and Future Work

Our greatest takeaway from this project is that the task of generating images

given a sketch and a palette is difficult. SketchBetween [25] (See Chapter

3) was more easily able to learn to colour in the sketches in the in-between

frames with a similar, if not more powerful, model on this task. The difficulty

of this task has also been noted before in a survey by Anwar et al. [1]. With

less information available, and the additional task of needing to come up with

the colour layout, the model needs to have a stronger understanding of how

colours generally appear in images. To this end, we believe that a larger and

more diverse dataset may prove useful as we found that the validation loss was

signiőcantly higher than the training loss despite our regularization and data

augmentation methods. The dataset we used includes a good deal of variance
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in colour and shape, but it has the property that most of the canvas is almost

always white, so it may be easy for the model to get caught in a local minima of

producing largely white images. This would produce a low mean squared error

as well as a fairly low SSIM score for the white parts of the image. We also

őnd that the model often leaves large amounts of white space within the body

of a creature, potentially because the area is spatially far from the nearest

lineart, and the model has lost context. This can be seen when comparing

the creatures in Figure 4.4 to the creatures in Figure 4.3 where the sketch is

much more dense. For the above reasons, we theorize that a transformer [47]

could be used to increase coherency within the image. We have implemented

a variant of a model suggested by Esser et al. [9] which employs a transformer

to go from the latent space of one VQ-VAE to another. However, in initial

experiments we őnd that this model performs even worse, which we believe is

due to the increased complexity and capacity of the model, which could lead

to overőtting. We believe that the most beneőcial next step is to make use

of a larger dataset of artistic images. However, we are hesitant to make use

of further arbitrary image datasets as they are often scraped based on online

search results with little care for data ownership or usage rights. This is the

case for the MGIF dataset [42], which contains many licensed characters and

artwork by people who have not consented to having their work used in this

way. We believe that the choice of dataset must be purposeful and done with

consideration for the origin of the data.

4.6 Conclusions

In this chapter we have introduced a preliminary system for the generation

of images based on sketches and palettes. Our őnding is that this task is

more difficult than the task presented in Chapter 3, and a similar model is

insufficient to produce good results with the same dataset. We analyze the

output of the system, identify speciőc shortcomings and propose mitigations

that may be applied in future work.
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Chapter 5

Conclusions and Discussion

5.1 Potential Impact

We hope that our work thus far, and continued research into this topic, can

prove useful to artists as well as researchers in this őeld. In this section we

evaluate the potential impact of what we put forth in this thesis, both in terms

of value and risk to stakeholders.

5.1.1 Value in use by artists

Our goal is to provide artists with systems that can be easily adopted to

facilitate their existing workŕows. We consider the work presented in this

thesis to be a signiőcant step towards that goal for the artform of animation.

The system we propose in Chapter 3 is formulated with short-form sprite

animation in mind and has not been tested outside of this scope, but due to

the overlap in workŕows we believe that our work provides a jump-off point to

adapt similar methods to long-form animation, such as for őlm and television.

The system proposed in this thesis provides animators with a tool to speed

up their workŕow, which we believe is most impactful for animators who work

outside of the animation industry, such as indie game developers and hobbyist

creators. Culture beneőts from the work of these artists, and we are happy to

put our time towards lowering the threshold to creation. On the other hand,

the work in Chapter 4 is of limited value to artists, but provides valuable

insight into the task of generating images from sketches and palettes and what

challenges are present.
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5.1.2 Risks

The work put forth in this thesis is done in good faith, but it is worth dis-

cussing issues which it may exacerbate. The automation of artistic processes

has been criticized by artists. Firstly for the use of data which was misap-

propriated through online search engines without artists’ consent [45]. Ad-

ditionally, artists fear job displacement due to the emergence of tools which

can create high-ődelity artwork. This effect is already being reported [59] and

while the contributions of this thesis aim to mesh with existing artist work-

ŕows than existing AI systems, the contributions are ultimately intended to

lessen the amount of work needed. Therefore this could decrease the number

of available jobs due to the lower labor requirement.

5.2 Conclusions

In this thesis we have presented two new problem formulations for animation

automation which adhere more closely to artist workŕows than any existing

work to our knowledge. We have additionally proposed systems to perform

this automation through the use of VQ-VAE models.

Firstly, we proposed SketchBetween, which we showed outperformed a

strong baseline. Additionally, we demonstrate that our problem formulation

consists of valuable information for our system through an ablation study of

the input to the system. Furthermore, we perform a case study of the system’s

performance on data from artists which provided valuable insight into biases

and limitations of the system.

We additionally examine the related task of generating images conditioned

on sketches and palettes. This task is compatible with the ideation phase of

certain artist workŕows, and existing research does not sufficiently address

this step of the creative process. We provide a preliminary system to perform

the task, and analyze the outputs as well as suggest future work based on

limitations we identiőed.
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