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Abstract

This thesis develops fault detection characterization, design, and reliability

analysis within a real-time, multilayered fault detection and diagnosis (FDD)

framework proposed according to fault tolerant control systems (FTCS). With

the development of sophisticated control and monitoring systems, it has be-

come more challenging to carry out routine maintenance, tuning, troubleshoot-

ing, and thus keep the systems operate in their desired or optimal states. N-

evertheless, the system is required to present competitive performance and

timely response to abnormal conditions. Compared with pure data-driven FD

techniques, integrated schemes with model-based FD approaches utilize the

available inherent dynamic relationship among various signals hence can ren-

der more precise diagnosis results. Fitting in the FTCS scope, the real-time

integrated FDD framework is thus highlighted as a strategic solution platform,

where various specific FD approaches may be conceived and realized.

Within the framework, research has been carried out in various aspect-

s, including but not limited to fault detection (FD) design/characterization,

real-time frequency estimation, and reliability of fault detection. Firstly, as

the major part of the thesis, FD design/characterization takes up more than t-

wo chapters where analytical forms characterizing the (first) detection/hitting

time (FHT) are developed based on the general-likelihood ratio (GLR) de-

tection method. Both probability expressions and single-valued performance

indices are proposed for both additive and multiplicative faults. Secondly,

as a substantial technical solution promoted by FD techniques, online fre-



quency estimation has been researched using the gradient estimator approach

with leakage. In the last research topic, semi-Markov kernel modeling and

real-time reliability are discussed with respect to long term fault and detector

sequences. The characterization and design plans have been tested on practi-

cal data sequences and industrial system models, demonstrating the feasibility

of implementation.
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Chapter 1

Introduction

1.1 Fault Detection and Diagnosis

The automation technologies have been rapidly developing in the past 30 years

and are applied widely in dynamical processes and systems. Nowadays, mod-

ern control systems become extremely complex by integrating various functions

and components for sophisticated performance requirement. With such com-

plexities in hardware and software, it is natural that the system may become

vulnerable to faults in practice. It is believed that fault tolerance and reliabil-

ity are among the most important considerations in the design and operation

of control systems and technical processes. The proposed research aims to in-

vestigate these important issues and develop efficient diagnosis techniques for

component faults from the systems perspective (as opposed to that for circuit-

s and chips). As a family of analysis methods and solutions, fault detection

and diagnosis (FDD, or equivalently fault detection/isolation (FDI)) and fault

tolerant control (FTC) form the background of the research project.

FD methods can be commonly categorized in two main classes, namely

model-based and data-driven fault detection [1], [3], [6], [7]. Approaches in

both types generate characteristic signals or information to be evaluated as

the judgment of faults. As is widely used, model-based approaches generally

utilize the available system model or observer-like structures to generate such

1
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Figure 1.1: Schematic description of Model-based and Data-driven FD [1]

a characteristic signal, commonly referred to as a residual signal, which tends

to be around 0 if no fault occurs. In contrast, it is unnecessary for data-driven

approaches to assume the availability of models; the signal/informations gener-

ated for detection are naturally different from model-based residuals and may

thus have different characteristics in the sense of detection. In [1] Ding provides

the general schemes respectively concerning the model-based and data-driven

FD as in Fig. 1.1. Venkatasubramanian and Yang respectively provide in [3]

and [6] a more detailed tree hierarchy concerning specific realizations of FD as

in Fig. 1.2. Relevant literature review is provided in 1.3.1.

Both types of approaches have their advantages and deficiencies. Accord-

ing to [3], [5], model-based FD are well-defined and can handle unexpected

faults, if complete knowledge of all inputs and outputs of the system includ-

ing their dynamic relationships is available; however, model-based FD may

2
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Figure 1.2: A common tree hierarchy of FD [6]

malfunction on lacking such modeling information, and the modeling itself is

not always accurate due to system complexities and nonlinearity. In contrast,

data-driven FD is easier to implement and thus widely selected for applications

due to the lower requirement of a priori knowledge, while its performance yield

to degradation by sensor failures and the limited coverage in the measuremen-

t space of the fault classifiers [3], [5]. In order to maximize the advantages

and minimize the disadvantages, researchers integrate both the data-driven

and model-based methods together into a new type of compounded approach-

es, namely the integrated fault diagnosis; our research goals and directions

disclosed in Section 1.4 is inspired from this fact.

1.2 Real-time Integrated FDD Framework

Based on the research background and literature review provided in 1.1, we

formulate a real-time integrated FDD framework, in which our research is

developed. The framework fits in the large scope of intelligent active FTCS,

of which a detailed structure is provided, and our concentrations are discussed

under this scope. From the practical perspective, our research is expected to

develop fault diagnosis analysis to ensure the feasibility of FD and carry out

3



design to improve system safety/performance. In other words, it is desired

that FD solutions are stable, implementable using the existing control devices

at low costs, and capable of detecting faults/satisfying other requirements.

Substantial contributions towards this goal have been made in the following

chapters.

1.2.1 Motivations

Our research is developed under the scope of a feasible theoretical framework.

From the perspective of FTCS, the framework may contain all or part of F-

DI approaches, controller, FDI knowledge/prediction, real-time reconciliation

mechanism, and data acquisition, etc. Fig. 1.3 provides one type of explana-

tion between integrated FDD framework and intelligent FTCS scope. Com-

pared with schemes in [77], Fig. 1.3 summarizes a more explicated functional

structure in three layers: the top layer functions as reliability maintenance

and decision making, the middle layer functions as FDI and controller, and

the bottom layer consists of various real subsystems and data collection mod-

ules. Our proposed research involves components at the middle and the top

layers: FD validation and design are crucial parts of the middle layer; the

reliability analysis belongs to the top layer.

The rational behind this contains consideration in more than one aspect.

Firstly, the complexity of the large systems (as in the FTCS scope) gradually

becomes a potential problem affecting its feasibility and performance, while

our research aims to provide satisfactory solutions. As a result, FDI need-

s to be responsible for dealing with various kinds of raw signal inputs and

residuals, and small/narrow-scoped solutions may reflect limitations when ap-

plied to such complex environment. For example, multiple types of faults

may simultaneously exist in one signal sequence together with noises and dis-

turbances, where detectors/isolators with one simple rule will not function

4
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as desired. Secondly, offline FDI analysis methods are still the major part

of FDI approaches in certain applications, e.g. the FD of plant-wide oscilla-

tions, which cannot satisfactorily fulfill the requirement on FD methods for

abrupt/dynamic changes. Along with high demands on the performance of

FDI and its affiliated system, timing response of FD is gradually becoming an

urgent and crucial consideration in design, not mentioning its importance on

long-term reliability/safety concern and control reconfiguration. Note that de-

tection delays, missing detections, false alarms and their statistical properties

in case of random noises are the most prominent performance characteristic-

s of a real-time fault diagnosis scheme [51], [73], which is also part of the

motivation that certain methodologies are selected in the research.

The reasons above provide grounds of research under the framework; ac-

cordingly, we have developed our research along several FDI-related issues.

5



1.2.2 Contributions

With the scope determined, the research points are hereby sketched. Note that

the previous research efforts mainly concern the fault detection and its eval-

uation; in contrast, the FTCS scheme shown in Fig. 1.3 contains all the des-

ignable parts as FDI, FTC, characterization module, decision/reconfiguration

module, etc. New research topics are then conceived and conducted under this

intelligent FTC framework, including FD/characterization using new method-

ologies and/or covering new types of faults, improvement on other modules

within the scope, implementation, etc. The following chapters have made

substantial contributions towards these topics, which are further discussed ac-

cording to possible significations in the rest of the subsection.

Detection and Characterization of New Types of Faults

As suggested in Section 1.3.1, the sense of integrated FD based research is

not only the integration of methods, but also the capability of dealing with

different types of faults or fault induced signals compared with conventional

FD approaches by considering more types of residuals. Examples of common

fault types are listed as follows, where Chapter 2, 3, 4 have developed FD

analysis covering various types of faults, grounding on practical needs.

• Fault simultaneously affecting amplitude, phase, and frequency. Our

research about frequency estimation is able to isolate sinusoidal faults

corrupted with bounded disturbances, whereas the faults simultaneously

affecting amplitude, phase, and frequency may also happen and propose

higher requirements.

• Additive fault affecting mean. Researchers have inspected various types

of detectors and performance indices, while breakthrough is still expected

wirh respect to quantitative performance indices for GLR detection. The

6



GLR-based test discussed in Chapter 2 has validated the effectiveness

in detecting step faults corrupted with Gaussian white noises, and such

step faults only change the mean of the noise. Chapter 2 has posed

an analytical upper bound of the detection probability upon time with

respect to additive bias-type fault, and the comparison between this

method and real GLR reflects its feasibility and properties.

• Multiplicative fault affecting variance. Although the step fault (as de-

scribed in the GLR-based test in the thesis) is considered as additive

fault to the noise, in some cases faults may exists as multiplicative gain

on noises. This type of faults belongs to those affecting variance. Chap-

ter 3 has provided approximations on both the expectation (mean) of the

detection delay and the detection probability upon time with respect to

multiplicative fault affecting variance.

• Dynamic faults. This concept denotes a type of faults experiencing dy-

namic change from their occurrence to the ”steady states”. For example,

the step fault described in our GLR-based test is not a dynamic fault

itself; when it happens in a large system consisting of connected sub-

systems, however, it will perform like a dynamic fault with respect to

the data collected from other subsystems. It will be an advanced FD

problem when only the data from the propagated subsystems are avail-

able, and the diagnosis often has to face this condition. Chapter 4 has

exploited dynamic faults in both robust frequency estimation and FD,

discussed two types of relevant faults (frequency shift and unexpected

additive sinusoids), and examined them in the simulation. Especially,

the significance of Chapter 4 is reflected by the improvement of FD e-

valuation in quantized measures.

7



Exploit on Other Modules

With the designed integrated FD, it is feasible to define more functions to be

realized under the large scope and design the relevant functioning modules.

Referring to the FTCS shown in Fig. 1.3, we hereby target to carry out

research on other modules, mainly the upper-level analysis of the long-term

FD behavior and the FD reliability upon time.

On one hand, the controller receives the fault isolation information and

thus can realize FTC on unexpected additive sinusoidal signals, counted as one

type of deterministic fault, when the isolation adopts the frequency estimation

technique. In practice, this option of the controller design may maintain the

system stability by reducing the effect caused by vibrations. On the other

hand, the top layer in Fig. 1.3 may characterize and make decisions based on

the fault information obtained by both detection and isolation. Take the GLR-

based test as an example: it computes the performance indices, which can be

helpful in restrict stochastic (random) faults and forwarded to the decisioning

module. The decision can be used for operating on the middle-layer controller,

e.g. switching between the pre-determined control plans, where the concept of

multiple hypothesis will be useful. With research on FD analysis and design

provided, Chapter 2, 3, and 4 have carried out simulations respectively on

two different DC motor FTCS and one hydraulic rig system. The simulation

results give FD response with description of quantitative time distribution

and/or mean time expectation, indicating the feasibility of FD-based control

within such systems.

Moreover, if the fault time series follows the form of Markov chain, the

decision may follow the Markov chain or semi-Markov chain, and the char-

acterization regarding (semi-)Markov chain may generate helpful information

for the decision module. The research on Markov chain can characterize the

8



long-term behavior of fault events and may also help to reduce the recovery

time from the detection to the confirmation of fault disappearance. Mature

research is available on kernel descriptions of Markovian sequences with indus-

trial applications, like image processing and FTCS [63], [112], [48], [49], and

the research on kernels of semi-Markov sequences also tend to become popu-

lar [114], [50]. Following the direction, Chapter 5 works on kernel modeling of

certain types of fault/detection sequences and relevant reliability analysis.

Applications

The application prospects of the research topic can be roughly categorized in

two aspects: vibration/oscillation testing and FD performance evaluation. On

realizing the desired functions listed in Section 1.2.2, we expect to implement

the system on a real industrial process, power system, or mechanical system,

with one or both of the functions.

• Vibration & oscillation testing

Oscillations (harmonics) commonly exists in many types of systems, such

as chemical processes, rotating machines, power systems [39], etc. It was

pointed out that a system running steadily without oscillation is more prof-

itable and safer [36]. On the contrary, the existence of oscillations may keep

the components from its optimal performance and even cause the unstable-

ness. Moreover, oscillations generally occur as a plant-wide disturbance by

propagating to the neighbor components (then plant-wide) in various paths,

e.g. via physical coupling and recycles [43]. For instance, controllers may

pass the oscillation to manipulated variables, resulting in poor control perfor-

mance [44]. Therefore, it is important to diagnose such oscillations and rectify

the faulty situations, and FDI expertise may be considered as one type of the

potential solutions. Plenty of research achievements have been made concern-

ing the process oscillations and machinery vibrations, and more mechanical

9



and industrial processes are available for implementation compared with con-

fidential systems (e.g. aerospace). Implementation-related methodologies in

both frequency and time-domain, such as surrogate data [43], bicoherence [45],

ACF [42], IAE [41], are available as alternative FD and decisioning approach-

es. Based on a complementary research view, we focus on the real-time design

on a mechanical system or an industrial process. Chapter 4 poses a set of gear

shaft position data upon time, where the crack on the gear perturbs the shaft

position by giving a vibration. Accurate frequency estimation is realized on

that set of data, with better performance compared with the method in [54].

• FD performance evaluation

From another perspective, our current research can be applied to industri-

al FD performance evaluation. For example, the detection of mean/variance

change of noisy alarm signals (residuals), where the alarm signal is directly

used as detector input, is widely applied in process monitoring: it does not

belong to the control chart testing standards like CUSUM and GLR, where

decision functions are used as detector input. The most common assumption

is that the alarm signals are Gaussian i.i.d., and only constant step change

exists between hypotheses H0 and H1. The method used in Chapter 3 will be

applicable to the generation of the analytical discrete (approximated) distri-

bution of FHT with all of the integration removed. Here the distribution of

FHT denotes either time between false alarms or detection delay depending on

the occurrence of fault, and it also describes the distribution properties of each

time duration with the fault decision δ(y) = 0 within one data sequence along

the time axis because of the memoryless property. Likewise, industrial indices

relevant to run length, especially Average Run Length (ARL) and False Alarm

Rate (FAR), can be computed by considering time durations with δ(y) = 1,

which has been realized in Chapter 3.

10



1.3 Literature Review

High volume of literature survey and review work has been done and listed be-

low, in order to contour the research development on FD and acquire materials

for possible research directions upon the motivations. Details and complemen-

tary information regarding the literature review are available in [69], [70], [71],

[72].

1.3.1 Research development on FD

As the first developed FD branch, model-based FD has been mostly researched.

Frank explicitly classified quantitative model-based FD into parity space, ob-

server, FD filter, and parameter identification approaches as early as in 1990

[8], while Venkatasubramanian classified qualitative FD into digraph, qualita-

tive physics, and fault trees approaches [4]. Research in all these subcategories

has been highly developed. Chang developed research on the possibility of

applying sub-optimal extended Kalman filters (EKF) to improve the compu-

tation efficiency while maintaining the accuracy of FD [10]. Aiming to achieve

the H2-optimal design of the residual generator, Zhang combined the parity

space and H2 frequency domain approaches, which is able to depict the fre-

quency domain characteristics of the optimal solution generated by the parity

space [15]. An example of qualitative model-based FD was given in [9], where

the adopted qualitative bond graph (QBG) method was adopted as the mod-

eling scheme to generate a set of qualitative equations used for monitoring

faults. Some new developments of model-based FD focuses on dealing with

various nonlinearities and uncertainties. Instead of the family of Luenberger-

like observers, a type of observers with dynamics in the compensation term

was designed to diagnose sensor faults for nonlinear Lipschitz systems and

proved to generate optimal residuals, the parameters of which was solved with
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an LMI numerical method [11]. In [12], a novel FD filter design was provided

with extension to a class of nonlinear uncertain systems, using the extended

state observer (ESO) theory. In [13], fault detection filter design was ex-

plored for linear continuous-time systems with polytopic uncertainties, where

the Kalman-Yakubovich-Popov (GKYP) lemma is helpful in dealing with the

fault sensitivity performance index. Adaptive observers were also developed

for both detection and evaluation regarding a type of singular nonlinear sys-

tems with the help of Lyapunov stability, reflecting the combined concerns of

nonlinear system, model-based approach, and real-time realization [14].

Research using data-driven (or equivalently, historical knowledge based)

FD started in mid-1980s and become prosperous since 1990s. Venkatasub-

ramanian et al. classified data-driven FD into qualitative and quantitative

approaches, which can be still divided in subclasses such as statistical feature

extraction, neural networks, expert systems, and qualitative trend analysis

(QTA) [5]. Statistical feature extraction have made the main stream of data-

driven FD, under which techniques like principle component analysis (PCA),

independent component analysis (ICA), and partial least squares (PLS) have

been developed. PCA was applied to the detection and analysis of sensor

faults via reconstruction [18], and recursive PCA was developed to adaptively

update the fault monitoring [19], [20]. In [21], ICA was used for extract-

ing statistically independent components from the observed data and combine

them with process charts, which worked effectively on non-Gaussian faults. As

an example of integrating different types of data-driven approaches, a neural

network fault detector and an expert system fault isolator were concatenated

in [16], forming the integration of not only two different artificial intelligence

techniques but also the quantitative and qualitative data-driven FD approach-

es. New challenges, as claimed in [7], affect data-driven FD performance with

the growing complexity of industrial systems and the usage of distributed
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control systems (DCS), such as nonlinearities, process uncertainties, coupled

variables, etc. As a solution, Leung and Romagnoli managed to keep effective

FD and FTC performance with the existence of DCS by proposing a three-

layer FTCS structure, which applied multivariate statistical process control

(MSPC) monitoring to knowledge based FD [17]. Based on such challenges,

Wang et al. pointed out potential research directions of data-driven FD, in-

cluding data-driven multi-scale plant-wide modeling and probabilistic density

function (PDF) based FD [7].

Recently research has been carried out regarding the integrated FDI, al-

though the development still stays at its primary stage. In many applications,

a model can be built on data and signals, based on which modified estima-

tion and identification methods traditionally applied to system models can be

useful. For example, subspace based identification methods can be used to-

gether with state observers for process fault diagnosis [22]. Another example

is that one can achieve comparable goal of spectrum analysis based on Fourier

transform by using a signal model [54] and the nonlinear adaptive frequency

estimator, an extension from model-based adaptive observer techniques. Some-

times one single technique may contain ideas from both model-based and data

driven approaches. One type of structured partial PCA was presented in [26]

with ideas borrowed from parity space for isolating sensor and actuator faults.

All these approaches will be further investigated for the fault diagnosis prob-

lem, where the generated residual or its counterpart will be transformed with

signal-based approaches like CUSUM and GLR [51], from which the quantized

measures of diagnosis performance may be described as probabilistic distribu-

tions. Zhang and Jiang established an FTCS with integrated fault diagnosis

and reconfigurable control, in which a two-stage Kalman filter was used for

estimating states and fault parameters and then statistical hypothesis tests

were developed on the collected information [24]. In [23], a large framework
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containing FD, hypothesis generation, parameter estimation, and hypothesis

validation was proposed, integrating signed direct graph (SDG) based quali-

tative model and statistical testing (e.g. GLR), in order to deal with extreme

cases involving parametric changes in the presence of sensor failures and con-

troller or actuator malfunction. In fact, intrinsic links exist between data and

model approaches, as is shown from tests with GLR and stochastic parity

space [2], [46].

The sense of integrated FD is reflected not only in the combination of

model-based and data-driven methods, but also in the coverage of various

type of signals, e.g. deterministic and stochastic disturbances, resulting in a

more applicable and robust FD/FTC plan. For example, Ma et al. introduced

a complex fault isolation design integrating statistic testing and norm-based

residual evaluation, following a fault detection filter (FDF) used as the model-

based residual generator [25]. More research adaptable to various types of

signal inputs is still expected, though; our research has developed under this

consideration, which is explicated in Section 1.4.

FDI has plenty of useful applications on aerospace, mechanical systems,

electric power systems, production lines, industrial (e.g. chemical) processes,

etc. Pirmoradi et al. presented a robust scheme for FDI in spacecraft attitude

determination (AD) sensors, where dynamics of the spacecraft and the mea-

surement error were used for model-based state estimation and two EKFs were

used for fault isolation [27]. Patton et al. provided a practical detection and

isolation plan regarding faults affecting thrusters of a Mars Express (MEX)

satellite system, whose FDI scheme relied on optimal robust disturbance de-

coupling observers (ORDDOs) [28]. One mostly concerned mechanical fault

is rotating machinery vibration, against which model-based, data-driven, and

even integrated FD have been researched [29], [30], [31]. Neural networks, as

well as other intelligent techniques, has become the most frequently used tool
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in FDI of electric power systems or their individual components, which has

led to a series of novel research results [32], [33], [34]. Wu presented an ex-

ample of knowledge based FD of car assembly line based on modified support

vector machine, where the optimal parameter was computed with the particle

swarm optimization (PSO) [35]. As for chemical processes, plant-wide oscil-

lations is the most common fault, without which a steadily running system is

more profitable and safer [36]. Oscillations can not only keep the components

from its optimal performance but also propagate to the neighbor components

(and thus to the entire plant) via physical coupling, recycles, etc., [43], [44].

Thornhill et al. introduced the concept of integrated absolute deviation (IAE)

between successive zero crossings (caused by the oscillation) of the time se-

ries, and a detection method is formed with predefined thresholds on IAE [41].

In [42], the distribution of the time between successive zero crossings of the

auto-correlation function (ACF) was inspected, leading to the successful iso-

lation of relevant stochastic performance indices of the oscillation. Jiang et

al. explained the spectral envelope method, in which the maximum ratio of

the power spectrum to the variance among various linear scaled data series

was inspected along the frequency axis [37]. These methodologies diagnosing

oscillations mentioned above respectively belong to the three main categories

in [40], i.e. time-domain, ACF, and spectral methods, which cover both model-

based and data-driven FD approaches.

1.3.2 Literature review with respect to specific research
points

As introduced in Section 1.2.2, Chapter 2, 3, 4, and 5 have developed in-depth

research on different case studies within the integrated FD framework. These

case studies cover topics such as likelihood ratio test, covariance matrix, real-

time estimation, (Semi-)Markov chain and reliability. Here we list literature
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reviews relevant to these topics and also the brief discussion on their relation-

ship to the following chapters, in order to help readers comprehend the major

points and the usage of our research.

Likelihood ratio test

In certain fault detection algorithms, including the cumulative sum (CUSUM)

based, the generalized likelihood ratio (GLR) based, the exponentially weight-

ed moving average (EWMA) based, and other likelihood ratio test based ones,

detection of faults is achieved by testing a random residual signal obtained

from the process or generated by a filter, which is usually subject to some

significant change from the normal system operation to the faulty one. For ex-

ample, the residual may manifest a stepwise signal changing from one constant

level to another superimposed by white noises. In this case, the detection delay

can generally be interpreted as the first hitting time (FHT) of a drifted random

walk or Brownian motion generated by the recorded residual signal crossing

some boundary(-ies), [51], [53]. Research results about the probabilistic prop-

erties of FHT are available, e.g. [74], [75], [76], just to name a few. In [53],

by means of a continuous approximation of the CUSUM based detection, the

probability distributions of (fault) detection delay (DD) and time between

false alarms (TBFA) were obtained, which belong to a family of Lévy distri-

butions. However, the results for the most commonly used likelihood-ratio

test based detection methods such as the generalized likelihood ratio (GLR)

test are not available. One of the motivations of this chapter is to extend the

results developed in [53] to the GLR scheme.

In a fault tolerant control system (FTCS), a FD scheme serves as a crucial

component. Jiang has surveyed and proposed systematic definition of FTC: in

a typical active FTCS, the FD scheme determines the matching faulty situation

upon detection; the reconfiguration function then reacts and switches in the
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best control strategy to keep the desirable closed-loop performance, [77]. In

such a system, the FD performance has great impact on the performance

of the FTCS. Hence characterization of FD schemes and their performances

is important. Markov chains can be used to describe the behavior of fault

events as well as the FD process, stated in recent research on stochastic fault

tolerant control [60], [63], [61], [78]. Obviously when using Markov chains to

describe the FD process, the exponential distribution of the sojourn time is

only valid in a single step limit-checking based detection scheme, but will be

restrictive for most FD schemes that involved sequential processing and testing

of the residual signals. In this case, a semi-Markov chain is more suitable for

describing the FD decision process because it allows for different specifications

of the sojourn time distributions other than the exponential one, [79]. In the

thesis, by analyzing different sequential test based FD schemes, such as GLR

and CUSUM based, we can characterize the probability distributions of the

fault detection delay and the time between false alarms, which are useful in

constructing a semi-Markov FD process in the integrated fault tolerant control

system. This chapter only focuses on the statistical characterization of FD,

while the semi-Markov process description/constrution will be presented in

Chapter 5.

Most online detection schemes operate in discrete-time. A typical detec-

tion process in a sequential hypothesis test involves forming a decision signal

by taking summation of the residual signal consisting Gaussian i.i.d. noise

samples upon time, which can be described by a discrete random walk. In this

work, instead of treating the discrete random process directly, we approximate

it by the corresponding continuous Brownian motion (i.e. Wiener process), for

which more mature analysis tools are available, like [64]. Analytical proba-

bilistic distribution expressions are derived for the CUSUM and GLR based

schemes respectively, and are validated via Monte-Carlo simulations. Fur-

17



thermore, we implement the CUSUM and GLR algorithms in a more realistic

DC motor fault tolerant control system, originally seen in [53]. Monte-Carlo

simulation results show that the analytical distribution expressions provide

satisfactory approximations of the fault detection characteristics. Compared

to most existing research work on FD analysis that is mainly focused on de-

veloping FD performance indices based on average rates or average run length

(ARL), Chapter 2 reveals more detailed and precise statistical profiles of the

relevant FD performance criteria. The results from this work are not only

useful in design and analysis of intelligent FTCS but also helpful in FD alarms

management and assessment, especially for large-scaled processes. For such

processes, analysis of detection alarm signals is extremely important in or-

der to reduce the number of nuisance alarm signals, and avoid unnecessary

shut-downs, [80], [81].

Variance change detection

From the perspective of stochastic signal monitoring, each of the deterministic

properties describing the distribution (mean, variance, skewness) can reflect

faults, of which the past research majorally concentrates more on the fault

affecting mean change. As a response to rising number of requirements, here

we investigate the fault on the detection time and time between false alarms

regarding variance change.

So far the cases in which most research work on variance change detection

are based on the development of algorithms/mechanisms using covariance ma-

trix. Caliskan posed and compared four algorithms on different performance

indices concerning the covariance matrix of the Kalman filter innovation se-

quence, with the applications as aircraft sensor fault detection and flight con-

trol systems [101]. Hung defined a flag matrix determined by the covariance

matrix and placed statistical hypothesis testing on certain elements/patterns
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of the flag matrix [102]. Chiang used sample covariance matrix from unfaulted

data to establish a causal map used for fault detection [103]. Yu introduced a

data-driven covariance benchmark, where generalized eigenvalue analysis are

used for denoting the directions of better or worse control performance [104].

In contrast to these research achievements, we have one step forward to the

quantitative description of probabilities/expectations related to FHT, which

in this chapter describe detection delay (DD) and time between false alarms

(TBFA).

Real-time estimation

The real-time (online) estimation of frequencies and amplitudes of sinusoidal

signals is an important and classical problem, which has received much atten-

tion from the systems and controls community. In [84], a globally convergent

frequency estimator was proposed based on adaptive notch filter design for a s-

inusoidal signal with single frequency. By using a state space realization of the

sinusoidal signal, the frequency estimation problem can be converted to com-

bined state and parameter estimation problem, a well-known yet challenging

problem in controls. Adaptive observers based global frequency estimator was

then developed, [85], [86]. By considering white noise and time-varying fre-

quencies, a modified Kalman filter was designed for frequency estimation, [87].

A high gain observer has shown great improvement on state estimation for sys-

tems with modeling errors or external disturbances, in which the effect from

such errors and disturbances can be effectively compressed within a bounded

zone that can be narrowed by proper tuning of the design [57], [58]. Recently,

the approach was extended to simultaneous reconstruction of multiple frequen-

cies and amplitudes for a signal containing n unknown sinusoids, [54]. Sharma

applied the nonlinear contraction to the convergence analysis of the frequen-

cy estimator [55]. It was claimed that the selection of the tuning parameters

19



could be obtained analytically. Compared with conventional signal spectrum

and time-frequency analysis methods, the adaptive-observer-based frequency

estimation provides a promising alternative to deal with online real-time sig-

nal analysis, especially for signals with slowly time-varying frequencies. Some

research results relevant to the topics of adaptive estimation and disturbance

attenuation have appeared recently. Jia provides a disturbance observer incor-

porating adaptive parameter dynamics based on the least-mean-square (LMS)

and recursive least square (RLS) methods [88]. In [89], [90], a modified robust

adaptive Newton optimization method was adopted to accomplish frequen-

cy estimation on discrete sinusoids with white noise, where instant changes on

frequencies are tolerant. In [91], another kind of direct frequency estimator us-

ing LMS was formed, dealing with discrete one-frequency sinusoids with white

noise. Dash has pointed out one way of time-varying frequency estimation by

means of a nonlinear adaptive complex unscented Kalman filter (CUKF) [56].

It is noticed that most current research results generally deal with sinu-

soids with white noise. In contrast, this chapter focuses on a type of signals

with unknown but bounded disturbances, which are difficult to remove by pre-

processing the signal. The benchmark research provided in [57] and [58], as

well as the extended research in [69], proposed high-gain observer (HGO) based

estimation for attenuating the low frequency disturbances so that the domi-

nant frequency components can be isolated, while this scheme may result in

a high-dimensional state space model and thus the computation of high-order

derivatives of signal, restricting the applicability of this scheme. In Chapter

4, a linear parametric regression model of the signal based on the work of [92]

is selected as the signal model instead. A causal filter with proper and stable

transfer function is utilized to pre-process the signal such that more informa-

tion on the frequencies can be gained. Based on the linear parametric model,

the adaptive gradient estimator with leakage [92] is analyzed, modified, and
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adopted to generate frequency estimation in real-time. Due to the existence

of the disturbance, the estimation error is inevitable but it is shown to be

bounded. The bounds of the frequency estimation are derived, from which

one can design the identifier to reduce the bound and enhance the estimation

precision.

(Semi-)Markov chain and reliability

As results from Chapter 2, 3, 4, more types of faults become compatible

with the FDI framework, and firm connections are established between the

research and practical applications, such as frequency tracking, ARL/FAR,

troubleshooting of component failure, and movement/speed control system.

Long-term signal monitoring, however, is necessary in real industrial produc-

tion, where multiple transitions between faulty and normal states may be

possible. As a result, safe processes and system-level reliability now appear as

crucial research topics, in which the Markovian properties and/or assumptions

are the basis of theoretical deduction. The research results are mainly used

for active fault tolerant control systems, where the real time fault-detection

sequences may be important sources of the reconfiguration and even the con-

troller re-design [62].

Abundant research materials like [52] systematically explicated Markov

chain and its application on stochastic boundary crossing problems. A widely

accepted benchmark of the research is describing the fault with time using

a finite-state Markov chain and then modeling the system as a Markovian

jump linear system (MJLS) [62]. Fang poses a thorough stability of analysis

of continuous-time linear system with stochastic parameter faults, using Lya-

punov stability and linear system knowledge [115]. Based on the work of [115],

Tao uses Lyapunov and LMI tools to design robust controllers for FTCS under

a typical discrete Markovian framework with assumptions for simplification ap-
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plying [62], [63]. Comparatively, Semi-markov models are more complex and

have less mature research, and their better mimic of actual stochastic fault

behavior makes them of more research value. Zhao used a semi-Markov chain

with sojourn time and renewal process to describe the sequence of fault events

and help the FTC switch controllers at the right time [53]. In [114], Barbu

pointed out the past research about semi-Markov models like [116], [117], [118]

requires strong conditions beyond practical requirements, where a more gener-

al theoretic basis is posted with benchmark concepts like Discrete-time Markov

Renewal Process (DMRP). Sufficient room for the research on semi-Markov

processes still exists, pointing out the direction of Chapter 5.

1.4 Outline

Provided the introduction in Chapter 1, the rest chapters are organized with

respect to specific research topics. In Chapter 2, a continuous approximation

and characterization is developed for the detection probability of additive fault-

s affecting mean. In Chapter 3, analytical bounds and industrial performance

indices are calculated in discrete time domain for the detection probability of

multiplicative faults affecting variance. Based on the application background

and demands on real-time frequency estimation, a gradient estimator with

leakage is proposed in Chapter 4 for sinusoids with perturbation, along with

its FD applications to frequency shift and additive sinusoids. In Chapter 5,

Semi-Markov models/kernels regarding long-term fault-detection relationship

are discussed, and the relevant reliability performance index is also validated.

The summary is given in Chapter 6.
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Chapter 2

Detection of Additive Fault:
Statistical Characterization I

2.1 Introduction

Chapter 21 introduces a continuous stochastic filter for characterizing the de-

tection of abrupt mean change on Gaussian signals based on the General Like-

lihood Ratio (GLR) algorithm. Continuous approximations of GLR test are

proposed in the form of Continuous Likelihood Ratio (CLR) test and Biased

CLR (BCLR) test. Accordingly, a well-defined probabilistic performance in-

dex is given with the accuracy inspected from comparisons, where simulations

are applied with both artificial data and motor FTCS to highlight its feasi-

bility. Within the thesis scope, this chapter covers fault detection/isolation

procedures, and the feasibility of controllers in the middle layer. The prob-

abilistic performance index provides detailed quantitative information, which

can be also used as live complement to the top-layer characterizing-learning

mechanism.

The remainder of this chapter is organized as follows: problem definitions

and background review are included in Section 2.2; the main results on the

1Originally published as:
[70] S. Yang, Q. Zhao, “Statistical characterization of the GLR based fault detection,” Proc.
American Control Conference, 2011, pp. 3778–3783.
[72] S. Yang, Q. Zhao, “Probability distribution characterisation of fault detection delays
and false alarms,” IET Control Theory & Applications, 6(7), 2012, pp. 953–962.
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distributions of the delay and time between false alarms are presented for

CLR and BCLR test based FD schemes in Section 2.3; in Section 2.4, the

simulation study is presented. The results are validated thorough Monte-carlo

simulations using idealized synthetic data first and then in a more realistic

DC motor fault tolerant control system, where CUSUM and GLR based FD

schemes are implemented; finally, conclusions are drawn in section 2.5.

2.2 Problem Formulation

2.2.1 Problem Formulation and Definitions

As a consensus introduced in [53], analysis of a Brownian motion (mathemat-

ically Wiener Process (w.p.)) is the key to the sequential hypotheses testing

for FD, for which different bounds are proposed and the exit time is specially

concerned for characterizing the detection time. The sequential hypotheses

testing methods, including CUSUM and GLR, have a common definition form

of the detection time as in (2.1), as disclosed in [53]: the detection time Th

is defined as the time instant for the decision signal g(kTs) (or g(t) as the

continuous-time counterpart) to hit the threshold h(kTs) (or h(t)) for the first

time, i.e.

Th =

{
inf{k ≥ 1 : g(kTs) ≥ h(kTs)}, or
inf{t > t0 : g(t) ≥ h(t)}, (2.1)

where Ts is the sample time and t0 can be 0 for simplicity without loss of

generality.

It should be noted that although the standard CUSUM and GLR algo-

rithms are given in discrete-time forms since they treat the discrete-time data

sequences, their continuous-time formulations are considered in this work so

that the statistical characterization of the detection time can be performed

based on the continuous-time random process. This is due to the fact that

analytical results for continuous random processes are more mature compared
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to that for discrete-time random processes, especially for the FHT analysis.

The detection time of CUSUM and GLR can generally be treated as the FHT

at some boundary(-ies) concerning a drifted random walk (or Brownian mo-

tion as the continuous-time approximation) generated by taking full or partial

summation (integration) S of the recorded residual signal data y(kTs) (y(t)) or

the associated log-likelihood ratio, [51], [82], and abstract results are provided

in [83]. A common and descriptive definition of FHT concerning CUSUM and

GLR on a constant threshold h is:

Th = inf{k ≥ 1 : g(S(Λ(y)))(k) ≥ h} (2.2)

Before any further discussion, it is necessary to clarify the assumptions

made on the residual sequence y(kTs) and the bias fault F when applying the

CUSUM or GLR scheme, which will be used throughout this chapter.

At first, the residual random process Y is assumed to be a Gaussian i.i.d.

process, and the measured residual signal y(kTs) is a sample path of Y . The

fault reflected in the residual is a constant bias F effective from kfTs, i.e.

Y (kTs) ∼
{
N (0, σ2Ts), 1 ≤ k < kf
N (F, σ2Ts), k ≥ kf

. (2.3)

For Gaussian random variables, the log-likelihood ratio Λ(kTs) , Λ(y(kTs))

becomes, [51]:

Λ(kTs) = ln
f
(F )
Y (kTs)

(y(kTs))

f
(0)
Y (kTs)

(y(kTs))
=

F

σ2Ts

(
y(kTs)−

F

2

)
. (2.4)

where f
(µ)
Y (kTs)

(y(kTs)) , 1√
2πσ2Ts

e
− (y(kTs)−µ)2

2σ2Ts , ∀µ ∈ R.

Since CUSUM and GLR take summation or partial summation of log-

likelihood ratios to generate their decision functions, the properties of the

(partial) summation should be discussed. The equations have shown that the

log-likelihood ratio of Gaussian random variable (r.v.) keeps an affine form

of the r.v. sample itself, so the (partial) summation of log-likelihood ratios
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also keeps an affine relationship with the (partial) summation of the Gaussian

independent r.v. samples with the identical variance, which is a random walk

(or Brownian motion in the continuous time domain). Hence, the boundary

hitting problem of random walk/Brownian motions forms the foundation of

CUSUM and GLR. The partial summation Skj on (Λ(kTs)) has the form, [51]:

Skj (F ) =
k∑
i=j

Λ(kTs) =
F

σ2Ts

k∑
i=j

(
y(iTs)−

F

2

)
. (2.5)

Define ν = F/Ts as the scaled bias fault, then it is obtained that the

random walk sequence R(kTs) (W (kTs) with variance normalized) generated

by taking summation on Y , satisfies the following distributions:

R(kTs) ,
k∑
i=1

Y (iTs) ∼
{
N (0, σ2kTs), when k < kf
N (ν(k − kf + 1)Ts, σ

2kTs), when k ≥ kf
(2.6)

W (kTs) ,
1

σ
R(kTs) ∼

{
N (0, kTs), when k < kf
N (ν(k − kf + 1)Ts/σ, kTs), when k ≥ kf

(2.7)

The continuous approximations (R(t) and W (t)) should keep the same drift

rates as the above discrete-time sequences, hence

R(t) ,
∫ t

0

Y (τ)dτ ∼
{
N (0, σ2t), when t < tf
N (ν(t− tf ), σ2t), when t ≥ tf

(2.8)

W (t) ,
1

σ
R(t) ∼

{
N (0, t), when t < tf
N (ν(t− tf )/σ, t), when t ≥ tf

(2.9)

2.2.2 GLR

The generalized likelihood ratio (GLR) test is based on a double maximization

algorithm, which has been commonly utilized as a detection standard. The

decision signal is generated following the form defined in [51]:

g(kTs) , max
1≤j≤k

sup
F
Skj (F ), (2.10)

where Skj (F ) is the summation of log-likelihood ratio of the two classes (normal

with mean 0 and faulty with mean F ), given in (2.4) and (2.5). This algorithm

can guarantee the detection of any unknown constant biases (faults).
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As F = νTs, (2.5) can be transformed into:

Skj (ν) =
k∑
i=j

ν

σ2

(
y(iTs)−

νTs
2

)
. (2.11)

Take partial derivative of Skj on ν to find a ν̂ maximizing Skj :

∂Skj
∂ν

(ν̂) = 0⇒
k∑
i=j

(
y(iTs)

σ2

)
− ν̂Ts

σ2
(k − j + 1) = 0

⇒ ν̂ , arg sup
ν

Skj (ν) =
1

(k − j + 1)Ts

k∑
i=j

y(iTs). (2.12)

Substitute (2.12) into (2.11):

sup
ν
Skj (ν) = Skj (ν̂) =

1

2σ2

k∑
j

(
2ν̂y(iTs)− ν̂2Ts

)

=
1

2σ2

2ν̂

k∑
j

(y(iTs))− (k − j + 1)Tsν̂
2


=

1

2σ2

 2

(k − j + 1)Ts

 k∑
i=j

y(iTs)

2

− (k − j + 1)Ts
(k − j + 1)2T 2

s

 k∑
i=j

y(iTs)

2


=
1

2σ2
· 1

(k − j + 1)Ts

 k∑
i=j

y(iTs)

2

.

Hence, the form of GLR decision function is given as follows:

g(kTs) =
1

2σ2
max
1≤j≤k

1

(k − j + 1)Ts

[
k∑
i=j

y(iTs)

]2
, (2.13)

the above decision function has a slightly different form by including the effects

of sampling time, which is comparable with the original version in [51]. It is

used in the simulation part (Section 2.4) in the GLR algorithm.

2.3 Continuous Likelihood Ratio (CLR)-based

detection

Here we firstly present the extension of GLR detection reviewed in Section

2.2.2 to the continuous-time domain, the so-called continuous Likelihood Ratio
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(CLR). We assume that the residual Y (t) is a zero-mean Gaussian white noise

with the variance σ2 before the fault happens, and the fault changes its mean

to a non-zero unknown value ν in a step manner, i.e.

Y (t) ∼
{
N(0, σ2), when t < tf
N(ν, σ2), when t ≥ tf ,

(2.14)

where tf denotes the time instant when the fault starts to affect the signal.

For simplicity, only ν > 0 is considered.

Use y(t) to denote the recorded sample path of Y (t). Due to its Gaussian

property, the likelihood ratio at time t is

Λ(t) = ln
f
(ν)
Y (t)(y(t))

f
(0)
Y (t)(y(t))

=
ν

σ2

(
y(t)− ν

2

)
. (2.15)

where f
(µ)
Y (t)(y(t)) ,

1√
2πσ2

e−
(y(t)−µ)2

2σ2 , ∀µ ∈ R.

Define the cumulative integral of likelihood ratio from tj to tk:

Stktj =

∫ tk

tj

Λ(τ)dτ =
ν

σ2

∫ tk

tj

(
y(τ)− ν

2

)
dτ. (2.16)

Note that ν is unknown, and one solution is to find an estimate ν̂, which

generates maximum likelihood for each tk. Following a similar idea of the

double maximization in a discrete GLR regarding both ν and tj, we may

define the decision function g(t) at ∀t > t0:

g(t) = sup
t0<tj<t

sup
ν>0

Sttj = sup
t0<tj<t

sup
ν>0

∫ t

tj

(
νy(τ)

σ2
− ν2

2σ2

)
dτ. (2.17)

Select a h > 0 as the threshold of FD. When g(t) ≥ h, it generates the alarm.

However the complex form of g(t) limits further analysis of the detection

performance. We start by simplifying g(t). Note that the detection standard

is equivalent to the proposition: for a fixed t, ∃tj ∈ (t0, t), s.t. supν S
t
tj
≥ h.
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It can be transformed as the follows [51]:

sup
ν
Sttj ≥ h⇔ sup

ν

{∫ t

tj

(
y(τ)

σ
− ν

2σ

)
dτ − hσ

ν

}
≥ 0

⇔ 1

σ

∫ t

tj

y(τ)dτ ≥ inf
ν

{
ν

2σ
(t− tj) +

hσ

ν

}
⇔ 1

σ

∫ t

tj

y(τ)dτ ≥
√

2h(t− tj). (2.18)

Note that the left-hand side of (2.18) defined as

w(t) =
1

σ

∫ t

tj

y(τ)dτ (2.19)

is a sample path of a Wiener process W (t) formed by taking the integration

of y(t), which starts at tj and satisfies

W (t) ∼
{
N(0, t− tj), when t < tj
N(ν(t− tj)/σ, (t− tj)), when t ≥ tj

(2.20)

The right-hand side of (2.18) is square root function of (t − tj). Obviously,

(2.18) demonstrates a moving window detection method, with the convex of

the square root boundary moving along with the wiener process sample path

w.

Remark 1 In (2.18), the superior bound caused by the drift rate ν is removed

via optimization. For simplicity we may remove the superior bound caused

by tj, the starting time of Wiener process. As our goal is to analyze the DD

and TBFA, the duration between the fault occurrence time tf and the current

time of detection t is of the main interests. For this purpose, we assume that

tj is fixed but not moving along the time axis. Hence, the above CLR based

test involves a fixed square root boundary and it is mainly used for analysis

purpose instead of implementation. In fact, if implemented, the CLR will not

be as sensitive as the original GLR.

In [59] and [64], the results on the probability of FHT concerning a zero-

mean Wiener process and a monotonically non-increasing linear boundary were
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given. Furthermore the results have been extended to any monotonically non-

increasing concave boundary b(t) differentiable on (t0,∞) satisfying b(t+0 ) ≥

0. Specifically the following equation was given as an upper bound of the

probability due to the concavity, [64]:

Pr(t0 < Th < t) ≤
∫ t

t0

b(τ)− τb′(τ)√
2πτ 3

e−
b2(τ)
2τ dτ, if b′(τ) ≤ 0 (2.21)

In fact (2.21) is applicable to all the concave boundaries b(t) satisfying

b(t+0 ) ≥ 0. As a result, it can be applied to analyze the distribution of the

FHT of the prosed CLR standard. At first we concentrate on the distribution

of the detection delay. Fix tf = 0 for simplicity, and treat it as the start time

of CLR detection. Hence the boundary b(t) in (2.18) becomes,

b(t) =
√

2ht. (2.22)

By adding a term of −νt/σ to both w(t) and the boundary, the CLR detection

problem can be transformed into an equivalent problem, i.e. the detection of

the zero-mean normalized Wiener process w0(t) ∼ N(0, t) hitting the bound

b0(t) =
√

2ht− ν

σ
t. (2.23)

Note that both b(t) and b0(t) are concave, implying that (2.21) can be used

for computing the FHT distribution for w(t) to cross b(t) and b0(t).

Following the discussion above, we can derive an upper bound of the

probability of detection delay Td from t0 > 0 to t based on the results for FTH

of Wiener process sample path w0 hitting the boundary b0. As w0(0) = 0

and b0(0) = 0 imply the trivial case of “initial hitting” rather than the FHT

mentioned above, we assume t0 > 0. Similarly, the false alarm is the case

when w(t) hits the bound b(t) at some t > tf = 0 with ν = 0 (no fault). The

probability distribution of the time between false alarms is also obtained. The

results for FDD and TBFA are shown in the following theorem.
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Theorem 2 For the CLR test described in Remark 1, the probability that the

detection delay Td takes a value in (t0, t) is bounded and the upper bound is

given in (2.24); the probability that the time between false alarms Tfa takes a

value in (t0, t) is bounded and the upper bound is given in (2.25):

PrCLR
d (t0 < Td < t) ≤

∫ t

t0

b0(τ)− τb′0(τ)√
2πτ 3

e−
b20(τ)

2τ dτ

=

∫ t

t0

√
h

2
√
πτ
e−h+

√
2hν
σ

√
τ− ν

2τ
2σ2 dτ (2.24)

PrCLR
f (t0 < Tfa < t) ≤

∫ t

t0

√
h

2
√
πτ
e−hdτ =

√
h

2
√
π
e−h(ln t− ln t0). (2.25)

The proof is obvious from the above discussion and by directly substitu-

tion of (2.22) into (2.21). The two expressions give detailed and quantitative

description of the possibility of detection up to any time instant; besides CD-

F, the mathematical indices of the distribution such as expectation, peak,

and skewness are helpful in summarizing quantitative industrial performance

indices regarding process (component) fault monitoring.

It is noticed that when t0 is small, the probability bound tends to increase

dramatically. In addition, CLR may provide an over-tightened boundary (low

threshold value) especially during the earliest period of time, so that a detec-

tion at the beginning is mostly a false alarm. To improve CLR, we introduce a

constant bias β > 0 to the original CLR bound, leading to the so-called biased

CLR (BCLR). Under the BCLR test, the boundary becomes

b(t) =
√

2ht+ β, b0(t) =
√

2ht− ν

σ
t+ β, (2.26)

based on which we may describe the distribution following the derivation of

(2.24) and (2.25). The results are shown in the following corollary.

Corollary 3 For the BCLR test with a boundary in (34), the probability that

the detection delay Td takes a value in (t0, t) satisfies an upper bound given
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in (2.27); the probability that the time between false alarms Tfa takes a value

in (t0, t) satisfies an upper bound given in (2.28):

PrBCLR
d (t0 < Th < t) ≤

∫ t

t0

√
2β +

√
hτ

2
√
πτ 3

e−
(
√
2hτ− νσ τ+β)

2

2τ dτ, (2.27)

PrBCLR
f (t0 < Th < t) ≤

∫ t

t0

√
2β +

√
hτ

2
√
πτ 3

e−
(
√
2hτ+β)2

2τ dτ. (2.28)

Obviously the problem of infinity bound in (2.24) and (2.25) as t0 → 0 is

solved in (2.27) and (2.28).

Remark 4 The above results may apply to a more general case that the addi-

tive fault is not constant bias but time-varying. The proposed CLR and BCLR

can still be used for analyzing the FDD and TBFA, with necessary modifi-

cation: Define a Gaussian noise Y (t) with time-varying fault ν(t) after the

starting time tf :

Y (t) ∼
{
N(0, σ2), when t < tf
N(ν(t), σ2), when t ≥ tf ,

(2.29)

The detection can be treated as a boundary crossing problem between a

Wiener process W (t) satisfying

W (t) ∼ N

(
1

σ

∫ t

tj

ν(τ)dτ, t

)
, when t ≥ 0 (2.30)

and a bound b(t) as in (2.22), where tf = 0 for simplicity. Equivalently, it

is converted to a boundary crossing problem concerning the corresponding de-

trended Wiener process W0(t) and a drifted bound b0(t) satisfying

b0(t) =
√

2ht− 1

σ

∫ t

0

ν(τ)dτ. (2.31)

Theorem 2 and Corollary 3 can be readily modified by substituting in (2.31)

for the corresponding b0, as long as b0(t) is still concave and b(0+) ≥ 0.
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Another way of treating time-vary faults is by using the known bounds,

i.e. ν(t) ∈ [νmin, νmax]. Based on (2.31), we have

bνmax(t) ,
√

2ht− νmax

σ
t ≤ b0(t) ≤

√
2ht− νmin

σ
t , bνmin

(t). (2.32)

As a result, the corresponding bounds of the detection delay probabilities in

Theorem 2 and Corollary 3 can be formulated as

PrCLR
d (t0 < Td < t) ≤

∫ t

t0

bνmax(τ)− τb′νmax
(τ)

√
2πτ 3

e−
b2νmax

(τ)

2τ dτ

=

∫ t

t0

√
h

2
√
πτ
e−h+

√
2hνmax
σ

√
τ− ν

2
maxτ

2σ2 dτ, (2.33)

PrBCLR
d (t0 < Td < t) ≤

∫ t

t0

√
2β +

√
hτ

2
√
πτ 3

e−
(
√
2hτ− νmax

σ τ+β)2

2τ dτ, (2.34)

2.4 Simulation

Simulations are firstly carried out on synthetic data for: 1) validation of the

probabilistic properties of CLR and BCLR as in (2.24) and (2.27), and 2)

comparison between the proposed CLR and the GLR tests in the analysis.

Then simulations are performed on a DC-motor control system to further

demonstrate the feasibility of the analytical results developed in this work.

Monte-Carlo simulations are performed in all these cases.

2.4.1 Artificial Data

Validation of CLR & BCLR distribution

Here we carry out simulations to validate the theoretical expression regarding

the CLR and BCLR tests. Both fault detection (fault ν 6= 0 occurs at t = 0)

and false alarm cases are discussed, where the PDF of FHT and the normalized

experimental histogram (50 divisions) are compared. Random walk samples

are used to approximate Wiener processes, where the sampling interval Ts =

0.2s. The residual signal without fault is white Gaussian noise Y (kTs) ∼

N(0, σ), and the fault bias is νTs, yielding the normalized un-drifted random
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walk W0(kTs) ∼ N(0, kTs) and the drifted one W (kTs) ∼ N(νkTs/σ, kTs).

FHT is tested with 10,000 randomly generated Gaussian random walk samples

with the same distribution, so that the histogram tends to the real distribution.

Select the parameters for the Wiener process W (t) as ν = 0.5, σ = 1.

Select the threshold as h = 2, and the drift rate ν = 0.5 for the real detection

case with fault, and the bias β = 5 for BCLR. Simulate both the detection and

false alarm test respectively with given 10,000 random walk samples, resulting

in Fig. 2.1(a) for CLR and 2.1(b) for BCLR. The time length of observation

is set to 150s.

Fig. 2.1(a) shows that the distributions of experimental FHT match the

analytical PDF profile well, hence (2.24) and (2.25) are validated. Fig. 2.1(b)

shows how the distributions of experimental FHT matches the analytical PDF

obtained from (2.27) and (2.28) in both fault detection and false alarm cases.

It is also noticed that the CLR has a relative higher false alarm rate compared

to BCLR.

Comparison between GLR and CLR

It is desirable to validate the feasibility and accuracy of the CLR algorithm by

comparing it with a standard GLR test given in [51]. Select the parameters

as σ2 = 0.09, h = 6, ν = 0.5, and the time of fault occurrence tf = 0. Fig. 2.2

shows the result of the Monte-Carlo simulation. The normalized histogram of

10000 experiments respectively for GLR and CLR and provided, and the PDF

expression for CLR as in (2.24) are plotted for comparison. In Fig. 2.2, the

CLR experiment matches the PDF expression quite well. The GLR detection

presents faster detection than CLR, confirming our speculation as in Remark

1; i.e. CLR is not as sensitive as GLR.
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Figure 2.1: PDF of FHT in detection (upper) and false alarming (bottom)
with normalized experimental histograms.
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Figure 2.2: Comparison between GLR and CLR

2.4.2 DC Motor Fault Tolerant Control System

Simulations are carried out on a DC-motor system originally seen in [53]. Fig.

2.3 gives the interconnection structure. We hereby succeed relevant concepts

and principles from [53] for our experiments:

• Only the speed sensor is subject to fault and noise, regardless that both

the speed and position information are acquired from sensors. Faults

only occur as step jumps on the speed sensor.

• The auto-switching mechanism based on the FD result and the soft-

sensor technique is the kernel of the control: in the normal state the

FTCS passes back the real speed measurement, which is subject to be

replaced with the speed estimation from the Kalman filter once a fault

is detected.

Comparison between GLR and CLR

Here we implement the GLR algorithm in the motor system. The minimum

magnitude of detection is selected as zero, indicating that any constant bias
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Figure 2.3: Structure of Motor FTCS [53]

in mean will be detected with enough time given. Select the parameters as

follows: the variance of Gaussian noise σ2 = 0.09, and the threshold h = 100.

The magnitude speed sensor bias (fault) is selected as νTs = 10Ts, so that the

average increasing rate (slope) of the cumulative random walk is ν = 10 per

second after the fault occurrence time. Fig. 2.4 describes a one-time GLR

detection of the motor’s speed sensor bias under the parameter set, where the

decision function g(kTs) = w − ŵ1 and threshold h are provided.

Likewise, we carry out Monte-Carlo simulations of GLR on the motor

system model and compare the results with the theoretical result of CLR as in

(2.24). The tests are repeated for 250 times to get a distribution on histogram,

and sample time Ts = 0.002s. The concepts of real FHT and observed FHT

are used. Real FHT means the actual detection time from the fault occurrence

to the detection. Observed FHT means the time duration between the time

jTs and the detection time, where the time index j maximizes the decision

function, i.e. satisfies g(kTs) = max1≤j≤k supν>0 S
k
j [51]. Fig. 2.5 presents the

comparison results. Although Remark 1 and Fig. 2.2 indicate the real GLR

detection is more sensitive than CLR, Fig. 2.5 shows a better match, implying
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Figure 2.4: One-time GLR detection of the motor’s speed sensor bias, sample
time Ts = 0.001s, FHT (detection delay) = 0.184s

the feasibility and accuracy of CLR.

Finally, we can demonstrate that the derived PDF expressions can be

used to help select certain user-defined parameters in the detection schemes.

For example, for the proposed CLR/BCLR, user-defined parameters include

the threshold h and the BCLR tolerance β. Fig. 2.6 shows a plot of FDD

expectation with respect to different threshold h and tolerance β values, based

on which one can select the values of h and β for desirable mean FDD values.

The FHT (expectation) shows an approximately positive linear relationship

with respect to h or β, implying that higher threshold (or bias) may result in

later detection.

2.5 Conclusion

The chapter has provided methods of approximating discrete FD tests in the

continuous time domain and characterized analytical expressions about the

probabilistic distribution of FHT based on several FD schemes in continuous
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Figure 2.5: Comparison of CLR and motor-based results of GLR, sample time
Ts = 0.002s
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time domain. The proposed CLR and BCLR standards have been established

to approximate and simplify the GLR tests. All the analytical expressions

has been validated by Monte-Carlo simulations. It is also shown that BCLR

has much less false alarm rate despite the longer detection delay on average

compared with CLR.
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Chapter 3

Detection of Multiplicative
Fault: Statistical
Characterization II

3.1 Introduction

Chapter 3 is committed to the analysis of multiplicative fault affecting vari-

ance on Gaussian signals. The step change on variance is considered here,

equivalently the multiplicative fault on white Gaussian signals. Fault detec-

tion probability is defined based on a simplified version of GLR; the analytical

form of two lower bounds are provided based on two ways of simplification.

Like in Chapter 2, both detection time and time between false alarms are

considered. The impact of different parameters on probability are investigat-

ed and compared. Besides the detailed probabilities, well-accepted industrial

performance indices are discussed. Within the thesis scope, the chapter high-

lights the fault detection on fault affecting variance, multiplicative fault on

noise, with the FD performance evaluation for industrial implementation.

The structure of this chapter is as follows. Section 3.2 proposes the back-

ground review on the hypothesis testing for the variance change and the log-

likelihood ratio (LLR). Section 3.3 gives the sequential probability ratio test

(SPRT) for multiplicative fault affecting variance including the decision func-
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tion. Section 3.4 gives the approximations of usual performance indices used

in industries, concerning the detection delay (DD) and the time between false

alarms (TBFA). On the other hand, Section 3.5 calculates two lower bounds of

the mass probabilities of FHT, also covering DD and TBFA. Section 3.6 pro-

vides simulation result concerning a scenario of DC-motor sensor gain. The

conclusion section comes at last as Section 3.7.

3.2 Log-likelihood Ratio: Step Change on Vari-

ance

Consider an i.i.d. random process {Y } with mean µ and variance σ2. Here we

discuss the hypothesis test with{
H0 : θ0 = σ0,
H1 : θ1 = σ1.

which is for the detection of step change on variance.

Assume all the elements in {Y } are with one identical normal distribution

in each, i.e. ∀i ∈ N, Y (i) ∼ N (µ, σ2), σ = σ0 without fault, and σ = σ1 with

fault. Then the probabilistic density functions under the two hypotheses are:
H0 : pσ0(y(i)) = 1√

2πσ2
0

e
− (y(i)−µ)2

2σ20 ,

H1 : pσ1(y(i)) = 1√
2πσ2

1

e
− (y(i)−µ)2

2σ21 .

The log-likelihood ratio (LLR) of each sample y(i) and its partial sum can
be thus transformed into the following forms, [51]:

s(i) , s(y(i)) , ln
pσ1

(y(i))

pσ0(y(i))
= −(lnσ1 − lnσ0) +

(
1

2σ2
0

− 1

2σ2
1

)
(y(i)− µ)2, (3.1)

S(Ykj ) ,
k∑
i=j

s(y(i)) = −(lnσ1 − lnσ0)(k − j + 1) +

(
1

2σ2
0

− 1

2σ2
1

) k∑
i=j

(y(i)− µ)
2
,

(3.2)

where Ykj , {yi : j ≤ i ≤ k} is a partial set of the samples of the faulted

Gaussian random process Y . Unlike the case of change on mean, the definition
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of LLR in (3.2) is no longer normally distributed due to the appearance of the

second order term. It is common knowledge, as in [106], that the summa-

tion of square of standard normal i.i.d. variables is with χ2 distribution, i.e.∑k
i=j

(
Y (i)−µ

σ

)2
∼ χ2(k − j + 1). Our main research results are based on the

χ2 and Γ properties of the probabilistic distribution.

Here we briefly show the detectability of the variance step-change problem

with the theoretical support from [51], [106], [107]. For simplicity and without

loss of generosity, it is assumed 0 < σ0 < σ1. According to [106] and [107],

Y (i)− µ ∼
{

Γ
(
1
2
, 2σ2

0

)
, without fault,

Γ
(
1
2
, 2σ2

1

)
, with fault.

(3.3)

with the mean (expectation)

E (Y (i)− µ) =

{
σ2
0, without fault,
σ2
1, with fault.

(3.4)

Besides, the inequalities of natural logarithms are also provided in [107]:

x− 1

x
≤ lnx ≤ x− 1, ∀x > 0. (3.5)

The inequality (3.5) helps to distinguish the faulty and unfaulty cases in the
sense of the expectation of LLR. When no fault exists,

Eσ0 (s(i)) =
1

2

(
− ln

σ21
σ20

+ 1− σ20
σ21

)
≤ 1

2

(
−σ

2
1

σ20
+
σ20
σ21

+ 1− σ21
σ20

)
=

1

2

(
1− σ21

σ20

)
< 0,

(3.6)

as σ0 < σ1. On the other hand, after the fault occurrence,

Eσ1 (s(i)) =
1

2

(
− ln

σ2
1

σ2
0

+
σ2
1

σ2
0

− 1

)
≥ 1

2

(
−σ

2
1

σ2
0

+
σ2
1

σ2
0

)
= 0, (3.7)

where the equality only applies when σ2
1 = σ2

0, i.e., no fault state is defined oth-

er than the normal state. It shows clearly from (3.6) and (3.7) that E
(
S
(
Ykj
))

will have a downward trend with no fault and an upward trend with fault.

Hence, the step change of variance can be detected.

Here a more rigorous proof of the detectability is provided referring to

[51]. (3.2) implies that the partial sum satisfies the following properties of
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distribution:

S(Ykj ) + (k − j + 1) ln
σ1
σ0
∼

 Γ
(
k−j+1

2
, 1− σ2

0

σ2
1

)
, without fault,

Γ
(
k−j+1

2
,
σ2
1

σ2
0
− 1
)
, with fault.

(3.8)

With the fault starting from k = 1,

Pr
σ1

(S(Yn1 ) < h) =
1

Γ
(
n
2

)γ(n
2
,

σ2
0

σ2
1 − σ2

0

(
h+ n ln

σ1
σ0

))
. (3.9)

According to [51], a sufficient condition of a closed SPRT will apply if we can

prove limn→∞ Prσ1(S(Yn1 ) < h) = 0 for any fixed h and σ1.

3.3 Assumption & Derivation of SPRT

Basseville and Nikiforov have introduced the general form of a CUSUM deci-

sion function g(k) in [51], which can be rewritten as follows with the knowledge

of (3.2)1:

g(k) = max
1≤j≤k

S(Ykj ) = max
1≤j≤k

{
−(k − j + 1) ln

σ1
σ0

+
σ2
1 − σ2

0

2σ2
0σ

2
1

k∑
i=j

(y(i)− µ)2

}
.

(3.10)

As (3.10) contains both σ0 and σ1, it is required that both σ0 and σ1 should

be known as a priori for CUSUM detection.

For simplicity, we fix the fault time jf = 1. Here we make a further

assumption:

max
1≤j≤k

S(Ykj ) = S(Yk1 ), k ≥ 0, (3.11)

which means every additive increment sj is assumed positive after the fault oc-

currence. Note that it is the assumption that makes the detection not CUSUM,

although it is CUSUM-based.
With the assumptions, the decision function becomes

g(k) = S(Yk1 ) = −k ln
σ1
σ0

+
σ21 − σ20
2σ20σ

2
1

k∑
i=1

(y(i)− µ)2 ≥ h, (3.12)

1As the change on variance is the major research concentration in Chapter 3, it is assumed
µ = 0 from here to the end of the chapter.
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which is equivalent to

g̃(k) ,
k∑
i=1

s̃(i) ,
1

σ21

k∑
i=1

(y(i)− µ)2 ≥ 2σ20
σ21 − σ20

(
h+ k ln

σ1
σ0

)
, h̃(k). (3.13)

As h̃ is affine upon k, define h̃(k) , ak+ b, where a =
2σ2

0

σ2
1−σ2

0
ln σ1

σ0
, b =

2σ2
0

σ2
1−σ2

0
h.

Note that after the fault occurrence, the previous analysis shows

y(i)− µ ∼ N (0, σ2
1)⇒ y(i)− µ

σ1
∼ N (0, 1).

According to [106] and the i.i.d. property of {Y }, the following is true:

s̃(i) =
(y(i)− µ)2

σ2
1

∼ χ2(1),

g̃(k) =
1

σ2
1

k∑
i=1

(y(i)− µ)2 ∼ χ2(k).

Now the problem is transformed into a χ2(k) sequence g̃(k) detected by the

affine threshold h̃(k). Here we make a further step in pursuing the probability

of the first hitting time, i.e. the detection time kd:

kd :

{
g̃(j) < h̃(j), 1 ≤ j < kd;

g̃(kd) ≥ h̃(kd).
(3.14)

Based on (3.14) we have the following derivation, with the knowledge
s̃(i) ≥ 0 in χ2 distributions:

Pr(kd = 1) = Pr(g̃(1) ≥ h̃(1)) = Pr(s̃(1) ≥ h̃(1)) = 1− 1

Γ
(
1
2

)γ(1

2
,
h̃(1)

2

)
, (3.15)

Pr(kd = 2) = Pr(g̃(1) < h̃(1), g̃(2) ≥ h̃(2)) = Pr(s̃(1) < h̃(1), s̃(2) ≥ h̃(2)− s̃(1))

=
1

2Γ2
(
1
2

) ∫ h̃(1)

0

∫ ∞
h̃(2)−s̃(1)

(s̃(1)s̃(2))−
1
2 e−

s̃(1)+s̃(2)
2 ds̃(2)ds̃(1), (3.16)

...

Pr(kd = k) = Pr(g̃(i) < h̃(i), i = 1, · · · , k − 1, g(k) ≥ h(k))

= Pr

s̃(i) < h̃(i)−
i−1∑
j=1

s̃(j), i = 1, · · · , n− 1, s̃(n) ≥ h̃(n)−
n−1∑
j=1

s̃(j)


=

1

2
k
2 Γk

(
1
2

) ∫ h̃(1)

0

· · ·
∫ h̃(k−1)−

k−2∑
i=1

s̃(i)

0

∫ ∞
h̃(k)−

k−1∑
i=1

s̃(i)

(
k∏
i=1

s̃(i)

)− 1
2

e−

k∑
i=1

s̃(i)

2 ds̃k1 .

(3.17)
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In the following parts, we will carry out deeper computations on some

relevant performance indices and the analytical form of the probabilities in

(3.16) and (3.17). Note that Γ and γ here are (in)complete Γ-functions as

defined in [107], which are different from Γ-distribution as in (3.8).

3.4 Industrial Performance Indices

Here we discuss two commonly-accepted industrial performance indices [51]:

• The average run length (ARL) Eσ1(kd), i.e. the expectation of the de-

tection time (FHT) given the fault occurs;

• The false alarm rate (FAR), i.e. the cumulative false alarm probability

Prσ0(kd <∞), given the fault does not occur.

3.4.1 ARL

An approximation of the ARL (named Average Sample Number (ASN)) re-

garding CUSUM-based detection is provided in [51]:

Eσ1(kd) ≈
−aQ(σ1) + h(1−Q(σ1))

Eσ1(s(y(i)))
, when Eσ1(s(y(i))) 6= 0, (3.18)

where h > 0, −a < 0 are respectively the threshold for determining H0 and

H1, and

Q(σ1) =
e−h − 1

e−h − ea
.

In our detection problem, the lower bound does not exists, i.e. a→ +∞.

According to (3.18),

lim
a→+∞

Q(σ1) = lim
a→+∞

e−h − 1

e−h − ea
= 0,

lim
a→+∞

aQ(σ1) = lim
a→+∞

e−h − 1
e−h

a
− ea

a

= 0.
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As a result of (3.7) and the expressions above, the ARL can be approximated

as

Eσ1(kd) ≈ lim
a→+∞

h

Eσ1(s(y(i)))
=

h

1
2

(
− ln

σ2
1

σ2
0

+
σ2
1

σ2
0
− 1
)

=
2σ2

0

σ2
1 − (1 + 2(lnσ1 − lnσ0))σ2

0

h. (3.19)

3.4.2 FAR

Wald’s inequality shows for a open-ended test, an upper bound for false alarm

rate exists, [51]:

Pr
σ0

(kd <∞) ≤ e−h. (3.20)

On the other hand, [109], [110] have provided a less conservative upper bound

for FAR: define the original likelihood ratio of the first step

Λ1 , eS(Y
1
1 ) =

pσ1(y(1))

pσ0(y(1))
=
σ0
σ1
e

(
1

2σ20
− 1

2σ21

)
(y(1)−µ)2

. (3.21)

As research in [109], [110] has shown

Pr
σ0

(kd <∞) ≤ Eσ0(Λ1)

eh
, given eh > Eσ0(Λ1) (3.22)

for nonnegative supermartingale Λ1,Λ2, · · · , we have

Pr
σ0

(kd <∞) ≤ min

{
Eσ0(Λ1)

eh
, e−h, 1

}
, (3.23)

with Λ1 as defined in 3.21.2

3.5 Lower Bounds of the FHT Detection Prob-

abilities

As it is difficult to work out an analytical form of the detection (FHT) proba-

bility, an alternative thought is to give a range of the probability by computing

its bounds. Two lower bounds are provided in this section.

2Prσ0(kd < ∞) ≤ min{e−h, 1} is used in simulation as no form of Eσ0(Λ1) computable
in MATLAB is worked out yet.
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3.5.1 Detection delay

According to [107], we define the following linear variable transformation,

wk
1 ,


w̃(k)

w̃(k − 1)
...

w̃(1)

 ,


1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1




s̃(k)
s̃(k − 1)

...
s̃(1)

 , Ts̃k1, (3.24)

and substitute s̃k1 with wk
1 in (3.17) to simplify the computations:

Pr(kd = k) =
1

2
k
2 Γk

(
1
2

) ∫ h̃(1)

0

· · ·
∫ h̃(k−1)−

k−2∑
i=1

s̃(i)

0

∫ ∞
h̃(k)−

k−1∑
i=1

s̃(i)

(
k∏
i=1

s̃(i)

)− 1
2

e−

k∑
i=1

s̃(i)

2 ds̃k1

=
1

(2π)
k
2

∫ h̃(1)

0

∫ h̃(2)

w(1)

· · ·
∫ h̃(k−1)

w(k−2)

∫ ∞
h̃(k)

e−
w(k)

2√
w(1)

∏k
i=2 (w(i)− w(i− 1))

dwk
1 . (3.25)

Here we look for a lower bound and an upper one for (3.25). A solution to
the lower bound is provided in [107], using the inequality between the arith-
metic and the geometric means, i.e. a form of the Cauchy-Schwarz inequality,
in our research which is:

k

√√√√w(1)
k∏
i=2

(w(i)− w(i− 1)) ≤
w(1) +

∑k
i=2 (w(i)− w(i− 1))

k
=
w(k)

k
, (3.26)

and thus

(3.25) ≥ 1

(2π)
k
2

∫ h̃(1)

0

∫ h̃(2)

w(1)

· · ·
∫ h̃(k−1)

w(k−2)

∫ ∞
h̃(k)

e−
w(k)
2(

w(k)
k

) k
2

dwk
1

,

(
k

2π

) k
2

C(k, h̃(k))

∫ h̃(1)

0

∫ h̃(2)

w(1)

· · ·
∫ h̃(k−1)

w(k−2)
dwk−1

1 , (3.27)

where C(k, x) is defined and with its analytical form3 as in (3.28):

C(k, x) ,
∫ ∞
x

e−
u
2

u
k
2

du =
1

2
k
2
−1

Γ

(
−k

2
+ 1,

x

2

)
. (3.28)

In order to provide a form compatible in MATLAB, we hereby use Maple
to expand integrals as (3.28) and summarize inductive results throughout the

3Definition of Γ(s, x) with negative s is controversial but defined and calculated as a
result in Maple. Similar case for (3.37).
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rest of the chapter. The following analytical form is worked out for C(k, x):

C(k, x) =



√
2Γ
(
1
2 ,

x
2

)
, k = 1,

Γ
(
0, x

2

)
, k = 2,

−
√

2Γ
(
1
2 ,

x
2

)
+ 2e−

1
2
xx−

1
2 , k = 3,

−1
2

[
Γ
(
0, x

2

)
− 2e−

1
2
xx−1

]
, k = 4,

(−1)
k−1
2

(k−2)!!

√2Γ
(
1
2 ,

x
2

)
−

2

1+

k−3
2∑
i=1

(2i−1)!!(−x)−i


e
1
2xx

1
2

 , k = 5, 7, . . .

(−1)
k
2−1

(k−2)!!

Γ
(
0, x

2

)
−

2

1+

k
2−2∑
i=1

(2i)!!(−x)−i


e
1
2xx

 , k = 6, 8, . . .

(3.29)

where the double factorial is defined following [105]:

n!! ,

[n−1
2 ]∏
i=0

(n− 2i).

Here we step further on the relationships between the value of C and its

parameters k, x. A three-dimensional plot is then provided in Fig. 3.1. The

figure tells the value of C(k, x) decreases upon x-axis and generally upon

k-axis; the latter case is no longer valid for small x.

Likewise, we can provide the visualized relationship between C(k, h̃(k))

and the parameters k, h̃(k). As h̃(k) = ak+b is a function of k, the relationship

is a curve across the three-dimensional space. Fig. 3.2 gives an example, in

which the value of C(k, h̃(k)) decrease with k increasing.

Another lower bound can be given by the thought of the arithmetic mean

of the natural logarithms as in [107]:

k∏
i=1

s̃(i) = e

k∑
i=1

ln s̃(i)

⇒ Pr(kd = k) =
1

(2π)
k
2

∫ h̃(1)

0

· · ·
∫ h̃(k−1)−

k−2∑
i=1

s̃(i)

0

∫ ∞
h̃(k)−

k−1∑
i=1

s̃(i)

e−

k∑
i=1

(s̃(i)+ln s̃(i))

2 ds̃k1.

(3.30)
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Figure 3.1: Three-dimensional plot of C(k, x).

Figure 3.2: C(k, h̃(k)) with h̃(k) = ak + b, given σ0 = 0.1 and σ1 = 0.3.
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Based on the natural logarithm inequalities provided in (3.5), the lower bound

of FHT detection could be formed:

(3.30) ≥ 1

(2π)
k
2

∫ h̃(1)

0

· · ·
∫ h̃(k−1)−

∑k−2
i=1 s̃(i)

0

∫ ∞
h̃(k)−

∑k−1
i=1 s̃(i)

e−
∑k
i=1(s̃(i)− 1

2)ds̃k1

=
( e

2π

) k
2

∫ h̃(1)

0

∫ h̃(2)

w(1)

· · ·
∫ h̃(k−1)

w(k−2)

∫ ∞
h̃(k)

e−wkdwk
1

=
e
k
2
−h̃(k)

(2π)
k
2

∫ h̃(1)

0

∫ h̃(2)

w(1)

· · ·
∫ h̃(k−1)

w(k−2)
dwk−1

1 . (3.31)

3.5.2 Time between false alarms

Here we make a further step on the case in which no fault occurs. A positive

probability of detection exists with respect to the method provide above. It is

common knowledge that

y(i)− µ ∼ N (0, σ2
1)⇒ y(i)− µ

σ1
∼ N (0,

σ2
0

σ2
1

),

According to [106], the distribution type of s̃(i) and its probabilistic density

function are available:

s̃(i) =
(y(i)− µ)2

σ2
1

∼ Γ

(
1

2
,
2σ2

0

σ2
1

)
, (3.32)

f(s̃(i)) =
1√
2πθ
· e

−s̃(i)
2θ√
s̃(i)

, where θ ,
σ2
0

σ2
1

∈ (0, 1). (3.33)

Similar to (3.17) and (3.25), we can work out the general expressions of
the false detection probabilities at each step:

Pr(kf = k) = Pr(g̃(i) < h̃(i), i = 1, · · · , k − 1, g(k) ≥ h(k))

= Pr

s̃(i) < h̃(i)−
i−1∑
j=1

s̃(j), i = 1, · · · , n− 1, s̃(n) ≥ h̃(n)−
n−1∑
j=1

s̃(j)


=

1

(2πθ)
k
2

∫ h̃(1)

0

· · ·
∫ h̃(k−1)−

k−2∑
i=1

s̃(i)

0

∫ ∞
h̃(k)−

k−1∑
i=1

s̃(i)

(
k∏
i=1

s̃(i)

)− 1
2

e−

k∑
i=1

s̃(i)

2θ ds̃k1 .

(3.34)

=
1

(2πθ)
k
2

∫ h̃(1)

0

∫ h̃(2)

w(1)

· · ·
∫ h̃(k−1)

w(k−2)

∫ ∞
h̃(k)

e−
w(k)
2θ√

w(1)
∏k
i=2 (w(i)− w(i− 1))

dwk
1 ,

(3.35)
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and from (3.35) we may work out the lower bound of the false alarm proba-

bilities.

Define

Cf (k, θ, x) ,
∫ ∞
x

e−
u
2θ

u
k
2

du =
1

θ
k
2
−1
C
(
k,
x

θ

)
(3.36)

=
1

(2θ)
k
2
−1

Γ

(
−k

2
+ 1,

x

2θ

)
, (3.37)

where C(k, x) is as defined in (3.28) and expanded in (3.29). Combine
(3.26)(3.27)(3.35), we can get

Pr(kf = k) ≥
(

k

2πθ

) k
2
∫ h̃(1)

0

∫ h̃(2)

w(1)
· · ·
∫ h̃(k−1)

w(k−2)

∫ ∞
h̃(k)

e−
w(k)
2

w(k)
k
2

dwk
1

=

(
k

2π

) k
2

θ1−kC

(
k,

h̃(k)

θ

)∫ h̃(1)

0

∫ h̃(2)

w(1)
· · ·
∫ h̃(k−1)

w(k−2)
dwk−1

1 . (3.38)

(3.38) is a lower bound of the false alarm based on the Cauchy-Schwarz

inequality.
Regarding the way of the arithmetic mean of the natural logarithms as in

(3.5), the derivation in (3.30) becomes

Pr(kf = k) =
1

(2πθ)
k
2

∫ h̃(1)

0
· · ·
∫ h̃(k−1)−

k−2∑
i=1

s̃(i)

0

∫ ∞
h̃(k)−

k−1∑
i=1

s̃(i)
e−

k∑
i=1

(
s̃(i)
θ

+ln s̃(i)

)
2 ds̃k1.

≥ e
k
2

(2πθ)
k
2

∫ h̃(1)

0
· · ·
∫ h̃(k−1)−

k−2∑
i=1

s̃(i)

0

∫ ∞
h̃(k)−

k−1∑
i=1

s̃(i)
e
− 1

2( 1
θ
+1)

k∑
i=1

s̃(i)
ds̃k1

=
e
k
2

(2πθ)
k
2

∫ h̃(1)

0

∫ h̃(2)

w(1)
· · ·
∫ h̃(k−1)

w(k−2)

∫ ∞
h̃(k)

e−
θ+1
2θ

w(k)dwk
1

=
e
k
2
− θ+1

2θ
h̃(k)

π
k
2 (θ + 1)

(2θ)1−
k
2

∫ h̃(1)

0

∫ h̃(2)

w(1)
· · ·
∫ h̃(k−1)

w(k−2)
dwk−1

1 . (3.39)

(3.39) is a lower bound of the false alarm based on the arithmetic mean of

the natural logarithms.

3.6 Simulation

We hereby carry out an SPRT test on a DC motor system with the prototype

in [53] and [72], regarding the industrial FD performance indices ARL and
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FAR. The feedback connection plan is shown in Fig. 3.3. Note that the speed

output (speed sensor measurement) w(t) = w0(t)+v(t)→ v(t) as t→∞ with

a step reference for the position. v(t) ∼ N (0, σ2) is the speed sensor noise,

which is assumed to be Gaussian.

r + 
G1 

− 

+ 

− 

DC Motor 

KF FD test 

y: position 

w: speed sensor reading 

u 

+ 

− 

𝑤   

G2 

g 

F(t) 

Figure 3.3: The DC motor model with multiplicative fault.

The gain shift on the speed sensor gain works as the multiplicative fault

affecting variance. The observed speed ŷ based on the position sensor mea-

surement is used as the feedback signal, while the difference between the speed

sensor measurement w and the observed speed ŵ are defined as the decision

function g. With an additional gain F appearing on the sensor output, the

estimation ŵ may have transient but will approach zero due to the nature of

the step reference for the position, and the decision function becomes

g(t)→ w(t) = F (w0(t) + v(t))→ Fv(t) ∼ N (0, F 2σ2), when t→∞,

which is a variance change fault problem.

Select the parameters as σ = 0.1, σ2
1/σ

2
0 = F 2 = 4, the sample time

Ts = 0.002. Carry out the SPRT test as in (3.12) for 500 times and plot

the histogram as in Fig. 3.4. The mean of the experimental ARL is 0.496;

compared with the theoretical value from (3.19), the deviation is less than 0.7.
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It has shown that the expression provided in (3.19) is a feasible approximation

of ARL, as the accuracy is satisfactory.
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Motor Simulation: Variance fault detection
Monte Carlo Simulation times = 500, Sample time = 0.002

Variance = 0.01, threshold = 200, multiplicative fault factor (F2) = 4

 

 
Normalized Experimental Histogram
ARL Approximation

Figure 3.4: Distribution of detection delay with ARL approximation upon
speed sensor gain shift of DC motor

As for the false alarm rate, we carried out two different tests to inspect the

way that the FAR varies with respect to the selection of variance σ2
0 and the

threshold h. The other parameters, including F and Ts, remains the same as

the experiment for detection delay. The first FAR test selects σ2
0 from the range

between 0.2 and 10 and a fixed h = 1, while the second test selects h from the

range between 0.1 to 5 and a fixed σ2
0 = 1. 500 Monte Carlo simulations have

been done for each selection within the range, and the detections according

to (3.12) within 1000 steps are considered as false alarms, based on which the

experimental FAR is calculated. The experimental FAR and the upper bound

of FAR share one plot axis, respectively in Fig. 3.5(a) and Fig. 3.5(b). The

experimental results have shown that
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• The variance does not affect FAR obviously.

• The threshold directly affects FAR, intuitively in an exponential way.

• min{e−h, 1} works as an upper bound of FAR.

3.7 Conclusion

This chapter has focused on providing quantitative descriptions for the fault

detection against multiplicative fault affecting variances. It has provided ana-

lytical forms of industrial performance indices, including ARL and FAR, and

made a further step by calculating lower bounds of the FHT detection prob-

abilities. The simulations with sensor-faulted DC motor have not only shown

the feasibility and effectiveness of these analytical descriptions, but also dis-

cussed the factors affecting the FHT.
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Motor Simulation: False alarm rate test for variance fault SPRT w.r.t. selections of threshold
Monte Carlo Simulation times = 500, Sample time = 0.002

Threshold range: [0.1, 5], σ0
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Figure 3.5: Experimental FAR and the upper bound with respect to speed
sensor gain shift in DC motor
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Chapter 4

Real-time Frequency Estimation
and Detection of Dynamic Fault

4.1 Introduction

Chapter 41 focuses on the real-time frequency estimation of sinusoidal signals

with perturbation. A synthetic estimation strategies, i.e. parametric linear

model based gradient estimator with leakage, is selected as the approach of

estimation and thus researched. The theoretical basis is strictly proved, and

its extension to fault diagnosis is discussed. Multiple case studies, i.e. machin-

ery vibration data and various types of faults on a hydraulic rig model, are

provided in the simulation part. Within the thesis scope, the chapter presents

novel fault detection skills with respect to dynamic faults, faults affecting fre-

quency, and the application as vibration/oscillation. From the perspective

of estimation, the main contribution of this work is to improve the current

existing frequency identifier especially when the signal is corrupted by dis-

turbances. Furthermore, the application of the frequency identifier to robust

fault detection is investigated. Both multiplicative and additive fault-induced

1Originally published as:
[69] S. Yang, Q. Zhao, “Real-time frequency estimation of sinusoids with low-frequency dis-
turbances,” Proc. American Control Conference, 2011, pp. 4275–4280.
[71] S. Yang, Q. Zhao, “Real-time frequency estimation for sinusoidal signals with appli-
cation to robust fault detection,” Int. J. Adapt. Control Signal Process, 26, 2012, DOI:
10.1002/acs.2308.
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changes are considered. The simulations carried on a hydraulic rig model show

satisfactory results.

The remainder of this chapter is organized as follows. Subtopic 4.2 for-

mulates the problem by establishing a parametric linear model for the signal,

Subtopic 4.3 introduces the estimator with the detailed analysis of the estima-

tion error bounds, and Subtopic 4.4 discusses its application to fault detection

(FD). Section 4.5 presents the simulation case studies. Firstly, the real-time

frequency estimation using the method introduced in this chapter is compared

with another existing method for a series of motor shaft vibration data, which

demonstrates the improvement made by this work. Secondly, the simulation

is performed on fault detection for a hydraulic rig model. At the end, Section

4.6 summarizes the chapter.

4.2 Linear Parametric Signal Model

Consider the following sinusoidal signal with n frequencies, perturbed by a

disturbance:

y(t) =
n∑
i=1

(Ai sin(wit+ φi)) + d(t) ,
n∑
i=1

yi(t) + d(t) , y0(t) + d(t).

where y0(t) is the nominal signal, and yi = Ai sin(wit+ φi) for i = 1, 2, · · · , n.

It is assumed that only y(t) can be measured, but Ai, wi, and φi, i = 1, 2, . . . n

are unknown. The disturbance d(t) is bounded as d ∈ L∞ and thus δ ,

‖d‖∞ = supt |d(t)| <∞. Obviously y is also bounded in the same sense.

Based on the properties of sinusoids and the Laplace transform, the fol-

lowing equation stands:

s2Yi(s)− syi(0)− ẏi(0) = −w2
i Yi(s)

⇒ Yi(s) =
syi(0) + ẏi(0)

s2 + w2
i

,
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where yi(0) and ẏi(0) are the initial values with respect to yi(t) and its first

order derivative ẏi(t). Then we have

Y (s) =
n∑
i=1

Yi(s) + d(s) ,
p(s)

q(s)
+ d(s), (4.1)

with q(s) ,
n∏
i=1

(s2 + w2
i ) , s2n + qn−1s

2(n−1) + · · ·+ q1s
2 + q0. (4.2)

where {qi : i = 0, 1, ...n − 1} contains information of the n frequencies of the

nominal signal, and can be used to determine these frequencies. In this chapter

we will focus on estimation of these coefficients.

A common modeling method is to establish a parametric linear model

referring to the prototype in [92]. Define a kth order Hurwitz polynomial

Λ(s) , sk + λk−1s
k−1 + · · ·+ λ1s+ λ0

with k tunable coefficients so that 1/Λ(s) is a stable filter, then

q(s)

Λ(s)
Y (s) =

q(s)

Λ(s)
d(s) +

p(s)

Λ(s)
, η(s) + η0(s) (4.3)

with η(s) = Hd(s)d(s) ,
q(s)

Λ(s)
d(s), η0(s) ,

p(s)

Λ(s)
(4.4)

Here η(s) denotes the perturbation caused by d(s), and η0(s) reflects the re-

sponse to initial values yi(0) and ẏi(0). Due to the fact that η0 exponentially

decays to zero [92], it is dropped off for simplicity in the following analysis. If

η0 is considered, we just need to replace η with η + η0 in the following deriva-

tion; the boundedness and the convergence will not be affected. For Λ(s), it

is required that k ≥ 2n in order for the noise in actual systems not to be am-

plified due to a non-causal q(s)/Λ(s). Since d(t) is bounded, y(t) is bounded.

Furthermore, because Hd(s) , q(s)/Λ(s) is a proper stable transfer function,

η is bounded [93].
With the definitions

Z(s) ,
s2n

Λ(s)
Y (s), φ , −

[
s2(n−1), · · · , s2, 1

]T
Λ(s)

Y (s), θ ,
[
qn−1 · · · q1 q0

]T
,
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the equation (4.3) can be rewritten as:

Z(s) = θTφ(s) + η + η0, (4.5)

which is a linear regression form as found in [92] and [54] for the parameter

estimation problem. In the equation (4.5), z(t) and φ(t), the filtered signals

of the original measurement y are used so that more information about the

nominal frequencies can be gained. Various approaches, such as the gradient-

based method, Strictly Positive Real(SPR)-Lyapunov design, and the least

square method, can be used for estimating θ. In this chapter, the gradient

based method is selected as the frequency estimator, which is presented in

Section 4.2.

4.3 Gradient Estimator with Leakage

For the parameter estimation problem defined in section 2, the following adap-

tive gradient estimator with leakage is adopted, [92]:

˙̂
θ = Γεφ− σΓθ̂ (4.6)

ẑ = θ̂Tφ (4.7)

ε ,
z − ẑ
m2

=
θ̃Tφ+ η

m2
(4.8)

m2 , 1 +m2
η +m2

φ, (4.9)

where Γ is a tunable positive (definite) gain, σ is a customized constant, mη

and mφ are parameters to be designed to make η/m, φ/m ∈ L∞.

A general way of defining mη and mφ is presented here:

m2
η = yTy, m2

φ = φTφ, (4.10)

which is to ensure that η/m, φ/m ∈ L∞ as required in [92] .
Substitute (4.8) in (4.6), it shows

˙̃
θ = − ˙̂

θ = −Γ
φφT

m2
θ̃ + σΓθ̂ − Γ

ηφ

m2
= −Γ

(
φφT

m2
+ σI

)
θ̃ + σΓθ − Γ

ηφ

m2
, (4.11)
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Obviously, φφT

m2 ≥ 0, and a positive σ can be selected such that −
(
φφT

m2 + σI
)

is Hurwitz. Note that in (4.11) the term σΓθ − Γ ηφ
m2 acts as a bounded input,

which helps the derivation in Section 4.3.2.

By further analyzing the effects of the disturbance, i.e. η in (4.4), it is

found that for a strictly properHd(s) (by selecting Λ(s) with the order k > 2n),

its impulse response hd ∈ L1, and the following inequality holds [92], [94]:

‖η‖∞ ≤ ‖hd ∗ d‖∞ ≤ ‖hd‖1‖d‖∞ = ‖hd‖1δ. (4.12)

Remark 5 The Hurwitz polynomial Λ(s) of the order k = 2n may still be

used; in this case Hd(s) becomes biproper. Define

H1(s) = Hd(s)− 1

which is a stable strict proper transfer function and thus its impulse response

h1 ∈ L1 [92]. Then (4.12) becomes,

η(s) = d(s) +H1d(s)

⇔ η(t) = d(t) + h1(t) ∗ d(t)

⇒ ‖η‖∞ ≤ ‖d‖∞ + ‖h1 ∗ d‖∞ ≤ ‖d‖∞ + ‖h1‖1‖d‖∞

= (1 + ‖h1‖1) δ (4.13)

Now we are ready to develop a bounded zone to which θ̃ will be attracted.

Following the method in [92], the zero-input (autonomous) response θ̃zi and

the zero-state response θ̃zs in (4.11) are analyzed; the real-time estimation

error is the sum, i.e., θ̃(t) = θ̃zi(t) + θ̃zs(t).

4.3.1 Zero-input response

In (4.11), by assuming the unknown ‘input’ terms as zero, the autonomous

system is in the form

˙̃θzi = −Γ

(
φφT

m2
+ σI

)
θ̃zi. (4.14)
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In [92] the convergence of θ̃zi is discussed with an additional property m ≤ 1,

which is to be expanded to all positive m with a known inferior bound in the

current research: firstly φ is required to satisfy the Persistency of Excitation

(PE) condition, i.e.,

• ∃α0, T0 > 0, s.t.
∫ t+T0
t

φ(τ)φT (τ)dτ ≥ α0T0I.

For (4.14), define the Lyapunov function as

Vzi(t) ,
θ̃TziΓ

−1θ̃zi
2

,

then the following is true [92]:

Vzi(t) ≤ ρ

[
t
T0

]
Vzi(0), (4.15)

in which ρ ∈ (0, 1), and ρ is calculated as

ρ , 1− 2α0T0λmin(Γ)m

2m̄m+ φ̄4T 2
0 λ

2
max(Γ)

, (4.16)

and φ̄ , supt |φ(t)|, m̄ , suptm
2(t), m , inftm

2(t).

It is then found that

Vzi(t) ≥ λmin(Γ−1)
|θ̃zi(t)|2

2
=
|θ̃zi(t)|2

2λmax(Γ)

Vzi(0) ≤ λmax(Γ
−1)
|θ̃zi(0)|2

2
=
|θ̃(0)|2

2λmin(Γ)
.

Based on the convergence analysis in [92], |θzi(t)| decays exponentially to zero.

As a result, (4.15) can be transformed into

∣∣∣θ̃zi(t)∣∣∣ ≤
√
λmax(Γ)

λmin(Γ)
ρ

1
2

[
t
T0

] ∣∣∣θ̃(0)
∣∣∣

<

√
λmax(Γ)

λmin(Γ)
ρ

t
2T0
− 1

2

∣∣∣θ̃(0)
∣∣∣ , (4.17)

which is also a result complementary for the research in [95].
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4.3.2 Zero-state response

The equation (4.14) describes a linear time-varying autonomous system, whose

solution can be written as [93]

θ̃zi(t) = Φ(t, 0)θ̃(0)

where Φ(t, 0) is the state transition matrix from θ̃(0) to θ̃zs(t).

On the basis of (4.17), the following is true

∣∣∣θ̃zi(t)∣∣∣ =
∣∣∣Φ(t, 0)θ̃(0)

∣∣∣ <√λmax(Γ)

λmin(Γ)
ρ

t
2T0
− 1

2

∣∣∣θ̃(0)
∣∣∣ ,

From the above, similarly one can have the following expression by replacing

the initial condition with the input signal:

|Φ(t, τ)u(τ)| <

√
λmax(Γ)

λmin(Γ)
ρ
t−τ
2T0
− 1

2 |u(τ)| ,∀t, τ ∈ R, u(τ) ∈ Rn.

Define

u(t) , −Γ
η(t)φ(t)

m2(t)
+ σΓθ , Γv(t), (4.18)

then based on [93] we can derive that,∣∣∣θ̃zs(t)∣∣∣ =

∣∣∣∣∫ t

0

Φ(t, τ)u(τ)dτ

∣∣∣∣ ≤ ∫ t

0

|Φ(t, τ)u(τ)| dτ

<

√
λmax(Γ)

λmin(Γ)

∫ t

0

ρ
t−τ
2T0
− 1

2 |u(τ)| dτ

≤

√
λmax(Γ)

λmin(Γ)

∫ t

0

ρ
t−τ
2T0
− 1

2‖Γ‖2|v(τ)|dτ

≤

√
λmax(Γ)

λmin(Γ)

∫ t

0

ρ
t−τ
2T0
− 1

2dτ‖Γ‖2‖v‖∞

≤

√
λmax(Γ)

λmin(Γ)
· 1− ρ

t
2T0

−2T0ρ
1
2 ln ρ

‖Γ‖2
(
‖η‖∞φ̄
m

+ σ|θ|
)

≤

√
λmax(Γ)

λmin(Γ)
· ‖Γ‖2
−2T0ρ

1
2 ln ρ

(
φ̄‖hd‖1
m

δ + σ|θ|
)
, (4.19)

where hd, δ, and θ are unknown.
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Combine (4.17) and (4.19), we have formed a contour of θ̃(t):

∣∣∣θ̃(t)∣∣∣ <√λmax(Γ)

λmin(Γ)

{
ρ
t−T0
2T0

∣∣∣θ̃(0)
∣∣∣+

‖Γ‖2
−2T0ρ

1
2 ln ρ

(
φ̄‖hd‖1
m

δ + σ|θ|
)}

. (4.20)

As the autonomous part will exponentially decay to zero, θ̃(t) will enter and

stay in the bounded zone, i.e.

∃t0 ≥ 0,∀t ≥ t0,
∣∣∣θ̃(t)∣∣∣ ≤√λmax(Γ)

λmin(Γ)
· ‖Γ‖2
−2T0ρ

1
2 ln ρ

(
φ̄‖hd‖1
m

δ + σ|θ|
)

, bf ,

(4.21)

where bf is the bound of the estimation error
∣∣∣θ̃(t)∣∣∣.

From the above, efforts can be made to reduce the error bound by tuning

the user-defined parameters, Γ, m, σ. For example, selecting smaller σ can

help reduce the bound at a cost of slower convergence; bigger (more positive-

definite) Γ will result in faster convergence but bigger noise in estimation,

which is shown in the simulation.

Remark 6 The inequality in (4.21) clearly shows the effects of disturbance

on the frequency estimation. When there is no disturbance, i.e. δ = 0, then

σ is selected as 0, the frequency identifier will be reduced to a standard gra-

dient estimator as in [96], [92], generating exponentially convergent estimates

with zero errors. Similar results for frequency identifier design for pure sinu-

soidal signals have been developed in [86]. The proposed frequency identifier

in this chapter is more general in the sense that it can be applied to estimate

frequencies of both nominal sinusoidal signals and sinusoidal signals with dis-

turbances.

4.4 Application to Fault Detection

The above gradient based frequency identifier with leakage has demonstrated

its robustness on disturbance d when the nominal frequencies are estimated.
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In this section, we investigate the application of such robust frequency iden-

tifier to fault detection problem. More specifically, we extend the results in

Section 4.3 to the case when the signal is subject to faults. Compared to the

disturbance, the fault is not only unexpected but also manifest more drastic

and harmful changes in many cases, hence it needs to be detected and isolated.

A well designed fault detection scheme should be robust to the disturbance

but sensitive to the faults.

Regarding the frequency estimation problem discussed above, faults can

occur in various forms. In this section, both multiplicative type and additive

type of faults are considered. Particularly, the fault induced frequency shift

and additional frequency components are investigated. In this case, the signal

(4.5) may be rewritten into two forms:

Z(s) = θ′Tφ′(s) + η′(s) + η′0(s) or (4.22)

Z(s) = θTφ(s) + ηf (s) + η0(s). (4.23)

Here (4.22) is the signal model with the fault-induced frequency shift, while

(4.23) is the model with additive fault components.

η′(s) ,
q′(s)

Λ(s)
d(s) , H ′d(s)d(s), η′0(s) ,

p′(s)

Λ(s)
,

ηf (s) ,
q(s)

Λ(s)
d(s) + (θ′ − θ)T φ(s) , Hd(s)d(s) + fTθ φ(s),

where q′, p′, φ′, η′, and η′0 have the same expressions as q, p, φ, η, and η0

respectively, but are determined by the new frequency θ′ caused by the fault.

4.4.1 Frequency shift

One type of fault (commonly seen in the rotational machine fault detection

and condition monitoring problem) many cause the shift (variation) on the

original frequencies. Hereby we assume that the nominal frequencies w are

known. Hence the parameter vector θ and the parameter bound bf for the
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fault-free case are also known. After the occurrence of the fault, the frequency

vector (excluding d) shifts from the nominal value w to w′, the unknown fault

induced frequencies. As a result, the corresponding parameter θ changes to the

new value θ′, which can be written as θ′ = θ+fθ. The problem of interests is to

detect such a change based on the signal measurement, which is also corrupted

with external disturbances. In this case, the residual signal is generated by

using the frequency identifier developed in Section 2 and defined as:

r(t) = θ − θ̂(t) (4.24)

For the signal model in (4.22), the boundary expression (4.21) can be

rewritten as

|r(t) + fθ| =
∣∣∣θ′ − θ̂(t)∣∣∣ ≤√λmax(Γ)

λmin(Γ)
· ‖Γ‖2
−2T0ρ

1
2 ln ρ

(
φ̄‖h′d‖1
m

δ + σ|θ′|
)

, b′f ,

(4.25)

where h′d(t) is the impulse response of H ′d(s), and b′f is the counterpart of bf

but determined by θ′. ρ, m, T0 may be different from those in the fault-free

case due to the fault’s effect on y, whereas they still have the same parametric

form as defined above.

We perform further analysis of the above inequality by using the triangular

inequality properties:

b′f ≥ |r(t) + fθ| ≥ |r(t)| − |fθ| ⇒ |r(t)| ≤ |fθ|+ b′f ,

|fθ| − b′f ≤ |fθ| − |r(t) + fθ| ≤ |fθ − (r(t) + fθ)| ⇒ |r(t)| ≥ |fθ| − b′f .

The second inequality is under the assumption that |fθ| − b′f > 0. We may

summarize the above as

max
{
|fθ| − b′f , 0

}
≤ |r(t)| ≤ |fθ|+ b′f (4.26)
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Based on the above analysis, we have
0 ≤ |r(t)| ≤ b′f when |fθ| = 0

0 ≤ |r(t)| ≤ 2b′f when 0 ≤ |fθ| ≤ b′f
|r(t)| > 0 when |fθ| > b′f
|r(t)| ≥ bf when |fθ| ≥ b′f + bf

In this case, one way to detect the fault is to adopt the estimation bound bf

in the noise-free case as the threshold. When the fault fθ = 0, the residual is

mainly caused by the disturbance d and its norm is bounded by the threshold.

When the fault starts to develop but is still less than the new estimation

bound, the residual signal starts to change but is centered around zero. The

residual vector is restricted in an spherical shell with the radius 2b′f . In this

case, the fault is hard to be detected since it resembles the effects caused by

disturbances. When the fault is developing and eventually becomes obvious

enough so that |fθ| > b′f + bf , the fault can be flagged. Obviously, when fault

size is small it may not be detected. To increase the sensitivity, one can select

a lower threshold, for example, choose it as αbf , where α ∈ (0, 1]. As a

trade-off, the chance of false alarm also increases.

4.4.2 Additive fault

Another type of frequently occurring fault is the appearance of additional

frequency components in an additive fault signal. The general form of the

fault f is

f =

{
0, 0 ≤ t < tf∑m

i=1Afi sin (wfi(t− tf ) + φfi) , t ≥ tf
(4.27)

with tf as the fault occurrence time, Afi(> 0), wfi , and φfi respectively as

the magnitude, the frequency, and the phase of the ith fault component. Here

we assume tf = 0 in the following derivation.

(4.23) is suitable for modeling the signal in this case. Define

d′ , d+ f = d+
m∑
i=1

Afi sin (wfit+ φfi) . (4.28)
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Then following (4.19) we have the following derivation:

|r(t)| =
∣∣∣θ̃(t)∣∣∣ ≤ √

λmax(Γ)

λmin(Γ)
· ‖Γ‖2
−2T0ρ

1
2 ln ρ

(
‖hd ∗ d′‖∞φ̄

m
+ σ|θ|

)

=

√
λmax(Γ)

λmin(Γ)
· ‖Γ‖2
−2T0ρ

1
2 ln ρ

(
‖hd‖1‖d′‖∞

m
φ̄+ σ|θ|

)

≤

√
λmax(Γ)

λmin(Γ)
· ‖Γ‖2
−2T0ρ

1
2 ln ρ

(
δ +

∑m
i=1Afi
m

‖hd‖1φ̄+ σ|θ|
)

= bf +

√
λmax(Γ)

λmin(Γ)
· ‖Γ‖2
−2T0ρ

1
2 ln ρ

· ‖hd‖1φ̄
m

m∑
i=1

Afi . (4.29)

bf is the original bound shown in (4.21) and it can be calculated based on the

assumption that the nominal frequencies are known (so is θ). The additional

frequency components increase the estimation error which can be taken as a

sign of fault. However by compounding f and d in this model, the fault detec-

tion becomes less effective compared to the case with multiplicative frequency

shift discussed before.

4.5 Simulation

Simulation is firstly carried out with respect to the estimation of the frequency

of a machinery vibration signal collected from a motor shaft. The fault de-

tection function listed in subtopic 4.4 is then tested on a hydraulic rig model.

The simulation results are presented and discussed.

4.5.1 Frequency estimation (gradient estimator with leak-
age)

In this simulation study, frequency identifier is tested to estimate the major

frequency(-ies) of a sequence of vibration data recorded from a motor, . Cracks

on the motor gears may cause the vibration on the shaft, i.e., the oscillation

on the coordinates of the axis.
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Define m2 as in (4.9) and the linear filter Λ(s) = (s + 10)3, whose order

is higher than 2n = 2: it makes Hd(s) strictly proper so that (4.21) applies.

Select parameters as Γ = 3.0×104, σ = 2.8×10−7, with the initial guess w0 =

0.4. Besides, the estimate curve generated by the methodology in [54] is used

for comparison, with the gain selected as γHou = 1. The estimation results,

along with the original vibration data sequence and its frequency spectrum, is

shown in Fig. 4.1.
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Figure 4.1: Vibration data and the frequency estimate using the gradient
estimator with leakage, compared with the estimate using the method in [54].

Fig. 4.1 shows that the estimation result based on the gradient estimator

with leakage agrees with the main frequency of the vibration. Although it

presents noticeable oscillation, it converges relatively fast. In contrast, the

estimation from the methodology in [54] failed to converge to the nominal

frequency, reflecting the improvement of the proposed frequency when treating

disturbances/noises in the signal.
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Further analysis has been carried out for retrieving more properties. First-

ly the experiment with different initial guesses was carried out, in order to show

the impact of the initial guess on convergence. The result is shown in Fig. 4.2,

where Γ = 2× 104, Λ(s) = (s+ 10)3, and σ = 2.8× 10−7.
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Λ(s) = (s+10)3, Γ = 2 × 104, σ = 2.8 × 10−7 
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Figure 4.2: Frequency estimates of vibration data with multiple choices of w0.

In Fig. 4.2, the estimates all approach to the same value, regardless of

different initial values, 0, 0.2, or 0.4. It indicates in this design, the initial

guess does not affect the convergence and the final value.

Secondly, we study the effect of the tuning parameter Γ on the estimation.

Fig. 4.3 provides the estimation result with different Γ (3×104, 2×104, 1×104),

where Λ(s) = (s+ 10)3, w0 = 0.2, and σ = 2.8× 10−7.

Fig. 4.3 shows that with Γ increasing, the convergence will be faster but

with more noticeable oscillations. It reflects a trade-off in selecting Γ.

4.5.2 Fault detection (hydraulic rig model)

The fault detection tests have also been carried out on a hydraulic rig model.

The key part of the hydraulic is a stiff shaft, with a hydraulic motor giving
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Figure 4.3: Frequency estimates of vibration data with multiple choices of Γ.

driving force and a hydraulic pump giving load [97]. Fig. 4.4 provides its

systematic structure [98]:

The list of parameters is in Table 4.1:2

In [97] a second-order model for the servo motor is adopted; i.e. its dis-

placement Xs is of a second order dynamics with its voltage input v. According

to [99], the servo motor displacement Xs, along with the pressure differential

across the motor Pm, control the oil flow rate across the hydraulic motor, so

that the servo valve affects the hydraulic motor rotating speed θ̇. Based on

the mechanic properties of the hydraulic motor itself, a first-order dynamics

between θ̇ and the pressure differential across the pump Pp [98]. In summary,

a nonlinear model of the hydraulic rig is established, with the definition of the

state vector x =
[
Pm, θ̇, Xs, Ẋs

]T
,
[
x1, x2, x3, x4

]T
, the input vector

2Ks is treated as time-varying in the second fault case.
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Figure 4.4: Hydraulic rig scheme [98]

Table 4.1: List of the parameters of the hydraulic model [99]

Parameter Value Description

Ps 140bar Supply pressure (constant)
T1 0.02s Electro-magnetic time constant of the valve
T2 0.01s Electro-mechanic time constant of the valve
Vt 0.01gallon Total trapped volume
Ks −0.48 The valve electro-magnetic gain
Kθ 2.4 The valve flow coefficient
Cr 0.01cc Motor displacement
β 3.30 Oil bulk modulus
Kl 0.15 Leakage coefficient
ηm 0.95 Motor efficiency
ηp 0.89 Pump efficiency
I 1.0× 10−5 Total inertia of pump, motor & shaft
D 9.0× 10−5 Viscous friction coefficient
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u =
[
v, Pp

]T
,
[
u1, u2

]T
[97], [98], [99]:

ẋ = f(x) + g(x)u

,


−2βKl

Vt
x1 − 2βCr

Vt
x2 + 2βKθ

Vt
x3
√
Ps − x1

Crηm
I
x1 − D

I
x2

x4
− 1
T1T2

x3 − T1+T2
T1T2

x4

+


0 0
0 − Cr

Iηp

0 0
Ks
T1T2

0

u.(4.30)

Two types of faults are respectively investigated: (1) frequency shift on

the input v, and (2) oscillation on the parameter Ks. Due to the properties

of the fault cases studied, we may only monitor x3 = Xs as the output and

decouple
[
x3, x4

]T
as the reduced state vector.

The input is set to v(t) = sin(1.2πt) with its main frequency w = 0.6rad/s

before the fault occurrence. Note that in a stable system only the frequencies

of the input will be preserved in long term; thus the frequency of x3 is to be

estimated as ŵ(t), from which θ̂ and the residual r are defined. In order to

inspect its sensitivity and robustness, a disturbance d = 0.1 sin(3.6πt+ 5π
11

) with

the frequency wd = 1.8rad/s and a Gaussian white noise with the distribution

N (0, 0.01) are introduced to the output sensor.

Frequency shift on v

Firstly we investigate the effect of frequency shift on v on the gradient estima-

tor with the leakage. Ding categorizes it as an additive actuator fault [1]. It is

expected not only the capability of detecting the fault, but also the robustness

with the existence of the output disturbance and noise.

Assume the fault occurs at tf = 50s and changes the frequency of v from

w = 1.2πrad/s to wf = 2.4πrad/s. Select Γ = 4.0 × 106, σ = 1.0 × 10−9 and

define the residual signal r as in (4.24). The input v(t), the real-time frequency

estimate ŵ(t), and |r(t)| are plotted in Fig. 4.5:

Fig. 4.5 shows obvious transient and final value change in ŵ(t) and r(t)

after the fault occurs, indicating that the gradient estimator with leakage
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Figure 4.5: Fault detection of the hydraulic rig: frequency shift on v

is capable of detecting such a fault effectively. The results in the second

subplot demonstrates the effectiveness of this gradient estimator in estimating

frequencies and tracking changes in real-time.

Oscillation on Ks

Here a different case of fault is studied: the parameter Ks changes from a

constant to an oscillating one, which is categorized as a multiplicative actuator

fault in [1]. Assume the fault occurs at tf = 50s, leading to a time-varying Ks:

Ks =

{
−0.48, 0 ≤ t < tf
−0.48 (1 + 0.6 sin(1.2π(t− tf ))) , t ≥ tf

Select Γ = 4.0× 106, σ = 1.0× 10−9 and define the residual r as in (4.24).

The time-varying Ks(t), the valve displacement (output) Xs(t) passed by the

sensor, and |r(t)| are plotted in Fig. 4.6:

According to Fig. 4.6, the dominant status of the major frequency is

weakened by the multiplicative fault. As a result, the residual rise from a level

near zero to around some obvious value, and thus the fault will be detected if
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Figure 4.6: Fault detection of the hydraulic rig: oscillation Ks

the threshold is set properly.

4.6 Conclusion

This chapter has investigated the problem of estimating unknown frequencies

of a given sinusoidal signal with disturbances and noises, as well as its usages

for fault detection. The framework combining a parametric linear model and

a gradient estimator with leakage forms the core of the thesis, under which

the stability, the adaptivity, and the robustness are inspected. The parametric

linear model builds up states providing sufficient information to get the fre-

quency estimated, based on which the gradient estimator generates frequency

estimates with the estimation error restricted to a certain bounded zone. The

estimation mechanism can be also used for fault detection, as it achieves not

only the tolerance to disturbances but also the sensitivity of faults. Simula-
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tions have verified its feasibility and capability of estimating frequencies and

detecting faults.
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Chapter 5

Upper-level Reliability Analysis

5.1 Introduction

Different from the other three research chapters, Chapter 5 concentrates on the

contour of long term behaviors of faulted sequences. With well-defined states

and transition behaviors among them, probabilistic kernel equations are intro-

duced to describe the dynamic behavior of the fault. A commonly accepted

definition of reliability is adopted to picturing the probabilistic usefulness of

the detection upon time. Within the thesis scope, this chapter explores the top

layer of the structure scheme as in Fig. 1.3, mainly characterization analysis,

and gives FD performance evaluation from a different perspective compared

with Chapter 3.

The rest part of the chapter is organized as follows. Under the assumption

of Gaussian noises, two models of joint semi-Markov process are respectively

provided in Section 5.2 and 5.4. The first (simple) model is for examining the

feasibility of this kernel-based description, while the second (complex) model

is a closer approximation of the actual fault/detection sequences. Section 5.5

provides the probabilistic reliability analysis based on the second model, while

Section 5.6 examines the theoretical deduction in the simulation. The result

indicates the feasibility and preciseness of the kernel-based reliability index.
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5.2 Fault and Detection Processes

The research is about the reliability analysis with respect to semi-Markov fault

and detection processes. A conceptual model of fault tolerant control systems

subject to fault process ζ(t) has been provided in [111] and [78], featured for

its diagnostic control input u(t) subject to the detection process η(t):{
ẋ(t) = A(ζ(t),∆)x(t) + B(ζ(t),∆)u(η(t), t) + E(ζ(t),∆)w(t),
y(t) = C(ζ(t),∆)x(t) + D(ζ(t),∆)w(t) + F(ζ(t),∆)u(η(t), t).

(5.1)

The concepts of ζ and η are used in our research, where they appear in the

discrete-time form ζn and ηn with n as the time index. The results in [111]

and [78] require Markov fault and detection processes, which is replaced by a

weaker assumption, i.e. semi-Markovian ζ and η, in our research.

Following [112], we formulate the processes using Markov renewal prop-

erties as the follows. Semi-Markov fault process {ζn} and detection process

{ηn} can be expressed using the corresponding Markov renewal process pair

(ζ(k), mζ(k)) and (η(k), mη(k)), where k = 0, 1, 2, · · · denotes the kth jump,

mζ(k) and mη(k) denotes the sojourn time at the state ζ(k) and η(k). It

is obvious that the state processes {ζ(k)} and {η(k)} with respect to k are

Markovian.

In order to simplify the problem, we have further assumptions, referring

to the ideas from [63]:

1. Alternative jump: Given ζ(0) = η(0), nζ(1) < nη(1) < nζ(2) < nη(2) <

· · · , where nζ(k) ,
∑k−1

i=0 mζ(k), nη(k) ,
∑k−1

i=0 mη(k), respectively the

kth jump time of ζ and η.

2. For any n with ζn = ηn, η will not jump until ζ does, where ζ comes

with the jump-counts-invariant transition rate gij(mζ) for one step and

the cumulative transition rate Gij(mζ) with mη defined as the sampling

interval counts since the last jump time of η. For any n with ζn 6= ηn, ζ
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will not jump until η does, where η comes with the jump-counts-invariant

transition rate hij(mη) for one step and the cumulative transition rate

Hij(mη) with mη defined as the sampling interval counts since the last

jump time of ζ.

A common way to define transition rate of ζ and η after corresponding
jumping edges is provided here and will be used in the following parts:

Gii(mζ) =
∏mζ
m=1gii(m), Gij(mζ) = gij(mζ)

mζ−1∏
m=1

gii(m) = (1− gii(mζ))

mζ−1∏
m=1

gii(m),

(5.2)

Hii(mη) =
∏mη
m=1hii(m), Hij(mη) = hij(mη)

mη−1∏
m=1

hii(m) = (1− hii(mη))

mη−1∏
m=1

hii(m),

(5.3)

where {i, j} = {0, 1}, i 6= j, and the time-varying one-step transition

probabilities satisfy gii(m) + gij(m) = 1 and hii(m) + hij(m) = 1, [112], [113].

5.3 Semi-Markov Modeling and Kernels

Referring to [112], we may also define a process XR for reliability evolution,

with respect to which the kernels for calculating conditional reliability will be

defined. As XR is concerning the reliability of FDI, it should cover both ζ

and η. Here we set up four states for XR as they covers all the combination

patterns of ζn and ηn:

XR
n =


0, ζn = 0, ηn = 0;
1, ζn = 1, ηn = 0;
2, ζn = 1, ηn = 1;
3, ζn = 0, ηn = 1.

(5.4)

With the assumptions above, the one-step state transition of XR follows:

1. It may stay at its current state or transit to other states;

2. The alternation of states of XR must follow the order: 0 → 1 → 2 →

3→ 0→ · · · . No reverse or crossing flow.
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The state flow diagram of XR and an example of the triplet (ζ, η,XR)

are provided in Fig. 5.1 as a visual demonstration of the definitions and

assumptions above:

According to the state flow diagram, one important property of {XR
n }

is that XR is a semi-Markov processes and thus can be expressed using the

Markov renewal pair (XR(k), mR(k)), although neither ζ nor η is semi-Markov

in the strict sense.

Now we start to calculate the semi-Markov kernels, i.e. the conditional

probability of the sojourn time and the next state given the current state at

the latest jump time. It is easy to conclude that the kth sojourn (and jump)

time of the corresponding Markovian state XR(k), respectively denoted with

mR(k) (and nR(k)), satisfies the following relation (given ζ(0) = η(0)):

mR(k) =


mζ(2i+ 1)−mη(2i), k = 4i
mη(2i+ 1)−mζ(2i+ 1), k = 4i+ 1
mζ(2i+ 2)−mη(2i+ 1), k = 4i+ 2
mη(2i+ 2)−mζ(2i+ 2), k = 4i+ 3

 , where i = 0, 1, 2, · · · .

(5.5)
Define the kernel form as1 by following [112]:

QR(i, j,m) = Pr{XR
nR(k)+m = j, XR

nR(k)+m−1 = · · · = XR
nR(k)+1 = i|XR

nR(k) = i},
(5.6)

or QRs (i, j,m) = Pr{XR(k + 1) = j, mR(k) = m|XR(k) = i}. (5.7)

where the probability is irrelevant to the jump index k. As QR
s is defined

regarding the sojourn time, only the case i 6= j is considered in (5.7) without

loss of generality.

Similar to [112], we give the specific expressions of kernels using transition

1Kernels defined in Section 5.3 and 5.4 are more similar to those used in [112]. In contrast,
the kernel form defined in Section 5.5 are proposed in [114].
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Figure 5.1: Visual demonstration of the semi-Markov process XR (one-way
flow)
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rates as in (5.2) and (5.3):

QR(0, 0,m) = G00(m) =
m∏
l=1

g00(l);

QR(0, 1,m) = G01(m) = g01(m)
m−1∏
l=1

g00(l);

QR(1, 1,m) = H00(m) =
m∏
l=1

h00(l);

QR(1, 2,m) = H01(m) = h01(m)
m−1∏
l=1

h00(l);

QR(2, 2,m) = G11(m) =
m∏
l=1

g11(l);

QR(2, 3,m) = G10(m) = g10(m)
m−1∏
l=1

g11(l);

QR(3, 3,m) = H11(m) =
m∏
l=1

h11(l);

QR(3, 0,m) = H10(m) = h10(m)
m−1∏
l=1

h11(l).

5.4 Complex Modeling

Here we switch to a complex modeling of semi-Markov processes (ζ, η), which

is more likely to occur in practice. The core idea is that the fault process ζ can

have its states switched in a random manner independent from η, while the

detection process η follows ζ with random delays. The desired state diagram

and an example of the triplet (ζ, η, XR) are as in Fig. 5.2:

A different set of assumptions applies to Fig. 5.2, compared with those

in Section 5.2:

1. Pr(ηn+m = ηn+m−1 = · · · = ηn+1 = i|ηn = i, ζn+m−1 = · · · = ζn =

i, ζn+m = j) = 1, for {i, j} ∈ {0, 1}, i 6= j, ∀n,m ∈ N. In other words,

for identical state pairs ζn = ηn, η keeps the state value until ζ jumps.

2. {ζn} is Markov;
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Figure 5.2: Visual demonstration of the semi-Markov process XR (complex
modeling)
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3. the dependent process {ηn} is semi-Markov in time subsequence {n :

ηn 6= ζn}.

Remark 7 If {ζn} is not Markov, the one-step transition probabilities of XR

rightly after jumps of XR from 3 to 0 and from 1 to 2 depends on the states

before the nearest jumping edge, which is a jumping edge of η. As a result,

{XR
n } is not semi-Markov.

Remark 8 Note that {XR
n : n ∈ N}} is a semi-Markov process given the

assumptions above, while {ηn} is not a semi-Markov process along the entire

time span in general cases. If The one-step jumping rates of η, i.e. h00(m),

h01(m), h11(m), and h10(m), are time-varying upon the jumping edges, then

{mη(k)} is not i.i.d. and thus not a renewal process. According to the defi-

nition, (η(k), nη(k)) is not a Markov renewal process, and {ηn} is not semi-

Markov.

More kernel equations exist for this model due to more complex state tran-

sitions. Similar to [112] and Section 5.3, here we derive the kernel equations

following the definition in (5.6):

QR(0, 0,m) = gm00;

QR(0, 1,m) = g01g
m−1
00 ;

QR(1, 0,m) = g10g
m−1
11

m∏
l=1

h00(l);

QR(1, 1,m) = gm11

m∏
l=1

h00(l);

QR(1, 2,m) = gm11h01(m)
m−1∏
l=1

h00(l);

QR(1, 3,m) = g10g
m−1
11 h01(m)

m−1∏
l=1

h00(l);

QR(2, 2,m) = gm11;

QR(2, 3,m) = g10g
m−1
11 ;
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QR(3, 0,m) = gm00h10(m)
m−1∏
l=1

h11(l);

QR(3, 1,m) = g01g
m−1
00 h10(m)

m−1∏
l=1

h11(l);

QR(3, 2,m) = g01g
m−1
00

m∏
l=1

h11(l);

QR(3, 3,m) = gm00

m∏
l=1

h11(l).

5.5 Reliability Analysis with Up-Down States

After determining the semi-Markov process XR and its kernel equations, we

expect a reliability function upon time, reflecting the effectiveness of the fault

detection. The reliability framework based on the research of [114] is now in-

troduced, which highlights the difference and transition between the up (good,

normal) states u and the down (bad, failure) states d. According to [114], the

reliability R(n) is defined as the probability for the first hitting time at any

down state to appear later than the time n: equivalently it is opposite to the

case that the down state occurs no later than n, i.e.

R(n) , 1− Pr(∃k ≤ n, XR(k) = −1) = 1− Pr(XR(n) = −1) (5.8)

as the down state is absorbing.

Barbu has also proposed an algorithm to calculate the reliability R(n),

[114]:

R(n) = µ·((δI−q)(−1)∗(I−Λ))(n)·1u+d,u = µu((δI−q)(−1)u,u ∗(I−Λu,u))(n)1u,u,

(5.9)

given the following definitions and assumptions [114]:

• Initial state probability (distribution) row vector µ = [µu, µd].
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• Convolution of discrete-time matrix sequences has the element-wise def-

inition:

Cij(n) = (A ∗B)ij(n) ,
∑
k

n∑
l=0

Aik(n− l)Bkj(l). (5.10)

• Kernel matrix q(n) =

[
qu,u, qu,d
qd,u qd,d

]
. The element in the ith row and jth

column satisfies qij(m) , 1{i 6=j} · Pr{XR
nR(k)+m

= j, XR
nR(k)+m−1 = · · · =

XR
nR(k)+1 = i|XR

nR(k)
= i}. Especially, qii(m) = 0 and qij(0) = 0 for any

state i, j.

• For the square matrix sequence (δI)(n), it satisfies

(δI)(n) = 1{n=0} · I =

{
I, n = 0;
0, n ≥ 1.

(5.11)

and (δI − q)(−1)(n) obeys the following recursive algorithm:

(δI − q)(−1)(n) =

{
I, n = 0;

−
∑n−1

l=0 (δI − q)(−1)(l)(δI − q)(n− l), n ≥ 1.

(5.12)

• Λ(n) = diag{Λu(n), Λd(n)}. Each element

Λi(n) ,
n∑
l=1

λi(l) ,
n∑
l=1

∑
k

qik(l). (5.13)

Physically, λi(n) denotes the probability of sojourn time equal to n in

State i, and Λi(n) denotes the probability of sojourn time less than or

equal to n in State i.

• 1u+d,u , [1, · · · , 1, 0, · · · , 0]T , where the first u elements equal to one

and the rest d elements equal to zero, where u and d are respectively the

dimension of up and down states. 1u,u is thus an all-one column vector.

Considering the FHT property of this reliability index and the definition

of failure state in [112], we propose the following principles regarding the

modeling of sequences as in Section 5.4, with the failure state considered:
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• State 0, 1, 2, 3 are considered as up states.

• XR enters the down (failure) state F if and only if it keeps stayed in

either State 1 or State 3 for the time of Nhd.

• The down state is absorbing and may denote the system failure in prac-

tice.

Then the new kernel for the model in Section 5.4 has the form

q(n) =

[
qu,u(n) qu,d(n)
qd,u(n) qd,d(n)

]
=


q00(n) q01(n) q02(n) q03(n) q0F (n)
q10(n) q11(n) q12(n) q13(n) q1F (n)
q20(n) q21(n) q22(n) q23(n) q2F (n)
q30(n) q31(n) q32(n) q33(n) q3F (n)
qF0(n) qF1(n) qF2(n) qF3(n) qFF (n)

 ,
in which the non-zero constant elements are

q01(n) = g01g
n−1
00 ,

q10(n) = 1{n≤Nhd} · g10g
n−1
11

n∏
l=1

h00(l),

q12(n) = 1{n≤Nhd} · g
n
11h01(n)

n−1∏
l=1

h00(l),

q13(n) = 1{n≤Nhd} · g10g
n−1
11 h01(n)

n−1∏
l=1

h00(l),

q1F (n) = 1{n=Nhd} · g01g
n−1
00 ,

q23(n) = g10g
n−1
11 ,

q32(n) = 1{n≤Nhd} · g01g
n−1
00

n∏
l=1

h11(l),

q30(n) = 1{n≤Nhd} · g
n
00h10(n)

n−1∏
l=1

h11(l),

q31(n) = 1{n≤Nhd} · g01g
n−1
00 h10(n)

n−1∏
l=1

h11(l),

q3F (n) = 1{n=Nhd} · g10g
n−1
11 .

Compared with QR(i, j, n) introduced in the previous subtopic, qij(n) con-

siders the effects brought by the absorbing failure state. In addition, only

combinations of different i and j are taken into account in qij(n).
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The list of λ(n) and Λ(n) are then calculated as follows:

λ0(n) = (1− g00)gn−100 ;

λ1(n) =


gn−111 (1− g11h00(n))

∏n−1
l=1 h00(l), n < Nhd

gn−111

∏n−1
l=1 h00(l), n = Nhd

0, n > Nhd

;

λ2(n) = (1− g11)gn−111 ;

λ3(n) =


gn−100 (1− g00h11(n))

∏n−1
l=1 h11(l), n < Nhd

gn−100

∏n−1
l=1 h11(l), n = Nhd

0, n > Nhd

;

λF (n) = 0.

Λ0(n) = 1− gn00;

Λ1(n) =

{
1− gn11

∏n
l=1 h00(l), n < Nhd

1, n ≥ Nhd
;

Λ2(n) = 1− gn11;

Λ3(n) =

{
1− gn00

∏n
l=1 h11(l), n < Nhd

1, n ≥ Nhd
;

ΛF (n) = 0.

5.6 Simulation

We hereby provide a simulation example to verify the validity of preciseness of

the reliability algorithm with respect to our transition model (kernel). Select a

process XR, which follows the rules in Section 5.4 and has one-step transition

probabilities

g00 = 0.5, h00(m) = 0.8 + 0.1 sin(m+ 1),
g11 = 0.8, h11(m) = 0.75 + 0.25(1− e−m−1). (5.14)

It is easy to compute the reliability function R(n) upon the time index

following (5.9). Fig. 5.3 gives the plots of R(n) with two sample processes of

XR, where the four states are defined as discussed above and the failure state

is marked with −1.

Define the experimental reliability function as

Rex(n) = 1− 1

N

N∑
i=1

1{XR
i (n)=−1}, (5.15)
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Figure 5.3: R(n) with two sample processes of XR, one of which with fault
state appearance

where N is the total counts of the Monte-Carlo simulations. XR
i denotes the

ith sample process of XR. Rex(n) gives the statistical proportion of unfaulted

experiments among the total samples.

Run Monte-Carlo simulation for 2000 times, and Fig. 5.4 shows the re-

sult of both R(n) and Rex(n). The figure has shown that the experimental

result matches the theoretical index, and thus confirmed the preciseness of the

probability-based reliability index function R(n).

5.7 Conclusion

This chapter presents in-depth analysis of long-term properties of fault and

detection processes upon time. Two types of semi-markov kernel models

have been established, given different assumptions/simplifications on the state-

transition behavior. A quantitative reliability is then contoured with respect
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to the kernel model provided, with the simulation reflecting its correctness.

Research in this chapter will be helpful in the long-term FD evaluation and

FTC for systems subject to structured faults. As a substantial part completing

the research work for the thesis, it expands our research by filling the blank of

the top layer in the three-layer integrate FD framework.
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Chapter 6

Summary and Future Work

6.1 Research Summary

Under the real-time integrated FDI framework posed in Chapter 1, the thesis

has carried out insightful research from Chapter 2 to 5 with the following

highlights:

• Exploration of multiple types of faults

One of the most important thoughts of the thesis is the coverage of multi-

ple types of faults, and contributions have been made following this direction.

Besides the traditional step fault on mean mainly researched in Chapter 2,

the fault on variance has appeared as a new fault, requiring different way

of solution. Chapter 3 has established provided both single value-based and

probability-based indices, respectively ARL (FAR) and approximated FHT

probabilities, which succeed to characterize that fault. Besides, Chapter 4 in-

troduces two types of dynamic faults (frequency shift and additive sinusoids),

which can also be categorized as structured or unstructured fault depending on

whether the fault occurs on system parameter(s). With the trade-off between

robust estimation and FD of the perturbation, the analytical FD characteri-

zation results is realized and implemented with respect to problems including

frequency shift and new fault frequency.
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• FD characterization methodologies

With the mind to explore new types of faults, the methodologies used

for FD characterization are also sparkling. As the main result of Chapter 2,

CLR (BCLR) is an important simplification for the GLR-based probabilistic

characterization as well as a breakthrough in continuous time domain, before

which the deduction of the original GLR considering sample period is carried

out for guaranteeing the correctness of GLR FTCS with different sampling

periods. Due to the complexity of the multi-layer integral, mathematical ap-

proximations, including Cauchy-Schwarz inequality and the arithmetic mean

inequality of the natural logarithm, are the solution to the analytical form of

the FHT probabilities regarding the multiplicative fault affecting variances in

Chapter 3. The analytical form of mapping range of the FD signal is given,

providing grounds for the detectableness of the frequency perturbation faults.

• Real-time (online) estimation/detection

Committing to provide practical solutions, we have tried to cover more

practical factor in our research results. One of the most crucial factors is

the real-time consideration: nearly all of our research highlights involves real-

time elements, making them useful techniques. In Chapter 2 and 3, analytical

versions of detection (FHT) probabilities upon time for additive and multi-

plicative faults are worked out and integrated in real-time DC motor FTCS. A

real-time frequency estimator is directly usable for signal monitoring in Chap-

ter 4, and the kernel models in Chapter 5 as fundamental transition behavior

description decide the failure rate and the reliability upon time. With such

characteristics, they are potentially implementable to industries such as chemi-

cal/process engineering, mechanical engineering, power engineering, reliability

engineering and system safety.
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• FD long-term performance analysis

Listed in Chapter 5, this part of research seems standing alone, while it

is the one completing the thesis in the view of systematic structure. This

park sparkles as it provides a feasible model explaining the transition among

the well-defined states of the joint fault and detection process, upon which

the higher-end Barbu’s time-reliability function is rewritten in a more com-

putable way. Besides, the fact that the research stands on the commonly-

accepted previous research benchmarks, especially transition state concepts

as posted in [112] and Barbu’s reliability index [114], will reduce the cost

of application/modification/upgrade of equipments, giving high practicality

to the research so that it is suitable for large engineering sites/projects, e.g.

power/mining plants.

6.2 Future Work

In summary, the thesis has made broad research and provided a solid base for

further research. The future work can be developed following the potential

topics.

First of all, the research on more types of faults may be covered in the

future, although major types have already been researched in the thesis. Some

existing techniques may be helpful to our future research. Regarding the fault’s

effect on mean/variance and its occurrence style, the moving average/variance

filter techniques (e.g., exponential window moving average/variance (EW-

MA/EWMV), [65], [66], [67]) can be used for better coverage of dynamic faults

featured for time-varying mean/variance with non-abrupt changes. It is also

noticeable that the power of a sinusoid keeps positive while the sinusoid itself

does not, so researchers may take advantage of IAE [41] or IAE-like tech-

niques for topics as further research on perturbed sinusoid signal estimation
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and processing. Besides, industry projects may require more than two states

(normal-fault pair) available in the joint fault-detection process; in this case

the function of multiple hypotheses testing [68] may be introduced, in order

to make the integrated FD adapt to multiple types of signals.

In the three-layer integrated FD structure, the thesis contains research

in at least two layers with four different subtopics. Upcoming research may

attempt subtopics connecting two or more layers, e.g. a complete design of

CLR-based FTCS with long-term transition probability analysis and predic-

tion. This systematic outline may need more opinions and knowledge of inte-

gration of modules other than those mentioned in the thesis. System design

tools, such as flow charts and system topology, will be useful for such collab-

oration work [38], [47], [45].

At last, the tailing of the integrated FDI to a real engineering project

will be meaningful. Occurring frequently in chemical/petro-engineering sites,

random jitter, where the false and missing detection rates are high due to a

large variance compared with the mean difference, may be treated as the next

topic. It causes the difficulty in identifying whether the FHT denotes time be-

tween false alarms or detection delay and in calculating the FHT or run length

distribution in general. One potential solution is that forming the distribu-

tion as a weighted sum of the two computable distributions respectively under

H0 and H1, and the weights depends on the probability of fault occurrence

at the beginning (end) of each time duration. Common oscillation processing

methods, such as PCA [3], IAE [41], ACF [42], spectral methods [37], root

causes [37], [43], [119], [120] will be crucial references.

94



Bibliography

[1] S.X. Ding, Model-based fault diagnosis techniques: design schemes, algo-
rithms, and tools. Springer-Verlag, 2008.

[2] F. Gustafsson, “Statistical signal processing approaches to fault detec-
tion,” Annual Reviews in Control, 31(1), 2007, pp. 41–54.

[3] V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, “A review
of process fault detection and diagnosis: Part I: Quantitative model-based
methods,” Comp. & Chem. Eng., 27(3), 2003, pp. 293–311.

[4] V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri,“A review of pro-
cess fault detection and diagnosis: Part II: Qualitative models and search
strategies,” Comp. & Chem. Eng., 27(3), 2003, pp. 313–326

[5] V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, K. Yin, “A review
of process fault detection and diagnosis: Part III: Process history based
methods,” Comp. & Chem. Eng., 27(3), 2003, pp. 327–346.

[6] Q. Yang, “Model-based and data-driven fault diagnosis methods with
applications to process monitoring,” Ph.D. dissertation, Dept. Elec. Eng.
& Comp. Sci., Case Western Resv. Univ., Cleveland, OH, 2004.

[7] H. Wang, T.-Y. Chai, J.-L. Ding, B. Martin, “Data driven fault diagnosis
and fault tolerant control: some advances and possible new directions,”
Acta Automatica Sinica, 35(6), 2009, pp. 739–747.

[8] P.M. Frank, “Fault diagnosis in dynamic systems using analytical and
knowledge-based redundancy—A survey and some new results,” Auto-
matica, 26(3), 1990, pp. 459–474.

[9] C.H. Lo, Y.K. Wong, A.B. Rad, “Model-based fault diagnosis in contin-
uous dynamic systems,” ISA Trans., 43(3), 2004, pp. 459–475.

[10] C.-T. Chang, J.-I. Hwang, “Simplification techniques for EKF compu-
tations in fault diagnosis—suboptimal gains,” Chem. Eng. Sci., 53(22),
1998, pp. 3853–3862.

[11] A.M. Pertew, H.J. Marquez, Q. Zhao, “LMI-based sensor fault diagnosis
for nonlinear Lipschitz systems,” Automatica, 43(8), 2007, pp. 1464–1469.

[12] B. Yan, Z. Tian, S. Shi, Z. Weng, “Fault diagnosis for a class of nonlinear
systems via ESO,” ISA Trans., 47(4), 2005, pp. 386–394.

95



[13] H. Wang, H.-H. Ju, G.-H. Yang, “Fault detection filter design for linear
polytopic uncertain continuous-time systems,” Acta Automatica Sinica,
36(5), 2010, pp. 742–750.

[14] L. Yao, H. Wang, “Fault diagnosis of a class of singular nonlinear system-
s,” Proc. of the 6th IFAC Symposium on fault detection, supervision and
safety of technical processes, SAFEPROCESS 2006, 2007, pp. 42–47.

[15] P. Zhang, H. Ye, S.X. Ding, G.Z. Wang, D.H. Zhou, “On the relationship
between parity space and H2 approaches to previous termfault detection,”
Systems & Control Letters, 55(2), 2006, pp. 94–100.

[16] W.R. Becraft, P.L. Lee, “An integrated neural network/expert system
approach for fault diagnosis,” Comp. & Chem. Eng., 17(10), 1993, pp.
1001–1014.

[17] D. Leung, J. Romagnoli, “An integration mechanism for multivariate
knowledge-based fault diagnosis,” J. Proc. Ctrl., 12(1), 2002, pp. 15–26.

[18] R. Dunia, S.J. Qin, T.F. Edgar, T.J. McAvoy, “Identification of faulty
sensors using principal component analysis,” American Institute of Chem.
Eng. J., 42(10), 1996, pp. 2797–2812.

[19] W. Li, H. Yue, S. Valle-Cervantes, S. Qin, “Recursive PCA for adaptive
process monitoring,” J. Proc. Ctrl., 10(5), 2000, pp. 471–486.

[20] J.-C. Jeng, “Adaptive process monitoring using efficient recursive PCA
and moving window PCA algorithms,” Journal of the Taiwan Institute of
Chemical Engineers, 41(4), 2010, pp. 475–481.

[21] J.-M. Lee, C. Yoo, I.-B. Lee, “Statistical process monitoring with inde-
pendent component analysis,” J. Proc. Ctrl., 14(5), 2004, pp. 467–485.

[22] S.X. Ding, P. Zhang, A. Naik, E.L. Ding, B. Huang, “Subspace method
aided data-driven design of fault detection and isolation systems,” J. Proc.
Ctrl., 19(9), 2009, pp. 1496–1510.

[23] P. Vachhani, S. Narasimhan, R. Rengaswamy, “An integrated qualitative-
quantitative hypothesis driven approach for comprehensive fault diagno-
sis,” Chem. Eng. Research & Design, 85(9), 2007, pp. 1281–1294.

[24] Y. Zhang, J. Jiang, “Design of integrated fault detection, diagnosis and
reconfigurable control systems,” Proc. 38th IEEE Conf. on Dec. & Ctrl.,
vol. 4, 1999, pp. 3587–3592.

[25] Y. Ma, S.X. Ding, P. Zhang, T. Jeinsch, M. Schultalbers, “Integrated
design of fault detection system with multi-objective optimization,” Proc.
6th IFAC symposium on fault detection, supervision and safety of technical
processes, SAFEPROCESS 2006, 2007, pp. 879–884.

[26] Y. Huang, J. Gertler, T.J. McAvoy, “Sensor and actuator fault isolation
by structured partial PCA with nonlinear extensions,” Journal of Process
Control, 10(5), 2000, pp. 459–469.

96



[27] F.N. Pirmoradi, F. Sassani, C.W. de Silva, “Fault detection and diagnosis
in a spacecraft attitude determination system,” Acta Astronautica, 65(5–
6), 2009, pp. 710–729.

[28] R.J. Patton, F.J. Uppal, S.Simani, B. Polle, “Robust FDI applied to
thruster faults of a satellite system,” Ctrl. Eng. Practice, 18(9), 2010, pp.
1093–1109.

[29] X. Wang, V. Makis, “Autoregressive model-based gear shaft fault diagno-
sis using the Kolmogorov-Smirnov test,” Journal of Sound and Vibration,
327(3–5), 2009, pp. 413–423.

[30] Q. Hu, Z. He, Z. Zhang, Y. Zi, “Fault diagnosis of rotating machinery
based on improved wavelet package transform and SVMs ensemble,” Me-
chanical Systems and Signal Processing, 21(2), 2007, pp. 688–705.

[31] M. Saimurugan, K.I. Ramachandran, V. Sugumaran, N.R. Sakthivel,
“Multi component fault diagnosis of rotational mechanical system based
on decision tree and support vector machine,” Expert Systems with Ap-
plications, 38(4), 2011, pp. 3819–3826.

[32] P.R.S. Jota, S.M. Islam, T. Wu, G. Ledwich, “A class of hybrid intelligent
system for fault diagnosis in electric power systems,” Neurocomputing,
23(1–3), 1998, pp. 207–224.

[33] C. Ma, X. Gu, Y. Wang, “Fault diagnosis of power electronic system
based on fault gradation and neural network group,” Neurocomputing,
72(13–15), 2009, pp. 2909–2914.

[34] F.B. Leão, R.A.F. Pereira, J.R.S. Mantovani, “Fault section estimation in
electric power systems using an optimization immune algorithm,” Electric
Power Systems Research, 80(11), 2010, pp. 1341–1352.

[35] Q. Wu, “Car assembly line fault diagnosis based on modified support
vector classifier machine,” Expert Systems with Applications, 37(9), 2010,
pp. 6352–6358.

[36] J.P. Shunta, Achieving world class manufacturing through process control.
Englewood Cliffs, NJ: Prentice-Hall, 1995.

[37] H. Jiang, M.A.A.S. Choudhury, S.L. Shah. “Detection and diagnosis of
plant-wide oscillations from industrial data using the spectral envelope
method,” J. Proc. Ctrl., 17(2), 2007, pp. 143–155.

[38] A.K. Tangirala, K. Kanodia, S.L. Shah, “Applications of non-negative
matrix factorization for detection and diagnosis of plant-wide oscillation-
s,” Industrial Eng. Chemistry Res. & Development, 46(3), 2007, pp. 801–
817.

[39] K.W. Louie, P. Wilson, R.A. Rivas, A. Wang, P. Buchanan, “Discussion
on power system harmonic analysis in the frequency domain,” IEEE/PES
Transmission & Distribution Conference and Exposition, 2006, pp. 1–6.

[40] N.F. Thornhill, A. Horch, “Advances and new directions in plant-wide
disturbance detection and diagnosis,” Ctrl. Eng. Practice, 15(10), 2007,
pp. 1196–1206.

97
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