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Abstract

We propose a method that makes standard turntable-based vision acquisi-
tion a practical method for recovering models of human geometry. A human
subject typically exhibits some unintended joint motion while rotating on a
turntable. Ignoring such motion causes shape-from-silhouette to excessively
carve the model, resulting in loss of geometry (especially on limbs). We uti-
lize silhouette cues and appearance consistency with an initial automatically
recovered skinned-model to recover this joint motion, or wobbling. The re-
covered joint motion gives the calibration of each rigid body of the subject,
allowing for temporal fusion of image cues (silhouettes and texture) used to
refine the geometry. Our method gives improved results on real datasets when
considering both silhouette overlap and texture consistency. The recovered
geometry is useful in vision tasks such as multi-view image-based tracking
of humans, where the recent trend of using a priori laser-scanned geometry
could be replaced with a more cost effective vision-based geometry.
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1 Introduction

For some time now the benefits of turntable-based vision acquisition systems for
low cost 3D modeling have been recognized and exploited [6, 14]. Turntables boast
the ability to quickly acquire an image stream about an object that can quickly be
calibrated and easily be foreground segmented for use in both silhouette and stereo
reconstruction. Light variation due to rotation of the object, useful for appearance
or reflection model estimation, is easy to introduce [33]. Of course, the paradigm
becomes less practical for large scale objects, but for such cases structure and mo-
tion has matured enough to be a good alternative for the calibration (e.g., the ARC
3D Web-service). In this work we argue that turntable acquisition is still feasible
for human scale geometry, something that has only been exploited in few works
[8, 10] and, in the case of some, it was only used for the recovery of appearance
[2].

There is no doubt that convenient vision-based acquisition of static human ge-
ometry is useful, with example applications ranging from gaming to anthropomet-
ric studies. There exist full body laser range finders built exclusively for the task
of recovering dense static human geometry, but this hardware comes at a premium
(e.g., Cyberware TM’s Whole Body 3D Scanner $200K+). In terms of applica-
tions in vision, a recent trend has seen many of the multi-view human tracking and
deformation recovery methods being formulated around an initial laser scanned
geometry [13, 12, 4]. In fact many methods in this category go on to recover de-
formations over time from vision, but have skipped the application of vision in the
first step by relying on the scanned geometry [12].

One solution that is commonly used in capturing human geometry from vision
uses a large set of fixed, pre-calibrated cameras that are observing a moving per-
son [31, 21, 29]. Individually geometry for each time frame is reconstructed either
using visual hull [30] or multi-view stereo [21] and then related to each other either
using differential constrains like scene flow [31], through feature point correspon-
dences [29], or registered with marker-based motion capture data in the coordinate
system of the joint [22]. We take a different approach and propose a method that
acquires human geometry using traditional turntable approach that requires only
two cameras and reconstructs a model of the rotating human unified in time. Full
geometry at each time frame cannot be recovered due to the low number of cameras
(2) in our setup.

One limitation in simply extending the turntable-based approaches to a human
scale geometry is the fact that a rotating human is not rigid and will undoubt-
edly move over time while rotating. Such motion causes methods like shape-from-
silhouette to excessively carve the object (Fig. 1) and causes misalignment of any
recovered appearance. Since the human is a kinematic chain containing a hier-
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Figure 1: Overview of our solution. SFS with no motion compensation illustrates
eroded body. Interleaving motion estimation with SFS gives more accurate result.

archy of coordinate systems, this problem of registration can not be solved by a
simple application of single rigid body calibration. As silhouettes have always
been a strong cue in turntable acquisition and human motion recovery, we propose
to solve the joint motion calibration problem through an interleaved tracking and
model recovery step. Our contributions are two-fold:

• using as few as two cameras, the small kinematic human motion relative to
a rotating turntable is tracked by utilizing silhouette and appearance consis-
tency while enforcing kinematic constraints.

• recovered joint angles for a kinematic structure are used to re-compute a
unified shape-from-silhouette model that is the union of the visual hull for
each of the kinematic links.

2 Related Work

In the context of recovering dense static geometric models of humans from vision-
based methods, many of the general multi-view stereo methods for static scene
reconstruction are relevant(e.g., [23]). For humans specifically, some attention
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has been directed to using as few as two or three images to quickly instantiate
a deformable human template model [25] . In our case, we are more concerned
with convenient capture of human geometry under limited hardware assumptions;
therefore, we focus on recovering the joint motions of a rotating human so as to
utilize all silhouette observations in the geometry reconstruction.

Classical feature-based correspondences or feature tracks, such as those used
in standard structure from motion (SFM), offer one route to recover these joint mo-
tions. Articulated structure from motion factorization techniques decompose such
feature tracks into rigid parts and the corresponding points, but are often based on
restricted camera models [28, 34]. On the other hand, given that feature tracks
are segmented into corresponding parts, the more recent applications of SFM that
refine Euclidean camera parameters based on dense matches could also be used to
recover the rigid deformation of individual joints [15]. We feel that such feature-
based methods may still be prone to failure in regions where few features are avail-
able, such as the arms which tend to be one of the more problematic regions.

As the geometry of these problematic regions is well classified by silhouettes,
it is useful to consider the use of silhouettes for the purpose of calibration. Cali-
brating the relative position of cameras in a multi-view environment using dynamic
silhouettes has been considered [24, 7], but in our case we assume the relative pose
of cameras is known. Alternatively, similar cues such as epipolar tangents, frontier
points, or silhouette consistency have also been used to calibrate the position of
cameras viewing a scene under restricted turntable motion [18, 16]. Again, it is
not the turntable motion given a rigid geometry we approximately recover, as we
assume that the turntable motion is known; we are instead trying to recover the
arbitrary, possibly small, motion of each joint relative to the turntable.

One of the most relevant methods for combining silhouettes over time utilizes
both silhouette and image appearance cues. The shape-from-silhouette over time
work of Cheung et al. [9] recovers the motion of a rigidly moving object observed
by multiple image sequences by the use of frontier points and a silhouette con-
straint. The rigid transformation from one time frame to the next is found through
a constraint that colored surface points (e.g., frontier points) are transformed onto
similar image colors in the following frame while projecting inside of the silhou-
ette. This method is used also to fuse images for recovery of human geometry
under turntable motion and perform multi-view tracking [9, 10]. Unfortunately,
the method relies on the colored surface points which could be hard to extract in
the case of a two or three camera setup.

Some integration of silhouettes between time steps is accomplished by the
spatio-temporal SFS method of Aganj et al., but the approach seems to be more
useful for interpolating between SFS geometries at independent time steps [1]. In
terms of a joint parameter estimation, the vast assortment of multi-view human
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tracking methods can be though of as solving this problem [3, 17, 20, 26]. Many of
these approaches also combine multiple cues, such as stereo, flow and silhouettes,
for the purpose of tracking a known geometry. A practical use of the silhouette is
to minimize the exclusive-or between input silhouette and model silhouette [26];
this cost function is closely related to silhouette-based camera calibration [7, 18].

Many of the multi-view tracking methods also try to refine geometries over
time [19], deform temporal geometries between time-steps [29], or ensure that
the silhouette of the tracked model is consistent with input silhouettes (e.g., [32]).
These dynamic geometries are often reconstructed per time instant (e.g., often 6-8
or more views are available), meaning they rely mostly on the inter-camera corre-
spondence between numerous fixed cameras for reconstructing geometry. In our
case we have two widely separated views that cannot be used to reconstruct an
independent geometry per frame. Instead, we exploit the intra-camera relationship
for geometry reconstruction by recovering and compensating for the restricted hu-
man motion that occurs on the turntable.

3 Tracking & Refinement

We assume that the motion of the human rotating on the turntable is governed
completely by the joint angles of its kinematic skeleton. The problem is then to
recover both the geometry, G, and these joint angles, Θ, such that the geometry
deformed by the joint angles is consistent with the two input image streams.

As input we have two image streams IL,t, IR,t and silhouette images SL,t, SR,t

at time t ∈ {1, T}. The projection matrices PL,t = [KL|0]Et and PR,t =
[KR|0]ER,LEt are also available. The relative pose between the cameras, ER,L, is
fixed, and the motion of the cameras relative to the turntable is characterized only
by the known transformation Et (recovered using a pattern placed on the turntable
- see Section 4).

Based on the observation that multi-view silhouette-driven human tracking is
often successful with an approximate geometric model, we propose to solve this
problem by interleaving tracking and refinement. In summary, the entire procedure
involves:

1. initialize geometry, G, and align a kinematic structure

• this initial geometry is based on a traditional SFS where we grow the
silhouettes slightly to ensure initial model has all appendages

2. track

5



Figure 2: Capture setup illustrating the typical position of L and R cameras.

• utilize geometry G to recover joint angles, Θ, ensuring that motion is
small, agrees with images, and keeps feet stationary

3. refine

• use Θ to register image observations in coordinates of each joint

• compute SFS geometry in space of each joint

• take union of all SFS geometries, and attach to kinematic structure

4. iterate tracking and refinement

The tracking and refinement components are essential and most relevant to our
contribution so we discuss them first in the context of a generic model followed by
details of our model. The only constraints on the generic model are that its motion
can be parameterized by a set of angles and that a new model can be attached to a
posed skeleton.

3.1 Tracking

Assuming some geometric model parametrized only with joint angles, e.g., G(θt),
we treat the recovery of all the joint angles Θ = {θ1,θ2, ...,θT } as the optimiza-
tion of a cost function that contains a linear combination of several terms:

min
Θ

E = Edata + αkinEkin + αsmoothEsmooth (1)

The data cost, Edata, incorporates the agreement of the model with the image
data, and is further broken down into a silhouette cost, Esil, and a texture cost,
Etex:
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Edata = Esil + αtexEtex (2)

The silhouette energy, based on an energy used in motion tracking [27], mea-
sures agreement of the model with the input silhouettes and is computed as a sum
of XOR’s over all input images:

Esil =
T∑

t=1

∑
i∈{L,R}

∑
x

St,i(x)⊗ Pt,i(G(θt),x) (3)

where the shorthand Pt,i(G(θt)) denotes the projected silhouette of the geometry
by Pt,i. The texture energy is used to ensure that the motion recovery respects the
appearance information leading to recovered joint angles that have some appear-
ance coherence, which is useful when estimating an appearance model.

Etex =
T∑

t=2

∑
i∈{L,R}

∑
x∈St,i

‖It,i(x)− Tt−1,i(x, G,θt,θt−1)‖2 (4)

The texture cost is a sum of squared distance cost, computed by rendering the
model in the current time step while texturing with the image and joint parameters
in the previous step. Such a mapping transforms the previous input image to the
current time step by warping through the model (requires the joint parameters at
time t and t−1). With this formulation, texture coherence is only considered in the
intra-camera sense. This was done as we use two cameras with with a wide baseline
that have little overlap in observed regions. Furthermore, this texture energy is like
a flow between images and does not need color calibration between cameras.

The smoothness term prefers no joint motion from one frame to the next:

Esmooth =
T∑

t=2

‖θt − θt−1‖2 (5)

Finally, due to the assumption of our input being a human rotating on a plat-
form, the kinematic term, Ekin, enforces the constraint that the feet stay on the
ground. This energy term measures deviations from the feet position, Xfoot, in
frames t > 1 from their position at time t = 1

Ekin =
T∑

t=2

∑
foot

‖(Xfoot(θt)−Xfoot(θ1))‖2 (6)

Due to the discrete nature of the silhouette XOR term, we use Powell’s method
to optimize the cost function [27]. As the motions are small we can assume the
parameters are as they were in the initial frame of the sequence and simultaneously
optimize all the parameters for all frames.
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Figure 3: Pieces on the left from overlapping regions computing using SFS are
merged into a single manifold geometry using the MI data structure.

3.2 Refinement

Tracking gives an updated estimate of coordinate transforms of each link at each
time of the image sequence which we use to integrate all the silhouette observa-
tions. This is a straightforward process that involves interpreting each link as a rigid
body and concatenating the joint to world coordinate transform with the world to
camera coordinate system. With this transformation, SFS, can then be applied in a
straightforward manner.

For each link we use this procedure to recover a link geometry by only con-
sidering a bounding box around each link. The bounding box is obtained from the
current geometry as the bounding box of the vertices whose skinning weights to
that link are above a threshold. These geometries will overlap somewhat, but this
is not a limitation as each part of the geometry will lie within all the silhouettes
for the sequence considered. The geometries computed for each part are originally
disconnected. A manifold geometry is obtained by taking the volumetric union
these disjoint geometries using the Marching Intersections (MI) data structure (see
Fig. 3), where the union occurs in the pose of the first frame. Subsequently, this
geometry is attached to the skeleton (see Section 3.3 for details).

3.3 Model

Our particular model consists of two parts: a mesh geometry and a kinematic struc-
ture. The geometry is used to skin the skeleton; the motion of it is determined solely
by the kinematic model–an assumption we used during the tracking.

3.3.1 Kinematic Model

The kinematic hierarchy is represented as a tree of transformations. Each node is
positioned in the coordinate system of its parent node, P (b) with a Euclidean trans-
formation Tb and has a set of rotational freedoms (the root also has translation),
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Figure 4: An illustration of an unposed or rest geometry (e.g., vk(0)), the corre-
sponding unposed skeleton, and a posed geometry.

Rb(θb). The transformation from a joint to world coordinates is then

Mb([θb,θanc]) = MP (b)(θanc)TbRb(θb) (7)

where the parent transformation is influenced by a set of ancestor joint angles,
θanc. The root is an exception to this structure as it has no parent and its freedoms
are a full Euclidean transformation. For notational convenience we will treat Mb

as a function of all joint angles, θ, although freedoms of children have no affect on
the parent transformation. Each joint (other than the root) is affected by at most 3
parameters.

We extract a default kinematic structure (e.g., the Tb) complete with joint an-
gle limits from a subject in the CMU motion capture database [11]. Redundant
parameters, such as those for wrists or fingers are removed from this model before
optimization (see Table 1 for a listing of the degrees of freedom and kinematic
structure). We optimize the lengths of the kinematic links to align the structure to
the human subject. The registration is done by locating approximate joint positions
in the initial geometry (detected through assumptions on body size) and optimizing
the kinematic parameters and scales such that these joint position constraints are
met using inverse kinematics.

3.3.2 Kinematic & Geometry Coupling

The geometric model is attached to the skeletal model using linear blend skinning
(LBS). In LBS a vertex deforms through a linear combination of a set of joints it
has been associated with

vk(θ) =
∑

b∈B(k)

wk,bTb(θ)v̂k (8)
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Bone Parent Freedoms
Root nil Rx,Ry ,Rz ,Tx,Ty,Tz
Back Root Rx ∈ [−20, 45] Ry, Rz ∈ [−30, 30]

Thorax Back Rx ∈ [−20, 45] Ry, Rz ∈ [−30, 30]
Clavicle Thorax Ry ∈ [−10, 20] Rz ∈ [−20, 0]
Humerus Clavicle Rx ∈ [−60, 90] Rz ∈ [−90, 90]
Radius Humerus Rx ∈ [0.01, 170]
Femur Root Rx ∈ [−160, 20]Rz ∈ [−70, 60]
Tibia Femur Rx ∈ [0.01, 170]
Foot Tibia –

Table 1: A breakdown of the bone names, their freedoms, and their parents for a
total of 34 freedoms.

where v̂k is the vertex in rest position, B(k) is the set of links to which vertex
k is attached and wk,b is the weight of association of vertex k with bone b. The
transformation matrix Tb(θ) = Mb(θ)M̂−1

b , where M̂b = Mb(0) is the rest
transformation matrix for bone b and M(θ) is the animated pose of bone b. Given
a posed kinematic skeleton (e.g., as a result of tracking or manual initialization in
the first frame) we extract the vertex skinning weights automatically using the heat
diffusion process of Baran and Popovic [5].

In our case the geometry is computed in context of a posed kinematic struc-
ture, e.g., the vertices vk(θpose)) are already deformed with joint parameters θpose)
The heat weights are assigned to the geometry in this posed frame, so the rest ge-
ometry must be obtained through the inverse of the transformation in Eq. 8, i.e.,
(
∑

b∈B(k) wk,bTb(θpose))−1.
For the purpose of evaluating the model we also generate a single texture map.

The texture coordinates of the models are automatically determined by identify-
ing key points on the feet, crotch, armpits, hands and head of the model, com-
puting a vertex-edge-path through these vertices and fixing these key coordinates;
the remaining coordinates are found using a conformal mapping. These salient
vertices map to predefined locations in the texture map, giving a semi-consistent
parametrization of the different meshes (Fig. 5). .

4 Experiments

For the experiments we have captured three data-sets of human subjects rotating
on a turntable (Fig. 6). All of the data-sets contain three video streams; two of the
streams were used for reconstruction and the third was used for comparison. The
video sequences in the Yellow Shirt and the Red Sweater datasets each contain 30
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Figure 5: Average texture illustrating texture space.

Figure 6: Sample input images for two of the views for the Yellow Shirt, Red
Sweater, and Green Sweater data-sets.

images, and the Green Sweater dataset sequences contain 22 images. All of the
images are 800x600 color images captured from Point Grey grasshopper cameras.
The external positions of the cameras were calibrated in advance and kept fixed.
A calibration pattern positioned on the turntable was used to calibrate the relative
position of the turntable with respect to these cameras over the image streams.

In each case we bootstrapped our algorithm with a geometry that was obtained
from all of the images in the data-sets using SFS; the silhouette boundaries were
extended (by roughly 5-6 pixels) to ensure that the extremities were present in the
initial geometry. Figure 8 illustrates the final geometry (with no weight on the
texture term), and the SFS geometry that would result if no motion compensation
were used. In all cases we can see that the original SFS is eroded, with parts of the
arms missing and the bodies shaved too far in general. The motion compensation
successfully recovers these parts of the geometry. Figure 7 illustrates the silhouette
agreement after alignment for the Red Sweater data-set, where even SFS geometry
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Figure 7: The Red Sweater data-set had the least motion, but even still the SFS
geometry (left) disagrees with the input silhouette (black indicates regions of input
not covered by geometry). Motion recovered silhouette matches better (right).

looks reasonable.
For numerical comparison we compare the silhouette energy for the model (av-

eraged over the frames), and the texture energy for the model, Etex. The numerical
results corresponding to the Yellow Shirt and Green Sweater data-sets illustrate that
the refinement with iterative SFS does reduce the XOR score. This is illustrated in
Table 2 where several quality metrics are shown for the SFS geometry, refinement
with no texture weight (i.e., αtex = 0) Ref, and refinement with texture weight in
latter parts of optimization +Tex. From this data we make the following observa-
tions

• the XOR score goes down with refinement (even when using a texture term,
Fig. 9)

• and by using the texture term we get more consistent texture scores (in the
refinement).

We now consider the XOR results on the video stream that was not used during
the reconstruction. the XOR scores also went down in that image stream when
compensating for motion. For the Red Sweater data set the numbers through the
refinement were 20185, 17010, and 16410, illustrating that the refinement is ac-
tually moving toward the true visual hull. This is in comparison to the score of
21735 obtained on the standard SFS model from the other two sequences with no
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Yellow Green
Stage SFS Ref +Tex SFS Ref +Tex
Xor 11651 8792 8739 13521 9884 9876
Tex 883 923 788 1437 1468 1294

Red
Stage SFS Ref +Tex
Xor 11418 8580 8891
Tex 604 1426 635

Table 2: Consistency measures for data-sets with no motion recovery (SFS), the
refined geometry with no texture weight (Ref) and with texture weight (+Tex)

motion compensation. Similar observations were made on the Yellow Shirt data-set
where values were 8846, 7253, 6230 (SFS was 8325), and the Green Sweater data
set where refinement scores decreased from 74027, 71362, to 71069 (SFS score
was 73306). The overall higher scores in this image stream are due to poor back-
ground segmentation resulting in background pixels being labeled as foreground
and raising the score.

Refinement of the geometry only affects the Esil and Etex terms because it
does not change joint angles. One may question the validity of using only SFS in
the refinement, as SFS does not directly minimize either of these terms, meaning
that on successive tracking/refinement iterations the energy could in fact go up.
Although this is possible, in practice we have found that the Esil term often does go
down. For example, on the Red Sweater data-set the score for the initial geometry
was 45968, which reduced to 10496, 8855, and 8580 after interleaved geometry
estimates (SFS score was 11418). Similar observations were made for the other
data-sets.

5 Conclusion

We have presented an iterative method that uses as few as two camera streams to
recover small human motion primarily by using silhouette cues. The recovered
motion allows the registration of silhouettes to improve the geometry using SFS.

One limitation of our model is that we do not optimize the texture cost in the
mesh refinement. A more accurate geometry could be obtained using stereo consis-
tency in the intra-camera sequence, but we argue that the registration we recover is
a necessary pre-requisite for this stage. Another limitation is that our method needs
to be bootstrapped with an initial geometry. We currently based this geometry on
an enveloping geometry that is obtained by growing the silhouette boundaries. We
would like to further explore the sensitivity of our solution to this initial position.
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In future work we would like to explore using this model in the context of
tracking. Another possible future direction is to see if refining the model in this
manner can be done in an online manner with general motion.
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Figure 8: Reconstruction without motion compensation (e.g., SFS) on the left, fol-
lowed by the refined model (middle), and a textured model (single average texture).
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Figure 9: XOR decrease through refinement compared to SFS
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