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Abstract

During the past 10 years, we have witnessed the proliferation of cloud computing

services and their adoption in the industry. This rapid growth has been mainly due

to economies of scale, improving resource utilization, infinite computing resources on

demand, and pay per use cost model. However, the abundance of cloud computing

services and infrastructure has left us with lots of resources to manage, which could

surpass the development effort for a product. Several new paradigms have emerged

since the introduction of cloud computing services, which have tried to improve the

services and address these shortcomings. The most promising paradigm shift for the

newly emerging cloud services is serverless computing. As a result, we are currently

amid an evolutionary paradigm shift in cloud computing towards serverless platforms.

This change is due to several improvements over traditional cloud computing, like

handling virtually all of the administrative tasks, improving resource utilization, po-

tential operational cost savings, improved energy efficiency, and more straightforward

application development. In addition, serverless computing can enable the rapid de-

velopment of new cloud-based solutions in our current highly-dynamic environment,

enabling new solutions for unforeseen circumstances, e.g., pandemic-era applications.

However, the current implementations of serverless computing are far from perfect

and have a long way to achieve the full potentials of this paradigm.

This thesis focuses on modelling and improving different aspects of serverless com-

puting platforms. As mentioned above, in serverless computing, a large portion of

operational tasks are delegated to the cloud operator, which frees the user from these

tasks but leaves the operator to create a management system able to handle almost
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any type of workload. The current generations of serverless computing have emerged

to sub-optimal management solutions, leading to underutilized infrastructure, exag-

gerated costs, and unsatisfactory latencies violating most Quality of Service (QoS)

guarantees. One of the major reasons behind these shortcomings is the fact that the

current serverless computing management systems are workload-agnostic, i.e., they

don’t adapt to the type of workload being executed on them. Global effort and re-

search is needed to develop management systems capable of running most types of

workloads with near-optimal behaviour.

This thesis strives to develop analytical and data-driven models and methods and

leverage them to improve the status quo in current serverless computing platforms.

We aim to develop several optimization modules using different techniques, comple-

menting each other in different scenarios.
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Chapter 1

Introduction

We are amid an evolutionary paradigm shift in cloud computing towards serverless

platforms. This change is due to several improvements over traditional cloud com-

puting, like handling all the system administration operations, improving resource

utilization, potential operational cost savings, improved energy efficiency, and more

straightforward application development [1, 2]. In this paradigm, the software devel-

opers would develop the application through well-defined chunks of code orchestrated

in functions. Then, functions will be deployed and run on the cloud infrastructure

under predefined conditions and events specified by software owners. This way, the

whole runtime management, including provisioning and scaling resources, will be done

by the cloud service provider.

In this chapter, we will first describe serverless computing platforms as a new

paradigm in cloud computing, then go over more details about the management and

container placement of current generations of serverless computing platforms. We

then elaborate on the motivation for this thesis and finally wrap up this chapter with

the thesis objectives and outline.

1.1 Serverless Computing

Serverless computing includes two overlapping concepts; originally, it was referred to

applications that significantly or fully leverage third-party API-based services that
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replace core subsets of backend logic and state functionality. Because such APIs are

provided as a service that auto-scales and operates transparently, this appears to the

developer to be serverless. These types of services have been described as “Backend

as a Service” (BaaS). Authentication services (e.g., AWS Cognito and Auth0) and

database services (e.g., Firebase and Parse) are prime examples of BaaS [3]. However,

serverless can be applied to applications in which the application developers develop

the server-side logic, but, as opposed to traditional architectures, it runs in contain-

ers that are stateless, event-oriented, ephemeral (may only last for one invocation),

and fully managed by a third party. This type of serverless is known as “Function

as a Service” (FaaS). It is important to note that although serverless computing is

a more generic term which includes both BaaS and FaaS services, it is commonly

used interchangeably with FaaS when discussing different execution engines of cloud

computing. AWS Lambda functions, Google, Microsoft, IBM and Huawei functions

are well-known examples of FaaS [4].

To better understand serverless computing, it is crucial to know other similar

technologies and compare their characteristics. There are four primary development

and deployment models that application developers may consider when looking for

an environment to host their cloud-native applications (Fig. 1.1). All approaches

facilitate the deployment of a cloud-native application, but they emphasize different

functional and non-functional properties considering their target users and the type

of workload. Infrastructure as a service (IaaS) is the most mature one that can be

leveraged by software providers to deploy their application in an environment with

a high degree of flexibility over the Operating System (OS), frameworks, libraries,

programming languages, platform, and runtime management. IaaS does not imply

leveraging containers and VMs as the primary deployment unit [5].

Containers-as-a-Service (CaaS) systems maintain full control over the platform

so that it has maximum portability. Container orchestration platforms like Kuber-

netes [6], Mesos [7], and Swarm [8] allow teams to develop and deploy portable ap-

2



Figure 1.1: Serverless in comparison to other cloud-native application deployments.

plications with flexibility and control over configuration, which can run anywhere

without the need to reconfigure and deploy them for different environments.

Platform-as-a-Service (PaaS) paradigm enables teams to deploy and scale appli-

cations using a rich set of runtime environments, including a container orchestration

engine which has been contextualizing to a catalogue of data, AI, and security services

through injection of configuration information into the application, without having

to manually configure and manage a container and OS. It is a great fit for existing

web apps that have a stable programming model [4].

The paradigm with minimum runtime management overhead is FaaS or serverless in

which software developers focus on applications that consist of event-based functions

responding to a variety of triggers and let the platform take care of the rest.

In the last three deployment paradigms (i.e., CaaS, PaaS and FaaS), a group of

containers comprise the cloud application. Finding the best place to deploy these con-

tainers is of great importance as it has a non-trivial impact on the performance/cost

of the cloud application. Serverless computing platforms handle almost every aspect

of the system administration tasks needed to deploy a workload on the cloud. In the

recent years, developers have tried to improve development time, system resiliency,
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and scalability by using fine-grained microservices over monolithic architectures. The

emerging serverless technologies using FaaS have taken us closer to the computing

as an Internet-based utility paradigm and have facilitated the accelerated growth of

microservices [9].

1.2 Serverless Platform System Description

There is very little official documentation made publicly available about the schedul-

ing and autoscaling algorithms in public serverless computing platforms. However, a

number of studies have focused on partially reverse engineering this information using

experimentations on these platforms [10–13]. Using the results of such researches and

by modifying their code base and thorough experimentation, we have come to a good

understanding of how modern serverless frameworks are operated and managed by

the service providers. In this section, we will cover the most important concepts in

serverless computing.

Function Instance States: in serverless computing platforms, computation is

done in function instances. These instances are completely managed by the serverless

computing platform provider and act as tiny servers for the incoming triggers (re-

quests). Using the findings of previous studies [10, 11, 14], we identify three states for

each function instance: initializing, running, and idle. The initializing state happens

when the infrastructure is spinning up new instances, which might include setting

up new virtual machines, unikernels, or containers to handle the excessive workload.

The instance will remain in the initializing state until it is able to handle incoming

requests. As defined in this work, we also consider application initializing which is

the time user’s code is performing initial tasks like creating database connections,

importing libraries, or loading a machine learning model from an S3 bucket as a part

of the initializing state which needs to happen only once for each new instance. Note

that the instance cannot accept incoming requests before performing all initialization

tasks. It might be worth noting that the application initializing state is billed by

4



most providers while the rest of the initializing state is not billed. When a request

is submitted to the instance, the instance goes into the running state. In this state,

the request is parsed and processed. The time spent in the running state is also

billed by the serverless provider. After processing of a request is over, the serverless

platform keeps the instances warm for some time to be able to handle later spikes

in the workload. In this state, we consider the instance to be in the idle state. The

application developer is not charged for an instance that is in the idle state.

Cold/Warm start: as defined in previous studies [10, 11, 13], we refer to cold

start request when the request goes through the process of launching a new function

instance. For the platform, this could include launching a new virtual machine,

deploying a new function, or creating a new instance on an existing virtual machine,

which introduces an overhead to the response time experienced by users. In case the

platform has an instance in the idle state when a new request arrives, it will reuse

the existing function instance instead of spinning up a new one. This is commonly

known as a warm start request. Cold starts could be orders of magnitude longer

than warm starts for some applications. Thus, too many cold starts could impact

the application’s responsiveness and user experience [10]. This is the reason a lot

of researchers in the field of serverless computing have focused on mitigating cold

starts [15–17].

Autoscaling: we have identified three main autoscaling patterns among the main-

stream serverless computing platforms: 1) scale-per-request ; 2) metric-based scaling ;

and 3) resource-based scaling. In scale-per-request Function-as-a-Service (FaaS) plat-

forms, when a request comes in, it will be serviced by one of the available idle instances

(warm start), or the platform will spin up a new instance for that request (cold start).

Thus, there is no queuing involved in the system, and each cold start causes the cre-

ation of a new instance which acts as a tiny server for subsequent requests. As the

load decreases, to scale the amount of resources down, the platform also needs to scale

the number of instances down. In the scale-per-request pattern, as long as requests
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that are being made to the instance are less than the expiration threshold apart, the

instance will be kept warm. In other words, for each instance, at any moment in time,

if a request has not been received in the last expiration threshold units of time, it will

be expired and thus terminated by the platform, and the consumed resources will be

released. To enable simplified billing, most well-known public serverless computing

platforms use this scaling pattern, e.g., AWS Lambda, Google Cloud Functions, IBM

Cloud Functions, Apache OpenWhisk, and Azure Functions [10, 18]. This autoscaling

approach is the dominant scaling technique used by major providers.

Figure 1.2: The effect of the concurrency value on the number of function instances
needed. The left service allows a maximum of 1 request per instance, while the right
service allows a concurrency value of 3.

In the metric-based scaling pattern [19], function instances can receive multiple

requests at the same time. The average and maximum number of requests that can

be made concurrently to the same instance can be set via hard and soft limits on the

concurrency value. Figure 1.2 shows the effect of hard limit of concurrency value on

the autoscaling behaviour of the platform. It is worth noting that the scale-per-request

autoscaling pattern might initially appear as a special case of metric-based scaling

pattern where concurrency value is set to 1, however, there are fundamental differences

between these two autoscaling patterns that led us to classify them into different

categories. First, the current generations of metric-based autoscaling platforms allow

for queuing of requests in a shared queue, however there is no queuing involved in
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scale-per-request autoscaling. In scale-per-request autoscaling pattern, at the time of

arrival, an incoming request will either be assigned to an idle instance (warm), or a

newly instantiated instance (cold), even if an instance in the warm pool becomes idle

while the cold instance is still being instantiated. However, metric-based autoscaling

platforms allow queuing of requests while new instances are being instantiated and

allows routing of the requests to an instance only after it has done the initialization

and is ready to serve new requests. In addition, autoscaling in scale-per-request

is synchronous to request arrivals where the creation of an instance (scaling out)

happens on arrival of new requests. However, in platforms like Google Cloud Run and

Knative which use metric-based autoscaling, new instances are created asynchronously

on fixed intervals, e.g. 2 seconds in Knative, and using evaluations of the average of

measured concurrency in stable and panic windows [20].

Resource-based scaling tries to keep metrics like CPU or memory usage within a

predefined range. Most on-premises serverless computing platforms work with this

pattern due to its simplicity and reliability. Some of the serverless computing plat-

forms that use this pattern are AWS Fargate, Azure Container Instances, OpenFaaS,

Kubeless, and Fission.

Initialization Time: as mentioned earlier, when the platform is spinning up new

instances, they will first go into the initialization state. This state might include

spinning up new virtual machines, unikernels, or containers. The initialization time

is the amount of time it takes since the platform receives a request until the new

instance is up and running, and ready to serve the request. The initialization time,

as defined here, comprises the platform initialization time and the application initial-

ization time. The platform initialization time is the time it takes for the platform to

make the function instance ready, whether a unikernel or a container, and the applica-

tion initialization time is the time it takes for the application to run the initialization

code, e.g., connecting to the database.

Response Time: the response time usually includes the queuing time and the
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service time. Since we are focusing on the scale-per-request serverless computing

platforms here, there is no queuing involved for the incoming requests. Due to the

inherent linear scalability in serverless computing platforms [10, 11, 13], the distribu-

tion of the response time does not change over time with different loads. Therefore,

we leveraged delay centers [21] in order to analytically model the response time in

serverless computing platforms.

Maximum Concurrency Level: every public serverless computing platform has

some limitation on the number of function instances that can be spun up and in

running state for a single function. This is mainly due to ensuring the availability

of the service for others, limiting the number of instances one user can have up

and running at the same time. This is mostly known as the maximum concurrency

level. For example, the default maximum concurrency level for AWS Lambda is 1000

function instances in 2020. When the system reaches the maximum concurrency level,

any request that needs to be served by a new instance will receive an error status

showing the server is not able to fulfill that request at the moment.

Request Routing: in order to minimize the number of containers that are kept

warm and thus to free up system resources, the platform routes requests to new

containers, and it will use older containers only if all containers that are created

more recently are busy [22]. This means that the scheduler gives priority to newly

instantiated idle instances using priority scheduling according to creation time, i.e.,

the newer the instance, the higher the priority. By adopting this approach, the system

minimizes the number of requests going to older containers, maximizing their chance

of being expired and terminated.

1.3 Motivations and Objectives

Serverless computing platforms provide serverless users1 with several potential bene-

fits like handling all of the system administration operations and improving resource

1we use the terms serverless users and application developers interchangeably.
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utilization, leading to potential operational cost savings, improved energy efficiency,

and more straightforward application development [1, 2].

Hiding resource management from developers is appealing to some degree, but

the resulting opacity hinders adoption for many potential users. For instance, the

platforms’ ability to deliver on performance [23, 24], security isolation of functions,

DDoS resistance [25], as well as the need to understand resource management to

improve application performance [26] have shown to be crucial to the adoption of the

serverless computing paradigm. There have been some attempts to shed light on the

resource management and security [13, 22] of these platforms and the results revealed

sub-optimality in many cases. In this section, we discuss the shortcomings and gaps

in serverless computing platforms identified by various studies.

Although cloud functions have a much faster startup (and thus scaling) than tradi-

tional VM-based instances, they still show unpredictability in their key performance

metrics. This has proven to be unacceptable for many customer-facing products [2].

Current serverless computing offerings are not workload-aware and use the same poli-

cies for all functions [10, 18, 27]. This leaves us with untapped potential for savings in

infrastructure costs incurred by the provider, energy consumption, and improvements

in performance by adapting the platform to different environments.

In their study, Wang et al. [10] perform an in-depth and comprehensive evaluation

of several aspects of the three most well-known serverless platform providers, namely

AWS Lambda, Azure Functions, and Google Cloud Functions (GCF). The evaluated

aspects include scalability, resource efficiency, and performance isolation. This work

sheds some light on the performance implications of each of these service providers.

In this work, the authors discovered several interesting issues regarding the perfor-

mance isolation and the effect of co-residency of the same type of functions on a

VM. They provided measurement-driven approaches to partially reverse-engineer the

architecture of these serverless platform providers and uncovered several interesting

facts. For example, the AWS Lambda uses binpacking for container placement in
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their system, where the placement of the parallel functions seemed to be agnostic to

the function code. As discussed in this work, co-residency is undesirable for users

wanting several function instances since it causes contention between instances and

results in severe performance degradation. The co-residency of functions could cause

the CPU utilization rates of the function to fluctuate from 14.1% to 90% with the

standard deviation of 16%, which causes a lot of randomness in the observed perfor-

mance of the function. These results show the potential performance improvements

possible through the usage of smarter VM selection algorithms.

Van Eyk et al. [18] identified six performance-related issues in Function-as-a-Service

(FaaS) systems and recognized performance isolation as one of the main performance

issues with the current FaaS platforms. In this study, they tried to address this issue

by improving the utilization of shared resources using the behaviour of the system

that is recognized in the profiling stage of their work.

Mcgrath et al. [22] introduced a serverless computing platform based on windows

containers and reported the implementation challenges of a serverless computing plat-

form. These challenges include container discovery, life cycle, and container reuse.

They performed different tests on their system for SLA-level metrics like latency,

throughput, and back-off latency. Although they performed a comprehensive evalu-

ation of their system, they did not exploit the effects of these criteria under diverse

workloads (e.g., CPU-intensive, Memory-intensive, and Disk-intensive tasks).

In [28], the authors introduced a package-aware scheduling schema for FaaS func-

tions that tries to pack the functions that need the same library packages on a sin-

gle machine with some tolerable imbalances, which reduces the network overhead of

launching a new instance of a function. Although this seems very interesting, the

effect of collocating different functions on the same VM is not investigated.

This research strives to find ways to model, analyze, and optimize the workload

execution in serverless computing platforms. The key objectives of this thesis can be

summarized as follows:
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1. Providing an in-depth analysis in the state of the art of serverless computing

platforms and their implications.

2. Development of experimentations and tools enabling research in performance

modelling of serverless computing platforms.

3. Design and development of a performance simulator for the mainstream server-

less computing platforms.

4. Developing and testing an accurate yet tractable performance model for the

mainstream serverless computing platforms.

5. Developing a data-driven optimized scheduler for serverless computing plat-

forms using machine learning techniques.

6. Finding key configurations that can help make current serverless computing

platforms workload-aware.

7. Developing an SLA-aware batching algorithm for machine learning inference

workloads on managed serverless computing platforms.

1.4 Thesis Outline

The remainder of this document is organized as follows. In Chapter 2, we present

our approach to leverage machine learning to develop a data-driven function place-

ment algorithm than can be used to improve the serverless computing platform’s

throughput.

Accurate performance modelling of serverless computing platforms can help en-

sure that the quality of service, performance metrics, and the cost of the workload

remains within the acceptable range. It could also benefit providers to help them

tune their management for each workload in order to reduce their infrastructure and
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energy costs [29]. Chapters 3 and 4 focus on the development of a closed-form analyt-

ical performance model for scale-per-request and metric-based serverless computing

platforms.

As there are inherent limitations with any performance model, in Chapter 5 we

focus on developing a fast and accurate performance simulator for serverless com-

puting platforms to enable both performance researchers and serverless developers to

simulate the performance of any desired function with any arrival process.

Throughout experimentation and after in-depth analysis of the literature, we found

the serverless adoption to be very low for machine learning inference workloads. Our

studies showed that one of the most important reasons for this is the poor perfor-

mance/cost of this type of workloads on serverless computing platforms. In Chapter 6,

we outlined our design for MLProxy, which is an SLA-aware reverse proxy for these

types of workoads on serverless computing platforms and can offer improvements both

in terms of cost and performance without needing manual intervention.

Finally, Chapter 7 lists our contributions and elaborates on the possible future

directions for this research.
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Chapter 2

Adaptive Function Placement for
Serverless Computing

The main concept behind serverless computing is to build and run applications with-

out the need to manage the servers. It refers to a fine-grained deployment model where

applications, comprising one or more functions, are uploaded to a platform and then

executed, scaled, and billed in response to the exact demand needed at the moment.

While elite cloud vendors such as Amazon, Google, Microsoft, and IBM are now pro-

viding serverless computing services, their approach for the placement of functions,

i.e. associated container or sandbox, on servers is oblivious to the workload, which

may lead to poor performance and/or higher operational cost for software owners. In

this chapter, using statistical machine learning, we design and evaluate an adaptive

function placement algorithm that can be used by serverless computing platforms to

optimize the performance of running functions while minimizing the operational cost.

Given a fixed amount of resources, our smart spread function placement algorithm re-

sults in higher performance compared to existing approaches; this will be achieved by

maintaining the users’ desired quality of service for a longer time, which also prevents

premature scaling of the cloud resources. Extensive experimental studies revealed

that the proposed adaptive function placement algorithm could easily be adopted by

serverless computing providers and integrated into container orchestration platforms

without introducing any limiting side effects.
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2.1 FaaS and Container Placement

As can be seen in Fig. 2.1, in FaaS, requests may be triggered by an event, schedulers,

or users. The API gateway processes the request, finds the corresponding function,

and delivers it to the underlying microservice/container platform to be deployed.

In most FaaS platforms, such as AWS Lambda and OpenWhisk, the function will

be injected into a container, and then the container will be run on a VM or physical

machine. If there is not an instance of the requested function, the FaaS platform spins

up a new container, injects the function and configures the dependencies, which is

known as a cold start. Otherwise, another function call will happen inside the already

deployed container. A vital question here would be where to place the new container

so that we can maintain the desired Service Level Objective (SLO) performance on

the one hand and reduce the cost of operation on the other hand? Ideally, the

owners of cloud applications aspire to maintain the users’ SLO without scaling out

the resources, which results in higher cost and increased complexity of their system.

This problem is known as container/function placement, and various solutions have

been used. AWS Lambda [30] appears to treat instance placement as a binpacking

problem and tries to place a new function instance on an existing active VM to

maximize VM memory utilization rates. Container/function placement is unknown

in Google Cloud Functions [31]; it appears that Azure Functions [32] does not try to

co-locate function instances of the same function on the same VMs, which means it

adopted a kind of spread algorithm [10, 13]. The placement algorithm is also unknown

for IBM Cloud Functions [33] and Huawei Cloud Functions [34] platforms.

In Docker Swarm [8], the default strategy is spread by which the Swarm manager

assigns each container to the Swarm node with the most available resources. Swarm

also supports binpack and random strategies. In the binpacking strategy, the manager

assigns containers to one Swarm node until it has reached its maximum capacity

before assigning them to another one. In the random mode, it assigns containers to
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Figure 2.1: Function as a Service (FaaS), a high-level overview.

a random node in the Swarm cluster. Docker swarm also supports filters to tell the

Docker Swarm scheduler which nodes to use when creating and running a container.

Depending on the filters, it might end up with none, one, or multiple nodes that

satisfy the conditions. Kubernetes [35] and Apache Mesos [7], by default, support

spread strategy for workload placement while they provide an advanced filter and

constraint-based scheduling strategies (more or less similar to Docker Swarm) for

users.

In summary, all these major container orchestrators treat container/workloads in

a black-box manner and use a rigid spread strategy as their best effort to maintain

the performance of applications. It would be a great benefit to both FaaS users

and provider if there was a more intelligent spread algorithm which provided better

performance with the same pool of resources. Our proposed algorithm, hereafter

called smart spread, strives to fulfill this promise without imposing limiting overhead

on the scheduling process. Section 2.2 describes the algorithm in details.
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2.2 Smart Spread Algorithm

In this section, we discuss the structure of our proposed smart spread algorithm, a VM

selection algorithm used to deploy a new container in serverless computing platforms.

Smart Spread algorithm utilizes the performance model powered by machine learning

techniques to select the VM that leads to the best performance and cost results

for end-users. There exist other common algorithms like binpacking (which sacrifices

some level of performance in order to reduce costs), spread (which sacrifices cost trying

to balance out all VMs to get the best performance it can), or random placement, but

none of these algorithms take the specific characteristics of a workload into account.

In this work, we strive to capture specific characteristics of a workload based on

the container’s resource utilization on a VM when this container is the only workload

being executed. Since there is a huge diversity among workloads in such platforms,

we cannot measure the degradation in performance of one container, imposed by co-

location with another container. We try to overcome this limitation by developing a

predictive performance model that takes any kind of workload and predicts its nor-

malized performance when deployed to a specific VM. Thus the problem of choosing

the right VM to deploy the container on is simplified to finding the VM that causes

the least degradation in performance of the container. To achieve this, we propose

adding a simple profiling step at the time of deployment of a container in the serverless

platform, which serves a sample workload specified by the user.

After the profiling step, whenever we need to scale a function, we use the predictive

model to find the best performing VM for the function using the resource utilization

of different VMs and the workload’s profile. Several different data-driven modelling

approaches have been investigated for this work (discussed in Section 2.3). Here

we chose the artificial neural networks implemented on Tensorflow because of their

flexibility, ability to fit nonlinear functions, and low computation costs. We have done

comprehensive experimental studies to investigate the effectiveness of this approach.
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The details of these implementations and their results are discussed in Section 2.4.

2.3 Machine Learning Models

In this section, a detailed description of our predictive performance model will be laid

out.

2.3.1 Features

Features that are being used can be divided into two main categories; those that

are reflecting the characteristics of the workload and features that are reflecting the

current state of the system. Table 2.1 shows a list of the VM resource utilization

features that are used in both features reflecting the characteristics of the workload

and features reflecting the current state of the VM. In the former case, we measure

these utilization statistics in the profiling phase, where we place the container on a

dedicated VM and quantify its characteristics by measuring the utilization and fluctu-

ation of that VM. In the latter case, we quantify the state of a VM before deploying

the new container. When these features are collected for the specific function, we

normalize the features by removing the mean and scaling them to unit variance.

2.3.2 Performance Normalization

One of our objectives was to design an approach that is capable of working with any

kind of workload, independent of their type and complexity. To this end, we need

to normalize the throughput to abstract away the specifics of any function type. We

used throughput normalization based on the performance of the system when running

on an unoccupied VM [36]:

tpnorm =
tp

tp0
(2.1)

where tpnorm is the normalized throughput, which we intend to predict based on the

workload type and the current resource utilization of the VM. tp0 is the throughput
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Table 2.1: Resource utilization statistics used as features (adopted from [37]).

Statistic Description Unit

cpu time CPU time ms

cpu usr CPU time in user mode ms

cpu krn CPU time in kernel mode ms

cpu idle CPU idle time ms

contextsw Number of context switches count

cpu io wait CPU time waiting for I/O completion ms

cpu sint time CPU time serving soft interrupts ms

dsr Disk sector reads count

dsreads Number of completed disk reads count

readtime Time spent reading from disk ms

dsw Disk sector writes count

dswrites Number of completed disk writes count

writetime Time spent writing to disk ms

nbs Network bytes sent count

nbr Network bytes received count

loadavg Avg # of processes in last min count

mem used pct The % of memory currently used %

of the system in the profiling phase when a container of the function is running on a

dedicated VM and tp is the throughput of the system.

2.3.3 Data Collection

In this section, we describe our data collection method for training machine learning

algorithms evaluated in our proposed method. To this end, we need to predict the

throughput of the system based on the resource utilization statistics of the VM before

spinning the container, as well as the characteristics of the workload. To collect
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proper data for this problem, our data collection consists of two distinct steps, namely

profiling and performance measurement in different scenarios.

In the profiling step of data collection, our main goal is to capture the special needs

and characterization of the workload. Therefore, we place the container that needs

to be profiled on a dedicated VM and measure several resource utilization statistics

listed in Table 2.1 and the throughput on the client’s side.

In the second step of data collection, we want to study the effect of VM resource

utilization caused by other workloads on the achieved performance of a new container.

To do so, we deploy a random number of containers that each generate a random

workload to a VM, measure the resource utilization caused by this random workload,

and then deploy the new container. Afterward, we observe the achieved performance

using Eq. 2.1 and save all the results obtained in our data set for further use by our

predictive performance model.

For the model used in our experiments, we collected a total of 183 data points,

with 128 data points used as the training set and 55 data points as the test set. All

the data and the scripts for training and evaluation purposes can be found in the

project Github repository1.

2.3.4 Regression and Training

In order to build the predictive performance model, we research and examine vari-

ous machine learning methods to predict the normalized throughput of the serverless

platform. Some of these methods include Linear Regression, Support Vector Re-

gression, Decision Tree Regression, Random Forest Regression, and Artificial Neural

Networks. Based on the workload characteristics, the performance of the container

(i.e., the throughput and response time) of the system changes in a nonlinear fashion.

Thus, the performance of the linear models (Linear Regression) is expected to be poor

compared to nonlinear methods. This trend was observed in our experiments, which

1https://github.com/DDSystemLab/smartspread
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Table 2.2: Configuration of the Neural Networks.

Property Value

size 2 layers with 10 and 5 neurons

Activation Function sigmoid for input and hidden layers,
identity function for the output layer

Loss Function Mean Squared Error

Optimizer SGD with batch-size of 10 and 1000
epochs of training

showed SVR and Neural Network to have the best performance in terms of accuracy

with a slight advantage of Neural Network over SVR. In this work, we used Neural

Networks for our experiments because of its agility, prediction speed, generality, and

flexibility to fit nonlinear functions. The configuration of the neural networks used

can be found in Table 2.2. The code related to the machine learning section and the

resulting trained model can be found in the project’s Github repository2.

2.4 Experimental Validation

In order to evaluate the proposed smart spread algorithm, we require full control

over the serverless platform for container placement and performance measurements.

As a result, we developed a serverless computing platform from scratch based on

the architecture depicted in Figure 2.1. Our platform uses Elastic Metric Beats to

collect the system information data to be used in the machine learning-based model

and Docker for containerization. The codes and scripts developed for the serverless

platform can be found in our public Github repository3. For our backend cloud

platform, we used the Cybera [38] cloud with four nodes working as worker nodes

and RabbitMQ as our distributed task queue. The configuration of our worker nodes

2https://github.com/DDSystemLab/smartspread-ml
3https://github.com/DDSystemLab/smartspread
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Table 2.3: Configuration of the VMs in the experiment.

Property Value or Include

vCPU 2

RAM 4GB

HDD 40GB

Network 1Gb/s

OS Ubuntu 18.04

Python 3.7 numpy, scikit, pandas, tensorflow and keras

is shown in Table 2.3. To manage the Docker containers on workers, we developed

a REST API installed on every VM added to the worker fleet to obtain information

about containers on nodes (e.g. container count, resource utilization for each, etc.).

We used three different generic workloads to imitate all possible workloads that FaaS

might process. Generally, various workloads can be classified as CPU intensive,

memory-intensive, or I/O (i.e. disk and network) intensive. To show the effectiveness

of the smart spread algorithm, we implemented each type of application (i.e., func-

tion) in a dedicated container image to be instantiated on the serverless platform. In

each workload, we used a web server that runs a benchmark upon receiving a user

request. Table 2.4 summarizes the configuration of these benchmarks and the options

that we used in this study.

For the CPU and I/O intensive containers, we used the alpine image, and for the

memory-intensive workload, we used the MySQL 5.7 image, all obtained from the

Docker hub. Each running container was bound to use only 512 MB of memory,

50% of a CPU core and 7.15 MB/s of disk I/O (half the available disk speed of the

VMs achieved through benchmarks), thus making the capacity of each VM to be 7
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Table 2.4: Benchmarks used in each application type. Each type has been container-
ized.

Application Type Benchmark Configuration

CPU Intensive Sysbench CPU [39]
max-requests=2500
cpu-max-prime=1000

Disk I/O Intensive FileIO [39]
max-requests=200

file-test-mode=rndrw

Memory-Intensive OLTP [39, 40]

table-size=10000
table-count=3

max-requests=10

containers. In order to avoid any potential crash, we limited this number to 6, thus

making the total number of containers (i.e., capacity) in the system to 24. To trigger

the autoscaling, we used a simple pure reactive algorithm. For each function, we

measure the total response time for each request, and if it is beyond a predefined

threshold, which depends on the function type, new containers of that type will be

added to the fleet to maintain the SLO response time.

Figure 2.2: Concurrency level sequence used for our tests.

For our experiments, we use the concurrency level test in which each user will

make a request, wait for the request to be responded and make another request as

soon as it has received the response for the previous one. The sequence used for
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the level of concurrency for our tests is shown in Figure 2.2, in which the horizontal

axis is the time (minutes) and the vertical axis is the concurrency level (i.e., active

users) at each point in time for all workloads. Note that concurrency level changes

at the same time for all workloads. Also, note that the number of users has been

chosen to be low, with each request requiring more computation to avoid the effect of

network congestion. Each time index represents a minute indexed by k at the start

of which we start ck concurrent clients making requests to the server. The results

shown in Figures 2.3 to 2.6 are all aggregated results of each minute by taking the

average of that time period. To remove the effect of network latency, all tests have

been performed from a VM inside the internal network of the servers with single-digit

millisecond latency to the server. To get the steady-state throughput and response

time at each time interval, we assumed a warmup time of 30 seconds in which the

simulated client will make requests to the server, but their results are not recorded

and not shown in these figures. As can be seen, the tests have been designed in a

way that causes all algorithms to reach the limit of containers that can be used in

this system to keep the response time below the desired threshold.

To show that the smart spread algorithm imposes negligible overhead to the server-

less computing platform, we performed an analysis to identify the processing time for

finding the best performing VM in the pool, as well as the effects of scaling on the

overhead. To do so, we performed 100 iterations of VM selection, and the average of

results are shown in Table 2.5. All experiments reported have been done on the same

VM that was used for the experiments, which has no special-purpose hardware. As

can be seen in Table 2.5, in comparison with other proposed algorithms, the calcula-

tion time of the smart spread algorithm is larger but still negligible since the lifetime

of a container is usually much more than a few seconds [10]. In much larger VM

pools, dedicated hardware (GPGPUs) could be utilized to reduce the overhead of the

system further.

Figures 2.4 to 2.6 show the average throughput per container, response time, total
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throughput, and container count for the Sysbench, FileIO, and OLTP functions,

respectively. Figure 2.3 shows the aggregated results of Figures 2.4 to 2.6. Please note

that the aggregated throughput per container is the sum of throughput per container

for each application type (see Table 2.4) and not the aggregated throughput divided

by the aggregated number of containers. This is to avoid favouring the application

type with higher throughput in our results. As we mentioned before, we use the

response time to trigger the scaling of each function. In the first half of our tests

(i.e., light load), since none of the resources in the VMs are congested, we have a

linear throughput in the system for all the placement algorithms. However, when we

approach the second half of the experiment (i.e., the shaded area in the graph which

shows the heavy load region), different approaches tend to give different results. As

could be expected, since binpacking sacrifices performance to achieve lower costs,

it has the worst throughput in the system. In contrast, since spread sacrifices cost

to achieve the best performance it can (without considering the characteristics of

the workload), it performs best among the algorithms that discard the workload

specifications. For almost all function types, random placement of containers will

result in performance measurement in between these two algorithms. However, the

proposed smart spread algorithm tries to maximize the output of each function by

choosing the VM that gives the best result for that function in that time slot.

Table 2.5: Processing overhead of placement algorithms.

Algorithm Our Setting Using k VMs Unit

Random 0.79 0.79 millisecond

Binpack 0.49 0.1225× k millisecond

Spread 0.48 0.12× k millisecond

Smart Spread 10.16 2.54× k millisecond
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As can be seen in Figures 2.3a and 2.3b, before we reach the limitation on the

total number of containers that can be placed in the system, the proposed smart

spread algorithm achieves the highest throughput among all algorithms used in this

experiment while maintaining the lowest container count. As a result, the proposed

algorithm helps reduce the number of required containers (see Figure 2.3d under

heavy load), which can be translated into less runtime operational cost for application

owners and reduced carbon footprint without sacrificing the performance and end-

user satisfaction.

Table 2.6: Average aggregated throughput (Thro) and response time (RT) for each
placement algorithm in heavy load region. The relative throughput (Rel Thro) and
relative response time (Rel RT) are relative values to smart spread algorithm result.

Algorithm Thro RT Rel Thro Rel RT

Binpack 2966.38 2193.39 0.68 1.36

Random 3523.75 1954.76 0.81 1.24

Spread 3934.62 1763.33 0.91 1.10

Smart Spread 4341.62 1608.49 1 1

Table 2.6 shows the average aggregated results of the heavy load region. The ag-

gregated throughput in this table shows the sum of throughputs and the aggregated

response time shows the sum of the response times of the functions. The relative

throughput and response time are the ratios of the aggregated throughput and re-

sponse times over the proposed smart spread algorithm. As can be seen in table 2.6,

the smart spread function placement improves the throughput and response time

between 10-36% and 9-32% respectively when compared to baseline algorithms.

Figure 2.4 shows the results obtained for the Sysbench CPU application. We expect

to achieve the best performance of an application when it is the only task being run

on the server. But the results for CPU intensive tasks are somewhat counter-intuitive
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(a) The aggregated throughput per con-
tainer.

(b) The aggregated response time; the
dashed line shows the sum of thresholds used
for the functions.

(c) The aggregated throughput.
(d) The aggregated number of containers; the
dashed line shows the capacity of the system.

Figure 2.3: The aggregated experimental results for the three functions. Values have
been derived by adding the results from Figures 2.4 to 2.6. Note that the aggregated
throughput per container is the sum of throughput per container for each application.

since we see a performance boost of up to 13% for each task when more than one

CPU intensive task was being run on the VM. This is probably due to the adaptive

behaviour of the underlying scheduler that handles CPU time allocation for each VM

and the adaptive behaviour of the CPU under heavy load. But as you can see, as

the number of containers exceeds 4 (when we reach maximum CPU capacity), we

observe a large degradation of performance due to using up the resources available.

We observe that this is, to some extent, automatically captured by the smart spread,

which leads to the best performance under heavy load.

Intuitively, considering how the contention in disk I/O causes performance to drop,

an algorithm that works similar to spread should yield the best possible performance
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(a) The throughput of the Sysbench CPU im-
age divided by the total number of contain-
ers.

(b) The response time of the Sysbench CPU
workload (i.e., function). The dashed line
shows the threshold used to trigger auto-
scaling of the function.

(c) The throughput of the Sysbench CPU
workload.

(d) The number of containers created for Sys-
bench CPU image in each test.

Figure 2.4: Experimental results for the Sysbench which is a CPU intensive workload.
The results are obtained when all application types are applied to the platform which
leads to different saturation levels for container counts.

for FileIO at all times. We can see in Figure 2.5a that such behaviour is observed

between the Random, Binpack, and Spread algorithms. Also, it can be observed that

smart spread achieves similar results with a slight advantage under heavy load mainly

due to better management of other resource types (CPU and memory).

Figure 2.6 shows the results for the OLTP application. Since we ensure that

there is always enough memory available to the application in order to prevent the

system from crashing, the OLTP benchmark is not influenced much by the selection

of the container placement algorithm and thus has little implications for system-wide

performance evaluation. Please note that different saturation levels observed for the
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(a) The throughput of the FileIO image di-
vided by the total number of containers.

(b) The response time of the FileIO work-
load. The dashed line shows the threshold
used to trigger auto-scaling of the function.

(c) The throughput of the FileIO workload.
(d) The number of containers created for
FileIO workload in each test.

Figure 2.5: Experimental results for the FileIO which is a I/O intensive workload.
The results are obtained when all workload types are co-located on the platform which
leads to different saturation levels for container counts.

container count for different placement algorithms in Figure 2.6d are due to the fact

that all container types are being scaled at the same time for each algorithm. Thus,

adding up the saturation levels for Figures 2.4d, 2.5d and 2.6d for each algorithm will

be equal to the system capacity (24 containers).

Overall, many manual rules can be found for near-optimal placement of different

applications on serverless platforms using the knowledge of the underlying system and

thorough experimentation. But for the serverless service providers, the applications

appear as black-box models, and thus such rules cannot be found for each application

at scale. In addition, as we saw in our experiments, there is no single algorithm that

guarantees the best placement at all conditions and for all types of workload without
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(a) The throughput of the OLTP image di-
vided by the total number of containers.

(b) The response time of the OLTP work-
load. The dashed line shows the threshold
used to trigger auto-scaling.

(c) The throughput of the OLTP workload.
(d) The number of containers created for
OLTP workload.

Figure 2.6: Experimental results for the OLTP which is a memory-intensive workload.
The results are obtained when all workload types are co-located on the platform which
leads to different saturation levels for container counts.

considering the characteristics of the workload. The method presented in this work

tries to capture the subtle interaction between the workload and the VM status using

black-box performance models and thus can be applied to unknown applications to

provide self-optimization without the need for human supervision.

2.5 Related Work

The work in the literature for this research can be divided into 3 main categories: A)

workload profiling and other methods of building predictive models for different types

of workloads and applications; B) batch job runtime prediction and other research
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that try to predict the performance of these types of workloads; and C) works that

use machine learning as their primary performance modelling tool for distributed

systems.

2.5.1 Workload Profiling and Application Modelling

Many recent studies have focused on workload profiling and application modelling

to improve the scheduling algorithms used in workload orchestration platforms. In

[41], Lioyd et al. used workload profiling using benchmarks to predict the cost of

workloads across different settings, to analyze unique resource requirements of very

diverse workloads. Their work assumed a stationary environment of homogeneous

VM capacity and initial settings. However, in managing serverless infrastructure, the

servers’ workload capacity and resource utilization are very dynamic. The authors

in [13] investigate the factors influencing microservices. Several factors influence a

container’s performance like the state, memory limit, concurrent users, and several

other factors for commercial platforms. They try to find out the most limiting factors

influencing the performance of a container. We found that some of the significant

predictors in their work haven’t contributed much to the performance predictions in

our settings.

Profiling can give us extra information about the microservice that is going to

be deployed. One example is giving us an insight into how much the underlying

VM is going to be affected by the execution of a container. In [42], the authors

developed a Cloud-Scale Java profiler, which helped the developers find out the

performance-related problems with their applications as well as giving them insight

into the throughput of their system and the resources each microservice is going to

require to reach a certain quality of service. In [36], The use of profiling and nor-

malized performance to optimize the workload performance and model the effect of

current and co-locating running VMs has been investigated. They proposed an algo-

rithm that increases workload performance while reducing the energy consumption
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of the PMs using VM migration. Although they raise very interesting points, their

algorithm cannot work under a diverse set of workloads.

Li et al. [43] use analytic models based on queuing theory to optimize performance

levels of composite service application jobs by tuning job configurations and resource

allocation decisions. In [44], Apte et al. propose a load generator tool aimed especially

at multi-tier internet server applications for capacity analysis and profiling. Their

work aims at generating a detailed server resource usage profile per request type.

Chen et al. [45] try to predict the performance of enterprise applications based on

technologies like COBRA and J2EE using benchmarking and profiling. In their work,

they assume a performance model of the application will be built on a machine close

to the production environment. The heterogeneous nature of serverless computing

platforms is a limiting factor for this method. In addition, they don’t consider the

variable runtime environment common in serverless computing.

Sadjadi et al. [46] proposed a dynamic execution time prediction using regression

on an increasing number of nodes. In their work, they did not consider the possi-

bility of other workloads being executed on the same node, which could affect the

performance of an application.

Liu et al. [47] utilized a multi-objective optimization to find an optimal placement

of containers. In their work, they consider the variable runtime environment of the

nodes but assume only one application is being executed in the cluster. Also, they do

not perform any generalization and thus have to perform the optimization for each

of the applications separately.

2.5.2 Batch Job Runtime Prediction

Lloyd et al. [37] use Physical Machine (PM) and Virtual Machine (VM) resource

utilization statistics to build workload models to predict the task completion time of

a workload. This is similar to what we propose for containers in this chapter. They

also provide a comprehensive study of the metrics that affect the workload completion
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time the most. In [48], the authors try to predict the runtime of batch workloads when

running multiple parallel batch jobs on the same machine while sharing resources like

CPU and RAM.

In [49], Gribaudo et al. presented a model based on multiformalism and multiso-

lution techniques to predict the overall performance of lambda architecture. They

argue that such system could support the design and assessment process in order to

optimize the overall throughput of the system while keeping the QoS of the resulting

lambda architecture above the required level of agreement.

2.5.3 Machine Learning for Performance Modelling

Many works in the literature have successfully applied machine learning for perfor-

mance modeling of distributed applications [50–53]. The main reason is that in the

increasingly complex systems, the analytical performance modeling is a long and

error-prone task which cannot capture the full complexity of the system and the

complicated architecture of current systems. In such situations, machine learning

techniques can help improve the accuracy of performance modeling while being fast,

automated, and able to capture the full complexity of the application and its archi-

tecture [53, 54].

Yadwadkar [55] tries to choose the best VM type to optimize the cost for the user

while maintaining the target performance required by the user. This work uses work-

load profiling as well to predict the performance of the system on different VMs but

assumes only one application will be running on a VM instance and doesn’t take the

dynamic nature of running multiple applications on one VM into account. The au-

thors in [56] introduce a closed-loop controller based on a model predictive controller

for the lambda architecture. The proposed system does this by considering the re-

source inference among adjacent lambda functions in the allocation phase. They try

to build a decision support mechanism based on machine learning to provide server-

less architecture platforms with the tools to use model predictive control frameworks
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in their systems. While the methods used in this chapter try to use machine learning

to improve serverless architecture, their method needs to collect data and perform

the training phase for each workload separately in different settings and this leads

to a large number of models and training phases that are imposed on the serverless

platform.

In [57], Xu et al. introduce a unified reinforcement learning methodology for tuning

the configuration of different VMs to maximize long-term delayed performance reward

for the agent. In this work, the authors focused on CPU and memory allocation, while

depending on the application, network I/O and disk I/O could have a significant

impact on VM or container’s performance.

2.6 Conclusion

In this chapter, we proposed and evaluated a new container/function placement algo-

rithm based on Tensorflow neural networks to increase the performance of functions

compared to the current placement algorithms being used by FaaS providers. We

trained and evaluated fifteen different machine learning approaches for this purpose

and formulated the best, called the smart spread, in terms of improvement, accuracy,

and overhead. To evaluate the smart spread algorithm, we developed a serverless

computing platform from scratch and implemented three of the most well-known

placement algorithms along with our proposed smart spread algorithm. We carried

out extensive experiments in all of which the supremacy of smart spread was shown. It

is straightforward to add smart spread to FaaS provider scheduler as well as container

orchestration tools such as Docker Swarm, Kubernetes, and Apache Mesos.
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Chapter 3

Performance Modelling of
Scale-Per-Request Serverless
Computing Platforms

Analytical performance models have been leveraged extensively to analyze and im-

prove the performance and cost of various cloud computing services. However, in the

case of serverless computing, which is projected to be the dominant form of cloud

computing in the future, we have not seen analytical performance models to help

with the analysis and optimization of such platforms. In this work, we propose an

analytical performance model that captures the unique details of serverless comput-

ing platforms. The model can be leveraged to improve the quality of service and

resource utilization and reduce the operational cost of serverless platforms. Also, the

proposed performance model provides a framework that enables serverless platforms

to become workload-aware and operate differently for different workloads to provide

a better trade-off between the cost and performance depending on the user’s prefer-

ences. The current serverless offerings require the user to have extensive knowledge

of the internals of the platform to perform efficient deployments. Using the proposed

analytical model, the provider can simplify the deployment process by calculating the

performance metrics for users even before physical deployments. We validate the ap-

plicability and accuracy of the proposed model by extensive experimentation on AWS

Lambda. We show that the proposed model can calculate essential performance met-
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rics such as average response time, probability of cold start, and the average number

of function instances in the steady-state. Also, we show how the performance model

can be used to tune the serverless platform for each workload, which will result in

better performance or lower cost without scarifying the other. The presented model

assumes no non-realistic restrictions, so that it offers a high degree of fidelity while

maintaining tractability at large scale.

3.1 Analytical Performance Model

Section 1.2 briefly outlines the scheduling algorithm used for the serverless computing

platforms and the one that we consider in this section, i.e., scale-per-request. In

this section, we present our analytical performance model based on this scheduling

algorithm. Our primary focus is to obtain steady-state metrics of the system based

on the system and workload characteristics.

An ideal serverless computing platform should act like an M/G/∞ queuing system

(aka delay center) with the same service time distribution for all requests. However,

in current serverless computing platforms, the presence of cold start, which could

be orders of magnitude longer than a warm start, and limitations on the concurrent

number of instances (i.e., servers), shown as maximum concurrency level, lead to a

more complex performance model. In this work, we impose more restrictions on delay

center theory to accurately model the current serverless computing platforms with a

high degree of fidelity and tractability.

In the presented model, we leveraged a continuous-time Semi-Markov Process

(SMP) where the state number represents the number of instances in the warm

instance pool, which is between 0 and maximum concurrency level. As shown in

Figure 3.1, adding an instance to the warm instance pool is triggered by a cold start,

causing a transition from state i to i+ 1 in our SMP model. In the proposed model,

each server is terminated and released after being idle for some time. To calculate

the associated transition rates, we model each state of the SMP with an M/G/m/m
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queuing system. The number of instances (m) can shrink (to the minimum of zero

instances in the warm pool) or expand (to the maximum concurrency level) due to

the fluctuation in the workload. M/G/m/m queuing systems are appropriate for

modelling the warm instance pool since servers are homogeneous, the discipline is

non-preemptive FCFS, and there is no priority among incoming requests. Thus, we

assume a Poisson arrival process, generally distributed service times, with m warm

instances and no extra queuing room beside the server instances. In the following sub-

sections, we present the calculation of different parameters in our analytical model

using symbols defined in Table 3.1.

Figure 3.1: An overview of the proposed system model using M/G/m/m loss systems.
In the case of workload fluctuation, m will change during the runtime, just like a delay
center. The blue arrows show the path a successful cold start goes through.

3.1.1 Cold Start Rate

As can be seen in Fig. 3.1, rejection of a request by the warm pool triggers a cold

start and thus adds a new function instance to the warm pool to handle subsequent

requests. To obtain the rate at which new servers will be instantiated, we need to
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Table 3.1: Symbols and their corresponding descriptions.

Symbol Description
λ Mean arrival rate of requests
µw Mean warm start service rate
µc Mean cold start service rate
ρ Offered load

PB,m Blocking probability for a warm pool of m instances
λw,m Actual arrival rate to the warm pool of m instances
λc,m Cold start arrival rate when we have m warm instances
λw,m,i Actual arrival rate to ith instance in the warm pool of m instances
Ii The ith instance in the warm pool

PS,n Probability of a request being served by the nth instance in the warm
pool

λw,m,i The arrival rate for warm instance Ii in a warm pool of m instances
Creq,m,i Mean number of requests served by instance i in a warm pool of m

instances before being terminated
Plst,m,i Probability of a request being the last one before instance termination
LSm,i Lifespan of the ith server in a warm pool of m instances
Rexp,m,i The mean expiration rate of the ith server in a warm pool of m instances
Rexp,m The mean total expiration rate in a warm pool of m instances
Ra,m Mean transition rate of going from m to m+ 1 servers in the warm pool
Q The transition rate matrix
π The steady-state distribution

Prej Probability of rejection by the system
PB Probability of blocking by the warm pool
Pcld Probability of cold start
RTavg Mean response time
RTw Mean warm start response time
RTc Mean cold start response time
Cw The mean number of servers in the warm pool
Cr Mean number of running instances
Cr,w The mean number of servers busy running warm requests
Cr,w,m The mean number of servers busy running warm requests in a warm pool

of size m
Cr,c The mean number of servers busy running cold requests
Cr,c,m The mean number of servers busy running cold requests when the warm

pool is of size m
Ci The mean number of idle servers
U Mean utilization
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calculate the probability of a request being rejected by the warm pool. We know that

the state probabilities of theM/G/m/m loss system are identical to the corresponding

Markovian M/M/m/m system with exponentially distributed service times [58]. To

calculate the blocking probability for the corresponding M/M/m/m loss system, first,

we need to calculate the offered load (ρ) in terms of the arrival rate (λ) and the average

service rate (µw):

ρ = λ/µw (3.1)

Then, the Erlang’s B formula is obtained as [59]:

PB,m = B(m, ρ) =
ρm

m!∑︁m
j=0

ρj

j!

(3.2)

This equation gives the probability of a request being rejected (blocked) by the

warm pool, assuming there are m warm servers. If m is less than the maximum

concurrency level, the request blocked by the warm pool causes a cold start. If the

warm pool has reached the maximum concurrency level, any request rejected by the

warm pool will be rejected by the platform. We can also calculate the actual arrival

rate to the warm pool of m instances (λw,m) which is less than λ since some arrivals

are being rejected by the warm pool:

λw,m = λ(1− PB,m) (3.3)

Using eq. (3.2), we can derive the rate at which cold starts are happening in the

system.

λc,m = λPB,m (3.4)

Figure 3.1 depicts an overview of the proposed model for the rapid scaling up in

scale-per-request serverless computing platforms. Using this model, we can calculate

the performance metrics of interest in the system.
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3.1.2 Arrival Rate for each Server

To calculate the rate at which servers will be expired and consequently terminated,

we first need to calculate the arrival rate for each warm instance. Assuming that

we have m instances in warm pool as {I1, I2, ..., Im}, λw,m,n indicates the arrival rate

to instance In, where 1 ≤ n ≤ m. In our model, we assume the instance I1 to be

the newest server in the system and Im to be the oldest instance in the system,

thus considering the scheduling assumptions laid in Section 1.2, we can see that

λw,m,1 > λw,m,2 > ... > λw,m,m since the scheduler will first try to route the traffic

to instance I1, then I2, and it will route traffic to Im if and only if all other warm

instances are currently busy running another request at the time of arrival.

When interpreting PB,n−1, as defined in eq. (3.2), we see that it shows for what

ratio of requests, instances {Ii; i = 1, 2, ..., n − 1} are busy in the warm pool. Thus,

PB,n−1 of the incoming requests, will either be served by {Ii; i = n, n + 1, ...,m}, or

be totally rejected by the system. Similarly, PB,n of the incoming requests, will be

served by {Ii; i = n+1, n+2, ...,m}, or will be rejected by the system due to reaching

the maximum capacity. Using these two observations, we can calculate the ratio of

requests that are being processed by In as:

PS,n = PB,n−1 − PB,n (3.5)

PS,n shows the probability of a request being served by instance In, having PS,0=1.

Using this probability, we can calculate the arrival rate for each of instances {In; 1 ≤

n ≤ m}:

λw,m,n = λw,mPS,n (3.6)
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3.1.3 Server Expiration Rate

In eq. (3.6), we calculated the arrival rate for individual instances in the warm pool.

In this section, our goal is to calculate the mean lifespan of instances, considering

that they will be expired and subsequently terminated after receiving no requests in

expiration threshold units of time after processing the last request.

Let’s assume the arrival rate λw,m,i for instance Ii with exponential inter-arrival

times. Thus, the Probability Density Function (PDF) of inter-arrival time is of the

following form:

P (X = x) = λw,m,i · e−λw,m,ix (3.7)

And the Cumulative Distribution Function (CDF) will be of the following form:

P (X ≤ x) = 1− e−λw,m,ix (3.8)

The probability that a request is the last one before the expiration of the server is equal

to the probability that the next inter-arrival time drawn is larger than T = Texp+1/µw,

which is equal to:

Plst,m,i = P (X ≥ T ) = e−λw,m,iT (3.9)

Thus, whether or not the request arriving at a server is the last one before the expiry of

that server (shown as the last request in Figure 3.2) has a geometric distribution with

the probability of Plst,m,i as the distribution parameter. We know that the average

number of trials (i.e., arrival of requests) before the server is expired and terminated

is:

Creq,m,i =
1

Plst,m,i

(3.10)

To see how long Creq,m,i requests will keep the server warm, we need the expected

inter-arrival time with an arrival rate of λw,m,i which are less than T = Texp + 1/µw:
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E[X;X < T ] =

∫︂ T

0

xλw,m,ie
−λw,m,ixdx

=− x · e−λw,m,ix

⃓⃓⃓⃓T
0

+

∫︂ T

0

e−λw,m,ixdx

=− T · e−λw,m,iT − eλw,m,ix

λw,m,i

⃓⃓⃓⃓T
0

=− T · e−λw,m,iT +
1− eλw,m,iT

λw,m,i

(3.11)

Figure 3.2: The server lifespan calculation overview.

Thus, the average lifespan of a server in the warm pool could be calculated as follows

(Figure 3.2):

E[LSm,i] = {(Creq,m,i − 1) · E[X;X < T ]}+ 1

µw

+ Texp (3.12)

where E[LSm,i] denotes the average lifespan of a server in the warm pool.

The expiration rate for servers can be calculated using E[LSm,i]:

Rexp,m,i =
1

E[LSm,i]
(3.13)

which gives us the server expiration rate for Ii. Expiring and terminating any servers

in the warm pool will result in having one less server in the pool. Thus, the overall

expiration rate for m servers would be the sum of these rates:

Rexp,m =
m∑︂
i=0

Rexp,m,i (3.14)

This gives the rate at which servers in a pool of m servers will be expired and termi-

nated.
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Figure 3.3: The state transition diagram of the warm pool in serverless platforms.
This is a Semi-Markov process for which we provide a closed-form steady-state solu-
tion. The dashed red self-loop shows rejected requests due to insufficient capacity.

3.1.4 Modelling the Warm Pool

In previous sections, we calculated the cold start and server expiration rates in the

system. In this section, we model the warm servers pool using a Semi-Markov Process

(SMP), for which we derive an approximate closed-form steady-state solution. The

process is not Markovian since, as can be seen in Figure 3.2, the lifespan of servers,

i.e., the states’ holding time, is clearly not exponentially distributed. Figure 3.3

shows the SMP model where M is the maximum number of servers in the warm

pool, also known as maximum concurrency level, which is an inherent limitation in

all public serverless offerings. In each state, m shows the number of servers in the

warm pool. In other words, in each state the warm pool is working like a loss system

(i.e., M/G/m/m queue) that can go to another state, i.e., a loss system with one

more or less function instance with the rate of Ra,m and Rexp,m, respectively. λc,m

and Rexp,m indicate the rate of cold start and expiration of a server in a warm server

pool of size m, respectively. Also, µc is the rate of servicing a cold start request.

1/λc,m shows the mean time between two consecutive cold starts. But, when a cold

start happens in the system, the server will not be available in the warm pool until

the cold start service time has passed. This makes the transition rate of going from

m to m+ 1 servers in the warm pool as:

Ra,m =
1

1
λc,m

+ 1
µc

=
λc,m · µc

λc,m + µc

(3.15)
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Figure 3.4: One-step transition rate matrix for the proposed model.

3.2 Steady-State Solution

The one-step transition rate matrix Q can be used to get the limiting distribution π

for the SMP. The transition rate matrix used in this work is shown in Figure 3.4 where

rows and columns correspond to the number of servers in the warm pool, starting with

zero servers. Each element in the transition rate matrix located in row i and column

j shows the rate at which the state transitions from state number i to state number

j. Diagonal elements Qi,i are defined such that the following holds:

Qi,i = −
∑
j �=i

Qi,j (3.16)

The steady-state distribution π is the unique solution to the following equation

system [60]:

π ·Q = 0 and
M∑

m=0

πm = 1 (3.17)

where πm represents the probability of having m servers in steady-state. Algorithm 1

shows an overview of the proposed analytical model. As shown, after calculating the

SMP model parameters for each number of function instances in the warm pool (for

each m), we solve the SMP for the equilibrium distribution. Then, we can calculate

the steady-state characteristics of interest in the system:

Probability of Rejection (Prej): as described in the system description, when

the system reaches the maximum concurrency level, any request blocked by the warm
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Algorithm 1: Serverless Performance Model Method
Input: λ, µw, µc, Texp, M
Output: metrics

1 ρ← λ/µw;
2 m← 0;
3 props← empty array;
4 λc ← empty array;
5 Rexp ← empty array;
6 while m ≤M do
7 λc[m]← calculate cold start rate;
8 Rexp[m]← calculate expiration rate;
9 prop← calculate properties for warm pool with m;

10 props[m]← prop;
11 m← m+ 1;

12 end
13 Q← build transition rate matrix(λc,µc,Rexp);
14 πm ← solve the resulting SMP model using Q;
15 metrics←calculate properties using props and πm;

pool will be rejected by the system. Thus, the probability of rejection for a given

request can be calculated as the following:

Prej = PB,MπM (3.18)

Probability of Cold Start (Pcld): the probability of a cold start happening for

each request is an important factor for several reasons, including complying with the

Quality-of-Service (QoS) requirements. To calculate this metric, we first need the

probability of a request being blocked by the warm pool:

PB =
M∑︂

m=0

PB,mπm (3.19)

Now, we can calculate the probability of cold start that may happen for each

request, knowing each request blocked by the warm pool can either be a cold start or

a rejected request:

Pcld = PB − Prej (3.20)

Average Response Time (RTavg): the derivation of the average response time

is:
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RTavg = RTw(1− PB) + RTcPcld (3.21)

where RTavg, RTw, and RTc denote the total average response time and average

response time for cold and warm requests in steady-state, respectively. Also, note

that µw = 1/RTw and µc = 1/RTc.

Mean Number of Instances in Warm Pool (Cw): knowing the average num-

ber of instances in the warm pool could benefit both the service providers and the

users of the serverless computing platform. Users could use this information to set

the provisioned or reserved concurrency levels [61]. Service providers could use this

information to modify their system-level settings based on the characteristics of each

workload.

The average number of servers in the warm pool Cw can be calculated using πm

since m represents the number of servers in each state:

Cw =
M∑︂

m=0

mπm (3.22)

Mean Number of Running Instances (Cr): the average number of servers

busy running warm requests (Cr,w) can be calculated using the following:

Cr,w,m = RTwλw,m = RTwλ(1− PB,m)

Cr,w =
M∑︂

m=0

Cr,w,mπm

(3.23)

Similarly, we can calculate the average number of servers busy running cold requests

(Cr,c), considering the fact that requests blocked by the warm pool when reaching

maximum concurrency level are rejected, and thus do not count towards the running

cold starts:

Cr,c,m =

{︄
0 if m = M

RTcλc,m = RTcλPB,m otherwise

Cr,c =
M−1∑︂
m=0

Cr,c,mπm

(3.24)
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Thus, the average number of servers processing user requests could be calculated:

Cr = Cr,w + Cr,c (3.25)

Mean Number of Idle Servers (Ci): as mentioned earlier, the number of idle

servers is proportional to the infrastructure overhead of the service provider. This

property can be calculated as follows:

Ci = Cw − Cr,w (3.26)

This equation is derived using the fact that warm instances are either in the idle

state, meaning they are not processing any requests and are just reserved capacity,

or they are in the busy state, meaning they are processing a request.

Mean Utilization (U): in this context, the utilization is defined as the ratio

of warm instances that are busy processing a request (Cr,w) over the total instances

in the warm pool (Cw). Knowing the average number of running instances, and the

average number of instances in the warm pool, we can calculate the average utilization

ratio:

U =
Cr,w

Cw

=
RTwλ(1− PB,m)∑︁

m mπm

(3.27)

The utilization metric is especially of importance for service providers since they only

charge users for instances that are processing user requests, and thus the rest of the

capacity is considered additional costs for them.

3.2.1 Tractability Analysis

To study the tractability, i.e., scalability of our performance model, we investigate how

the complexity of the proposed model grows when various parameters are increased.

The number of states in the final Semi-Markov Process model is equal to the maximum

concurrency level of the system and grows linearly when increasing the maximum

concurrency level. The rate calculations for the SMP model should also prove to

be tractable. Using the method outlined in Algorithm 1, we can calculate the time
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complexity of the analytical model. The expiration rate calculations can be calculated

for each state in O(1). Thus, the calculation of expiration rates for the final model

grows linearly with the maximum concurrency level. The cold start rate calculation

requires the calculation of the Erlang formula, which grows linearly with the number

of servers in the state (m). Hence the calculation of all cold start rates can be done

in O(M2), which can be calculated for any scale. Solving the resulting SMP for

equilibrium distribution is done in O(M3), which makes the complexity of the whole

process O(M3).

3.3 Steady-State Solution Experimental Validation

In this section, we evaluate our analytical model by way of experimentations on the

AWS Lambda serverless platform. All of our experiments were executed for a 28-hour

window with 10 minutes of warm-up time in the beginning, during which we don’t

record any data.

3.3.1 Experimental Setup

In our AWS Lambda deployment, we used the Python 3.6 runtime with 128 MB of

RAM deployed on us-east-1 region in order to have the lowest possible latency from

our client machine. The workload used in this work was based on the work of Wang

et al. [10] with minor modifications and is openly available in our Github repository1.

For the purpose of experimental validation, we used a combination of CPU intensive

and I/O intensive workloads. As the CPU intensive part, the function calculates the

multiplication of 1 through 10, 000. The I/O intensive part of the workload includes

using dd tool2 to read and write a file of size 1MB, 5 times for each incoming request.

During the experimentation, we have obtained performance metrics and the other

parameters such as cold/warm start information, instance id, lifespan, etc., which

1https://github.com/pacslab/serverless-performance-modeling/tree/master/deployments
2https://man7.org/linux/man-pages/man1/dd.1.html
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have been used to guide our analysis.

For the client triggering the deployed function, we used a virtual machine hosted

on Compute Canada Arbutus cloud3 with 8 vCPUs, 16 GB of memory, and 1000

Mbps network connectivity with single-digit milliseconds latency to AWS servers. We

used Python for the client’s programming language, and the official boto3 library to

communicate with the AWS Lambda API to make the requests (trigger the function)

and process the resulting logs for each request with a request-reply pattern. Note

that we have not used any intermediary interfaces like AWS Gateway, S3 storage,

or message queues to mitigate the effect of their performance fluctuations in our

measurements. For load-testing and generating client requests based on a Poisson

process, we used our in-house function triggering library4 which is openly accessible

through PyPi5. The result is stored in a CSV file and then processed using Pandas,

Numpy, Matplotlib, and Seaborn. The dataset, parser, and the code for extraction of

system parameters and properties are also publicly available in the project’s Github

repository6.

To further improve the reproducibility of our work, we also included a docker

image containing the execution runtime of our work which has the required libraries

(including our own) pre-installed and ready for use by the research community.

3.3.2 Parameter Identification

We need to estimate the system characteristics to be used in our model as exogenous

parameters. In this section, we discuss our approach to estimating each of these

parameters.

Expiration Threshold (Texp): here, our goal is to measure the expiration thresh-

old, which is the amount of time after which inactive servers in the warm pool will be

3https://docs.computecanada.ca/wiki/Cloud resources
4https://github.com/pacslab/pacswg
5https://pypi.org/project/pacswg
6https://github.com/pacslab/serverless-performance-modeling
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expired and therefore terminated. To measure this parameter, we created an experi-

ment in which we make requests with increasing inter-arrival times until we see a cold

start meaning that the system has terminated the server between two consecutive re-

quests. We performed this experiment on AWS lambda with the starting inter-arrival

time of 10 seconds, each time increasing it by 10 seconds until we see a cold start. In

our experiments, AWS lambda seemed to expire a server exactly after 10 minutes of

inactivity (after it has processed its last request). This number did not change in any

of our experiments leading us to assume it is a deterministic value. This observation

has also been verified in [27, 62].

Average Warm Response Time (RTw) and Average Cold Response Time

(RTc): to measure the average warm response time and the average cold response

time, we used the average of response times measured throughout the experiment.

3.3.3 Analytical Model Validation

In this section, we outline our methodology for measuring the performance metrics

of the system, comparing the results with the predictions of our analytical model.

Probability of Cold Start (Pcld): to measure the probability of cold start, we

divide the number of requests causing a cold start by the total number of requests

made during our experiment. Due to the inherent scarcity of cold starts in most of our

experiments, we observed an increased noise in our measurements for the probability

of cold start, which lead to us increasing the window for data collection to about 28

hours for each sampled point.

Mean Number of Instances in the Warm Pool (Cw): to measure the mean

number of instances in the warm pool, we count the number of unique instances

that have responded to the client’s requests in the past 10 minutes. We use a unique

identifier for each function instance to keep track of their life cycle, as obtained in [10].

Mean Number of Running Instances (Cr,w): we calculate this metric by

observing the system every ten seconds, counting the number of in-flight requests in
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the system, taking the average as our estimate.

Mean Number of Idle Instances (Ci): this can be measured as the difference

between the total average number of instances in the warm pool and the number of

instances busy running the requests.

Utilization (U): similar to our model, this is defined as:

U =
Cr,w

Cw

(3.28)

Figure 3.5: Probability of cold start against arrival rate. The vertical bars show one
standard error around the measured point.

Figure 3.6: The number of idle servers against arrival rate.

3.4 Steady-State Solution Results and Discussion

Figures 3.5 to 3.7 show the result of our experiments compared with the analytical

model results. For each point shown for the experimentation, we ran a test with a
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Figure 3.7: Utilization against arrival rate.

Poisson arrival rate with a constant mean for twenty-eight hours with ten minutes of

warm-up in the beginning. As can be seen, the analytical performance model results

are greatly in tune with the experimental results.

Figure 3.8: Cold start probability against the expiration threshold. The arrival rate
has been set to 1 request per second. The legends denote warm and cold service
times. Note that the x-axis is on a logarithmic scale and changes from 0.1 to 600
seconds.

Section 3.4 outlined the experimental results and their comparison with the ana-

lytical performance model. As discussed earlier, these results show the effectiveness,

tractability, and fidelity of the model when applied to AWS Lambda [63]. The model

proposed in this work can be applied to any serverless computing platform, as long as

the management complies with the system description outlined in Section 1.2. The

most important criterion is scale-per-request behaviour (with no queuing). For exam-
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Figure 3.9: Average response time against the expiration threshold. The arrival rate
has been set to 1 request per second. Note that the x-axis is on a logarithmic scale
and changes from 0.1 to 600 seconds. The vertical lines show the minimum expiration
threshold for which the average response time is at most 30% higher than the average
warm start response time.

Figure 3.10: Utilization against the expiration threshold. The arrival rate has been
set to 1 request per second. Note that the x-axis is on a logarithmic scale and changes
from 0.1 to 600 seconds.
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Figure 3.11: Average instance count against the expiration threshold. The arrival rate
has been set to 1 request per second. Note that the x-axis is on a logarithmic scale
and changes from 0.1 to 600 seconds.

Figure 3.12: Average estimated user cost against expiration threshold. The arrival
rate has been set to 1 request per second. Note that the x-axis is on a logarithmic
scale and changes from 0.1 to 600 seconds.

53



Figure 3.13: Probability of rejection against the arrival rate. The expiration threshold
has been set to 10 minutes, and the maximum concurrency is 1000. Note that the
x-axis is on a logarithmic scale.

ple, Google Cloud Functions [64], Azure Functions [65], IBM Cloud Functions [66],

and Apache OpenWhisk [67] work in a similar fashion, but Google Cloud Run [68],

OpenFaaS [69], Kubeless [70], and Fission [71] allow queuing for each server which

renders them incompatible with the performance model presented in this work.

In this section, we leverage the presented analytical model to perform what-if

analysis and investigate the effect of changing configurations on service quality metrics

and infrastructure cost indicators. It is worth mentioning that the analysis presented

here have been generated instantly and at no cost using the performance model, which

signifies the benefits of a tractable and accurate analytical model.

As mentioned earlier in Chapter 1, current serverless computing offerings are obliv-

ious to the type of workload that is being executed on them. One way to tune the

serverless computing platform to the workload being executed on them is to optimize

the expiration threshold, after which being idle causes the server to be expired and

terminated. Figures 3.8 to 3.12 depict the effect of expiration threshold on differ-

ent system characteristics for different workloads with varying warm and cold service

times shown in Table 3.2. As can be seen, the expiration threshold has a substan-

tial effect on most system characteristics, where increasing the expiration threshold

would improve the quality of service, while increasing the infrastructure cost for the
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serverless platform provider at the same time. Besides, each workload might also have

different tolerances for latency. However, as the average response time is the primary

quality of service indicator, we desire to drive down the cost and energy consumption

as much as possible while keeping an eye on the average response time.

Figure 3.11 shows the average instance count in the warm pool serving the incoming

requests. Assuming the FaaS provider uses an IaaS provider underneath, we consider

the infrastructure cost for the provider proportional to the number of instances ded-

icated to the user’s function service. Thus, the average instance cost is our estimate

of the provider’s cost for serving the same amount of workload (since the arrival rate

is kept constant). Assuming the provider will change their pricing proportional to

the infrastructure costs, an estimate of the user’s cost can be obtained by multiplying

the average billed service time by the price per processing time. Figure 3.12 shows

such a normalized estimate for the cost inferred by the user. As can be seen, different

workloads have different behaviour when changing the expiration threshold. For ex-

ample, consider workload 4, where increasing the expiration threshold from 1 to 600

causes less than 30% improvement in average response time, while it increases the

user cost by a factor of 10. However, the same change in workload 3 causes major

improvements in average response time while decreasing the user cost by a factor of

more than 5. This shows the potential savings that can be unlocked by leveraging

our analytical performance model presented and evaluated in this paper.

Figure 3.10 shows the utilization of the instances in the warm pool for different

expiration thresholds values. As defined in this study, utilization shows the average

ratio of the number of running (billed) instances over all instances in the warm pool.

Lower utilization rate causes the creation and maintenance of more instances, which

would increase the infrastructure costs. As can be seen in Figure 3.10, increasing

the expiration threshold causes utilization to decrease, while for many workloads, as

shown in Figures 3.8 and 3.9, it wouldn’t lead to a noticeable improvement in the

quality of service. Considering this effect, we see potentials for substantial savings in
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Table 3.2: A list of workloads analyzed in this study for potential cost and energy
savings in the serverless computing platform.

Name Application Warm (ms) Cold (ms)

W1 CPU and Disk Intensive
Benchmark [10]

2000 2200

W2 A rang of benchmarks with
different configuration [72]

300 10000

W3 Startup test with echo on
Apache OpenWhisk [73]

20 1000

W4 Fibonacci calculation on
AWS Lambda [17]

4211 5961

W5 Fibonacci calculation on
Azure Functions [17]

1809 26681

infrastructure costs for providers, which could potentially lead to greener computing

and emission reductions.

Figure 3.13 shows the probability of rejection by the platform because of reaching

the maximum concurrency level. Such calculations can help the users decide if the

serverless computing platform chosen for their workload can handle peaks in arrival

requests without the need to perform large-scale and expensive experimentation.

The benefits of our performance model for the serverless providers are two-fold: 1)

They can reduce the operational costs by optimizing their management via leverag-

ing analytical performance models, which allows them to decrease the price of their

offerings; 2) They can provide users with fine-grain control over the cost-performance

trade-off by modifying the expiration threshold underneath. This is mainly due to

the fact that there is no universal optimal point in the cost-performance trade-off

for all workloads. By making accurate predictions, a serverless provider can better

optimize their resource usage while improving the experience of application develop-

ers and consequently, the end-users. Such degrees of flexibility could also impact the

popularity of the platform among developers. Moreover, utilizing the performance
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model proposed here, serverless computing providers have the chance to incorporate

performance-by-design into their management and operation layers.

On the other hand, the presented model could help application developers to de-

cide if a given workload can be deployed on a serverless computing platform while

maintaining their desired Quality-of-Service (QoS) guarantees. The only measure-

ment needed to characterize a workload are the average cold and warm start response

times, which could be measured in a straightforward manner. The presented model

would also help developers come up with appropriate concurrency and memory set-

tings available in public serverless computing platforms.

3.5 Temporal Solution

Figure 3.4 shows the one-step transition matrix Q used to calculate the state distri-

bution π for the proposed SMP. In this matrix, each element located in row i and

column j shows the transition rate at which we transition from state i to state j.

Diagonal elements are defined in a way to satisfy the following:

Qi,i = −
∑︂
j ̸=i

Qi,j (3.29)

To solve the Continuous-Time Markov Chain (CTMC) temporally, we have to solve

the following equation:

dπ

dt
= πQ⇒ π(t) = π(0)eQt (3.30)

which can be calculated using the method proposed by Al-Mohy et al. [74] imple-

mented in SciPy7.

Using π, we can calculate the average number of instances in the warm pool Cw

using the following:

Cw =
M∑︂

m=0

mπm (3.31)

7https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.expm.html last accessed Sep-
01-2020.
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We can also calculate the average number of servers running warm and cold requests

in each state using Cr,w,m = RTwλw,m and Cr,c,m = RTcλc,m:

Cr =
M∑

m=0

Cr,w,mπm +
M−1∑
m=0

Cr,c,mπm (3.32)

We can also calculate the corresponding utilization of the deployed resources, indi-

cating the fraction of time we are using the function instances in our pool:

U =
Cr,w

Cw

=
RTwλ(1− PB,m)∑

m mπm

(3.33)

3.6 Temporal Solution Experimental Validation
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Figure 3.14: Request arrival rate throughout the experiment, along with the oracle
predictions.

Figure 3.14 shows the request arrival rate over time designed for this experiment.

Since workload prediction is out of the scope of this paper, we used an oracle request

rate predictor for our experiments. Another exogenous parameter for the proposed

model is the expiration timeout, which has been set to 10 minutes for AWS Lambda,

also verified by Shikov [62] and Shahrad et al. [27]. The average cold and warm

response time (RTc and RTw) are set to the average of all requests over all experiment

repetitions, which doesn’t change over time in modern serverless computing platforms.
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Figure 3.15: Probability of a cold start occurrence throughout the experiment along
with the model predictions.
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Figure 3.16: Utilization of resources in the warm pool throughout the experiment
compared with the model predictions.
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3.7 Temporal Solution Results and Discussion

Figure 3.15 shows the average probability of a cold start over all of the performance

experiments. This metric is the most important factor in deciding the quality of ser-

vice observed by the application user. Since cold starts could be orders of magnitude

longer than warm starts, having a large probability of cold start could affect the user

experience. In many applications (especially customer-facing applications), it is im-

portant to limit the probability of a cold start. Thus, predicting this value is very

important to enable migration to serverless computing platforms for many different

applications. Figure 3.16 depicts the average utilization of resources over time in our

experiments. Assuming a serverless provider is using some kind of Infrastructure-as-a-

Service (IaaS) platform underneath, the number of function instances is proportional

to the operational costs incurred by the platform. In this work, the utilization of

resources is defined as the average ratio of the time that these instances are being uti-

lized and thus are billed for the application developer. To lower the costs, serverless

platforms would want to maximize the average utilization. Using the proposed model,

the platform can make predictions for the cost-performance trade-off and decide how

to take action accordingly.

3.8 Related Work

Accurate performance modelling of serverless computing platforms can help ensure

that the quality of service, performance metrics, and the cost of the workload remains

within the acceptable range. It could also benefit providers to help them tune their

management for each workload in order to reduce their infrastructure and energy

costs [29].

The performance model used to address the performance-related issues in serverless

computing platforms should prove to be tractable while covering a vast parameter

space of the system. To the best of our knowledge, no such performance model has
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been introduced for the modern serverless computing platforms. In this work, we

tried to develop and evaluate such a model.

Serverless Computing has attracted a lot of attention from the research commu-

nity. However, to the best of authors’ knowledge, no performance model has been

proposed that captures different challenges and aspects unique to serverless comput-

ing platforms. This work is an effort to present a performance model that captures

the complexities of serverless computing and helps us extract several important char-

acteristics of the serverless system. Performance and availability have been listed on

the top 10 obstacles towards the adoption of cloud services [75]. Rigorous models

have been leveraged to analytically model the performance of various cloud services

for IaaS, PaaS, and microservices [29, 76–81]. In [76], a cloud data center is modelled

as a classic open network with a single arrival. Using this modelling, the authors

managed to extract the distribution of the response time, assuming interarrival and

service times are exponential. Using the response time distribution, the maximum

number of tasks and the highest level of service could be derived. [77] models the

cloud data center as M/M/m/m+r queuing system and derives the distribution of

response time. Assuming the periods are independent, the response time is broken

down to waiting, service, and execution later on. Khazaei et al. [29, 78–80] have pro-

posed monolithic and interactive submodels for IaaS cloud data centers with enough

accuracy and tractability for large-scale cloud data centers. Qian et al. [81] proposed

a model that evaluates the quality of experience in a cloud computing system using a

hierarchical model. Their model uses the Erlang loss model and M/M/m/K queuing

system for outbound bandwidth and response time modelling, respectively. Ataie et

al. [82] proposed a hierarchical stochastic model for performance, availability, and

power consumption analysis of IaaS clouds. They utilized Stochastic Reward Nets

(SRNs) in their proposed model. Instead of a large monolithic analytical model, they

developed two approximate SRN models using folding and fixed-point iteration tech-

niques to enable large-scale modelling of the cloud system. Chang et al. [83] proposed
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a hierarchical stochastic modelling approach for performance modelling of IaaS cloud

data centers under a heterogeneous workload. They investigated the effects of vari-

ation in job arrival rate, buffer size, maximum vCPU numbers on a PM and VM

size distribution on the quality of service metrics. They also developed closed-form

solutions for key performance metrics of the system. Malik et al. [84] used High-Level

Petri Nets (HLPNs) for modelling and analysis of VM-based cloud management plat-

forms. They provided a firm mathematical model and analyzed the structural and

behavioural properties of the system. Tarplee et al. [85] used statistical programming

to find the best set of computing resources to allocate to the workload in IaaS cloud

computing environments. Their algorithm models the uncertainty in the computing

resources and variability in the tasks in a many-task computing environment. Using

their model, reward rate, cost, failure rate, and power consumption can be optimized

to compute Pareto fronts. Lloyd et al. [86] developed a cost prediction model for

service-oriented applications (SOAs) deployments to the cloud. Their model can be

leveraged to find lower hosting costs while offering equal or better performance by

using different types and counts of VMs. In [5], the authors proposed and validated

an analytical performance model to study the provisioning performance of microser-

vice platforms and PaaS systems operating on top of VM based IaaS. They used the

developed model to perform what-if analysis and capacity planning for large-scale

microservices. Barrameda et al. [87] proposed a novel statistical cost model for ap-

plication offloading to cloud computing environments. In their work, each module’s

cost is modelled as a random variable characterized by its Cumulative Distribution

Function (CDF), which is estimated through profiling. They achieved an efficient

offloading algorithm based on a dynamic programming formulation. Their method

achieved a prediction error of 5 percent with sequential and branching module de-

pendencies. Wu et al. [88] developed a VM launching overhead reference model for

cloud bursting. The cloud bursting module is designed to enable private clouds to

automatically launch VMs to public clouds when more resources are needed. Their
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model helps the decision-making process of when and where to launch a VM to max-

imize the utilization and performance of the system. They verified their model using

FermiCloud, a private cloud for scientific workflows. Eismann et al. [89] demonstrated

the benefits and challenges that arise in the performance testing of microservices and

how to manage the unique complications that arise while doing so.

Due to the fact that there is not much information regarding the management

of public serverless offerings, we can only rely on experimentation and speculations

to gain insights into the serverless offerings. Wang et al. [10] performed extensive

experimentations on the most widely used serverless computing platforms and com-

piled their findings into insights about how each provider is handling the workload

introduced to their systems. Figiela et al. [11] investigated cost, performance, and

the life-cycle of an instance in public serverless offerings by deploying a benchmark

workload on each of them. Their results shed some light on the management layers of

the serverless offerings, as well as depicting the performance implications of different

management decisions made by providers.

Research has been done to investigate the performance of serverless computing

platforms, but none are offering rigorous analytical models that could be leveraged

to optimize the management of the platform. Eyk et al. [90] looked into the perfor-

mance challenges in current serverless computing platforms. They found the most

important challenges hindering the adoption of FaaS to be the sizable computational

overhead, unreliable performance, and absence of benchmarks. The introduction of a

reliable performance model for FaaS offerings could overcome some of these shortcom-

ings. Singhvi et al. [91] introduced a scalable low-latency serverless platform named

Archipelago. Their studies showed that current serverless schedulers are limited in

handling very short-lived tasks, tasks with unpredictable arrival patterns, and tasks

that require expensive setup of sandboxes. They found that current serverless of-

ferings handle the incoming requests homogeneously. This is while functions have

varying latency requirements; e.g., user-facing functions are latency-sensitive while
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batch workloads are less sensitive to latency. A performance-aware model like the one

proposed in this work could lead to SLA-aware scheduling on serverless computing

platforms, reducing the cost and optimizing hardware utilization. Kaffes et al. [92] in-

troduced a core-granular and centralized scheduler for serverless computing platforms.

The authors argue that serverless computing platforms exhibit unique properties like

burstiness, short and variable execution time, statelessness, and single-core execution.

In addition, their research shows that current serverless offerings suffer from inefficient

scalability, which is also confirmed by Wang et al. [10]. Manner et al. [17] designed a

series of experiments to investigate the factors influencing the cold start performance

of serverless computing platforms. Their experiments on AWS Lambda and Azure

Functions show that factors like the programming language, deployment package size,

and memory settings affect the performance on serverless computing platforms. In

some settings, the cold start and the warm start had very similar latencies, whereas,

in others, the cold start latency could be significantly larger than the warm start la-

tency (e.g., Java on Azure). In [12], Bortolini et al. performed experiments on several

different configurations and FaaS providers in order to find the most important factors

influencing the performance and cost of current serverless platforms. They found that

one of the most important factors for both performance and cost is the programming

language used. In addition, they found low predictability of cost as one of the most

important drawbacks of serverless computing platforms. Lloyd et al. [13] investigated

the factors influencing the performance of serverless computing platforms. They iden-

tified four states for the infrastructure in a serverless computing platform: provider

cold, VM cold, container cold, and warm. Their results show that the performance

of the infrastructure relies heavily upon the state of the system at the time of arrival.

Bardsley et al. [93] examined the performance profile of AWS Lambda as an example

of a serverless computing platform in a low-latency high-availability context. They

found that although the infrastructure is managed by the provider, and it is not vis-

ible to the user, the solution architect and the user need a fair understanding of the
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underlying concepts and infrastructure. Pelle et al. [94] investigated the suitability

of serverless computing platforms (AWS Lambda, in particular) for latency-sensitive

applications. Thus, the main focus in their research was on delay characteristics of

the application. Their findings showed that there are usually several alternatives of

similar services with significantly different performance characteristics. They found

the difficulty of predicting the application performance for a given task, one of the

major drawbacks of current serverless offerings. They also measured the application

performance for different loads, which could possibly be calculated using an analyt-

ical performance model. Hellerstein et al. [95] addressed the main gaps present in

the first-generation serverless computing platforms and the anti-patterns present in

them. They showed how current implementations are restricting distributed pro-

gramming and cloud computing innovations. The issues of no global states and the

inability to address the lambda functions directly over the network are some of these

issues. Eyk et al. [18] found the most important issues surrounding the widespread

adoption of FaaS to be sizeable overheads, unreliable performance, and new forms

of cost-performance trade-off. In their work, they identified six performance-related

challenges for the domain of serverless computing and proposed a roadmap for alle-

viating these challenges. Balla et al. [96] performed extensive experimental studies

on language runtimes in open source FaaS. They showed that it is possible to tune

some of these runtimes for better performance, but overall, Go programming language

results in the best median latency with similar functionality followed by NodeJS and

Python.

Li et al. [43] used analytical models that leverage queuing theory to optimize the

performance of composite service application jobs by tuning configurations and re-

source allocations. Horovitz et al. [97] used machine learning-based cost and perfor-

mance optimization to warm-up containers for future requests. Their results show

that proactive management of serverless computing platforms could reduce the num-

ber of cold starts occurring and thus improve the quality of service. The new paradigm
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shift toward using serverless computing platforms calls for redesigning the manage-

ment layer of the cloud computing platforms. To do so, Kannan et al. [98] proposed

GrandSLAm, an SLA-aware runtime system that aims to improve the SLA guaran-

tees for function-as-a-service workloads and other microservices. Lin et al. [15] used

a pool of warm containers to mitigate cold starts in serverless computing platforms.

They showed that even with a warm pool of only one container, we could decrease

the number of cold starts by 85%. Utilizing a performance model for the proposed

serverless platform, one could gain performance improvements while mitigating the

overhead cost introduced to the system. Gunasekaran et al. [99] used AWS Lambda

alongside VMs to reduce SLO violations while keeping the cost to a minimum. In

the proposed method, they used serverless computing due to its fast autoscaling com-

pared to VMs in order to serve spurious and bursty workloads. Bermbach et al. [16]

looked into the use of application knowledge to reduce the number of cold starts in

FaaS services. They developed a client-side middleware that analyzes a process and

determines the approximate number and time of requests to later functions in the

process. On average, they were able to mitigate the number of cold start by 40% in

their experiments. Xu et al. [100] proposed an adaptive warm-up strategy as well as

an adaptive container pool scaling using a time series prediction model that tries to

minimize the cold starts in serverless computing while reducing the waste of container

pool based on the function chain model. An analytical model with the level of fidelity

presented in this work could be leveraged to optimize the strategies presented in such

work with better reliability characteristics. Akkus et al. [73] used application-level

sandboxing and hierarchical message buses to speed up the conventional serverless

computing platforms. Their approach proved to lead to lower latency and better

resource efficiency as well as more elasticity than current serverless platforms like

Apache OpenWhisk.

In [101], the authors investigated and quantified the elasticity of current server-

less computing platforms for three types of applications, deciding the most suitable
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one for each type of workload. Besides, they tried to identify the most influenc-

ing performance indicators for each type of application. Ao et al. [102] proposed

Sprocket, which is a serverless video processing framework. The proposed system is

a parallel data processing framework for video content and targets serverless cloud

infrastructures like AWS Lambda as its execution environment. Perez et al. [103] in-

troduced a programming model and a middleware for leveraging serverless computing

to execute highly-parallel scientific workloads. This paves the way for efficient, afford-

able, and high throughput computation. In this work, the authors found maximum

memory allocation and maximum execution time to be the most limiting aspects of

current serverless computing offerings. They found serverless computing to be ideal

for deploying a high number of short-lived tasks. Jackson et al. [104] investigated

the implications imposed on the performance of serverless computing platforms by

the programming language. They found that using different programming languages

could lead to performance challenges in serverless computing platforms. Their results

showed that Python is the best performing programming language in AWS Lambda

and Azure Functions. Villamizar et al. [105] compared the cost of deploying a web

application using monolithic, microservice, and serverless architectures. They found

that using serverless computing for web applications could reduce the cost of infras-

tructure by up to 77% while keeping the performance and response time reasonable

under heavy loads and increased number of users.

3.9 Conclusion

In this chapter, we presented and evaluated an accurate and tractable analytical

performance model suitable for analyzing the performance, utilization, and cost of

current mainstream serverless computing platforms. We analyzed the performance

implications of different system configurations and workload characteristics of the

public serverless offerings and showed, through experimentation, that the proposed

model could accurately estimate the performance of various workloads. We also
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showed that the performance model is scalable, which is critical for evaluating large

scale deployments. Serverless users can utilize the presented model to predict the

cost and performance of their application and evaluate the effectiveness of FaaS for

their workloads. Serverless providers can leverage the presented model to offer an

adjustable quality of service and cost. The presented model also allows savings in

cost and energy through optimization of the infrastructure for each workload, leading

to energy and emission reduction and allowing the realization of green computing. In

summary, the proposed performance model can transform serverless platforms from

“workload-agnostic” environments to “workload-aware” adaptive platforms.
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Chapter 4

Performance Modeling of
Metric-Based Serverless
Computing Platforms

Analytical performance models are very effective in ensuring the quality of service

and cost of service deployment remain desirable under different conditions and work-

loads. While various analytical performance models have been proposed for previous

paradigms in cloud computing, serverless computing lacks such models that can pro-

vide developers with performance guarantees. Besides, most serverless computing

platforms still require developers’ input to specify the configuration for their deploy-

ment that could affect both the performance and cost of their deployment, without

providing them with any direct and immediate feedback. In Chapter 3, we built

such performance models for steady-state and transient analysis of scale-per-request

serverless computing platforms (e.g., AWS Lambda, Azure Functions, Google Cloud

Functions) that could give developers immediate feedback about the quality of service

and cost of their deployments. In this chapter, we aim to develop analytical perfor-

mance models for latest trend in serverless computing platforms that use concurrency

value and the rate of requests per second for autoscaling decisions. Examples of such

serverless computing platforms are Knative and Google Cloud Run (a managed Kna-

tive service by Google). The proposed performance model can help developers and

providers predict the performance and cost of deployments with different configura-
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tions which could help them tune the configuration toward the best outcome. We

validate the applicability and accuracy of the proposed performance model by exten-

sive real-world experimentation on Knative and show that our performance model is

able to accurately predict the steady-state characteristics of a given workload with

minimal amount of data collection.

4.1 Introduction

Serverless computing platforms are the latest paradigm in the cloud computing era

that aim to minimize the administration tasks required to deploy a workload to the

cloud. They provide developers, software owners, and online services with services

like handling system administration tasks, improving resource utilization, usage-based

billing, improved energy efficiency, and more straightforward application develop-

ment [1, 2].

Despite having a much faster startup time compared with VM-based deployments,

serverless offerings have shown to lack predictability in key performance metrics. This

has rendered them as unacceptable for many customer-facing products [2]. The issue

is exacerbated by the fact that current generation of serverless computing platforms

are workload-agnostic; i.e., using the same management policies for all types of work-

load with different needs [10, 18, 27]. This gives us a plethora of possible savings

in terms of infrastructure cost and energy consumption while improving the overall

performance by adapting the platform to the unique needs of each workload [29].

An accurate performance model like the one suggested in this work can benefit

both serverless providers and application developers. Application developers can

leverage performance models to predict the quality of service of their application

with different configurations and the respective cost implications, helping them select

the configurations that fits their needs. They also can use the performance model to

find the limitations of their system and plan ahead for large uptakes in the workload

intensity. On the other hand, an accurate performance model can help serverless
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providers perform capacity planning and give application developers an estimate on

cost and performance implications of their workload configurations.

A proper performance model for serverless computing platforms should remain

tractable while covering a large portion of the system configuration space. In previ-

ous studies [106, 107], we designed such performance models for serverless computing

platforms that use scale-per-request autoscaling paradigm predicting both transient

and steady-state quality of service characteristics. In this work, we aim to develop

and evaluate a performance model that captures the unique structure and character-

istics of the most recent paradigm in serverless computing platforms which leverage

concurrency value [106] and other metrics to drive autoscaling. The most important

examples of these serverless computing platforms are Knative and Google Cloud Run

(which is a managed Knative offering from Google Cloud Platform).

The analytical performance model presented in this work assumes a Poisson arrival

process to address customer-facing open networks which comprise the majority of

services which require strong quality of service guarantees. It has been shown that the

arrival process can adequately be modelled as a Poisson process when there are a large

number of clients with each having a low probability to submit a request at any given

time [108–112]. We impose no restrictions on the service time distribution or service

policies by using data-driven techniques that help extract the unique characteristics

of a given workload. The presented model in this work is highly scalable and can

handle a high degree of parallelization required in large-scale systems. The presented

model can help predict the cost and main quality of service indicators for a given

workload, e.g., the average response time. In addition, the presented performance

model can help developers by predicting the inherent performance-cost tradeoffs for

different workload configurations.

The proposed performance model has been validated by extensive experimentation

on Knative deployed on our private cloud computing infrastructure and works with

any workload that can be deployed as Docker containers and accepts HTTP requests.
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The development of the model requires a minimal data collection on the target plat-

form to capture the resource needs of the workload and the effect of concurrency on

the quality of service metrics.

The remainder of this chapter is organized as follows: Section 4.2 describes the

system represented by the analytical performance model proposed in this work. Sec-

tion 4.3 outlines the proposed analytical model. In Section 4.4, we present the ex-

perimental validation of the proposed model. In Section 4.5, we survey the latest

related work for serverless computing platforms. Section 4.6 discusses the threats to

the validity of our experiments. Section 4.7 summarizes our findings and concludes

the chapter.

4.2 System Description

There is very limited documentation available about the scheduling algorithm used in

most serverless computing platforms that use per-request autoscaling [106]. As a re-

sult, previous studies have mostly focused on partially reverse engineering these plat-

forms by running experiments on them [10–13, 27]. However, the most recent trend

in serverless computing platforms that use metric-based autoscaling, Knative [113]

and Google Cloud Run [68] for example, are primarily open-sourced and thus we can

use their source code to develop accurate performance models without speculations1.

Figure 4.1 shows an overview of the Knative scale calculation module. As shown,

we need to choose a monitored metric that will be used to drive the autoscaling in our

deployment. Then, the metric will go through windowing and averaging to generate

more stable observed metrics. Using the observed and target values of the used

metric, scale evaluator can calculate the new replica count for a given deployment.

This process is repeated every few seconds to ensure the system remains stable. In

the next sections, we will go through the details of these steps to outline the system

1Note that metric-based autoscaling precedes serverless computing, but new serverless computing
generations use different metrics and measurement methods to drive their autoscaling.
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Figure 4.1: An overview of the Knative scale calculation module. The resulting new
replica count will be applied to the cluster.

modelled by the proposed performance model.

4.2.1 Metrics

In the metric-based autoscaling approach used in Knative, there are currently two

widely available metrics than can be used to drive autoscaling: 1) Concurrency Value

(CC) and 2) Requests Per Seconds (RPS) [114]. Any of these metrics can be used

as the primary monitored metric and will be compared against the target value for

replica count calculations. These metrics will be monitored by the sidecar container

injected by Knative to the Kubernetes deployment and are collected every second.

Concurrency Value (CC)

Unlike most public serverless computing platforms that primary use scale-per-request

autoscaling such as AWS Lambda, Google Cloud Functions, Azure Functions, and

IBM Cloud Functions, Knative and consequently Google Cloud Run allow several
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Figure 4.2: The effect of the concurrency value on the number of function instances
needed. The left service allows a maximum of 1 request per instance, while the right
service allows a concurrency value of 3.

requests to enter the same function instance at the same time. The number of con-

current requests being processed by the same container is called the concurrency value

in Knative documentations. Figure 4.2 shows the possible effect of concurrency in

serverless computing platforms which could lead to fewer function instances. Concur-

rency value is the default metric used in Knative and is the only metric supported in

Google Cloud Run. Thus, we will focus more on this metric throughout this work,

but the proposed performance model also works with RPS as the monitored metric.

Figure 4.3 shows an example of how concurrency changes with request arrival and

departure in each container. As can be seen, any request arrival results in an incre-

ment in the concurrency value and any request departure results in a decrement in

the monitored concurrency value.

Requests Per Seconds (RPS)

The arrival rate for each container or RPS is another monitored metric supported by

Knative. However, at the moment this metric is not being supported by Google Cloud

Run. The measurement of this metric is straightforward, the monitoring module
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Figure 4.3: An example scenario of the change in the container concurrency value.
The effect of request arrival and departure on concurrency value is shown over time.

monitors the number of requests arriving to each container every second and reports

the resulting value.

4.2.2 Observation Module

The observation module is responsible for collecting monitored metrics from all con-

tainers, generating the average values for every second, and calculating the moving

average throughout time according to the stable window configuration. The default

value of the stable window is 60 seconds in Knative.

The output of this module is the observed value that will be used for driving scaling

decisions. The role of this module is to generate stable observations in order to avoid

making premature decisions in the scaling evaluations.

4.2.3 Scale Evaluator Module

As discussed in Section 4.2.2, the observation module generates stable averaged mea-

surements from single container measurements of the monitoring module. The Scale

Evaluator uses these measurements and the user-specified configurations to generate

the new replica count ordered by the evaluator in each evaluation using the following
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equation2:

NewOrderedReplica =

⌈︃
ObservedV alue

TargetV alue

⌉︃
(4.1)

where the Observed Value and Target Value are values of the chosen monitoring metric

by the user, i.e., concurrency or RPS. By default, the Knative autoscaling evaluation

takes place every Teva (2 seconds in Knative), setting the new replica target on the

Kubernetes deployment.

4.3 Analytical Model

In Section 4.2, we outlined the details of the system modelled by our proposed per-

formance model. In this section, we will go through the details of the performance

models based on the described system. Our primary focus here is to predict steady-

state metrics of a given workload based on the input system configurations.

Figure 4.4 shows an overview of the proposed performance model. As can be seen,

given the arrival rate, the metric module can use the workload profile to calculate

the distribution of the monitored autoscaling metric (i.e., concurrency value or RPS).

This step is very important as it captures several important characteristics of a given

workload like the amount of work needed for each request and its distribution, along

with the deployment configuration like the CPU and memory configuration of the de-

ployment. This is mainly due to the fact that the effect of all of the aforementioned

properties is captured in the data achieved from the monitoring module. Given this

value, the evaluator model can estimate the probability of setting different values

for the replica count of the service deployment. Having calculated the probability of

setting the replica count to different values and using the estimated provisioning/de-

provisioning rates, we can estimate the probability of seeing different replica counts

using the cluster model. Finally, using the ready container replica count and by using

2source: https://github.com/knative/serving/blob/master/pkg/autoscaler/scaling/autoscaler.
go. Last accessed 2021-02-01.
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Figure 4.4: An overview of the proposed performance model.

the output model, we calculate the steady-state estimates for different characteristics

of the deployment.

In the following subsections, we present the calculation of different parameters in

the analytical models using the symbols defined in Table 4.1; we will elaborate on the

details of the aforementioned sub-models.

4.3.1 Metric Model

As discussed in Section 4.2.1, there are two main metrics that can be used with

this family of serverless computing platforms, namely concurrency (CC) and the

arrival rate for each container (RPS). The chosen metric will then be processed by

the observation module and will be windowed and averaged to be used in scaling

operation. The goal of the metric model is to estimate the distribution of the observed

values for a given arrival rate. However, different applications show very different

behaviours when processing more than one request.
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Table 4.1: Symbols and their corresponding descriptions.

Symbol Description

λ Mean arrival rate of requests

N Number of function instances

N Average replica count

Nmax Maximum number of function instances

Nord Ordered number of function instances

OV Observed value of the monitored metric

fOV (·) Density function for the observed value

FOV (·) Distribution function for the observed value

TV Target value for the monitored metric

MM Metric model

EM Evaluator model

Teva Time between consecutive evaluations

Q The CTMC transition rate matrix

P The DTMC transition probability matrix

π The steady-state distribution

µpro Mean provisioning service rate

µdep Mean deprovisioning service rate

RT Mean Service Response Time

RTN Average response time with N containers

RTF Response Time Function

Nopr Number of overprovisioned instances

Nupr Number of underprovisioned instances

C Average concurrency level

Ci Average concurrency for state number i
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Processing times, and consequently measured concurrency values, are largely in-

fluenced by factors like service policy (whether the application uses First Come First

Serve, Processor Sharing, or a combination of both) and its reliance on external ser-

vice. Intuitively, using a fair load balancer, we can safely assume that the service time

and concurrency value for a given workload largely depend only on arrival rate per

container, i.e., RPS or λ/N . Also, since the observed metric is being averaged over

several containers and over 60 measurements throughout the time, it can safely be

assumed to be coming from a Gaussian distribution due to the central limit theorem.

Thus, we decided to use data-driven methods to estimate the observed metric average

and standard deviation. As a result, we need a few minutes of data collection for a

given workload to build our data-driven model before generating predictions. We

used 5 minutes of data collection for our experiments and collecting enough data to

have at least 100 measurements is suggested to achieve an acceptable accuracy, but

gathering more data can always improve the accuracy of the system.

In this step, our goal is to find the function MM that estimates the following:

fOV (x) ≈ MM(x;λ/N) (4.2)

where fOV (·) denotes the observed value density function, MM denotes the metric

model, λ denotes the arrival rate, and N represents the number of ready containers

in the cluster. Using this distribution, the evaluator model can estimate the number

of ordered containers and their probabilities. Note that to develop this model, we

are assuming a homogeneous cluster where each container has a similar amount of

CPU. We also assume a good performance isolation between containers which is safe

assumption due to the high level of performance isolation in the modern managed

Knative services like Google Cloud Run.
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4.3.2 Evaluator Model

The evaluator model has been designed to model the behaviour of the Scale Evaluator

module of the autoscaler. In this model, we use the observed value density function

fOV (·) to calculate the probability of different values for the new number of ordered

replica count. This module will take the Target Value (TV), maximum replica count

(Nmax), and other configuration that affect the ordered replica count (e.g. maximum

scale up/down rate) into account. We know from the system description that the new

ordered replica count in each evaluation is given by the following equation:

Nord =

⌈︃
OV

TV

⌉︃
(4.3)

where Nord is the new number of ordered replica count, OV represents the observed

value, and TV is the target value set by the user. Thus, we can calculate the proba-

bility of a specific value (i) for Nord:

Pr{Nord = i} = Pr{
⌈︃
OV

TV

⌉︃
= i}

= Pr{(i− 1) <
OV

TV
≤ i}

= Pr{(i− 1) · TV < OV ≤ i · TV}

= FOV (i · TV)− FOV ((i− 1) · TV)

(4.4)

where FOV (·) is the cumulative density function of the observed value which can be

calculated from the metric model using the following:

FOV (x) = Pr{OV ≤ x} =
∫︂ x

−∞
fOV (x) dx (4.5)

Repeating this procedure for any possible number of containers in the range [1, Nmax],

we get the probability of having different values for the number of ordered instance

counts in a given deployment.

EM(i; fOV ) = FOV (i · TV)− FOV ((i− 1) · TV) (4.6)
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where EM(i; fOV ) is the probability of setting the ordered replica count to i given

fOV . These results help us build a complete and accurate cluster model to predict

the overall behaviour of our deployment.

Figure 4.5: An overview of the proposed cluster model along with its vertical and
horizontal components.

4.3.3 Cluster Model

In this section, we will detail the design of the proposed Discrete-Time Markov Chain

(DTMC) representing the status of our metric-based serverless deployment in the

cluster.

Figure 4.5 shows an overview of the proposed two dimensional DTMC where the

x-axis represents the number of containers ordered by the evaluator and the y-axis

shows the number of containers that are currently in the Ready state and can accept
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incoming requests. To build the resulting model, we have chosen to evaluate the

system at the moment after each evaluation by the scale evaluator. As a result,

the newly set order count has not had the chance to affect the system yet and thus

gives us the ability to decouple the single-step infrastructure effect of provisioning or

deprovisioning of containers from the effect of the execution of the evaluator. This

is due to the fact that we are modelling a physical system here, and like any other

physical systems, configuration changes cannot affect the system instantly and require

some time to do so. It is worth noting that our model still captures the relationship

between the number of ordered containers and ready containers via vertical transitions

(better shown in Figure 4.6) in consequent steps of the model.

There are two main forces causing the change in the system: 1) change in the

order count due to execution of the scale evaluator; and 2) change in the number of

deployment containers due to provisioning or deprovisioning of containers. Due to

the aforementioned decoupling between these two forces that affect our state, they

will be independent and thus any transition probability in these two dimensions can

be broken down as the following:

P(i,j),(i′,j′) = Pi,i′(j)× Pj,j′(i) (4.7)

where P(i,j),(i′,j′) is the probability of transitioning to state (i′, j′) given our current

state is (i, j), Pi,i′(j) is the probability of transitioning from column i to column

i′ from row j, and Pj,j′(i) is the probability of transitioning from row j to row j′

from column i. As can be seen, Pi,i′(j) does not depend on j′ and Pj,j′(i) does not

depend on i′, which significantly reduces the computational complexity of the overall

performance model.

To calculate Pi,i′(j), we use the evaluator model developed in the previous section.

We assume the result of each scale evaluation is independent from previous evaluations

and thus we have:
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fOV (x) = MM(x;λ/j)

Pi,i′(j) = EM(i′; fOV )
(4.8)

Figure 4.6: An overview of the underlying infrastructure CTMC model used in cluster
model. Nopr and Nupr signify the number of overprovisioned and underprovisioned
containers and µpro and µdep represent the provisioning and deprovisioning service
rates, respectively.

To obtain Pj,j′(i), we need to analyze how the infrastructure reacts when provi-

sioning or deprovisioning of containers for a given deployment takes effect. To do

so, we use the Continuous-Time Markov Chain (CTMC) model shown in Figure 4.6

and solve for possible transitions after Teva units of time. In this model, we assume

exponentially distributed service times for provisioning/deprovisioning for which the

rate is proportional to the amount of the underlying resources. As a result, Pj,j′(i)

becomes the probability of starting in state (i, j) and provisioning/deprovisioning

enough containers to get to j′ containers in the cluster after Teva units of time.
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To solve the resulting CTMC model, we use the one-step transition rate matrix Q

to get the state distribution π′. In this matrix, each element located in row x and

column y shows the transition rate at which we transition from state x to state y.

Diagonal elements are defined in a way to satisfy Qx,x = −
∑︁

y ̸=x Qx,y. To solve the

resulting CTMC, we have to solve the following equation:

dπ′

dt
= π′Q⇒ π′(t) = π′(0)eQt (4.9)

which can be calculated using the method proposed by Al-Mohy et al. [74].

Using the state distribution π′, we can calculate the transition probabilities Pj,j′(i)

using the following equation:

Pj,j′(i) = π′
j′(Teva) (4.10)

Using Equations (4.8) and (4.10), we can build the transition probability matrix P

for the cluster model shown in Figure 4.5. To analyze the steady-state behaviour of

the system, we need to calculated the limiting probability πs for any state s where [21]:

πs = lim
n→∞

P n
s,s′ (4.11)

where πs is the probability that chain is in state s, independent of the starting state

s′. Using these limiting probabilities, we can calculate the limiting distribution π:

π = (π1, ..., πM),
M∑︂
x=1

πx = 1 (4.12)

where M signifies the total number of states, which is M = N2
max here. It can be

shown that the resulting limiting distribution is π if πP = π and
∑︁M

x=1 πx = 1. This

system of equations can be solved using the method outlined in [115].

After knowing the steady-state probability of being in each state via π, we need to

calculate different desired metrics and characteristics of the workload.
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4.3.4 Output Model

In the previous section, we went over the details of cluster model, which is used to

calculate the limiting distribution. In this section, we will use the resulting state

distribution to calculate metrics of interest in a given Knative deployment. Two of

the most important metrics in a given deployment are average response time as an

indicator for Quality of Service (QoS), average replica count as an indicator for cost,

and average concurrency as a metric used in infrastructure planning like database

capacity planning, etc. Here, we will go over the details of calculating each of these

metrics.

Average Response Time

Average response time is one of the most widely used metrics to indicate the quality

of service for a given deployment in the context of web services.

Intuitively, assuming negligible overhead in the Kubernetes routing mechanism

(compared to the request processing time), the average response time for a given

workload is only a function of arrival rate per container (λ/N), or in other words

the amount of work given to each containers. However, this relationship is highly

dependent on the type of workload, its parallel or concurrency features, and the type

of workload being used (CPU, I/O, or memory intensive, or a combination of them).

As a result, we have decided to use automated data-driven methods to extract to

which extent does the average response time rely on the arrival rate per container

and show the result as the following:

RTN = RTF(λ/N) (4.13)

where RTN is the average response time of the service when we have N containers

and RTF shows the response time function, estimated using regression methods from

our brief profiling window. To calculate the total average response time, we use the

state probabilities calculated:
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RT =
M∑︂
i=1

πiRTNi

=
M∑︂
i=1

πiRTF(λ/Ni)

(4.14)

whereM is the number of states, Ni is the number of ready containers in state number

i, and πi is the probability of being in state number i at any time step.

Average Replica Count

There are mainly two factors used in calculating the incurred cost of a given deploy-

ment in a serverless setting: 1) per-request costs and 2) per-instance cost. For a

given arrival rate, the calculation of per-request costs are straightforward since we

have an estimate of λ · T for the number of requests in any given time window with

length T . However, calculating per-instance costs relies on the system configurations

and characteristics and can vary drastically based on these settings. To provide ap-

plication developers and operations experts with a tool that helps them understand

the tradeoffs of their deployments, we leverage the developed performance model to

calculate the average number of running instances in the cluster.

To calculate the average replica count, we can use the state probabilities calculated

in previous sections:

N =
M∑︂
i=1

πiNi (4.15)

where N is the average replica count and Ni is the number of ready containers in

state number i.

Average Concurrency

The average concurrency level per container is a measure that can help application

developers set reasonable resource limits and configurations for a given service as well
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as tune other services they rely upon, e.g., databases. The average concurrency level

(C) can also be calculated using state probabilities:

C =
M∑︂
i=1

πiCi (4.16)

where C is the overall average concurrency and Ci is the average concurrency for state

number i. To get Ci, we can use the metric model for concurrency value:

Ci =

∫︂ ∞

0

x ·MM(x;λ/Ni)dx (4.17)

4.4 Experimental Evaluation

In this section, we introduce our evaluation of the proposed analytical performance

model using experimentation on our Knative installation. The code for performing

and analyzing the experiments used in this section can be found in our public GitHub

repository3, along with installation and deployment instructions of various workloads

used in this study. To the best of authors’ knowledge, no other work has proposed

a performance model for this type of serverless computing platforms. As a result,

our experimental results only include our measurements compared to the proposed

performance model.

Table 4.2: Configuration of the VMs in the experiments.

Property Value

vCPU 4

RAM 8GB

HDD 40GB

Network 1000Mb/s

OS Ubuntu 20.04

Latency <1ms

3https://github.com/pacslab/conc-value-perf-modelling
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4.4.1 Experimental Setup

To perform our experiments, we used 4 Virtual Machines (VMs) on the Cybera

Cloud [38] with the configuration shown in Table 4.2. Of the VMs used, 3 joined

in a Kubernetes cluster and 1 used as the client. We found the cluster size sufficient

for our experiments due to the fact that modern application architectures include

several smaller deployments each receiving a portion of the traffic and our approach

aims to model these individual deployments. For our cluster, we used Kubernetes

version 1.20.0 with Kubernetes client (kubectl) version 1.18.0. For the client, we

used Python 3.8.5. To generate client requests based on a Poisson process, we used

our in-house workload generation library 4 which is publicly available through PyPi5.

The result is stored in a CSV file and then processed using Pandas, Numpy, Mat-

plotlib, and Seaborn. The dataset, parser, and the code for extraction of system

parameters and properties are also publicly available in the project’s GitHub repos-

itory. For all experiments, we performed the experiment in 6 batches totalling one

hour for each combination of configurations to get accurate results. Based on the

tests on our cluster, we used the estimated values of µpro = 1 and µdep = 2 events per

second.

4.4.2 Workloads

To evaluate the proposed performance model, we used workloads in Python and Go

programming languages to represent different types of applications. The results for all

of these workloads can be found on the project’s GitHub repository. To improve the

generalizability of the results, these workloads each include several parts designed to

dominate one or more resources, and by using different combinations of these work-

loads, we can represent a large spectrum of different workloads. We also included

scripts that automate the process of deployment, load testing, and logging of the re-

4https://github.com/pacslab/pacswg
5https://pypi.org/project/pacswg
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sults. We present a representative subset of these results here due to space limitation.

For workload 1, we used the work of Wang et al. [10] written in Python with minor

modifications and utilizing Flask as the web server. This workload is a combination

of CPU intensive and I/O intensive workloads. For workload 2, we used a standard

and open-source suite of benchmarks implemented by the Knative community in the

Go programming language6.

The regression method is not an integral part of our performance model and thus

any regression method with enough accuracy for a given workload can be used. To

predict the mean concurrency value based on λ/N for experimental workloads, we

used a simple polynomial regression of the following form with no training on the

intercept:

y = α1 · x+ α2 · x2 (4.18)

where αis are the trained parameters of the model, y represents the output value,

and x represent the input to the model (λ/N). This method has a low number of

parameters, which increases its interpretability. Besides, its variance is low which

enables us to train it accurately using a limited amount of data. It also allows

us to control the regression’s behaviour in extreme values to make sure it presents

sensible values for the model. For example, in very low arrival rates, we know the

measured concurrency should approach zero, which is integrated into this model. In

our experiments with workload 1 and workload 2, the resulting fit had a Mean Squared

Error (MSE) of 0.1004 and 0.004 and R2 score of 0.9875 and 0.9991, respectively.

Similarly and for the same reasons, we used a polynomial regression but this time

with an intercept to get the response time from average arrival rate per container.

The resulting function is of the following form:

y = α0 + α1 · x+ α2 · x2 (4.19)

6For more information, visit https://knative.dev/docs/serving/autoscaling/autoscale-go/
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where αis are the trained parameters of the model, y represents the output, and x

represent the input to the model (λ/N). One nice feature that can be enforced with

a simpler regression method like the one presented here is that we can control it to

approach the service time of the workload when arrival rate per container approaches

zero. In our experiments with workload 1 and workload 2, the resulting fit had a

Mean Squared Error (MSE) of 0.0380 and 8.5177 ∗ 10−7 and R2 score of 0.8159 and

0.6259, respectively.

4.4.3 Experimental Results

In this section, we go through our experimental results and their predicted counter-

parts. To get the results for each point shown in the experimental plots, we ran a

test with a specific Poisson arrival process for every single point; we also eliminate

the first 5 minutes of the experiment to eliminate the transient effect (i.e., warm-up

effect).

Figures 4.7 and 4.8 show the measured and predicted average number of contain-

ers that are ready to serve incoming requests for different configurations, respectively.

Average number of containers are used here as a proxy to deployment cost. Depend-

ing on the setup, the deployment cost can be VM-based in a Kubernetes cluster or

Pod-based in a Google Cloud Run deployment. However, in both scenarios, the infras-

tructure costs will be proportional to the average number of containers. Figures 4.9

and 4.10 depict the average concurrency value for different configurations measured

and predicted, respectively. These values can help the developer set proper configu-

rations for other services that the deployment relies on. For example, the provisioned

capacity for most managed database solutions can be set to optimize performance

while keeping the costs low. The average response time has been targeted here as an

indicator to the deployment Quality of Service (QoS). Figures 4.11 and 4.12 outline

the measured and predicted average response time for different configurations and

arrival rates, respectively. As can be seen, the experimental results shown here are
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well in tune with the model predictions.
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Figure 4.7: The measured average number of containers ready to server requests
versus the fixed arrival rate for different target concurrency values in our experiments.
Note that the x-axis is on a logarithmic scale. The vertical bar shows the 95%
confidence intervals which in this case were very small because experiments were long
enough to have very accurate results.

4.4.4 Discussion

In Section 4.4.3, we compared the experimental results with the performance model

predictions and showed that the effectiveness of the proposed performance model to

predict the results of different configurations for metric-based autoscaling in serverless

computing platforms. The resulting performance model can be used for any metric-

based autoscaling platform as long as they adhere to the system description outlined

in Section 4.2. Examples of serverless computing platform that follow the discussed

system description are Google Cloud Run and Knative. To improve the tractability

and accuracy of the model while requiring a minimal amount of training data, we

chose to use grey-box modelling to integrate our knowledge about the system into

the model while allowing the flexibility needed to adapt to different types of workload.

In Figures 4.7 to 4.12, we showed the accuracy of the proposed model in predicting

key characteristics of the system under different load intensities. By compiling these

results, we can create tools that can be leveraged by the developer to optimize their
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Figure 4.8: The predicted average number of containers ready to server requests
versus the fixed arrival rate for different target concurrency values. Note that the
x-axis is on a logarithmic scale.
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Figure 4.9: The measured average concurrency value versus the fixed arrival rate for
different target concurrency values in our experiments. Note that the x-axis is on a
logarithmic scale. The vertical bar shows the 95% confidence intervals.
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Figure 4.10: The predicted average concurrency versus the fixed arrival rate for dif-
ferent target concurrency values. Note that the x-axis is on a logarithmic scale.
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Figure 4.11: The measured average response time versus the fixed arrival rate for
different target concurrency values in our experiments. Note that the x-axis is on a
logarithmic scale. The vertical bar shows the 95% confidence intervals.

93



1 2 3 5 7 10 15 20
Arrival Rate (reqs/s)

1.4

1.6

1.8

2.0

Av
er

ag
e 

R
es

po
ns

e 
Ti

m
e 

(s
)

Target=1
Target=2
Target=5
Target=10

Figure 4.12: The predicted average response time versus the fixed arrival rate for
different target concurrency values. Note that the x-axis is on a logarithmic scale.

configurations by predicting the effect of a new configuration on the performance and

the cost of the system. Figure 4.13 shows the measured and predicted values for the

response time and number of instances. These figures can be used to see the effect

of the target value configuration on the cost and QoS simultaneously, which can be

beneficial to make a decision about the configuration for a given deployment. As can

be seen, the performance model can be consulted by the developer to find the optimal

target value configuration in a given system for their specific use case. As different

systems have different criteria, finding a globally optimal point for the target value is

not possible, but by presenting similar tools, serverless providers can help facilitate

a more informed decision by the developers. Figure 4.14 shows a similar plot but for

workload 2. As can be seen, the effect of changing the chosen target value on the

quality of service varies for different workloads, but the selected regression is able to

predict this effect with sufficient accuracy.

4.5 Related Work

Serverless Computing has attracted a lot of attention from the research community.

However, a limited number of studies have focused on performance models capturing

94



2 4 6 8 10
Target Value

5

10

15

20

25

30

In
st

an
ce

 C
ou

nt

1.140

1.316

1.491

1.666

1.841

2.016

R
es

po
ns

e 
Ti

m
e 

(s
)

Model Count
Exp Count
Model RT
Exp RT

Figure 4.13: The effect of changing the target value on the average instance count
and average response time measured in experiment and predicted by the proposed
model for an arrival rate of 20 requests per second for workload 1.
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Figure 4.14: The effect of changing the target value on the average instance count
and average response time measured in experiment and predicted by the proposed
performance model for an arrival rate of 20 requests per second for workload 2.
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different challenges and aspects unique to serverless computing platforms. In previ-

ous studies, we have developed and evaluated steady-state and transient performance

models along with simulators for scale-per-request autoscaling in serverless computing

platforms [106, 107, 116]. This work is an effort to present a performance model that

captures the complexities of metric-based autoscaling, the newest trend in serverless

computing platforms, and helps us extract several important characteristics of the

serverless system. Performance and availability have been listed on the top 10 obsta-

cles towards the adoption of cloud services [75]. Rigorous models have been leveraged

to analytically model the performance of various cloud services for IaaS, PaaS, and

microservices [29, 76–83, 117]. In [76], a cloud datacenter is modelled as a classic

open network with a single arrival. Using this modelling, the authors managed to

extract the distribution of the response time, assuming interarrival and service times

are exponential. Using the response time distribution, the maximum number of tasks

and the highest level of service could be derived. Yang et al. [77] modelled the cloud

datacenter as M/M/m/m+r queuing system and derives the distribution of response

time. Assuming the periods are independent, the response time is broken down to

waiting, service, and execution later on, Khazaei et al. [29, 78–80, 117] have proposed

monolithic and interactive submodels for IaaS cloud datacenters with enough accu-

racy and tractability for large-scale cloud datacenters. Qian et al. [81] proposed a

model that evaluates the quality of experience in a cloud computing system using a

hierarchical model. Their model uses the Erlang loss model and M/M/m/K queuing

system for outbound bandwidth and response time modelling, respectively. Lloyd et

al. [86] developed a cost prediction model for service-oriented applications (SOAs)

deployments to the cloud. Their model can be leveraged to find lower hosting costs

while offering equal or better performance by using different types and counts of VMs.

In [5], the authors proposed and validated an analytical performance model to study

the provisioning performance of microservice platforms and PaaS systems operating

on top of VM based IaaS. They used the developed model to perform what-if analysis
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and capacity planning for large-scale microservices. Eismann et al. [89] demonstrated

the benefits and challenges that arise in the performance testing of microservices and

how to manage the unique complications that arise while doing so.

Kaviani et al. [118] discusses the effectiveness of several key components of Knative

and its contribution to open-source serverless computing platforms. They found the

Knative autoscaler highly effective and mature for modern workloads.

Research has been done to investigate the performance of serverless computing

platforms, but none are offering rigorous analytical models that could be leveraged to

optimize the management of the platform. Eyk et al. [90] looked into the performance

challenges in current serverless computing platforms. They found the most important

challenges hindering the adoption of FaaS to be the sizable computational overhead,

unreliable performance, and absence of benchmarks. The introduction of a reliable

performance model for FaaS offerings could overcome some of these shortcomings.

Kaffes et al. [92] introduced a core-granular and centralized scheduler for serverless

computing platforms. The authors argue that serverless computing platforms exhibit

unique properties like burstiness, short and variable execution time, statelessness,

and single-core execution. In addition, their research shows that current serverless

offerings suffer from inefficient scalability, which is also confirmed by Wang et al. [10].

In [12], Bortolini et al. performed experiments on several different configurations and

FaaS providers in order to find the most important factors influencing the perfor-

mance and cost of current serverless platforms. They found that one of the most

important factors for both performance and cost is the programming language used.

In addition, they found low predictability of cost as one of the most important draw-

backs of serverless computing platforms. Lloyd et al. [13] investigated the factors

influencing the performance of serverless computing platforms. Bardsley et al. [93]

examined the performance profile of AWS Lambda as an example of a serverless com-

puting platform in a low-latency high-availability context. They found that although

the infrastructure is managed by the provider, and it is not visible to the user, the
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solution architect and the user need a fair understanding of the underlying concepts

and infrastructure. Pelle et al. [94] investigated the suitability of serverless computing

platforms (AWS Lambda, in particular) for latency-sensitive applications. Thus, the

main focus in their research was on delay characteristics of the application. Their

findings showed that there are usually several alternatives of similar services with

significantly different performance characteristics. They found the difficulty of pre-

dicting the application performance for a given task, one of the major drawbacks of

current serverless offerings. Hellerstein et al. [95] addressed the main gaps present

in the first-generation serverless computing platforms and the anti-patterns present

in them. They showed how current implementations are restricting distributed pro-

gramming and cloud computing innovations. The issues of no global states and the

inability to address the lambda functions directly over the network are some of these

issues. Eyk et al. [18] found the most important issues surrounding the widespread

adoption of FaaS to be sizeable overheads, unreliable performance, and new forms

of cost-performance trade-off. In their work, they identified six performance-related

challenges for the domain of serverless computing and proposed a roadmap for alle-

viating these challenges. Zheng et al. [119] compared the performance of OpenFaaS,

Kubeless, Fission, and Knative and found that the performance of these open-sourced

serverless platforms depends on the type of workload, the runtime implementation,

and the FaaS system with the optimal set varying case by case.

Li et al. [43] used analytical models that leverage queuing theory to optimize the

performance of composite service application jobs by tuning configurations and re-

source allocations. We believe a similar approach is possible using the presented

analytical model for serverless computing platforms. The new paradigm shift toward

using serverless computing platforms calls for redesigning the management layer of the

cloud computing platforms. To do so, Kannan et al. [98] proposed GrandSLAm, an

SLA-aware runtime system that aims to improve the SLA guarantees for function-as-

a-service workloads and other microservices. Akkus et al. [73] used application-level
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sandboxing and hierarchical message buses to speed up the conventional serverless

computing platforms. Their approach proved to lead to lower latency and better

resource efficiency as well as more elasticity than current serverless platforms like

Apache OpenWhisk. Jia et al. [120] present Nightcore, which is an efficient and scal-

able serverless computing framework with improved invocation latency overhead and

very high invocation rate. To achieve this, they designed improved scheduling mod-

ules and introduced concurrency hints to their serverless autoscaler. Balla et al. [121]

introduced Libra, an adaptive hybrid vertical/horizontal autoscaler on OpenFaaS try-

ing to outperform both openfaas autoscaler and Kubernetes HPA.

4.6 Threats to Validity

In this section, we discuss different threats to the validity of our work. We will also go

over some of the limiting assumptions that we needed to make for this study to ensure

that an interested reader is aware of their implications in the proposed performance

model.

In our experiments, we used the average response time as an indicator of the Quality

of Service (QoS) and the average instance count as an indicator of costs. These may

have an impact on the results obtained if they don’t fully align with the user’s use

case. Analyzing every possible QoS measure and the full billing model of all modern

cloud providers is infeasible. We have selected metrics that are commonly used in load

testing experiments [122]. Modern cloud-native workloads are also billed based on

their provider API usage (e.g., managed machine learning APIs) and Internet traffic.

However, we believe these costs mostly depend on the total number of requests served

and thus can be calculated without the need of a performance model.

For the presented experiments, we used two workloads in different programming

languages, each comprising several configurable benchmarks that stress different re-

sources of the computer and represent different types of workloads. Although exper-

imenting with all types of workloads is not possible, the accuracy of the performance
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model might differ between different programming languages. Future work should

investigate further how the knowledge can be transferred between different program-

ming languages. We also assumed that any external APIs used by the workload have

a predictable performance that is not affected by the amount of work applied by the

studied workload. This assumption was necessary since no performance model can

consider unknown variations in an external API used by the workload.

The accuracy of the proposed model depends on the accuracy of the regression used

in our metric and output model. In our experiments, we manually ensured the quality

of the resulting fit but didn’t fully investigate the extent of this relationship and how

much data is required to train a regression model with sufficient accuracy. Future

studies should investigate the extent of this relationship and how much training data

is needed to ensure results have a predetermined accuracy.

Performance experiments in the cloud always have a high degree of uncertainty

due to the variable performance perceived in cloud. Using a private academic cloud

allowed us to limit the variability of the performance, but results could vary in public

clouds (especially on shared CPU configurations). To mitigate this threat, we used

recommended practices to obtain and report our experimental results [122].

4.7 Conclusion

In this chapter, we proposed and evaluated an accurate and tractable performance

model for metric-based autoscaling in serverless computing platforms. We analyzed

the implications of different system configurations and workload characteristics of

these systems and showed the effectiveness of the proposed model through exper-

imental validation. We also showed how the presented performance model can be

used as a tool by application owners for finding the optimal configuration for a given

workload under different loads. Serverless providers can also use the proposed model

to adopt an adaptive and more sensible defaults for the target value configuration.

They can also leverage the performance model to optimize the cost, performance, and
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energy efficiency of their system according to the real-time arrival rate.
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Chapter 5

SimFaaS: A Simulator for
Serverless Computing Platforms

Developing accurate and extendable performance models for serverless platforms, also

known as Function-as-a-Service (FaaS) platforms, is a very challenging task. Also,

implementation and experimentation on real serverless platforms is both costly and

time-consuming. However, at the moment, there is no comprehensive simulation tool

or framework to be used instead of the real platform. As a result, in this paper, we

fill this gap by proposing a simulation platform, called SimFaaS, which assists server-

less application developers to develop optimized Function-as-a-Service applications

in terms of cost and performance. On the other hand, SimFaaS can be leveraged

by FaaS providers to tailor their platforms to be workload-aware so that they can

increase profit and quality of service at the same time. Also, serverless platform

providers can evaluate new designs, implementations, and deployments on SimFaaS

in a timely and cost-efficient manner.

SimFaaS is open-source, well-documented, and publicly available, making it easily

usable and extendable to incorporate more use case scenarios in the future. Be-

sides, it provides performance engineers with a set of tools that can calculate several

characteristics of serverless platform internal states, which is otherwise hard (mostly

impossible) to extract from real platforms. In previous studies, temporal and steady-

state performance models for serverless computing platforms have been developed.
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However, those models are limited to Markovian processes. We designed SimFaaS as

a tool that can help overcome such limitations for performance and cost prediction

in serverless computing.

We show how SimFaaS facilitates the prediction of essential performance metrics

such as average response time, probability of cold start, and the average number

of instances reflecting the infrastructure cost incurred by the serverless computing

provider. We evaluate the accuracy and applicability of SimFaaS by comparing the

prediction results with real-world traces from Amazon AWS Lambda.

The simulator presented in this work is written in Python. The resulting package

can easily be installed using pip1. The source code is openly accessible on the project

Github2. The documentation is accessible on Read the Docs3. For more information,

interested readers can check out our Github repository, which provides links to all of

our artifacts as well as easy-to-setup environments, to try out our sample scenarios.

A detailed description of the system simulated in SimFaaS can be found in Sec-

tion 1.2. The remainder of this chapter is organized as follows: Section 5.1 outlines

the design of SimFaaS with the most important design choices and characteristics.

Section 5.2 lists some of possible use cases for SimFaaS. In Section 5.3, we present

the experimental evaluation of SimFaaS, validating the accuracy of the simulator.

Section 5.5 gives a summary of the related work. Finally, Section 5.6 concludes the

chapter.

5.1 The Design of SimFaaS

This section discusses the design of the novel Function-as-a-Service (FaaS) platform

simulator (SimFaaS) proposed in this work. SimFaaS was created by the authors as

a tool for simplifying the process of validating a developed performance model and

allowing accurate performance prediction for providers and application developers in

1https://pypi.org/project/simfaas/
2https://github.com/pacslab/simfaas
3https://simfaas.readthedocs.io/en/latest/
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Figure 5.1: The package diagram of SimFaaS.

the absence of one. SimFaaS mainly targets public serverless computing platforms.

There are several built-in tools for visualizing, analyzing, and verifying a developed

analytical performance model. In addition, we added tools that can accept custom

state encoding and generate approximations for Probability Density Functions (PDF)

and Cumulative Distribution Functions (CDF) from the simulations, which can help

debug several parts of a given analytical performance model.

The proposed simulator can predict several QoS-related metrics accurately like cold

start probability, average response time, and the probability of rejection for requests

under different load intensities, which helps application developers understand the

limits of their system and measure their Service-Level Agreement (SLA) compliance

without the need for expensive experiments. In addition, it can predict the average

number of running server count and total server count, which helps predict the cost

of service for the application developer and the infrastructure cost incurred by the

serverless provider, respectively.

Figure 5.1 outlines the package diagram of SimFaaS, showing the dependency be-

tween different modules. The Utility module provides helper functions for plots and

calculations. The SimProcess module will help simulate a single process and allows
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for comparisons with the optional analytical model provided as a function handle

to the module. The FunctionInstance module provides the functionality of a single

function instance. The main simulation with an empty initial state is provided by the

ServerlessSimulator module. Finally, ServerlessTemporalSimulator module performs

simulations similar to ServerlessSimulator module, but with added functionality al-

lowing customized initial state and calculation of simulation results in a time-bounded

fashion.

5.1.1 Extensibility and Ease of Use

SimFaaS has been developed entirely in Python using an object-oriented design

methodology. In order to leverage the tools within the package, the user needs to

write a Python application or a Jupyter notebook initializing the classes and provid-

ing the input parameters. In addition, the user has the option to extend the function-

ality in the package by extending the classes and adding their custom functionality.

Almost every functionality of classes can be overridden to allow for modification

and extensions. For example, the arrival, cold start service, and warm start service

processes can be redefined by simply extending the SimProcess class. We included

deterministic, Gaussian, and Exponential processes as examples of such extensions in

the package. Examples of such changes can be found in the several examples we have

provided for SimFaaS. In addition, the user can include their analytically produced

PDF and CDF functions to be compared against the simulation trace results.

The simulator provides all of the functionality needed for modelling modern scale-

per-request serverless computing platforms. However, we created a modular frame-

work that can span future types of computational platforms. To demonstrate this,

we extended the ServerlessSimulator class to create ParServerlessSimulator, which

simulates serverless platforms that allow queuing in the function instances but have

a scaling algorithm similar to scale-per-request platforms.
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5.1.2 Support for Popular Serverless Platforms

SimFaaS includes simulation models able to mimic the most popular public serverless

computing platforms like AWS Lambda, Google Cloud Functions, IBM Cloud Func-

tions, Apache OpenWhisk, Azure Functions, and all other platforms with similar

autoscaling. We have also performed over one month of experimentation to demon-

strate the validity of the simulation results extracted from SimFaaS.

To capture the exogenous parameters needed for an accurate simulation, the fol-

lowing information is needed:

• Expiration Threshold which is usually constant for any given public serverless

computing platform. According to our experimentations and other works [27,

62], in 2020, this value is 10 minutes for AWS Lambda, Google Cloud Functions,

IBM Cloud, and Apache OpenWhisk, and 20 minutes for Azure Functions. For

other serverless computing platforms, experimentation is needed by the users.

The use of a non-deterministic expiration threshold is also possible by extending

the FunctionInstance class.

• The arrival process which can rather safely be assumed as an exponential

for most consumer-facing applications. However, other applications might use

a deterministic process, e.g. cron jobs, or other types like batch arrival. The

user can use one of our built-in processes or simply define their own.

• The warm/cold service process can be extracted by measuring the response

time from monitoring the workload response time for cold and warm requests.

By default, SimFaaS uses exponential distribution for this process but can be

overridden by the user by passing any class that extends the SimProcess class.
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5.2 Sample Scenarios for Using SimFaaS

In this section, we will go through a few sample use cases for the serverless platform

simulator presented in this work. For more details, a comprehensive list of examples

can be found in the project Github repository4.

5.2.1 Steady-State Analysis

In this example, we use the SimFaaS simulator to calculate the steady-state properties

of a given workload in scale-per-request serverless computing platforms. In SimFaaS,

the workload is only characterized by arrival rate, service time (warm start response

time), and the provisioning time (the amount of time to have a cold start instance get

ready to serve the request), which are easily accessible through experimentation and

any monitoring dashboard. The only information needed to characterize the serverless

computing platform is the expiration threshold, which is the amount of time it takes

for the platform to expire and recycle the resources of an instance after it has finished

processing its last request. This value is usually constant and the same for all users

of the serverless computing platform. To run a simple simulation, we can leverage

the ServerlessSimulator class and run the simulation long enough to minimize the

transient effect and let the system achieve the steady-state.

Table 5.1 shows a set of example simulation parameters with the default exponen-

tial distribution both for the arrival and service time processes. Note that instead of

using exponential distributions, the user can pass a random generator function with a

custom distribution to achieve more accurate results for specific applications. As can

be seen, the system can produce QoS-related parameters like the probability of cold

start or rejection of the request for a given arrival rate, which can help the application

developer analyze and find the limits of the system. In addition, the application de-

veloper can also use the average number of running servers as an important measure

for the cost of their service that can be used for setting different configurations of

4https://github.com/pacslab/SimFaaS/tree/master/examples

107

https://github.com/pacslab/SimFaaS/tree/master/examples


Table 5.1: An example simulation input and selected output parameters. The output
parameters are signified with a leading star.

Parameter Value

Arrival Rate 0.9 req/s

Warm Service Time 1.991 s

Cold Service Time 2.244 s

Expiration Threshold 10 min

Simulation Time 106 s

Skip Initial Time 100 s

*Cold Start Probability 0.14 %

*Rejection Probability 0 %

*Average Instance Lifespan 6307.7389 s

*Average Server Count 7.6795

*Average Running Servers 1.7902

*Average Idle Count 5.8893

services that the function relies on, e.g., the database concurrent connection capac-

ity [123]. Besides, information like the average server count can produce an estimate

for the infrastructure cost incurred by the serverless provider. The serverless provider

can use SimFaaS as a tool to analyze the possible effect of changing parameters like

the expiration threshold on their incurred cost and QoS for different scenarios.

Another way the proposed simulator can be leveraged is for extracting information

about the system that is not visible to software engineers and developers in public

serverless computing platforms like AWS Lambda or Google Cloud Functions. This

information could facilitate research for predicting cost, performance, database con-

figurations, or other related parameters. For example, we can find out the distribution

of instance counts in the system throughout time in the simulated platform for input

parameters shown in Table 5.1, which is shown in Figure 5.2. This information can

help researchers develop performance models based on internal states of the system

with very good accuracy, which is otherwise not possible in public serverless offer-
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ings. To further analyze the reproducibility of our instance count estimation using

the parameters in Table 5.1, we ran 10 independent simulations and generated our

estimation of average instance count over time for each run. Figure 5.3 shows the

average and 95% confidence interval of our estimation over those runs. As can be

seen, our estimation converges, showing less than 1% deviation from the mean in the

95% confidence interval.

Figure 5.2: The instance count distribution of the simulated process throughout time.
The y-axis represents the portion of time in the simulation with a specific number of
instances.

5.2.2 Transient Analysis

Although the steady-state analysis of the serverless computing platform’s performance

can give us the long-term quality of service metrics, the application developer or the

serverless provider might be interested in the platform’s transient behaviour. A tran-

sient analysis simulation can provide insight into the immediate future, facilitating

time-bound performance guarantees. Besides, it can help serverless providers ensure

the short-term quality of service when trying new designs.

Previous efforts have been made to develop performance models able to provide

transient analysis of serverless computing platforms [107]. However, there are inherent

limitations to such performance models, like the absence of batch arrival modelling

and being limited to Markovian processes. SimFaaS doesn’t have such limitations

109



and can help both application developers and serverless providers gain insight into

the transient aspect of the performance of serverless computing platforms.

Figure 5.3: The estimated average instance count over time in 10 simulations. The
solid line shows the average of simulations and the shaded area shows the 95% Con-
fidence Interval (CI).

5.2.3 What-If Analysis

Due to the inherent highly-dynamic infrastructure of serverless computing platforms,

there are very few tools from the performance engineering methodologies and analysis

that can be used in the emerging serverless technologies. Because of this inherent lack

of tools and resources, serverless computing platforms were forced to use trial and er-

ror through implementation to analyze their new designs for making performance and

efficiency improvements. There have been previous studies that proposed analytical

performance models for serverless computing platforms [106, 107], but these methods

have limitations like only supporting Markovian processes, limiting their applicability

in a number of scenarios.

One major benefit of having an accurate serverless platform simulator is the ability

to perform what-if analysis on different configurations and find the best-performing

settings for a given workload. Implementation and experimentation to gather similar

data is both time-consuming and costly, while using the proposed simulator makes the

data collection much faster and easier. Figure 5.4 shows an example of such an analy-
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sis for different values for the expiration threshold in the system. Different workloads

running on serverless computing platforms might have different performance/cost cri-

teria. Using what-if analysis powered by an accurate simulation platform, one could

optimize the configuration for each unique workload. Similar examples can be found

in the project examples.

5.2.4 Cost Calculation

Performing cost prediction under different loads in cloud computing is generally a

very challenging task. These challenges tend to be exacerbated in the highly dynamic

structure of serverless computing platforms. Generally, there is a broad range of possi-

ble costs for a given serverless function, including computation, storage, networking,

database, or other API-based services like machine learning engines or statistical

analysis. However, all charges incurred by serverless functions can be seen as either

per-request charges (e.g., external APIs, machine learning, face recognition, network

I/O) or runtime charges billed based on execution time (e.g., memory or compu-

tation). Per-request charges can be calculated using only the average arrival rate.

However, runtime charges may differ under different load intensities due to the differ-

ence in cold start probability. Using the proposed simulator, application developers

can get an estimate on the cold start probability and the average number of running

servers, which are necessary for cost estimation under different load intensities.

In addition to the average running server count, which helps estimate the cost

incurred by the application developer, the average total server count is linearly pro-

portional to the infrastructure cost incurred by the serverless provider. Thus, using

the proposed simulator, both developer charges and infrastructure charges incurred by

the provider can be estimated under different configurations, which can help improve

the platform by studying the effect of using different configurations or designs without

the need to perform expensive or time-consuming experiments or implementations.
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Figure 5.4: Cold start probability against the arrival rate for different values of the
expiration threshold for the workload specified in Table 5.1. SimFaaS can ease the
process of conducting experiments with several configurations to find the best per-
forming one.

5.3 Experimental Validation

To show the accuracy of the proposed simulator, we performed extensive experimenta-

tions on AWS Lambda and showed that the results were in tune with the results from

SimFaaS. The experiments are above one month of running benchmark applications

on AWS Lambda and are openly accessible on Github5. All of our experiments were

executed for a 28-hour window with 10 minutes of warm-up time in the beginning,

during which we do not record any data. The workload used in this work was based

on the work of Wang et al. [10] with minor modifications. Our workload is openly

available in our Github repository6. For the purpose of experimental validation, we

used a combination of CPU intensive and I/O intensive workloads. During the ex-

perimentation, we have obtained performance metrics and the other parameters such

as cold/warm start information, instance id, lifespan, etc.

5.3.1 Experimental Setup

In our AWS Lambda deployment, we used the Python 3.6 runtime with 128 MB of

RAM deployed on the us-east-1 region in order to have the lowest possible latency

5https://github.com/pacslab/serverless-performance-modeling/tree/master/experiments/results
6https://github.com/pacslab/serverless-performance-modeling
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from our client. Note that the memory configuration won’t affect the accuracy of

the simulation as the results depend on the service time distribution, which captures

the effect of changing the memory configuration. For the client, we used a virtual

machine with 8 vCPUs, 16 GB of memory, and 1000 Mbps network connectivity with

single-digit milliseconds latency to AWS servers hosted on Compute Canada Arbutus

cloud7. We used Python as the programming language and the official boto3 library

to communicate with the AWS Lambda API to make the requests and process the

resulting logs for each request. For load-testing and generation of the client requests

based on a Poisson process, we used our in-house workload generation library8, which

is openly accessible through PyPi9. The result is stored in a CSV file and then

processed using Pandas, Numpy, Matplotlib, and Seaborn. The dataset, parser, and

the code for extraction of system parameters and properties are also publicly available

in our analytical model project’s Github repository10.

5.3.2 Parameter Identification

We need to estimate the system characteristics to be used in our simulator as input

parameters. In this section, we discuss our approach to estimating each of these

parameters.

Expiration Threshold: here, our goal is to measure the expiration threshold,

which is the amount of time after which inactive function instance in the warm pool

will be expired and therefore terminated. To measure this parameter, we created

an experiment in which we make requests with increasing inter-arrival times until

we see a cold start meaning that the system has terminated the instance between

two consecutive requests. We performed this experiment on AWS lambda with the

starting inter-arrival time of 10 seconds, each time increasing it by 10 seconds until

7https://docs.computecanada.ca/wiki/Cloud resources
8https://github.com/pacslab/pacswg
9https://pypi.org/project/pacswg

10https://github.com/pacslab/serverless-performance-modeling
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we see a cold start. In our experiments, AWS lambda instances seemed to expire an

instance exactly after 10 minutes of inactivity (after it has processed its last request).

This number did not change in any of our experiments leading us to assume it is a

deterministic value. This observation has also been verified in [27, 62].

Average Warm Response Time and Average Cold Response Time: with

the definitions provided here, warm response time is the service time of the function,

and cold response time includes both provisioning time and service time. To measure

the average warm response time and the average cold response time, we used the

average of response times measured throughout the experiment.

5.3.3 Simulator Results Validation

In this section, we outline our methodology for measuring the performance metrics

of the system, comparing the results with the predictions of our simulator.

Probability of Cold Start: to measure the probability of cold start, we divide

the number of requests causing a cold start by the total number of requests made

during our experiment. Due to the inherent scarcity of cold starts in most of our

experiments, we observed an increased noise in our measurements for the probability

of cold start, which led to increasing the window for data collection to about 28 hours

for each sampled point.

Mean Number of Instances in the Warm Pool: to measure the mean number

of instances in the warm pool, we count the number of unique instances that have

responded to the client’s requests in the past 10 minutes. We use a unique identifier

for each function instance to keep track of their life cycle, as obtained in [10].

Mean Number of Running Instances: we calculate this metric by observing

the system every ten seconds, counting the number of in-flight requests in the system,

taking the average as our estimate.

Mean Number of Idle Instances: this can be measured as the difference be-

tween the total average number of instances in the warm pool and the number of
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instances busy running the requests.

Average Wasted Capacity: for this metric, we define the utilized capacity as

the ratio of the number of running instances over all instances in the warm pool.

Using this definition, the ratio of idle instances over all instances in the warm pool is

the wasted portion of capacity provisioned for our workload. Note that this value is

very important to the provider as it measures the ratio of the utilized capacity (billed

for the application developer) over the deployed capacity (reflecting the infrastructure

cost).

5.3.4 Results and Discussion

Figure 5.5 shows the probability of cold start for different arrival rates extracted

from the simulation compared with real-world results. As can be seen, the results

match the performance metrics extracted from experimentations. The results show

an average error of 12.75%, while the standard error of the underlying process for the

experiments over 10 runs totalling 28 hours is 10.14% showing the accuracy of the

results obtained from the simulation. Figures 5.6 and 5.7 show the average number

of instances and the average wasted capacity (in idle state) for the simulation and

experiments with Mean Absolute Percentage Error (MAPE) of 3.43% and 0.17%,

respectively.

Figure 5.5: Probability of cold start extracted from simulation compared with real-
world experimentations on AWS Lambda.
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Figure 5.6: The average number of instances extracted from simulation compared
with real-world experimentations on AWS Lambda.

Figure 5.7: Average wasted resources extracted from simulation compared with real-
world experimentations on AWS Lambda.

5.4 Limitations and Threats to Validity

In this section, we will discuss some of the threats to validity of our study on SimFaaS

and some inherent limitations of this research.

In our experiments, we used average response time as an indicator for the Quality

of Service (QoS) and the average instance count as an indicator of costs. These

choices might have an impact on the applicability of the study for a specific use case

if the metrics don’t align with the user’s interest. We also used exponential arrival
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rate distribution which is the most common arrival rate distribution for consumer-

facing online services. However, we acknowledge that other arrival distribution like

deterministic cron jobs are also common with serverless computing and the accuracy

of the simulator may vary for these configurations. The analysis of other types of

arrival rate distributions has been left for future studies.

We used a limited number of benchmarks in our experimentations, however, the

accuracy of the simulator may vary for other types of workloads. This effect would

be worsened for workloads that work with external APIs and databases, as their

performance will depend on these systems. We leave the analysis of a more diverse

set of workloads for a future study.

5.5 Related Work

Manner et al. [124] describe the importance of an accurate simulator for Function-

as-a-Service (FaaS) products. They mention how scaling, cold starts, function con-

figurations, dependent services, network latency, and other important configurations

influence cost-performance trade-off. In their work, they propose a simulation frame-

work for a cost and performance simulator for serverless computing platforms. In

this platform, they suggest extracted mean values from experiments as inputs to the

performance model in order to calculate different properties.

Boza et al. [125] introduced a model-based simulation for cloud budget planning.

In their work, they perform cost simulation for using reserved VMs, on-demand VMs,

bid-based VMs, and serverless computing for a similar computing task. In their work,

the serverless computing simulation is overly simplistic for performance modelling

researchers and lacks several important details. In this work, we focus solely on

simulating the performance of serverless computing platforms, but with more details

in mind, which seems necessary for the simulator to be leveraged by the performance

research community.

Abad et al. [28] mainly considered the problem of scheduling small cloud functions
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on serverless computing platforms. As a part of their evaluations, they implemented

a SimPy-based simulation for their proposed scheduling method. Although this work

shows promise of rather accurate serverless computing simulations, their focus is on

scheduling tasks, while ignoring several details of interest for performance modelling.

In this work, we strive to fill this gap by providing the performance modelling research

with the proper tooling necessary for high-fidelity performance models of serverless

computing platforms.

Jeon et al. [126] introduced a CloudSim extension focused on Distributed Function-

as-a-Service (DFaaS) on edge devices. Although the DFaaS systems hold a great

promise for the future of serverless computing, it doesn’t allow simulation for the

mainstream serverless computing platforms.

5.6 Conclusion

In this chapter, we presented SimFaaS, a simulator for modern serverless computing

platforms with sufficient details to yield very accurate results. We introduced a range

of tools available for performance modelling researchers giving them insights and de-

tails into several internal properties that are not visible for users in public serverless

computing platforms. We reviewed some of the possible use cases of the proposed sim-

ulator and showed its accuracy through comparison with real-world traces gathered

from running benchmark applications on AWS Lambda.

SimFaaS enables performance modelling researchers with a tool allowing them to

develop accurate performance models using the internal state of the system, which

cannot be monitored on public serverless computing platforms. Using SimFaaS, both

serverless providers and application developers can predict the quality of service,

expected infrastructure and incurred cost, amount of wasted resources, and energy

consumption without performing lengthy and expensive experimentations. The ben-

efits of using SimFaaS for serverless computing platform providers could be two-fold:

1) They can examine new designs, developments, and deployments in their platforms
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by initially validating new ideas on SimFaaS, which will be significantly cheaper in

terms of time and cost compared to actual prototyping; 2) They can provide users

with fine-grain control over the cost-performance trade-off by modifying the platform

parameters (e.g., expiration threshold). This is mainly due to the fact that there is

no universal optimal point in the cost-performance trade-off for all workloads. By

making accurate predictions, a serverless provider can better optimize their resource

usage while improving the application developers’ experience and consequently the

end-users.

119



Chapter 6

MLProxy: SLA-Aware Reverse
Proxy for Machine Learning
Inference Serving on Serverless
Computing Platforms

Serving machine learning inference workload on the cloud is still one of the key

challenges in production machine learning. Optimal configuration of the inference

workload to meet Service-Level Agreement (SLA) requirements while optimizing the

infrastructure costs is still complicated by the complex interaction between batch con-

figuration, resource configurations, and variations in the arrival process. Serverless

computing has emerged in recent years to automate several infrastructure manage-

ment tasks. Batching has proven to be necessary to improve latency performance and

cost-effectiveness of machine learning serving workloads but is yet to be supported

out of the box in serverless computing platforms. Our experiments have shown that

for many machine learning workloads, batching can hugely improve the efficiency of

the system by reducing the processing overhead per request.

In this chapter, we present MLProxy, an adaptive reverse proxy to support efficient

machine learning serving workloads on serverless computing platforms. MLProxy

supports adaptive batching to ensure SLA compliance while optimizing serverless

costs. We performed rigorous experiments on Knative to demonstrate the effectiveness

of MLProxy and showed that MLProxy could reduce the cost of serverless deployment
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by up to 92% while reducing SLO violations by up to 99% and generalizing across

state-of-the-art model serving frameworks.

6.1 Introduction

There are typically three phases when using machine learning models in software ap-

plications: 1) Model Design, 2) Model Training, and 3) Model Inference (or Model

Serving) [127]. Previous research have found model serving as one of the most chal-

lenging stages in the evolution of the use of machine learning components in commer-

cial software systems [128]. Some studies have focused on using different paradigms

in cloud computing to improve model serving in terms of latency, throughput, and

cost [127, 129–132]. However, these solutions introduce a higher infrastructure man-

agement overhead compared to managed services or serverless computing platforms.

Serverless computing proves to be a promising option for the deployment of ma-

chine learning serving workloads. Using serverless computing platforms, the developer

can only write the code and leave all infrastructure management tasks to the cloud

provider. This paradigm can help the developer achieve several non-functional goals

like low latency and rapid autoscaling while still being cost-effective. Most server-

less providers can now deliver on performance isolation at any scale, which is very

important for applications with unpredictable service request patterns. Serverless

computing can also reduce the cost of deployment because in this paradigm, the de-

veloper is only billed for the actual usage of the resources instead of the provisioned

resources. Ease of management is also another trait of using serverless computing

platforms.

For this study, we have opted to use Knative[113] on top of Kubernetes[6] as

the underlying serverless platform used to perform autoscaling and computations

necessary to serve the model inference workload. There are several benefits to using

Knative and Kubernetes for serving machine learning inference workloads [133]. One

of the major benefits of using Kubernetes and Knative for inference serving is the
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ability to use autoscaling provided by serverless computing on hardware accelerators

like GPU and TPU. Using Knative also has the benefit of giving the developers the

opportunity to either use a managed service (e.g., Google Cloud Run) or a self-hosted

version (Knative deployed on the developer’s Kubernetes cluster).

Batching has been previously used in other computing paradigms to improve device

utilization and cost [129–131, 133]. Batching several requests into a single request can

increase the input dimension of the inference, providing great opportunities for par-

allelization, especially on accelerated hardware. However, there are several challenges

that need to be overcome when serving machine learning workloads on serverless

computing platforms. Current serverless computing platforms don’t support batch-

ing natively. As a result, custom middleware is needed to allow batching support.

Current serverless computing platforms are oblivious to SLA requirements, while

strict SLA requirements are necessary to ensure a good user experience. To ensure

the SLA objectives are met during different arrival rates, adaptive parameter tuning

is necessary [127].

Many recent studies have focused on optimizing machine learning serving on AWS

Lambda by using profiling and prior access to the deployed models or the arrival

process [127, 132]. In this work, we strive to build an adaptive system called MLProxy

that can function on both managed and self-hosted serverless platforms without prior

profiling steps using lightweight adaptive batching. This is necessary for serverless

computing platforms with pay-per-use pricing and allows the developed middleware to

act as a drop-in replacement for API gateways providing instantaneous improvements

over previous methods.

The proposed optimizer has been validated by extensive experimentation on Kna-

tive deployed on our private cloud computing infrastructure and works with any

workload that can be deployed as Docker containers and accepts HTTP requests.

Our experiments have shown the effectiveness of MLProxy on several frameworks,

including Tensorflow and Tensorflow Serving, BentoML, PyTorch, and Keras.
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Serverless computing is predicted to be the future of cloud computing workloads [2].

However, the current implementation of serverless computing platforms has not reached

its potential and performs poorly with machine learning inference workloads. In this

work, we are trying to introduce an easy to implement, deploy, and adopt API gate-

way alternative that improves the performance of serverless computing platforms in

machine learning inference workloads.

The remainder of the paper is organized as follows: in Section 6.2, we elaborate

on the details of MLProxy. In Section 6.3, we present the experimental evaluation

of the proposed optimizer. Section 6.4 outlines the experimental results achieved. In

Section 6.5, we survey the latest related work in the optimization of machine learning

inference workloads. Section 6.6 summarizes our findings and concludes the paper.

Figure 6.1: MLProxy Overview.

6.2 ML Proxy

Given the importance of batching requests together to improve the utilization and

cost of serverless machine learning deployments, and considering the fact that the

current generation of API gateways don’t support batching out of the box, we strive

to design an SLA-aware batch optimization platform for these workloads. To facilitate

a smooth transition from the default serverless deployment to our framework, we

designed MLProxy as a drop-in replacement for API gateway systems already existent
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in every serverless computing platform, and it will provide instant improvements in

cost efficiency while making sure that the deployment stays SLA-compliant. In this

section, we will go over our design to address these shortcomings.

6.2.1 System Architecture

Figure 6.1 shows an overview of the MLProxy architecture. As can be seen, MLProxy

acts as an adaptive reverse proxy that can function as a drop-in replacement for the

API Gateway and comprises two modules: 1) Smart Proxy; and 2) Smart Monitor.

The Smart Proxy module is designed to accept incoming HTTP requests, group

them using our dynamic batching algorithm, and send them to their respective up-

stream serverless platform as soon as either the maximum batch size is reached or

the timeout has expired.

In order for the Smart Proxy module to be able to function properly, set accurate

timeouts for batches, and to facilitate accurate dynamic batching, we needed a smart

monitoring system that is tailored to the specific characteristics of machine learning

inference workloads with varying batch sizes. To this end, we designed Smart Monitor

as a module that works alongside the Smart Proxy module and provides several

statistical insights regarding windowed latencies for different batch sizes from the

upstream serverless computing platform.

To properly function, MLProxy needs workload configurations, describing the Ser-

vice Level Objectives (SLO) and endpoints to the upstream serverless platform. Using

live data from the monitoring component, the smart proxy component is able to im-

prove the cost and reliability of the system by leveraging dynamic batching.

6.2.2 Monitoring

To properly adjust queue size and timeout configurations, MLProxy needs live moni-

toring data from the backend serverless computing platform with estimated response

times for different queue sizes. To make this possible, the proposed monitoring compo-
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nent organizes observed response time values for batch requests made to the upstream

serverless computing platform. To ensure we are using the latest latency values, we

use a sliding window to only use the latest response time values in our estimations.

To ensure that the platform is complying with the SLO configuration, the mon-

itoring service also logs the end-to-end response time observed by the user using a

sliding window. Using this value, the system can make an informed decision about

the queuing policy used for the service. The end-to-end response time includes the

time spent processing the request in MLProxy, the queuing time, and the response

time of the upstream serverless computing platform.

Figure 6.2: UML Sequence Diagram.
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6.2.3 Smart Proxy

The Smart Proxy component of MLProxy is responsible for creating batches of re-

quests from individual incoming requests while ensuring end-to-end latency observed

by all requests comply with the set SLO configuration.

Figure 6.2 shows the UML sequence diagram of a sample batch of requests created

by the Smart Proxy component. Algorithm 2 shows the algorithm used by this

component to calculate the timeout and handle the dispatch logic of the batch. When

a request is received by the Smart Proxy, it will be added to the current batch of

requests. There are two triggers that can cause the current batch of requests to be

dispatched to the upstream serverless platform: 1) batch size reaching the maximum

batch size; and 2) reaching the queue timeout. The maximum batch size is set by the

dynamic batching subsystem and is responsible for reducing the cost of deployment

while maintaining the quality of service. The queue timeout is a high-frequency

configuration that will be re-evaluated on the arrival of every request, making sure

no request exceeds the latency allowed by the SLA.

6.2.4 Dynamic Batch Optimizer

Batching has been studied by previous work in machine learning inference as means

to improve the resource utilization and throughput of the system [129–131, 133].

Using a larger value for the batch size, we can achieve a lower deployment cost and

higher throughput, but at the expense of causing a higher latency for the service.

The dynamic batching subsystem is responsible for choosing a batch size that can

improve the performance of the system while ensuring SLA compliance of the system

with the current arrival rate observed by the system.

To achieve the set goals of the system, we adopted an additive increase multiplica-

tive decrease method for setting the batch size of the system. In this methodology, by

default, we will add a configurable constant amount to the batch size of the system

unless we see a violation of a set of goals for the system. In case of a violation, to
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Algorithm 2: An overview of the high-frequency queue scheduler.
Input: Max BS — maximum batch size
Input: RT SLO — response time specified in SLO
Output: metrics

1 BS ← 0 ; // the size of the current batch

2 FRT ← reset ; // first request timer

3 while True do
4 wait for new arrival or timeout;
5 if new arrival then
6 cancel previous timeout;
7 if BS=0 then
8 FRT ← reset
9 end

10 BS ← BS + 1;
11 P95 est← 95th percentile serverless latency forBS + 1;
12 DTO ← RT SLO − P95 est;
13 TO ← DTO − FRT ;
14 if BS = Max BS then
15 dispatch current batch to serverless platform;
16 BS ← 0;

17 else
18 set timeout to TO;
19 end

20 end
21 if timeout then
22 dispatch current batch to serverless platform;
23 BS ← 0;

24 end

25 end

ensure the quality of the service remains within the predefined bounds, we will use a

multiplicative decrease on the batch size. Algorithm 3 shows an overview of the logic

used by this component.

One of the violations that can cause the scheduler to decrease the batch size is the

latency of the system. As discussed earlier, the SLA requirements of the workload can

be configured by the developer. To ensure the SLA compliance of the workload, we

set a lower threshold than SLO (80% of the SLO response time in our experiments)

for the system to follow. Whenever the SLO latency of the system goes beyond this

threshold, we trigger a decrease in the batch size.

Another violation used to decrease the batch size in the proposed scheduler is when

we have too many requests being timed out. This can show that our set batch size
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Algorithm 3: An overview of the low-frequency dynamic batch optimizer.
Input: RT — current response time
Input: TO — current ratio of batches being dispatched due to timeout
Input: TO thresh — batch timeout threshold set by the user
Input: RT SLO — response time specified in SLO

1 inc step← 1;
2 dec mult← 0.8;
3 Max BS ← 1;
4 while True do
5 RT, TO ← updated monitoring data;
6 violation← False;
7 if TO > TO thresh or RT > RT SLO then
8 violation← True;
9 end

10 if violation = True then
11 Max BS ←Max BS × dec mult;
12 else
13 Max BS ←Max BS + inc step;
14 end
15 wait for 30 seconds;

16 end

is too large for the current arrival rate, and as a result, the system might introduce

very large batch sizes that can interfere with the functionality of the system.

6.2.5 Queuing Scheduler

Figure 6.2 shows the UML sequence diagram of a typical batch processed in the sys-

tem. To ensure the incoming requests are being responded to in a timely fashion that

complies with the set SLO, we developed a high-frequency queue timeout calculator

implemented as a part of our smart proxy module. Our timeout calculator calcu-

lates a safe timeout for dispatching requests to the upstream serverless platform in a

way that even the oldest request in the queue is responded to before the SLO target

latency.

To estimate the overall request latency, we need to estimate the upstream serverless

platform’s latency. However, the upstream inference latency depends on the batch

size that is sent to the platform. As a result, the timeout needs to be calculated on

each arrival to adapt to the new queue size (Nq). To create such a model, we use the

data gathered by our monitoring service about the 95th percentile of the latency of
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the previous requests with a batch size of Nq + 1 to ensure we can fulfill the request

before the deadline, even with the possible arrival of a new request. To calculate the

dispatch timeout, we use the following:

DTO = SLOT −RT95Nq+1 (6.1)

where DTO is the dispatch timeout, SLOT is the Service Level Agreement Target,

RT95Nq+1 is the 95th percentile of a batch request with Nq + 1 requests in it, and

Nq is the current batch size. However, as the timeout will be re-calculated on each

arrival, we will set the next timeout starting from the arrival of the oldest request to

make sure all requests will be fulfilled in time:

TO = DTO − FRT (6.2)

where TO is the resulting timeout and FRT (First Request Timer) is the amount

of time since the first request in the queue has arrived. Knowing FRT is important

since to avoid surpassing the SLO threshold, we need to consider how long the oldest

request in the queue has already waited.

Due to the adaptive nature of the algorithm, DTO might end up as a negative

value on each calculation. In such cases, we dispatch the batch to the upstream

serverless platform immediately to avoid SLO violations.

6.3 Experimental Evaluation

In this section, we introduce our evaluation of MLProxy using experimentation on our

Knative installation. However, please keep in mind that the same methodology can

be used on Google Cloud Run, which is a managed Knative offering on the Google

Cloud Platform (GCP). The code for performing and analyzing the experiments used

in this section can be found in our public GitHub repository1.

1https://github.com/pacslab/serverless-ml-serving
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Table 6.1: Configuration of each VM in the experiments.

Property Value

vCPU 8

RAM 30GB

HDD 180GB

Network 1000Mb/s

OS Ubuntu 20.04

Latency <1ms

6.3.1 Experimental Setup

To perform our experiments, we used 4 Virtual Machines (VMs) on the Compute

Canada Arbutus cloud2 with the configuration shown in Table 6.1. With this config-

uration, we were able to utilize 27 vCPU cores for pods running the user’s code. For

our cluster, we used Kubernetes version 1.20.5 with Kubernetes client (kubectl) ver-

sion 1.20.0. For the client, we used Python 3.8.5. To generate client requests based on

a Poisson process, we used PACSWG workload generation library3 which is publicly

available through PyPi4. The result is stored in a CSV file and then processed using

Pandas, Numpy, and Matplotlib. The dataset, parser, and the code for extraction of

system parameters and properties are also publicly available in the project’s GitHub

repository.

6.3.2 Workloads

Table 6.2 shows an overview of the workloads used in our experimental studies. As can

be seen, we have experimented on a variety of different machine learning tasks with

a wide range of complexity levels to see how batching would affect these scenarios.

2https://docs.computecanada.ca/wiki/Cloud resources
3https://github.com/pacslab/pacswg
4https://pypi.org/project/pacswg
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Table 6.2: List of workloads used in our experiments. The docker container for all
workloads along with their code and datasets are publicly available on the project’s
repository. The baseline response time for each service with 1 vCPU and 1 GB of
memory is shown in the complexity column.

Name Packaging Lib ML Lib Dataset / Model Complexity

SKLearn
Iris

BentoML [134] Scikit-
learn [135]

Scikit-learn [135] Very Low
(8ms)

Keras
Toxic
Comments

BentoML [134] Keras / Tensor-
Flow [136]

Jigsaw Toxic
Comments [137]

Low (40ms)

ONNX
ResNet50

BentoML [134] ONNX [138] ONNX Model
Zoo [139]

High (201ms)

PyTorch
Fashion
MNIST

BentoML [134] PyTorch [140] TorchVision Fash-
ion MNIST

Medium
(125ms)

TFServing
MobileNet

TFServing [141] TensorFlow [142] MobileNet V1
100x224

Medium
(83ms)

TFServing
ResNet

TFServing [141] TensorFlow [142] ResNet V2 fp32 High (204ms)

6.3.3 Workload Characterization

In this section, we will go through some workload characterizations that help us

understand our workloads and how we can find workloads that benefit most from

our novel dynamic batching. As the proposed MLProxy uses batching to improve

throughput and cost [131], there needs to be some benefit in batching requests to-

gether for a given workload. Due to fine-grained billing in serverless computing, if

the service time scales linearly with the batch size, there is no benefit in batching

requests together. However, for workloads with low to medium complexity on CPU

and workloads running on accelerated hardware (e.g., GPU or TPU), service time

scales sub-linearly with the batch size, and thus we can expect improved throughput

and deployment cost for these workloads.

Figures 6.3 and 6.4 show how the response time and time per inference (response

time divided by batch size) evolve as we increase the batch size, compared with a batch
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size of one. The linear baseline shows a hypothetical workload where the average

response time grows linearly with increasing the batch size. The reason behind this

baseline is that in a workload where the average response time grows linearly with

the baseline, the time per inference remains constant for different batch sizes. Thus,

these workloads don’t benefit from batching in serverless computing platforms. As

can be seen, in many workloads, time per inference is shorter for larger batch sizes

due to lower computational overhead per inference. Thus, batching queries together

can increase the efficiency and resource utilization of the workload, improving the

cost and performance of the deployment.
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Figure 6.3: The relative response time against the batch size. Relative response time
shows how the average response time grows when increasing the batch size. The linear
baseline shows the relative response time that grows perfectly linear with the batch
size.

6.3.4 Service-Level Objectives (SLOs)

Service-Level Agreements (SLAs) are defined around a specific service and serve the

purpose of forming an agreement between the client and the provider of the service,

laying out the metrics by which the service is measured and the penalties if the service
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Figure 6.4: The relative average time per inference against the batch size. For many
workloads, increasing the batch size results in a reduction in time spent for each
inference by reducing the overhead for each query. For a workload with a response
time that grows linearly with the batch size, the time per inference remains the same
with any batch size.

level agreed upon is not reached. Service-Level Objectives (SLOs) serve as the target

for a given service metric, e.g., average or 95th percentile response time. SLAs are

a more preferred and far more accurate way of representing the needs of the client

from the service as they list out the most important criteria for the client.

In this work, our goal is to improve the cost and throughput of serving machine

learning workloads on serverless computing platforms while ensuring the agreed-upon

level of service is satisfied. For this purpose, we used one of the most common

metrics in SLAs, which is the 95th percentile of the response time. However, both the

percentile and the threshold used are configurable in our implementation of MLProxy.

6.3.5 Real-World Traces

To emulate real-world scenarios, we have used the AutoScale real-world traces NLAR

T4 and T5 and FIFA World Cup [143]. However, to match the capacity of our cluster

and to imitate different load intensities, we scaled the maximum arrival rate for our
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experiments. Figure 6.5 shows these traces scaled to have a maximum arrival rate of

100 requests per second.
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(a) AutoScale NLAR T4 Trace.
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(b) AutoScale NLAR T5 Trace.
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(c) AutoScale FIFA World Cup Trace.

Figure 6.5: The trace patterns used in the experiments [143].
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Table 6.3: List of a variety of experimental results. BRT shows the baseline average
response time with a concurrency of one and batch size of one and SLO P95 is the
95th percentile response time specified in SLO. Number of containers is shown as the
most important deployment cost indicator. Note that the columns specified with an
asterisk (*) are the results with MLProxy turned on.

# Workload Trace Max
RPS

BRT
(ms)

SLO
P95
(ms)

#
of
Cont.

# of
Cont.*

% of
SLO
Viol.

% of
SLO
Viol.*

Avg.
BS

1 Fashion
MNIST

WC 30 125 500 2.73 1.00
(↓63.4%)

1.2799 0.1861
(↓85.5%)

4.93

2 Fashion
MNIST

WC 100 125 1000 8.75 1.01
(↓88.5%)

26.0048 0.0767
(↓99.7%)

10.93

3 Iris WC 50 8 500 1.61 1.00
(↓38.1%)

0.8892 0.0033
(↓99.6%)

5.01

4 Iris WC 185 8 200 1.50 1.01
(↓32.8%)

0.2862 0.0395
(↓86.2%)

6.57

5 Toxic
Com-
ments

WC 30 40 500 1.90 1.00
(↓47.2%)

0.4181 0.0811
(↓80.6%)

3.09

6 Fashion
MNIST

T5 30 125 500 4.28 1.00
(↓76.6%)

1.9688 0.1002
(↓94.9%)

9.81

7 Iris T5 185 8 500 3.01 1.00
(↓66.7%)

0.6675 0.0059
(↓99.1%)

18.95

8 Iris T5 185 8 200 3.01 1.00
(↓66.7%)

0.7064 0.0019
(↓99.7%)

11.00

9 Toxic
Com-
ments

T5 50 40 500 3.87 1.00
(↓74.2%)

0.4771 0.0553
(↓74.2%)

7.71

10 Fashion
MNIST

T4 100 125 1000 13.34 1.07
(↓92.0%)

39.9915 0.0038
(↓99.9%)

13.34

11 Iris T4 185 8 200 1.93 1.00
(↓48.3%)

0.5361 0.0295
(↓94.5%)

13.06

12 Toxic
Com-
ments

T4 50 40 500 3.12 1.00
(↓67.9%)

0.4737 0.0405
(↓91.4%)

6.12

6.4 Experimental Results and Discussion

In this section, we will go through our experimental results and discuss them in detail.

Please note that the codes and scripts used to deploy and experiment with workloads

and analyze the results is publicly accessible in the project’s GitHub repository5.

5https://github.com/pacslab/serverless-ml-serving
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Figure 6.6: The Complementary CDF (CCDF) results of experiments listed in Ta-
ble 6.3. The red dashed horizontal line shows the SLO set for the experiment and
the vertical bars signify the total SLO miss rate of experiments with and without
MLProxy optimizer. Plots marked with an asterisk (*) are the results with MLProxy
turned on.

Table 6.3 lists a large number of experiments we have performed on our cluster to

determine the efficiency of our method. Out of the workloads listed in Table 6.2, we

have only done further experimentation on the ones that would benefit from batch-

ing. To further show details of the response times achieved in our experiments with

and without using the proposed method, the Complementary Cumulative Density

Function (CCDF) plot of the experiments listed in Table 6.3 have been shown in
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Figure 6.7: The experimental results when applying the world cup trace to the Fashion
MNIST workload with a scaled maximum arrival rate of 30 requests per second and
95th percentile of response time SLO set to 500ms on the optimizer engine.

Figure 6.6. We have also included other plots about the details of experiment #1 in

Figure 6.7.

6.4.1 SLA Compliance

As shown in Table 6.3, MLProxy was able to significantly and consistently reduce the

SLA violations in our experiments while reducing the cost of deployment by reducing

the number of containers needed. But to understand how MLProxy is able to achieve

this, we need to look at Figure 6.7 for more details. Figure 6.7a shows the 95th

percentile of response time throughout the experiment. According to the SLA in

this experiment, our goal is to keep the 95th percentile of the response time below

1000 ms. As shown in this figure, this value for when we are not using MLProxy is
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farther away from the SLO threshold, while MLProxy allows the 95th percentile to

stay closer to the SLO threshold to be able to batch requests together.

When the demand for our service (i.e., arrival rate) increases, MLProxy is able to

allow a larger maximum batch size (shown in Figure 6.7d) while still ensuring that

the service abides by the SLA. By leveraging the larger maximum batch size and due

to the improved resource utilization made possible through batching, we can ensure

an optimized deployment while maintaining a low SLO violation.

You can see more details about the distribution of the response times in Fig-

ure 6.6. As shown, MLProxy increases the latency for a portion of requests that

would otherwise be responded to much faster than what is needed according to the

SLO. However, this gives MLProxy the flexibility needed to ensure a larger portion

of requests is handled before the SLO threshold.

6.4.2 Resource Usage

As can be seen in Table 6.3, MLProxy reduced the number of containers needed to

handle incoming requests between 32%− 92% in our experiments. This improvement

is a result of utilizing the existing instances better and with lower overhead for each

inference. Due to the complex pricing schemas of Kubernetes offerings, we opted to

use the container count as a proxy to represent the deployment cost as it is often

proportional to the cost of deployment across different vendors.

It is worth mentioning that the MLProxy deployment used less than 200MB of

memory and 10% of a single virtual CPU core in all experiments. As a result, the

MLProxy deployment introduces negligible overhead and can also be deployed by the

cloud provider as an optional module on the API Gateway offerings.

6.4.3 Discussions and Limitations

In previous sections, we overviewed the experimental results of the proposed method.

As shown, MLProxy shows significant improvements in terms of both SLO violations
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and the cost of deployment. This can be achieved by leveraging the flexibility allowed

by SLO. In general, the more flexible the SLO is, the better the improvements would

be when using MLProxy. However, these improvements mainly come from batching

the requests together when sending them to the upstream serverless platform. As a

result, the benefits of MLProxy are bound by the benefits achievable by batching the

requests together. If, for a given workload, batching doesn’t reduce the overhead per

request in a meaningful way, it wouldn’t benefit from using the proposed method due

to the linear billing nature of serverless computing platforms.

Another effect of MLProxy on the system is reducing the frequency of change in

the resources used by a deployment. As a result, less resources will be dedicated to

scaling the deployment, and this can help us approach the performance of serverfull

deployments while still getting the benefits of serverless platforms.

As shown in Table 6.2, batching can reduce the overhead of the inference per

request. Other works in the field have also shown the benefits of batching requests

in improving the device utilization and cost [129–131, 133] and these benefits are

expected to grow with the introduction of accelerated hardware into the systems.

As a result, the methodology proposed here would be even more beneficial in future

serverless computing platforms.

While MLProxy addresses many concerns in machine learning inference serving on

serverless computing platforms, there are still a few limitations associated with it.

As discussed earlier, the benefits of using MLProxy mainly come from the benefits

of batching requests together. Thus, for workloads where the overhead reduction is

negligible in larger batch sizes, MLProxy can’t bring a lot of benefits. This is because

in serverless computing platforms, we have fine-grained pricing, and because of this,

a single instance running for n request durations would cost the same as n instances

running for 1 request duration. Another limitation when using MLProxy is that to

be able to achieve better performance by batching requests together, the SLO should

be flexible enough to allow a batch of a few requests without causing violations. In
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other words, the SLO threshold cannot be smaller than the 95th percentile of the

response time of the serverless platform when using a batch of a few requests.

6.5 Related Work

Many studies have proposed methods to improve machine learning inference work-

loads on serverless computing platforms. In [130], The authors propose InferLine,

which is a cost-aware optimizer that tries to find the optimal configuration to main-

tain a specified tail latency SLO by configuring the hardware type, batch size, and

the number of replicas according to the model and arrival process. The approach

taken by the authors is very promising but requires extra integration and control

on the infrastructure and cannot function on serverless computing platforms. Ali

et al. [127] evaluate adaptive batching for inference serving on serverless platforms.

They used analytical performance models along with workload profiling and linear

regression to find the optimal configuration for a given deployment. Although very

promising, their work requires prior access to the deployed model and a profiling

step that needs to be updated to be kept up to date. In addition, they do not in-

vestigate the performance of existing serverless systems and pure serverless model

serving systems while only working with AWS Lambda. Zhu et al. [144] introduced

Kelp, a software runtime that strives to isolate high-priority accelerated ML tasks

from memory resource interference. They argue that in using accelerated machine

learning, contention on host resources can significantly impact the efficiency of the

accelerator. They show that their approach can improve the system efficiency by 17%.

In [129], the authors propose MArk, a predictive resource autoscaling algorithm aim-

ing to simplify machine learning inference and make it SLA-aware and cost-effective

by combining IaaS, Spot Instances, and FaaS. In their design, they allow batching

on accelerated deployments that use GPU/TPUs on IaaS to process large bulks of

requests and use scale-per-request FaaS (AWS Lambda) as a tool to handle unfore-

seen surges in requests. In their approach, they were able to achieve an improved tail
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latency compared to state of the art in the industry while reducing the cost. The ap-

proach proposed in this work requires prior profiling steps that render it inefficient for

serverless with pay-per-use pricing systems. Crankshaw et al. [131] proposed adaptive

batching for serverfull deployments and were able to reduce the deployment cost and

increase the throughput while meeting SLA. Yadwadkar et al. [145] go over some of

the challenges that arise for serving machine learning workloads like heterogeneous

hardware and software, designing proper user interfaces, and building SLO-driven

systems. In their work, the authors try to make a case for managed and model-less

inference serving systems. Although non-trivial, our study could be a first step to-

wards fully managed and cost-effective machine learning serving. Chahal et al. [146]

used a recommender system as an example ML-based system to compare different

deployment strategies on the cloud that result in the desired performance at a mini-

mal cost. In their experiments, they compared serverless and serverfull deployments

and found that serverless deployments deliver better performance for bursty work-

loads and functions with short execution time and low resource requirements. Wu et

al. [132] investigated the possibility of using serverless computing for ML serving and

found that serverless computing platforms can deliver on ML serving goals: high per-

formance, low cost, and ease of management. They found small memory size, limited

running time, and lack of persistent state to be the most limiting factors when deploy-

ing ML serving workloads on serverless computing platforms. Benesova et al. [147]

explore the possibility of BERT-style text analysis on serverless platforms. Their ap-

proximation methods allow the deployment of these models on serverless platforms,

eliminating the server management overhead and reducing the deployment costs. Gu-

nasekaran et al. [99] uses serverless computing alongside VM-based autoscaling with

predictive and reactive controllers in order to improve SLO while reducing costs for

machine learning inference workloads. In their work, they found that when the ar-

rival rate is low, serverless computing platforms could be more cost-efficient that VMs

because of their ability to scale to zero. Using our proposed platform, one can benefit
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the scale-to-zero capabilities of serverless computing while still having the ability to

serve high-traffic workloads. In previous studies, we have developed and evaluated

steady-state and transient performance models along with simulators for serverless

computing platforms [106, 107, 116] with homogeneous workloads. However, the

unique characteristics and challenges in machine learning inference workloads, along

with the ever-lasting need for adaptive methods for optimization components, led to

the development of MLProxy.

Several of the recent studies investigated different methods to optimize machine

learning serving workloads. Romero et al. [110] proposed a model-less and managed

inference serving system. In this work, the authors generate model variants using

layer fusion or quantization to create models with varying performance/cost. They

were able to find the best combination of VMs to serve workloads using only high-

level details about the Queries Per Second (QPS), latency requirements, acceptable

accuracy, and cost. This approach can help improve serverfull deployments. How-

ever, it does not adapt to serverless environments and cannot work with applications

where approximate solutions are unacceptable. Lwakatare et al. [148] investigated

the challenges faced for developing, deploying, and maintaining ML-based systems at

large scales in the industry. They found several challenges according to adaptability,

scalability, safety, and privacy. They found the most challenges currently faced to be

in relation to adaptability and scalability. In [149], the authors introduce Swayam, an

engine for distributed autoscaling to meet SLAs for machine learning inference. To

improve resource utilization, the authors allow real-time and batch requests with dif-

ferent levels of SLA to enter the system and they use global state estimation from local

data to drive the autoscaling algorithm. In [133], the authors go over the KFServing

project that aims to allow scale-to-zero for machine learning serving workloads using

Knative. Another benefit of using Kubernetes for serverless inference is found to

be the ability to use GPUs while benefiting from autoscaling provided by serverless

computing.
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There are studies in the literature that attempted to use serverless computing to

improve the performance and possibly cost of training machine learning models. Feng

et al. [150] investigated the challenges faced when using serverless computing plat-

forms for training machine learning models. They found that serverless computing

platforms could be leveraged for hyper-parameter tuning of smaller machine learning

models to provide better parallelism. They found the most challenging issues of us-

ing serverless computing runtimes for training machine learning models to be their

ephemerality, statelessness, and warm-up latency. In [151], Jiang et al. present a

comparative study of distributed ML training over FaaS and IaaS. They found that

serverless training is only cost-effective with models that have a reduced communica-

tion overhead and quick convergence.

Other studies have focused on investigating the challenges and opportunities of

different paradigms in cloud computing for inference in machine learning systems.

Lwakatare et al. [128] investigated the most challenging aspects of integrating ma-

chine learning systems into software products and found dataset assembly and model

creation, training, evaluation, and deployment to be the most important ones. Elordi

et al. [152] evaluated deployment of Deep Neural Network (DNN) models on a server-

less computing platform like AWS Lambda. They used common workloads used in

MLPerf [153] and found that increasing the memory of the serverless deployment has

a huge impact on the response time but a less dramatic effect on the total throughput

of the system. In their experiments, they found the serverless computing platform

to be capable of making 51-83 inferences per second, making serverless a suitable

deployment point for DNN workloads.

6.6 Conclusion

In this chapter, we presented and evaluated MLProxy which is an adaptive reverse

proxy to support efficient and SLA-aware batching for machine learning inference

serving types of workloads. We analyzed and evaluated both deployment cost and
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performance implications of MLProxy in current serverless computing platforms and

we showed the effectiveness of the proposed method through experimentation. We

also showed that MLProxy can work across different machine learning libraries. The

proposed system can be used by serverless computing providers as a part of their API

Gateway offering, significantly improving their system efficiency and competitive ad-

vantage. It can also be deployed by the developers in a Kubernetes cluster supporting

their serverless deployment with minimal added cost due to the low resource needs

of the system.

In summary, the proposed reverse proxy can help developers use the deployed

resources in their serverless deployments more efficiently while maintaining the SLA

requirements of their machine learning serving system.
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Chapter 7

Conclusions, Contributions, and
Future Directions

This chapter concludes this thesis with conclusions, a summary of contributions, and

some promising paths for future directions.

7.1 Conclusions

In this thesis, our main focus has been on modelling, analyzing, and optimizing the

performance of serverless computing algorithms. Throughout the study, we have gone

over different aspects of inefficiencies in the current generation of serverless computing

platforms and proposed ways to mitigate them.

Chapter 2 outlines the role and importance of function placement algorithms in

serverless computing platforms and outlines the design of Smart Spread, a smart

function placement algorithm that is workload-aware and offers performance and cost

improvements over the previous generations. To allow this, our method uses workload

profiling to understand the resource needs of a given function and leverages neural

networks to find the best-performing virtual machine for running that workload.

Chapter 3 proposes a novel analytical performance modelling approach that can

help predict, analyze, and optimize different aspects of scale-per-request serverless

computing platforms. We showed how the proposed model can be leveraged to find

the best system configurations for a given workload and to find performance and cost
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implications of changes in the system. We also demonstrated that the proposed per-

formance model can handle large deployments by analyzing its tractability. Serverless

application developers can use the presented model to predict the cost and perfor-

mance of their workloads, which improves the predictability of serverless computing

platforms. Serverless providers can leverage such performance models to offer better

cost-performance tradeoffs to the developers using the platform.

Chapter 4 proposes an analytical performance model for metric-based autoscaling

in serverless computing platforms. In this chapter, we analyzed the implications

of different system configurations and workload characteristics of these systems and

showed the effectiveness of the proposed model through experimental validation. We

also discussed how metric-based serverless providers can use the proposed model to

create adaptive target value configuration systems.

There are inherent limitations to what can be achieved using performance mod-

els, e.g., limitations on the arrival and departure processes. To allow the research

community, serverless developers, and serverless providers to be able to quickly pre-

dict the cost, performance, and limitations of a given deployment when the necessary

conditions for an analytical performance model are not met, we introduced a highly

accurate and flexible serverless simulator in Chapter 5. In addition to the simulator,

SimFaaS, we also developed multiple tools for performance modelling researchers that

can give them insights and details about several internal properties of serverless com-

puting platforms that are not measurable by or visible to serverless developers. Since

developing analytical performance models is hard and time-consuming, SimFaaS can

be used by serverless providers to test out new ideas quickly by customizing certain

behaviours of the simulator.

Chapter 6 proposes MLProxy, an adaptive reverse proxy to support efficient and

SLA-aware batching for machine learning inference serving types of workloads. Pre-

vious studies showed that one of the main reasons that this type of workload hasn’t

been migrated to serverless computing platforms is their poor cost to performance
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ratio in these platforms and batching can help mitigate these inefficiencies. However,

static batching needs developer intervention and expertise which is against the server-

less computing motto. MLProxy has been designed to allow dynamic and adaptive

batching for such use cases and has been shown to improve both the cost and number

of SLA violations.

7.2 Contributions

In this dissertation, we aimed at providing tools, methods, models, and technolo-

gies that can help improve the performance, cost, efficiency, and overall usability of

serverless computing platforms. We began with reviewing the state of the research

and industry of serverless computing platforms and found some gaps and shortcom-

ings in the current serverless offerings and proposed methods and models that can

help address them. The primary contributions of this work can be listed as follows:

1. Providing in-depth analysis on the latest developments in serverless computing

platforms and finding three types of autoscaling in the current generation of

serverless computing platforms: 1) scale-per-request; 2) metric-based; and 3)

resource-based autoscaling.

2. Design and development of accurate and tractable performance models for

serverless computing platforms using scale-per-request and metric-based au-

toscaling.

3. Development of experimentation methods and tools for steady-state and tran-

sient analysis of the performance of serverless computing platforms.

4. Design and development of Smart Spread, a novel container placement algo-

rithm based on machine learning that uses profiling and VM resource usage

statistics to find the best performing VM for a given workload.
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5. Performing what-if analysis on adaptive expiration threshold for a range of

serverless computing workloads.

6. Providing the research community with a dataset of over one month of experi-

mental results on AWS Lambda.

7. Design and development of SimFaaS, a highly-customizable performance simu-

lator aimed at serverless computing platforms with extensibility and ease of use

in mind. We have shown how SimFaaS can be leveraged to develop performance

models or predict quality and cost characteristics of a given workload when a

performance model is not applicable.

8. Design and development of MLProxy, an SLA-aware reverse proxy with adaptive

batching for serverless computing platforms. MLProxy was shown to be very

effective in reducing the cost of deployment while improving the SLA violations

of the deployment. We also showed how MLProxy can be implemented as a

part of API gateway by the serverless provider.

7.3 Future Directions

In this section, we will go over some of the possible avenues that can be pursued in

future work.

Serverless computing has brought several improvements compared to previous

paradigms in cloud computing. Besides, the faster startup times of serverless comput-

ing, compared to containers or virtual machines, have enabled faster autoscaling [2].

However, there are several shortcomings in the current generations for large-scale

high-throughput applications used by a large number of users, like the limitations on

the maximum concurrency achievable [61] and very high costs compared to microser-

vices on workloads with high demand [10, 103, 154, 155]. Due to these limitations,

some recent works [99, 154, 156, 157] have focused on exploring hybrid serverless/mi-
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croservice deployment of workloads where we leverage the microservices’ ability to

achieve cost-effectiveness and high throughput while utilizing the serverless comput-

ing’s fast scaling ability to handle surges in arrivals.

A possible future direction for this research would be to explore automatic hybrid

deployment of workloads on serverless computing and microservice platforms while

performing smarter workload assignments using analytical and data-driven methods.

Optimization of serverless computing platforms is a non-trivial task due to sev-

eral contradicting criteria that need to be considered. Data-driven methods using

Statistical, Machine Learning (ML), and Reinforcement Learning (RL) methods have

been leveraged in recent studies [27, 97, 158–162] to improve several characteristics of

many computer systems. In a previous study [14], we improved some key character-

istics of a given serverless computing platform by optimizing the function placement

algorithm. A direction for future research is leveraging ML and RL-based techniques

to improve the management layer of serverless computing platforms, far beyond the

status quo, using data-driven innovations that can work autonomously with almost

no manual intervention and tuning necessary.

As mentioned in Chapter 1, one of the tasks that are delegated to the provider

in the serverless computing paradigm is autoscaling of the resources for a task (or

more specifically, a function). Autoscaling is inherently a difficult task, even when

done by developers who know the resource requirements and procedures followed by

a function. However, it becomes more difficult for the serverless provider as they will

need to perform autoscaling in a black-box manner and do it in a way that works

properly for all types of workloads. This brings out several new challenges in this

task that need to be handled.

In Section 1.2, we talked about how current generations of serverless computing

platforms are performing autoscaling. We also talked about the weaknesses associ-

ated with those design choices and how they might prove to be inefficient in some

cases (depending on the type of workload being executed on them). One of the major
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possible future directions of our work is to address these shortcomings by introducing

new and adaptive autoscaling algorithms that improve the performance, energy con-

sumption, and resource utilization of the serverless computing platforms. In previous

works [163, 164], we leveraged the power of neural networks and other data-driven

approaches in conjunction with control theory and graph algorithms to create au-

tonomous autoscalers capable of deriving the best approach to scaling the resources

allocated to a specific workload on the cloud. One could build upon these methods

to find efficient autoscaling algorithms for serverless computing platforms.
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