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ABSTRACT 

Variability in the health effects of dietary fibers (DFs) might arise from inter-individual differences 

in the microbiome’s ability to ferment these substrates into beneficial metabolites. However, our 

understanding of what drives this individuality is vastly incomplete. Here, we report results from 

a parallel-arm, randomized controlled trial aimed to characterize the effects of a long-chain, 

complex arabinoxylan (AX) isolated from corn bran on gut microbiota composition and short-

chain fatty acid (SCFA) production as compared to microcrystalline cellulose (non-fermentable 

control). AX resulted in a global shift in the fecal bacterial community and the promotion of 

specific taxa, including OTUs related to Bifidobacterium longum, Blautia obeum, and Prevotella 

copri. AX further increased fecal propionate concentration (overall effect p=0.015, Friedman’s 

test), an effect that showed two distinct temporal responses that allowed grouping of participants. 

The two groups showed significant differences in compositional shifts of the microbiome 

(p≤0.025, PERMANOVA), and multiple linear regression analyses revealed that the propionate 

response was predictable through shifts, and to a lesser degree, baseline composition of the 

microbiota. Pre-treatment dietary history was unable to predict the response. This study showed 

that individualized metabolic effects of DF on the gut microbiota are linked to both compositional 

shifts and its baseline composition, providing preliminary evidence that such responses might be 

predictable. 

 

 

 

 

 



 
 

iii 

PREFACE 
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Bacteria morE fibeR) Study. The study protocol was approved by the Health Research Ethics 
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to participant enrollment. Due to comments of reviewers of a CHIR grant application (who 

criticized that the AX fiber used was not yet on the market in Canada and therefore cannot readily 

be implemented), the AX arm was separated from the original RCT and analyzed independently. 

Study visits were conducted in accordance with the principles of the Declaration of Helsinki at the 

University of Alberta Human Nutrition Research Unit in Edmonton, Alberta, Canada between 

September 2015 and October 2016. 
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study funding. Dr. Zhengxiao Zhang was closely involved in network analysis, as well as drafting 

the manuscript. Dr. Mingliang Jin supported fecal sample processing, DNA extraction and 

sequencing, and fecal Short-Chain Fatty Acid quantification; with Nami Baskota - a MSc student 

– also contributing to the quantification of fecal SCFAs. Dr. Maria Elisa Perez-Muñoz and Dr. 
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Inés Martínez both supported the author’s bioinformatic of microbiome analysis training, with Dr. 

Martínez was also involved in developing the study and optioning funding. Drs. Yunus Tuncil and 

Bruce Hamaker characterized the chemical structure of corn bran arabinoxylan, while Dr. Dan 

Knights supported the author’s training on machine learning. Benjamin Seethaler - a PhD student 

with Dr. Stephan Bischoff - quantified fecal water content and contribute to the ERA-HDHL grant. 

Dr. Jeffrey Bakal supported the author’s statistical training and supervised the statistical analyses 

for the project. Dr. Carla Prado is the co-PI of the FYBER study, providing supervision of the RCT 

and contributed to funding acquisition. Dr. Jens Walter is the study PI, and thus supervised all 

aspects of the project, including the author’s training and the writing of the thesis and manuscript. 
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DEDICATION 

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”   

Albert Einstein 

“Your work is going to fill a large part of your life, and the only way to be truly satisfied is to do 

what you believe is great work. And the only way to do great work is to love what you do. If you 

haven't found it yet, keep looking. Don't settle. As with all matters of the heart, you'll know when 

you find it.” 

Steve Jobs 

“The passengers in our microbiome contain at least four million genes, and they work constantly 

on our behalf: they manufacture vitamins and patrol our guts to prevent infections; they help to 

form and bolster our immune systems, and digest food.” 

Michael Specter 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Obesity and its associated pathologies, such as cardiovascular disease and type 2 diabetes, 

have reached epidemic proportions within Canada [1] and worldwide [2]. In recent years, the 

development of obesity and its related pathologies has been linked to gastrointestinal (GI) 

microbiome - that is, the microbial community that inhabits the gut [3-6]. For example, faecal 

microbiota transplantations from healthy donors to metabolic syndrome recipients [5, 7, 8] resulted 

in improved insulin sensitivity, fasting blood glucose, and LDL cholesterol, indicating that the gut 

microbiota may be a potential target for strategies combating obesity. The mechanisms by which 

the gut microbiota influences obesity-related pathologies are not sufficiently understood. 

Mechanisms discussed include an impact on intestinal barrier integrity, regulation of gut 

hormones, and an influence on energy metabolism. Many of these mechanisms are mediated by 

microbial-derived metabolites, especially short-chain fatty acids (SCFA) (e.g. acetate, propionate, 

and butyrate)[3]. These SCFAs are  produced by microbial fermentation of dietary fibre (DF), 

which has been shown to reduce inflammation, modulate the immune system, promote satiety, and 

modulate cancer homeostasis [9].  

Epidemiologic studies consistently associate DF consumption with a reduced incidence of 

obesity and its associated pathologies [10, 11]. In large-scale observational studies, whole grains 

and cereal derived DFs (e.g. arabinoxylan [AX] and β-glucan) show stronger associations with 

reduced risk of developing cardiovascular diseases, type II diabetes, gastrointestinal cancers, and 

of all-cause mortality when compared to other DF sources [12-14]. A substantial body of animal 

research further consolidated the mechanisms by which DF reduces metabolic pathologies [15]. 
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Despite these convincing associations, findings obtained from human dietary intervention trials 

that aimed to ameliorate risk markers of metabolic disease by supplementing isolated DFs remain 

inconsistent [16]  potentially because of individualized clinical responses to DF [17, 18]. 

Owing to their chemical structure, DFs resist digestion in the small intestine, thus reaching the 

colon where they become substrates to the gut microbiota. Microbes ferment DF to SCFAs that 

have been implicate in the prevention of obesity-associated pathologies [19]. In this respect, 

especially propionate and butyrate are relevant, as they have been linked to beneficial 

immunometabolic effects [9]. Intervention studies with AX, for instance, have demonstrated 

increased fecal concentrations of both butyrate and propionate with long-chain AX isolated from 

wheat endosperm [20]. DFs can further modulate gut microbiota composition, leading to structure-

dependent change in the proportion of bacterial taxa that benefit from substrate and tolerate the 

environmental changes caused through DF fermentation [15]. For example, dietary interventions 

with short-chain fractions of AX have shown an enriched abundance of bacterial species that can 

either utilize AX directly (i.e. Bifidobacterium longum, Prevotella copri, and Blautia obeum) or 

that benefits from metabolic products (i.e. Faecalibacterium prausnitzii and Eubacterium hallii) 

[21, 22]. Although DF-induced alterations to the gut microbiota are significant, the effects are also 

highly individualized [18], and this variability might have clinical ramifications that could explain 

the inconsistent health effects of DF [23].  

To understand the individualized response of the gut microbiota to DF an ecological perspective 

is required, as microbiomes are vastly individualized and DF fermentation is determined by 

complex inter-species interactions between members of the gut microbiota [24]. Inter-individual 

compositional differences in the gut microbiome may result in the absence of important primary 

degraders (or ‘keystone species’) needed to initiate the degradation of recalcitrant DFs [25]. 
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Individual microbiotas may also comprise of separate, potentially unrelated species able to 

compete for the same substrate [26], or strains of the same species with varying enzymatic capacity 

to metabolize the substrate [27]. These compositional variations may alter the network of 

interacting species (referred to as an ecological ‘guild’), involved in DF fermentation by altering 

competitive or co-operative relationships between community members [28, 29], which influences 

metabolite outputs relevant to health (i.e. propionate or butyrate) [30].  

1.2 Knowledge ands and research question 

Although DF-induced alterations to the gut microbiota are well established in the recent literature 

and can lead to substantial alterations in the gut microbiota, the effects are also highly 

individualized [18]. This variability might have ramifications for the use of DF as it could explain 

the inconsistent health effects that have been shown in intervention studies [23]. To understand 

the individualized response of the gut microbiota to DF, an ecological perspective is required, as 

gut microbiomes are vastly individualized in their composition and DF fermentation is determined 

by complex inter-species interactions between members of the gut microbiota [31]. Inter-

individual compositional differences in the gut microbiome may result in the absence of important 

primary degraders (or ‘keystone species’) needed to initiate the degradation of DFs [25]. In 

addition, individual gut microbiomes may comprise separate, potentially unrelated species that 

compete for the same substrate [26], or related strains of the same species with varying enzymatic 

capacities to metabolize the substrate [27]. These compositional variations are likely to alter the 

network of interacting species by altering competitive or co-operative relationships between 

community members [29]. These complex ecological interactions influence metabolite outputs 

that are relevant to health (i.e. SCFAs such as propionate or butyrate) [30]. Although inter-

individual variation in the response of the gut microbiota to DF might constitute an important 
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factor influencing its health effects, this topic, and the underlying ecological principles, are poorly 

understood. The question remains of whether microbial interactions in the gut microbiota 

ecosystem can explain the individualized responses to DF.  

1.3 Objective 

The objective of this study was, therefore, to characterize the compositional and functional 

responses of the fecal microbiota to long-chain AX and apply an ecological framework to explain 

the individualized response of microbiota.  

1.4 Specific aims & hypotheses 

The first specific aim (Aim 1) of this thesis is to provide a descriptive overview of the gut 

microbiota compositional response to long-chain AX.  I hypothesize that consuming high doses of 

long-chain AX will alter the composition of the gut microbiota at the community and species levels 

compared to both baseline and microcrystalline cellulose (MCC), a non-fermentable control DF.  

The second specific aim (Aim 2) is to determine how long-chain AX supplementation affects fecal 

SCFA levels. I hypothesize that consuming long-chain AX will increase fecal SCFA 

concentrations compared to MCC. 

The final aim (Aim 3) is to explore links between microbiome composition, SCFA levels, and 

dietary intake to explain individualized responses in the context of microbial ecology. I 

hypothesize that individualized responses in fecal SCFA concentrations can be explained by fecal 

microbiota composition and diet. 

1.5 Outline of thesis 

Chapter 2 – Literature review: This chapter will present the inter-relationship between DF, gut 

microbiome, SCFA levels, and obesity. Then, it will provide an overview of the inconsistent results 
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between observational and intervention studies regarding the health benefits of DF, and what 

factors may explain these inconsistent health effects.  

Chapter 3 – Materials and methods: This chapter introduces the study design and statistical 

analyses of a DF intervention study that examined how the gut microbiota responded to a high 

dose of long-chain AX isolated from (females: 25 g/d; males: 35 g/d), compared to MCC.  

Chapter 4 – Results:  I present the effect of long-chain AX on the composition and function (SCFA 

production) of gut bacteria, and factors that explain the individualized response in propionate 

production. 

Chapter 5 – Discussion: I begin the discussion by applying an ecological framework to explain the 

specific responses in the gut bacterial composition and function. Then, I discuss the factors that 

may predict the individualized response of the microbiota and end this section by highlighting the 

possible health benefits of long-chain AX.  

Chapter 6 – General Discussion: This chapter provides a broader discussion of the findings in 

relation to other studies in the literature, as well as parallel projects conducted by the Walter lab. 

Furthermore, I discuss how my work is important for the use of DF in human nutrition and a 

potential personalization of diet and suggest future directions of research that will be necessary to 

progress towards this goal. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Inter-relationship between microbiome composition and function in obesity 

2.1.1 Microbiome and Obesity 

Obesity and its related metabolic diseases have developed into an epidemic that damages 

individual health, family and society in general. According to a WHO report in 2017, these global 

diseases cause at least 2.8 million deaths each year and are present not only with high-income but 

also middle and low-income countries [32]. In 2016, the prevalence of obesity increased rapidly 

and tripled since 1975. The worldwide increase of obesity seriously affects health and reduces 

quality of life [33] because of its associated pathologies such as type-2- diabetes, cancer, work 

disability, osteoarthritis, sleep apnea and cardiovascular diseases [34]. Thus, efforts to prevent and 

manage the obesity epidemic are urgently needed.  

Microbiota has been documented to be related closely to obesity and its associated pathologies. 

The term “Microbiota” refers to microbial communities that comprised of all taxa such as bacteria, 

archeae, fungi and protists while microbiome was used to refer to microbial gene and is also 

commonly used to mention the microorganism themselves [35]. Human has been recognised as an 

supraorganism – that is, a system of multiple organism that can be considered a single organism – 

which is composed of both human and microbial cells [36]. Thus, we are carrying 2 different sets 

of genes: those that belong to the human and microbiome. The former contains approximately 

20,000 genes [37] [38] while the latter has a capacity of  ~ 3 million genes [39], which performs 

multi-functions that are associated to host. Thus, the gut microbiota has been considered a vital 

partner of the human host and has been studied in, approximately 12900 studies within 5 years 

since 2013 [40].   
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In recent years, it has been well-documented in animal models that the gastrointestinal (GI) 

microbiome plays a crucial role in the development of obesity and its related pathologies [3-6]. 

Transferring microbiota from diet-induced obesity mice to lean germ-free recipients increased a 

greater fat accumulation than transplants from lean donors[41]. Faecal microbiota transplantations 

from healthy donors to metabolic syndrome recipients [5, 7, 8] resulted in improved insulin 

sensitivity, fasting blood glucose, and LDL cholesterol. Furthermore, the mechanisms by which 

the germ-free mice are protected from diet-induced obesity have been unveiled. They are 1) 

inducing peroxisomal proliferator-activated receptor coactivator (Pgc-1α) and enzymes involved 

in fatty acid oxidation. 2)  promoting the activity of phosphorylated AMP-activated protein kinase 

(AMPK)[42]. In short, these findings suggest that the gut microbiota may be a potential target to 

combat obesity. 

2.1.2 Microbiome and SCFAs 

Dietary fiber (DF) is defined as carbohydrates (CHO) polymers with equal or more than ten 

monomeric unit, which are not digestible in the human small intestine[43]. DF does occur naturally 

in food (e.g. fruit, vegetable) or used as a supplement or food additive after being extracted or 

synthesized. To be considered DF, the  two latter ones require proven physiological effects relevant 

towards health [44]. DF escape from the digestion of the small intestine and are metabolized by 

the microbiota in the cecum and colon [45] (figure A1). The major products from the microbial 

fermentation in the gut are SCFA – mainly, acetate, propionate and butyrate and their biosynthesis 

pathway are shown in Figure A2. Briefly, Pyruvate is the precursor of the three SCFAs. While 

acetate and butyrate can be produced from Acetyl-CoA, propionate can be formed by lactate and 

succinate via acrylate and succinate pathway, respectively. In addition, propionate can be produced 

from propanediol pathway using deoxyhexose sugars. 
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Figure A1: Human gut microbiome. Credit: © M. Oeggerli, supported by Pathology, University 

Hospital Basel and School of Life Science, FHNW.  
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Figure A2: Known pathway for SCFA biosynthesis from Carbohydrate fermentation- Adopted 

from [9]. PEP: phosphoenolpyruvate; DHAP, dihydroxyacetonephosphate.  

2.1.3 Association between SCFAs and Obesity and its associated pathologies 

It has been shown that SCFAs impact on body weight by regulating appetite and therefore 

changing the host’s energy intake as reviewed by Hernández and colleagues [46]. Mice studies 

showed that SCFAs activation of GPR41 stimulates the secretion of the gut hormone peptide YY 

(PYY), which induces satiety and reduces food intake [47]. In addition to increasing satiety, these 

hormones stimulate insulin secretion and decrease the secretion of glucagon from the pancreas 

[48].These findings were further confirmed in human studies showing that the administration of 
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propionate to patients with obesity led to enhanced PYY and Glucagon-like peptide 1 (GLP-1) 

secretion with significantly reduced adiposity and overall weight gain [49]. In mice, it was shown 

that supplementation of butyrate into the diet lowered fasting glucose and insulin levels and 

showed lower insulin resistance displayed in the HOMA-IR [50, 51]. Similar results on mitigated 

insulin resistance have been reported for butyrate supplementation to the diet in rats [52].  

The effect of SCFAs on the host can be explained by two main mechanisms. They are 1) inhibiting 

histone deacetylase activity and its expression, and 2) binding to G-protein-coupled receptors 

(GPRs) including GPR41, GPR43, GPR109A [53]. The former has been indicated as the central 

mechanism by which SCFAs can stimulate the immune system which results in the inhibition of 

colon cancer [54]. The latter has different mechanism for three SCFAs. While butyrate is the only 

SCFA that can bind GPR109A to promote the anti-inflammation effect, both acetate and 

propionate can bind to GPR43 and release GLP-1 and PYY, increasing satiety. Acetate can bind 

to GPR41 to promote the production of dendritic cell and Propionate can bind to GPR41 activate 

the intestinal gluconeogenesis (IGN) which indirectly increase satiety (Figure A3).  
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Figure A3: Mechanism of Action of Microbially Produced SCFAs [9] 

The size of the boxes contains acetate, propionate and butyrate symbolizes the ratio between these 

SCFAs. In the distal gut, SCFA can pass through the cells by diffusion or using SCF5A8-mediated 

transport and act as 1) an energy source or 2) an HDAC inhibitor. Luminal acetate or propionate 

bind to GPR41 and GPR43 then release PYY and GLP-1, affecting satiety and intestinal transit. 

Butyrate promotes anti-inflammatory effects by increase IL-10 and reduce IL-18 via GPR109A 

and HDAC inhibition pathway. Furthermore, propionate bind to GRP41 and be converted into 
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glucose by IGN, indirect leading to satiety and decreased hepatic glucose production. Small 

amount of SCFAs (mostly acetate and possibly propionate) can reach the circulation and can also 

directly affect the adipose tissue, brain and liver, including overall beneficial effects. Solid arrows 

indicate the direct action of each SCFA, and dashed arrows from the gut are indirect effects.  

2.2 What is known about Dietary fiber in the context of health benefits? 

2.2.1 Health impact of Dietary Fiber in Observational studies 

Increasing the dietary fiber intake or replacing refined grain by whole grain in daily diet have been 

encouraged as they are expected to benefit human health. According to an observational data of 

more than 4500 adults from 58 clinical trials, Reynold and colleagues observed a reduction from 

15-30% in all-cause mortality including type 2 diabetes, cardiovascular diseases and color rectal 

cancer when comparing the highest and the lowest fiber consumers. Particularly, consuming 25g 

to 29g dietary fiber per day associated with the lowest risk of adverse outcomes [10].  Similar 

findings were obtained in a larger sample size study with more than 350,000 individuals, which 

revealed 17-19% risk reduction in all-cause mortality of highest whole grain, cereal fiber 

consumers when compared to those who eat least. This rate is even higher when assessing disease-

specific mortality. Particularly, risk of having mortality caused by diabetes, an obesity-associated 

pathology, is 43% lower in individuals who consume highest amount of whole grain compared 

with never/rare consumers [55]. In addition, high intake of dietary fiber also reduces the 

probability of getting metabolic syndrome [56] - a common metabolic disorder that is strongly 

correlated with the prevalence of obesity [57]. Generally, observational studies consistently 

suggest that consuming DF benefits health and reduce prevalence of obesity and its associated 

pathologies. 
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2.2.2 Can DF modulate compositional and functional microbiome to combat obesity? 

Understanding the inter-relationship between DF, microbiome, SCFAs, and obesity raises the 

question if we can fight against the disease by microbiome-targeted dietary intervention. 

Substantial number of animal studies have been performed to further strengthen the evidence to 

support the mechanisms by which DFs reduces metabolic disease by modulating the microbiome 

composition and function (SCFAs) [15]. For example, dietary interventions with short-chain 

fractions of AX have shown an enriched abundance of bacterial species such as Bifidobacterium 

longum [21, 22] which has been considered as a putative health promoting bacteria [58]. In another 

intervention study with long chain AX isolated from wheat endosperm [20], fecal concentration of 

both butyrate and propionate was increased. Despite of the promising findings the lack of 

consistency in evidence of human trial still remain[16], leading to difficulty to translate the 

knowledge to practical application.   

2.2.3 Inconsistent findings on the health benefit of DF in interventional studies 

Findings on the health benefits of DF that aimed to reduce the risk markers of metabolic diseases 

between interventional and observational studies are inconsistent. Particularly, while 13 of 16 

observational studies reported the anti-inflammatory effect of DF, only 1 of 11 interventional 

studies resulted in a significant result [59]. This inconsistency could stem from individualized 

clinical responses to DF [17, 18]. DF intervention usually identify the responders and non-

responders who showed very different effect in the primary outcome, host and microbiome 

response. Among 11 DF intervention studies from 2014 to 2017 reviewed by Healey and 

colleagues, there are 8 studies in which responders and non-responders showed different results in 

both host clinical out come and gut microbiome response and all studies revealed the different 

abundance of some taxa at baseline between responders and non-responders[18]. Although DF can 
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significantly shift some taxa of the gut microbiota its effects are also highly individualized [18]. 

This variability partly contributed by baseline microbiome might have clinical ramifications that 

could explain the inconsistent health effects of DF [23].  

2.3 Attempts to understand the individualised response to explain inconsistent health effect 

of DF 

Although a high degree of variability in host responses challenge dietary interventions, it opens a 

door for personalised nutrition approach to improve human health using individual characteristics 

(e.g. microbiome, genetic, phenotypic, medical information) to provide a more specific healthy 

eating guideline, nutritional product and service [60]. Despite some promising results in 

personalised nutrition field aimed to improved dietary behaviour [61] or ameliorated postprandial 

blood glucose level after a meal [62], more work is needed before nutritional intervention tailored 

to individual characteristic can be implemented [60], particularly in an overweight and obese 

population. Understanding of the factor the drives the individualised response could be a great help 

to ascertain the true efficiency of a given dietary intervention.  Several attempts to understand the 

individualised response shall be discussed. 

2.3.1 Comparing responder and non-responder  

One of the easiest approaches to explore individualised response is by grouping the population 

based on their response of the primary outcome into responders and non-responder and comparing 

2 groups in term of different contexts (e.g. Microbiome and diet feature) [18]. As mentioned 

earlier, all 11 DF interventional studies identified differences at baseline of bacteria communities 

between responders and non-responder, indicating that the inter-individual difference of baseline 

microbiota may also play a vital role in the gut microbiota response [63].  Although many studies 

found the different baseline microbiome in the response of microbiome or the host, only a few 
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studies further explore this relationship between baseline abundance of gut bacteria and the 

individualized responses by more a robust approach such as linear regression [64] or at least a 

correlation[65].  

Regarding microbiome response, only 7 out of 20 papers reviewed by Healey et al. investigated 

the impact of diet history on the microbiome response. Interestingly, up to 6 papers found 

significant results[18]. These finding highlights the impact of baseline diet on the microbiome 

response and suggest that it should get more attention in the future studies. 

Regarding host response, Healey et al. reviewed 17 papers and only 6 of them investigated the 

effect baseline diet [18]. Only 3 out of 6 studies showed the different dietary history between 

responders and non-responder and 1 used diet data to predict glycemic response [62]. It is clear 

that impact of dietary history on the response of microbiome and the host has not yet gained enough 

attention and, therefore, more studies should be conducted in this area. 

2.3.2 Microbial ecology approach 

Understanding microbial ecology is definitely an advantage to explain individualised response of 

bacteria to ferment DFs as this process is highly individualised and determined by a complex inter-

species interaction between member of the gut microbiota [24]. Difference between responders 

and non-responders in term of microbiome response could be explained further by the presence of 

absence of essential primary degraders (or ‘keystone species’) needed to initiate the degradation 

of recalcitrant DFs [25]. Similar response in microbiome function could be resulted from very 

different microbiome compositions.  Given the same DFs, unrelated spices in 1 community who 

possess the same trait to utilised DF could compete each other while in another microbiota, 

different species can co-operate to metabolise the substrate [26] [27]. Variability in the 

composition can alter the interaction between species or groups of species (ecological “guild”) 
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[28, 29], involved in the fermentation of DF which influences in the SCFA production [30]. Given 

the importance of microbiome interaction and the ecological guild in the response of dietary 

intervention. Several studies have proposed the approach using co-occurrence network on the 

baseline abundance of bacteria to identify dietary enriched- microbial guilds that associate with 

the host response [66, 67]. Although microbial guild concept might play an important role that 

effect the host, this topic, and the underlying ecological principles, have received little attention.  
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Subject 

Overweight and class-I obese (body mass index [BMI] 25.0 to 34.9 kg/m2), otherwise healthy male 

and pre-menopausal, non-pregnant or lactating female, weight stable (± 3% for ≥ 1 month) subjects 

aged 19 to 50 years were recruited from the Edmonton area using campus-wide flyers, mailings to 

specific Listservs, local events, and word of mouth. Exclusion criteria included (1) history of GI 

disorders or surgeries; (2) history of diabetes mellitus; (3) chronic use of anti-hypertensive, lipid-

lowering, anti-diabetic, analgesic, or laxative medications; (4) use of antibiotics in the three 

months prior to the start of the study; (5) use of probiotic, prebiotic, omega-3 fatty acid, or herbal 

supplements; (6) intolerance to corn; (7) vegetarian; (8) smoking; (9) alcohol intake ≥ 7 

drinks/week; (10) > 3 hours of moderate-vigorous exercise per week. 

3.2 Study design 

This six-week, parallel two-arm, randomized controlled trial (RCT) was prospectively registered 

on December 19, 2014 with ClinicalTrials.gov (NCT02322112) as part of a large parallel four-arm 

RCT: The Alberta FYBER (Feed Your Gut Bacteria morE fibeR) Study [68]. Due to funding 

constraints, the AX arm was separated from the original RCT and analyzed independently. Study 

visits were conducted in accordance with the principles of the Declaration of Helsinki at the 

University of Alberta Human Nutrition Research Unit in Edmonton, Alberta, Canada between 

September 2015 and October 2016. Written informed consent was obtained from all study subjects 

prior to enrollment into the study. 

Study subjects were required to attend five clinic visits (Figure 1). During a two-week 

screening/baseline period, potential subjects were pre-screened by telephone for initial eligibility 

and then attended a screening visit (visit 1) to confirm eligibility and receive study material 



 18 

(including fecal collection supplies) to be complete prior to the baseline visit (visit 2). During the 

baseline visit, eligible subjects were enrolled, stratified based on sex, and then randomly assigned 

to either the AX or MCC arm. Random treatment allocation was accomplished using a 

computerized random number generator, in which two separate random allocation sequences 

(female and male sequence) were generated and concealed by a researcher not involved in subject 

allocation. Upon enrollment, subjects were then assigned to the next available randomization 

number by a study investigator blinded to these predetermined allocation sequences. 

 

Figure 1. Study design of the human dietary intervention trial. The shaded study week block 

indicates a scheduled clinic visit. The ‘X’ indicates the specific task was completed during 

the study week. C-DHQ II; Canadian diet history questionnaire II. 

Thirty-eight subjects were enrolled in the study and instructed to consume their corresponding 

supplement daily for six weeks at a DF dose of 25 g for females and 35 g for males, provided 

strictly as either AX or MCC. Half daily doses were provided for the first two days of treatment 

(12.5 g and 17.5 g, respectively), as this was shown by pilot data to be beneficial for diet 

incorporation. After one week of treatment, subjects returned to provide a second fecal sample and 
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to assess protocol compliance (visit 3), which was also assessed during their third week of 

treatment (visit 4). After six weeks of treatment, subjects returned to provide a third fecal sample 

and to assess overall protocol compliance (visit 5). 

3.3 Treatments 

AX was provided by Agrifiber Holdings LLC (Biofiber Gum, Illinois, USA) as a single batch. The 

long-chain AX product is a highly branched, alkali-extract soluble AX isolated from corn bran, 

and contained 88.8% soluble arabinoxylan (57.8% xylose; 32.5% arabinose; 9.7% galactose), 

2.1% protein, and 6.3% lipids. The physiochemical properties of the AX concentrate (i.e. 

solubility, viscosity, and molecular weight) have been previously described by Kale and colleagues 

[69], with in vitro fecal fermentations suggesting a two-stage fermentation profile consisting of 

slow initial 4 h fermentation followed by faster final fermentation of the remaining AX [70]. MCC 

was provided by Blanver Farmoquimica Ltda. (Microcel MC-12, São Paulo, Brazil). The MCC is 

a large particle size (160-micron average), wood derived cellulose fiber processed with a dilute-

acid to remove amorphous regions leaving only the recalcitrant crystalline regions, with 

preliminary in vitro fecal fermentations confirming resistance to microbial fermentation and 

therefore acts as an ideal non-fermentable control. 

Both DFs were administered as powdered supplements incorporated daily into subject preferred 

foods and drinks. The treatments were not identical in their appearance or physiochemical 

properties, and therefore double-blinding was not possible. To achieve single-blinding, however, 

subjects were not informed of their DF treatment, and their weekly doses were provided in sealed 

opaque bags that contained individually packaged, ready-to-use sachets that provided the daily 

dose of 25 g/d or 35 g/d for female and male participants, respectively. Subjects were instructed 
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to return all provided sachets at their scheduled visits, where remaining DF was weighed to assess 

compliance. 

3.4 Baseline Dietary Intake and Anthropometric Assessment 

Subjects were asked to maintain their habitual diet and physical activity level during the 

intervention study. Baseline dietary intake was assessed by the online past-month Canadian Diet 

History Questionnaire II (C-DHQ II), a food frequency questionnaire adapted for the Canadian 

population from the validated US-DHQ-II [71]. Subjects' responses were analyzed using 

Diet*Calc software (Version 1.5.0) and the C-DHQ II specific nutrient database, previously 

updated to include eight new food group variables representing Canada’s Food Guide serving size 

equivalents [72]. Prior to statistical analyses, C-DHQ II extracted data were assessed for extreme 

outliers using methods described by Kipnis and colleagues [73, 74], and then calorie-adjusted 

using methods described by Willett and Stampfer [75].  

Anthropometric measurements were also obtained at baseline. Height and weight were measured, 

in light clothing, with empty pockets, and shoes removed, and used to calculate BMI. Waist 

circumference was measured using a Gulick II plus tape measure according to National Institutes 

of Health guidelines [76]. Body fat percentage was measured by bioelectrical impedance analysis 

(Tanita TBF-300A Body Composition Analyzer, Illinois, USA). 

3.5 Fecal sample collection and processing 

Fecal samples were collected at baseline, week 1 (W1), and week 6 (W6) using stool collection 

kits consisting of a stool specimen container, an air-tight bag (Fisher, Canada), and a GasPak™ 

EZ Anaerobe Sachet (BD, Canada) to generate an anaerobic environment within the container. 

Samples were delivered to researchers within 4 h of defecation. Upon receipt, fecal samples were 

processed immediately in an anaerobic chamber (Bactron™, Shel Lab, Oregon, USA) with an 
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anaerobic environment consisting of 5% H2, 5% CO2, and 90% N2. Raw fecal material was 

aliquoted for pH and moisture content measurements, and then diluted 1:10 in molecular grade 

phosphate-buffered saline (PBS) for DNA extractions and 1:5 5% phosphoric acid for SCFA 

quantification. Aliquots were stored at -80°C and kept frozen until further processing. 

3.6 Fecal pH, SCFAs and dry mass quantifications 

Raw fecal material was diluted 1:4 in distilled water to determine fecal pH using an Accumet 

AB150 pH meter (Fisher, Canada) as previously described [77, 78]. Quantification of fecal SCFAs 

was completed at the Agricultural, Food and Nutritional Science chromatography core facility of 

the University of Alberta as previously described [79]. Briefly, 1:5 dilution of fecal samples 

homogenized in 5% phosphoric acid were thawed and centrifuged, then 1000 μl of supernatant 

was mixed with 200 μl of internal standard (4-methyl-valeric acid). Subsequently, 0.2 μl of the 

mixture was injected into a Bruker SCION 456 gas chromatograph (Bruker Corporation, 

Massachusetts, USA). SCFAs were separated on a Stabilwax-DA column (30 m X 0.53 mm inner 

diameter X 0.5 μm film thickness, Restek Corporation, Pennsylvania, USA) with a flame 

ionization detector, and quantified by calculating response factors for each SCFA relative to 4-

methyl-valeric acid using injections of pure standards. Total SCFA concentrations were 

determined as the sum of acetate, propionate, and butyrate; while the molar proportion of each 

SCFA was determined by dividing these individual SCFAs by total SCFAs. Total branched short-

chain fatty acids (BCFA) concentrations were determined as the sum of isobutyrate and 

isovalerate. Fecal moisture content was determined by drying raw fecal material overnight in an 

oven at 103°C. 
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3.7 DNA Extraction, 16S Ribosomal RNA (rRNA) Gene Sequencing, and Data Processing 

for Microbiota Analysis 

Bacterial DNA was extracted from fecal homogenates in phosphate-buffered saline (1:10) using 

the QIAamp DNA Stool Mini Kit (QIAGEN, Hilden, Germany) as previously described[80]. The 

V5-V6 regions of 16S rRNA gene were targeted for PCR amplification using primer pair 784F 

[5’-RGGATTAGATACCC-3’] and 1064R [5’-CGACRRCCATGCANCACCT-3’]. 16S rRNA 

gene amplicons were sequenced by 300 bp paired-end sequencing on the MiSeq platform at the 

University of Minnesota Genomics Center (Minnesota, USA), with all samples of this study being 

included in the same run. 

Sequences were trimmed to 210 bases long using FASTX-Toolkit, and paired-end reads were 

merged with the merge-illumina-pairs pipeline as previously described [80]. Samples exceeding 

16,000 reads were subsampled to 16,000 using USEARCH v8.1 [81]. Removal of chimeric reads 

and clustering of OTUs (at a 98% pairwise identity threshold) were conducted using USEARCH, 

resulting in an average of 10,763 ± 670 high quality sequences per sample after quality control. 

Taxonomies from phylum to genus level were assigned using the entire sequence set by the 

Ribosomal Database Project Classifier [82]. OTUs were assigned taxonomy by using the Silva 

database (release 132 [83]) , and sequence identity at species level was confirmed using 16S rRNA 

databases on both EZ biocloud [84] and NCBI [85] platforms. 

Prior to ordination and statistical analysis, OTU count data were converted into both relative 

abundance and CLR transformed to correct for compositionality [86]. Considering all fecal 

samples, OTUs with an average relative abundance below 0.15% were removed. This approach 

resulted in exactly 100 OTUs (referred to as ‘all OTUs’), which were used in the downstream 

analysis, accounting for 88.1% of the approximately 1 million-curated reads. 



 23 

3.8 Statistical analysis 

All univariate analyses were performed by GraphPad Prism v.8.0.1 (GraphPad Software, 

California, USA), while multivariate analyses, regression models, and advanced statistics were 

performed and visualized using R v 3.5.3 (R Core Team, Vienna, Austria [87]) unless otherwise 

stated. 

3.8.1 Bacterial community analysis 

To explore the effect of DF on the bacterial community, we assessed overall β-diversity, 

dissimilarity between and within individuals, and α-diversity. To assess overall β-diversity, 

Euclidean distance between bacterial communities was first calculated from CLR-transformed 

data of all OTUs and then visualized using non-metric multidimensional scaling (vegan [88] and 

ggplot2 [89] packages). Differences in the communities of treatment and control groups at specific 

time points were compared by PERMANOVA using the Adonis function in vegan [88]. Euclidean 

distances were used to calculate inter-subject (between subjects at the same time point) and intra-

subject (within subjects but at different time points) dissimilarity. Differences in inter-subject 

diversity were determined within each treatment group relative to baseline using GEE models 

(geepack [90] packages) followed by Bonferroni correction. Differences of intra-subject 

dissimilarity between AX and MCC treatments were compared using Mann-Whitney tests. α-

diversity (Shannon index) and bacterial richness (OTU numbers) were determined using rarefied 

OTU data with the vegan package [88]. 

3.8.2 Bacterial composition and function analysis 

Community membership of individual taxa was presented as relative abundance (mean ± 

SD), while CLR-transformed data was used for the statistical analyses. Comparisons of phyla, 

families, genera, and OTUs between baseline and W6 were performed by Wilcoxon signed-rank 
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tests, while comparisons of shifts (ΔW6-BL) between AX and MCC were performed by Mann-

Whitney tests. P values were adjusted by Benjamini-Hochberg's false discovery rate (FDR) and 

considered significant when q values were <0.15. SCFA data were analyzed using the same 

approach without correction of p values. Differences at W1 and W6 in the effects of DF were 

determined using the Friedman’s test followed by a Dunn’s correction for multiple comparisons. 

3.8.3 Co-abundance response group (CARG) and network analysis 

Potential syntrophic interactions between bacterial taxa in their response to AX were assessed 

using co-occurrence network analysis [66]. To determine groups of interacting OTUs in their 

response to AX (thus potential ecological guilds) [29], CARGs were determined from the top 

OTUs impacted by the AX intervention (W6-BL unadjusted p<0.1; Wilcoxon test). Spearman's 

correlation analysis was performed between the shifts (ΔW6-BL) in these OTUs to construct a 

correlation matrix; then this matrix was converted into a distance matrix by (1 – correlation 

coefficients) [66]. Hierarchical clustering was then performed on the distance matrix to build a 

tree using the complete-linkage clustering algorithm [91]. Differences between distinct branches 

of the Hierarchical tree, and thus individual CARGs, were determined by PERMANOVA using a 

cut-off of p<0.05 [66]. Relative abundance of each CARG was calculated as the sum of the OTUs 

within each CARG prior to statistical analyses. 

To visualize the interaction of OTUs within and between CARGs, Spearman’s correlation network 

was calculated with a permutation test (1000x) using CoNet [92] as previously described [93]. 

Only OTUs with a significant interaction (i.e. FDR corrected q<0.05) were visualized in the 

network using Cytoscape v3.61.  



 25 

3.8.4 Different in baseline and shift of gut bacteria and diet between W1- and W6-

responders of propionate  

To identify factors that contribute to the variation between two groups of responders in propionate, 

PERMANOVA was performed on Euclidian distances based on the baseline and shifts of total 

OTUs, significant OTUs, and CARGs, and baseline diet. The multivariate data of microbiome and 

diet were visualized on biplots of PCA using factoextra [94] and FactoMineR [95] packages. 

3.8.5 Relationship between microbiome and SCFAs response with microbiome feature and 

diet history  

To explain the individualized response of the microbiome to DF, MLR analyses were employed 

using R. In order to perform the analysis, dimensionality of the microbiome and diet data were 

reduced by PCA into PC1, PC2, and PC3. Microbiome compositional and SCFA response 

variables were used as dependent variables. Baseline and shifts of PC variables, CARGs, OTUs, 

and diet data were used as predictors. Subset selection in regression was applied to choose the best 

combination of predictors using the sequential replacement algorithm (leaps package [96]). 

Therefore, each MLR model presented only contained the top one or two predictor variables that 

explained the response variable the best. Dietary and microbiome-related predictors were treated 

separately in different models, and whole grains, total grains and total DF intake were used as 

single dietary predictors. All models were adjusted by sex/fiber dose and p values were corrected 

by FDR with statistical significance considered at q<0.05. To estimate the quality of each model 

in predicting the same dependent variable, AICc values were calculated using the AICcmodavg 

package [97]. AICc values were then converted to relative percentages by assigning the highest 

AICc value as 100%, and then remaining AICc values were calculated by (AICc value/Highest 
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AICc value) * 100. Thus, a lower AICc value would indicate a higher quality model. Residuals for 

all linear regression models were plotted to check for homogeneity of variance and normality. 
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CHAPTER 4: RESULTS 

4.1 Subject Characteristics and Protocol Compliance 

To compare the effects of AX and MCC, we conducted a six-week, parallel-arm, randomized 

controlled trial in healthy, overweight and class-I obese inviduals (Figure 1). Of the 38 subjects 

enrolled and randomized to a treatment arm, seven withdrew from the dietary intervention and 

were not included in the statistical analyses (AX arm: three due to challenges adding supplement 

and one due to constipation; MCC arm: two for personal reasons and one due to constipation) 

(Figure S1). Baseline characteristics of the 31 subjects are summarized in Table S1, which 

included 21 females and 10 males aged 32.9 ± 8.5 years with a BMI of 28.7 ± 2.3 kg/m2. No 

significant differences were detected between the two intervention groups at baseline in the 

assessed demographics. Overall protocol compliance, assessed by the amount (weight) of returned 

supplement, was 94.7 ± 6.5% and 95.0 ± 5.6% in the AX and MCC arms, respectively. 

4.2 Effect on the Composition of the Fecal Microbiome 

4.2.1 Fecal Microbiota Diversity  

NMDS analysis of Euclidean distances between subjects based on CLR transformed OTU data 

showed that the two treatment groups harbored bacterial communities that could not be 

differentiated at baseline (p=0.17, PERMANOVA; Figure 2A). One-week supplementation with 

AX altered the global fecal bacterial community, which became significantly different from the 

fecal microbiota of subjects receiving MCC (p=0.025). This effect was maintained until the end 

of the AX treatment (p=0.019). These changes were caused by AX inducing a temporal shift in β-

diversity of the fecal microbiota in comparisons between treatments to baseline, which was 

significantly larger than the temporal shift observed in the MCC group (p<0.05, Mann–Whitney 
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test; Figure 2B). In addition, while MCC increased the inter-individual differences (β-diversity 

between subjects; p<0.001, GEE model), AX reduced it (p≤0.003, Figure 2C).  

Analysis of α-diversity showed that AX treatment significantly reduced fecal bacterial diversity 

(Shannon’s index) but not the richness (total OTUs) after six weeks (p=0.036, GEE model; Figure 

2D). Overall, while the non-fermentable MCC had no detectable effect on measures of fecal 

microbiota diversity, AX significantly altered the global bacterial community within one week, 

inducing significant temporal shifts in β-diversity, and a reduction of both inter-individual 

variation and α-diversity. 
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Figure 2. AX alters the global composition of fecal microbial communities and induces distinct 

shifts in bacterial taxa. (A) Non-metric multidimensional scaling (MNDS) plot based on Euclidean 

distance metrics of AX and MCC groups at each time point (inter-subject β-diversity) showing 

changes in the distance between subjects over time over time. Euclidean distances (B) between the 

fecal microbiomes of subjects at each time point (inter-subject) and (C) between each subject’s 

fecal microbiome at baseline and during W1 or W6 treatment (intra-subject). (D) α-diversity 

(displayed as Shannon index and total OTUs) of the fecal microbiomes of subjects at each time 

point. (E) Absolute change (ΔW6–BL) in relative abundance of bacterial taxa significantly 

affected by the dietary intervention. Data analyzed for (A) using PERMANOVA, for (B,D) using 

GEE models (with Bonferroni correction), and for (C) using Mann-Whitney tests. For (E), data 

analyzed using either Wilcoxon tests to assess within-group changes relative to BL, or Mann-

Whitney tests to assess between-group changes (i.e. AX vs. MCC; with FDR correction). β-

diversity and compositional data were reported as mean ± SD and centered log-ratio transformed 

prior to the statistical analyses. BL; baseline; OTU, operational taxonomic unit; W1, week 1; W6, 

week 6. 

4.2.2 Effect of AX and MCC on the Abundance of Bacterial Taxa and CARGs  

Neither AX nor MCC significantly altered microbiota composition at the phylum level. At lower 

taxonomic levels, significant changes in the abundance of two bacterial families were detected at 

six weeks of AX when compared to baseline and MCC, namely an increase in Bifidobacteriaceae 

and a decrease in Erysipelotrichaceae (q≤0.007, Wilcoxon test; Figure 2E, Table S2). At the genus 

level, AX increased the genera Bifidobacterium and Prevotella in comparisons with both baseline 

and MCC; and it enriched Blautia when compared to MCC. Further, OTU level analysis revealed 

that 15 OTUs significantly changed during AX treatment relative to baseline (henceforth referred 
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to as ‘significant OTUs’). In particular, AX significantly enriched OTUs related to 

Bifidobacterium longum (OTU4), Prevotella copri (OTU6), Bacteroides plebeius (OTU53), 

Bacteroides sp. (OTU56), Bacteroides ovatus (OTU26), Phascolarctobacterium succinatutens 

(OTU38), Blautia obeum (OTU85), Subdoligranulum variabile (OTU11), Clostridium leptum 

(OTU46), Mollicutes sp. (OTU32), and Muribaculaceae sp. (OTU79) (q<0.15). OTUs that were 

significantly reduced in abundance by AX were classified as Ruminococcus bromii (OTU5), 

Eubacterium oxidoreducens (OTU41), Bacteroides uniformis (OTU7), and Coprobacillus sp. 

(OTU21). Supplementation with MCC only increased the family Lachnospiraceae and the genus 

Parasutterella (q=0.117). Overall, the effect of AX was to a large degree specific to B. longum 

(OTU4) and P. copri (OTU6), as these taxa increased in relative abundance by 3.5% and 2.7%, 

while other OTUs only increased by ≤1.1%.  

In an attempt to identify groups of cooperating species that could function as ecological guilds in 

the degradation of AX, we adapted a clustering approach conceptually similar to that described by 

Zhao et al.[66] but used AX-induced shifts and not absolute proportions of taxa to identify species 

whose responses were correlated. This analysis revealed seven CARGs (Figure 3A); of which five 

CARGs show significance responses to AX and none to MCC (Table S2). The CARG that showed 

the largest increase was CARG1 (p=0.0003, Wilcoxon test), which consisted of six out of the 11 

OTUs increased by AX (Figure 3B). Among those six OTUs, B. longum (OTU4) exhibited the 

largest shift and showed significant connections to all but one member of CARG1, suggesting AX 

is degraded through cooperative interactions between these taxa. The second largest response was 

in CARG2, which only had three members with much weaker correlations than in CARG1. In 

CARG6, P. copri (OTU6) exhibited the largest response, but only showed a significant connection 

with one other member of the CARG, Bacteroides massiliensis (OTU98), which suggests P. copri 
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might act independently to degrade AX (Figure 3B). Remaining CARGs showed weaker increases. 

The majority of taxa that decreased after AX treatment, particularly B. uniformis (OTU7), 

clustered within CARG7 and showed negative correlations with taxa of CARG1, CARG2, and 

CARG6, suggesting competitive or antagonistic interactions. 

4.2.3 Temporal Response of OTUs and CARGs  

To determine if short- and long-term treatment with AX and MCC differed in its effects on the 

fecal microbiota, we compared shifts from baseline to W6 with those from baseline to W1. This 

analysis did not detect differences between the two time points (q>0.25, Wilcoxon test, data not 

shown). In addition, comparison of baseline, W1, and W6 values by Friedman's test indicated that 

the effects of AX occur rapidly within one week, with no further adaptations after six weeks 

(Figure 4A). Since there is no significant difference in microbiome compositional response 

between W1 and W6, below analysis on compositional changes were performed with W6 data 

unless otherwise stated. 
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Figure 3. Identification of co-abundance response groups (CARGs) during AX supplementation. 

(A) Heatmap shows the change (ΔW6–BL) in centered log-ratio (CLR) adjusted abundance of 41 

OTUs affected by AX treatment (p<0.1, Wilcoxon test). The Hierarchical dendrogram shows 

clustering of OTUs (rows) based on Spearman’s correlation distances by the complete-linkage 

clustering algorithm, and then grouped on the dendrogram into seven CARGs by PERMANOVA 

(p<0.05). Subjects (columns) clustered based on Euclidean distances. Colors from blue to red 

indicate the direction and magnitude of change. (B) Co-response network analysis. Each node 

represents an OTU, where the size is proportional to the change (ΔW6–BL) in relative abundance, 

the shape indicates direction of change (positive: circle; negative: square), and the color references 

the respective CARG it was clustered to. Each edge represents a significant positive (red line) or 
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negative (blue line) Spearman’s correlation between nodes (q<0.05). BL; baseline; OTU, 

operational taxonomic unit; W6, week 6. 

 

Figure 4. Temporal (A) and individualized responses (B) of OTUs significantly affected, and the 

respective CARGs, by AX and MCC treatment. (A) Line plots show the temporal response of the 

ten most abundant OTUs (detected in >25% of subjects) and the seven CARGs. Centered log-ratio 

(CLR) transformed data were analyzed by Friedman’s test (with Dunn's correction) to assess 

within-group changes between time points (i.e. ΔW1–BL and ΔW6–W1). (B) Bubble plot shows 
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individualized differences (ΔW6–BL) in the proportions of OTUs (percentage of total microbiota 

composition) and CARGs (sum of OTUs) detected after six weeks AX and MCC supplementation. 

The size of the bubble is proportional to the change relative to baseline, while the color of the 

bubble represents the direction of the change (red: increase; black: decrease). BL; baseline; CARG, 

co-abundance response group; OTU, operational taxonomic unit; W1, week 1; W6, week 6. 

4.2.4 Inter-individual variation in the response of AX treatment  

In accordance with previous studies on the effect of DF on the human gut microbiome [18, 77, 98, 

99], bacterial shifts in response to AX and their magnitude were highly individualized (Figure 4B). 

For instance, while absolute increases in relative abundance from approximately 5% to 10% (8 to 

400 fold change) were detected for the OTU classified as B. longum (OTU4) in seven subjects, 

other subjects showed either a much smaller increase, a decrease, or the species was not detected 

at all. OTUs related to B. obeum (OTU85), S. variabile (OTU11), B. ovatus (OTU26), and C. 

leptum (OTU46) were enriched by AX in around two-thirds of the subjects. Less frequently 

enriched were OTUs classified as P. copri (OTU6), B. plebeius (OTU53), and Bacteroides sp. 

(OTU56). P. copri (OTU6) expanded beyond 10% of the total bacterial community in only three 

subjects, but enrichments were substantial, ranging from 1.5 to 17 times. 

To determine drivers of this individualized response, we used MLR analysis to test if responses in 

the taxa that showed the numerically largest shifts (P. copri, B. longum, B. obeum, S. variabile) 

and CARGs with significant responses (CARG1, 2, 3, 6, 7) can be predicted by baseline diet or 

microbiome composition. Baseline microbiome variables (all OTUs and significant OTUs) and 

baseline dietary history were first reduced in their dimensionality by PCA and then treated as 

predictors. This analysis revealed that the individualized responses of bacterial taxa and CARGs 
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to AX and MCC could not be predicted through baseline dietary intake or microbiome composition 

(q>0.05; Figure S2). 

4.3 Effect on Fecal SCFAs 

4.3.1 Temporal Response of Fecal SCFAs 

Fecal pH, fecal concentrations of SCFAs, and fecal moisture content did not significantly change 

after six weeks of either DF treatment (p>0.1, Wilcoxon test; Table S3). Considering that absolute 

concentrations of fecal SCFAs are affected by their absorption in the gut, we additionally assessed 

the molar proportions of acetate, propionate, and butyrate relative to total SCFA concentrations, 

which has been previously shown to vary little across colonic regions [100]. This analysis revealed 

an increase of propionate at W6 relative to baseline (p=0.04, Wilcoxon test) and MCC (p=0.01, 

Mann–Whitney test), as well as decrease of butyrate when compared to baseline (p=0.018), 

although this decrease does not reach significance in comparison with the MCC (p=0.08). 

Characterization of the temporal response in the three SCFAs revealed a significant increase in the 

fecal concentration of propionate by AX at W1 (p=0.01, Friedman's test) (Figure 5A). Although 

propionate concentrations remained elevated at W6, this increase was not statistically significant 

when compare to baseline (p=0.15). This loss of statistical significance was caused by an increase 

in the inter-individual variation at W6 (Figure 5B).  

Visual evaluation of the individualized temporal response of propionate to AX revealed clear 

separation of subjects into two distinct patterns (Figure 5B), with one group showing little response 

at W1 but then an increase, while the other group showed an increase at W1 that then declined. 

Based on the direction of change from W1 to W6 (i.e. positive or negative), subjects were grouped 

into “W6-responders” (Δ W6-W1>0) and “W1-responders” (Δ W6-W1<0). W6-responders but 

not in W1-responders showed a significant higher output of propionate at W6 (p<0.05, Friedman's 
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test) but not at W1, and the two groups differed significantly by propionate concentrations at W6 

(p=0.001, Mann–Whitney test). 

 

 

 

Figure 5. Temporal (A) and individualized (B) responses of fecal SCFA concentrations (µmol/g) 

to AX and MCC supplementation. (A) Line plots show the temporal response of acetate, 

propionate, and butyrate; reported as mean ± SD. (B) Temporal propionate response of W6-

responders (red) and W1-responder (black) (grouped based on ΔW6–W1). Data analyzed for (A,B) 

using Friedman test (with Dunn's correction) to assess within-group changes between time points, 

and for (B) using Mann-Whitney tests to assess differences between-group at each time point. BL; 

baseline; CARG, co-abundance response group; OTU, operational taxonomic unit; W1, week 1; 

W6, week 6. 

4.3.2 W1- and W6-responders differ in their microbiome response to AX 

Microbiome compositional (baseline and shifts) and diet data were ordinated using PCA, and then 

differences between W1- and W6-responders were tested using PERMANOVA. This analysis 
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revealed that the bacterial communities of W6-responders were indistinguishable from W1-

responders at baseline, but their response to AX was significantly different (ΔW6-BL; Figure 6). 

This was detected for all OTUs (p=0.004), the 15 significant OTUs (p=0.025) or the seven CARGs 

(p=0.025). In contrast, neither baseline microbiota composition (Figure 6) nor dietary factors 

(Figure S3A) separated according to W1 and W6 response (p>0.1). In addition, comparing W1- 

and W6-responders in term of their baseline whole grain, total grain, and total DF consumption 

did not reveal any significance either (p>0.1, Mann–Whitney test) (Figure S3B). Together these 

findings indicate that the temporal response in fecal concentrations of propionate is primarily 

associated with the shifts in the microbiome and not baseline microbiome composition or diet.  



 38 

 

Figure 6. The individualized temporal propionate response to AX associates with compositional 

responses in the fecal microbiome. Principal component analysis plots based on Euclidean distance 

comparing the relative abundance of fecal microbiota, both at baseline and AX-induced shifts 

(ΔW6–BL), between W6-(red) and W1-(black) responders. When statistical significances were 

determined by PERMANOVA (p<0.05), microbiome variables (i.e. OTU or CARG) that 

contributed the most to inter-subject variation were shown as vectors on the plot. BL; baseline; 
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CARG, co-abundance response group; OTU, operational taxonomic unit; W1, week 1; W6, week 

6. 

4.3.2 Individualised responses of SCFAs can be explained by features of the gut 

microbiome 

As with compositional responses, gut microbiota functional responses to DF interventions have 

been shown to be individualize [18, 99, 101], but what drives this variation is poorly understood. 

We applied MLR to determine whether SCFA responses from baseline to W6 could be explained 

by microbiome and diet related factors, and then compared the quality of the models using AICc 

values (where lower values mean higher quality). These analyses revealed that the fecal SCFA 

response to AX (i.e. ΔW6-BL) could be predicted by the fecal microbiome (Figures 7, S4A, and 

S4B) but not baseline diet (Figure S5). The best models were achieved for propionate, especially 

when PCs of shifts of either all or significant OTUs were used as predictors (Figure 7A). Models 

were of lower quality when CARGs or single OTUs were used, showing that overall community 

measures predict the response better then single or groups of taxa. Linear relationships between 

propionate responses and significant predictor using baseline (PC1 of All OTUs) and shift 

(CARG1) were further visualized using scatter plots (Figure 7B), confirming the analysis as a 

majority of subjects gather on the regression line or within the 95% confident interval area. Further 

analysis of the predictors revealed that B. longum (OTU4) contributed up to 50% of the total shift 

in CARG1 while other members account only for 5% to 16% (Figure 7B). This information 

highlights the importance of B. longum (OTU4) in CARG1 and in predicting the response of 

propionate. 

Although the models that used baseline OTUs as predictors were of lower quality than those based 

on shifts, they are still valid, showing significant q values after FDR correction (q<0.05, MLR). 
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MLR did not detect any significant models for the MCC group, which is an indication that the 

statistical approach does not detect associations that are not related to DF fermentation. Lower 

quality models could also be designed for acetate and butyrate responses to AX, but not MCC. 

Interestingly, in contrast to propionate, the best models to predict butyrate responses were achieved 

using shifts of a single OTU (E. oxidoreducens [OUT41]) and CARG3 (Figure S4B). E. 

oxidoreducens (OUT41), an important butyrate producer [102], was significantly reduced through 

AX, thus providing a potential explanation for the reduction of butyrate proportions. In summary, 

while individualized responses in SCFAs showed no association with dietary history, they could 

be predicted by microbiome shifts and baseline composition. 

 

Figure 7. The individualized propionate response to AX could be explained by baseline and shifts 

of the gut microbiome. (A) Heatmap shows the associations between the individualized propionate 

response (ΔW6–BL; dependent variable; columns) and microbiome profiles (BL, ΔW1–BL, 
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ΔW6–BL; predictor variables; rows). Cells represent individual multiple linear regression models 

(with FDR correction) that assess whether the predictors explain the individualized propionate 

response. Multivariate microbiome data were simplified into principle component variables (i.e. 

PC1, PC2, PC3) prior to analysis. Each model contained the very best one or two predictors of PC 

variables, CARGs, or significant OTUs selected by stepwise regression. All models were adjusted 

by sex/fiber dose. Colors from white to red indicate relative AICc (Akaike information criterion 

corrections) values calculated by (AICc value/Highest AICc value) * 100. Lower AICc values 

(red) indicate higher quality models. (B) Scatter plots show the linear relationship between 

propionate response (ΔW6–BL) and either the baseline of all OTUs or the shift of CARG1. Color 

and size of each point indicate propionate response magnitude and the shaded area specifies the 

95% confident interval. The top five OTUs that contributed the most to PC1 of either all OTUs or 

CARG1 are further provided. BL; baseline; CARG, co-abundance response group; OTU, 

operational taxonomic unit; W1, week 1; W6, week 6. Details of model components were 

presented in Table S4. 

4.3.2 Using MLR models to determine the role of taxa in propionate production 

MLR models were used to determine the connections between AX responders and propionate 

production. This analysis revealed that shifts in P. copri (OTU6) were a poor predictor of 

propionate response, while B. longum and correlated taxa in CARG1 resulted in much better 

models (Figure 8A). The highest quality models were obtained with B. obeum (OTU85), B. 

plebeius (OTU53), and P. succinatutens (OTU38), all of which encode metabolic pathways for 

propionate production [103], though B. obeum has only been shown to form propionate with deoxy 

sugars and otherwise produces acetate [104, 105]. P. succinatutens (OTU38) specifically, a 

propionate producer by means of succinate utilization [106], was estimated to increase fecal 
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propionate concentrations by 12 µmol/g per 1% increase in relative abundance (Figure 8A, p=0.04, 

MLR). Such analysis provides a potential explanation for the metabolic interactions between 

putative primary degraders, polysaccharide utilizers, oligosaccharide/sugars utilizers, and 

propionate producers that result in the promotion of propionate in response to AX (Figure 8B).  

 

Figure 8. Relationship between propionate response during AX supplementation and putative 

primary degraders, secondary fermenters, and metabolite utilizers. (A) Individual multiple linear 

regression models determine OTU responses (ΔW6–BL;) that predict the fecal propionate 

response (ΔW6–BL). Y-axis shows the coefficient for each predictor, as in the average propionate 

response (µmol/g) when OTU relative abundance increases 1%. X-axis shows the p value (grouped 

into <0.01, <0.05, <0.055, and >0.1) for each predictor. All models were adjusted by sex/fiber 
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dose, where bubble size represents the adjusted-R2. (B) Proposed model of bacterial cross-feeding 

in the gut during degradation of complex, soluble arabinoxylans. 

4.4 Supplementary Tables & figures 
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Supplementary Table 4: Continued 
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Supplementary Figure 1: Flow chart summarizing subject flow through study. 
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Supplementary Figure 2: Baseline fecal microbiome composition and diet showed no association 

with the individualized microbiome response to arabinoxylan. (A) Heatmap shows the associations 

between microbiome compositional shifts (ΔW6–BL; dependent variables; columns) and baseline 

microbiome profiles (predictor variables; rows). (B) Heatmap shows the association between 

microbiome compositional shifts (ΔW6–BL; dependent variables; columns) and baseline diet 

variables (predictor variables; rows). Cells represent individual multiple linear regression models 

(with FDR correction) that assess whether the predictors explain the individualized compositional 

shifts. Multivariate microbiome and diet data were simplified into principle component variables 

(i.e. PC1, PC2, PC3) prior to analysis. Each model contained the very best one to two predictors 

of PC variables (microbiome and diet), CARGs, or significant OTUs (predictors selected by 

stepwise regression), or either total grains, whole grains, or total fiber alone. All models were 

adjusted by sex/fiber dose. Colors from white to red indicate relative AICc (Akaike information 

criterion corrections) values calculated by (AICc value/Highest AICc value) * 100. Lower AICc 

values (red) indicate higher quality models. BL; baseline; OTU, operational taxonomic unit; W1, 

week 1; W6, week 6. 
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Supplementary Figure 3: Temporal propionate response to arabinoxylan supplementation 

showed no association with baseline diet. (A) Principal component analysis plot based on 

Euclidean distance comparing the baseline, calorie-adjusted intake of Canada’s Food Guide food 

group and macronutrient variables between W6-(red) and W1-(black) responders. Data were 

analyzed using PERMANOVA. (B) Comparison between W6-(red) and W1-(black) responders in 

single dietary factors (total grains, whole grains, and dietary fiber) performed using Mann-Whitney 

tests. W1, week 1; W6, week 6. 
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Supplementary Figure 4: Individualized short-chain fatty acid response to arabinoxylan could be 

explained by baseline and shifts of the gut microbiome. Heatmap shows the associations between 

the individualized response of (A) Acetate and (B) Butyrate (ΔW6–BL; dependent variable; 

columns) and microbiome profiles (BL, ΔW1–BL, ΔW6–BL; predictor variables; rows). Cells 

represent individual multiple linear regression models (with FDR correction) that assess whether 

the predictors explain the individualized SCFA responses. Multivariate microbiome data were 

simplified into principle component variables (i.e. PC1, PC2, PC3) prior to analysis. Each model 

contained the very best one to two predictors of PC variables, CARGs, or significant OTUs 

selected by stepwise regression. All models were adjusted by sex/fiber dose. Colors from white to 

red indicate relative AICc (Akaike information criterion corrections) values calculated by (AICc 
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value/Highest AICc value) * 100. Lower AICc values (red) indicate higher quality models. BL; 

baseline; CARG, co-abundance response group; OTU, operational taxonomic unit; W1, week 1; 

W6, week 6. Details of model components were presented in Table S4. 

 

 

 

 

 

 

 

 

 

Supplementary Figure 5: Individualized short-chain fatty acid response to arabinoxylan could 

not be explained by baseline diet. Heatmap shows the associations between the individualized 

SCFA response (acetate, propionate, butyrate; dependent variable; columns) and baseline diet 

variables (predictor variables; rows). Cells represent individual multiple linear regression models 

(with FDR correction) that assess whether the predictors explain the individualized SCFA 

responses. Multivariate diet data were simplified into principle component variables (i.e. PC1, 

PC2, PC3) prior to analysis. Each model contained total grains, whole grains, or total fiber, or the 

best one to two PC variables as the predictors (PCs selected by stepwise regression). All models 

were adjusted by sex/fiber dose. Colors from white to red indicate relative AICc (Akaike 
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information criterion corrections) values calculated by (AICc value/Highest AICc value) * 100. 

Lower AICc values (red) indicate higher quality models. BL; baseline; W6, week 6.  
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CHAPTER 5: DISCUSSION 

5.1 Discussion 

In the present study, we characterized the impact of a six-week, high-dose corn bran AX 

supplementation on the composition and function of the fecal bacterial community in healthy 

adults with overweight and class-I obesity. AX treatment changed community structure and 

induced specific shifts in the composition of the gut microbiota that manifested themselves after 

one week of treatment without further changes at W6. AX induced increases in propionate output. 

Both compositional and functional responses were highly individualized, and the propionate 

response showed two distinct temporal patterns. Although compositional responses to AX could 

not be predicted, and functional responses were independent of baseline diet, baseline microbiome 

composition and especially the compositional shifts explained the propionate response. The non-

fermentable MCC showed virtually no effect on gut microbiota composition or function. 

An understanding of compositional and functional responses of the gut microbiome towards diet 

requires an ecological framework [31]. The provision of AX provides resources that can be used 

by microbes that possess the traits to either access the chemical structures or competitively utilize 

public goods released during AX degradation [31]. In our study, the dominant effect of AX was 

directed towards two bacterial species, B. longum and P. copri, while nine additional OTUs 

showed smaller increases, including three Bacteroides spp. This high degree of specificity towards 

B. longum over other Bifidobacterium species is in agreement with other studies testing long-chain 

AXs [107, 108], as genes encoding AX-degrading glycosidase (e.g. β-xylosidase and α-

arabinofuranosidase) are shown to be conserved and abundant only among B. longum strains [109, 

110]. P. copri has also been described to efficiently utilize AX [111, 112], which can be explained 

by their polysaccharide utilization loci. This Bacteroidetes xylan utilization system is shown to be 
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conserved across xylan-degrading Prevotella [113, 114], and as P. copri is considered the only 

human gut symbiont in the Prevotella genus [115], it would explain its selective increase in our 

study. The xylan utilization system is also conserved across xylan-degrading Bacteroides, which 

are more abundant in the human gut microbiome, thus explaining the reduced specificity towards 

Bacteroides enrichment [113, 114]. Interestingly, the corn bran AX used in our study showed a 

much higher degree of specificity than wheat bran extracted AXOS, which promoted different 

species of Bifidobacterium and Prevotella along with other genera [21, 22]. This prominent 

difference in specificity is likely attributed to variations their structural features. Specifically, the 

corn bran AX exhibited a relatively high arabinose-to-xylose ratio of 0.56 and contained high 

amounts of galactose (9.7%), which suggests a heavily branched structure with complex side 

chains [70, 116, 117]. To access and utilize such complex structures, bacterial genomes must 

encode a more extensive repertoire of binding and degradation proteins relative to the machinery 

need for AXOS utilization, which are generally simpler in structure [118]. For instance, 

Bifidobacterium adolescentis has been shown to utilize simple AXOS both in monoculture [119] 

and during co-culture with B. ovatus on simple AXs, but not during co-culture on corn bran AX 

[120]. 

Exploring the response of the bacterial community in the context of ecological guilds 

provides a more complete view on the interactions among the bacterial species in the degradation 

of AX. This analysis showed the strongest response in CARG1 and CARG2, which further show 

extensive intra- and inter-guild associations. The response within CARG1 is dominated by B. 

longum, which showed connections to four out of five members within CARG1 (B. plebeius, 

Bacteroides sp., P. succinatutens, and S. variabile) and one member in CARG2 (an unclassified 

Lachnospiraceae), suggesting that its growth is closely connected to the growths of other 
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members. B. longum has been shown to be a primary degrader of AXs [109, 110], cleaving the 

complex AX structure by potentially secreting soluble AX-degrading glycosidase [121, 122], thus 

in theory making AXOS (or even xylose, arabinose, and galactose) accessible to secondary 

fermenters like B. obeum and S. variabile [105, 107, 123] (Figure 8B). This would simultaneously 

make corn bran AX more accessible to xylan-utilizing Bacteroides, for instance B. plebeius, which 

would likely be capable of degrading AX on their own [114, 124]. This cross-feeding would 

explain the strong positive associations between B. longum and the other OTUs within CARG1. 

In contrast, P. copri also increased and is also likely a primary AX degrader, but showed very few 

positive interactions within CARG6, suggesting the bacterium behaves ‘selfishly’ [111]. Our 

findings suggest that no singular ‘keystone species’ initiates the degradation of AX, as it has been 

described for type III resistant starches [25]. Most likely, a few primary degraders, including B. 

longum, P. copri, and certain Bacteroides species, assume this task. 

The ecological connections described above provide a basis to understand the effects of AX on 

microbiome metabolism, which is characterized by an increase in propionate. The specificity of 

long-chain AXs for propionate has been previously described [125], and is affiliated with a higher 

presence of arabinose side-chains [14, 126]. Although P. copri is a primary degrader, the bacterium 

does not produce propionate [103], and therefore does not explain the fecal propionate response in 

our study. However, it indirectly contribute to propionate production by producing succinate [103], 

which can be converted to propionate by metabolite-utilizers like P. succinatutens. 

Metabolic interactions are likely more relevant within CARG1. Although the numerically 

dominant responder within this CARG, B. longum does not produce propionate by itself, but its 

enrichment is closely connected to the growth of other members that encode in their genomes 

metabolic pathways for propionate production (i.e. B. obeum, P. succinatutens, B. plebeius, and 
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Bacteroides sp.) [104, 106]. In accordance, MLR models based on B. obeum, B. plebeius, and P. 

succinatutens are better predictors of propionate response than B. longum. Although MLR results 

in significant models with single taxa, models using CARG1 are better at predicting shifts of 

propionate, indicating that groups of bacteria collaborate in producing propionate. Overall, our 

analyses on ecological guilds suggest cooperative and syntrophic interactions among B. longum, 

B. obeum, P. succinatutens, and some Bacteroides species in the degradation of AX to produce 

propionate, while P. copri displays a more competitive phenotype during AX degradation. 

A reduction in the proportion of butyrate could be the result of the decrease of several butyrate-

producing bacteria in CARG7, such as E. oxidoreducen [102], which was the best predictor of the 

butyrate response. In our network, CARG7 represented the only ‘guild’ that was strongly reduced 

by AX and showed a high number of negative correlations to bacteria from CARGs that were 

promoted by AX. This finding, and the fact that bacteria in CARG7 have been shown to have 

either slower or no growth on AX (e.g. B. uniformis, Agathobacter rectalis [reclassified from 

Eubacterium rectale] and Ruminococcus bromii [127-129]) suggests that they were outcompeted 

by taxa able to competitively utilize AX . Interestingly, AXOS supported a wide range of butyrate-

producing bacteria, such as Eubacterium hallii, F. prausnitzii, A. rectalis, and Roseburia faecis 

[21, 22]. In short, the complex structure of corn bran AX likely restricted the access of butyrate-

producing bacteria known to grow on simple linear AXs, such as A. rectalis and Roseburia sp. 

[128, 130], which in turn affected butyrate levels while selecting for propionate producers. 

Although significant findings on both specific taxa and propionate production were 

discovered, these variables displayed a high degree of individuality. In terms of taxa, this might 

be driven by the inter-individual differences in baseline microbiome composition and diet [18]. 

Although the responses of P. copri were strictly linked to the presence of the species at baseline, 
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as only individuals that already possessed P. copri showed a response, our MLR models showed 

no significant association between the baseline and individualized responses. However, some 

models showed p values below 0.001 before FDR correction, suggesting that associations between 

the compositional response to AX and the baseline microbiome exist but could not be detected 

with the sample size of our study. Therefore, future studies on the individualized response of DF 

should be conducted with larger sample sizes. 

 

Individuality was especially pronounced when looking at metabolite production. Stratifying the 

population based on their SCFA shifts clearly identified W6- and W1-responders that differed in 

how their microbiome responded to AX, but not in baseline microbiome composition or diet. Our 

MLR analyses revealed that shifts in propionate output (∆W6-baseline) could be explained by W6 

shifts in the microbiome, and to a lesser degree W1 shifts and baseline composition, but not diet. 

PCs generated from the entire microbiome performed better than individual CARGs or taxa, 

confirming our conclusion from above that propionate production is the result of AX utilization 

by ecological guilds. This supports the application of an ecological framework to interpret the 

outcome of DF fermentation by the human microbiome. 

Dietary history in our study did not predict propionate responses or contributed to the quality of 

the models. This could be reflective of the fact that diet is only one of many contributors to the 

variation of microbiomes [131, 132], although we cannot exclude that our small sample size and 

limitations in the self-reported dietary intake data contributed to the lack of signal [133]. 

Put together, our analyses showed that the effects of AX were specific for the promotion of B. 

longum and P. copri, and for an increased propionate level. These findings have implications in 

the targeted use of AX to modulate the gut microbiome for improved health. Probiotic treatment 
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with B. longum strains has been shown to be health-promoting in a variety of contexts [58], 

including gastrointestinal [134, 135], immunological (e.g. anti-allergy and anti-inflammatory [136, 

137]), and psychological (e.g. depression and anxiety [138, 139]) disorders. The specific 

enrichment of this species supports the use of AX in synbiotic applications with B. longum. 

Another finding that warrants attention in the context of health is the increase in P. copri. The 

species was associated with the improved glucose metabolism after whole grain barley kernel 

treatment [140], and correlated with weight loss in volunteers that consumed diets high in whole 

grains [64, 65]. Prevotella is a genus that has been consistently-negatively associated with an 

industrialized lifestyle [141, 142]. The reason for this reduction is unknown, but it has been 

speculated that reduced consumption of plant-based, high-DF foods is responsible [143]. The 

increase of P. copri after supplementing through AX supports this hypothesis, as AX is a dominant 

DF in whole grains, which are reduced in the westernized diet. The increased production of 

propionate would have implications for the treatment of obesity and related metabolic and immune 

alterations, as it has been shown in mice to enhance satiety via induction of anorectic gut hormones 

[49, 144], improve glucose metabolism via upregulation of intestinal gluconeogenesis [145], and 

support regulatory T cell development [146] and suppress proinflammatory interleukin-8 levels 

[147]. Overall, our findings suggest that AX has prebiotic properties in that it specifically promotes 

putatively health-promoting organisms and the increase of propionate, which makes it a candidate 

for targeted applications such as the prevention of obesity. 

5.2 Conclusion 

Supplementing AX promoted the increase of B. longum, P. copri, and propionate, which 

are considered beneficial microbes and a health relevant SCFA, respectively. By stratifying the 

population based on their response, our study revealed two distinct temporal response patterns in 
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fecal propionate. These findings are relevant as they provide a potential explanation for the 

inconsistent effect of DF in human intervention studies [16]. If metabolic functions relevant for 

the physiological effects of DF (e.g. propionate) are individualized, then effects might not be 

detectable without stratifying the human population. An understanding of the factors that explain 

the propionate responses to AX might allow the development of a framework to personalize the 

use of DF. Our findings that propionate responses can potentially be predicted through the baseline 

microbiome is therefore relevant as it provides a basis for the personalized use of AX based on an 

individual’s fecal microbiome. However, larger studies are needed to develop robust machine 

learning algorithms to predict the health outcomes of DF based on microbiome characteristics. 
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CHAPTER 6: GENERAL DISCUSSION 

6.1 General Discussion 

Apart from providing insight into the effects of AX on the gut microbiota from an 

ecological perspective, this study provides information on the health effects of AX. AX 

supplementation has previously been shown to improve glucose metabolism[148, 149] and insulin 

sensitivity[148, 149], induce satiety [4, 150], and improve cholesterol [151] and lipid metabolism 

[152]. These effects could be linked to the gut microbiota, a topic that has been addressed by other 

research groups for different structures and sources of AX [65, 111, 140, 150, 153]. In parallel 

with the study conducted in my thesis, we also collected blood samples before and after the 

intervention to evaluate the effect of long-chain AX on host physiology. This study is hereon 

referred to as the AX-health study. This study is in the final stages of data analysis (Deehan et al., 

manuscript in preparation) and, therefore, is not presented this thesis. However, the two studies 

are very connected and can be discussed together to enhance the impact of the findings discussed 

in this thesis and open new directions for future studies. 

Generally, AX has been shown to induce satiety [4, 150] and improve insulin sensitivity [148, 

149], in both published literature and our AX-health study, and AX produced from wheat 

endosperms has an EFSA claim on the improvement of insulin sensitivity [9]. Improvements in 

both satiety and insulin sensitivity have been linked to the gut microbiome and to microbiome 

features impacted by long-chain AX (Deehan et al., manuscript in preparation). The findings 

presented in this thesis are, therefore, directly relevant. In my study, AX promoted the growth of 

P. copri, and this species has been linked improved glucose metabolism after consumption of 

barley kernel-based bread [140]. In addition, results obtained from our AX-health study show 

significant improvements in insulin resistance induced through AX (measured by HOMA-IR: 
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homeostasis model assessment of insulin resistance), suggesting that AX beneficially affects 

glucose metabolism. These improvements might be linked to the effects of AX on P. copri. To test 

this hypothesis, Deehan and colleagues are examining associations between markers of glucose 

metabolism and gut microbiome features. Regarding SCFA production, propionate has been 

reported to induce satiety [9], possibly by regulating PYY and GLP-1[49]. In our AX-health study, 

we also observed increased satiety (30-60 minutes after meal) as a result of AX consumption. 

These connections warrant investigations into the relationships between propionate levels and 

satiety in our study. Exploring the response of P. copri and propionate and how this is linked with 

health markers provides a more complete view of the impact of long-chain AX on host physiology 

and the gut microbiota, which may help inform dietary strategies that target obesity and its 

associated pathologies.  

Recent evidence suggests that SCFAs play an important role in the regulation of 

immunometabolic markers of health and, therefore, modulating SCFA levels may be one strategy 

to address obesity-associated pathologies [9, 154]. Propionate reduced the proinflammatory 

cytokine interleukin-8 [147] and improved glucose metabolism via upregulation of intestinal 

gluconeogenesis [145], and support regulatory T cell development [146] and suppress 

proinflammatory interleukin-8 levels [147]. If SCFAs are critical intermediates for the health 

effects of DFs, but their production is vastly different between individuals, then this individuality 

could be a potential reason for the inconsistent effects of DF in human intervention trials and may 

justify the personalization of DF in nutrition strategies. Our findings provide evidence that such a 

personalization could be achieved by using the baseline microbiome, which is more practical than 

using AX-induced microbiome shifts, although the latter resulted in higher quality models in our 

study. Fecal microbiomes could be characterized at baseline and then used to stratify human 
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populations and assign them to different DF sources. However, additional studies are needed to 

establish predictive models to achieve such personalization.  

Alternatively, different routes of SCFA supplementation could be explored. There are two 

methods which could be employed in interventional studies to accomplish this. (1) Consuming 

DFs that are fermented into SCFAs by the gut microbiota, (2) consuming SCFA-binding dietary 

fiber such as inulin propionate ester (IPE) [147] and (3) consuming SCFA-containing tablets such 

as sodium propionate [155] and sodium butyrate [156]. Apart from providing DFs as a major 

quantitative source of SCFAs, consuming SCFAs directly might be more convenient for users 

compared to taking high doses of DF. In addition, consuming sodium butyrate tablets can reduce 

the inflammation of acute ulcerative colitis [156] and supplementing propionate has been reported 

to improve glucose metabolism [157-159] and increase resting energy expenditure through the 

modulation of whole-body lipid oxidation [155]. However, while butyrate is well-known as the 

main energy source for colonocytes [160], butyrate taken from tablets would be absorbed in the 

small intestine, which would result in the loss of benefits for the colonocytes. Therefore, to provide 

energy for colonocytes, it is likely better for butyrate to be produced by microbiota from 

fermenting DF in the colon.  

Although it might not be favorable for consumer when taking a high dose of DF daily, I 

still believe that consuming a high DF diet can provide the benefits from SCFAs as well as benefits 

that are independent to SCFA production. First, a DF-deficient diet has been linked to a thinner 

mucus layer [161], and a high-DF diet in germ-free mice has been shown to protect this layer from 

the consumption of introduced Bacteroides thetaiotaomicron, which is a dominant member of a 

normal human gut microbiota [162], compared to the polysaccharides-free diet[163] and simple 

sugar-diet [164]. In fact, gut bacteria are known to be able to degrade and consume intestinal mucus 
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layer for over five decades [165, 166].Therefore, a lack of DF forces the microbiota to switch to 

using the human mucus layer for nutritional support [167]. The mucus layer  of  the human colon 

maintains gut homeostasis, and the loss of this barrier integrity allows microbes and their products 

(lipopolysaccharides) to reach and interact with the epithelial layer, which can result in a pro-

inflammatory response [168].  

 Second, consuming DF promotes laxation, increases fecal bulk, and reduces transit time; 

hence, it helps to ameliorate constipation [169] and improve bowel function [170, 171]. Third, the 

mechanisms by which DF, especially soluble and viscous DFs, can lower glucose and cholesterol 

levels are related to their physico-chemical properties. Some DFs can form a viscous layer that 

reduces starch digestion and, therefore, glucose absorption [148]. Viscous DFs also reduce the 

reabsorption of bile acids and enhances their excretion, which in turn promotes heptaic synthesis 

of bile acids from cholesterol, which lowers systemic cholesterol levels [172, 173]. Fourth, the 

next evidence came from an animal model when Bindels et al studied the effect of resistant starch 

(RS- a type of DF) in both conventionalized and germ-free mice. Their results showed that feeding 

germ-free mice RS type 4 improved insulin sensitivity [174], which further supports that some 

health benefits of DF are independent of the gut microbiota and SCFA production. In short, many 

health benefits of consuming DF are independent of the gut microbiota and SCFA production, 

indicating that there are more advantages in consuming a high DF diet compared to consuming 

only SCFA-containing tablets. 

6.2 Implications 

By promoting specific taxa and SCFA production, as well as improving host glucose 

metabolism and satiety, long-chain AX can be considered as a candidate for targeted applications 

in the treatment of obesity-associated insulin resistance. Since both the compositional changes 
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(e.g. promotion of B. longum and P. copri) and metabolic functional changes (propionate 

production) induced by AX are considered beneficial, the findings in this study support the 

consideration of this long-chain isolated AX as a prebiotic. 

By stratifying the population based on their responses, our study revealed two distinct 

temporal response patterns in fecal propionate production. These findings may be implicated the 

inconsistent effects of DF supplementation in human intervention studies [16]. If metabolic 

functions relevant for the physiological effects of DF (e.g. propionate production) are 

individualized, then effects might not be detectable without stratifying the human population. 

Prediction of SCFA responses based on baseline fecal microbiome composition would 

allow us to estimate the shifts of SCFA concentration prior to consuming a DF supplement, which 

could save time, money, and effort for both physicians and patients (if these responses are linked 

to physiological effects). Although the shifts of bacterial taxa predict SCFA levels better than 

baseline composition, to obtain such data requires that the dietary intervention is conducted for at 

least one week, which is expensive and, therefore, means it is unnecessary to obtain prediction 

models when actual SCFA data after treatment is available. Generally, the integrated data from 

this research established a basis to understand factors that explain propionate responses, providing 

a framework to personalize the use of AX. 

6.3 Limitations 

In the context of data analysis, stratifying the 15 subjects based on their patterns of response 

might reduce the power of the test to detect the differences in microbiota or diet between two 

groups. Moreover, 15 observations are not enough to develop and validate robust machine learning 

algorithms to predict the health outcomes of DF based on microbiome characteristics.  
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6.4 Future directions 

When assessing how the gut microbiota composition influences responses to dietary 

interventions, it is highly recommended that future studies increase the sample size to 30 to expect 

around 15 samples for each responder and non-responders group or use a crossover study design 

if a larger sample size is not feasible. 

Long-chain AX improved glucose metabolism and increased satiety that should be further 

explored as a potential therapy for obesity-associated insulin resistance. On the other hand, long-

chain AX increased satiety and promoted the growth of P. copri, which has been linked to weight 

loss [65]. Therefore, a future study could examine the role of P. copri and AX, provided as a 

synbiotic, in weight management. Alternatively, with a large enough sample size, future studies 

could develop models based on P. copri abundance at baseline to predict the success of weight 

loss programs. My study suggested that baseline microbiota can predict the level of propionate 

produced from consuming long-chain AX. Therefore, future studies should assess whether the 

baseline microbiota can predict health outcomes, such as an individual’s response to certain types 

of DF using more robust predictive modelling like machine learning. In the long term, this 

knowledge obtained from these prediction models could be directly applied to personalized 

nutrition strategies for individuals.  

 

 

 

 

 



 68 

REFERENCES: 

 

1. Twells LK, Gregory DM, Reddigan J, Midodzi WK. Current and predicted prevalence of 

obesity in Canada: a trend analysis. CMAJ Open. 2014; 2. 

2. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov 

S, Abbafati C, Abera SF et al. Global, regional, and national prevalence of overweight and 

obesity in children and adults during 1980–2013: a systematic analysis for the Global 

Burden of Disease Study 2013. The Lancet. 2013; 384:766-81. 

3. Khan MJ, Gerasimidis K, Edwards CA, Shaikh MG. Role of Gut Microbita in the 

Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. Journal of 

Obesity. 2016; 2016. 

4. Neyrinck A, Hee VV, Piront N, Backer FD, Toussaint O, Cani P, Delzenne N. Wheat-

derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut 

peptides and reduce metbolic endotoxemia in diet-induced obese mice. Nutr Diabetes. 

2012; 2. 

5. Truax AD, Chen L, Tam JW, Cheng N, Guo H, Koblansky AA, Chou W-C, Wilson JE, 

Brickey WJ, Petrucelli A et al. The Inhibitory Innate Immune Sensor NLRP12 Maintains 

a Threshold against Obesity by Regulating Gut Microbiota Homeostasis. Cell Host & 

Microbe. 2018; 24:364-78. 

6. Brahe LK, Astrup A, Larsen LH. Can we prevent obsesity-related metabolic diseases by 

dietary modulation of the gut Microbiota ? Advances in Nutrition. 2016; 7:90-101. 

7. Vrieze A, Nood EV, Holleman F, Salojarvi J, Kootte RS, Bartelsman JFWM, Dallinga-

Thie GM, Serlie MJ, Oozeer R, Derrien M et al. Transfer of Intestinal Microbiota From 



 69 

Lean Donors Increases Insulin Sensitivity in Individuals With Metabolic Syndrome. 

Gastroenterology. 2012; 143:913-16. 

8. Zi-Lun Lai, Ching-Hung Tseng, Hsiu J. Ho, Cynthia K. Y. Cheung, Jian-Yong Lin, Yi-Ju 

Chen, Fu-Chou Cheng, Yao-Chun Hsu, Jaw-Town Lin, El-Omar EM et al. Fecal 

microbiota transplantation confers beneficial metabolic effects of diet and exercise on diet-

induced obese mice. Scientific Reports. 2018; 8. 

9. Koh A, Vadder FD, Kovatcheva-Datchary P, Backhed F. From Dietary Fiber to Host 

Physilogy: Short-Chain Fatty Acid as Key Bacterial Metabolites. Cell. 2016; 165:1332-41. 

10. Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality 

and human health: a series of systematic reviews and meta-analyses. Lancet. 2019; 

393:434-45. 

11. Wei B, Liu Y, Lin X, Fang Y, Cui J, Wan J. Dietary fiber intake and risk of metabolic 

syndrome: A meta-analysis of observational studies. Clin Nutr. 2018; 37:1935-42. 

12. Huang T, Xu M, Lee A, Cho S, Qi L. Consumption of whole grains and cereal fiber and 

total and cause-specific mortality: prospective analysis of 367,442 individuals. BMC 

Medicine. 2015; 13:59. 

13. Rimm EB, Ascherio A, Giovannucci E, Spiegelman D, Stampfer MJ, Willett WC. 

Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. 

JAMA. 1996; 275:447-51. 

14. Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA. 

Prebiotic and Other Health-Related Effects of Cereal-Derived Arabinoxylans, 

Arabinoxylan-Oligosaccharides, and Xylooligosaccharides. Crit Rev Food Sci Nutr. 2011; 

51:178-94. 



 70 

15. Deehan EC, Duar RM, Armet AM, Perez-Muñoz ME, Jin M, Walter J. Modulation of the 

Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve 

Human Health. Microbiol Spectr. 2017; 5. 

16. Armet AM, Deehan EC, Thone JV, Hewko SJ, Walter J. The Effect of Isolated and 

Synthetic Dietary Fibers on Markers of Metabolic Diseases in Human Intervention Studies: 

A Systematic Review. Adv Nutr. 2019; doi:10.1093/advances/nmz074. 

17. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, Hallen A, 

Martens E, Bjorck I, Bäckhed F. Dietary Fiber-Induced Improvement in Glucose 

Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab. 2015; 

22:971-82. 

18. Healey GR, Murphy R, Brough L, Butts CA, Coad J. Interindividual variability in gut 

microbiota and host response to dietary interventions. Nutr Rev. 2017; 75:1059-80. 

19. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and 

insulin sensitivity. Nat Rev Endocrinol. 2015; 11:577-91. 

20. Salden BN, Troost FJ, Wilms E, Truchado P, Vilchez-Vargas R, Pieper DH, Jauregui R, 

Marzorati M, van de Wiele T, Possemiers S et al. Reinforcement of intestinal epithelial 

barrier by arabinoxylans in overweight and obese subjects: A randomized controlled trial: 

Arabinoxylans in gut barrier. Clin Nutr. 2018; 37:471-80. 

21. Kjølbæk L, Benítez-Páez A, Gómez del Pulgar EM, Brahe LK, Liebisch G, Matysik S, 

Rampelli S, Vermeiren J, Brigidi P, Larsen LH et al. Arabinoxylan oligosaccharides and 

polyunsaturated fatty acid effects on gut microbiota and metabolic markers in overweight 

individuals with signs of metabolic syndrome: A randomized cross-over trial. Clin Nutr. 

2019; doi: 10.1016/j.clnu.2019.01.012. 



 71 

22. Benítez-Páez A, Kjølbæk L, Gómez del Pulgar EM, Brahe LK, Astrup A, Matysik S, Schött 

H-F, Krautbauer S, Liebisch G, Boberska J et al. A Multi-omics Approach to Unraveling 

the Microbiome-Mediated Effects of Arabinoxylan Oligosaccharides in Overweight 

Humans. mSystems. 2019; 4:e00209-19. 

23. Makki K, Deehan EC, Walter J, Bäckhed F. The Impact of Dietary Fiber on Gut Microbiota 

in Host Health and Disease. Cell Host Microbe. 2018; 23:705-15. 

24. Cockburn DW, Koropatkin NM. Polysaccharide Degradation by the Intestinal Microbiota 

and Its Influence on Human Health and Disease. J Mol Biol. 2016; 428:3230-52. 

25. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the 

degradation of resistant starch in the human colon. ISME J. 2012; 6:1535-43. 

26. Lozupone CA, Hamady M, Cantarel BL, Coutinho PM, Henrissat B, Gordon JI, Knight R. 

The convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl 

Acad Sci USA. 2008; 105:15076-81. 

27. De Filippis F, Pasolli E, Tett A, Tarallo S, Naccarati A, De Angelis M, Neviani E, Cocolin 

L, Gobbetti M, Segata N et al. Distinct Genetic and Functional Traits of Human Intestinal 

Prevotella copri Strains Are Associated with Different Habitual Diets. Cell Host Microbe. 

2019; 25:444-53.e3. 

28. Feng G, Flanagan BM, Mikkelsen D, Williams BA, Yu W, Gilbert RG, Gidley MJ. 

Mechanisms of utilisation of arabinoxylans by a porcine faecal inoculum: competition and 

co-operation. Sci Rep. 2018; 8:4546. 

29. Lam YY, Zhang C, Zhao L. Causality in dietary interventions—building a case for gut 

microbiota. Genome Med. 2018; 10:62. 



 72 

30. Tannock GW, Liu Y. Guided dietary fibre intake as a means of directing short-chain fatty 

acid production by the gut microbiota. J R Soc N Z. 2019. 

31. Flint HJ, Duncan SH, Louis P. The impact of nutrition on intestinal bacterial communities. 

Curr Opin Microbiol. 2017; 38:59-65. 

32. WHO. Obesity and Overweight. 2019. https://www.who.int/en/news-room/fact-

sheets/detail/obesity-and-overweight 

33. Visscher TLS, Seidell JC. The Public Health Impact of Obesity. Annual Review of Public 

Health. 2001; 22:355-75. 

34. Seidell JC, Halberstadt J. The Global Burden of Obesity and the Challenges of Prevention. 

Annals of Nutrition and Metabolism. 2015; 66(suppl 2):7-12. 

35. Knight R, Callewaert C, Marotz C, Hyde ER, Debelius JW, McDonald D, Sogin ML. The 

Microbiome and Human Biology. Annual Review of Genomics and Human Genetics. 

2017; 18:65-86. 

36. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human 

microbiome project. Nature. 2007; 449:804-10. 

37. Zhao L. The Gut Microbiota and obesity: from correlation to causality. Nature Reviews 

Microbiology. 2013; 11:639-47. 

38. Yang X, Xie L, Li Y, Wei C. More than 9,000,000 unique genes in human gut bacterial 

community: estimating gene numbers inside a human body. PloS one. 2009; 4:e6074-e74. 

39. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D et al. A 

metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012; 

490:55-60. 

40. Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018; 67:1716-25. 



 73 

41. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-Induced Obesity Is Linked to Marked 

but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host & Microbe. 

2008; 3:213-23. 

42. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the 

resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy 

of Sciences. 2007; 104:979. 

43. Jones JM. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’. Nutrition 

Journal. 2014; 13:34. 

44. CODEXAlimentariusCommission. CODEX Alimentarius (CODEX) Guidelines on 

Nutrition Labeling CAC/GL 2–1985 as Last Amended 2010. 2010.  

45. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic Health: 

Fermentation and Short Chain Fatty Acids. Journal of Clinical Gastroenterology. 2006; 40. 

46. Hernández MAG, Canfora EE, Jocken JWE, Blaak EE. The Short-Chain Fatty Acid 

Acetate in Body Weight Control and Insulin Sensitivity. Nutrients. 2019; 11:1943. 

47. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, 

Williams SC, Crowley J, Yanagisawa M et al. Effects of the gut microbiota on host 

adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, 

Gpr41. Proceedings of the National Academy of Sciences of the United States of America. 

2008; 105:16767-72. 

48. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role 

of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy 

metabolism. J Lipid Res. 2013; 54:2325-40. 



 74 

49. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SEK, 

MacDougall K, Preston T, Tedford C, Finlayson GS et al. Effects of targeted delivery of 

propionate to the human colon on appetite regulation, body weight maintenance and 

adiposity in overweight adults. Gut. 2015; 64:1744-54. 

50. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J. Butyrate 

improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009; 

58:1509-17. 

51. Zhang L, Du J, Yano N, Wang H, Zhao YT, Dubielecka PM, Zhuang S, Chin YE, Qin G, 

Zhao TC. Sodium Butyrate Protects -Against High Fat Diet-Induced Cardiac Dysfunction 

and Metabolic Disorders in Type II Diabetic Mice. J Cell Biochem. 2017; 118:2395-408. 

52. Khan S, Jena G. Sodium butyrate reduces insulin-resistance, fat accumulation and 

dyslipidemia in type-2 diabetic rat: A comparative study with metformin. Chemico-

Biological Interactions. 2016; 254:124-34. 

53. Deehan EC, Duar RM, Armet AM, Perez-Muñoz ME, Jin M, Walter J. Modulation of the 

Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve 

Human Health. Microbiology Specturm. 2017; 5. 

54. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L: Chapter Three - 

The Role of Short-Chain Fatty Acids in Health and Disease. In: Advances in Immunology. 

Edited by Alt FW, vol. 121: Academic Press; 2014; 91-119. 

55. Huang T, Xu M, Lee A, Cho S, Qi L. Consumption of whole grains and cereal fiber and 

total and cause-specific mortality: prospective analysis of 367,442 individuals. BMC 

Medicine. 2015; 13. 



 75 

56. Wei B, Liu Y, Lin X, Fang Y, Cui J, Wan J. Dietary fiber intake and risk of metabolic 

syndrome: A meta-analysis of observational studies. Clin Nutr. 2018; 37:1935-42. 

57. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. The Lancet. 2005; 

365:1415-28. 

58. Wong CB, Odamaki T, Xiao J-z. Beneficial effects of Bifidobacterium longum subsp. 

longum BB536 on human health: Modulation of gut microbiome as the principal action. J 

Funct Foods. 2019; 54:506-19. 

59. Buyken AE, Goletzke J, Joslowski G, Felbick A, Cheng G, Herder C, Brand-Miller JC. 

Association between carbohydrate quality and inflammatory markers: systematic review 

of observational and interventional studies. Am J Clin Nutr. 2014; 99:813-33. 

60. Ordovas JM, Ferguson LR, Tai ES, Mathers JC. Personalised nutrition and health. Science 

and Politics of Nutrition. 2018; 361. 

61. Celis-Morales C, Livingstone KM, Marsaux CF, Macready AL, Fallaize R, O’Donovan 

CB, Woolhead C, Forster H, Walsh MC, Navas-Carretero S et al. Effect of personalized 

nutrition on health-related behaviour change: evidence from the Food4Me European 

randomized controlled trial. International Journal of Epidemiology. 2017; 46:578-88. 

62. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador 

D, Avnit-Sagi T, Lotan-Pompan M et al. Personalized Nutrition by Prediction of Glycemic 

Responses. Cell. 2015; 163:1079-94. 

63. Salonen A, Lahti L, Salojarvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson 

F, Johnstone AM, Lobley GE et al. Impact of diet and individual variation on intestinal 

microbiota composition and fermentation products in obese men. ISME J. 2014; 8:2218-

30. 



 76 

64. Hjorth MF, Roager HM, Larsen TM, Poulsen SK, Licht TR, Bahl MI, Zohar Y, Astrup A. 

Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success 

during a 6-month randomized controlled diet intervention. Int J Obes. 2018; 42:580-83. 

65. Christensen L, Vuholm S, Roager HM, Nielsen DS, Krych L, Kristensen M, Astrup A, 

Hjorth MF. Prevotella Abundance Predicts Weight Loss Success in Healthy, Overweight 

Adults Consuming a Whole-Grain Diet Ad Libitum: A Post Hoc Analysis of a 6-Wk 

Randomized Controlled Trial. J Nutr. 2019; 149:2174-81. 

66. Tong X, Xu J, Lian F, Yu X, Zhao Y, Xu L, Zhang M, Zhao X, Shen J, Wu S et al. 

Structural Alteration of Gut Microbiota during the Amelioration of Human Type 2 

Diabetes with Hyperlipidemia by Metformin and a Traditional Chinese Herbal Formula: a 

Multicenter, Randomized, Open Label Clinical Trial. mBio. 2018; 9:e02392-17. 

67. Chen T, Liu AB, Sun S, Ajami NJ, Ross MC, Wang H, Zhang L, Reuhl K, Kobayashi K, 

Onishi JC et al. Green Tea Polyphenols Modify the Gut Microbiome in db/db Mice as Co-

Abundance Groups Correlating with the Blood Glucose Lowering Effect. Mol Nutr Food 

Res. 2019; 63:1801064. 

68. ClinicalTrials.gov. National Library of Medicine (US). Identifier NCT02322112, The 

Alberta FYBER (Feed Your Gut Bacteria morE fibeR) Study. 2016, Sep 15. Retrieved Dec 

14, 2019 from: 

https://clinicaltrials.gov/ct2/history/NCT02322112?V_6=View#StudyPageTop. 

69. Kale MS, Yadav MP, Hicks KB, Hanah K. Concentration and shear rate dependence of 

solution viscosity for arabinoxylans from different sources. Food Hydrocoll. 2015; 47:178-

83. 



 77 

70. Rumpagaporn P, Reuhs BL, Kaur A, Patterson JA, Keshavarzian A, Hamaker BR. 

Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in 

vitro fermentation by human fecal microbiota. Carbohydr. 2015; 130:191-97. 

71. Csizmadi I, Boucher BA, Lo Siou G, Massarelli I, Rondeau I, Garriguet D, Koushik A, 

Elenko J, Subar AF. Using national dietary intake data to evaluate and adapt the US Diet 

History Questionnaire: the stepwise tailoring of an FFQ for Canadian use. Public Health 

Nutr. 2016; 19:3247-55. 

72. McInerney M, Csizmadi I, Friedenreich CM, Uribe FA, Nettel-Aguirre A, McLaren L, 

Potestio M, Sandalack B, McCormack GR. Associations between the neighbourhood food 

environment, neighbourhood socioeconomic status, and diet quality: An observational 

study. BMC Public Health. 2016; 16:984. 

73. Kipnis V, Subar AF, Midthune D, Freedman LS, Ballard-Barbash R, Troiano RP, Bingham 

S, Schoeller DA, Schatzkin A, Carroll RJ. Structure of Dietary Measurement Error: Results 

of the OPEN Biomarker Study. Am J Epidemiol. 2003; 158:14-21. 

74. Csizmadi I, Kelemen LE, Speidel T, Yuan Y, Dale LC, Friedenreich CM, Robson PJ. Are 

Physical Activity Levels Linked to Nutrient Adequacy? Implications for Cancer Risk. Nutr 

Cancer. 2014; 66:214-24. 

75. Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am 

J Epidemiol. 1986; 124:17-27. 

76. National Heart Lung and Blood Institute: The Practical Guide: Identification, Evaluation, 

and Treatment of Overweight and Obesity in Adults. In. Bethesda, MD: National Institutes 

of Health; 2000: 94. 



 78 

77. Martínez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have 

differential effects on the composition of the fecal microbiota in human subjects. PloS one. 

2010; 5:e15046-e46. 

78. Winter J, Young GP, Hu Y, Gratz SW, Conlon MA, Le Leu RK. Accumulation of 

promutagenic DNA adducts in the mouse distal colon after consumption of heme does not 

induce colonic neoplasms in the western diet model of spontaneous colorectal cancer. Mol 

Nutr Food Res. 2014; 58:550-58. 

79. Jin M, Kalainy S, Baskota N, Chiang D, Deehan EC, McDougall C, Tandon P, Martinez I, 

Cervera C, Walter J et al. Faecal microbiota from patients with cirrhosis has a low capacity 

to ferment non-digestible carbohydrates into short-chain fatty acids. Liver International. 

2019; Epub ahead of print. 

80. Krumbeck JA, Maldonado-Gomez MX, Martinez I, Frese SA, Burkey TE, Rasineni K, 

Ramer-Tair AE, Harris EN, Hutkins RW, Walter J. In vivo selection to identify bacterial 

strains with enhanced ecological performance in Synbiotic Applications. Appl Environ 

Microbiol. 2015; 81:2455-65. 

81. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 

2010; 26:2460-61. 

82. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian Classifier for Rapid 

Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl Environ 

Microbiol. 2007; 73:5261-67. 

83. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The 

SILVA ribosomal RNA gene database project: improved data processing and web-based 

tools. Nucleic Acids Res. 2013; 41:D590-96. 



 79 

84. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J. Introducing EzBioCloud: a 

taxonomically united database of 16S rRNA gene sequences and whole-genome 

assemblies. Int J Syst Evol Microbiol. 2017; 67:1613-17. 

85. Chen IMA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, Huntemann M, Varghese 

N, White JR, Seshadri R et al. IMG/M v.5.0: an integrated data management and 

comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 

2019; 47:D666-77. 

86. Aitchison J. The Statistical Analysis of Compositional Data. J R Stat Soc Series B 1982; 

44:139-77. 

87. R-CoreTeam: R: A Language and Environment for Statistical Computing. . Vienna, 

Austria 2018. 

88. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, 

O'Hara RB, Simpson GL, Solymos P et al. vegan: Community Ecology Package. 2019. R-

package version 2.5-5. https://CRAN.R-project.org/package=vegan 

89. Wickham. H: ggplot2: Elegant Graphics for Data Analysis: Springer-Verlag New York; 

2016. 

90. Højsgaard S, Halekoh U, Yan J. The R Package geepack for Generalized Estimating 

Equations. J Stat Soft. 2005; 15. 

91. Johnson SC. Hierarchical clustering schemes. Psychometrika. 1967; 32:241-54. 

92. Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. 

F1000Res. 2016; 5:1519. 



 80 

93. Cai C, Zhang Z, Morales M, Wang Y, Khafipour E, Friel J. Feeding practice influences gut 

microbiome composition in very low birth weight preterm infants and the association with 

oxidative stress: A prospective cohort study. Fee Radic Biol Med. 2019; 142:146-54. 

94. Kassambara A, Mundt F. Factoextra: Extract and Visualize the Results of Multivariate 

Data Analyses. 2017. R-package version 1.0.5. https://CRAN.R-

project.org/package=factoextra 

95. Lê S, Josse J, Husson F. FactoMineR: An R Package for Multivariate Analysis. J Stat Soft. 

2008; 25. 

96. Lumley T, Miller A. leaps: Regression Subset Selection. 2017. R-package version 3.0. 

https://CRAN.R-project.org/package=leaps 

97. Mazerolle MJ. AICcmodavg: Model selection and multimodel inference based on 

(Q)AIC(c). 2019. R-package versioin 2.2-2. https://cran.r-

project.org/package=AICcmodavg. 

98. Davis LMG, Martínez I, Walter J, Goin C, Hutkins RW. Barcoded pyrosequencing reveals 

that consumption of galactooligosaccharides results in a highly specific bifidogenic 

response in humans. PloS one. 2011; 6:e25200. 

99. Venkataraman A, Sieber JR, Schmidt AW, Waldron C, Theis KR, Schmidt TM. Variable 

responses of human microbiomes to dietary supplementation with resistant starch. 

Microbiome. 2016; 4:33. 

100. Cummings JH, Pomare E, Branch W, Naylor C, Macfarlane GT. Short chain fatty acids in 

human large intestine, portal, hepatic and venous blood. Gut. 1987; 28:1221-27. 



 81 

101. McOrist AL, Miller RB, Bird AR, Keogh JB, Noakes M, Topping DL, Conlon MA. Fecal 

Butyrate Levels Vary Widely among Individuals but Are Usually Increased by a Diet High 

in Resistant Starch. J Nutr. 2011; 141:883-89. 

102. Krumholz LR, Bryant MP. Eubacterium oxidoreducens sp. nov. requiring H2 or formate 

to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch Microbiol. 1986; 144:8-

14. 

103. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. 

Environ Microbiol. 2017; 19:29-41. 

104. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, 

Louis P. Phylogenetic distribution of three pathways for propionate production within the 

human gut microbiota. ISME J. 2014; 8:1323-35. 

105. Lawson PA, Finegold SM. Reclassification of Ruminococcus obeum as Blautia obeum 

comb. nov. Int J Syst Evol Microbiol. 2015; 65:789-93. 

106. Watanabe Y, Nagai F, Morotomi M. Characterization of Phascolarctobacterium 

succinatutens sp. nov., an asaccharolytic, succinate-utilizing bacterium isolated from 

human feces. Appl Environ Microbiol. 2012; 78:511-18. 

107. Van den Abbeele P, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Kleerebezem 

M, Zoetendal EG, Smidt H, Verstraete W et al. Arabinoxylans and inulin differentially 

modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized 

rats. Environ Microbiol. 2011; 13:2667-80. 

108. Van den Abbeele P, Venema K, Van de Wiele T, Verstraete W, Possemiers S. Different 

Human Gut Models Reveal the Distinct Fermentation Patterns of Arabinoxylan versus 

Inulin. J Agric Food Chem. 2013; 61:9819-27. 



 82 

109. Rivière A, Moens F, Selak M, Maes D, Weckx S, De Vuyst L. The ability of bifidobacteria 

to degrade arabinoxylan oligosaccharide constituents and derived oligosaccharides is strain 

dependent. Appl Environ Microbiol. 2014; 80:204-17. 

110. Komeno M, Hayamizu H, Fujita K, Ashida H. Two Novel α-l-Arabinofuranosidases from 

Bifidobacterium longum subsp. longum Belonging to Glycoside Hydrolase Family 43 

Cooperatively Degrade Arabinan. Appl Environ Microbiol. 2019; 85:e02582-18. 

111. Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. Fiber-utilizing capacity varies in 

Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep. 2017; 7:2594-94. 

112. Fehlner-Peach H, Magnabosco C, Raghavan V, Scher JU, Tett A, Cox LM, Gottsegen C, 

Watters A, Wiltshire-Gordon JD, Segata N et al. Distinct Polysaccharide Utilization 

Profiles of Human Intestinal Prevotella copri Isolates. Cell Host Microbe. 2019; 26:680-

90.e5. 

113. Dodd D, Mackie RI, Cann IKO. Xylan degradation, a metabolic property shared by rumen 

and human colonic Bacteroidetes. Mol Microbiol. 2011; 79:292-304. 

114. Zhang M, Chekan J, Dodd D, Hong P, Radlinski L, Revindran V, Nair S, Mackie R, Cann 

I. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular 

organization of polysaccharide-degrading enzymes. Proc Natl Acad Sci U S A. 2014; 

111:e3708-17. 

115. Korpela K. Diet, Microbiota, and Metabolic Health: Trade-Off Between Saccharolytic and 

Proteolytic Fermentation. Annu Rev Food Sci Technol. 2018; 9:65-84. 

116. Saulnier L, Vigouroux J, Thibault J-F. Isolation and partial characterization of feruloylated 

oligosaccharides from maize bran. Carbohydr Res. 1995; 272:241-53. 



 83 

117. Rose DJ, Patterson JA, Hamaker BR. Structural Differences among Alkali-Soluble 

Arabinoxylans from Maize (Zea mays), Rice (Oryza sativa), and Wheat (Triticum 

aestivum) Brans Influence Human Fecal Fermentation Profiles. J Agric Food Chem. 2010; 

58:493-99. 

118. Hamaker BR, Tuncil YE. A perspective on the complexity of dietary fiber structures and 

their potential effect on the gut microbiota. J Mol Biol. 2014; 426:3838-50. 

119. Pastell H, Westermann P, Meyer AS, Tuomainen P, Tenkanen M. In Vitro Fermentation 

of Arabinoxylan-Derived Carbohydrates by Bifidobacteria and Mixed Fecal Microbiota. J 

Agric Food Chem. 2009; 57:8598-606. 

120. Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N, Lowe EC, Baslé A, Morland 

C, Day AM, Zheng H et al. Glycan complexity dictates microbial resource allocation in 

the large intestine. Nat Commu. 2015; 6:7481. 

121. Lugli GA, Mancino W, Milani C, Duranti S, Turroni F, van Sinderen D, Ventura M. 

Reconstruction of the Bifidobacterial Pan-Secretome Reveals the Network of Extracellular 

Interactions between Bifidobacteria and the Infant Gut. Appl Environ Microbiol. 2018; 

84:e00796-18. 

122. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C, Mangifesta M, Hevia 

A, Viappiani A, Scholz M et al. Bifidobacteria exhibit social behavior through 

carbohydrate resource sharing in the gut. Sci Rep. 2015; 5:15782. 

123. Holmstrøm K, Collins MD, Møller T, Falsen E, Lawson PA. Subdoligranulum variabile 

gen. nov., sp. nov. from human feces. Anaerobe. 2004; 10:197-203. 



 84 

124. La Rosa SL, Kachrimanidou V, Buffetto F, Pope PB, Pudlo NA, Martens EC, Rastall RA, 

Gibson GR, Westereng B. Wood-Derived Dietary Fibers Promote Beneficial Human Gut 

Microbiota. mSphere. 2019; 4:e00554-18. 

125. Alexander C, Swanson KS, Fahey GC, Garleb KA. Perspective: Physiologic Importance 

of Short-Chain Fatty Acids from Nondigestible Carbohydrate Fermentation. Adv Nutr. 

2019; 10:576-89. 

126. Rumpagaporn P, Reuhs BL, Cantu-Jungles TM, Kaur A, Patterson JA, Keshavarzian A, 

Hamaker BR. Elevated propionate and butyrate in fecal ferments of hydrolysates generated 

by oxalic acid treatment of corn bran arabinoxylan. Food Funct. 2016; 7:4935-43. 

127. Tan H, Zhao J, Zhang H, Zhai Q, Chen W. Isolation of Low-Abundant Bacteroidales in the 

Human Intestine and the Analysis of Their Differential Utilization Based on Plant-Derived 

Polysaccharides. Front Microbiol. 2018; 9:1319. 

128. Sheridan PO, Martin JC, Lawley TD, Browne HP, Harris HM, Bernalier-Donadille A, 

Duncan SH, O'Toole PW, Scott KP, Flint HJ. Polysaccharide utilization loci and nutritional 

specialization in a dominant group of butyrate-producing human colonic Firmicutes. 

Microb Genom. 2016; 2:e000043. 

129. Salyers AA, West SE, Vercellotti JR, Wilkins TD. Fermentation of mucins and plant 

polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol. 

1977; 34:529-33. 

130. Leth ML, Ejby M, Workman C, Ewald DA, Pedersen SS, Sternberg C, Bahl MI, Licht TR, 

Aachmann FL, Westereng B et al. Differential bacterial capture and transport preferences 

facilitate co-growth on dietary xylan in the human gut. Nat Microbiol. 2018; 3:570-80. 



 85 

131. Wang J, Thingholm LB, Skiecevičienė J, Rausch P, Kummen M, Hov JR, Degenhardt F, 

Heinsen F-A, Rühlemann MC, Szymczak S et al. Genome-wide association analysis 

identifies variation in vitamin D receptor and other host factors influencing the gut 

microbiota. Nat Genet. 2016; 48:1396-406. 

132. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, 

Godneva A, Kalka IN, Bar N et al. Environment dominates over host genetics in shaping 

human gut microbiota. Nature. 2018; 555:210-15. 

133. Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C, Neuhouser ML, Thompson 

FE, Potischman N, Guenther PM, Tarasuk V et al. Addressing Current Criticism Regarding 

the Value of Self-Report Dietary Data. J Nutr. 2015; 145:2639-45. 

134. Colombel JF, Cortot A, Neut C, Romond C. Yoghurt with Bifidobacterium longum reduces 

erythromycin-induced gastrointestinal effects. Lancet. 1987; 330:43. 

135. Tamaki H, Nakase H, Inoue S, Kawanami C, Itani T, Ohana M, Kusaka T, Uose S, 

Hisatsune H, Tojo M et al. Efficacy of probiotic treatment with Bifidobacterium longum 

536 for induction of remission in active ulcerative colitis: A randomized, double-blinded, 

placebo-controlled multicenter trial. Dig Endosc. 2016; 28:67-74. 

136. McCarville JL, Dong J, Caminero A, Bermudez-Brito M, Jury J, Murray JA, Duboux S, 

Steinmann M, Delley M, Tangyu M et al. A Commensal Bifidobacterium longum Strain 

Prevents Gluten-Related Immunopathology in Mice through Expression of a Serine 

Protease Inhibitor. Appl Environ Microbiol. 2017; 83:e01323-17. 

137. Xiao JZ, Kondo S, Yanagisawa N, Takahashi N, Odamaki T, Iwabuchi N, Miyaji K, 

Iwatsuki K, Togashi H, Enomoto K et al. Probiotics in the treatment of Japanese cedar 

pollinosis: a double-blind placebo-controlled trial. Clin Exp Allergy. 2006; 36:1425-35. 



 86 

138. Pinto-Sanchez MI, Hall GB, Ghajar K, Nardelli A, Bolino C, Lau JT, Martin F-P, 

Cominetti O, Welsh C, Rieder A et al. Probiotic Bifidobacterium longum NCC3001 

Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients With 

Irritable Bowel Syndrome. Gastroenterology. 2017; 153:448-59.e8. 

139. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, 

Fahnestock M, Moine D et al. The anxiolytic effect of Bifidobacterium longum NCC3001 

involves vagal pathways for gut–brain communication. J Neurogastroenterol Motil. 2011; 

23:1132-39. 

140. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, Vadder FD, Arora T, Hallen A, 

Martens E, Bjorck I, Bäckhed F. Dietary Fiber-Induced Improvement in Glucose 

Metabolism is Associated with Increased Abundance of Prevotella. Cell Meta. 2015; 

22:971-82. 

141. Martínez I, Stegen JC, Maldonodo-Gomez MX, Eren AM, Siba PM, Greenhill AR, Walter 

J. The Gut Microbiota of Rural Papua New Guineans: Composition, Diversity Patterns, 

and Ecological Processes. Cell Rep. 2015; 11:527-38. 

142. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, Turroni S, 

Biagi E, Peano C, Severgnini M et al. Gut microbiome of the Hadza hunter-gatherers. Nat 

Commun. 2014; 5:3654. 

143. Sonnenburg ED, Sonnenburg JL. The ancestral and industrialized gut microbiota and 

implications for human health. Nat Rev Microbiol. 2019; 17:383-90. 

144. Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, Ghatei MA, 

Bloom SR, Frost G. The short chain fatty acid propionate stimulates GLP-1 and PYY 

secretion via free fatty acid receptor 2 in rodents. Int J Obes. 2015; 39:424-29. 



 87 

145. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, 

Bäckhed F, Mithieux G. Microbiota-Generated Metabolites Promote Metabolic Benefits 

via Gut-Brain Neural Circuits. Cell. 2014; 156:84-96. 

146. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, 

Pfeffer K, Coffer PJ et al. Metabolites produced by commensal bacteria promote peripheral 

regulatory T-cell generation. Nature. 2013; 504:451-55. 

147. Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, Garcia-Perez 

I, Fountana S, Serrano-Contreras JI, Holmes E et al. Dietary supplementation with inulin-

propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity 

with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory 

responses: a randomised cross-over trial. Gut. 2019; 68:1430-38. 

148. Garcia AL, Otto B, Reich SC, Weickert MO, Steiniger J, Machowetz A, Rudovich NN, 

Möhlig M, Katz N, Speth M et al. Arabinoxylan consumption decreases postprandial serum 

glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose 

tolerance. European Journal of Clinical Nutrition. 2007; 61:334-41. 

149. Boll EV, Ekstrom LM, Courtin CM, Delcour JA, Nilsson AC, Bjorck IM, Ostman EM. 

Effects of wheat bran extract rich in arabinoxylan oligosaccharides and resistant starch on 

overnight glucose tolerance and markers of gut fermentation in healthy young adults. Eur 

J Nutr. 2016; 55:1661-70. 

150. Neyrinck AM, Hiel S, Bouzin C, Campayo VG, Cani PD, Bindels LB, Delzanne NM. 

Wheat-derived arabinoxylan oligosaccharides with bifidogenic properties abolishes 

metabolic disorders induced by western diet in mice. Nutr Diabetes. 2018; 8. 



 88 

151. Li-TaoTong, KuiZhong, Liu L, Qiu J, Guo L, Zhou X, Cao L, Zhou S. Effects of dietary 

wheat bran arabinoxylans on cholesterol metabolism of hypercholesterolemic hamsters. 

Carbohydrate Polymers. 2014; 112:1-5. 

152. W.Lopez H, Levrat M-A, Guy C, Messager A, Demigné C, Rémésy C. Effects of soluble 

corn bran arabinoxylans on cecal digestion, lipid metabolism, and mineral balance (Ca, 

Mg) in rats. The Journal of Nutritional Biochemistry. 1999; 10:500-09. 

153. Sandberg J, Kovatcheva-Datchary P, Björck I, Bäckhed F, Nilsson A. Abundance of gut 

Prevotella at baseline and metabolic response to barley prebiotics. Eur J Nutr. 2019; 

58:2365-76. 

154. Chambers ES, Preston T, Frost G, Morrison DJ. Role of Gut Microbiota-Generated Short-

Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr Nutr Rep. 2018; 7:198-

206. 

155. Chambers ES, Byrne CS, Aspey K, Chen Y, Khan S, Morrison DJ, Frost G. Acute oral 

sodium propionate supplementation raises resting energy expenditure and lipid oxidation 

in fasted humans. Diabetes Obes Metab. 2018; 20:1034-39. 

156. Vieira ELM, Leonel AJ, Sad AP, Beltrão NRM, Costa TF, Ferreira TMR, Gomes-Santos 

AC, Faria AMC, Peluzio MCG, Cara DC et al. Oral administration of sodium butyrate 

attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. The 

Journal of Nutritional Biochemistry. 2012; 23:430-36. 

157. Venter C S, Vorster H H, H. CJ. Effects of dietary propionate on carbohydrate and lipid 

metabolism in healthy volunteers. Am J Gastroenterol. 1990; 85:549-53. 

158. Todesco T, Rao AV, Bosello O, Jenkins DJ. Propionate lowers blood glucose and alters 

lipid metabolism in healthy subjects. Am J Clin Nutr. 1991; 54:860-65. 



 89 

159. Darwiche G, Östman EM, Liljeberg HGM, Kallinen N, Björgell O, Björck IME, Almér L-

O. Measurements of the gastric emptying rate by use of ultrasonography: studies in humans 

using bread with added sodium propionate. Am J Clin Nutr. 2001; 74:254-58. 

160. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic Health: 

Fermentation and Short Chain Fatty Acids. J Clin Gastroenterol. 2006; 40:235-43. 

161. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, Pudlo NA, 

Kitamoto S, Terrapon N, Muller A et al. A Dietary Fiber-Deprived Gut Microbiota 

Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016; 

167:1339-53 e21. 

162. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon 

JI. A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis. Science. 

2003; 299:2074-76. 

163. Earle Kristen A, Billings G, Sigal M, Lichtman Joshua S, Hansson Gunnar C, Elias 

Joshua E, Amieva Manuel R, Huang Kerwyn C, Sonnenburg Justin L. Quantitative 

Imaging of Gut Microbiota Spatial Organization. Cell Host & Microbe. 2015; 18:478-88. 

164. Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP, Weatherford J, Buhler JD, 

Gordon JI. Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont. Science. 

2005; 307:1955. 

165. Hoskins LC, Zamcheck N. Bacterial Degradation of Gastrointestinal Mucins: I. 

Comparison of mucus constituents in the stools of germ-free and conventional rats. 

Gastroenterology. 1968; 54:210-17. 

166. Bayliss CE, Turner RJ. Examination of organisms associated with mucin in the colon by 

scanning electron microscopy. Micron (1969). 1982; 13:35-40. 



 90 

167. Marcobal A, Southwick AM, Earle KA, Sonnenburg JL. A refined palate: Bacterial 

consumption of host glycans in the gut. Glycobiology. 2013; 23:1038-46. 

168. Hansson GC. Role of mucus layers in gut infection and inflammation. Curr Opin 

Microbiol. 2012; 15:57-62. 

169. McRorie JW: Chapter 2 - The Physics of Fiber in the Gastrointestinal Tract: Laxation, 

Antidiarrheal, and Irritable Bowel Syndrome. In: Dietary Interventions in Gastrointestinal 

Diseases. Edited by Watson RR, Preedy VR: Academic Press; 2019; 19-32. 

170. Shankardass K, Chuchmach S, Chelswick K, Stefanovich C, Spurr S, Brooks J, Tsai M, 

Saibil FG, Cohen LB, Edington JD. Bowel Function of Long-Term Tube-Fed Patients 

Consuming Formulae with and without Dietary Fiber. Parenter Enteral Nutr. 1990; 14:508-

12. 

171. Brotherton CS, Taylor AG, Bourguignon C, Anderson JG. A high-fiber diet may improve 

bowel function and health-related quality of life in patients with Crohn disease. 

Gastroenterol Nurs. 2014; 37:206-16. 

172. Whitehead A, Beck EJ, Tosh S, Wolever TM. Cholesterol-lowering effects of oat beta-

glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014; 100:1413-

21. 

173. Fuller S, Beck E, Salman H, Tapsell L. New Horizons for the Study of Dietary Fiber and 

Health: A Review. Plant Foods Hum Nutr. 2016; 71:1-12. 

174. Bindels LB, Segura Munoz RR, Gomes-Neto JC, Mutemberezi V, Martínez I, Salazar N, 

Cody EA, Quintero-Villegas MI, Kittana H, de los Reyes-Gavilán CG et al. Resistant 

starch can improve insulin sensitivity independently of the gut microbiota. Microbiome. 

2017; 5:12. 



 91 

 


