
Do the stars align? Multidimensional analysis of Android’s Layered Architecture

Victor Guana, Fabio Rocha, Abram Hindle, Eleni Stroulia
Department of Computing Science

University of Alberta
Edmonton, Canada

{guana, fabiorocha, abram.hindle, stroulia}@cs.ualberta.ca

Abstract—In this paper we mine the Android bug tracker
repository and study the characteristics of the architectural
layers of the Android system. We have identified the locality
of the android bugs in the architectural layers of the its
infrastructure, and analysed the bug lifetime patterns in each
one of them. Additionally, we mined the bug tracker authors
and classified them according to its social centrality in the
Android bug tracker community. We report three interesting
findings, firstly while some architectural layers have a diverse
interaction of authors, attracting not only non-central authors
but highly important ones, other layers are mostly captivating
for peripheral actors. Second, we exposed that even the bug
lifetime is similar across the architectural layers, some of
them have higher bug density and differential percentages of
unsolved bugs. Finally, comparing the popularity distribution
between layers, we have identified one particular layer that is
more important to developers and users alike.

Keywords-bug tracker; architectural layer; lifetime; social
centrality

I. MOTIVATION AND BACKGROUND

The ability to mine software repositories and specifically
bug tracker systems provides software architects and devel-
opers the facility to discover where they have been investing
time fixing problematic issues of a system. As the bug
accountability capabilities for developers increase, so does
the ability to make decisions about team distribution or
resource investment for sensible software architecture struc-
tures. Historical data provided in the bug tracker repositories
can unveil unexpected behaviors aligned to concrete parts of
the architecture where bug characteristics like lifetime, bug
density, or user’s interest differ.

Some authors use system bugs reports as a main source of
information for layered architectural analysis. For instance,
HATARI [2] integrates structural information from source
code and bug repository entries to measure how components
are affected by bugs and which bugs affect more compo-
nents. Kumar et al. [1] look into the manifestation of failures
in different modules of Android and their characteristics. We
use similar approaches and extend current proposals by using
social network and community interest metrics.

The 2012 Mining Challenge has provided a subset of
the Android bug tracker repository for exploration and
analysis. We have leveraged this information, together with
the Android layered architecture in order to explore how

the architectural locality of a bug relates to its lifetime,
popularity, and authorship. In our paper we care about 4
questions in particular:

1) Is there any architectural layer with higher bug density?
2) Is the bug lifetime affected by its location within the system

architecture?
3) Is there any architectural layer where central bug authors

focus their attention?
4) Do participants of the bug tracking community follow any

architectural location in particular?

Our study identifies architectural hotspots where our con-
ceptual framework could be used to develop social-centric
software bug triage and development strategies.

II. ANDROID LAYERED ARCHITECTURE

The Android Operating System (OS) is a set of software
services specially ported for mobile devices. Its architec-
ture is based on five layers where different functionalities
and behaviors take place: applications, framework, libraries,
runtime, and linux kernel. The application layer consists on
individual applications such as email clients, browsers, or
games that extend the OS functionality. The library layer
configures a set of C/C++ packages used by the application
framework to manage the screen rendering, device security,
applications persistence, among others. The runtime layer is
composed by the Dalvik virtual machine and android core
libraries that specify the applications execution environment
inside the OS. At the bottom of the layers of abstraction,
a customized linux kernel is used in order to provide the
low level OS capabilities such as memory management and
process scheduling. This architecture1 is widely known and
has been summarized in [1]. Given that bugs related with
the applications are reported in independent bug tracking
systems, we have studied the bugs related with the four last
layers omitting the application level.

III. INPUT DATA

The bug tracker log provided by the MSR challenge
contains 20169 bug entries, committed by 11617 different
authors. For our particular interest, the structure of the bug

1http://developer.android.com/guide/basics/what-is-android.html



entries involves the bug id, open and close date, descrip-
tion, reporter id, and owner. Additionally, each bug has an
optional set of comments (including its author, title, and
submission date). A stars field is used in order to represent
the number of people following a bug (getting notifications
if the bug report presents any activity). Besides, the log
contains 67730 comments, limited to 25 in total per bug,
with an average of 3.35 and a deviation of 5.33. Bug
comments and descriptions are particularly rich; on average,
while a bug description has 113.1 words, its comments
have 139.4 (with word deviations of 130.65, and 338.4
respectively). The recorded bugs were submitted between
November of 2007 and December 2011, providing a partial
bug history of 50 months.

IV. METHODOLOGY

We have investigated the bug locality within the Android
architecture presented in Section II and their characteristics.
We have used a token-set schema that allows performing
set operations for counting and filtering properties. We
supported the author social analysis by creating relational
tables and running SQL exploratory queries. In this section
we discuss the exploration framework developed to answer
the four questions mentioned in Section I.

A. Step 1: Bug Layer Classification

In first place we have categorized the bugs according
to topic words related to each one of the architectural
layers, we have selected specific set of words and its
occurrence inside the bug title, description, and comments
as classification variables of the bug. Using our classification
methodology, if at least 10% of the bug total word count is
related with a layer topic set, it is labelled with the layer
name. The topic words per layer are based on the Android
architectural documents:

Framework: Activity Manager, Package Manager, Telephony
Manager, Window Manager, Content Provider, Location Manager,
View System, Notification Manager.

Libraries: Surface Manager, Media Framework, SQLite,
OpenGL, FreeType, WebKit, SGL, SSL, libc.

Runtime: Core, Dalvik, Virtual Machine.
Kernel: Display Driver, Camera Driver, Flash Memory Driver,

Binder, IPC, Keypad Driver, WiFi Driver Audio Driver, Power
Management.

B. Step 2: Bug Lifetime

Focusing on the bugs that have been associated with some
architectural layer, we exclude those that have not yet been
closed. Then we calculate the lifetime of each bug as the
number of days lapsed from the date it was created to the
day it was closed. We have taken the life window of each
bug as the period between its the open and closed date.

C. Step 3: Bug Reporter Social Network Analysis

We studied the social importance of the Android layers by
analysing the social centrality of their bug reporters and how
popular each layer is for the general community within the
50 months study window. In order to analyse the centrality of
a bug reporter we have used the reporters email addresses as
their unique id given each bug <reportedBy> field. Using
a social network analysis approach we have characterized the
importance of a reporter as its social centrality (sum of the
reporter indegree and outdegree). We mined each reporter
social outdegree as the number of bugs they reported, plus
the number of comments they have posted in other existing
bugs. The reporter indegree has been calculated as the sum
of the number of comments that his bugs have received.

D. Step 4: Bug Staring Analysis

The <stars> field of each bug specifies the number of
people following the bug activity. Thus, as a proxy measure
of the amount of interest each layer is receiving from the
community, we count the number of stars associated with
the bugs at each layer (as identified in step # 3 above).

V. RESULTS

After the filtering process our methodology classified
close to 43% of the reported bugs among the four archi-
tectural layers. 57% of the bugs were not classified inside
the layers under study. Most of non-classified bugs belong to
particular applications in the applications layer or have been
posted as system open questions. The results are summarized
in Table I. We have sampled 40 of the classified bugs and
manually validated its location within the architecture, we
found that 31 of them were correctly classified giving our
methodology an accuracy of 77.5%.

Layer Total Bug Tracker %
Framework 4756 23.58
Libraries 744 3.68
Runtime 612 3.03
Kernel 2485 12.32
Not Classified 11572 57.37

Table I
BUG LAYER CLASSIFICATION

1. Is there any architectural location with higher bug
density? Our classification method exposed a higher bug
concentration in the framework layer (Table I). We believe
that this is because the bug tracker community is mainly
composed by application developers which use the frame-
work managers in order to support the application control
over the mobile device capabilities. Furthermore, the study
shows that the kernel layer also presents a considerable
concentration of bug reports. A manual inspection showed
a community trend on developing platform drivers to cus-
tomize the OS to experimental hardware.



Figure 1. Bug Lifetime - Android Layer Comparison (Month 1, and Years 1 to 4 windows)

As a first step we localized the proportion of closed
bugs in each one of the layers. We found that in the
framework layer around 32% of the bugs were closed in
the time window under study. Moreover, 46% of the bugs
in the runtime layer were closed, making it the one with
more closed bugs in the architecture. We focused on bugs
with an interesting lifecycle (other than creation-initial
inspection-closing) and we excluded bugs with the labels
Duplicate, NeedsInfo, Spam, and Unreproducible in their
<status> field, we named this subset the discardable bug
set. Table II summarizes the closed bugs per layer.

Layer Closed Layer % Non-Discardable %
Framework 1524 32.04 20.43
Libraries 203 27.28 18.32
Runtime 283 46.24 37.18
Kernel 637 25.63 12.51

Table II
CLOSED BUGS IN ARCHITECTURAL LAYERS

2. Is the bug lifetime affected by its location within
the system architecture? The lifetime across layers is rather
similar. Figure 1 portrays the bugs lifetime in two different
time windows: first month (up) and a 4 years (bottom). In
Figure 1, the y axis shows the percentage of bugs closed
from the total reported in 50 months study window.

There is a clear pattern where most of the bugs are closed
in their first month of existence. In the libraries layer, the
initial (first month) close proportion is smaller in comparison
with the other ones (50% versus almost 60% in the rest of the
cases). Similarly, during the first year, the closing proportion
decreases gradually except for the libraries layer where, in
months four and five, the proportions are 5% higher than in
the other layers. We suspect this behavior is because most of
the components in this layer (e.g. SQLite, WebKit, OpenGL-

ES) are maintained by third-party teams; it takes around 2
months to redirect, assign, and close them.

Other observations expose that 89% to 93% of bugs
are solved in their first year of existence. However, the
framework and kernel layers present long lasting bug
densities after the year 2.5. In these layers between 1.4%
and 1.9% of the bugs are solved late in terms of our study
window (after 2.5 years), a manual inspection revealed
that most of them are related with the OS portability, and
were reported and closed by an OS version release date.
In this time frame we have observed features such as
USB drivers, multimedia codecs, and network security that
were requested and completely developed. The first month
window confirms the proportion of the discardable bugs.
Here we can observe that most of the bugs solved in the
first month are closed in the first week, suggesting that
most of them belong to each layer discardable bug set. In
particular 49% of the closed bugs in the framework layer
are discardable and were closed during their first two weeks
of existence.

3. Is there any architectural layer where central bug
authors focus their attention? In terms of the reporters
centrality in the bug tracker network, we found that while
authors in the framework layer have on average a higher
centrality, reporters on the library belong primary to the
network periphery (Table III). Additionally, using Violin
Plots [3] we can observe in Figure 2 that the density of the
kernel and framework layers have a great diversity in terms
of reporters centrality. Especially on the framework layer,
a concentration of low, medium and high central authors
can be observed in a left skewed normal distribution. On
the other hand the bugs in the library and runtime layers
are not reported by the bug tracker network top central
authors. We believe this happens because the network is
particularly popular for high level application developers,



causing a great interest in the framework components used
to enhance the top level applications experience. As a
consequence the reporters of the framework layer bugs
are more involved feedback discussions that increase their
centrality. Library and runtime reporters act in the network
periphery inside more controlled discussion clusters. As an
example of our social network analysis, the most central
author in the network is Jean-Baptiste Queru, Android’s
open source code leader (6190 incident ties).

Rep. Centrality (AVG) Rep. Centrality (STD)
Framework 71.1758 258.3553
Libraries 32.25 56.5441
Runtime 37.3602 78.6886
Kernel 49.308 92.8022

Table III
LAYER REPORTER CENTRALITY SUMMARY STATISTICS

4. Do participants of the bug tracking community
follow any architectural location in particular? Using the
distribution of bugs followers provided by the stars field we
characterized the interest of the community in each layer.
While the reporter centrality limits the popularity analysis
to the formally involved nodes of the bug tracker network
(commenter and reporters), the stars provide a more general
indicator given anyone can register as a bug follower. Figure
3 and Table IV, expose that in addition to the framework
layer, the kernel is also popular for the follower community
based on their star concentration. Upon log inspection,
this happens because general users follow the hardware
compatibility issues of the OS. Those issues are classified
in the kernel layer mostly, where the problems related to
drivers and software to hardware adaptation are spotted.
The significance of this and the previous question relies
on how development and management teams could identify
architectural zones where the development efforts could be
focused not only on the interest zones of central contributors,
shifting priorities in order to build a more socially visible
development policy.

Bug Stars (AVG) Bug Stars (STD)
Framework 43.2201 380.4073
Libraries 68.681 217.6876
Runtime 9.4472 34.4884
Kernel 126.988 92.8022

Table IV
LAYER STARS SUMMARY STATISTICS

VI. CONCLUSIONS

Our study exposed that the bug lifetime is similar across
Android architectural layers. However the framework and
Android layer have long lasting bugs. Additionally, our

Figure 2. Centrality Bug Reporter Density - Android Layer Comparison

Figure 3. Bug Staring Density - Android Layer Comparison

results exposed that even though central developers pay
attention to the framework layer of the architecture, the
community also looks to the kernel components. We have
exposed an apparent misaligned bug closing proportion
between the social-central and general actors interest zones,
and other architectural layers. We believe that strategies
like the presented in this paper could be used in order to
develop social-centric bug triage and development policies.
Our future work pursue cross-referencing current findings
with code repositories to include an Android’s developer
perspective.

REFERENCES

[1] Kumar, Kangli, Sultana and Bagchi, Characterizing Failures
in Mobile OSes: A Case Study with Android and Symbian 21st
International Symposium on Software Reliability Engineering
(ISSRE), IEEE, 2010.

[2] Sliwerski, Jacek and Zimmermann, Thomas and Zeller, An-
dreas, HATARI: raising risk awareness SIGSOFT Softw. Eng.
Notes, ACM, 2005.

[3] Hintze, J.L. and Nelson, R.D. Violin plots: a box plot-density
trace synergism The American Statistician, 52(2):181-184,
1988.


