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Abstract

We designed independent perceptual video compression that can work with all

the available video coding standards. We used fovea as the Human Visual System

(HVS) properties in this thesis.

In this thesis, first, we describe and compare two available foveation techniques

used for images. After finding the pros and cons of the techniques, we improve one

of the single-fovea techniques for video compression so that it preserves the quality

of videos better compared to conventional video coding. Finally, we compare our

technique with four foveation-based objective metrics for nine different video con-

tents and different parameters, and in order to improve the evaluation assessment,

we did two subjective tests to hear the users opinion about the video results.
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Chapter 1

Introduction

Nowadays, the demand for multimedia content is growing tremendously. The re-
cent advances in video communication technologies provide the opportunity to
produce a huge volume of video content every day for many different purposes,
such as entertainment and video conferencing. Due to large original uncompressed
video signals, video must be compressed efficiently for transmission and/or stor-
age.

Video compression has been studied for several years to preserve the video
quality while maximizing the compression ratio. Traditional video compression
standards such as MPEG-1 ISO/IEC (1993), MPEG-2 ISO/IEC (1994), MPEG-4 ISO/IEC
(1999), H.263 ITU-T (1995), H.264/Advanced Video Coding (AVC) JVT (2003), and
High Efficiency Video Coding (HEVC) (also known as H.265, Sullivan et al. (2012)),
the most recent video coding standard, try to achieve compression by removing
spatial and temporal (statistical) redundancies in the videos. However, in order to
achieve better coding efficiency we need to consider perceptual redundancies as well
as statistical ones. The characteristics of the Human Visual System (HVS) can be
helpful for extracting the perceptual aspects of a video and use them in compres-
sion to increase the compression ratio without significant, noticeable quality degra-
dation. Therefore, by incorporating limitations of the human eye to video compres-
sion, a technique known as perceptual video compression, one can maximize the per-
ceived quality, in contrast to the commonly used quality metrics such as the Peak
Signal-to-Noise Ratio (PSNR) or the Mean Square Error (MSE) (Lee and Ebrahimi,
2012).

The HVS properties have been studied in many areas such as biology and neu-
roscience; however, there are still difficulties to understand them. In addition, peo-
ple want to use different types of video content in different applications so design-
ing perceptual video coding methods that work well in different situations is also
a challenge (Lee and Ebrahimi, 2012).

In perceptual video compression, there are three major subfields. The first stud-
ies how to define the perceptual model to detect the most or least important regions
in terms of perceptual quality in video sequences. The second studies how to em-
ploy the perceptual model into encoding standards, and the third studies how to
have accurate quality assessment based on HVS characteristics and not just or-
dinary quality metrics that, according to Lee and Ebrahimi (2012), only consider
the distortions of the signal. This work is related to the second subfield and we
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employed existing methods to perform the rest of the tasks related to the other
subfields.

In the following, we will describe different concepts of human visual perception
mechanisms that have been used in perceptual video compression. Then, we will
list our contributions.

1.1 Human Visual Perception Mechanisms

In survey of Lee and Ebrahimi (2012) five different concepts have been introduced
as human visual perception characteristics relevant to video compression, namely
contrast sensitivity, masking effects, fovea, visual attention, and multimodality of
attention. In the following sections, we briefly describe each of them according to
the work of Lee and Ebrahimi (2012) and other studies mentioned in each section.

1.1.1 Contrast Sensitivity

Contrast is one of the factors that affect human attention from the beginning of
visual processing when the HVS converts luminance into contrast. Therefore, the
parts of an image with high contrast compared to their neighboring areas are more
likely to be seen (Osberger and Maeder, 1998). Contrast Sensitivity (CS) is the sen-
sitivity of the HVS, and its reciprocal is called CS threshold.

The spatial and temporal frequencies of stimuli in visual signals have different
effects on the acuity of the HVS, e.g. the HVS cannot distinguish parts of the sig-
nal with a frequency below the CS threshold (Lee and Ebrahimi, 2012). Changes
in the luminance, such as different patterns or textures with different orientation,
are perceived as spatial frequencies. Motion and flicker are in the temporal fre-
quency category. The HVS is very sensitive to frequencies below 30 Hz but this
sensitivity degrades fast as this amount goes above 30 Hz (Cox et al., 2008). In im-
age and video compression, researchers attempted to remove the high frequency
components from the low ones to achieve a higher compression ratio. In JEPG
compression, a transformation such as Discrete Cosine Transform (DCT), a type of
Fourier transformation, is applied to the image to separate the low and high fre-
quency components. Then, half of the high frequency bits are removed (resulting
in a loss of approximately 5% of the encoded information) (Smith, 1997).

1.1.2 Masking Effect

The visibility of one stimulus (called “target”) in a scene can be affected by an-
other spatiotemporally neighboring stimulus (called “the mask”), and the target’s
presence can be less perceptible or imperceptible. This effect is called visual mask-
ing. One type of masking is called metacontrast, which happens when there is one
fleeting target whose visibility is reduced by the presence of fleeting, temporally
succeeding masks in the same spatial location or in its adjacencies (Breitmeyer and
Ogmen, 2006; Enns and Di Lollo, 2000). This kind of masking is a form of backward
masking. On the other hand, if we change the temporal order of the target and mask,
we will have a new mask called paracontrast, a form of forward masking. Another
type of visual masking is masking by light, in which the visibility of a preceding or
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Figure 1.1: Inner look of the human eye structure (Source: Wang and Bovik (2005))

subsequent flashed target stimulus is undetectable due to the presence of a fleeting
flash, a uniform illuminated regional mask (Breitmeyer and Ogmen, 2006).

By having a spatially or temporally complex background, human visual ability
is also reduced. As an example, fast moving areas or immediate scene changing are
difficult for human eyes to track, thus introducing these errors during compression
does not affect the perceived video quality (Osberger et al., 1997).

1.1.3 Fovea

Here, we will summarize the fovea concept introduced in Wang and Bovik (2005),
Chen and Guillemot (2010), Wandell (1995), and Lee and Ebrahimi (2012).

The structure of the human eye is displayed in Figure 1.1 (Wang and Bovik,
2005). The environment’s light comes through the pupil and reaches the retina
region at the back of the eye, where the photoreceptors of the eye can sense them.
The human eye has two different types of photoreceptors: the rods and the cones.
The rods are responsible for capturing the visual information of luminance and
low-light conditions, while the cones can capture the fast motions and more details
in the scene. The fovea is a special circular region with diameter of 1.5 mm at the
center of retina. The angle (in degrees) between the straight line from the pupil to
the fovea and the other regions in the retina is called retinal eccentricity (Wang and
Bovik, 2005). Because of the eye’s movements, it is possible to intersect this line to
any point in sight. This intersection point is called the fixation point and is where the
viewer’s visual attention is fixed. Figure 1.2 from Wang and Bovik (2005) illustrates
the density of photoreceptor cells as a function of retinal eccentricity. As can be
seen in this figure, in the fovea region (where eccentricity is close to zero degrees)
there are many sensor cells, such as the cones and ganglion cells, but there are no
rods. This allows the fovea to capture a high-resolution image from a spot of a
scene when a person is gazing at it. However, as the distance from the fovea region
increases in the retina (i.e. the retinal eccentricity increases), the brain captures less
details (or has lower resolution). When the retinal eccentricity is more than 2◦, i.e.
away from the fixation point, the vision is blurred.
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Figure 1.2: Illustration of density of retinal cell and photoreceptors with respect to
retinal eccentricity (Source: Wang and Bovik (2005))

1.1.4 Visual Attention

When a human is looking at a scene and is paying attention to examine an object
or a person, (by focusing on it,) he/she cannot perceive other things in the object’s
surroundings very well, even though the peripheral area is visible to him/her. Hu-
mans can fail to notice large changes happening in an object or scene (change blind-
ness), or even not observe them (inattentional blindness) if he/she does not focus
attention on them (Simons and Chabris, 1999).

Frintrop et al. (2010, p. 5) define two distinct types of attention:

directing the focus of attention to a region of interest is associated with eye
movements (overt attention). However, this is only half of the story. We are
also able to attend to peripheral locations of interest without moving our
eyes, a phenomenon which is called covert attention.

The covert attention is followed by quick eye movement called saccades so that
the viewer can change his/her focus of attention after he/she finds a Region Of
Interest (ROI) in the peripheral area which can be a motion or some familiar objects.

There are different approaches to detect the targets which attract human atten-
tion. These approaches use different types of attentional targets: space-based (also
called location-based), feature-based, and object-based attention. Yantis (2000) provided
a thorough overview of the research and studies about these approaches.

Different factors that can drive attention are categorized as bottom-up and top-
down. These factors are defined in Lee and Ebrahimi (2012, p. 686): “Low-level
salient features induce bottom-up attention automatically, e.g. abrupt change or
prominent appearance of color, shape, motion, orientation, contrast, size, and so
on. On the other hand, goal-oriented cognitive control is responsible for top-down
attention”. Knowledge and expectation are cognitive factors employed to design
top-down attention models. As an example, human faces are commonly used as
top-down attention factors in video and image applications (Cerf et al., 2007). A
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more thorough overview about visual attention can be found in Frintrop et al.
(2010) and Lee and Ebrahimi (2012).

1.1.5 Multimodality of Attention

Attention is not solely affected by the HVS. Some studies have proved that hearing
can also affect human attention. Mazza et al. (2007) have shown that even though
the detailed information about the visual target is given to subjective participants
to avoid unwanted distraction from the target, auditory cues affect their attention.
This fact is also empirically demonstrated by Tellinghuisen and Nowak (2003).

1.2 Motivation

From time to time, a new video compression standard is introduced with signif-
icant differences compared to previous standards, which makes it challenging to
adapt existing techniques to the state-of-the-art standard. Therefore, it is impor-
tant to design a method compatible with the existing compression standards while
improving the compression ratio and keeping or increasing the perceptual qual-
ity. Another advantage of designing an independent method is that the users do
not need to change their encoders; they can simply add the new module as an
extension, while the encoder still works with and without the extension video bit
streams.

Moreover, as we have said, these methods do not exploit properties of the HVS
for compression, and exploring these properties is useful because compression
should be employed intelligently so that the users are satisfied with the resulting
perceived quality of the coded videos, which is not an easy task to do.

In fact, according to Lee and Ebrahimi (2012, p. 684), “application- and context-
dependent quality expectations of users have sometimes prevented researchers
from reaching generally applicable perceptual compression techniques.” Devices
such as mobile phones, personal computers, and hand-held devices have their own
limitations. Also, the available bandwidth, the video context, and requested qual-
ity for a video bring more challenges to compression. The method should provide
a suitable video stream based on the user’s demands.

Nowadays, users would prefer to use fast and simple applications rather than
complex techniques that require special hardware. The method should also be flex-
ible to all kinds of input, so that the application can be used on various platforms.
The goal of this thesis is to address the challenges mentioned above.

In this work, we selected the “fovea” to work with. We believe that when view-
ers are watching videos, they mostly concentrate on some regions of the video and
they do not pay attention to all of the details of the presented frame. Thus, in
some situations of limited storage or transmission, foveation can satisfy viewers’
expectation of the video quality. With the new video standard, HEVC, some of the
existing methods need to be modified and implemented specifically for the HEVC
encoder, whereas others are, inherently, incompatible with it. Because after decades
of research on image and video compression, DCT has reached the point that it
is acting better for quality than wavelet-based coding. Thus, the methods which
were introduced based on this fact are not useful for HEVC and future trends. Ac-
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cording to Wang and Bovik (2005, p. 3), the major motivation is “high-frequency
information redundancy exist on the peripheral regions, thus more efficient image
compression can be obtained by removing or reducing such information redun-
dancy.” Hence, the required bandwidth is reduced as well. Furthermore, using
foveation helps to keep the quality of the attraction regions even in noisy channels.
However, this fact depends on how well the used foveation technique tolerates the
transmission errors. Moreover, HEVC works well in compressing fixed areas in
the video such as the fixed background even in low available bit rates. This is be-
cause HEVC encodes the fixed areas with the largest CU size, given to the encoder
(see Section 2.2) in the first frame with almost perfect quality. Then, HEVC skips
these areas unless those areas change. Hence, HEVC’s strength matches with our
selected foveation method and they work well together.

1.3 Proposed Method Outline

In our method, we are given a video input and a tool that can provide us with
fixation points for each frame. Then we foveate each frame and the foveated video
is given as an input to the video compression encoder. After transmission of the
compressed video, the foveation parameters and the fixation point(s), the video
is decompressed by the video coding decoder. Finally, the video is defoveated
according to the transmitted parameters. Figure 1.3 summarizes the design of our
proposed method and how it can be combined with the other two subfields (see
section 1) to become a complete application.

In this work, as detailed in Section 2.3, we manually selected the fixation points.
The video compression standard that we used is HEVC which is detailed in Chap-
ter 3.

The main focus of this work is on improving the existing fovea compression
method and empirically studying the impact of the foveation parameters on the
compressed video quality.

1.4 Thesis Contributions

In this work, we propose and analyze a fovea-based perceptual video coding method.
The idea is to incorporate characteristics of the HVS (foveation) in a standard-
independent way, and we provide empirical evidence showing that this strategy
does improve compression without significant degradation of the perceived qual-
ity compared to the original video. The existing foveation methods used in image
and video compression have different advantages and disadvantages which makes
it hard to use them for most of the applications. In Section 3.7 more details about
the comparison between the proposed method and the existing ones can be found.

This thesis also presents an evaluation of our study in terms of different objec-
tive and subjective metrics. This study better informs us about how well or poorly
the objective metrics are capturing perceived video degradation. In our subjective
tests, users are asked to watch some videos resulting from the proposed and con-
ventional compression method and judge the quality of the videos.

Our method works as a pre-processing step to video encoding and a post-
processing step to video decoding. This reduces the input size to the encoder;
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Figure 1.3: Proposed method diagram
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therefore, it can reduce the amount of data transmitted to the decoder and the over-
all computational cost and execution time of encoding/decoding. However, as the
quality is more important to the user than the size, we evaluated our method by
providing fixed bit rates to evaluate the method’s perceptual quality improvement
in the ROIs of encoded videos. In addition, this method does not send much unnec-
essary information (peripheral area) to the encoder to compress; and it completes
the peripheral areas in the decoder by interpolation. This part addresses the issue
of video compression standards that take a lot of time to encode video data.

Moreover, as an improvement over existing fovea-based methods, our tech-
nique produces less visible artifacts and, though standard-independent, videos
that are favorable for compression by HEVC, largely regardless of their contents.
Our method has a potential to be completely independent from the video’s content
(this work is just presented for a single fixation point, but it can be easily extended
to multiple fixation points). The improved foveation method was selected from
an image compression technique which is suitable for use with video compression
standards.

The method is independent of how fixation points are selected for each frame
of a video, so that it supports both fixed and movable fixation points. Also, quick
movements may cause artifacts in HEVC compression, an issue solved by our
method. Our experiments show that our method can handle quick movements,
moving camera/scene better than HEVC.

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2, we have a review of previous
works on different foveation techniques, a brief introduction about HEVC based on
our usage in this thesis, and the review of available techniques for selecting fixation
points. In Chapter 3, the improved foveation method is presented. The chapter
also describes another foveation method which is compared with the proposed
method. Chapter 4 shows the objective and subjective tests on the proposed fovea
method with the choice of HEVC as a video compression for 9 different sequences.
The results are compared with the state-of-the-art video coding standard (HEVC).
Finally, in Chapter 5, we summarize our method and provide some suggestion on
how to improve the proposed method and what can be done as future work in
foveation video coding.
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Chapter 2

Literature Review

2.1 Literature Review

In this thesis, we have used “fovea,” one of the HVS features. By applying foveation
in a video, one can preserve the quality of the video in the attraction areas (around
fixation points) in order to produce higher perceptual quality.

In this chapter, first we describe different foveation techniques according to
their functionality, following the survey of Wang and Bovik (2005). These methods
are called geometric, filtering-based, multi-resolution, and wavelet-based foveation.
Then, we overview the latest video compression standard, HEVC. We conclude this
section with a review of the different methods for generating fixation points.

2.1.1 Geometric Methods

The base of this approach is to use the geometry-foveated retinal sampling. In this
non-uniform sampling, the image is transformed to the spatially-adaptive coordi-
nate system, which is called “foveation coordinate transform” (Wang and Bovik,
2005). In other words, this foveation transform maps pixels into another image so
that regions farther from the fixation point (the center of the region where the user
is gazing at in the image) become more compressed (In this thesis, the vicinity of
the fixation point will be treated as the ROI).

This geometry has been employed in different methods:

• direct transformation of an image to a non-uniform coordinates,

• the Superpixel method,

• non-uniform subsampling.

In the first approach, the foveation transform is applied to an image which is
then mapped to new non-uniform coordinates, called curvilinear coordinates (Lee
et al., 2001). Figure 2.1 shows an example of this transformation. The re-transformation
of this transformed image is a foveated image. The downside of this method is that
the transformed image grid is non-integer while the pixel locations are integer. In
both transform and inverse transform, interpolation and re-sampling are needed.
To solve these difficulties, Basu and Wiebe (1998) introduced two techniques, which
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Figure 2.1: Original image (left) and transformed image to curvilinear coordinates
(right) (Source: Wang and Bovik (2005))

we discuss in detail in Section 3.2.1. These solutions have been studied and im-
proved upon in this thesis in order to extend their use to video compression stan-
dards. The improvements increase the quality of compressed videos and take ad-
vantage of existing video compression standards to better reconstruct videos. As
these methods produce rectangular images instead of curvilinear images, they are
compatible with the standard encoders’ input.

The second approach, the superpixel method (also, referred to as a resolution
grid), has been studied by Wallace et al. (1994), Bandera and Scott (1989), Kortum
and Geisler (1996), Camacho et al. (1996), and Tsumura et al. (1996). A superpixel
consists of some screen pixels with the same assigned value in the compressed
image (Kortum and Geisler, 1996). This technique fills the superpixels with the av-
erage value of pixels from the original image which are grouped into a superpixel.
The retinal sampling is the base for setting the size of each superpixel.

In Wallace et al. (1994) a logmap (also called log polar or log spiral) transform has
been introduced as

w = log z + α. (2.1)

where z is the original coordinate of a pixel (which is positive), and α is a constant.
Using this equation, z will be transformed to a w coordinate. Both z and w are
complex numbers. In this foveated sensory approach, first the rectangular image
is transformed to an inverse logmap image using a superpixel look-up table (see
Figure 2.2) and then by applying (2.1), the logmap image is created. Due to the
number and shape of superpixels, applying changes to this look-up table is costly.
So this method is unsuitable for moving fixation points (Wang and Bovik, 2005).

In Kortum and Geisler (1996) a square grid is defined based on the retinal
sampling foveation for superpixel methods, which is more practical because it is
hardware-independent. Each superpixel is filled with the average value of pix-
els located in the superpixel area in gray scale format. Bandera and Scott (1989)
and Camacho et al. (1996) also used a square grid. A multiple-stage superpixel
was introduced in Tsumura et al. (1996) where each stage has different block sizes.
Therefore, the blockiness artifact is unavoidable in this method.
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Figure 2.2: Look-up table for the logmap superpixel transformation. This logmap
has 16 spokes (S) and 20 rings (R) which are used for indexing (S,R). (Source: Wal-
lace et al. (1994))

The main issue of the superpixel methods is that they produce some disconti-
nuity artifacts in the resulting image, which requires some post processing (such as
blending) to fix it. This issue adds more complexity to the method. Moreover, for
different fixation points, a new superpixel representation should be constructed
from the original image, which increases the computational costs/complexity of
the methods.

The third approach is using non-uniform subsampling to take the foveated
retinal geometry into account, i.e. the foveated image will be reconstructed by
setting the pixel values in the retinal sampling positions (foveating the image).
This method was introduced by Kyuel et al. (1999). After reconstructing the sub-
sampled image, which is circular, B-Spline interpolation is used to fill the missing
pixels. However, due to the aliasing artifacts introduced, applying a Gaussian filter
is necessary, which makes the method more costly. Basu and Wiebe (1998) devel-
oped a system based on an idea similar to subsampling for low bandwidth video
conferencing. Their method is simpler compared to method of Kyuel et al. (1999),
due to employing Cartesian coordinates instead of polar coordinates when sub-
sampling pixels, as well as using simpler interpolation to fill missing pixels after
the inverse transform. Also, they have extended their foveated image compression
method to MPEG video compression (Basu and Cheng, 2001).

2.1.2 Filtering-Based Methods

Other approaches for foveation, studied by Wang and Bovik (2005), are filtering-
based methods that control which parts of the image have higher or lower quality
(according to retinal sampling). This control is based on the retinal sampling of the
HVS and the method applies a finite number of low-pass or band-pass filters to
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the image, with each filter having different frequency effects. Next, the resulting
images are merged to form an image with retinal sampling on the fixation point,
the foveated image. In the merge process, the low-pass and band-pass filter results
should be properly aligned with each other, which is not an easy task. In addition,
in designing filters one should consider the domain type (spatial or frequency), as
well as the trade-offs between different designs and their effects on the complexity
of the implementation. These decisions have a direct impact on the result. By hav-
ing a low local bandwidth, this method is computationally costly due to repeated
filtering, even though it can produce good-quality foveated images.

Sheikh et al. (2003) implemented and compared a filtering-based foveation method
with two different transforms; wavelet and DCT. They designed a real-time codec-
independent method that must be used as a preprocessing step in the encoder side
to provide a foveated image as the input of the encoder. Therefore, the method pro-
vides a foveated image for the encoder from the beginning, in spite of geometric
methods which require making an intermediate curvilinear image, thus there is no
need to apply any changes to the decoder of video compression for retransforma-
tion. However, the issue of this design is that the whole foveated image is encoded
uniformly, i.e. ,in encoding and decoding time there is no difference between the
ROI and peripheral parts. Hence, the resources of encoder and decoder of conven-
tional coding standards (bandwidth, CPU, memory, etc) are assigned equally to
different regions of foveated images regardless of their priority, unless the method
designed a dependent encoder-decoder based on the foveation model in order to
solve this issue.

Sheikh et al. (2003) concluded that their DCT implementation for foveation is
less complex than the spatial-domain foveation algorithm, even though spatial-
domain foveation compresses more and also produces less blocking artifacts com-
pared to DCT foveation. This is because DCT is applied to small blocks in the
image, so the foveated encoder input has blocking artifacts before compression, to
which the natural blocking artifacts of common video compression standards are
added. Thus, the decoupling of the inner transformation techniques (in codecs)
and the filter-based methods results in lower quality results at a higher computa-
tional cost (Wang and Bovik, 2005).

Another filter-based foveation video coding has been used in Lee et al. (2001) to
foveate the image. They described a novel optimal rate control algorithm according
to the fovea retinal properties to maximize the foveal-signal-to-noise ratio (FSNR)
(see Section 4.1). This new design helped to have better compression compared
with conventional coding due to eliminating high frequencies from peripheral re-
gions (Wang and Bovik, 2005).

2.1.3 Multi-resolution Methods

The multi-resolution method is a combination of the two previous methods. It
generates copies of the original image in different sizes, with different scales, using
down-sampling or other geometric transformation while applying a filter (such as
low-pass filter) to each scaled image. In contrast to the geometric methods, this
technique does not need any special indices griding (mapping pixel values to a
special grid), blending, interpolation, or superpixels to foveate the image due to
uniform down-sampling. As a result, the program runs faster, and indexing is
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Figure 2.3: Multi-resolution pyramid model (Source: Geisler and Perry (1998))

easier (Wang and Bovik, 2005). But, merging the different scaled images without
having artifacts on the borders is not possible. Thus, blending and interpolation
have been used as a post processing step in some techniques (Geisler and Perry,
1998). Also, because of the different resulting scaled images, more space and com-
putation are needed per input image, even though the amount of processing drops
as the size of the down-sampled image decreases.

Geisler and Perry (1998) proposed a real-time multi-resolution technique in
which a Laplacian pyramid, introduced in Burt and Adelson (1983), is used along
with down-sampling and regional foveation. Figure 2.3 shows the schematic of
this method. In order to find the foveation parts in the image, this technique used
a visible contrast threshold function CT satisfying

CT (f, e) = CT0e

(
α·f e+e2

e2

)
, (2.2)

where f is a spacial frequency(cycles/degrees), e is the retinal eccentricity (de-
grees), CT0 is the minimum contrast threshold, α is a constant for spatial frequency
decay, and e2 is a model parameter (see Section 4.1 for more details about the values
of CT0, α, e2).

Perry and Geisler (2002) used a similar technique with different steps to cre-
ate foveated images. First, they down-sampled the input image using the same
Laplacian pyramid as in Burt and Adelson (1983) and applied a Gaussian Filter
to blur each scale. There were six stages for most applications. Then, each im-
age is up-sampled and interpolated in order to be blended with the image in the
previous (larger) scale according to an attention map centered at the fixation point
(also known as cut-off frequency or resolution map). This algorithm is able to pro-
duce high-quality foveated video which is good for special applications such as
videos with text. However, creating each foveated image has significant space and
computational costs, due to the different pyramid levels.

In You et al. (2014) a perceptual-based foveal imaging model is presented. This
model has an improved attention model generated by combining different existing
attention models. Then based on this composite model, they predict the fixation
points. The foveation model proposed by Geisler and Perry (1998) is used in or-
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der to reduce the resolution in the peripheral areas based on the visual attentional
information described by their new attention model.

Chen and Guillemot (2010) present a foveation model combined with the spatio-
temporal just-noticeable-distortion (STJND) model for the H.264/AVC video coder.
This paper extracted the visibility threshold of each pixel in the image according
to the HVS sensitivity to luminance contrast and spatio-temporal masking effects.
Then the foveated JND model uses the relationship between visibility and eccen-
tricity to provide the information for macro-block (MB) (see Section 2.2.1) quantiza-
tion adjustment. They keep the MB distortion lower than the noticeable distortion
threshold by imposing a constraint in the rate-distortion optimization. By applying
this method, the perceptual quality of the compressed video can be improved. This
work can be used in interactive video communication such as video games and eye-
tracking applications. Chen and Guillemot (2010) do not mention the complexity
of their algorithm or whether it is useful for any handheld devices. This method
needs to be modified in case one wants to apply it to HEVC, because HEVC uses a
new partitioning scheme instead of MB (see Section 2.2).

2.1.4 Wavelet-based Methods

The wavelet transform has been used in many image processing and video com-
pression standards. This transform has been studied for many years to see if it
can be a good replacement for DCT in image and video compression. However,
this approach was not successful due to some practical issues of the wavelet trans-
form (Garrett-Glaser, 2010). As an example, Inter-frame (see Section 2.2) wavelet-
based methods were suggested during the development of MPEG scalable coding
in 2004. Scalability is a solution in some coding standards that can choose how
much data to send to the user based on his/her preferences, application, and net-
work condition. For this solution, some subset bit streams are created beside the
main video which contain lower spatial or temporal resolution or lower quality
video. Each subset can be decoded beside the main stream and adds more qual-
ity to the final reconstructed video. By dropping some of these subset bit streams,
scalable coding can handle different support for various bit rates (Schwarz et al.,
2007). Even though the wavelet schemes are more flexible for scalable coding and
it benefits from large-scale redundancies in the image, its visual quality is sig-
nificantly lower due to blurriness introduced by the wavelet transform (Garrett-
Glaser, 2010; Hang et al., 2010). For this reason, unlike the previous standards such
as H.264/AVC, HEVC does not use wavelet transform (see Section 2.2 for more
details).

Several works investigate foveation techniques in wavelet-based video com-
pression (Lu et al., 2001), (Wang and Bovik, 2001), (Wang et al., 2001), and (Chang
and Yap, 1997). Wang and Bovik (2001) introduced a wavelet-based foveation
method in which a foveated weighting model tries to use HVS properties to remove
high-frequency redundancies from peripheral regions. This embedded foveation
technique controls the order of the generated bitstream according to the available
bit rate, the HVS properties and values of the wavelet coefficients. This employed
foveation technique is the same as in Geisler and Perry (1998) (2.2). This method
has been improved to scalable video coding in Wang et al. (2003).

These foveated wavelet-based techniques cannot be applied to the new video
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Figure 2.4: Block diagram of HEVC (Source: Richardson (2013))

compression standard, HEVC. Being dependent on one specific video compression
standard makes it hard to remain up up-to-date with the state-of-the-art compres-
sion standard.

2.1.5 Other Usage of Foveation

In Sanchez et al. (2004) a prioritized ROI Coding method in JPEG2000 image com-
pression has been introduced which considers the concept of foveation for each
ROI. These transmitted packets are prioritized by applying Gaussian distribution
based on the ROI location, retina sampling and the available bandwidth. There-
fore, the resulting images are foveated, and by having more bandwidth more data
can be added to the peripheral area in order to increase the quality.

2.2 Overview of HEVC

HEVC is the state-of-the-art video compression standard first released in January
2013. In this video standard, the goal is to increase compression while preserving
the video quality. HEVC can generate videos with quality similar to those com-
pressed using H.264/AVC, (the previous video compression standard) while com-
pressing more. HEVC has the potential of achieving 50% bit rate reduction. How-
ever, till now they could only achieve up to 35.4% depending on the video content.
Also, if HEVC and H.264/AVC have the same available (fixed) bit rate, HEVC pro-
duces better quality results. Ohm et al. (2012) present a detailed comparison of
HEVC and other video coding standards, including the previous state-of-the-art,
H.264/AVC. Sullivan et al. (2012) present an overview of HEVC, which we sum-
marize as follows. Also, Figure 2.4 demonstrates the current scope of HEVC.
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2.2.1 Partition

In video compression, the input frame is split into smaller blocks for further pro-
cessing such as prediction or transformation. MB, a group of blocks, is used in
the previous video coding standards such as H.264/AVC. MB typically consists of
16 × 16 pixels of luma components and two corresponding 8 × 8 chroma compo-
nents, which are broken down to smaller blocks.

In HEVC, the video input frames split into smaller units, called Coding Tree
Units (CTUs) of size M × M where M = 16, 32, or 64. This size can be set at the
encoder side according to the application needs and limitations. Also, the size can
be larger than traditional MB (16 × 16, 32 × 32, or 64 × 64). Each CTU consists of
a luma coding tree block (CTB) with the size M × M along with two M/2 × M/2
CTBs for chroma components and associated necessary syntax which is require
for processing the CTU. Each CTU can be partitioned into smaller units, called
coding units (CU). Each of these CUs has one N × N luma coding block and two
corresponding N/2×N/2 chroma CBs with associated syntax, where N is between
8 and M (Ohm et al., 2012). However, a problem may arise if the width or height
of the input video is not an integer multiple of the specified chroma subsampling.
The only chroma sampling which is supported in the current HEVC design (HM
Version 11.0 3 Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG 16
WP and 11 (2012)), is 4 : 2 : 0 (Sullivan et al., 2012).

2.2.2 Predict

In HEVC, like the previous video coding standards, there are two different predic-
tion methods: Intra prediction and Inter prediction. These predictions are used for
reconstructing a frame from the same frame only (Intra prediction) or one or more
previous or forward frames (Inter prediction). The frames that only use the Intra
prediction are called Intra frames (I-frames); those frames that only use Inter predic-
tion with previous frames as references, are called Predicted frames (P-frames), and
those which use Inter prediction with both previous and forward frames to achieve
the highest compression are called Bi-predictive frames (B-frames). Video encoders
compress video data based on the given structure of the encoding pattern, i.e. the
sequence of the type of frames (I-, P-, or B-frames) is included in the structure.
Each frame is encoded based on the chosen frame type, and next in the encoder,
each frame is reconstructed the same way as the decoder procedures. Then, by
subtracting the original and reconstructed frame, the residual values are computed
for transform and quantization parts.

For prediction, each CU is partitioned to one or more Prediction Unit (PU). In
Intra prediction, each PU is coded by using 3 modes: 1) the DC prediction (setting
a mean value of decoded PUs boundaries to the left and top of the current PU, for
the current PU); 2) planar prediction (filling the current PU with an average value
of pixels in the decoded PUs on the top and left side of it; 3) directional prediction
with 33 different directions (extrapolating from neighboring pixels).

In Inter prediction, the motion compensation component is responsible for find-
ing the best match from the reference frame(s) and calculating the motion vector(s).
In HEVC, fractional sample interpolation is applied to all of the reference frames so
that their resolutions are increase and be ready for more accurate inter prediction.
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This interpolation calculates new values between each of the two pairs of immedi-
ate neighboring pixels to increase the frame resolution.

2.2.3 Transform and Quantization

The residual values calculated with the prediction components, are required to be
transformed and quantized so that they can be sent to the decoder side. For this
purpose, HEVC uses transform units (TUs). Each CU in the frame breaks to four
or more TUs. Each TU uses integer bases functions similar to DCT. In addition, a
transform derived from discrete sine transform is alternatively used for 4× 4 luma
transform blocks (Sullivan et al., 2012).

2.2.4 Entropy Coding

Context Adaptive Binary Arithmetic Coding (CABAC) is an entropy coder which
is selected for HEVC in order to encode the header data and the resulting coeffi-
cients from transform and quantization components. The header data consists of
information for partitioning the frame, the prediction modes and motion vectors.
CABAC is able to preserve the quality of the video better than the other entropy
coders.

2.2.5 Parallel Processing

One of the other goals of HEVC is to increase the processing time by employing
parallel processing. For this purpose, HEVC introduced three different concepts:
slice, tile, and Wavelet Parallel Processing (WPP). The frame can be broken down to
different sizes of slices. Each slice consists of different CTUs and it is independent
from other slices, i.e. . each slice can be encoded and decoded independently. Tiles
are a new concept defined by HEVC which is an independently decodable parts
of the frame which is rectangular. The last concept is WPP which is introduced
by HEVC for processing each independent slice or tile with different threads in
parallel.

2.3 Selection of the Fixation Points

For each frame, we need to have a fixation point so that we can define the ROI,
whose position depends on the video content. In this thesis, in order to be sure of
the accuracy of the proposed method, we are not selecting the fixation points au-
tomatically, but this selection is an important part of fovea-based encoding, so this
section is included to cover all the necessary parts. There are many ways of select-
ing the ROI, and in the following, we mention some existing techniques, based on
the overview by Itti (2004).

For example, eye-tracking devices to record the eye position of the human ob-
server can be efficient for this selection on noninteractive video compression. The
observers will often not notice degradation of the video signal as long as they
are gazing at the tracked part by the tracking devices due to the natural degra-
dation caused by their visual system (Kortum and Geisler, 1996; Lee et al., 1999).
The eye-tracking foveation system was developed and tested in the University of
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Figure 2.5: Eye tracking (Source: Umesh Rajashekar and Bovik (2001))

Texas (Umesh Rajashekar and Bovik, 2001) and a filter-based foveation method
(see Section 2.1.2) was used to foveate videos (Figure 2.5). The fixation points were
detected in real-time from the user’s eyes gaze. The user could not see the degra-
dation in peripheral areas due to the real-time foveation in the video which works
as if the uncompressed video is being watched. Nevertheless, we may not have
eye-tracking devices or the video stream may be shown to more than one person.
Tracking and using all the viewer’s eye positions should be used for finding pos-
sible ROIs (Stelmach et al., 1991). There are some techniques which use the HVS
properties for selecting important parts of an image. Osberger and Maeder (1998)
employed some low-level factors such as contrast, color (which are perceived as
spectral frequencies (Cox et al., 2008)), motion, region size and the object shape).
Also, Marichal et al. (1996) used the fuzzy logic system (Cox, 1994) to take an image
semantic into account while finding the important image regions and Chen and
Guillemot (2010) used skin color detection for this selection. Another automatic
method is neurobiological attention model of Itti (2004) which is useful for detect-
ing the ROI in most videos regardless of their content. In this model, a saliency
map will be computed to show the perceptible visual areas in the image by pro-
cessing the image into multiscale low-level feature maps (color, flicker, intensity,
orientation, and motion) and then summing the result of these maps to the unique
scalar saliency map. The aforementioned methods are compared in Itti (2004).
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Chapter 3

Foveation-Based Video Coding
Method

3.1 Chapter Overview

In this chapter we describe our proposed foveated-based video coding method. In
our method, for each frame in the video input, we first apply the foveation com-
pression, which we explain in Section 3.2. Next, the resulting foveated video will
be given to the encoder of a video compression standard (in our case it is HEVC).
The next step is when the data want to be decoded and displayed. In the decoder
side, we apply the reverse procedure of the encoder. It means that first the com-
pressed data is decompressed by the video standard decoder and then foveation
decompression is applied to the output of the video compression to obtain the re-
constructed video. Figure 3.1, shows a diagram of the proposed method.

In the following sections, we will first describe two foveation methods (Sec-
tion 3.3 and 3.4). Also, we will describe the improvements which we add to the
selected method (Section 3.3.1). Then, in Section 3.5, we will explain why we con-
tinued our work only on one of the two methods. Moreover, we provide an exten-
sion to this technique to support asymmetric objects’ shapes with only single fovea.
We conclude the chapter by summarizing the differences between our method and
the related work.

3.2 Foveation Compression

Our foveation compression method is improving the Variable Resolution (VR) im-
age transform, which has been studied by Basu and Wiebe (1998), Basu et al. (1993),
and Basu and Licardie (1993). In our work, we first considered two foveation
methods: Cartesian Variable Resolution (CVR) (Section 3.3.1) and Multiple Scal-
ing Factors (MSF) (Section 3.3.2). After implementing and comparing the results
of these methods and finding the strengths and weaknesses of them, we continued
our work by improving the CVR method due to its simplicity and speed. The MSF
method is more complex and produces few artifact lines in the resulting image
(Figure 3.7b), so, we did not investigate it deeper.

In this thesis, we will present an improved foveated method for the video cod-
ing. The proposed foveated method can improve video quality both objectively
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Figure 3.1: Block diagram of the “Foveation-based video coding method (Proposed
method)”

and subjectively by removing the blocking artifacts in the peripheral area and the
shifted effect in the resulting image effect due to the integer sampling employed
by Basu and Wiebe (1998). Moreover, this foveation method provides rectangular
images for each frame which are supported by the video compression standards
inputs. This method does not need any filter for blurring; e.g. automation model
of Itti (2004) uses the Gaussian filter to blur the low priority areas and send the
whole frame to the encoder which has lot of redundancies in the peripheral area.
Itti (2004) mentions this issue causes the appearance of new objects from peripheral
parts while the fovea regions move, or if the blurred area changes due to changes
in peripheral regions, the conventional encoders, designed to detect all the changes
in the frame uniformly, assign bits for these detections, even though the fovea re-
gion is fixed. In this work, we decrease the size of the video in order to reduce the
low priority regions’ size, while emphasizing the attentional regions. Additionally,
the peripheral area is still visible for conventional encoders, i.e. the encoders can
encode similar regions in frames more efficiently than some blurred regions which
are not similar.

3.2.1 Foveation Background

The transformation proposed by Basu and Wiebe (1998) uses the geometry of the
foveated retinal sampling to spatially transform the coordinate system (Wang and
Bovik, 2005). By applying the VR transform, sampled pixels will be mapped from
one polar coordinate system (r,θ) to another (v, θ). The resulting image may have
smaller size compared to the original one, which means that several pixels from the
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original image may map to the same pixel position in the resulting image. In the
compressed image, the VR transform controls how far we want to put each pixel
from the fixation point. The VR transform is defined as

v = ln (r · α+ 1) · s, (3.1)

where r and v are the positions of the corresponding pixel in the original polar
coordinates and the transformed coordinates, respectively. The parameter α is used
to control how much we want to foveate the image; i.e. a high value of α will
foveate the image more; it means that the foveated region has better quality while
the peripheral region has lower resolution. For having a less foveated result, the
α value should be set to the smaller amount so that the resolution of the foveated
and peripheral region are close to each other. The parameter s is a scaling factor
and can affect the whole compression ratio over the image. s is defined as

s =
vmax

ln(rmax · α+ 1)
. (3.2)

where vmax and rmax are the maximum value of v and r, respectively. The scale
factor value obtained from (3.2) guarantees that (3.1) is satisfied for vmax and rmax.

The inverse of the transform of (3.1) is

r =
e

v
s − 1

α
. (3.3)

3.3 Foveated-Based Video Encoder

As discussed in Basu and Wiebe (1998) and Wang and Bovik (2005), the result of the
VR transform is not rectangular and it maps the integer indices to the non-integer
ones. Basu and Wiebe (1998) suggested two methods to overcome this. The first
method is called Cartesian Variable Resolution (CVR) which uses Cartesian coor-
dinates in formulae (3.1) to (3.2). This transformation is significantly simpler in
terms of computational complexity. The second method calculates a scaling factor
for each angle θ in polar coordinates, with their individual maximum distances, us-
ing (3.2). We call this method Multiple Scaling Factors (MSF). The result of the MSF
transform will be rectangular. We describe both of these methods in the following
sections.

After providing the foveated video sequence, the sequence will be compressed
by the HEVC and H.264/AVC encoder. As this transformation can reduce the size
of the picture frames, the high execution time of the HEVC and H.264/AVC en-
coder and decoder are significantly reduced.

3.3.1 CVR Transform

The CVR transform can control the size of the foveated compressed frame by using
a compression ratio parameter. The transformation corresponds to a linear scaling
of the image area while preserving its aspect ratio. The new dimensions for the
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compressed image are calculated as follows:

w′ = round

(
w ·

√
1− c

u

)
· u, (3.4)

h′ = round

(
h ·

√
1− c

u

)
· u, (3.5)

where w′, and h′ define width and height of the compressed picture frame and w
and h are the width and height of the original picture frame, respectively. Param-
eter c is the compression ratio. It can be set to 0 to have no size changed. As its
value becomes closer to 1, the size of the picture frame will be smaller and so we
will have more data loss. The factor u must be set according to the video coding
standard that one wants to use. The ”round ()” function is used to produce the in-
teger results so that (after multiplying its output with u,) w′ and h′ are multiples of
u. This is a requirement of some video compression standards. In HEVC, e.g. , we
have u = 4, because w′ and h′ have to be integer multiples of the minimum CU size
so that the compressed output can be given as an input to the HEVC encoder (see
Section 2.2). Using the conformance mode, one of the HEVC encoder’s parameters, is
another way of satisfying this myltilicity requirement. This parameter specifies the
cropping and padding values corresponding to the width and height of the input
video so that the frame dimensions are multiples of the minimum CU size.

Figure 3.2 shows reconstructed frames for different values of c. As this figure
shows, by having a larger c the blur of the peripheral area will be increased due
to data loss. But this blur does not only depend on the parameter c. Later in this
section, another parameter, α, will be introduced.

In this work, we select the fixation points in the original picture frame and man-
ually tracked them in the video sequence to be able to evaluate the accuracy of our
method independently from the ROI selection method. (For automatic selection of
fixation points see section 2.3.)

In the first step, the CVR compression transformation maps the pixels of the
original picture to the compressed one. We define the coordinate origin of the pic-
ture frame on the upper left side. For a given picture frame with the fixation point
at (xf , yf ) position, we define a fixation point of the compressed picture as

x′f = round

(
w′

w
· xf

)
, (3.6)

y′f = round

(
h′

h
· yf

)
. (3.7)

where x′f and y′f are the positions of the fixation point in the compressed image.
By having w′ and h′, the compressed picture boundaries can be defined. Each

value of a pixel (x′, y′) in the compressed frame will have the value of a pixel from
the original frame. The corresponding (x, y) in the original picture for each (x′, y′)
is

x = σdx′ ·
exp

( |x′−x′
f |

sX

)
− 1

α
+ x′f , σdx′ = sign(x′ − x′f ), (3.8)

y = σdy′ ·
exp

( |y′−y′f |
sY

)
− 1

α
+ y′f , σdy′ = sign(y′ − y′f ). (3.9)
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sX and sY are the scaling factors in X and Y axes, respectively. We describe them
later on. The parameter α (see Section 3.2.1) controls how the neighboring pixels
around the fixation point are expanded. Higher values of α cause more expansion,
which blurs the reconstructed image in the peripheral area, i.e. close to the fixation
point a pixel gets ”stretched” into various pixels, whereas the periphery pixels get
”squeezed” into single pixels.

Figure 3.2 shows the effect of α and c on the reconstructed image. The size of
the compressed foveated image for each pair of (α, c) can be different according to
the value of c. The α parameter controls the size of the ROI and affects the amount
of blur in the peripheral. The fixation point of Figure 3.2 is on the person’s nose.

As in the VR model, scaling factors are used to control the overall amount of
compression in the picture. They are defined so that the pixels with a maximum
distance from fixation point map to the compressed picture edges. However, by
using (3.8) and (3.9), the non-integer values resulting from the exponential function
have to be placed to the valid integer pixel range indices.

The scaling factor, sX , satisfies

sX =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
f

ln(α·xf+1) if x′ ≤ x′f

w′−x′
f

ln(α·(w−xf )+1) if x′ > x′f

(3.10)

Similarly, sY satisfies

sY =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y′f
ln(α·yf+1) if y′ ≤ y′f

h′−y′f
ln(α·(h−yf )+1) if y′ > y′f

(3.11)

As we can see from the above equations, sX depends on whether x′ is on the left or
right side of the fixation point in the X orientation. Likewise, sY of y′ depends on
whether y′ is on the top or bottom part of the fixation point in Y orientation. Hence,
each frame will be divided into four quadrants with the origin at the fixation point
(x′f , y

′
f ). When the fixation point is at the center of the frame, we have just one

value for each of sX and sY , due to symmetry.
(3.10) and (3.11) ensure that (3.4) and (3.5) are satisfied by (3.8) and (3.9) when

x = 0, x = w, and y = 0, y = h.
A resulting foveated frame from the CVR method can be found in Figure 3.5a.

Also, Figure 3.5 shows the foveated compressed image and its corresponding re-
constructed image from the CVR method.

3.3.2 Multiple Scaling Factors

In the Multiple Scaling Factors transform, we first calculate w′, h′, x′f , and y′f by
using (3.4)–(3.7). The way we select (xf , yf ) is also the same as the CVR method,
but the scaling factors are calculated differently. The frame is partitioned into four
regions as shown in Figure 3.3 which define the scaling factors. To create these
regions, we first connect four lines from each corner of the frame to the fixation
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(a) The 1280 × 720 frame after foveation (α = 0.8, c = 0), HEVC encoding and
reconstruction.

(b) The 1280 × 720 frame after foveation (α = 0.8, c = 0.5), HEVC encoding and
reconstruction.

Figure 3.2: The resulting reconstructed images for different values for α and c. The
image is the frame #133 of Vidyo4 sequence and the bit rate is 1 Mbps.
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(c) The 904 × 508 frame after foveation (α = 0.32, c = 0.5), HEVC encoding and
reconstruction.

Figure 3.2: The resulting reconstructed images for different values for α and c. The
fixation point of this image is on the person’s nose. The image is the frame #133 of
Vidyo4 sequence and the bit rate is 1 Mbps.

point, (x′f , y
′
f ). We then define a 2D polar coordinate system with the origin at

(x′f , y
′
f ), then we calculate the angle of each of the four corners counterclockwise

(θi, i ∈ 1, 2, 3, 4). These angles can be calculated using the original or the com-
pressed frame. The result will be the same in both cases. Afterwards, the scaling
factors will be computed as

st =
‖(x′ − x′f , y

′
f )‖

ln(α · ‖(x− xf , yf )‖+ 1)
, if θ1 ≤ θ < θ2 (3.12)

sb =
‖(x′ − x′f , h

′ − y′f )‖
ln(α · ‖(x− xf , h− yf )‖+ 1)

, if θ2 ≤ θ < θ3 (3.13)

sl =
‖(x′f , y′f − y′)‖

ln(α · ‖(xf , yf − y)‖+ 1)
, if θ3 ≤ θ < θ4 (3.14)

sr =
‖(x′f − w′, y′f − y′)‖

ln(α · ‖(xf − w, yf − y)‖+ 1)
, if θ4 ≤ θ < θ1 (3.15)

where st, sb, sl and sr are the scaling factors for the top, bottom, left and right re-
gions respectively, and ‖ · ‖ is the euclidean norm. Analogously to the CVR trans-
form, each value of a pixel (r′, θ′) in the compressed frame will have the value of
the pixel from the original frame. The transformation does not change θ, so θ′ = θ,
while the corresponding r in the original frame can be computed directly from
(x′, y′) as

r =
exp

(‖(x′−x′
f , y

′−y′f )‖
sk

− 1
)

α
, k ∈ {t, b, l, r}. (3.16)
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Figure 3.3: Four regions of the frame according to the fixation point, (x′f , y
′
f )). Each

line connecting (x′f , y
′
y) to a corner of the image defines an angle θ with respect to

the positive side of the X-axis. The pratition is given by the regions between these
lines. E.g. , the region between θ1 and θ2 is the top region of the frame.

The scaling factor sk is chosen based on θ and (3.12)–(3.15). Then, we need to
convert (r, θ) to Cartesian coordinates, that is

x = round (xf + r · cos θ) , (3.17)
y = round (yf − r · sin θ) , (3.18)

where we have used that

θ = arctan
y′f − y′

x′ − x′f
. (3.19)

From the above, we see that the value of (x′, y′) in the foveated frame will be
the value of (x, y) in the original frame. In case x or y are out of the range of the
original frame, cropping will be needed. After foveation, the video will be given to
the video encoder.

3.4 Foveated-Based Video Decoder

By receiving the compressed data, the video decoder reconstructs the foveated
video sequence. Next, each picture frame is transformed back to its original size.
The process of re-transformation is simple. The encoder only needs to send α, c, u,
and (xf , yf ) along with the compressed video data. If the position of the fixation
point is different in each frame, we also need to send the frame’s corresponding
(xf , yf ) to the decoder.
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3.4.1 CVR Re-transform

For this method, sX and sY can be recalculated on the decoder using (3.10) and
(3.11). We need to map each pixel from the foveated compressed frame to the
defoveated frame of size w and h. (x′, y′) in the foveated image will correspond
to a pixel (x, y) in the defoveated image, calculated according to (3.8) and (3.9).
This reverse mapping may leave some gaps (missing pixels) between pixels in the
reconstructed frame. We use interpolation to fill these gaps. The interpolation
techniques that we used are nearest-neighbor, linear and piecewise-cubic interpo-
lation. The interpolation method can be chosen according to the needs of the user
and his system requirements. The nearest neighbor interpolation is fast and simple
compared to the other interpolation techniques. However, the visual result of this
interpolation has some blocking artifacts. The linear interpolation requires more
computational time than the nearest neighbor interpolation. Also, the piecewise
cubic interpolation is more complex and needs more memory and computational
time than the linear interpolation. The results of the linear and cubic interpolation
have better quality than the nearest neighbor one (Gonzalez and Woods, 1992).
Figure 3.4 demonstrates the effects of these three interpolation methods on the re-
constructed images.

Comparing CVR Method of Basu and Wiebe (1998) and the Proposed Method

Here we are going to explain the differences between our decompression method
and the method of Basu and Wiebe (1998).

In the Basu and Wiebe (1998) method, the reverse CVR transform is the in-
verse procedure of the transform in the encoder part of the proposed method. Each
pixel (x, y) in the reconstructed frame will take the value of the pixel (x′, y′) in the
foveated frame, where (x′, y′) satisfy

x′ = σdx · sX · (ln (α · |x− xf |) + 1) + xf , σdx = sign(x− xf ), (3.20)
y′ = σdy · sY · (ln (α · |y − yf |) + 1) + yf , σdy = sign(y − yf ). (3.21)

As we can see in the above equations, each pixel in the decoded foveated frame
may map to multiple pixels in the original size decoded frame. Also, the result
of the above equations will be non-integer values, so they must be converted to
integer values. However, as is mentioned in Wang and Bovik (2005), the geometric
methods’ difficulty (see Section 2.1.1) is mapping non-integer positions to integer
grid locations. In method of Basu and Wiebe (1998), the integer index mapping
from (3.20) and (3.21) shifts the reconstructed frame to one side (in our case to
the right side) and loses pixels at the edge of the frame. Figure 3.6 demonstrates
the residual images for method of Basu and Wiebe (1998). The reason is that the
mapping from the original image to the foveated image, which is calculated via
(3.8) and (3.9), does not match the result of (3.20) and (3.21). It means that if we
have the exact pixel of the original frame in the foveated image, we need to put
the pixel back in the same location as it was in the original image. However, with
(3.20) and (3.21) this may not happen. This issue will cause a problem in pixel-by-
pixel evaluations (e.g. if PSNR is used). With the new technique we applied in the
decoder side, this issue is fixed. To the best of our knowledge, this shifting effect of
Basu’s method has not been noticed before. The shifted reconstructed frame from
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(a) The reconstructed frame using nearest neighbor interpolation.

(b) The reconstructed frame using linear interpolation.

Figure 3.4: The resulting reconstructed images for different interpolation methods.
α = 0.8 and c = 0.5. The fixation point of this image is on the car. The image is the
frame#163 of ChinaSpeed sequence. The bit rate is 1 Mbps. The blocking artifacts
are visible in the peripheral part of the image 3.4a, however, in the 3.4b and 3.4c
the peripheral are smooth. (The rest of Figure 3.4 is continued on the next page.)
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(c) The reconstructed frame using cubic interpolation.

Figure 3.4: (Continued. The two images of this part are on the previous page.)The
resulting reconstructed images for different interpolation method. α = 0.8 and
c = 0.5. The fixation point of this image is on the car. The image is the frame#163
of ChinaSpeed sequence. The bit rate is 1 Mbps.
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(a) Foveated 904 × 508 image resulting from 1280 × 720 original image, using the CVR
method.

(b) Resulting reconstructed 1280× 720 image for foveated image in 3.5a. Linear interpola-
tion is applied for this image.

Figure 3.5: CVR method Results. α = 0.32 and c = 0.5. As you can see in Fig-
ure 3.5a, α causes the neighboring pixels around the fixation point to expand. The
fixation point is on the person’s nose. The bit rate is 1 Mbps. The image is the first
frame of Vidyo4 sequence.
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method of Basu and Wiebe (1998) is visible in Figure 3.6a. However, there is no
shifting with our proposed method.

Wang and Bovik (2005) mentioned that interpolation and resampling will be
needed for transforming and retransforming in geometric methods. However, in
our work we just applied the interpolation for the retransformation part which is
less complex. In method of Basu and Wiebe (1998) we need to calculate a table of
indices with w×h to reconstruct each frame. This method will fill the missing pixels
with the available pixels in the compressed frame. This creates blocking artifacts in
the periphery of the resulting image. In our decoder side, we only calculate a table
of indices with size w′ and h′ for (x′, y′), where w′ ≤ w and h′ ≤ h and w′ and h′

depend on the value we have chosen for c. Then we need to fill the missing pixels
in the reconstructed image using interpolation. In contrast to other methods such
as Basu and Wiebe (1998) and Kyuel et al. (1999), after the interpolation there are
no noticeable visual artifacts; hence, no post processing is needed.

3.4.2 Multiple Scaling Factors

The decompression process of the MSF method uses st, sb, sl, and sr as defined
in (3.12)–(3.15) and it is the inverse of the transformation in (3.16). The value of
each pixel (x, y) in the reconstructed frame will be the value of the pixel (x′, y′) in
the foveated frame where

x′ = round
(
x′f + r′ · cos(θ′)) , (3.22)

y′ = round
(
y′f − r′ · sin(θ′)) , (3.23)

and θ′ = θ (see (3.19)) and

r′ = ln(α · ‖(x− xf , yf − y)‖+ 1) · sk, k ∈ {t, b, l, r}. (3.24)

Cropping over the edges of the foveated picture frame may be necessary.

3.5 Comparison of CVR and Multiple Scaling Factors

The CVR method is simpler than the MSF method in terms of computational com-
plexity and time, because in the MSF method we need to calculate scaling factors
for all of the pixels separately, while we only use four scaling factors for CVR. The
frame foveated by the MSF method can be seen in Figure 3.7a. The discontinuities
in the foveated frame (Figure 3.7a) result in some artifacts along the partitioning
lines (see Figure 3.3 and Figure 3.7b). Because of this issue, we chose to focus our
experiment on the CVR methods.

3.6 An Extension for a More General Transform Function
(CVR)

One of the parameters we have used in this work is α, which we can generalize to
four different parameters, according to its distance from the four different edges
of the frame. With this, we can have arbitrary rectangles as the foveation region,
which can be useful for supporting various objects’ shapes.
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(a) Residual image from original frame and corresponding reconstructed frame resulting
from mehtod of Basu and Wiebe (1998).

(b) Original frame. (First frame from Kimono sequence.)

Figure 3.6: Comparison of method Basu and Wiebe (1998) and our proposed
method. 3.6b is the frame #1 from Kimono sequence. As you can see in Figure 3.6a,
the residual image shows the shifted result in the reconstruction frame. However,
no shifting result is caused by our proposed method.
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(a) Foveated frame resulting from MSF method

(b) The MSF method reconstruction result with artifact lines

Figure 3.7: The MSF method results
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The α values should be selected based on the shape of the object in the ROI
or the properties of the ROI. These parameters are defined with the same idea as
in scaling factors (see Section 3.3.1). It means that, depending on the position of
each pixel in the frame, one of the α values should be selected (αxl

, αxr , αyt , and
αyb for the pixels in the left, right, top or below of the fixation point, respectively)
for (3.8), and (3.9). Also, the corresponding value of α based on its position (its
corresponding edge) should be used in (3.10) and (3.11).

In Figures 3.8 and 3.9, some sample frames are included to illustrate the result
of the above generalization. These frames are the result of the foveation technique
only; we did not use any video coder to compress them. As you can see in Fig-
ure 3.8b, the left side of the fixation point is less foveated compared to the right, and
the above side is more foveated compared to the region below the fixation point,
due to the choice of α values. This technique is good for an object with asymmetric
shape so that ROI encompasses the object. This extension can substitute multiple
fixation points on a single object.

3.7 Comparison of The Proposed method and Existing Foveation
Methods

The existing foveation methods use different techniques to apply the retina sam-
pling to an image. According to the type of technique used to prodece the foveated
image, we can have different effects on the quality of the resulting image and its
hardware requirements.

In geometric methods, the image is generally mapped to a curvilinear image
(non-integer and non-rectangular), or in some methods it generates a rectangu-
lar image by using indexing from the source image to the intermediate foveated
one. However, the image grid is integer which causes some loss or blockiness ar-
tifacts through mapping by non-integer indices. Therefore, post processing (such
as blending, interpolation and Gaussian filtering) is required on the final foveated
image. This issue adds more computational and time complexity. In the proposed
method we only used the available integer indexing from the rectangular image to
the final image and we applied interpolation as a part of the reconstruction process
and not post processing, which makes the method less complex.

In filter-based methods, due to usage of multiple low- or band-pass filters, the
computational complexity is high. Also, merging and aligning the results of these
filters is not easy. In some techniques when the filter-based foveation is applied
to the input video of the video coding standard, the overall quality of the result-
ing videos are lower and it is costly due to applying filtering pre-processing on
the input and inner transformation separately. In addition, by providing the final
foveated input for the video coders, the whole frame is encoded uniformly regard-
less of the priority of the regions (ROI or peripheral), which adds more time and
resource complexity, even though by having the foveated frames from the begin-
ning no changes need to be applied to the decoder. In our method, we shrink the
frames by removing the pixels from the peripheral parts. Therefore, both bit rate
and time will be saved in our method which results in having better quality in the
resulting videos. Also, the proposed method is independent from the codec, so
only an extra extension should be added to both encoder and decoder and it does

34



(a) Foveated 904× 508 frame

(b) Reconstructed 1280× 720 frame

Figure 3.8: The CVR method results with four different α values. αxl
= 0.02, αxr =

0.16, αyt = 0.64, and αyb = 0.04 (Vidyo4 sequence, frame# 60)
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(a) Foveated 608× 340 frame

(b) Reconstructed 1920× 1080 frame

Figure 3.9: The CVR method results with four different α values. αxl
= 0.16, αxr =

0.16, αyt = 0.32, and αyb = 0.04 (Tennis sequence, frame# 210)
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not affect the coding and decoding of other video types.
Multiresolution methods are faster and they have easier indexing, but they

require merging different intermediate images that induce some artifacts in the
boundaries of these images, thus requiring post processing such as blending and
interpolation. Furthermore, these methods need more memory space and compu-
tation, and some designs are coded-dependent which makes it hard to get aligned
with the state-of-the-art codecs. The proposed method is codec-independent.

Wavelet-based methods used for some previous video compression standards
used wavelet transform in their design. Even though wavelet-based methods are
good for scalable coding, they produce lower quality (blurred) videos. In the new
video compression standard, HEVC, wavelet transform is not employed anymore
due to its weakness in maintaining the video quality compared to DCT transform.
Therefore, the foveation methods used for wavelet-based techniques are not useful
anymore in HEVC.
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Chapter 4

Experiments

In foveation methods, one of the challenges is finding the fair and best way of eval-
uating the results. This is because the available objective tests such as PSNR or MSE
are common for uniform resolution image and video compression. However, when
the compression standard uses perceptual properties, it needs to be evaluated by
metrics that consider HVS properties (for more details see Section 1.1) as if a human
is looking at the image or the video. Hence, the conventional objective test cannot
demonstrate the difference between conventional and perceptual compression (Lee
and Ebrahimi, 2012). There are some methods that have been considered for per-
ceptual coding evaluation which have been studied in Lin and Jay Kuo (2011) and
Lee and Ebrahimi (2012). In our work, we used the objective and subjective evalu-
ations. In fact, the results of the subjective tests are more reliable and accurate than
the objective metrics results due to having humans as observers. The objective test
is actually an automatic way of measuring the video quality because checking all
the results with human observers is extremely time-consuming.

In this chapter we show our result for the CVR method (See Section 3.3). In
our experiment, we used HEVC HM Version 11.0 3 Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T SG 16 WP and 11 (2012) with the corresponding
low delay B-frame main configuration parameters defined in JCTVC-I1100 Bossen
(2012).

4.1 Objective Tests

We designed our objective test scheme as a foveation technique having a fixed
bit rate for each video. In the following sections, this experiment is demonstrated.

In this work, we consider four different objective evaluation metrics that are
explained in this section. Each metric has been calculated for three different com-
ponents in each frame, Y , U , and V separately. After all of the frames in a video
are considered for each metric, their average value is computed. Then the aver-
age of the mean of the three components are computed as the final result. In our
experiment we have 180 frames per video.

In some evaluation metrics the cut-off frequency (fc), which has been mentioned
in Wang and Bovik (2001), is needed. This frequency is obtained from the contrast
sensitivity in 2.2 which is a function of retinal eccentricity. In Geisler and Perry
(1998) the best fitting for the constant parameters are α = 0.106, e2 = 2.3, and
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Figure 4.1: A viewing geometry. The pramether e is eccentricy (degrees), and v is
the distance to the image (computed according to image width) (Source: Wang and
Bovik (2005))

CT0 = 1
64 . In order to find the cut-off frequency, which is a critical frequency,

Geisler and Perry (1998) suggested setting CT to its maximum possible contrast
in 2.2, which is 1.0. Then the cut-off frequency will be

fc(e) =
e2 · ln

(
1

CT0

)
α · (e+ e2)

(
cycle

degree
), (4.1)

and the eccentricity in 4.1 is

e =
180

π
· sw
w · d · arctan(‖(x− xf , y − yf )‖), (4.2)

where x and y are the coordinates of each pixel in the image with original size. ‖ · ‖
is the euclidean norm. The parameter sw is the screen width, and d is the distance
between the viewer’s eyes and the display screen (Wang and Bovik, 2001). For all
of the metrics in which they have used fc, we set d = 1 meter and sw = 1 meter.
Figure 4.1 demonstrates a viewing geometry.

This cut-off frequency is calculated to simulate the way the human eye can see
the image while gazing at one point in the image (fixation point). Figure 4.2 is a
sample output for fc from the side and top view respectively. As you can see, this
region is circular and as the eccentricity (distance from fixation point) is increasing,
the value of the cut-off frequency is decreasing, i.e. the visual resolution in the
human eye is decreasing as well.

1. ROI PSNR: The first metric is based on finding the PSNR of the ROI. As in
the CVR method, we foveate according to the Cartesian coordinate; therefore,
our foveation region is rectangular which can be easily segmented from the
rest of the frame. This region is detected by checking the region in the left,
right, up and down parts of the image with respect to the fixation point and
pick the first missing pixels in x or y direction.
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(a) Side view

(b) Top view

Figure 4.2: Cut-off frequency in a 1024× 720 image.
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Figure 4.3: Contrast Sensitivity Function (CSF) (Source: Matkovic (1997))

2. FWSNR (Foveated Weighted Signal-to-Noise Ratio): This metric has been
mentioned in Lee and Bovik (2000), defined as:

FWSNR = 10 log10

w∑
x=1

h∑
y=1

[p(x, y) ∗ c(x, y)]2 · f2
c

w∑
x=1

h∑
y=1

[(p(x, y) ∗ p′(x, y)) ∗ c(x, y)]2 · f2
c

, (4.3)

where the ∗ is a linear convolution and c(x, y) is the contrast sensitivity func-
tion (CSF) in the spatial domain:

c(x, y) = 2.6 · (0.0192 + 0.114 ∗ f) · e−(0.114·f)1.1, (4.4)

where f is the spatial frequency of the visual stimuli(cycles/degree). This
function has a peak at f = 0.8 and we do not consider the result after 60
cycles/degree. Figure 4.3 demonstrates CSF behavior (Matkovic, 1997).

3. FPSNR (Foveated Peak Signal-to-Noise Ratio): FPSNR is defined in Lee
et al. (2001). For this method, first we need to define the foveated mean square
error (FMSE):

FMSE =
1

w∑
x=1

h∑
y=1

[fc(x, y)]2
·

w∑
x=1

h∑
y=1

[p(x, y)− p′(x, y)]2 · [fc(x, y)]2, (4.5)

and, then FPSNR is

FPSNR = 10 · log10
max[p(x, y)]2

FMSE
, (4.6)

where for max p(x, y) we set it to 255.0, for 8-bit representation in our experi-
ments.
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4. FSSIM (Foveated Structural SIMilarity): The last evaluation technique is
called FSSIM, which is mentioned in Wang and Bovik (2006), and compares
two images, the original frame, o(x, y), and reconstructed frame r(x, y). This
method consists of three parts that we describe next.

(a) Luminance: In this part, the mean intensity is calculated between two
images as follows:

μo =
1

w · h
w∑

x=1

h∑
y=1

o(x, y)2, (4.7)

μr =
1

w · h
w∑

x=1

h∑
y=1

r(x, y)2, (4.8)

where 0 ≤ μo, μr ≤ 1.
The luminance function is specified as:

l(o(x, y), r(x, y)) =
2 · μo · μr + C1

μ2
o + μ2

r + C1
, (4.9)

Ci = (Ki · L)2, i ∈ 1, 2, 3 (4.10)

where Ki << 1 and L is the range of pixel value (255 for 8-bit repre-
sentation). The luminance function finds the similarity of the luminance
between two images.

(b) Contrast: In order to find contrast similarities, we first need to calculate
the standard deviation:

σo =

√√√√ 1

w · h− 1

w∑
x=1

h∑
y=1

(o(x, y)− μo)2, (4.11)

σr =

√√√√ 1

w · h− 1

w∑
x=1

h∑
y=1

(r(x, y)− μr)2, (4.12)

and the contrast function is:

c(o(x, y), r(x, y)) =
2 · σo · σr + C2

σ2
o + σ2

r + C2
, (4.13)

where 0 ≤ c(o(x, y), r(x, y)) ≤ 1.

(c) Structure: This comparison function is calculated as:

s(o(x, y), r(x, y)) =
σor + C3

σo · σr + C3
, (4.14)

By putting all of these components together, the SSIM index is defined as:

SSIM(o(x, y), r(x, y)) = |l(o(x, y), r(x, y))|α · |c(o(x, y), r(x, y))|β · |s(o(x, y), r(x, y))|γ ,
(4.15)
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Table 4.1: Information of Video Sequences

Test Sequence Frame Rate Resolution Content Frames Fovea

Cactus 50 1920 × 1080 Indoor moving objects 1-180 Fixed

Kimono 24 1920 × 1080 Moving camera (Face) 1-180 Fixed

Tennis 24 1920 × 1080 Sport (quick actions) 61-240 Movable

Vidyo4 60 1280 × 720 Video conference 1-180 Movable

Johnny 60 1280 × 720 Video conference 1-180 Movable

ChinaSpeed 30 1024 × 768 Car race game 1-180 Fixed

BasketballDrill 50 832 × 480 Sport 2-181 Movable

PartyScene 50 832 × 480 Kids (Zooming) 1-180 Movable

RaceHorses 30 416 × 240 Sport 1-180 Movable

where α > 0, β > 0, and γ > 0 are for setting the importance of each com-
ponent. By setting these parameters to 1, (i.e. α, β, and γ), and by setting
C3 =

C2
2 , the new form of SSIM is:

SSIM(o(x, y), r(x, y)) =
(2 · μo · μr + C1) · (2 · σor + C2)

(μ2
o + μ2

r + C1) · (σ2
o + σ2

r + C2)
. (4.16)

By having fc we can compute FSSIM between the original and reconstructed
frame as follows:

FSSIM(o, r) =

F∑
i=1

fc(i) · SSIM(oi(x, y), di(x, y))

F∑
i=1

fc(i)

, (4.17)

where F is the number of a frame in a video and fc(i) are the cut of frequency
(fc) of frame i.

4.1.1 Foveation With Fixed Bit rate

On this experiment, we tested our proposed method with the HEVC coder as an
anchor. We set the rate control for both our proposed method and the anchor,
with low delay configurations, so that we can set a fixed bit rate for each exper-
iment according to our needs. Fixed bit rate means that there is a limitation for
the maximum available bit rate for transmitting through the network. In these ex-
periments we tested nine video sequences, namely Cactus, Kimono, Tennis, Vidyo4,
Johnny, ChinaSpeed, BasketballDrill, PartyScene, and RaceHorses. The information of
these videos is shown in 4.1. The “Content“ in this table explains the content in the
video and the “Fovea” column, is for informing whether the fixation points in the
whole video are a fixed point in all of the frames (fixed) or they are changing from
one frame to another (movable).

This experiment has been tested for different target bit rates. The target bit rates
are 200 Kbps, 300 Kbps, 512 Kbps, 768 Kbps, and 1000 Kbps. The results of ROI
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PSNR of sequence Kimono for different bit rates are shown in tables 4.5-4.9. The
rest of the results can be found in Appendix A.1, Tables A.1-A.8.

Each table refers to a special bit rate. In each of these tables, the result of HEVC
and the proposed method, with a different pair of (α, c), are compared. The range
of values for α are 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, and 0.90. The different values
that are assigned to c are 0.25, 0.50, 0.75, and 0.90.

By looking at these tables of the ROI PSNR results of each sequence, we can see
that four different parameters effect the results:

• c: Usually, by increasing c while having fixed value for α, the ROI PSNR
increases in the proposed method. It is possible the increment of PSNR is
affected by the size of ROI as well, i.e. by having a larger value for c, the
ROI size is decreasing and it comes closer to the fixation point which usually
has a high PSNR as you can see it out by looking at most of the results (see
Tables 4.5-4.9, A.1-A.33, A.3-A.35, A.4-A.36, A.5-A.37, and their correspond-
ing Figures). In some sequences such as ChinaSpeed, BasketballDrill, and Par-
tyScene you can see different results at the lower α values for the higher c;
PSNR is lower. One might suggest this is happening because the resolutions
of these videos are not as big as other videos and when the parameter c in-
creases, the size of the foveated frame decreases more. However, the small
value of α helps to have the biggest ROI in the lower than in the higher values
of c. Therefore, more bits will be assigned to the ROI and the video achieves
a higher PSNR. As you can see this fact is more obvious in BasketballDrill and
PartyScene than in Vidyo4 due to their smaller resolution. Finally, we have
one sequence, Tennis, which does not follow the above description in all of
the values of c (i.e. c = 0.75, 0.90); however, the subjective tests of the Tennis
sequence show completely different results.

• α: The parameter α has various effects on the videos based on the fixation
points selection modes. If the video has fixed fixation points in all of the
frames, the ROI PSNR of the proposed method increases by increments of
α and a constant value of c (see Tables 4.5-4.9, A.1-A.33, A.5-A.37 and their
corresponding Figures). As an example, in the ChinaSpeed table you can find
some oscillation in the charts for c = 0.90. The reason for this is possibly
the smaller ROI in sequences with c = 0.90 makes the videos very sensitive
to very small changes in the frame and it causes oscillation in ROI PSNR of
the foveation method. In case the video has movable fixation points, two
different situations can happen by increasing α while c is fixed. One situa-
tion is when the position of the fixation points in all of the frames are close
to each other and they are following the same object in most of or all the
video frames. In this case, the ROI PSNR of the foveation method is gener-
ally increasing but you can find oscillation in the way the graph trends (see
Tables for Johnny and PartyScene and their corresponding Figures). The other
situation is when there are lots of jumps between the fixation points in neigh-
bouring frames and usually they are following different objects that cause
less similarity between the frames. This makes it hard for HEVC to find the
best match for frame prediction, especially when the available bit rate is low
and HEVC cannot assign more bits in order to preserve the quality of newer
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scenes in the video, especially if they are foveated. The rest of the similari-
ties (such as special objects that were followed as attentional regions) go to
the peripheral part and appear very small in a way that HEVC cannot reach
or detect them due to slice or tile structure of the encoding setting (see Sec-
tion 2.2). Also, the distance of these areas from the previous frames is large
due to the exponential effect of the foveation process (see (3.8) and (3.9)).

• Fixed or movable fovea: The effect of the fixation point mode selection is
explained in the previous parameter, α.

• Video content: As this method is for single fovea, the videos which have mov-
able background, or their ROIs, are present in most of the sequential video
frames, or their content has very quick movement (motion) in the scene. The
foveation technique helps to create a video input that has a somewhat fixed
ROI. HEVC is able to encode the foveated video input very efficiently due to
the fixed ROI in most of the frames. Also, quick movements cause artifacts
in HEVC compression while using the proposed method solves this issue.
On the other hand, HEVC can produce better results for fixed background.
Therefore, as you can see in the results, Cactus, Kimono, Tennis, ChinaSpeed,
PartyScene, and RaceHorses have better results. In the next parameter, we ex-
plain more about this fact in HEVC.

• Available fixed bit rate: In general, by increasing the amount of available
fixed bit rate, the quality of videos increases both in conventional and foveation
compression, and it does not affect the ROI PSNR results if the foveation
method has better or worse results than conventional compression. In most
of the tables you can see that the foveation results are better (higher) than
the conventional ones. The amount of increment is different from one video
to another. The general reason is that by giving more bit rate to the video
compression standard, the encoder can use more bits in the video and com-
press less. Therefore, the overall quality gets better at higher bit rates. You
can find that in the BasketballDrill sequence, we have the lowest increment of
PSNR compared to other sequences. Because of the fixed background in the
video and the high jumps between the two fixation points between the two
adjacent frames, HEVC cannot find very good matches in the prediction part
for reconstructing the frame. (For more details, see Section 1.2.)

4.2 Subjective Tests

In this section, we will describe the subjective tests we did based on our final re-
sults. Subjective tests can give more reliable results especially because this work is
based on the HVS; We have done two different subjective tests: the first for finding
the acceptable α and c for each video that has the highest bit rate (1000Kbs) based
on the subjects’ opinions about the quality of the videos. Next, with respect to the
acceptable range for α and c, (i.e. from the fair quality up to the highest achiev-
able quality for the videos), we selected our videos for the next subjective test. In
our second subjective test, our goal was comparing the video results of conven-
tional compression with our proposed fovea method. We modified an open source
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Table 4.2: Scores for subjective test

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad

toolkit, YUVToolkit (Zhao, 2011) for our subjective tests. We have used a 1920×1080
TV to show the videos to users. In both tests, the subject user was asked to look at
the special region in the video and follow it in order to compensate the absence of
eye-tracking device or automatic attentional area selections (See Section 2.3). Fig-
ure 4.4 shows the guideline page we have provided for our subjects. In the first
subjective test we had twelve subjects, six females and six males. In the second
one, we had twelve females and six males. The range of the users’ age was from
nineteen to forty two.

4.2.1 Selecting The Threshold of α and c

In the first subjective test, we provided different pairs of videos: a result of the
foveated method without any video compression (just with the defoveation com-
pression), and the original (reference) video with no compression. In each pair of
videos, we shuffled the reference and foveated video and we showed them to the
user. The user could decide how many times they wanted to replay the two se-
quences so as to decide how to score each video in the displayed pair. The scores
were in the range of 1 − 5 (see Table 4.2) labeled by the words in the Table 4.2 in-
stead of numbers. After they scored the first pair, they could select to see the next
pair. This test took about 30 − 50 minutes with 108 different pairs of videos. The
user saw all the videos 2m away from the TV, even though each video was shown
in its original resolution.

We grouped the foveated videos based on their c parameter. In each group,
three pairs were shown to the user for comparison different α values (the number
of the α values is seven). The first video in each pair was set to the original video,
and the next video was selected by a binary search algorithm from the person’s
scores as follows: we set our α list as

l = [0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 0.90] (4.18)

where the first element in the list has the smallest effect in the frame, thus it is the
most similar video to the original video and one can expect to achieve the lowest
difference between the opinion scores (in pair comparison), which is the most sat-
isfying video compared to the rest of videos were achieved by other parameters.
On the other hand, α = 0.90 has the most effect in the frame so one can expect the
highest difference between opinion scores, which is the most dissatisfied video. We
assume that the difference between opinion scores is monotonically increasing (but
non-linear) in α. In the first pair, the user compared the original video to foveated
video with the middle value in list l, which is 0.16. The program calculated the
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Subjective Test Guidelines 

 Please focus your attention on the specified regions (an object or a face). 

 

 

 

 

 

 

 

 

 

 

1 2 

Focus on 
this area 

only. This region is 
fixed. 

This 
region is 

fixed. 

This region is 
fixed. 

 

The region is 
as the same as 

the above 
region. 

Figure 4.4: Subjective Tests’ guideline of ROIs
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Figure 4.5: First test interface

difference between the given scores for the current pair, and if the difference was
larger than a threshold, it would show the next middle parameter in the dissatis-
fied side of l (the larger α values). Otherwise it would show the middle parameter
in the more satisfying side of l (the smaller alpha values). This selection process
was repeated until the binary search was concluded. We set our threshold to 2, but
one might suggest that a test with lower threshold should be carried out to see if it
affects the final results of the test. Figure 4.5 shows the interface of the first test.

Due to the binary search procedure, the data we obtained were not complete,
i.e. scores were not available for all pairs (c, α) evaluated. We initialized our scores
to zero for all of the α values, and set the scores for the appropriate α from the user
scores. We then interpolated the scores of each two neighboring α values in order
to fill missing scores. The scores were set to 5 for all the values of α larger than
the largest α for which user scores were available. From this data, we generated
the Differential Mean Opinion Score (DMOS) for each pair (c, α). Then, we ob-
tained in how many videos each pair of (c, α) had a DMOS of at most 0.5, a defined
threshold. The results showed that this was the case for (0.25, 0.02), (0.25, 0.04),
and (0.25, 0.08) in all of nine videos, and for (0.5, 0.02), (0.5, 0.04), (0.5, 0.08), and
(0.75, 0.02) in eight videos. The other pairs attained DMOS within the threshold in
at most 6 videos. Therefore, we selected (0.25, 0.02) from the group with the high-
est number of occurrences and (0.75, 0.02) from the group with the second highest
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number of occurrences. We did not expect to have good result with (0.75, 0.02) due
to the high value of c; however, the test surprisingly revealed another result, thus
we started to use it as one candidate for the next test. In order to reduce the time
of second subjective test, only two pairs were selected, as described ahead.

4.2.2 Comparison Between The Proposed and Conventional Compres-
sion Methods

From all the 1305 foveated videos we had, we selected the ones with parameters
(0.25, 0.02) and (0.75, 0.02). These were the pairs (c, α) deemed most acceptable,
from the first subjective test, and they were chosen so that we could have about
30 − 45 minutes worth of videos for the second subjective test. We prepared these
videos to be compared to their corresponding compressed original videos. The
selected pairs had the same available bandwidth and the same content. We showed
each pair of videos, in an arbitrary order (i.e. the first video can be conventional or
fovea and the second one is the other video). Each pair could be replayed several
times by the users so that he/she could compare each pair fairly. They could start
to vote from the beginning of the test for each pair. In contrast to the first subjective
test, we only showed numbers in the range of 1−5 for scores in the test application
interface instead of having labels of Table 4.2. The reason is that after performing
the first test, we realized that users usually would not commonly choose the first
two labels (Excellent and Good) due to their semantic meanings. Also, the videos
were compressed with low bit rates, so their quality was not high. In addition,
in order to mitigate the effect of different video resolutions, we fixed the ratio of
video’s width to the user’s distance to the TV by asking the user to make his/her
distance to the TV proportional to the resolution of the video being shown. We
excluded BasketballDrill due to its low quality compared to the original and in order
to reduce the test time. Figure 4.6 shows the interface of the second test.

Tables 4.3 and 4.4 demonstrate the results of the second subjective tests. We can
see that in Kimono and ChinaSpeed the proposed method have the highest scores
in each comparison. The difference between comparison scores in Kimono is large.
Then, in the PartyScene, Tennis and Cactus the scores of the proposed method are
higher than the conventional’s, except in some instances with large bit rate and
c = 0.075. Therefore, our method preserves video quality of big-resolution videos
(1920×1080) especially in lower bit rates. This is because the ROI covers the big part
of the foveated video input while the peripheral areas are shrunk, so that HEVC
assigns more bits to the ROI, and this improves video quality in the ROI. Also, the
method is working well when the sequence has moving scenes (such as moving
background), moving camera or fast motions such as sports. Because the foveation
follows the attentional area and in the video input the attentional area remains in
the center of the frame, HEVC can code it efficiently. Also, HEVC is the state-of-
the-art video compression standard and it produces better quality compared to the
previous coding standards. Hence, our methods produce better results than the
previous coding standards, as well.

In RaceHorses the conventional compression has better results. Also, in the se-
quences Vidyo4 and Johnny, which are the video-conferencing sequences, conven-
tional video compression scored higher than our proposed method, although the
difference between the scores was not very high. Thus, we may expect our method
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Figure 4.6: Second test interface
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to act poorly for video-conferencing and content with fixed camera or background.
This evidence refutes the conjecture presented by Basu and Wiebe (1998); Wang
et al. (2003), who expected the foveation technique to be particularly good for video
conferencing.

Conventional video compression scored higher for these fixed-background videos
because HEVC can preserve better quality for fixed background by sending it in the
first I-frame in a Group of Pictures, an arranged order of I, P or B frames in a group
of successive frames. However, even for this type of content, it is possible that our
method may score as well as or better than other previous coding standards due to
the low differences in opinion scores.

In the RaceHourse and PartyScene sequences with c = 0.25 have higher scores
than c = 0.75. This effect is not always true for the rest of the tested sequences. In
general, foveated videos with c = 0.75 have higher score in lower bit rates. The
reason is that higher c leads to a smaller video input to HEVC, which can then
assign more bits to the ROI, when the bit rate available is fixed.

We have observed that with a low, fixed bit rate, the video quality was overall
poor, but with an increased bit rate the ROI had good quality. However, artifacts
in the peripheral area, such as flickering and moving or excessive blur, often dis-
turbed the users.
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Video Bit rate
c = 0.25 c = 0.75

Conv. Fov. Conv. Fov.

RaceHorses

200K 3.611 2.278 3.222 1.778

300K 3.722 2.556 3.722 2.0

512K 4.056 3.056 4.278 2.278

768K 4.278 3.333 4.278 2.111

1000K 4.278 3.444 4.222 2.278

PartyScene

200K 1.222 2.389 1.333 2.444

300K 1.444 2.944 1.333 2.278

512K 1.944 3.389 2.056 3.056

768K 2.889 3.667 3.222 3.111

1000K 3.5 3.889 3.889 3.167

Tennis

200K 1.056 1.556 1.111 2.278

300K 1.778 1.944 1.556 2.5

512K 2.667 2.833 2.333 3.0

768K 3.056 3.444 3.222 3.111

1000K 3.444 3.667 3.5 3.722

Kimono

200K 1.111 1.778 1.111 2.333

300K 1.278 2.167 1.167 2.556

512K 1.944 3.056 1.889 3.167

768K 2.389 3.611 2.5 3.444

1000K 2.722 4.0 2.889 3.778

Table 4.3: Subjective comparison between conventional (Conv.) and the proposed
fovea (Fov.) α = 0.02 for both foveated videos. (First series.)

52



Video Bit rate
c = 0.25 c = 0.75

Conv. Fov. Conv. Fov.

Vidyo4

200K 2.444 1.889 2.833 2.389

300K 3.556 2.556 3.0 2.778

512K 3.667 3.444 3.889 2.889

768K 4.056 3.5 3.944 3.056

1000K 4.056 3.556 4.0 3.167

Cactus

200K 1.056 1.278 1.0 1.722

300K 1.5 1.722 1.167 2.111

512K 2.056 2.389 2.056 2.611

768K 2.611 2.944 2.889 2.889

1000K 3.278 3.5 3.389 3.333

ChinaSpeed

200K 1.278 2.333 1.333 2.444

300K 1.778 3.056 1.889 3.056

512K 2.611 3.722 2.333 3.389

768K 3.0 4.0 3.222 4.056

1000K 3.444 4.0 3.722 4.167

Johnny

200K 2.5 2.389 2.944 2.444

300K 3.5 2.944 3.222 2.833

512K 3.833 3.389 4.056 3.0

768K 4.222 3.722 4.222 3.222

1000K 4.278 4.0 4.278 3.556

Table 4.4: Subjective comparison between conventional (Conv.) and the proposed
fovea (Fov.) α = 0.02 for both foveated videos. (Second series)
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Table 4.5: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Kimono with bit rate = 200 Kbps.

Bit rate 200 Kbps, Kimono
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 36.0945 37.4388 36.2033 38.0806 36.3636 38.9124 36.9805 39.9097

0.04 36.1872 37.7365 36.3301 38.3936 36.3789 39.0938 37.1751 40.2591

0.08 36.2503 37.9510 36.3876 38.5899 36.4093 39.2866 37.1045 40.3115

0.16 36.2235 37.9772 36.3278 38.6103 36.3501 39.3342 37.1727 40.4036

0.32 36.3269 38.3218 36.3774 38.6813 36.2357 39.1610 37.5150 40.6230

0.64 36.3316 38.3045 36.4162 38.9105 36.5860 39.6459 37.8940 41.0091

0.90 36.4017 38.4111 36.3820 38.8733 36.6158 39.7410 38.0534 41.1588
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Bitrate 200 Kbps, Kimono

c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
c=0.50, Fov.
c=0.75, Conv.
c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure 4.7: Chart of Table 4.5
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Table 4.6: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Kimono with bit rate = 300 Kbps.

Bit rate 300 Kbps, Kimono
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 36.8457 38.3052 36.9059 38.7452 37.0362 39.5989 37.6885 40.5532

0.04 36.9200 38.5981 37.0289 39.0908 37.0606 39.8080 37.9211 40.7477

0.08 36.9686 38.7439 37.0664 39.3298 37.1178 39.9623 37.8596 40.9220

0.16 36.9286 38.8335 37.0032 39.3564 37.0846 39.9470 37.9486 41.0271

0.32 37.0126 39.0726 37.0567 39.4510 36.9946 39.8352 38.3017 41.1901

0.64 37.0046 39.1113 37.1211 39.6231 37.3655 40.3136 38.6724 41.6047

0.90 37.0752 39.2355 37.0849 39.5617 37.4051 40.4006 38.7979 41.7479
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Bitrate 300 Kbps, Kimono

c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
c=0.50, Fov.
c=0.75, Conv.
c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure 4.8: Chart of Table 4.6
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Table 4.7: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Kimono with bit rate = 512 Kbps.

Bit rate 512 Kbps, Kimono
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 37.8396 39.3247 37.8955 39.8222 38.0553 40.3874 38.9001 41.5475

0.04 37.9054 39.6066 38.0111 40.1323 38.0977 40.6155 39.0462 41.7017

0.08 37.9610 39.7631 38.0553 40.3426 38.1529 40.7549 38.9859 41.8966

0.16 37.9149 39.8006 37.9979 40.2857 38.1071 40.7594 39.0560 42.0443

0.32 37.9972 40.0649 38.0629 40.3243 38.0164 40.6545 39.3466 42.2588

0.64 38.0048 40.1080 38.1406 40.5577 38.3922 41.1397 39.6252 42.5973

0.90 38.0742 40.1937 38.1185 40.4845 38.4665 41.2577 39.7492 42.6657
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c=0.75, Conv.
c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure 4.9: Chart of Table 4.7

56



Table 4.8: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression with bit rate = 768 Kbps

Bit rate 768 Kbps, Kimono
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 38.6848 40.0884 38.7374 40.4818 38.8186 41.0739 39.5690 42.0485

0.04 38.7466 40.3444 38.8398 40.7914 38.8601 41.2809 39.6794 42.2503

0.08 38.7970 40.5007 38.8748 41.0013 38.9144 41.5059 39.6091 42.4338

0.16 38.7464 40.5580 38.8170 40.9377 38.8709 41.5062 39.6569 42.5194

0.32 38.8225 40.7910 38.8513 41.0093 38.7896 41.3725 39.9255 42.8453

0.64 38.8134 40.8237 38.9183 41.2484 39.1273 41.8130 40.2000 43.2339

0.90 38.8706 40.9198 38.8861 41.1539 39.1747 41.9814 40.3167 43.2423
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c=0.75, Conv.
c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure 4.10: Chart of Table 4.8
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Table 4.9: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Kimono with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, Kimono
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 39.2374 40.5368 39.3009 40.9350 39.4122 41.5106 40.1623 42.5311

0.04 39.3005 40.7844 39.3993 41.2620 39.4523 41.7500 40.2811 42.6713

0.08 39.3532 40.9563 39.4322 41.4543 39.5019 41.9339 40.2220 42.9006

0.16 39.3087 41.0173 39.3779 41.4180 39.4608 41.9291 40.2951 43.0219

0.32 39.3828 41.2436 39.4185 41.4999 39.3724 41.7687 40.5663 43.2794

0.64 39.3742 41.2765 39.4886 41.7577 39.7273 42.2001 40.8456 43.6570

0.90 39.4352 41.3501 39.4711 41.6296 39.7896 42.3831 40.9502 43.6708

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
38.5

39

39.5

40

40.5

41

41.5

42

42.5

43

43.5

α

R
O

I P
S

N
R

 (d
B

)

Bitrate 1000 Kbps, Kimono

c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
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c=0.75, Conv.
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c=0.90, Conv.
c=0.90, Fov.

Figure 4.11: Chart of Table 4.9
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Table 4.10: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Kimono with bit rate = 200 Kbps.

Bit rate 200 Kbps, Kimono
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

0.50 18.7746 18.4615 18.1590 17.9002 17.6530 17.4953 17.4133

0.75 18.6234 18.3196 18.0173 17.7564 17.5361 17.3358 17.2574

0.90 18.2134 17.9139 17.6204 17.3190 17.1243 16.9429 16.8185

FPSNR

0.25 31.9853 31.8102 31.6243 31.4050 31.2651 31.1196 31.0636

31.7359
0.50 32.1345 31.9354 31.7296 31.5013 31.2878 31.1530 31.0826

0.75 32.0590 31.8700 31.6500 31.4207 31.2078 31.0179 30.9670

0.90 31.7349 31.5259 31.3058 31.0404 30.8452 30.6522 30.5273

FSSIM

0.25 0.8968 0.8947 0.8930 0.8913 0.8900 0.8892 0.8887

0.9022
0.50 0.8982 0.8961 0.8942 0.8926 0.8911 0.8901 0.8897

0.75 0.8994 0.8972 0.8952 0.8932 0.8916 0.8904 0.8899

0.90 0.8980 0.8958 0.8936 0.8916 0.8900 0.8887 0.8882

Table 4.11: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Kimono with bit rate = 300 Kbps.

Bit rate 300 Kbps, Kimono
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 19.4049 19.0553 18.7311 18.4509 18.2448 18.0876 18.0366

20.5574
0.50 19.3937 19.0689 18.7445 18.4981 18.2269 18.0909 18.0219

0.75 19.2458 18.9259 18.5728 18.2799 17.9892 17.7499 17.6920

0.90 18.7293 18.3568 18.0729 17.7482 17.5486 17.3209 17.2396

FPSNR

0.25 32.7549 32.5547 32.3241 32.1036 31.9254 31.7919 31.7311

32.5664
0.50 32.7200 32.5437 32.3317 32.1227 31.8978 31.7538 31.6758

0.75 32.6573 32.4646 32.2079 31.9607 31.7003 31.4681 31.3978

0.90 32.2239 31.9839 31.7480 31.4809 31.2652 31.0415 30.9446

FSSIM

0.25 0.9038 0.9016 0.8995 0.8975 0.8961 0.8950 0.8946

0.9107
0.50 0.9048 0.9026 0.9004 0.8985 0.8968 0.8955 0.8951

0.75 0.9054 0.9030 0.9006 0.8983 0.8964 0.8949 0.8944

0.90 0.9032 0.9006 0.8982 0.8959 0.8941 0.8926 0.8919
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Table 4.12: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Kimono with bit rate = 512 Kbps.

Bit rate 512 Kbps, Kimono
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 20.4728 20.0958 19.7314 19.3934 19.1285 18.9628 18.8297

21.8415
0.50 20.4169 20.0530 19.6699 19.3508 19.0260 18.8538 18.7764

0.75 20.0812 19.7097 19.3223 18.9958 18.7320 18.4921 18.4088

0.90 19.6276 19.1895 18.8054 18.4433 18.1565 17.8438 17.7534

FPSNR

0.25 33.6974 33.4891 33.2448 32.9734 32.7721 32.6195 32.5335

33.5957
0.50 33.6396 33.4451 33.1998 32.9185 32.6518 32.5051 32.4195

0.75 33.4257 33.2084 32.9283 32.6530 32.4224 32.2015 32.1043

0.90 33.0520 32.7627 32.4639 32.1446 31.8861 31.5913 31.4826

FSSIM

0.25 0.9137 0.9112 0.9088 0.9064 0.9047 0.9034 0.9027

0.9219
0.50 0.9140 0.9115 0.9091 0.9067 0.9046 0.9032 0.9026

0.75 0.9133 0.9107 0.9080 0.9055 0.9034 0.9016 0.9010

0.90 0.9102 0.9071 0.9042 0.9015 0.8991 0.8972 0.8962

Table 4.13: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Kimono with bit rate = 768 Kbps.

Bit rate 768 Kbps, Kimono
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 21.2660 20.8476 20.4518 20.1386 19.8663 19.6210 19.5311

22.9391
0.50 21.1824 20.8264 20.4072 20.0540 19.7301 19.5069 19.4249

0.75 20.9509 20.5203 20.0864 19.7247 19.3898 19.1329 19.0186

0.90 20.1839 19.7103 19.2619 18.8576 18.5300 18.1977 18.0586

FPSNR

0.25 34.3732 34.1470 33.8903 33.6410 33.4260 33.2308 33.1427

34.4221
0.50 34.3165 34.1212 33.8535 33.5772 33.3174 33.1280 33.0322

0.75 34.1378 33.8872 33.6046 33.3026 33.0153 32.7886 32.6793

0.90 33.5564 33.2345 32.8859 32.5473 32.2485 31.9498 31.8247

FSSIM

0.25 0.9210 0.9184 0.9159 0.9134 0.9115 0.9098 0.9092

0.9301
0.50 0.9208 0.9184 0.9157 0.9131 0.9109 0.9092 0.9085

0.75 0.9198 0.9169 0.9140 0.9111 0.9086 0.9066 0.9057

0.90 0.9153 0.9118 0.9085 0.9055 0.9028 0.9004 0.8993
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Table 4.14: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Kimono with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, Kimono
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 21.8303 21.3916 20.9834 20.6313 20.3134 20.0975 19.9755

23.6766
0.50 21.7941 21.3636 20.9619 20.5886 20.2424 19.9657 19.8907

0.75 21.4666 21.0084 20.5375 20.1141 19.7275 19.4090 19.2764

0.90 20.6087 20.0802 19.5907 19.1280 18.7666 18.3917 18.2476

FPSNR

0.25 34.8159 34.5798 34.3165 34.0586 33.8285 33.6455 33.5497

34.9722
0.50 34.7835 34.5613 34.3091 34.0306 33.7617 33.5529 33.4489

0.75 34.5619 34.3038 33.9825 33.6436 33.3252 33.0506 32.9375

0.90 33.9165 33.5697 33.1904 32.8101 32.4874 32.1530 32.0193

FSSIM

0.25 0.9254 0.9229 0.9202 0.9177 0.9155 0.9140 0.9131

0.9350
0.50 0.9254 0.9227 0.9199 0.9173 0.9149 0.9131 0.9123

0.75 0.9237 0.9207 0.9175 0.9145 0.9118 0.9096 0.9086

0.90 0.9183 0.9146 0.9111 0.9077 0.9048 0.9021 0.9009
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Chapter 5

Conclusion and Future Work

In this thesis, we designed a standard-independent perceptual foveation-based
video coding method by improving a foveation-based image processing technique.
Also, we have added an extension that allows ROIs with arbitrary rectangular
shape. With this one may preserve the quality of various objects’ shapes in differ-
ent video content, while using only one fixation point per object. According to our
results and comparisons with HEVC as our conventional video coding standard,
we conclude that this method is useful for video contents that have fast motion,
the fixation point is mostly following one object in most of the frame, or the back-
ground is moving (having movable camera or background). Using fovea in the
videos helps to have better quality in the regions which attract more attention to
them. This is going to be useful in most video applications such as surveillance
videos (especially if it is in a very windy place when camera is moving or most of
the objects in the scene are moving), sports, and typical movies. This design is only
developed and tested for a single fixation point in the video but it is easily expend-
able to multiple fixation points, which one might suggest that can improve both
perceptual quality and be useful for types of video content with multiple attention
areas.

The first step in perceptual foveation-based video compression is detecting the
fixation points. In this study, we detected them manually; however, one can use
the automatic selection of these points (see Section 2.3) which makes the system
completely automatic, one of the essential things in most of video applications.
The other part of perceptual compression is the quality assessment, for which we
cannot use the conventional PSNR or MSE metrics due to their uniform evalua-
tion on the whole frame. Therefore, we need to have proper evaluation metrics
that evaluate the attentional regions (or ROIs) different than the peripheral areas.
In this study, we summarized and used four different objective metrics, generally
uncommon to find all used in one work. However, objective tests do not always
match the perceptual quality truly perceived by humans. As you can see in Ta-
bles 4.3 4.4, users vote for better quality of videos in which the objective tests set
lower quality values. Thus, subjective test is essential in the perceptual work, but
they still have to design better evaluation metrics that can correctly judge among
results because it is time consuming for subjective evaluation of all single results
and in some cases it is very expensive, too. Another future possibility for evalu-
ating the proposed method is as follows; we have unlimited available bit rate for
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each video; and then by getting the used bit rate for the foveated videos, we need to
set the used bit rate as the target bit rate (fixed bit rate) for the conventional video
compression and compare their quality as well.

The proposed method is independent from the video content. However, it does
not produce very good quality for all types of videos. Therefore, as a future trend,
one can find out how the foveation method can work completely independent
from the content or how one can design a system that can automatically evaluate
whether the video content is useful for the foveation method or not. In addition,
if an automatic detection of the parameters α, and c can be found, it can maximize
the achieved quality.

If real-time performance is a requirement, one may process each row in parallel
in order to encode and decode in real-time.

One of the weakness of this method is that in the foveation process, we have
repeated pixels in the ROI area. Future work can avoid these redundancies by
presenting a new foveated model that can preserve the quality of the ROI. One
might suggest that it can improve the compression size of data as well because the
proposed method cannot compress the data more than the state-of-the-art video
coding standard.

Another lesson we learned from our subjective tests is that users are tolerant to
static blur and smoothness in peripheral areas; however, if flicker or moving blur
happens, even in the peripheral areas, it is easily noticed by human eyes. There-
fore, in future work one should investigate how to decrease these artifacts in the
peripheral areas to increase the users’ satisfaction with the video quality.

One final future possibility is if the same fix of the shifting effect in CVR re-
transform is applied to the MSF re-transform method, one can produce better im-
ages with MSF even though the method may not be a very good match for the video
coding standards. Moreover, the Basu and Wiebe (1998) foveation method has been
used in other applications (Basu and Cheng, 2001) (Sanchez et al., 2004) and (Basu
et al., 2002). By applying the proposed method to the previous applications, one
can improve the quality of the results achieved from these applications.
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Appendix A

Additional Experimental Results

A.1 ROI PSNR Results
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Table A.1: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Cactus with bit rate = 200 Kbps.

Bit rate 200 Kbps, Cactus
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 30.6361 32.1208 30.5868 32.6654 30.2118 33.4031 30.1093 33.5403

0.04 30.5773 32.2234 30.5771 32.8403 30.3964 33.7545 30.2748 34.0701

0.08 30.6707 32.4420 30.5832 33.0796 30.3944 33.9552 30.4025 34.5045

0.16 30.6079 32.6471 30.4966 33.3196 30.3954 34.0659 30.5367 34.7665

0.32 30.5712 32.7232 30.4637 33.3196 30.4757 34.2395 30.7752 35.2653

0.64 30.4479 32.7957 30.4963 33.5741 30.4193 34.4667 30.7364 35.3232

0.90 30.5126 32.9362 30.4273 33.6465 30.5366 34.7096 30.8500 35.3370
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c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
c=0.50, Fov.
c=0.75, Conv.
c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure A.1: Chart of Table A.1

70



Table A.2: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Tennis with bit rate = 200 Kbps.

Bit rate 200 Kbps, Tennis
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 24.0795 24.0287 24.3493 24.2234 24.5434 24.2963 25.2899 24.3293

0.04 24.2631 24.2057 24.4186 24.2589 24.6107 24.2946 24.4935 24.0661

0.08 24.3797 24.2861 24.4919 24.2838 24.6503 24.2972 24.4928 24.1137

0.16 24.4374 24.3382 24.5758 24.3627 24.6451 24.2829 24.5899 24.2270

0.32 24.5087 24.3468 24.6519 24.3801 24.6244 24.2141 24.8071 24.3031

0.64 24.5850 24.4011 24.6655 24.3552 24.6277 24.2391 25.0904 24.5322

0.90 24.6204 24.4245 24.6862 24.3761 24.6142 24.2153 25.4387 24.4836
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c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure A.2: Chart of Table A.2
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Table A.3: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Vidyo4 with bit rate = 200 Kbps.

Bit rate 200 Kbps, Vidyo4
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 39.0295 38.7590 38.4496 38.6021 38.5517 39.2229 39.3032 40.4728

0.04 38.8170 38.6798 38.3420 38.5988 38.3393 39.2233 38.3241 39.8168

0.08 38.5539 38.5554 38.2159 38.5926 38.3035 39.4770 38.1592 39.8989

0.16 38.3562 38.2057 38.1942 38.5298 38.2222 39.4113 37.9703 39.6780

0.32 38.1900 38.1419 38.2131 38.7014 38.1782 39.4900 37.8210 39.5829

0.64 38.1929 38.2029 38.2105 38.6748 38.1103 39.3971 37.7478 39.4210

0.90 38.2094 38.1138 38.1846 38.7908 38.0799 39.4662 37.9612 39.3835
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c=0.90, Conv.
c=0.90, Fov.

Figure A.3: Chart of Table A.3
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Table A.4: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Johnny with bit rate = 200 Kbps.

Bit rate 200 Kbps, Johnny
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 39.4802 37.4329 39.0793 37.9662 39.5510 39.5532 40.0893 40.4806

0.04 39.2631 37.5122 39.0276 37.8719 39.5882 39.7737 40.3461 41.1342

0.08 39.1358 37.3761 39.0141 38.1354 39.6526 40.0885 40.3947 41.2014

0.16 38.9757 37.2323 39.1175 38.3361 39.6811 40.0980 40.4490 41.3570

0.32 38.9963 37.2938 39.3318 38.5495 39.7379 39.9690 40.4823 41.4897

0.64 39.1324 37.6207 39.6067 39.2051 40.0232 40.2188 40.5914 41.3364

0.90 39.2684 37.8353 39.6855 39.2699 40.0252 40.1718 40.6802 41.3667
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c=0.90, Conv.
c=0.90, Fov.

Figure A.4: Chart of Table A.4
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Table A.5: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for ChinaSpeed with bit rate = 200 Kbps.

Bit rate 200 Kbps, ChinaSpeed
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 32.3387 32.8535 33.7562 34.9894 35.5709 37.2267 38.0730 41.6903

0.04 32.3347 33.3370 33.5695 35.0320 35.2022 37.3332 35.5049 38.7465

0.08 32.7667 33.5910 33.8237 35.0913 35.3337 37.7819 35.7234 39.2940

0.16 33.4740 34.7643 34.8855 36.9403 35.2786 38.6065 35.3542 39.5567

0.32 34.1301 35.7764 34.9988 37.2023 35.6984 39.3232 35.4033 39.1463

0.64 34.8493 36.9278 34.9936 37.5196 35.5124 39.2360 35.4821 40.3929

0.90 34.7373 36.8771 35.2987 38.0887 35.5919 39.3800 35.7614 40.8356
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c=0.25, Conv.
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c=0.50, Conv.
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c=0.90, Conv.
c=0.90, Fov.

Figure A.5: Chart of Table A.5
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Table A.6: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for BasketballDrill with bit rate = 200
Kbps.

Bit rate 200 Kbps, BasketballDrill
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 28.0192 27.9087 27.8648 27.8168 27.7901 28.0224 32.2088 32.7002

0.04 27.8869 27.7677 27.6448 27.5377 27.2911 27.3144 30.1664 30.6607

0.08 27.7229 27.5891 27.5005 27.3517 27.1725 27.1604 29.4281 29.7417

0.16 27.5766 27.4249 27.3835 27.2016 27.1837 27.1689 29.4406 29.4865

0.32 27.4998 27.3536 27.2662 27.1332 27.3534 27.3703 30.4705 30.6057

0.64 27.4008 27.2444 27.2262 27.1012 27.5345 27.5221 32.1086 32.6030

0.90 27.3322 27.1804 27.1790 27.0799 27.7538 27.7786 33.6288 33.0218
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c=0.90, Conv.
c=0.90, Fov.

Figure A.6: Chart of Table A.6
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Table A.7: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for PartyScene with bit rate = 200 Kbps.

Bit rate 200 Kbps, PartyScene
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 29.9127 31.2042 29.8474 31.6367 28.9892 31.2220 26.8859 28.9502

0.04 29.8759 31.4656 29.7830 31.8347 29.2911 31.8456 28.6059 31.1675

0.08 29.7944 31.7532 29.6580 32.1797 29.2177 32.2725 28.5116 31.6171

0.16 29.7450 31.9668 29.5884 32.3307 29.0740 32.3748 28.9002 32.4304

0.32 29.6447 32.0321 29.4962 32.4441 28.9659 32.4860 29.1398 33.0148

0.64 29.5940 32.1134 29.4041 32.5172 28.9795 32.5621 29.1406 33.0053

0.90 29.5694 32.2705 29.3288 32.4574 28.9778 32.5328 29.5107 32.5402
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c=0.75, Conv.
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c=0.90, Conv.
c=0.90, Fov.

Figure A.7: Chart of Table A.7
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Table A.8: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for RaceHorses with bit rate = 200 Kbps.

Bit rate 200 Kbps, RaceHorses
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 34.6334 33.9156 35.4099 34.8703 38.1011 38.3571 45.6402 44.1567

0.04 34.6530 34.0816 35.3841 35.0042 36.6773 36.5726 41.6596 43.1171

0.08 34.8647 34.3704 35.5923 35.4403 36.4289 36.7805 39.4726 39.1776

0.16 35.1739 34.8065 35.6427 35.5467 36.3656 36.3897 39.1490 39.1319

0.32 35.3773 35.1425 35.7418 35.9153 36.4522 36.9019 39.8910 40.9656

0.64 35.6279 35.4532 35.9686 36.0123 36.3848 36.9994 42.4999 41.8043

0.90 35.7292 35.6682 36.0833 36.1385 36.8725 37.2829 43.4339 43.7989
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c=0.25, Conv.
c=0.25, Fov.
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c=0.90, Conv.
c=0.90, Fov.

Figure A.8: Chart of Table A.8
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Table A.9: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Cactus with bit rate = 300 Kbps.

Bit rate 300 Kbps, Cactus
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 31.7964 32.9322 31.7199 33.3946 31.5203 33.9602 31.5860 34.0633

0.04 31.7239 33.0694 31.7074 33.6680 31.7065 34.3258 31.6797 34.5049

0.08 31.7895 33.2717 31.7212 33.8681 31.7288 34.4839 31.7665 34.8897

0.16 31.7289 33.4628 31.7720 34.0790 31.7160 34.6554 31.8891 35.3095

0.32 31.7186 33.5412 31.7582 34.0859 31.8123 34.8069 32.1061 35.7390

0.64 31.6595 33.5632 31.8048 34.3010 31.7714 34.9789 32.0265 35.6486

0.90 31.7877 33.7560 31.7635 34.3446 31.9012 35.2059 32.1213 35.7833
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c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
c=0.50, Fov.
c=0.75, Conv.
c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure A.9: Chart of Table A.9
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Table A.10: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Tennis with bit rate = 300 Kbps.

Bit rate 300 Kbps, Tennis
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 23.9736 23.9088 24.2372 24.1045 24.3959 24.1847 24.7533 24.2227

0.04 24.1560 24.0721 24.3077 24.1696 24.4617 24.2468 24.2464 24.0162

0.08 24.2692 24.1440 24.3701 24.2008 24.4928 24.2484 24.2893 24.0545

0.16 24.3263 24.1834 24.4405 24.2613 24.4716 24.2149 24.3998 24.1813

0.32 24.3881 24.2515 24.5118 24.3129 24.4461 24.1662 24.4953 24.2543

0.64 24.4492 24.2912 24.5182 24.3058 24.4389 24.1724 24.7798 24.4635

0.90 24.4834 24.3044 24.5242 24.3185 24.4292 24.1630 24.8836 24.4557
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c=0.25, Conv.
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c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure A.10: Chart of Table A.10
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Table A.11: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Vidyo4 with bit rate = 300 Kbps.

Bit rate 300 Kbps, Vidyo4
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 40.2259 39.8424 39.6314 39.4019 39.7371 39.9647 40.2518 40.8950

0.04 40.0057 39.6922 39.5264 39.4305 39.5101 39.9902 39.7643 40.2955

0.08 39.7433 39.4319 39.4169 39.3589 39.4858 40.1440 39.6134 40.5112

0.16 39.5381 39.2271 39.4147 39.3933 39.4303 40.1679 39.4485 40.3641

0.32 39.4021 39.0401 39.4016 39.4776 39.4342 40.3292 39.3249 40.2871

0.64 39.4107 39.0987 39.3719 39.3191 39.4472 40.2964 39.2597 40.1071

0.90 39.4144 39.0986 39.3612 39.5106 39.4384 40.0855 39.3049 40.2047
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c=0.25, Conv.
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c=0.75, Conv.
c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure A.11: Chart of Table A.11
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Table A.12: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Johnny with bit rate = 300 Kbps.

Bit rate 300 Kbps, Johnny
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 40.7208 38.2978 40.3268 38.6360 40.6178 40.1244 40.9374 40.9758

0.04 40.4881 38.3662 40.2553 38.7886 40.6315 40.2754 41.3208 41.6968

0.08 40.3658 38.3403 40.2315 38.9336 40.6771 40.6677 41.3759 41.9082

0.16 40.2162 38.2685 40.2726 39.1681 40.7108 40.9302 41.4602 42.0849

0.32 40.2159 38.2164 40.4023 39.3222 40.7558 40.7340 41.4894 42.0718

0.64 40.2797 38.5291 40.6141 39.9902 40.9755 40.8359 41.5175 42.1128

0.90 40.3516 38.7659 40.6976 40.1503 40.9813 40.8092 41.5404 42.1460
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c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
c=0.50, Fov.
c=0.75, Conv.
c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure A.12: Chart of Table A.12
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Table A.13: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for ChinaSpeed with bit rate = 300 Kbps.

Bit rate 300 Kbps, ChinaSpeed
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 33.3226 33.5067 34.7130 35.5742 36.5913 38.1063 39.2296 41.7145

0.04 33.3084 34.0924 34.5253 35.3931 36.2003 38.0078 36.6685 40.0098

0.08 33.7193 34.1876 34.7894 35.7446 36.3170 38.5586 36.7767 40.4060

0.16 34.4096 35.4382 35.8855 37.6292 36.2789 39.3541 36.3654 40.6734

0.32 35.0990 36.4661 36.0031 37.8045 36.7432 40.1220 36.3300 40.1090

0.64 35.8463 37.6126 35.9853 38.2069 36.5761 40.2112 36.3728 41.4148

0.90 35.7099 37.7334 36.2856 38.9309 36.6505 40.3698 36.6100 41.6606
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Bitrate 300 Kbps, ChinaSpeed

c=0.25, Conv.
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c=0.50, Conv.
c=0.50, Fov.
c=0.75, Conv.
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c=0.90, Conv.
c=0.90, Fov.

Figure A.13: Chart of Table A.13
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Table A.14: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for BasketballDrill with bit rate = 300
Kbps.

Bit rate 300 Kbps, BasketballDrill
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 27.9818 27.9461 27.8075 27.8041 27.8065 27.9007 32.4097 32.3260

0.04 27.8411 27.7733 27.5854 27.5687 27.2343 27.3183 30.6035 31.1721

0.08 27.6598 27.6393 27.4327 27.3926 27.1137 27.1652 29.4279 29.4264

0.16 27.5158 27.4659 27.3146 27.2526 27.1294 27.1412 29.6497 29.5305

0.32 27.4322 27.3514 27.1938 27.1359 27.3192 27.3469 30.4696 30.8145

0.64 27.3321 27.2681 27.1521 27.1534 27.5015 27.5115 32.7833 33.1905

0.90 27.2624 27.1824 27.1182 27.0829 27.8091 27.7922 33.1100 32.7784

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
27

28

29

30

31

32

33

34

α

R
O

I P
S

N
R

 (d
B

)
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c=0.90, Conv.
c=0.90, Fov.

Figure A.14: Chart of Table A.14
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Table A.15: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for PartyScene with bit rate = 300 Kbps.

Bit rate 300 Kbps, PartyScene
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 30.8528 31.8376 30.8784 32.0915 30.1527 31.6256 28.1157 29.4451

0.04 30.8365 32.1327 30.8366 32.4460 30.4371 32.3834 29.9004 31.5911

0.08 30.7968 32.3897 30.7635 32.6952 30.3859 32.7733 29.4147 32.1618

0.16 30.7940 32.6644 30.7116 32.8170 30.2303 32.9339 29.8737 33.0375

0.32 30.7434 32.6838 30.6007 33.0695 30.1194 33.0693 30.4870 33.5043

0.64 30.7038 32.7921 30.5031 32.9470 30.1039 33.1955 30.9834 33.9124

0.90 30.6962 33.0237 30.4505 33.0661 30.0712 33.1948 30.9736 33.0292
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c=0.75, Conv.
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Figure A.15: Chart of Table A.15
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Table A.16: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for RaceHorses with bit rate = 300 Kbps.

Bit rate 300 Kbps, RaceHorses
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 35.7691 34.6084 36.5561 35.5988 39.6629 39.5179 44.9040 47.1029

0.04 35.8008 34.7825 36.5066 35.8733 37.7353 37.4426 42.9250 44.4445

0.08 36.0057 35.0908 36.6340 36.2702 37.4248 37.3058 40.4028 41.0936

0.16 36.2606 35.5679 36.7166 36.2671 37.3314 37.5346 39.7043 40.3298

0.32 36.4922 36.0173 36.7533 36.5522 37.7166 37.8956 41.3700 41.3029

0.64 36.7130 36.2406 36.9977 36.9000 37.5912 37.5584 42.8749 43.2882

0.90 36.9872 36.5410 37.0573 36.8108 38.0592 37.7508 43.2285 44.6658
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c=0.25, Conv.
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Figure A.16: Chart of Table A.16
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Table A.17: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Cactus with bit rate = 512 Kbps.

Bit rate 512 Kbps, Cactus
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 32.9851 34.0677 32.9042 34.3461 32.7579 34.6411 32.6683 34.7390

0.04 32.9243 34.1727 32.9136 34.5630 32.9186 34.9943 32.8481 35.2687

0.08 32.9718 34.3587 32.9593 34.7155 32.9335 35.1130 32.9720 35.5982

0.16 32.9415 34.4800 32.9714 34.9125 32.9306 35.2709 33.0540 36.0002

0.32 32.9727 34.5630 32.9580 34.8730 33.0010 35.4704 33.2067 36.5139

0.64 32.9133 34.5280 33.0109 35.0747 32.9687 35.5509 33.1392 36.3705

0.90 32.9927 34.6751 32.9737 35.1277 33.0618 35.7987 33.2031 36.5536
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Figure A.17: Chart of Table A.17
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Table A.18: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Tennis with bit rate = 512 Kbps.

Bit rate 512 Kbps, Tennis
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 23.8801 23.8253 24.1328 24.0331 24.2603 24.1468 24.2565 24.2049

0.04 24.0530 23.9759 24.1939 24.0760 24.3179 24.1957 24.0735 23.9692

0.08 24.1625 24.0632 24.2508 24.1267 24.3380 24.2102 24.1300 24.0343

0.16 24.2107 24.1043 24.3154 24.1717 24.3080 24.1716 24.2250 24.1454

0.32 24.2672 24.1481 24.3734 24.2194 24.2752 24.1295 24.3156 24.2129

0.64 24.3229 24.1942 24.3675 24.2243 24.2636 24.1223 24.4975 24.3894

0.90 24.3505 24.2215 24.3726 24.2323 24.2552 24.1233 24.7078 24.4124
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c=0.75, Fov.
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Figure A.18: Chart of Table A.18
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Table A.19: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Vidyo4 with bit rate = 512 Kbps.

Bit rate 512 Kbps, Vidyo4
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 41.5661 40.8417 40.9715 40.3888 40.9092 40.7748 41.2739 42.1370

0.04 41.3519 40.7024 40.8615 40.4474 40.7025 40.7934 40.7634 41.4249

0.08 41.0836 40.5264 40.7298 40.3781 40.6608 40.9661 40.6250 41.5307

0.16 40.8742 40.3383 40.6711 40.4247 40.5724 40.9094 40.4924 41.4891

0.32 40.7103 40.1822 40.6307 40.4092 40.5314 40.9639 40.3770 41.4439

0.64 40.6609 40.1638 40.5783 40.3521 40.5134 40.9678 40.3011 41.3449

0.90 40.6536 40.2117 40.5548 40.4283 40.5047 41.0674 40.4291 41.2951

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
39

39.2

39.4

39.6

39.8

40

40.2

40.4

40.6

40.8

41

α

R
O

I P
S

N
R

 (d
B

)
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c=0.25, Conv.
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Figure A.19: Chart of Table A.19
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Table A.20: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Johnny with bit rate = 512 Kbps.

Bit rate 512 Kbps, Johnny
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 41.8923 39.1150 41.5092 39.4921 41.6757 40.9684 41.6889 42.0241

0.04 41.6691 39.2287 41.4329 39.5425 41.6969 41.1070 42.0744 42.4348

0.08 41.5515 39.2409 41.3915 39.8539 41.7207 41.4561 42.1334 42.7649

0.16 41.3934 39.1424 41.4123 40.0947 41.7039 41.7392 42.1835 42.8793

0.32 41.3729 39.2006 41.5330 40.2737 41.7045 41.6893 42.1874 42.9709

0.64 41.4199 39.4580 41.6881 40.9009 41.8581 41.8277 42.1883 42.9277

0.90 41.4881 39.6983 41.7419 41.0219 41.8497 41.7896 42.2272 42.8410
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Figure A.20: Chart of Table A.20
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Table A.21: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for ChinaSpeed with bit rate = 512 Kbps.

Bit rate 512 Kbps, ChinaSpeed
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 34.5716 34.2148 35.8109 36.5930 37.3972 39.0973 40.0376 42.9848

0.04 34.5476 35.0617 35.6306 36.4667 37.0654 39.1128 37.4251 40.9949

0.08 34.9317 35.0416 35.8405 36.4879 37.1493 39.7984 37.4655 42.1313

0.16 35.5439 36.3485 36.8083 38.4905 37.1396 40.5583 37.1195 42.2003

0.32 36.1306 37.4301 36.8789 39.0009 37.4817 41.5279 37.0842 41.3099

0.64 36.7678 38.7577 36.8648 39.5443 37.3628 41.5672 37.1337 42.8571

0.90 36.6367 38.8476 37.1223 40.2496 37.3810 41.5884 37.3628 43.0355
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c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure A.21: Chart of Table A.21
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Table A.22: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for BasketballDrill with bit rate = 512
Kbps.

Bit rate 512 Kbps, BasketballDrill
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 27.9964 27.9553 27.8044 27.8213 27.7017 27.9152 32.7288 32.7967

0.04 27.8553 27.8273 27.5734 27.5784 27.1955 27.3592 30.8070 30.6583

0.08 27.6635 27.6448 27.4029 27.3835 27.0583 27.1460 29.5294 29.5115

0.16 27.5062 27.4768 27.2771 27.2601 27.0663 27.1529 29.4182 29.6014

0.32 27.4085 27.3599 27.1450 27.1343 27.2543 27.3584 30.8504 30.8161

0.64 27.2954 27.2788 27.1022 27.1025 27.4154 27.5351 33.0005 32.4517

0.90 27.2135 27.1916 27.0624 27.0388 27.6671 27.8182 34.2021 33.7787
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Figure A.22: Chart of Table A.22
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Table A.23: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for PartyScene with bit rate = 512 Kbps.

Bit rate 512 Kbps, PartyScene
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 31.9333 32.6917 31.9471 32.9123 31.0156 32.4401 29.3143 29.9415

0.04 31.9153 32.9840 31.8910 33.1742 31.3557 33.1896 30.3298 32.5459

0.08 31.8763 33.2738 31.7843 33.4549 31.2915 33.7484 30.1382 33.0004

0.16 31.8462 33.5250 31.7083 33.6466 31.1342 33.8515 30.5422 33.9123

0.32 31.7781 33.4840 31.6031 33.8320 30.9846 33.9564 30.9083 34.2379

0.64 31.6975 33.5608 31.4850 33.8878 30.9165 34.1524 30.9473 34.0564

0.90 31.6934 33.8726 31.4128 33.9935 30.8597 34.1787 31.1698 33.8413
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Figure A.23: Chart of Table A.23
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Table A.24: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for RaceHorses with bit rate = 512 Kbps.

Bit rate 512 Kbps, RaceHorses
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 37.5027 35.5823 38.1012 36.5913 40.9441 40.0456 46.3654 46.9069

0.04 37.4884 35.8076 38.0695 36.9023 39.1932 38.2729 43.4974 44.9072

0.08 37.6513 36.1149 38.2818 37.2499 39.0850 38.4580 42.0788 42.1050

0.16 37.9868 36.5555 38.2635 37.2873 38.8495 38.3802 41.4530 41.0670

0.32 38.1350 36.9568 38.4496 37.6706 39.6390 38.9211 42.6181 43.8624

0.64 38.3257 37.3765 38.8185 37.8849 38.9617 38.9487 43.9092 45.1658

0.90 38.9239 38.0159 38.8092 37.8452 39.6483 39.1477 44.9270 44.8468
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Figure A.24: Chart of Table A.24
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Table A.25: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Cactus with bit rate = 768 Kbps.

Bit rate 768 Kbps, Cactus
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 33.7750 34.7722 33.6991 34.9325 33.6061 35.0756 33.6277 35.2131

0.04 33.7274 34.8501 33.7177 35.1141 33.7783 35.3975 33.8092 35.5843

0.08 33.7635 35.0050 33.7610 35.2468 33.8112 35.6179 33.9216 36.0872

0.16 33.7476 35.1193 33.7953 35.4457 33.8132 35.7273 34.0252 36.4271

0.32 33.7835 35.1318 33.7949 35.3833 33.9133 35.9266 34.2263 36.9248

0.64 33.7380 35.0723 33.8623 35.6129 33.8944 36.0830 34.1648 36.8780

0.90 33.8167 35.2297 33.8420 35.6361 34.0133 36.3353 34.2842 37.0947
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Figure A.25: Chart of Table A.25
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Table A.26: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Tennis with bit rate = 768 Kbps.

Bit rate 768 Kbps, Tennis
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 23.8384 23.7981 24.0790 24.0093 24.2182 24.1280 24.2602 24.1412

0.04 24.0034 23.9429 24.1416 24.0505 24.2718 24.1568 24.0434 23.9369

0.08 24.1091 24.0255 24.1998 24.0977 24.2941 24.1862 24.0934 24.0009

0.16 24.1591 24.0578 24.2677 24.1635 24.2653 24.1461 24.2137 24.1024

0.32 24.2167 24.1107 24.3238 24.2104 24.2380 24.1124 24.2797 24.1760

0.64 24.2740 24.1522 24.3221 24.2008 24.2318 24.1016 24.4551 24.3404

0.90 24.3010 24.1893 24.3279 24.1985 24.2238 24.1111 24.5069 24.3760
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c=0.25, Conv.
c=0.25, Fov.
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c=0.75, Fov.
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Figure A.26: Chart of Table A.26
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Table A.27: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Vidyo4 with bit rate = 768 Kbps.

Bit rate 768 Kbps, Vidyo4
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 42.5091 41.5941 41.9561 41.2122 41.8231 41.5896 42.1886 42.5507

0.04 42.3070 41.5025 41.8481 41.2589 41.6550 41.5864 41.6377 42.0347

0.08 42.0570 41.2083 41.7165 41.1568 41.6174 41.6786 41.4887 42.1516

0.16 41.8564 40.9386 41.6637 41.1041 41.5313 41.6386 41.3118 42.1548

0.32 41.6987 40.8171 41.6219 41.0395 41.4856 41.7683 41.1605 42.2600

0.64 41.6605 40.8607 41.5580 41.0580 41.4350 41.7664 41.1233 42.1485

0.90 41.6537 40.8331 41.5359 41.1303 41.4037 41.9337 41.1346 42.0505

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
40

40.5

41

41.5

42

42.5

α

R
O

I P
S

N
R

 (d
B

)

Bitrate 768 Kbps, Vidyo4

c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
c=0.50, Fov.
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Figure A.27: Chart of Table A.27
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Table A.28: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Johnny with bit rate = 768 Kbps.

Bit rate 768 Kbps, Johnny
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 42.7137 39.6995 42.3139 40.0281 42.4353 41.5430 42.2866 42.4640

0.04 42.4875 39.7793 42.2247 40.2336 42.4461 41.6792 42.6592 43.2018

0.08 42.3634 39.9830 42.1927 40.4765 42.4535 42.0628 42.7175 43.3560

0.16 42.1935 39.8533 42.2034 40.6452 42.4207 42.2869 42.7705 43.5361

0.32 42.1600 39.8431 42.3120 40.8639 42.3887 42.2562 42.7619 43.5003

0.64 42.2109 40.1635 42.4167 41.5707 42.5128 42.3743 42.7655 43.5200

0.90 42.2765 40.3715 42.4658 41.7763 42.5059 42.4388 42.7864 43.6444
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c=0.50, Conv.
c=0.50, Fov.
c=0.75, Conv.
c=0.75, Fov.
c=0.90, Conv.
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Figure A.28: Chart of Table A.28
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Table A.29: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for ChinaSpeed with bit rate = 768 Kbps.

Bit rate 768 Kbps, ChinaSpeed
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 36.0159 34.8927 37.1462 37.4703 38.6168 40.1117 41.0726 43.5030

0.04 36.0058 36.0196 37.0015 37.2337 38.2780 39.9702 38.6146 41.8704

0.08 36.3640 35.7091 37.2026 37.1025 38.3238 40.5620 38.7331 42.9283

0.16 36.9227 37.0705 38.0803 39.2843 38.2958 41.6438 38.4067 43.2429

0.32 37.4512 38.1296 38.1441 39.9770 38.7210 42.6249 38.3633 42.0921

0.64 38.0390 39.5444 38.0670 40.4314 38.5953 42.8240 38.3261 44.0301

0.90 37.9138 39.7829 38.3006 41.0829 38.6515 42.7974 38.5493 44.0256
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c=0.25, Conv.
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Figure A.29: Chart of Table A.29
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Table A.30: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for BasketballDrill with bit rate = 768
Kbps.

Bit rate 768 Kbps, BasketballDrill
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 27.9938 27.9655 27.7940 27.8352 27.7242 27.9397 32.6957 33.1810

0.04 27.8459 27.8238 27.5625 27.5791 27.2018 27.3264 30.7675 30.6266

0.08 27.6502 27.6376 27.3899 27.3998 27.0637 27.1613 29.4577 29.7013

0.16 27.4954 27.4674 27.2616 27.2624 27.0826 27.1412 29.4792 29.7194

0.32 27.3945 27.3592 27.1344 27.1210 27.2922 27.3530 30.7118 31.1341

0.64 27.2831 27.2626 27.0958 27.1142 27.4555 27.5380 32.7335 32.3831

0.90 27.2006 27.1950 27.0606 27.0610 27.7356 27.8267 34.2101 33.8961
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c=0.25, Conv.
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Figure A.30: Chart of Table A.30
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Table A.31: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for PartyScene with bit rate = 768 Kbps.

Bit rate 768 Kbps, PartyScene
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 32.9217 33.2028 33.0243 33.5121 32.2899 33.1184 30.0919 30.3373

0.04 32.9409 33.5100 32.9921 33.7509 32.5971 33.8016 31.6152 33.4436

0.08 32.9528 33.8231 32.9164 34.0605 32.5260 34.3153 31.4495 33.8499

0.16 32.9587 34.0386 32.8897 34.2502 32.3760 34.5548 31.7882 34.8079

0.32 32.9131 34.0751 32.8117 34.4611 32.2584 34.6010 32.0473 35.2599

0.64 32.8834 34.2067 32.7074 34.6215 32.2072 34.8621 32.4330 35.1932

0.90 32.8930 34.4792 32.6212 34.5633 32.1691 34.8646 32.3703 34.6629
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Figure A.31: Chart of Table A.31
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Table A.32: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for RaceHorses with bit rate = 768 Kbps.

Bit rate 768 Kbps, RaceHorses
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 39.0257 36.3305 39.5899 37.3531 41.9566 41.5990 48.8919 49.3731

0.04 39.0170 36.5578 39.5224 37.5550 40.4670 39.0704 45.3402 45.4287

0.08 39.1747 36.8921 39.7988 38.0843 40.0715 39.7683 43.2951 42.8734

0.16 39.3778 37.3640 39.7186 38.1975 39.9937 39.1742 42.8450 42.9984

0.32 39.6102 37.7664 39.7409 38.5785 40.2039 39.7332 44.0050 43.2195

0.64 39.6603 38.1989 39.8530 38.7549 40.3375 40.2006 46.4501 45.8320

0.90 39.9657 38.5873 39.8458 38.6740 40.0806 40.3869 47.3146 46.4707
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Bitrate 768 Kbps, RaceHorses

c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
c=0.50, Fov.
c=0.75, Conv.
c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure A.32: Chart of Table A.32
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Table A.33: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Cactus with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, Cactus
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 34.1943 35.1517 34.1333 35.2928 33.9755 35.4259 33.9460 35.6185

0.04 34.1549 35.2200 34.1412 35.4666 34.1626 35.8218 34.1613 36.1751

0.08 34.1903 35.3762 34.1794 35.5512 34.1837 36.0053 34.2954 36.6066

0.16 34.1686 35.4609 34.1869 35.7099 34.1892 36.0939 34.4316 36.9894

0.32 34.1924 35.4869 34.1865 35.7396 34.2928 36.3262 34.6484 37.4322

0.64 34.1458 35.4532 34.2410 35.9375 34.2789 36.3895 34.5626 37.3480

0.90 34.2106 35.6022 34.2226 35.9632 34.4107 36.6417 34.7082 37.4969
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Figure A.33: Chart of Table A.33
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Table A.34: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Tennis with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, Tennis
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 23.8138 23.7778 24.0471 23.9987 24.1700 24.0993 24.1567 24.1728

0.04 23.9744 23.9224 24.1038 24.0225 24.2255 24.1430 23.9883 23.9243

0.08 24.0777 24.0111 24.1586 24.0776 24.2478 24.1625 24.0484 23.9824

0.16 24.1210 24.0541 24.2250 24.1335 24.2178 24.1370 24.1470 24.0768

0.32 24.1754 24.0885 24.2827 24.1910 24.1903 24.0942 24.2197 24.1696

0.64 24.2318 24.1416 24.2802 24.1872 24.1832 24.0962 24.3689 24.3353

0.90 24.2605 24.1774 24.2839 24.1981 24.1737 24.0766 24.3463 24.3189
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Bitrate 1000 Kbps, Tennis

c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
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c=0.75, Conv.
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c=0.90, Conv.
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Figure A.34: Chart of Table A.34
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Table A.35: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Vidyo4 with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, Vidyo4
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 43.0700 42.0815 42.5423 41.5943 42.3388 41.9375 42.7448 43.2246

0.04 42.8758 42.0409 42.4316 41.6671 42.1803 41.8721 42.2545 42.6041

0.08 42.6407 41.8015 42.2914 41.5395 42.1413 41.9650 42.1238 42.6697

0.16 42.4385 41.4873 42.2185 41.5484 42.0564 41.9493 41.9873 42.7549

0.32 42.2731 41.3573 42.1564 41.4738 42.0254 42.1298 41.8952 42.7819

0.64 42.2099 41.4097 42.0848 41.4215 42.0145 42.2323 41.8132 42.6542

0.90 42.1931 41.3717 42.0547 41.4991 41.9926 42.2331 41.8400 42.8186
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Bitrate 1000 Kbps, Vidyo4

c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
c=0.50, Fov.
c=0.75, Conv.
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c=0.90, Conv.
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Figure A.35: Chart of Table A.35
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Table A.36: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for Johnny with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, Johnny
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 43.2398 40.0721 42.8263 40.3472 42.8409 41.9522 42.5881 43.0133

0.04 43.0332 40.1292 42.7350 40.5985 42.8640 41.9022 42.9599 43.5752

0.08 42.8909 40.3391 42.6854 40.8378 42.8670 42.3941 43.0492 43.7352

0.16 42.7058 40.2192 42.6845 41.0390 42.8405 42.6695 43.0962 43.9357

0.32 42.6629 40.2244 42.7527 41.2737 42.8256 42.6601 43.0533 44.0097

0.64 42.6894 40.5544 42.8413 41.9542 42.9156 42.7919 43.0250 43.9680

0.90 42.7286 40.7548 42.8870 42.1725 42.9077 42.8626 43.0507 44.0115
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c=0.25, Conv.
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Figure A.36: Chart of Table A.36
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Table A.37: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for ChinaSpeed with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, ChinaSpeed
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 36.8344 35.3954 37.9405 37.9116 39.3929 40.7431 41.9931 43.8665

0.04 36.8271 36.5811 37.7863 37.6644 39.0718 40.4660 39.3702 42.5813

0.08 37.1624 36.1625 37.9831 37.5505 39.1066 41.1515 39.3264 43.7070

0.16 37.7054 37.6770 38.8967 39.9385 39.0066 42.3417 38.9969 43.9253

0.32 38.2271 38.6841 38.9338 40.6970 39.4061 43.2879 38.9611 42.5597

0.64 38.8551 40.1537 38.8417 40.9401 39.2520 43.3367 38.9675 44.7035

0.90 38.7043 40.5461 39.0856 41.7393 39.2878 43.3640 39.1228 44.5751
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Bitrate 1000 Kbps, ChinaSpeed

c=0.25, Conv.
c=0.25, Fov.
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Figure A.37: Chart of Table A.37
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Table A.38: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for basketballdrill with bit rate = 1000
Kbps.

Bit rate 1000 Kbps, BasketballDrill
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 27.9895 27.9845 27.7744 27.8433 27.7554 27.8956 32.9429 32.9500

0.04 27.8382 27.8253 27.5397 27.5824 27.1494 27.2942 30.9366 30.9927

0.08 27.6367 27.6342 27.3638 27.3759 27.0111 27.1549 29.6218 29.5630

0.16 27.4719 27.4619 27.2279 27.2490 27.0250 27.1437 29.6811 29.5443

0.32 27.3655 27.3510 27.0932 27.1061 27.2415 27.3430 30.6270 30.8429

0.64 27.2456 27.2606 27.0483 27.0769 27.4312 27.5502 32.6302 33.1191

0.90 27.1623 27.1860 27.0121 27.0454 27.7175 27.8618 34.0275 33.3706
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Bitrate 1000 Kbps, BasketballDrill

c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
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Figure A.38: Chart of Table A.38
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Table A.39: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for PartyScene with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, PartyScene
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 33.5678 33.5127 33.7213 33.9282 33.0862 33.5823 30.7093 30.7498

0.04 33.5923 33.8258 33.6851 34.2134 33.3502 34.4037 32.5180 33.7430

0.08 33.6270 34.1686 33.6194 34.5272 33.2946 34.8086 32.2912 34.3199

0.16 33.6536 34.3857 33.5881 34.7007 33.1697 34.9966 32.6208 35.3283

0.32 33.6059 34.4941 33.5223 34.9717 33.0644 35.1588 33.1019 35.9041

0.64 33.5766 34.6681 33.4438 35.0546 33.0336 35.3606 33.5580 35.7666

0.90 33.5932 34.8769 33.3776 35.0984 32.9823 35.3461 32.9910 35.2508
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Bitrate 1000 Kbps, PartyScene

c=0.25, Conv.
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c=0.50, Conv.
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Figure A.39: Chart of Table A.39
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Table A.40: Comparison of ROI PSNR between the conventional (Conv.) and the
proposed fovea (Fov.) video compression for RaceHorses with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, RaceHorses
�
�
�α
c

0.25 0.50 0.75 0.90

Conv. Fov. Conv. Fov. Conv. Fov. Conv. Fov.

0.02 40.0973 36.8399 40.6605 37.8088 43.0733 41.6135 49.4929 48.9404

0.04 40.1018 37.0803 40.6177 38.0695 41.4138 39.9285 46.6483 46.8459

0.08 40.2555 37.3869 40.7922 38.5176 41.3081 40.0193 44.3550 43.4297

0.16 40.4653 37.9030 40.8517 38.7454 41.3442 39.6930 43.4194 43.6516

0.32 40.6638 38.4621 40.8188 39.1615 41.3001 40.3451 44.9715 44.2209

0.64 40.8320 38.7576 41.0363 39.5310 41.3609 40.5774 46.9457 45.9189

0.90 40.8981 39.3702 41.1509 39.4274 41.4699 40.8611 47.2911 47.8145
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Bitrate 1000 Kbps, RaceHorses

c=0.25, Conv.
c=0.25, Fov.
c=0.50, Conv.
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c=0.75, Fov.
c=0.90, Conv.
c=0.90, Fov.

Figure A.40: Chart of Table A.40
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Table A.41: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Cactus with bit rate = 200 Kbps.

Bit rate 200 Kbps, Cactus
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 29.2810 28.9232 28.4577 28.0661 27.7929 27.5202 27.3816

30.5473
0.50 29.4138 28.9530 28.4638 28.1495 27.7724 27.5440 27.3925

0.75 29.2409 28.7210 28.2920 27.8084 27.4388 27.1245 26.9846

0.90 28.2440 27.7039 27.2526 26.9444 26.6348 26.0654 25.8800

FPSNR

0.25 27.8308 27.6884 27.4389 27.2549 27.0456 26.9016 26.7719

27.3838
0.50 27.9946 27.7963 27.5436 27.3503 27.1400 26.9702 26.8884

0.75 28.0566 27.8533 27.6387 27.3850 27.1148 26.9209 26.8042

0.90 27.5633 27.3327 27.1081 26.8518 26.6139 26.3213 26.1670

FSSIM

0.25 0.8166 0.8126 0.8088 0.8044 0.8018 0.8001 0.7983

0.8346
0.50 0.8157 0.8110 0.8065 0.8045 0.8011 0.7989 0.7980

0.75 0.8117 0.8077 0.8040 0.8007 0.7971 0.7951 0.7941

0.90 0.8039 0.7995 0.7962 0.7939 0.7913 0.7876 0.7868

A.2 FWSNR, FPSNR, and FSSIM Results
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Table A.42: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Tennis with bit rate = 200 Kbps.

Bit rate 200 Kbps, Tennis
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 10.8551 10.9275 10.9248 10.9192 10.9699 11.0076 10.9949

10.8064
0.50 10.8635 10.8702 10.9033 10.9308 10.9441 11.0032 10.9773

0.75 10.8607 10.8705 10.9234 10.9455 10.9824 10.9856 11.0156

0.90 10.8880 10.8775 10.9290 10.9349 11.0171 11.0090 11.0015

FPSNR

0.25 20.0090 20.0554 20.0458 20.0576 20.0618 20.0989 20.1021

20.0403
0.50 20.0067 20.0086 20.0243 20.0391 20.0535 20.0767 20.0800

0.75 20.0048 20.0073 20.0264 20.0628 20.0722 20.0874 20.0989

0.90 20.0247 20.0335 20.0658 20.0703 20.1166 20.1342 20.1329

FSSIM

0.25 0.8155 0.8170 0.8179 0.8186 0.8194 0.8206 0.8207

0.8109
0.50 0.8161 0.8171 0.8183 0.8196 0.8204 0.8212 0.8210

0.75 0.8172 0.8184 0.8194 0.8203 0.8210 0.8217 0.8220

0.90 0.8185 0.8195 0.8205 0.8214 0.8224 0.8231 0.8232

Table A.43: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Vidyo4 with bit rate = 200 Kbps.

Bit rate 200 Kbps, Vidyo4
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 20.8092 20.1019 19.5921 18.9764 18.5033 17.9644 17.8536

24.7125
0.50 20.6090 20.0258 19.2539 18.7033 18.3151 17.7923 17.5810

0.75 19.8222 18.9279 18.3971 17.8428 17.2419 16.8717 16.7875

0.90 18.5875 17.8376 17.1175 16.8748 16.3656 16.0931 15.6870

FPSNR

0.25 34.2836 33.9543 33.6778 33.2102 32.9234 32.4879 32.3676

35.6587
0.50 34.2291 33.9051 33.5064 33.1380 32.7514 32.3730 32.2281

0.75 33.6993 33.2712 32.9529 32.5014 32.1179 31.7693 31.6838

0.90 32.7289 32.4091 32.0524 31.7030 31.2543 30.9903 30.7177

FSSIM

0.25 0.9400 0.9359 0.9326 0.9292 0.9266 0.9233 0.9225

0.9616
0.50 0.9396 0.9359 0.9322 0.9288 0.9262 0.9235 0.9225

0.75 0.9374 0.9333 0.9300 0.9267 0.9235 0.9211 0.9200

0.90 0.9310 0.9274 0.9238 0.9208 0.9180 0.9154 0.9144
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Table A.44: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Johnny with bit rate = 200 Kbps.

Bit rate 200 Kbps, Johnny
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 22.9225 22.1443 21.5502 20.5170 20.0684 19.4919 19.1894

27.0629
0.50 22.5456 21.9252 21.1444 20.2986 19.3981 19.1000 18.7163

0.75 21.3592 20.5279 19.7001 18.9550 18.1861 17.3803 17.0256

0.90 19.2993 18.3150 17.4186 17.0384 15.9324 15.4450 14.9999

FPSNR

0.25 34.3817 34.0153 33.5529 32.9897 32.5515 32.1526 31.9380

36.5509
0.50 34.1700 33.8248 33.3354 32.8272 32.2157 31.8648 31.5821

0.75 33.2725 32.8927 32.3546 31.8633 31.2780 30.6999 30.4684

0.90 31.7588 31.2422 30.7293 30.3393 29.6869 29.1591 28.9155

FSSIM

0.25 0.9511 0.9473 0.9440 0.9402 0.9371 0.9343 0.9330

0.9685
0.50 0.9500 0.9462 0.9425 0.9388 0.9351 0.9326 0.9311

0.75 0.9455 0.9413 0.9369 0.9338 0.9302 0.9266 0.9249

0.90 0.9359 0.9318 0.9281 0.9252 0.9207 0.9174 0.9149

Table A.45: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for ChinaSpeed with bit rate = 200 Kbps.

Bit rate 200 Kbps, ChinaSpeed
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 8.7390 7.8472 6.9772 6.1707 5.4858 4.7846 4.2290

12.7957
0.50 8.1023 7.1621 6.2182 5.0989 4.3277 3.1598 3.3595

0.75 6.8681 5.3073 3.6752 3.1617 2.7564 1.7517 1.5377

0.90 3.8362 2.6995 1.5909 1.3561 0.7073 0.2942 0.1730

FPSNR

0.25 26.7977 26.6542 26.1954 25.9163 25.5613 25.3576 25.1438

29.4732
0.50 26.5092 26.3054 25.9377 25.4477 25.1300 24.6707 24.7553

0.75 25.9939 25.4027 24.9755 24.6504 24.5091 24.1396 23.9402

0.90 24.7599 24.4166 23.9484 23.9163 23.6192 23.3266 23.3080

FSSIM

0.25 0.8685 0.8636 0.8535 0.8470 0.8404 0.8358 0.8341

0.9122
0.50 0.8636 0.8552 0.8480 0.8390 0.8347 0.8282 0.8280

0.75 0.8523 0.8414 0.8357 0.8288 0.8257 0.8186 0.8179

0.90 0.8342 0.8283 0.8187 0.8174 0.8114 0.8077 0.8065
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Table A.46: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for BasketballDrill with bit rate = 200 Kbps.

Bit rate 200 Kbps, BasketballDrill
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 12.4417 12.2429 11.9840 11.7842 11.5568 11.3877 11.3492

13.5731
0.50 12.3851 12.1166 11.9221 11.6686 11.4561 11.2712 11.2027

0.75 12.1804 11.9260 11.6453 11.4118 11.1755 11.0316 10.9160

0.90 11.6737 11.4043 11.1324 10.8309 10.6354 10.4376 10.3433

FPSNR

0.25 23.0095 22.9197 22.8066 22.7315 22.6422 22.5627 22.5568

23.4919
0.50 22.9932 22.8734 22.7815 22.6840 22.6030 22.5251 22.4980

0.75 22.9505 22.8452 22.7397 22.6416 22.5331 22.4650 22.4331

0.90 22.8091 22.6845 22.5702 22.4368 22.3539 22.2345 22.1999

FSSIM

0.25 0.7662 0.7599 0.7538 0.7491 0.7456 0.7431 0.7419

0.8333
0.50 0.7640 0.7572 0.7520 0.7468 0.7439 0.7413 0.7405

0.75 0.7604 0.7538 0.7482 0.7445 0.7412 0.7399 0.7385

0.90 0.7508 0.7460 0.7420 0.7384 0.7362 0.7345 0.7338

Table A.47: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for PartyScene with bit rate = 200 Kbps.

Bit rate 200 Kbps, PartyScene
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 10.2168 9.5826 8.8667 8.1760 7.6516 7.1382 6.9259

12.2334
0.50 9.7618 9.0955 8.4183 7.7713 7.1518 6.6753 6.5386

0.75 9.0082 8.3496 7.6757 7.0906 6.4982 6.0940 5.8495

0.90 7.3769 6.8166 6.2326 5.6448 5.1806 4.8603 4.5049

FPSNR

0.25 25.5192 25.4078 25.1640 24.8882 24.6096 24.3309 24.2073

25.3605
0.50 25.2939 25.1562 24.9638 24.6817 24.3687 24.1436 24.0495

0.75 24.8717 24.7423 24.5297 24.2886 23.9861 23.7622 23.6066

0.90 24.0532 23.9610 23.7560 23.5146 23.2321 22.9719 22.7736

FSSIM

0.25 0.7101 0.6978 0.6853 0.6753 0.6671 0.6579 0.6553

0.7573
0.50 0.7019 0.6903 0.6793 0.6697 0.6596 0.6539 0.6503

0.75 0.6878 0.6781 0.6679 0.6596 0.6517 0.6465 0.6434

0.90 0.6631 0.6578 0.6520 0.6452 0.6399 0.6345 0.6320
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Table A.48: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for RaceHorses with bit rate = 200 Kbps.

Bit rate 200 Kbps, RaceHorses
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 20.3206 19.7380 19.0047 18.3449 17.6169 16.9664 16.7419

23.7336
0.50 19.8022 19.1398 18.3904 17.6355 16.9111 16.2806 16.0289

0.75 18.7566 18.0111 17.2271 16.4361 15.6918 15.0658 14.7914

0.90 16.7882 16.0657 15.3055 14.5136 13.8475 13.1954 12.8906

FPSNR

0.25 28.7608 28.5760 28.2192 27.8539 27.4039 27.0202 26.8461

30.5039
0.50 28.4085 28.1729 27.8416 27.4148 26.9861 26.5438 26.3624

0.75 27.7191 27.4269 27.0808 26.6227 26.1452 25.6924 25.4847

0.90 26.3996 26.1485 25.7446 25.2603 24.7889 24.2968 24.0357

FSSIM

0.25 0.8200 0.8115 0.8011 0.7912 0.7808 0.7723 0.7683

0.8661
0.50 0.8139 0.8044 0.7942 0.7828 0.7728 0.7639 0.7603

0.75 0.8001 0.7898 0.7792 0.7684 0.7584 0.7497 0.7458

0.90 0.7736 0.7655 0.7552 0.7449 0.7361 0.7274 0.7229
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Table A.49: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Cactus with bit rate = 300 Kbps.

Bit rate 300 Kbps, Cactus
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 30.2375 29.8093 29.4143 29.0086 28.6147 28.2812 28.1306

32.1254
0.50 30.2991 29.8278 29.3108 28.8967 28.5532 28.2471 28.1146

0.75 29.9035 29.3336 28.8161 28.2958 27.8773 27.5583 27.4120

0.90 28.6819 28.0874 27.5908 27.2230 26.9051 26.2558 26.1915

FPSNR

0.25 28.6132 28.4319 28.2386 28.0303 27.7709 27.5878 27.4642

28.6175
0.50 28.7194 28.5502 28.2925 28.0658 27.8271 27.6025 27.5099

0.75 28.5947 28.3793 28.0860 27.8408 27.5347 27.3393 27.2231

0.90 27.9443 27.6811 27.4114 27.1588 26.9348 26.5658 26.4835

FSSIM

0.25 0.8249 0.8205 0.8170 0.8127 0.8091 0.8062 0.8044

0.8464
0.50 0.8240 0.8195 0.8149 0.8109 0.8072 0.8047 0.8035

0.75 0.8189 0.8144 0.8097 0.8052 0.8022 0.7992 0.7976

0.90 0.8093 0.8050 0.8006 0.7974 0.7947 0.7905 0.7898

Table A.50: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Tennis with bit rate = 300 Kbps.

Bit rate 300 Kbps, Tennis
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 10.8217 10.8370 10.8410 10.8679 10.8789 10.8851 10.9071

10.7176
0.50 10.7989 10.8210 10.8236 10.8615 10.9004 10.8943 10.8991

0.75 10.8083 10.8133 10.8484 10.8635 10.8909 10.9342 10.8910

0.90 10.8367 10.8244 10.8679 10.8900 10.9015 10.9310 10.9330

FPSNR

0.25 19.9432 19.9497 19.9538 19.9708 19.9819 19.9944 20.0084

19.9432
0.50 19.9273 19.9414 19.9479 19.9630 19.9987 20.0020 20.0053

0.75 19.9342 19.9396 19.9668 19.9835 19.9964 20.0267 20.0123

0.90 19.9700 19.9808 19.9957 20.0227 20.0377 20.0497 20.0641

FSSIM

0.25 0.8129 0.8141 0.8153 0.8164 0.8170 0.8179 0.8182

0.8070
0.50 0.8136 0.8148 0.8158 0.8172 0.8180 0.8186 0.8188

0.75 0.8144 0.8157 0.8169 0.8177 0.8187 0.8194 0.8197

0.90 0.8163 0.8174 0.8185 0.8196 0.8205 0.8213 0.8216
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Table A.51: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Vidyo4 with bit rate = 300 Kbps.

Bit rate 300 Kbps, Vidyo4
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 21.9072 21.0523 20.4817 19.8659 19.4210 18.7745 18.6733

26.1320
0.50 21.5177 20.7887 20.0384 19.4130 18.9410 18.4583 18.2291

0.75 20.5309 19.7334 18.9904 18.4627 17.7863 17.4354 17.2376

0.90 18.9521 18.2907 17.7065 17.1008 16.5770 16.3372 15.9742

FPSNR

0.25 35.2207 34.8054 34.4664 34.0491 33.7353 33.2891 33.1609

36.8194
0.50 34.9671 34.6040 34.1458 33.7643 33.4099 33.0229 32.8585

0.75 34.3287 33.9704 33.5142 33.1233 32.6953 32.3690 32.1739

0.90 33.2123 32.9114 32.5363 32.1091 31.6475 31.3529 31.1261

FSSIM

0.25 0.9474 0.9434 0.9397 0.9363 0.9333 0.9300 0.9292

0.9673
0.50 0.9461 0.9419 0.9381 0.9346 0.9319 0.9289 0.9276

0.75 0.9428 0.9388 0.9349 0.9313 0.9276 0.9254 0.9241

0.90 0.9349 0.9314 0.9275 0.9240 0.9207 0.9183 0.9173

Table A.52: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Johnny with bit rate = 300 Kbps.

Bit rate 300 Kbps, Johnny
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 23.8179 23.0335 22.3637 21.4762 20.7831 20.1658 19.7713

28.5198
0.50 23.2369 22.5376 21.5872 20.8518 19.8843 19.4411 18.9975

0.75 21.9068 20.9102 20.0724 19.3853 18.6425 17.6530 17.5491

0.90 19.6061 18.6295 17.6797 17.1647 16.1963 15.5376 15.0571

FPSNR

0.25 35.1160 34.7770 34.2932 33.7523 33.1621 32.7818 32.5648

37.6398
0.50 34.7328 34.4329 33.8198 33.3205 32.6853 32.3328 32.0443

0.75 33.7178 33.3165 32.7073 32.3031 31.6938 31.0972 30.9050

0.90 32.1116 31.6057 31.0062 30.5569 29.9759 29.4332 29.0687

FSSIM

0.25 0.9560 0.9525 0.9493 0.9451 0.9415 0.9384 0.9372

0.9726
0.50 0.9545 0.9506 0.9465 0.9429 0.9387 0.9361 0.9343

0.75 0.9489 0.9446 0.9403 0.9371 0.9334 0.9295 0.9281

0.90 0.9385 0.9343 0.9305 0.9272 0.9226 0.9194 0.9164
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Table A.53: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for ChinaSpeed with bit rate = 300 Kbps.

Bit rate 300 Kbps, ChinaSpeed
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 9.3635 8.5471 7.4236 6.6067 5.8833 5.1289 4.5875

14.3470
0.50 8.5675 7.7621 6.6414 5.4349 4.6255 3.4410 3.6329

0.75 7.2487 5.6867 3.9059 3.3685 2.9627 1.9278 1.6343

0.90 4.0506 2.9112 1.7169 1.5353 0.8378 0.4397 0.2539

FPSNR

0.25 27.1272 27.0049 26.4899 26.1725 25.8013 25.5849 25.4007

30.5430
0.50 26.7360 26.5732 26.1657 25.6441 25.3171 24.8758 24.9323

0.75 26.2010 25.5991 25.1334 24.7715 24.6679 24.2734 24.0283

0.90 24.8853 24.5437 24.0397 24.0443 23.7292 23.4381 23.3888

FSSIM

0.25 0.8781 0.8716 0.8608 0.8539 0.8466 0.8429 0.8410

0.9237
0.50 0.8714 0.8635 0.8550 0.8457 0.8412 0.8346 0.8344

0.75 0.8583 0.8472 0.8417 0.8346 0.8323 0.8239 0.8230

0.90 0.8401 0.8341 0.8236 0.8228 0.8167 0.8124 0.8109

Table A.54: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for BasketballDrill with bit rate = 300 Kbps.

Bit rate 300 Kbps, BasketballDrill
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 12.7296 12.5268 12.2898 12.1194 11.8918 11.7049 11.6353

13.5827
0.50 12.5896 12.3710 12.1627 11.9297 11.7168 11.5185 11.4734

0.75 12.3730 12.1232 11.8421 11.6356 11.3654 11.1908 11.1049

0.90 11.7985 11.5105 11.2332 10.9632 10.6857 10.5035 10.3294

FPSNR

0.25 23.1123 22.9971 22.9296 22.8462 22.7705 22.7018 22.6797

23.4576
0.50 23.0630 22.9652 22.8910 22.7922 22.7175 22.6597 22.6141

0.75 23.0216 22.9292 22.8142 22.7268 22.6153 22.5502 22.5044

0.90 22.8851 22.7494 22.6170 22.5067 22.3868 22.2906 22.2208

FSSIM

0.25 0.7779 0.7700 0.7629 0.7576 0.7530 0.7490 0.7477

0.8416
0.50 0.7730 0.7660 0.7598 0.7536 0.7494 0.7460 0.7449

0.75 0.7670 0.7600 0.7533 0.7490 0.7450 0.7423 0.7411

0.90 0.7553 0.7492 0.7445 0.7401 0.7369 0.7348 0.7337
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Table A.55: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for PartyScene with bit rate = 300 Kbps.

Bit rate 300 Kbps, PartyScene
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 11.0755 10.3950 9.6166 8.8665 8.3178 7.7053 7.5471

13.5899
0.50 10.5468 9.8874 9.1120 8.3332 7.5840 7.1665 7.0861

0.75 9.4569 8.7756 8.0734 7.3636 6.8412 6.3293 6.1506

0.90 7.6739 7.1221 6.4888 5.8256 5.3184 4.9482 4.6097

FPSNR

0.25 26.0447 25.9182 25.6496 25.3595 25.0529 24.7503 24.6673

26.2251
0.50 25.7291 25.6188 25.3622 25.0436 24.7034 24.4589 24.3891

0.75 25.1625 25.0514 24.8138 24.5259 24.2601 23.9702 23.8885

0.90 24.2820 24.2231 23.9964 23.6965 23.3863 23.1233 22.9266

FSSIM

0.25 0.7307 0.7180 0.7033 0.6910 0.6803 0.6704 0.6678

0.7842
0.50 0.7212 0.7080 0.6941 0.6811 0.6706 0.6637 0.6606

0.75 0.6996 0.6895 0.6787 0.6691 0.6607 0.6544 0.6520

0.90 0.6717 0.6663 0.6596 0.6513 0.6448 0.6391 0.6362

Table A.56: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for RaceHorses with bit rate = 300 Kbps.

Bit rate 300 Kbps, RaceHorses
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 21.1859 20.5181 19.7400 18.9763 18.2785 17.6012 17.3064

25.3260
0.50 20.6264 19.8993 19.0856 18.3198 17.5645 16.8089 16.5763

0.75 19.3743 18.5790 17.7235 16.8302 16.0179 15.4009 15.0781

0.90 17.0924 16.3451 15.5284 14.6979 13.9812 13.2870 12.9715

FPSNR

0.25 29.3361 29.1330 28.7654 28.3739 27.9243 27.5136 27.3104

31.6158
0.50 28.9789 28.7041 28.3528 27.9182 27.4682 26.9990 26.8091

0.75 28.1368 27.8589 27.4775 26.9630 26.4432 25.9997 25.7754

0.90 26.6599 26.3833 25.9740 25.4469 24.9605 24.4294 24.1678

FSSIM

0.25 0.8371 0.8274 0.8164 0.8058 0.7951 0.7865 0.7816

0.8928
0.50 0.8301 0.8196 0.8089 0.7975 0.7866 0.7772 0.7735

0.75 0.8145 0.8036 0.7922 0.7801 0.7693 0.7602 0.7562

0.90 0.7845 0.7753 0.7646 0.7528 0.7433 0.7334 0.7289
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Table A.57: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Cactus with bit rate = 512 Kbps.

Bit rate 512 Kbps, Cactus
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 31.6114 31.0703 30.5543 30.0697 29.6112 29.3076 29.1036

34.2012
0.50 31.4449 30.8391 30.2267 29.7837 29.3456 28.9713 28.7764

0.75 30.6859 30.0214 29.3459 28.8219 28.3314 27.9936 27.8039

0.90 29.1222 28.4469 27.8904 27.4952 27.1893 26.5317 26.4182

FPSNR

0.25 29.6769 29.4266 29.1940 28.9294 28.6722 28.4415 28.3088

29.9756
0.50 29.5962 29.3452 29.0739 28.7875 28.5167 28.2698 28.1516

0.75 29.2373 28.9821 28.6220 28.3466 28.0138 27.7590 27.6211

0.90 28.3837 28.1070 27.7814 27.5133 27.2784 26.8874 26.7715

FSSIM

0.25 0.8388 0.8333 0.8290 0.8239 0.8186 0.8166 0.8147

0.8635
0.50 0.8371 0.8308 0.8247 0.8210 0.8158 0.8122 0.8111

0.75 0.8288 0.8233 0.8173 0.8126 0.8083 0.8050 0.8034

0.90 0.8160 0.8103 0.8056 0.8020 0.7986 0.7943 0.7936

Table A.58: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Tennis with bit rate = 512 Kbps.

Bit rate 512 Kbps, Tennis
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 10.7245 10.7567 10.7532 10.7936 10.8028 10.8101 10.8150

10.6501
0.50 10.7277 10.7464 10.7614 10.7760 10.7941 10.8248 10.8225

0.75 10.7289 10.7582 10.7787 10.7895 10.8017 10.8247 10.8146

0.90 10.7777 10.7832 10.8023 10.8074 10.8430 10.8436 10.8490

FPSNR

0.25 19.8508 19.8696 19.8726 19.8995 19.9035 19.9171 19.9162

19.8469
0.50 19.8612 19.8689 19.8871 19.8920 19.8988 19.9307 19.9255

0.75 19.8719 19.8872 19.9051 19.9158 19.9280 19.9406 19.9445

0.90 19.9132 19.9242 19.9399 19.9465 19.9695 19.9812 19.9743

FSSIM

0.25 0.8094 0.8109 0.8119 0.8130 0.8139 0.8145 0.8148

0.8038
0.50 0.8102 0.8115 0.8127 0.8137 0.8145 0.8155 0.8157

0.75 0.8113 0.8127 0.8139 0.8148 0.8158 0.8165 0.8170

0.90 0.8136 0.8150 0.8161 0.8172 0.8183 0.8191 0.8194
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Table A.59: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Vidyo4 with bit rate = 512 Kbps.

Bit rate 512 Kbps, Vidyo4
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 23.1452 22.2339 21.7656 21.0220 20.3139 19.8165 19.5701

27.8691
0.50 22.6159 21.7979 21.0672 20.3234 19.7224 19.2318 19.0482

0.75 21.4805 20.6407 19.9552 19.3245 18.5673 18.0959 17.9823

0.90 19.6152 18.9211 18.2216 17.6644 16.9991 16.5065 16.3078

FPSNR

0.25 36.1536 35.7415 35.4617 35.0149 34.5838 34.1824 34.0480

38.0663
0.50 35.7992 35.4617 35.0411 34.5735 34.1720 33.7976 33.6563

0.75 35.1292 34.7259 34.3546 33.9027 33.4206 33.0187 32.9054

0.90 33.9353 33.6106 33.1739 32.7144 32.2031 31.7944 31.5850

FSSIM

0.25 0.9547 0.9509 0.9475 0.9438 0.9406 0.9375 0.9365

0.9728
0.50 0.9528 0.9491 0.9451 0.9414 0.9381 0.9351 0.9341

0.75 0.9485 0.9445 0.9406 0.9369 0.9330 0.9301 0.9291

0.90 0.9392 0.9353 0.9312 0.9275 0.9238 0.9209 0.9197

Table A.60: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Johnny with bit rate = 512 Kbps.

Bit rate 512 Kbps, Johnny
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 24.6776 23.8375 23.1625 22.2529 21.7129 20.8932 20.6360

30.0178
0.50 24.0787 23.2030 22.3803 21.4925 20.6191 20.0271 19.7234

0.75 22.5736 21.7405 20.7077 19.9676 19.1583 18.2746 17.9375

0.90 19.9151 18.8958 17.9503 17.3094 16.3065 15.6417 15.0929

FPSNR

0.25 35.8431 35.4579 34.9889 34.4456 33.9653 33.4714 33.2892

38.7270
0.50 35.3819 35.0189 34.4667 33.9377 33.3336 32.8967 32.6341

0.75 34.3110 33.9337 33.2984 32.8327 32.1835 31.5937 31.3114

0.90 32.4609 31.8916 31.3191 30.7868 30.1741 29.5621 29.2220

FSSIM

0.25 0.9608 0.9576 0.9544 0.9505 0.9475 0.9436 0.9423

0.9764
0.50 0.9589 0.9554 0.9513 0.9475 0.9434 0.9405 0.9388

0.75 0.9530 0.9493 0.9445 0.9411 0.9371 0.9333 0.9315

0.90 0.9411 0.9368 0.9328 0.9289 0.9245 0.9210 0.9180
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Table A.61: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for ChinaSpeed with bit rate = 512 Kbps.

Bit rate 512 Kbps, ChinaSpeed
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 10.0850 9.1902 8.1258 7.2174 6.3653 5.5408 4.9868

16.2377
0.50 9.1688 8.3532 7.1204 5.8462 4.9472 3.7627 3.9290

0.75 7.7467 6.0197 4.1661 3.6483 3.1915 2.1249 1.8450

0.90 4.3086 3.0984 1.9247 1.6874 0.9620 0.5957 0.4225

FPSNR

0.25 27.4801 27.3407 26.8069 26.4900 26.0637 25.8283 25.6431

31.8931
0.50 27.0406 26.8972 26.4163 25.8576 25.5422 25.0928 25.1163

0.75 26.4251 25.7977 25.3201 24.9523 24.8329 24.4340 24.1925

0.90 25.0514 24.6772 24.1917 24.1824 23.8559 23.5702 23.5190

FSSIM

0.25 0.8887 0.8816 0.8707 0.8637 0.8558 0.8518 0.8501

0.9376
0.50 0.8806 0.8729 0.8638 0.8538 0.8498 0.8433 0.8428

0.75 0.8668 0.8557 0.8499 0.8428 0.8400 0.8315 0.8303

0.90 0.8479 0.8414 0.8303 0.8293 0.8225 0.8181 0.8163

Table A.62: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for BasketballDrill with bit rate = 512 Kbps.

Bit rate 512 Kbps, BasketballDrill
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 12.9304 12.7666 12.5609 12.3917 12.2027 11.9924 11.8996

13.6010
0.50 12.8176 12.6114 12.4225 12.1894 11.9758 11.7781 11.7143

0.75 12.5437 12.2879 11.9972 11.7578 11.5125 11.3011 11.1912

0.90 11.8631 11.5655 11.2482 10.9363 10.6732 10.4418 10.3366

FPSNR

0.25 23.1421 23.0757 23.0013 22.9365 22.8816 22.8198 22.7935

23.4513
0.50 23.1165 23.0490 22.9712 22.8905 22.8262 22.7600 22.7296

0.75 23.0625 22.9896 22.8710 22.7827 22.6957 22.6210 22.5675

0.90 22.9215 22.7890 22.6336 22.5122 22.4050 22.2828 22.2363

FSSIM

0.25 0.7904 0.7820 0.7741 0.7676 0.7618 0.7570 0.7549

0.8544
0.50 0.7855 0.7767 0.7694 0.7622 0.7569 0.7527 0.7513

0.75 0.7762 0.7678 0.7601 0.7544 0.7495 0.7458 0.7442

0.90 0.7603 0.7533 0.7471 0.7415 0.7378 0.7348 0.7337
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Table A.63: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for PartyScene with bit rate = 512 Kbps.

Bit rate 512 Kbps, PartyScene
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 12.1727 11.3393 10.6238 9.7399 9.1399 8.5025 8.2594

15.5509
0.50 11.4154 10.6574 9.8117 8.9712 8.3209 7.7762 7.6022

0.75 10.1020 9.2886 8.5478 7.8660 7.2099 6.6850 6.5233

0.90 8.0611 7.3910 6.7592 6.1147 5.5101 5.0636 4.7913

FPSNR

0.25 26.7465 26.5530 26.2746 25.9237 25.5956 25.2745 25.1655

27.2984
0.50 26.3088 26.1403 25.8631 25.5021 25.1893 24.8984 24.8273

0.75 25.6087 25.4590 25.2102 24.9277 24.6116 24.3071 24.2160

0.90 24.6148 24.4924 24.2582 23.9567 23.6035 23.3043 23.1156

FSSIM

0.25 0.7565 0.7418 0.7263 0.7119 0.7000 0.6882 0.6847

0.8232
0.50 0.7417 0.7277 0.7130 0.6993 0.6877 0.6790 0.6759

0.75 0.7170 0.7053 0.6932 0.6833 0.6729 0.6652 0.6623

0.90 0.6840 0.6763 0.6684 0.6593 0.6516 0.6451 0.6417

Table A.64: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for RaceHorses with bit rate = 512 Kbps.

Bit rate 512 Kbps, RaceHorses
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 22.3218 21.6110 20.7582 19.8789 19.1351 18.3561 18.0712

27.7867
0.50 21.5878 20.7865 19.8955 19.0112 18.1688 17.3686 17.0618

0.75 20.0654 19.1722 18.2428 17.2520 16.3940 15.6957 15.3452

0.90 17.4032 16.5736 15.6725 14.8064 14.0516 13.3343 12.9973

FPSNR

0.25 30.1125 29.8978 29.4915 29.0387 28.5603 28.1037 27.9193

33.2696
0.50 29.6290 29.3354 28.9386 28.4738 27.9656 27.4643 27.2512

0.75 28.6281 28.3169 27.9090 27.3391 26.8038 26.3049 26.0528

0.90 26.9142 26.6175 26.1545 25.6130 25.0853 24.5262 24.2428

FSSIM

0.25 0.8609 0.8499 0.8381 0.8255 0.8149 0.8048 0.8006

0.9233
0.50 0.8516 0.8404 0.8286 0.8155 0.8041 0.7938 0.7896

0.75 0.8332 0.8214 0.8085 0.7956 0.7836 0.7730 0.7680

0.90 0.7972 0.7868 0.7743 0.7615 0.7501 0.7388 0.7334
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Table A.65: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Cactus with bit rate = 768 Kbps.

Bit rate 768 Kbps, Cactus
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 32.5023 31.9568 31.3159 30.7704 30.2243 29.7649 29.5690

35.7464
0.50 32.1602 31.4897 30.7997 30.2617 29.7908 29.4113 29.2031

0.75 31.1844 30.4557 29.7604 29.2339 28.6823 28.2742 28.1415

0.90 29.3839 28.6460 28.0740 27.6709 27.3286 26.6832 26.5648

FPSNR

0.25 30.3173 30.0796 29.7765 29.4966 29.1676 28.8895 28.7515

30.8969
0.50 30.1427 29.8587 29.5651 29.2415 28.9283 28.6726 28.5656

0.75 29.6379 29.3421 29.0135 28.7171 28.3656 28.0729 27.9614

0.90 28.6640 28.3512 28.0205 27.7427 27.4882 27.1114 26.9703

FSSIM

0.25 0.8489 0.8436 0.8373 0.8317 0.8267 0.8223 0.8207

0.8773
0.50 0.8455 0.8387 0.8321 0.8272 0.8219 0.8182 0.8162

0.75 0.8364 0.8302 0.8235 0.8187 0.8134 0.8093 0.8078

0.90 0.8210 0.8149 0.8095 0.8057 0.8016 0.7975 0.7963

Table A.66: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Tennis with bit rate = 768 Kbps.

Bit rate 768 Kbps, Tennis
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 10.6874 10.7183 10.7122 10.7382 10.7416 10.7514 10.7613

10.6125
0.50 10.6889 10.7077 10.7188 10.7228 10.7480 10.7642 10.7585

0.75 10.7054 10.7193 10.7302 10.7517 10.7596 10.7886 10.7876

0.90 10.7218 10.7421 10.7626 10.7656 10.7853 10.7985 10.8100

FPSNR

0.25 19.8190 19.8314 19.8360 19.8462 19.8545 19.8710 19.8727

19.8058
0.50 19.8221 19.8355 19.8452 19.8492 19.8676 19.8793 19.8803

0.75 19.8463 19.8506 19.8636 19.8766 19.8882 19.9120 19.9114

0.90 19.8623 19.8745 19.8899 19.8985 19.9163 19.9264 19.9355

FSSIM

0.25 0.8071 0.8084 0.8095 0.8106 0.8116 0.8122 0.8125

0.8013
0.50 0.8077 0.8090 0.8102 0.8113 0.8124 0.8132 0.8135

0.75 0.8093 0.8104 0.8117 0.8128 0.8138 0.8148 0.8153

0.90 0.8117 0.8131 0.8144 0.8155 0.8166 0.8175 0.8179
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Table A.67: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Vidyo4 with bit rate = 768 Kbps.

Bit rate 768 Kbps, Vidyo4
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 23.9915 23.0794 22.2972 21.6392 20.9842 20.4132 20.0587

29.0550
0.50 23.3871 22.5560 21.7051 20.9358 20.3458 19.6350 19.5442

0.75 22.0753 21.2543 20.3811 19.7937 19.0506 18.5207 18.2571

0.90 19.9319 19.1603 18.4885 17.8738 17.2069 16.7084 16.5597

FPSNR

0.25 36.8122 36.4262 35.9644 35.5373 35.1228 34.7206 34.5305

38.9587
0.50 36.4699 36.0871 35.6339 35.1379 34.7104 34.2702 34.1709

0.75 35.7166 35.3402 34.8515 34.4261 33.9219 33.5067 33.3296

0.90 34.2884 33.9142 33.5005 33.0346 32.5024 32.0918 31.9328

FSSIM

0.25 0.9592 0.9556 0.9520 0.9484 0.9453 0.9425 0.9411

0.9761
0.50 0.9569 0.9532 0.9492 0.9457 0.9421 0.9390 0.9380

0.75 0.9519 0.9480 0.9438 0.9400 0.9361 0.9330 0.9317

0.90 0.9417 0.9377 0.9335 0.9295 0.9257 0.9225 0.9214

Table A.68: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Johnny with bit rate = 768 Kbps.

Bit rate 768 Kbps, Johnny
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 25.3538 24.4914 23.7410 22.7285 22.0780 21.3932 21.0693

31.0593
0.50 24.7749 23.8803 23.0268 22.0990 21.0471 20.4887 20.1028

0.75 22.9581 22.0290 20.9830 20.2871 19.3903 18.4536 18.0843

0.90 20.0676 19.1259 18.0505 17.4778 16.3986 15.6945 15.2027

FPSNR

0.25 36.3718 35.9591 35.4784 34.8715 34.3575 33.9023 33.6875

39.4635
0.50 35.9130 35.5082 34.9484 34.4114 33.7226 33.2845 33.0177

0.75 34.6441 34.1835 33.5833 33.1143 32.4507 31.8144 31.5279

0.90 32.6610 32.1346 31.4943 30.9336 30.3202 29.6826 29.3592

FSSIM

0.25 0.9641 0.9609 0.9578 0.9539 0.9506 0.9472 0.9458

0.9786
0.50 0.9622 0.9587 0.9547 0.9508 0.9466 0.9435 0.9417

0.75 0.9555 0.9514 0.9467 0.9432 0.9391 0.9352 0.9331

0.90 0.9425 0.9385 0.9341 0.9304 0.9257 0.9221 0.9190
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Table A.69: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for ChinaSpeed with bit rate = 768 Kbps.

Bit rate 768 Kbps, ChinaSpeed
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 10.5473 9.6653 8.5080 7.5279 6.6229 5.8138 5.2739

17.8005
0.50 9.5631 8.6840 7.4715 6.0781 5.2059 3.9631 4.1069

0.75 8.0623 6.2423 4.3608 3.8168 3.3601 2.2507 1.9810

0.90 4.4568 3.1921 2.0221 1.7731 1.0490 0.6803 0.4597

FPSNR

0.25 27.7097 27.5965 27.0053 26.6629 26.2207 26.0056 25.8280

33.2895
0.50 27.2376 27.0736 26.5889 26.0150 25.7002 25.2159 25.2332

0.75 26.5902 25.9272 25.4509 25.0645 24.9456 24.5284 24.2892

0.90 25.1400 24.7463 24.2697 24.2515 23.9226 23.6338 23.5635

FSSIM

0.25 0.8953 0.8890 0.8779 0.8707 0.8623 0.8586 0.8569

0.9484
0.50 0.8871 0.8794 0.8703 0.8602 0.8567 0.8498 0.8493

0.75 0.8734 0.8625 0.8562 0.8485 0.8456 0.8368 0.8353

0.90 0.8531 0.8462 0.8348 0.8334 0.8261 0.8216 0.8194

Table A.70: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for BasketballDrill with bit rate = 768 Kbps.

Bit rate 768 Kbps, BasketballDrill
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 13.0058 12.8471 12.6842 12.5091 12.3448 12.1588 12.0495

13.5980
0.50 12.9252 12.7197 12.5323 12.2962 12.0882 11.8547 11.7775

0.75 12.5971 12.3331 12.0383 11.7887 11.5293 11.3035 11.1848

0.90 11.8656 11.5388 11.2115 10.9245 10.6512 10.4059 10.2905

FPSNR

0.25 23.1513 23.0861 23.0345 22.9695 22.9213 22.8685 22.8426

23.4474
0.50 23.1475 23.0660 23.0024 22.9213 22.8606 22.7914 22.7625

0.75 23.0621 22.9989 22.8814 22.7869 22.6903 22.6176 22.5696

0.90 22.9160 22.7610 22.6237 22.4966 22.3755 22.2527 22.1916

FSSIM

0.25 0.7990 0.7902 0.7824 0.7751 0.7692 0.7636 0.7612

0.8622
0.50 0.7933 0.7845 0.7767 0.7689 0.7627 0.7575 0.7557

0.75 0.7823 0.7735 0.7648 0.7583 0.7527 0.7484 0.7465

0.90 0.7634 0.7554 0.7489 0.7432 0.7386 0.7347 0.7335
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Table A.71: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for PartyScene with bit rate = 768 Kbps.

Bit rate 768 Kbps, PartyScene
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 12.8705 12.0686 11.2367 10.3455 9.5685 8.9769 8.7437

16.9844
0.50 12.0180 11.1761 10.3020 9.4199 8.6745 8.1872 7.9650

0.75 10.4700 9.6783 8.8214 8.1279 7.4506 6.8825 6.6198

0.90 8.3386 7.5832 6.9045 6.1546 5.5740 5.1117 4.7811

FPSNR

0.25 27.1636 26.9483 26.6601 26.2904 25.9143 25.6010 25.4916

28.2783
0.50 26.6893 26.4678 26.1776 25.8308 25.4651 25.2003 25.1050

0.75 25.9097 25.7273 25.4450 25.1719 24.8111 24.4910 24.3534

0.90 24.8344 24.6745 24.4068 24.0975 23.7288 23.4312 23.2198

FSSIM

0.25 0.7737 0.7583 0.7427 0.7270 0.7137 0.7018 0.6978

0.8477
0.50 0.7570 0.7419 0.7266 0.7124 0.6996 0.6906 0.6868

0.75 0.7295 0.7167 0.7034 0.6927 0.6814 0.6728 0.6690

0.90 0.6930 0.6841 0.6747 0.6647 0.6564 0.6490 0.6455

Table A.72: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for RaceHorses with bit rate = 768 Kbps.

Bit rate 768 Kbps, RaceHorses
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 23.1038 22.2919 21.3868 20.4310 19.6102 18.8047 18.4524

30.0247
0.50 22.3056 21.4228 20.4329 19.4983 18.5652 17.6969 17.3733

0.75 20.4630 19.4965 18.5029 17.4644 16.5612 15.8124 15.4179

0.90 17.5262 16.6474 15.7133 14.8225 14.0480 13.3113 12.9826

FPSNR

0.25 30.6541 30.4073 29.9684 29.4624 28.9552 28.4703 28.2568

34.7668
0.50 30.1061 29.7742 29.3520 28.8597 28.3108 27.7607 27.5375

0.75 28.9009 28.5864 28.1517 27.5527 26.9765 26.4493 26.1720

0.90 27.0292 26.7029 26.2244 25.6575 25.1141 24.5403 24.2595

FSSIM

0.25 0.8765 0.8657 0.8532 0.8402 0.8286 0.8183 0.8137

0.9428
0.50 0.8676 0.8556 0.8428 0.8294 0.8170 0.8062 0.8013

0.75 0.8456 0.8332 0.8197 0.8054 0.7921 0.7804 0.7746

0.90 0.8031 0.7917 0.7783 0.7644 0.7522 0.7399 0.7344
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Table A.73: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Cactus with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, Cactus
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 33.0831 32.3531 31.7148 31.1478 30.5989 30.1409 29.9629

36.6339
0.50 32.5719 31.8418 31.1907 30.6158 30.0960 29.6866 29.4681

0.75 31.4371 30.6867 30.0141 29.4246 28.8729 28.4372 28.2914

0.90 29.5398 28.8478 28.2437 27.8072 27.4452 26.7754 26.6461

FPSNR

0.25 30.6984 30.3839 30.1025 29.7763 29.4873 29.1794 29.0555

31.3625
0.50 30.4537 30.1526 29.8363 29.5116 29.2023 28.9263 28.7889

0.75 29.8718 29.5688 29.2454 28.9257 28.5662 28.2569 28.1529

0.90 28.8769 28.5938 28.2162 27.9117 27.6469 27.2375 27.0946

FSSIM

0.25 0.8555 0.8488 0.8424 0.8367 0.8312 0.8269 0.8251

0.8851
0.50 0.8507 0.8435 0.8375 0.8321 0.8260 0.8222 0.8201

0.75 0.8409 0.8343 0.8275 0.8223 0.8169 0.8125 0.8107

0.90 0.8239 0.8182 0.8125 0.8081 0.8040 0.7996 0.7982

Table A.74: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Tennis with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, Tennis
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 10.6659 10.6780 10.6890 10.7210 10.7245 10.7258 10.7219

10.5964
0.50 10.6588 10.6840 10.6914 10.7085 10.7196 10.7396 10.7324

0.75 10.6832 10.6880 10.7188 10.7366 10.7205 10.7525 10.7447

0.90 10.7072 10.7086 10.7383 10.7329 10.7630 10.7522 10.7555

FPSNR

0.25 19.7948 19.8007 19.8131 19.8340 19.8371 19.8440 19.8494

19.7782
0.50 19.8034 19.8109 19.8207 19.8274 19.8443 19.8583 19.8582

0.75 19.8175 19.8265 19.8457 19.8549 19.8570 19.8758 19.8741

0.90 19.8449 19.8461 19.8630 19.8691 19.8862 19.8811 19.8877

FSSIM

0.25 0.8056 0.8068 0.8082 0.8093 0.8102 0.8108 0.8111

0.7997
0.50 0.8062 0.8075 0.8087 0.8099 0.8109 0.8119 0.8122

0.75 0.8079 0.8092 0.8105 0.8115 0.8127 0.8137 0.8140

0.90 0.8105 0.8119 0.8134 0.8143 0.8155 0.8162 0.8167
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Table A.75: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Vidyo4 with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, Vidyo4
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 24.5220 23.5737 22.7291 22.0498 21.2737 20.6991 20.4948

29.8365
0.50 23.7782 22.9729 22.0305 21.3109 20.6748 19.9836 19.8455

0.75 22.2763 21.3802 20.5812 19.9571 19.1656 18.7200 18.4334

0.90 20.1110 19.4257 18.6421 18.0424 17.3801 16.8775 16.6882

FPSNR

0.25 37.2208 36.8364 36.3781 35.9196 35.4498 35.0444 34.9146

39.4885
0.50 36.8037 36.4366 35.9431 35.5017 35.0593 34.6064 34.4831

0.75 35.9431 35.5165 35.0619 34.5860 34.1039 33.7150 33.5156

0.90 34.5276 34.1824 33.7458 33.2418 32.7469 32.2798 32.1357

FSSIM

0.25 0.9616 0.9582 0.9546 0.9511 0.9478 0.9447 0.9437

0.9779
0.50 0.9591 0.9555 0.9517 0.9481 0.9448 0.9413 0.9402

0.75 0.9537 0.9497 0.9455 0.9416 0.9377 0.9346 0.9330

0.90 0.9430 0.9391 0.9348 0.9307 0.9267 0.9234 0.9224

Table A.76: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for Johnny with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, Johnny
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 25.7755 24.9150 24.0459 23.0675 22.4465 21.5699 21.3028

31.6722
0.50 25.0459 24.1466 23.2654 22.3045 21.3534 20.7137 20.2578

0.75 23.1533 22.2112 21.0690 20.3788 19.4229 18.5701 18.1415

0.90 20.1722 19.1774 18.1366 17.5141 16.4209 15.7129 15.2156

FPSNR

0.25 36.7065 36.2936 35.7743 35.1387 34.6358 34.1319 33.9177

39.9163
0.50 36.1592 35.7475 35.1828 34.6054 33.9882 33.5193 33.2009

0.75 34.8290 34.3704 33.7229 33.2071 32.5305 31.9218 31.6263

0.90 32.7738 32.2118 31.5969 31.0098 30.3800 29.7379 29.3882

FSSIM

0.25 0.9660 0.9630 0.9598 0.9558 0.9526 0.9488 0.9476

0.9797
0.50 0.9639 0.9604 0.9566 0.9526 0.9484 0.9453 0.9434

0.75 0.9568 0.9527 0.9479 0.9443 0.9401 0.9362 0.9341

0.90 0.9434 0.9391 0.9349 0.9311 0.9261 0.9225 0.9194
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Table A.77: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for ChinaSpeed with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, ChinaSpeed
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 10.7841 9.8842 8.7439 7.7109 6.7864 5.9776 5.4117

18.8494
0.50 9.8327 8.8863 7.6864 6.2549 5.3676 4.0365 4.2383

0.75 8.2100 6.3757 4.4490 3.8664 3.4420 2.2829 2.0665

0.90 4.5288 3.2476 2.0218 1.7939 1.0695 0.7061 0.5214

FPSNR

0.25 27.8452 27.7256 27.1263 26.7666 26.3136 26.1057 25.9212

34.0951
0.50 27.3588 27.1815 26.6887 26.1177 25.8056 25.2729 25.3101

0.75 26.6606 26.0044 25.5101 25.1103 25.0045 24.5719 24.3367

0.90 25.1753 24.7728 24.2848 24.2800 23.9453 23.6538 23.5978

FSSIM

0.25 0.9000 0.8938 0.8827 0.8752 0.8669 0.8631 0.8611

0.9541
0.50 0.8921 0.8839 0.8751 0.8649 0.8610 0.8538 0.8532

0.75 0.8773 0.8665 0.8601 0.8520 0.8490 0.8397 0.8383

0.90 0.8558 0.8490 0.8373 0.8358 0.8283 0.8233 0.8213

Table A.78: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for BasketballDrill with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, BasketballDrill
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 18.6686 18.5196 12.7341 12.5771 12.4073 12.1708 12.1125

13.5965
0.50 19.3710 19.1616 18.9768 12.3357 12.1009 11.8902 11.8218

0.75 21.9988 21.7217 12.0504 11.7913 11.4911 11.2842 11.1631

0.90 25.9833 25.6380 11.1819 10.8837 10.6040 10.3767 10.2357

FPSNR

0.25 24.7012 24.5855 23.0402 22.9824 22.9284 22.8677 22.8506

23.4404
0.50 24.8951 24.7561 24.6165 22.9300 22.8595 22.7971 22.7774

0.75 23.6646 23.4288 22.8805 22.7882 22.6819 22.6064 22.5562

0.90 22.0751 21.7675 22.5960 22.4661 22.3457 22.2187 22.1613

FSSIM

0.25 0.8047 0.7957 0.7871 0.7800 0.7734 0.7669 0.7649

0.8674
0.50 0.7987 0.7891 0.7812 0.7728 0.7659 0.7606 0.7585

0.75 0.7859 0.7766 0.7675 0.7603 0.7539 0.7494 0.7472

0.90 0.7650 0.7565 0.7497 0.7436 0.7386 0.7349 0.7334
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Table A.79: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for PartyScene with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, PartyScene
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 13.3182 12.4439 11.5534 10.6838 9.8535 9.2074 8.9493

17.9502
0.50 12.4549 11.5662 10.6628 9.7426 8.9347 8.3722 8.1484

0.75 10.7351 9.8639 8.9519 8.2733 7.5601 6.9787 6.7270

0.90 8.4635 7.7484 6.9730 6.2368 5.6254 5.1285 4.8199

FPSNR

0.25 27.4153 27.2047 26.8663 26.5046 26.1150 25.7948 25.6618

28.9100
0.50 26.9614 26.7465 26.4360 26.0545 25.6830 25.3832 25.2682

0.75 26.1032 25.9131 25.5829 25.2883 24.9447 24.6074 24.4656

0.90 24.9652 24.8032 24.5004 24.1837 23.8038 23.4607 23.2590

FSSIM

0.25 0.7839 0.7688 0.7521 0.7361 0.7221 0.7102 0.7057

0.8618
0.50 0.7679 0.7525 0.7362 0.7214 0.7077 0.6983 0.6939

0.75 0.7376 0.7240 0.7100 0.6984 0.6870 0.6778 0.6737

0.90 0.6987 0.6896 0.6795 0.6685 0.6596 0.6513 0.6474

Table A.80: Comparison of FWSNR, FPSNR, and FSSIM between proposed fovea
method and conventional compression for RaceHorses with bit rate = 1000 Kbps.

Bit rate 1000 Kbps, RaceHorses
�
�
�c
α

0.02 0.04 0.08 0.16 0.32 0.64 0.90 Conv.

FWSNR

0.25 23.5874 22.7712 21.7590 20.7759 19.8982 19.0316 18.6568

31.5768
0.50 22.6885 21.7367 20.7031 19.7181 18.7534 17.8111 17.4629

0.75 20.6785 19.6601 18.6314 17.5705 16.6087 15.8357 15.4392

0.90 17.5532 16.6547 15.7037 14.8081 14.0257 13.2936 12.9677

FPSNR

0.25 31.0128 30.7525 30.2608 29.7484 29.1990 28.6778 28.4401

35.8491
0.50 30.3788 30.0323 29.5759 29.0659 28.4777 27.8931 27.6452

0.75 29.0716 28.7257 28.2752 27.6533 27.0503 26.4984 26.2153

0.90 27.0487 26.7219 26.2338 25.6640 25.1108 24.5326 24.2498

FSSIM

0.25 0.8865 0.8757 0.8628 0.8498 0.8378 0.8269 0.8219

0.9533
0.50 0.8767 0.8646 0.8513 0.8376 0.8246 0.8125 0.8072

0.75 0.8523 0.8394 0.8251 0.8104 0.7961 0.7834 0.7769

0.90 0.8045 0.7929 0.7790 0.7650 0.7523 0.7396 0.7341
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