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Abstract

Steel moment frames are often used in structurggawde lateral strength and
stiffness to the structure. These frames are subgedailure modes including
buckling in the out of plane direction in a latetaisional buckling mode. This
failure mode is influenced by interactions of theembers through their
connections. While the flexural behaviour has b&tedied in depth and for some
time, the effect of torsional warping interactioetlween members has not been

studied extensively.

This work presents an analysis of the effect ofuiding the effects of warping
interaction or neglecting them, as is done in theent design practice. The
issues of inelastic behaviour are considered, dk agethe case of torsionally
sensitive members. A joint element model is createdtreat the warping
displacements and their continuity through thetjoin

The study finds that the current practice of negtgcthe warping displacement
continuity appears to be a conservative assumptias.recommended that the
present practice of neglecting the effects of wagpin analysis of frames

continues.
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Nomenclature

Symbol | Description

a Torsional bending constant, mm

A Area, mnt

b Plate width (usually flange of | shaped sectiom))

Co Equivalent moment factor (AISC) See atspbelow.

C Factored compressive load effect. N

C Factored compressive resistance, N

Cu Warping constant, mfn

E Young’s modulus, MPa (taken as 200 GPa for steel)

Fy Yield strength, MPa

{Fi} Vector of nodal forces, finite element analysis

G Shear modulus, MPa

h Distance between flange centroids, mm

lp Polar moment of inertia, mm

I« Moment of inertia, major axis, mm

ly Moment of inertia, minor axis, mim

J St Venant torsional constant, fim

Ky Effective length factor, strong axis

ky Effective length factor, weak axis

Kuw Effective length factor, warping

K Effective length factor

[Ke] Stiffness matrix, elastic

[Kql Stiffness matrix, geometric

L Length, mm

Lp Beam length, mm

L Column length, mm

Mcrw Elastic buckling moment considering effective lgrsg N mm

My Elastic buckling moment, N mm

Mu+ Elastic buckling moment considering pre-bucklinfetgions, N mm

Muo Elastic buckling moment without modifications, Nrm

M Factored applied moment, N mm

M, Factored moment resistance, N mm

M, Bimoment in joint element development, N mm

Ny Number of elements across a joint element

Ny Number of elements down a joint element

N, Number of elements between front and back facesaht element

Rw Ratio of M, to the elastic buckling moment considering effeetength
factors or other slenderness effects.

P Applied load, N

P Load applied to flange tip for joint element, N

Py Buckling load, strong axis, N

Buckling load, weak axis, N




Buckling load, torsional, N

Polar radius of gyration, mm

Ratio of buckling strength of a restrained beartmé& of a simply
supported beam, considering the effective lengttofa of the beam.

Plate thickness, mm

Torque applied to member due to axial load, N mm.

Resisting torque in member, N mm.

Moment magnifier factor (B-effect and moment gradient)

5|c

Uniformly distributed load value, N/mm

Multiplier for axial load, frame analysis.

Factor in S16 beam-column equation

Eigenvalues

|1 |Q

Maximum displacement over length of member, meaktren a line
joining the member ends.

Displacement of member ends relative to each other.

l——
g|l>
I~

Vector of nodal displacements

Angle of twist at a location along a member, radian

@ @

Rate of twist of a member along its length, radiamsn

Column slenderness ratio

Moment gradient, dimensionless.

Poisson’s ratio. (Taken as 0.30 for steel)

Equivalent moment factor for beam-columns. (S1&ipres to 1989.)

§8<X>’

Equivalent moment factor for beam buckling. Alsgeseral modifier
for the elastic buckling moment.




1. Introduction

Many steel structures are based on the conceptrobment frame”, a set of steel
structural elements, known as beam-columns, tlsagtreertical (usually gravity

based) loads and horizontal (usually wind or earkqy loads. Within these

frames, the interconnected members can act as glesstructural element

providing strength and rigidity to the structureowver, the members have long
been considered to act as independent elementgsigrd (Massonnet, 1976).
From a design perspective, steel frames are deabignerevent the attainment of
their maximum loads based on individual member ktaloir strength.

The Canadian design method for steel structurdmsed on the CSA standard
CAN/CSA S16-01, “Limit States Design of Steel Stuwmes” (CSA 2005). This
will be used as the primary design document in tiesis, and will be referred to
as “S16”. Design standards in general are bas#teiourrent building codes. The
National Building Code of Canada (NRC 2005), reddrto as “NBCC", is the
building code for most jurisdictions in Canadahaligh it may be amended for

local conditions.

The design of beam-columns in S16 is based onfygagsfour checks, based on
various considerations and analysis procedurethignwork, only “Class 2" or
better sections are considered. These are stepésithat will not fail by local
buckling of their elements (flanges or webs) befthre attainment of a fully
plastic section. Also, only doubly symmetric “I”abed sections are considered.
These are commonly used in steel frames and experighe warping
deformations that are of interest. Hollow structusactions (HSS) are also
commonly used in frames, but are selected duesio lingh torsional stiffness, of

which the warping contribution is only a small part

This work will present an evaluation of the torabmarping restraint provided
by the connections of frame members on the stphilitthe frame. Interactive

restraint between members requires that one meprbeides the extra restraint

1



when the other demands it. In other words, the ggnmember is “supporting”
the weaker one. It may be possible that, in thelitieamal design of beam-
columns, the designer may be assigning a largestaese to the member which
is providing this “support” ignoring the extra demas on that member. This
would lead to a potential for the member to faildoe the frame’s ultimate design
loads, potentially leading to collapse. The foctith investigation is on how the
deformations at member connections affect the bebawf the frame and the
members. The particular effect studied is the ¢orsi warping displacements;
how they are transmitted between members and wiraequence the shared

displacements have on the stability of the memaedsstructure.

1.1. Specific aspects of this work

This work is motivated by the desire to determifethe mutual warping
interaction at frame connections provides a berfiiability in the context of
unbraced moment frames. Since the torsional rest@i beam-columns has
received limited attention, there may be conditievizere the demands of the
torsion from the warping of one member may caus@ating members to fail

before they might otherwise be expected to fail.

Full moment connections are required for this stldyese connections permit the
moments in one member to act on the connected memBs the warping
displacements can be thought of as lateral bendotpns, the moments and
rotations for these degrees of freedom must beiragmis. As described earlier,
the warping behaviour can be thought of as thepeddent bending of each
flange in opposite directions. This is similar te tout-of-plane bending of the
member, save that the flanges would both move instmae direction. As a
consequence of this similarity, it is difficult $eparate the warping “effects” from
the other moment and rotation effects on the caioreand thus it is difficult to
idealise this in a physical model. In an experirakptogram it would be difficult
to isolate the lateral bending and the warpingot$féo see how these affect the
buckling capacity.



While the limitation of consideration to class 1 2r‘l” sections mirrors the
special beam-column equations in S16, there arer ofasons for this limitation.
Closed sections, such as hollow structural secti@dSS), are very stiff
torsionally, by the sole virtue that the St. Ven@msional constant is large, equal
to the polar moment of inertia of the cross sectidhere is no warping for
circular sections, and even for rectangular sectibasSt Venant torsion is large,
so that the influence of warping is low. Other wagpsensitive sections with
mono-symmetric sections (reduced flange “I’ sectiomgh unequal flange
widths, or channel sections) or asymmetric sectigugh as angles) are not
commonly used in moment frames due in part to trapdications arising from
the eccentricity between the shear centre andadnand in part to difficulties in

providing connections between members for full monseipport.

The objective is to see whether the interaction noeémbers, loads and
deformations related to warping at steel frametgouill cause earlier instability
or greater stability of the frame. It is hoped ttias analysis will be of benefit to
designers in determining the member sizes and ctionedetailing for such

frames.



2. Literature Review and Background

A principal concept of research is to build on therk of the past. This chapter
will track some of the larger steps that have beawle in the same direction as

this work.

2.1 General structural mechanics

A brief description of the major topics used irsthiork will be presented here.

2.1.1 Bending and torsion

The flexural considerations used in this thesid i based on the Bernoulli-

Euler beam theory, where the strain distributiolmisar over the cross-section.

The applied torque is assumed to be resisted byptivoary mechanisms, St.
Venant torsion and warping torsion. Other mechasisme not included in the
analysis or other considerations. As torsional wayps of particular interest in
this work, a short description is included heraihere the term “warping” is

used herein, it is meant to imply torsional warping

St Venant torsion is the general response to torsubierein the material
experiences a shear stress relative to its disthooe the rotational centre for
closed sections that permit the stress to follow ¢tosed path formed by the
cross-section. For open sections, where the sheassnust travel both directions
in each cross section element, the “skin” of edelment carries the same shear
flow in opposite directions, and this reduces Imhe&o zero at the centre of the
element. The geometric property used for modellinig part of the torsion
restraint is the St Venant torsional constant Jclvfor thin walled open sections
can be approximated by one-third of the sum of él@ment length times the
thickness cubed for all elements. Closed sectioasvary effective in resisting
torsion, as the closed loop permits all materigbadticipate to its full extent, and

open sections are much less effective.



J :%be* [2-1]

The doubly symmetric “I’-shaped cross section wélused throughout this work.
This cross section shape experiences a relatigede lamount of warping. As the
“I"-shaped member’s ends rotate relative to eatlempithe member’s flanges will

act as beams, bending in opposite directions (Eiget). The moments in the two
flanges will be equal, but acting in opposite di@ts. This two-moment

combination is termed a bi-moment. The applieduerthat twists the member is
resisted by the flexural shear in the flange, mli#d by the distance between the
flanges. As shear is the moment gradient alondpéaen length, the magnitude of
the bi-moment must vary along the length of the memnn order to restrain this

torque. The effect of warping decreases with tingtle of the beam, whereas the
effect of St Venant torsion remains relatively dans. Therefore, the importance

of warping will be lessened for longer members.

The warping displacements may be fairly small, their restraint can cause
significant increases in the torsional stiffnesshaf member.

A study on combined torsion and flexure (Brematlal. 2008) indicates that for
many beams, flexural and torsional displacementseaerviceability problems
before they exceed their strength. This is attaduto, in part, the softening
effects of approaching lateral-torsional bucklingpacities. However, for
members stiff enough to provide sufficiently smdéformations, the strength
interaction can be delimited by a simple multi-ineeurve. At its most severe,
this is a straight line linking the point of maximutorsional strength and zero
applied moment to the point of zero applied torguel maximum moment

capacity.



2.1.2 Local buckling behaviour

While not the main topic of this investigation, theare cases where buckling
phenomena affecting the cross section of the memplagra role in the analysis
and design of beam columns. There are two spec#iegories of importance.
One is the buckling of the plates that form thessrgectional elements of the
member in question. This is a buckling action @t@s loaded in compression in
the plane of the plate. The other is distortionatkling, where the web of the
beam deflects out of plane. In both cases, thesceextion of the member
becomes deformed, and thus becomes unsymmetgadinly to weakening of the

member.

Local buckling is controlled in design through thse of limits on the plate
slenderness, and the classification of the crossosebased on those limits. The
limits are based in part on classical plate bucktimeory. The classification used
by S16 is: if any part of the cross-section buclklefore the material reaches its
yield stress, the section is deemed Class 4; ipad will buckle before first
yielding occurs, but will before full yielding ohé section, the section is called
Class 3; if all parts can sustain full plastificatibefore buckling, it is Class 2; and
if all parts can withstand full plastification dfid section and develop sufficient
additional rotation for “subsequent redistributiohthe bending mometit it is
Class 1. Dawe and Kulak (1986) provide an analgdighe local buckling

requirements for beam-columns.

Distortional buckling is a more general bucklinghbeiour, but also one that
affects the shape of the cross section. In thisenpthet web bends out of the plane
formed by its original position (Figure 2-2). Thisode is not formally recognised
in S16, but is in CSA S13§CSA, 2007). While generally regarded as a mode
that particularly affects members with very slenderbs, there can be cases
where distortional buckling is of interest in halled members (Alberet al
1992).

1§11.1.1 (a), S16
2§ (C3.1.4 beams, § C4.2 columns, S136-07



2.1.3 Buckling and out-of-plane behaviour

Structural instability is caused by the combinedeat of a load and the

displacements caused by the load. As a load inesedise displacements caused
by that load also increase. The destabilising effexreases as the combination of
the load and its own displacement, and will inceeimsa non-linear manner. The
displacement is resisted by the stiffness of the&csire, up to the point where the

displacements can grow without restraint.

This is called a “second order” effect. First-ordeffects are described as
displacements and member forces that would reslétysfrom the loads applied
to the structure without other considerations. 8Sdemrder effects take into
consideration the forces and moments resulting fiteenstructural displacements
and the applied forces acting on the deformed &trecin particular, the engineer
is concerned about loads which cause displacentgaitgontinuously increase as
these second order effects are calculated. Thibdas styled as “B* (or “P-&”)
analyses — “P” representing the load itself afAithe displacement caused by the
loading. The A” effects are from relative displacements of memleads,

whereas thed’ effect results from deformation of the membemetn its ends.

While the term “buckling” is used often, the belwawi of real structures does not
typically follow the “bifurcation” model of classit buckling described below. In
general as the critical load is approached, ther fiapid loss of stiffne§sand
potentially a loss of strength, that can precedeodapse. This complete
“mechanism” is referred to as instability. The aistity comes as the load’s
effects increase more than linearly with the agpion of the load and there is a
point where the effects overcome the structuraktasce. In some cases, other
structural mechanisms can start to pick up the badlits higher order effects to
provide an increase in post-buckling strength.

% This was noted by Southwell (1932) and exploited @lot of increasing flexibility versus lateral
deflection to graphically determine the criticahtb
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The particular condition under consideration irstkiudy is that of out-of-plane
behaviour. In out-of-plane responses, the structnowes perpendicular to the
plane in which the major moments and forces act. mkchanisms underlying the
out-of-plane instability failure are lateral-torsa buckling, an instability due to
applied moments about the major axis and the deergmaxial capacity due to
the applied axial load and the buckling capacitithez lateral flexural or

torsional. In the case of those sections wherecémtroid is not coincident with
the shear centre, the axial load capacity may berged by a combined flexural-
torsional buckling failure mechanism. The governieguations for these

mechanisms follow.

The most common buckling mode is flexural bucklimgwhich bending causes
member instability. This bending is caused by tlemant produced by the axial
load and the member’s deflection due to bendingpitial imperfections (Figure
2-3). This moment is resisted by the flexural sgffs of the member. While this
bending can occur about either principal axis, wedk bending is of the greater
importance to this work. This mode of buckling epresented by the following
form:

Py =% [2-2]
y

Also caused by axial loading is a phenomenon knawmorsional buckling. As

the member twists, the elements of the cross-set@ome inclined to the axis
of the member The compressive axial force produxdsteral, or shearing,

component that forces the member to twist furtiégure 2-4). The ratio of

compressive load to torsional shear is equal tgtbduct of the distance from the
centre of rotation to the point under consideratiand the twist expressed in
terms of the twist gradien®'( radians per length). The centre of rotationhis t

shear centre. The twist gradieflf) (is equal to the derivative of the twist angde (
radians) with respect to the distance along thgtkenf the member. The moment

arm for each particular shear component is alsdisteince from the shear centre.



Considering the compressive force to be uniformégridbuted across the section,

the forcing torque is:

: ' Pl 6 :
T, :jraerA:ﬁ r’dA=—>—=Pr’8 [2-3]
A A

p

The torque is resisted by the torsional stiffnelsthe member, which in turn has
two components; a St. Venant torsional componedtaawarping component, as
shown in Equation [2-4]. Equation [2-5] represethis failure mode for doubly
symmetric cross-sections, where the shear centtecantroid are coincident. In
those cases where the shear centre and centroidoareoincident, there is an
interaction between the flexural and torsional ingkdue to the displacement of

the axial load as the centroid rotates about tkearstentre.

T =GJY9 -ECH [2-4]
p=A U ECZW +GJ [2-5]
lp (kWL)

The warping portion of the torsional resistanceobees larger for shorter lengths.

Many sources, for example Vacharajittiphan and @&iral(1974), use the
formulation of another torsional constam,:q/fECWi/iGJi, which has the

dimensions of length, in describing the length omamber under torsion. A
member that has a higlya ratio is considered “long” and is governed by St

Venant torsion. One with a lolwva ratio is governed by warping torsion.

For lateral-torsional buckling, the governing eduratis presented as [2-6]. This
phenomenon results from the assumed beam deflectesulting from a major
axis bending moment causing twisting of the beanmdycing a component of the
applied moment that exerts bending about the wgask(Rigure 2-5); and an out-
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of-plane bending that produces a component of themaxis moment that causes
a torque about the beam axis (Figure 2-6). As tisecomponents are linked
(the torque is caused by displacements from trexdhbending and the lateral
bending is caused by the rotation caused the tprdpegh the lateral bending
stiffness and torsional stiffness must be consttlefdis is separated into three
parts: a factor to account for the effects of thape of the moment distribution

along the member(w,), the weak axis flexural stiffness, and the toralon

stiffness.

TEl, [PEC
M, =w y v +GJ =, (P,)(r2P,) 2-6
u 2 (kyL)2 (kWL)2 2 y p'z [ ]

The latter part of equation [2-6] shows the criticeoment in terms of the axial

buckling loads. The second component is the toasibnckling load multiplied
by the polar radius of gyration about the sheatreer, These expressions rely
on the beam being restrained from twisting atmdse Without rotational support,

the member would “fall over” rather than buckle.

All of these modes will interact in reducing themtger's capacity from its ideal
ultimate strength if the moment and axial comp@ssict simultaneously. This
inter-modal interaction is a fundamental concemeutying beam-column theory.
Many approximate relationships are proposed to areathis reduction, such as
equation [2-7], which provides a reduction in latd@orsional buckling capacity
due to the “softening” effect of an axial load apglto equation [2-6], along with

the increased moment due to the moment magnifitor (1- P/P,). However,

for design purposes, these are presented in tme dbrinteraction inequalities.
These interaction relationships will be discussedmiore detail in a following

section.

M, = M, J[l_ﬂJ -] o2 27
P, P, P,
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2.1.4 Plasticity and imperfections

The stability considerations above are based on beesnremaining elastic
throughout their deformation. In actual steel dunes, the initiation of inelastic
behaviour often occurs at load levels lower thas¢hrequired to produce elastic
buckling. As the stiffness of the member is dradtyclowered when yielding
starts, and as stability is a function of stiffnebe instability effects increase as

parts of the section begin to yield.

The manufacturing process for sections under ceraihn involves the
deformation of hot steel bars through rollers, whsbape the bar into the form of
an “I”. The resulting shape cools unevenly. Thetp#nat cool first (the flange
tips, then the middle of the web) also gains st and strength first and can
sustain stresses while the rest of the cross-sestilb possesses a very low yield
strength. As the bar continues to cool, the hostierel continues to shrink,
“pulling” on the cooler, more rigid steel. At thace of the cooling process, there
is an internal set of stresses in the bar, ranfymmm compression at the points of
first cooling (flange tips) to tension at the paitihat cooled last (the flange-web
junctions). These are called residual stressescandyovern where the member
will start to yield when external stresses are igpp{Kulak and Grondih 2006).
As the flange tips are furthest from the centréindy have the greatest influence
on the flexural stiffness of the member, and ay th&ve residual compressive
stresses, they will yield first in compressive lmad Thus, the typical residual

stress pattern is disadvantageous for stability.

The geometric imperfection of the member influentesstrength and stiffness as
well. The nominal case considered by the theoresitzbility equations is for a
member that is perfectly straight; perfectly prisimdevery cross section along
the length has the same measurements); and pgrfgletiped (there is no

deviation from the perfect “I” shape — the indivadpieces of the cross section all

4 Section 4.3 “Behaviour of Cross-Section”
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meet at right angles and are piecewise straigh®. major concern for all overall
buckling modes is that the member is straight. i not straight, there are second
order moments created in the member as soon adaaded, which softens the
member. For torsional buckling, the is also a comdbat the member has no
initial twist, which would immediately impart a tpre into the member when

loaded.

In general these imperfections, both material ardngetric, will reduce the
strength of the member. This phenomenon has bemmrkfor some time. Ayrton
and Perry (1886) developed their column strengthatgn to incorporate the
effects of inelasticity and geometric imperfectiomsolumns, and they reference
earlier works by Tredgold and Gordon who also msidelar approximations for

columns.

2.1.5 Member interaction

The influence of the interaction between membergames is well known and
has been studied in the context of flexural buckiiar a long time. The basic
equations produced graphical design aids as longaagl936 by N.J. Hoff (per
CRC Guide (19606) and have continued to be used in the effectiveytte
nomographs. The latter are also known as the JadWsoeland alignment charts,
from the firm that originally produced them in 195FYhe aids are used to
determine the effective length for flexural buckliof columns in sway and non-
sway frames. These charts are integral parts odlélsegn process of columns and
beam-columns in many jurisdictions, including CamafAppendix G of CSA
S16-01 provides an example of these.) These chartsider only the mutual
flexural restraint offered by the flexural stiffrees of connected members. An
example of the side-sway prevented (braced frarogjograph is reproduced in

Figure 2-7.

Trahair (1968a) coined the phrase “interactive kingkto describe the behaviour

of interconnected beams when they experience jatetal-torsional buckling.

®pp 26-27
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The influence of end restraints has been considévethcrease the lateral-
torsional buckling behaviour of members, in gendrlht (1951) notes that if the
ends are permitted to rotate, or in his words therelastic torsional movement
of the end supports” then there is decreased dgpamnpared to equation [2-6]
(with ky =ky = 1). However, the general expression dependsotai torsional

fixity at the ends, so this is to be expected.

Schmitke and Kennedy (1984) provide an excellemirsary of the history of
interactive buckling of continuous beams. The reaslelirected there for a more

thorough description of work until that time.

Trahair (1968b) presents a discussion of the exrease of a beam completely
fixed at one end and pinned at the other (a “prdpgamtilever”) and leads into a
discussion of the interaction between multi-spamtiooous beams (Trahair,
1968c). While the first paper discusses I-sectibnefly, both papers focus on
narrow rectangular sections. Trahair (1968b) intces an iterative method of
finding the critical load for rectangular sectionBhis technique had some
problems in reaching convergence for I-shaped @extif the St Venant and

warping expressions(GJB') and (ECWHN/ L2) are approximately equal. A

numerical solution technique, specifically the ténidifference method, was
recommended. However, a first order finite differ@emmethod technique proved
to be unsatisfactory and a finite integral methaaswsed as the final solution.
The second paper describes a linear interactioratiegu that illustrates the
increase in the critical load when two or threeaadnt, loaded spans of a
continuous beam are considered. The loading destrilas for single point loads

at midspan, and uniformly distributed loads.

The interaction between members and its influencéateral torsional buckling

has not been incorporated into the design proce€amnada

® Chapter 5, “Continuous Beams”
" Masarira (2002) implies that DIN-18800 and DIN-41rhay incorporate some of this in their
joint stiffness considerations.
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Work by Nethercot and Trahair (1976a, 1976b) usedfexural buckling charts
for mutual restraint considerations to determireaffective length of continuous
beams. Continuing work, such as that of Schmitke lkennedy (1985) did not
directly consider the restraint based on the noaqgrbut also concentrated only
on the flexural resistances of the members and tmeitual influence. The
resistance from the torsional components, and edpethat of the restraint of

torsional warping deformations, is not includedha factors under consideration.

2.2 Frame analysis

The particular condition under consideration irstkiudy is that of out-of-plane
behaviour. This is a situation where the displagdgnoeéthe structure is out of the
plane formed by its members. This plane is typycalso the plane in which all
loads are applied, if the frame is considered toabglanar structure. In real
structures, the loads are not applied strictly imithe plane of the frame. The out-
of-plane failure mechanism is not critical in unted structures (Wongkaew
2000) unless the lateral (flexural) buckling st&#s is substantially less than the
in-plane buckling stiffness.

A key part of frame analysis is to account for thé& effects in the analysis
(Wood, et al. 1976a). Recommendations were given in appenditggevious
editions of S16 (CSA, 1989) for including theseeef$ in the analysis.

The concept of notional loads has been introducdchme analysis to permit first
order analyses to adequately model the second effiets of loads. In Canadian
design, these were first introduced into S16 INALEBSA 1989). “Notional” loads
are so-named because they are not actual loadedapplthe structure, but are
rather a conceptual tool. They provide a simulatbthe effects experienced by
the frame from the second order effects. Usualytional loads in a frame
analysis are point loads introduced into the stmectaterally (horizontally) at the
floor level, and are some fraction of the gravitertical) loads added to the

structure at that floor. However, in strictest pice; these are to be added to the
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structure at the same point (or height) that thepeetive vertical load is

introduced into the structure.

At a minimum, the notional load should represen¢ #quivalent moment
produced by a reasonable allowance for the inviatical imperfections (out-of-
plumb) in the columns of the frame. For exampleh#d code of practice for a
given standard were to permit an out-of-plumb rafid/500 times the length of
member, the minimum notional load would be 0.0@28 the gravity loads. This
produces an overturning moment equal to the véria times the initial off-

plumb value.

Other uses for notional loads and modificationanfrthe base condition are
explored in Clarke and Bridge (1995). Some destgndards use modifications
to account for the number of storeys, yielding bt tmembers or their
connections, or the slenderness of the columndeast one standard, the AISC
(2005) Specification, uses a reduced stiffnessufred modulus) approach in

conjunction with the notional load to determine tieane design requirements.

2.3 Current member design

This work considers the provisions of the curreah&lian steel building design
standard (S16-01, CSA 2005) with respect to frame leam-column design.
These provisions and their development are detail&tssa and Kennedy (2000).
A summary of the historical development of Canaditael beam-column design
to this point is provided by MacPhedran and Grorf@d®07b).

Beam-columns are analysed and designed individuakyparated from their
environment in the frame. The loads on the member determined from a
structural frame analysis, and considered, througlnteraction inequality, with
the individual member capacities for axial and @t loads. While the mutual
member restraint mentioned earlier can be useddouat for restraint in braced
frames, unbraced frames are analysed slightly rdifty and the restraint is

incorporated into the loads applied to the membhbis translates into the use of
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effective length factors less than one for the mwis in a braced frame, and the

use of an effective length factor of one for colenmma sway-permitted frame.

The frame analysis specified by the design standasdrporates the inelastic
behaviour of the structure and second order effetteading. This is specified
via notional loads in the current version of thansiard. With the approach used
in S16, the notional load is actually larger thiae hominal value (1/500) required
to match initial imperfections. A higher value btnotional load is used as that
gives results consistent with more exact analysaes @ccount for the effects of
distributed plasticity (Kennedgt al. 1993). The notional load is applied at each
storey and is 0.005 times the gravity loads appiethat storey. By representing
the geometric imperfections and presumed deformatiibh a load, the notional
load ‘transforms a sway buckling problem into a benditigregth problerh
(Essa and Kennedy, 2000) simplifying the analysisother words, the notional
load replaces the initial imperfections and the yswHects are accounted for by
the second order analysis. Thus, the entifed®ect is compensated for, and the
effective length factor of columns in sway framemlgsed with notional loads
can be set to 1, rather than the longer effecéngths previously used.

Trahair (1986) outlines the types of failure asated with beam-columns. These
are: exceeding the cross sectional strength of nleenber; buckling of the
member in the direction of applied moments, usuallyhe plane of the frame;
buckling of the member perpendicular to the agpfi®ment, usually out of the
plane of the structure; and the potential that inlakending will exceed the
member strength. Each of these points is addresgesil6 separately. For the
members considered here, Class 1 and 2 I-shapgdrsed¢he design objective is
to provide members sized so that the inequality8][ds satisfied for these

conditions.

) M M
Cr 08UMy UMy g [2-8]
C M M

r rx ry

16



The components on the left hand side of [2-8] dre:factored load effect§
andM; , where the moment may be applied about eithbotr the strongMs,) or
weak (My) axes; the factored resistanc€, and M,; and the factorU,, that

accounts for the increased moment due to the ds&d and the M- effect

(1- P/P,) and the decrease in moment severity due to mompetient,

(= 06— 04K = 04), as determined by Austin (1961). The value 0.85skape

parameter that is specific to I-shaped sections.

Strength: The conditions are based on using differing valiesthe factored
resistances in the equation. The first conditioth&t the plastic strength of the
section is not exceeded. Equation [2-9a] is invofadthis contingency. The
maximum strength parameters are used for strorgytsemding and compressive
resistance — the lengths for beams and columntakes to be zero. This check
need only be done for braced frames, as stabitiicerns will govern in sway

permitted frames.

C, ,085U,M, 06U,M,
C.(A=0) M,(L=0) M

<10 [2-9a]

ry

Overall buckling: The second condition is a stability criterion (Eipa [2-9b])
considering the effects of column buckling. Herbe tcolumn resistance is
calculated for the weaker plane that has an apptiechent, usually the major or
“strong” axis. This value is calculated with an effee length factor of 1. Lateral-
torsional buckling of the section in bending is ronsidered in this check. The
effects of bending about the weak axis are incikasgéhe member’'s compressive
slenderness ratio about the weak axis increasegctmunt for plastic softening of

the cross section (Essa and Kennedy, 2000).

C, 0.85U,,M,, (06+044,)U, M,
<10 -
ck=0 "M, =0 M ) 12-90]

ry
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Lateral torsional buckling: The third criterion is the one of most interesthis
work, where lateral torsional buckling is considkne determining the strong axis
factored moment resistance, and the column factaxed resistance is based on
the weakest buckling mode, usually this is theutekweak axis buckling mode.

C, ,08SU,M, (06+ 044, Ju M
C, (min) M M

rx ry

<10 [2-9¢]

Biaxial bending: As the moment contributions are reduced in theraction
equations above, it may be that a member contrdjetdending may “pass” the
other interaction equations, but still not have ¢apacity to support the bending
moments. To prevent these situations, equation [2s9uhcluded to check if the

moment capacity is exceeded.

M

X+M“’<10 d
- <1 [2-9d]

rx ry

As an example of the theoretical basis for thesgatons, the following is a
modification of Trahair's (1993) derivatidrof a simple interaction relationship
based on equation [2-7]. If the reduced moment @gpaVl,, was considered as
the applied momen, at the same time as the axial loBdequation [2-7] could

be expressed as:

(1_2:']“/.<\/(ng (1_3 [2-10]

P u0

X

The inequality is introduced to demonstrate thatllemaalues ofM are “safe”. It
is conservative to replace both terfdsand P, on the right hand side with the
lesser of the two, simplifying the expression untlex radical. Assuming the

lesser to b&,, this rearranges to:

8 pages 207-208
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Py M

P, (1_ PJM . [2-11]
P

X

That is the same as equation [2-9c], consideringtieldbehaviour, strong axis
bending, uniform moments and general cross sectibrise torsional buckling
load, P,, governs, this case would also be treated by emugP-9c|, as the
designer must check the lowest axial capacity.

Typically, design aids are available to the desigfiem the steel industry
associations. The Canadian association provides nargle handbook (CISC,
2006) as well as publications specific to torsiodakign (CISC 2002). The
American institute also provides a handbook, asl sl design guides for

torsional behaviour (Seaburg and Carter, 1996).

2.4 Literature review

This section presents a discussion of two main sopie first is the development
of the theory of torsion and beam-column actior #re other is the development
of frame analysis and how it affects the desighezm columns.

2.4.1 Torsion and beam columns

Torsion represents an important component of theobptane strength of
members. With wide flange sections, the warpindiporof the torsional stiffness

can be a significant contribution, especially fooger beam lengths.

The consideration of buckling of beams has beensimyegted for over a century.
Trahair (1993) indicatés that A.G.M. Michell (1899) and L. Prandtl
independently published on lateral torsional bukliin 1899, for narrow
rectangular sections; and S.P. Timoshenko introdweagbing torsion into the
equation in 1905. The work by Wagner (1936) presktive general torsional

analysis for open shapes, including warping.

° pages 3-4
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Vlasov (1961) is also a significant contributorthe work on torsional behaviour.
The details of Vlasov’s work include the concepteffective length factors for
the warping and flexural components of the Iatetafsional buckling
phenomenon. This concept, if not the exact valuésileded by Vlasov, will be

used later in the analysis of the finite elemestlts found in this work.

There are two works of note with respect to prafificaestraining warping in
experimental tests. Each of these shows the diffe=uin trying to restrain the
warping displacements.

Dinno and Gill (1964) tested small specimens maahifrom 5/8 inch square
steel rods into | shapes with solid ends to deteentiie effects of plasticity on the
torsional behaviour. In order to restrain warpitige solid ends were 2 inches
long — over 3 times the dimension of the crossieeect a very stiff member when

warping is considered.

Ojalvo and Chambers (1977) tested specially stifertshaped beams. The
stiffeners were composed of two channel sectioridedeto both flanges and the
web of the beam at both ends. These provided “wglpistiff’ beams, as the
ends were almost encased in a tube section. Thetsesteowed that even very
stiff warping restraints do not provide full toree warping rigidity and can only

provide a certain amount of extra rigidity.

Vacharajittiphan and Trahair (1974) presented a&éhite element analyses of
joints between equal sized steel I-sections consiglehe warping restraint at the
joints. They came to the conclusion that ignoring fiiasstraint is conservative, but
produced equations similar to those for the flekwvestraint nomographs. One
comment was that for three pairs of stiffeners,jtie could be considered rigid
with respect to warping. Ojalvo (1975) respondedame of the points raised,
indicating that some of the end restraints weresnfficiently rigid, leading to the

paper described previously.
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While an important work that should be mentionedhiis context, Ettouney and
Kirby's (1981) work focuses on the influence of piag restraint on beam
strength only, but provides a finite element bealement which considers
warping. An application to short members in threenahsional frames is

presented.

Yang and McGuire (1984) present a description @hide element that models
variable restraints of the warping of members. Tieistraint was provided by
warping “springs” that provide a flexibility of OmMarping fully restrained) to 1

(fully free to warp). Further development of thisnw led to a development of an
element that would model non-linear geometric behav(Yang and McGuire,

1986), including the presentation of a geometriffngtss matrix to permit

eigenvalue solution of the buckling problem.

Krenk and Damkilde (1991) consider stiffened cotioaes for equal sized I-

sections. Finite element models were constructed@imembers whose webs are
coplanar and that meet at an angle. They mentiomtpertance of cross-section
distortion of the members at the joint as being pathe member interaction, and

propose a small “spring-like” stiffness matrix twcaunt for this interaction.

Morrell et al. (1996) investigated similar two-member “framesade of steel

channel sections. These again had equal sized segioed, only at right angles,
with various stiffener configurations. One membesvioaded in torsion and the
other acted only to restrain that load. Distortmthe joint was also noted as
being important. The warping of the loaded membéerdened to amount and

direction of twisting of the frame.

There are two recent studies into the behaviourashés considering the warping

restraints at shared joints.

Masarira (2002) presented a study that looked eairtteraction of members and
joints considering warping. This considered finiklengent models of several joint
types with an applied bi-moment to determine theping stiffness. A set of
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equations are presented to determine the jointnei§ and an approach is
proposed using a coefficient for the stiffness lé joint when analysing the
strength and stiffness of the frame. These coeffisi@re used in the German
design standards DIN/18800 and DIN/4114 for consiiten when determining

the lateral torsional buckling capacity of members.

Zinoviev and Mohareb (2004) also investigated pdreanes, in the form of pipe
racks, in terms of out-of-plane behaviour. The framweestigated are laterally
unsupported, with fixed column bases, and thuslikte fail in out-of-plane

behaviour. Two joint configurations were investigatas to their warping
stiffness through finite element analysis using llsliéements. The design
procedure proposed uses geometric stiffness maitreoed determines the
eigenvalue thereof to find the critical loadings.

Tong et al. (2005) also present transmission of warping tghojoints in two
member frames. In this case, only one type of j@ipresented, a mitre joint with
a diagonal stiffener. This joint configuration, 8lwated in figure 2-8, is one
where the connecting members’ flanges and webgsred, and the flanges that
would otherwise cross the web are removed. A diapstiffener joins the flange
intersections. A stiffness modification is introédcinto the analysis to account
for the warping restraint of the diagonal stiffen®vhen compared to direct
transmission of warping, this advanced treatmentvsha small reduction in the
rotation of the members, and little to no differerior the lateral displacements of

the column or beam.

Masarira (2002), Zinoviev and Mohareb (2004), andd(2005) used numerical
simulation exclusively. There have been limited expental data available.
While not directly related to stability and framésp reports involving reduced
beam section tests in seismic frames, Chi and (2002) and Zhang and Ricles
(2006), do mention certain aspects of warping ainections in steel moment
frames. Chi and Uang mention that early lateraditoral buckling in beams with

a reduced cross section (a configuration used ismse frame design to force
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plastic hinges to form outside the connections)seailne beam’s axial force to
produce an eccentric thrust against the columnsdyming a torque in the
column. They also mention that deep beams will ptecuhigh warping stress in
columns. Zhang and Ricles determined that Chi anahgU may have
overestimated the warping contribution but alsoicatk that the columns did

undergo significant torsional rotation post failure

Both of these experimental studies involve sigatfficplastic deformation of the
columns and beams after cyclic loading, involvet fgkling behaviour, and are
beyond the scope of this research. However, theyndwate possible future

directions.

2.4.2 Frame analysis

The history of the development of steel frame amalgsnid design is lengthy.
Baker (1936) presents an interesting account of pitugress at that time in
Britain. Baker's presentation was to introduce av rigritish national code of

practice formulated by the Steel Structures Reke@ammittee. This included
extensive recommendations including such topicsviesl load variance with

height, and live load reduction factors, but matevantly, effective lengths for
columns (K = 1, except for continuous columns, B.# and intermediate values
between), analysis methods and assumptions (susimasy supported beams on
continuous columns), and design equations (theyHwbertson formula). This
was also the point in time at which Massonnet ()}9¥gins his review of the

history of beam-column design.

The evolution of the Canadian design process, adlim MacPhedran and
Grondin (2007b), started from more humble beginsiras fairly simple stress
addition formulae originally without consideratiaof slenderness for beam-
columns, but changed rapidly during the periodste#nsive research into beam-
columns. Shortly after the British changes listé\ee, the Canadian standard
S16-1940 moved to include slenderness effects dis Wee “new” Canadian

standard adopted the Perry-Robertson column strefoginulation. Since that
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time there has been continuous refinement in thinade used in frame analysis
and beam-column design. A comparison between theemu methods

summarised previously and these earlier standdmolsssthat the designer today
has (or should have) a greater comprehension afefrbehaviour and design

methodology for steel beam-columns.

The corollary of this is that the methods of dedmrframes, or rather the process
of sizing beam-columns has become complex, andsive for the engineer.
While some standards have tried to maintain sintplidor example the AISC
Specification (AISC 2005), which uses a two par &guation to cover all modes
of failure, others (such as S16) have tried to m#te growing complexity with
more equations to handle the various modes, afidostiers, like EuroCode 3
(CEN 2005) use more exact coefficients to propadgount for the - and P&

second order effects in the beam column equations.

Currently, there is much discussion on the alltteeatechniques of “Advanced
Analysis” and “Direct Design”. A brief descriptioof this can be found in
Suroveket al. (2006), but the idea behind “advanced analysisthat it is an
analysis that considers all the relevant structlimalit states,” given sufficient
information on the structure — the material, inahggdinelastic properties, residual
stresses; and the geometry, including initial gedmeimperfections. The
Europeans have coined the mnemonics “GMNIA” for Getio and Material
Nonlinearities and Imperfections Analysis and “SORHfor Second Order
Plastic Hinge Analysis of imperfect members (Ofner, 1997) for éhemalysis
procedures. These analyses present member behavabuding the effects of
“stability” — or second order effects of loadingsdathe resulting deformations —
and plasticity to directly establish if the membkeave the strength to support the
given loads. Thus all beam-columns could be redtwexdily a “strength” check —
a more direct design method, and a continuatidhefotional load concept to all

frame failure conditions.
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One of the early researchers of beam-column amalgsid design, Charles
Massonnet, provided the summary below as to whieatibeam-column design

practice does not present the full picture of fratasign.

“However, the story is not ended, because the gqinme
the classical isolated beam-column is an
oversimplification for two reasons:
first, an actual beam-column is an object behawmng
three-dimensional space, and ought to be studisdcs
This justifies the growing trend towards researckd an
experiments on columns subjected to buckling with b
axial bending, of which we have still much to learn
Such research is also justified by the fact thatdhs a
trend toward designing and analyzing structurespase
frames, in which it becomes necessary to introdhee
biaxial bending of columns.
second, and perhaps more important, is the fatttiiea
isolated beam-column is an object that only exists
theoretical models and testing machines. All actual
columns are linked, in one way or other, to theaiwer
of the structure, and the behavior of each colusin i
influenced by the overall behavior of the structure

Massonnet, (1976)

While many advances have been made in the interganne, much of what the
above quote says is still true. One point that Masst did not explicitly mention
is that in the analysis of beam-columns with biahxbending the torsional
behaviour must also be considered. A contemporamkwy Chen and Atsuta
(1977) demonstrates this requirement, and theaustihtive diagram has been
reproduced in Figure 2-9. The combination of ax@dd and biaxial bending
moments (Figure 2-9a) can be converted to a siegtentric point load (Figure
2-9b) that should express the sum of all the eatdoads. However, if the three
components were expressed separately as point (Bagige 2-9c, 2-9d, and 2-
9e) there is an imbalance in the sum of these paaats that can be only resolved

by the addition of a bimoment (Figure 2-9f).

To date, those studies of member interaction andpeghility of warping
deformations do not test the assumptions madeeiratialyses for current design

practice that these effects can be neglected ingmledhere has been no
25



examination to see if there is a harmful consegei@fchis practice. This study is
being conducted to determine if there is an inhtepgnoblem or if there is an
unexploited benefit that can be made from includimese factors in our design
process.
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Figure 2-1 Torsional warping displacement of sectio. (After Attard & Lawther, 1989)
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Figure 2-2 Distortional buckling
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Figure 2-3 Flexural and torsional buckling of columm
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Figure 2-4 Torsional buckling detail
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Figure 2-5 Lateral-torsional buckling of beam — tvist and weak axis moment
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Figure 2-6 Lateral-torsional buckling of beam — toque produced by lateral flexure
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Figure 2-7 Nomograph for effective length of colums in sway prevented frames.
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Figure 2-8 Mitre joint with diagonal stiffener
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(a) Beam-column with axial load and (b) Equivalent eccentric point load
bi-axial bending

N -

(c) Distributed axial force (F =4 P) (d) Strongsakending, (M =2 P d)

(e) Weak axis bending, (VF 2 P b) (f) Warping bi-moment

Figure 2-9 Decomposition of a bi-axially loaded bea-column into axial, flexural and
torsional components. (After Chen and Atsuta (1977)igure 1.6.).




3. Finite Element Analysis of Torsional Warping

Effects on Frame Buckling

3.1 Introduction

The finite element method is a numerical analysehmique that uses
approximate solutions over small subsets, or elesneita partial differential

equation problem to gain an approximate solutiorth®® whole problem. The
collection of elements and the boundary conditiforsthe problem are called a
model. While approximate, the solutions for the elochn approach the exact
solution very closely.

There are several conditions that must be satigbedbtain good results from
finite element analyses. The foremost is that tleleh must match the physical
problem. That is, the loading and restraints onntioelel must closely represent
those in the physical problem. The geometry of ghgsical specimen must be
accurately brought into the numerical model. Theema properties assumed in
the finite element analysis also need to be simtdathose used in the physical
test. Such properties as the stress versus s#laitionship — for steel, this would
include the modulus of elasticity, and yield stiéngt a minimum — should be
taken from the actual materials being used. Théy/ses presented in this chapter
are elastic only — the effects of yielding are matorporated into the analyses

presented here.

The modelling technique must also be appropriatethi» type of analysis
performed and the required results. The elemerdstypeed to be able to model
the effects of interest. In the particular caseauncbnsideration, the elements
must be able to provide support for inclusion aBimnal warping effects in its
formulation. Solid and shell elements would supploid effect as a consequence

of their modeling of the full behaviour of the skapgdiowever, beam elements
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must support an extra degree of freedom to modeMtarping. For specialised
analyses, it is also required that the analysisqaore can provide the desired
results. For those models that require non-lineatemral or geometric analyses,
the analysis procedure must support an iteratiayais process. The model and
boundary conditions must also be amenable to cgewee, as this also has a
great influence on successful non-linear analysisn with programs capable of

non-linear analyses.

The model may also be sensitive to the geometth@felements. The elements
might work best when they have particular dimensienas an example, the
element may have been developed for a case wHeoé the element edges are
approximately the same length and the effectivepésise element decreases as
its aspect ratio deviates from the ideal. In theeoaf equal length sides, the ideal
is an aspect ratio of 1.0. The element may als&eetter when oriented in a

particular direction with respect to the principtiesses or strains.

The mesh, or general arrangement of the elemeats, atso influence the

accuracy of the model and how well the solution oonf to the real response of
the physical problem. In general, the more elem#rds are used in the model,
the better the solution is. However, the analyst cse different meshing

techniques to use the elements in appropriateitowatParts of the model that
have higher strain gradients would require elemplased more closely together
than would other parts with lower strain gradiefieements that have a more
complex approximation (higher order elements) dan he used to increase the

accuracy in some of these regions of interest.

For structural and solid mechanics problems, théysisauses a particular type of
element based on generalised displacements (thmededé translations and
rotations), or degrees of freedom, and forces (olinoly moments) to model
portions of the whole structure. The structure iscreetised into elements and
nodes supporting degrees of freedom. In generalntbre degrees of freedom

that are provided in a model, the more accuratentbdel is. (This is a highly
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simplified statement as there are many factoretsider, such as the relative size

of the elements, and where they are located imiheel.)

The following is an assessment of how well finiteneent analysis performs in
the study of the stability of frames, incorporatihg effects of torsional warping.
This includes a discussion of problems or shortogsiwith available elements
and analysis procedures, as well as their adeqiakisummary of the results of
basic beam and column buckling analyses considewging effects are also
presented.

3.2 Brick and Shell Elements

“Brick” elements are solid elements that only pertranslational displacement
degrees of freedom at their nodes. In the threeedsmonal models, they can
appear as “wedge” (5 faces) or hexahedral (6 fabesks, and, in the most
simple configuration, tetrahedral (4 faces) elemeiihe lack of rotational, and
thus flexural, degrees of freedom is usually comsped for by using more
elements. The larger number of degrees of freedmneases the accuracy of the

solution, more closely approximating true flexusahaviour.

Shell elements are structural finite elements swdport both translational and
rotational degrees of freedom at each node. Thimipe both “in-plane” and
“out-of-plane” forces to be studied. In-plane, #ese the membrane forces and
the “drilling” moment. The drilling degree of fremah accommodates the twist of
the material within the plane of the element. Tikisxpressed as a rotation about
the plane perpendicular to the surface of the emn@ut-of-plane degrees of
freedom are shear, perpendicular to the planeeotlément, and two orthogonal
moments. While similar behaviour can be capturethbysolid elements, the shell
elements directly support moment and rotationalrekesg) of freedom, which is
more convenient for the analyst. Using shell eleseatuces the total number of

degrees of freedom in the model, and the detailired for the mesh.
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The shell elements used in this study are the Abatpreents called “S4” and
“S4R”. Both are general purpose quadrilateral el@serhe “S4R” element type
has been used quite successfully in previous nealestability studies (Grondin,
et al, 1998). It uses a reduced integration methodrevttee number of Gaussian
integration points for an element is reduced. Tachnique is used to reduce the
stiffness of the element, which is often overestedaby the formulation method
(Bathé, 1996). In the case of the quadrilateral elemii, reduces to one Gauss
point and this can cause other numerical problé&sdhere is only one reference
point, there are displacement modes that can bakeisly identified by the finite
element analysis solver. These are referred tozaso“energy” or “hourglass”
modes (Abaqus 2002)There are corrections that can be applied tcetbment
stiffness matrix to compensate for this, but thdiest analyses in this program
used the “S4” element to avoid the hour-glassiruiplem.

3.3 Beam-Columns

Beam-columns, as has been noted previously, arenarg member in the
construction of steel structures. They can be nsatddly a one-dimensional
element in structural finite element analysis. Gahd&eam-column elements
provide displacement degrees of freedom in all éht@nslational Cartesian
directions, as well as rotations about all threesaxUsing local coordinate
systems, this translates into the requirementHerdlement to support an axial
load, bending about two perpendicular (i.e. pringifl@axural axes, and torsion
about the element’s axis. These elements are tijypicansidered as a straight-
line segment, but those developed with higher ostepe functions may be

curved.

Barsoum and Gallagher (1970) introduced the fleshents to include support for
warping degrees of freedom. This work permittedlysms of both the warping

and St Venant torsional behaviour for open crostieses like wide-flange

1§ 5.5.6 “Reduced and Selective Integration” p. 476
2 § 3.6.5 “Finite-strain shell element formulation”
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sections. By extension, torsional, torsional-fleturand lateral-torsional
instabilities could be modelled. The element thieated has an extra degree of

freedom at each node to support the warping behavio

While elements with warping capabilities continoebe developed, for example
as recently as Alemdar and White (2008), whereraime of this element was
developed for the commercial finite element progr&AM Advanse, the
technology is currently mature enough to use exgséilements in the analysis of
steel frames and their stability. However, manyhef common programs used in
analysis of frames do not yet include this abiityd thus the design procedure

commonly used must evaluate the torsional aspeptrately (Galambos, 1998).

There is also work ongoing to develop elements veitihanced capabilities.
Extended capabilities include the nonlinear, noreuni warping stiffness
(Trahair, 2003), exact formulations (Mohareb and Kastash, 2003), and plastic
hinge for simple analyses (Ziemiahal, 2008). While these have much promise
for analysis in the future, the elements used s Work were the ones available

in commercial packages.
3.3.1 Use of beam elements in current programs.

Current programs that use beam-column elements widlping degrees of
freedom include Abaqus (2002) and ANSYS (2002), rgnothers. The Abaqus
element is called B320S, and the ANSYS elementaimed BEAM189. These
are three dimensional beam elements that assunopeansection, i.e. one with
potentially significant torsional warping. Both elents are quadratic, having
three nodes along their length. There are someerdiftes between the
implementations, but in general the force degrefrefdom for warping is a bi-
moment, produced when the flanges develop oppadiegrs and thus opposing
moments, separated by the distance between thgeBaiihe displacement degree

3 Also referred to as the Wagner, corkscrew, onxhefiiect. Extreme fibres travel further laterally
than interior fibres under torsion, forming a hel@ompatibility of displacements across the
section forces the exterior fibres to lengthen antdrior fibres to shorten, producing a resisting
torque, which acts to stiffen the member.
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of freedom is the in-plane rotation angle of trenfle in ANSYS and the flange
tip displacement out of the plane of the crossieednh Abaqus. The choice of
this implementation in Abaqus means that joiningrhemembers of differing
cross section collinearly requires a constrainta¢iqu to be used in all cases to
ensure compatibility of warping deformations. In 8XS, the constraint
equations are required for sections with differmgghts. While unused in this
work, the elements in both programs also suppomoshenko beam theory,
allowing the provision of including shear deflecsoras well as flexural

deflections.

For non-linear analysis involving displacements, élement formulation involves
the concept of “co-rotational” elements, which af@mulated expressly
separating the rigid-body and “flexible” body diapéments (Felippa and Haugen,
2005). This mirrors the separation oARand P$é effects considered in frame and
beam-column analysis. However, the underlying agsioms require that the
“local” member deformations are much smaller thame trigid body
displacements. This is usually the case for swawnjied frames, though braced
frames may experience the opposite effects (Ess&annedy, 2000). Accuracy
can be increased by using smaller elements. IrcHss, the element deformations
are reduced, and the member deformations are eaptas rigid body

displacements of the smaller elements.

Higher order beam elements, as mentioned above,atsaybe used to increase
accuracy, in place of, or along with, smaller elateeThese elements have nodes
between their “ends” that will capture internalldefions, and thus can include P-

0 effects directly in the element moments.
3.4 Buckling analyses

While the finite element analysis technique hasohisally been used for analysis
of stresses and strains in structures, it can be,has been, used for buckling

analyses as well. The techniques for elastic bogkdind inelastic behaviour are
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slightly different, but both can be handled by athed finite element analysis

programs.
3.4.1 Elastic buckling behaviour

A strictly elastic buckling analysis can be donengsa “geometric stiffness”
matrix and an eigenvalue solver. The geometriéngt$s matrix is a matrix that
includes the second order effects of loads and dhbsequent softening

(compressive loads) or stiffening (tensile loadshe structure.

The complete solution to the finite element probiempresented in Equation [3-
1], with the elastic stiffness of the system][and geometric stiffnessk]
simultaneously acting on the global displacemeatgroduce the global load

vector.

([ke]i{kg] ){Ji} ={F} [3-1]

There are many references through which one can d@ometric stiffness
derivations. Rajasekaran (1977) presents the gewmnstffness matrix for a
beam-column element including warping effects. Ch&a@04) provides the
derivation of a beam-column element's geometritfr&ss matrix for a higher
order element formulation, although the warping rdegof freedom is not

incorporated.

The general solution is to take the general sti$n@atrix and combine it with the
geometric stiffness matrix with a multiplier, udyadcalar. When the sum is zero,
the physical implication is that the overall stifiseof the structure has vanished.
The general form of this is shown in Equation [3-Z]th the scalar multiplier
being the vector;, known as the eigenvector. As this problem deatlls matrix
manipulation, the result of zero is the same asd#terminant of the resulting

reduced stiffness matrix being zero. This refl¢ltsclassical bifurcation concept
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of buckling and gives a good approximation of thestc buckling load for the
structure. The method by which the critical loaddetermined is by eigenvalue
extraction (Bath& 1996, Bathe and Wilson, 1976).

[k ]-{r}[Kg] =0 [3-2]

This is an elastic solution. It is impractical teeuthe eigenvalue procedure for
inelastic behaviour, as the geometric matrix mustupdated to account for the
softening due to yielding. If the matrix must bedafed, the analysis can more
easily incorporate the effects of displacemenhaupdated matrix and use a non-
linear analysis considering the updating of geoynatrd material properties, than

use multiple eigenvalue solutions.

The eigenvalue extraction procedure is used by nifigitg element programs,
and specifically by Abaqus and ANSYS. The firstlgses done by this method
for several cross sections examining the latemsidoal buckling mode showed
remarkable differences from the capacities predidy elastic theory. An
example of the results of this form of analysipliesented in Figure 3-1. Here, a
W200x27 beam is analysed for various lengths amddifferent end conditions,
using both shell and beam elements. The two endittoms are included to
illustrate different extremes of behaviour. Simplypported conditions, where the
effective length factors with respect to warpingl dateral flexure are equal to 1,
give the simplest results. The second case, wherddams ends are still simply
supported considering flexure, but fixed so thatftanges do not warp, represent
a much more complex situation. In this case thserenieraction between the
warping and lateral flexure modes, and the effeckangth factors are related. In
this casek, is 0.940 and, is 0.492 (Galambos, 1968). For longer members) bot
types of elements give the same results, in vepdg@mreement with the elastic

buckling theory. For shorter members, however,eghgra decrease in strength.

“ Chapter 11, Solution Methods for Eigenproblems
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This decrease is relative to a theoretical, inégngabuckling moment. The shell
elements are capturing the effects of local bugkland can be readily explained

using elastic buckling theory.
3.4.2 Discrepancies in beam element elastic
buckling

The beam elements used in Abaqus show a decreasekiing capacity relative
to theory. This is shown in Figure 3-2 as a confdot of the ratio of the results
of the eigenvalue buckling solution to the theaadtbuckling moment. This is for
simply supported beams, with a uniform moment &gpliThe diamond markers
in the upper portion of the figure (well within t®9% boundary) represent the
length for which the elastic buckling moment is a&lgio the full plastic capacity
for all of the wide flange rolled shapes availablé&orth America. This length is
a reasonable measure of the limits on the effectlatic behaviour in the
members. It is shorter than the limit at which tbesign standard S16
acknowledges full elastic behaviour, i.e. the lérajt which the buckling moment
is two-thirds of the plastic moment. The lengthdugealso longer than the limit
used by S16 to indicate that the behaviour is fpllstic, where the buckling

moment is approximately 2.15 times the plastic mume

Beams elements are not capable of modelling logeklmg of the beam web or
flanges. Therefore, the decrease in buckling cépéelow the theoretical value
requires additional explanation. Other potentigblarations for the difference
between the beam analysis results and the thealrgetiedictions also fail. If this
were a reduction due to shear flexibility that &y captured by the Timoshenko
beam theory, changing the cross sectional aredenar sstiffness factor should
change the buckling load. It does not. If this wareigher order torsional effect,
such as the Wagner effect mentioned earlier, tteklimg load should increase.
(This element should not capture that effect in eage.) As the detailed analyses

showed that the capacity did not vary with the sresctional area, the torsional
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axial buckling capacity is not a direct influenttemay be, given that the effect is
most pronounced at higher torsional stiffness, thare may be a numerical
truncation or underflow error occurring when flekties are being used. The

latter possibility is impossible to check withoudcass to the inner workings of
the solver. So, while the differences between bt#aary and element behaviour
are as of yet unexplained, they can at least besumed, and a subsequent
parametric analyses (MacPhedran and Grondin, 2Qf¥éajded the relationships

presented below.

Figure 3-3 presents the results of an Abaqus e&jaavanalysis for a beam
simply supported with respect to flexure, but fixeth respect to warping at the
ends. As was done in Figure 3-2, the eigenvaluselteesvere divided by the

theoretical buckling moment to illustrate the degancy. The discrete results
from the Abaqus analysis are joined by a grid, ibagece the continuity of the
results and plotted as the lighter solid line, #mel prediction Equation [3-3] is

plotted as the darker dashed line.

_ Ry
[ 133, =%’ [3-3]
l P (kwl-)2

The valueR, in the above equation is the ratio of the latéwasional buckling

moment for restrained beami ., to that for a simply supported beai,., .

For this particular case, a simply supported bem theoretical solution should

be a flat plane at a value of 1.0.

V J (k, L)+ 2

¢ \/1+ nza k kw\/L2
L?
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Equation [3-4] illustrates that warping restraiffeats longer members less than
shorter members. Theoretically, the vaRyefor a very long beam would bek}/
and that for a very short beam would bekk(), though this would not be
achievable in real structures, as other failure esodoverned by material
properties or local buckling would be more criticahis also implies that any
negative effects of warping would also affect skotieams and beam-columns

more than shorter members.

Analysis results from ANSYS are plotted on Figuré.3The surface of the
analysis results presented in Figure 3-4 are thwatemns: [3-3] for Abaqus, and
[3-5] for ANSYS. These equations were developedibyally fitting a surface to
the finite element analysis results. A numericalcedure, such as least squares,
was not used as the equations contain a singulatitthe point where the
denominator is zero that causes numerical problérhe. match between the
equation’s predictions and the finite element sofutare very close at locations

2
I
far from the point{kﬂ—iJ :1—(ﬁ) wheren = 1.33 for Abaqus and = 1.0

W

for ANSYS.

0.99R,
_Jf(,_=*a’ [3-5]
Jl Ip(l (kWLVJ

The beam-column elements perform satisfactorilymbempared with a simple

W, =

lateral-torsional buckling beam-column model (Equa{2-7]). Figure 3-5 shows
the results of the finite element analysis compai@dhe predictions of the
equation. The contours in this figure show theorati the results from Abaqus
buckling analysis to the results predicted by @atteory for lateral torsional
buckling in the presence of an axial load. The eextrs of equal moments of
inertia about both axes and axial load equal to libekling load were not

included. In the case of the axial load being etu#he buckling load, the applied
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moment that would cause lateral-torsional buckiwayld be negligible, and this
would reduce to a pure flexural Euler buckling geel. In the case of equal
moments of inertia about the orthogonal axes, datersional buckling should
not happen. The effects of major axis curvaturermglected in the predictive
formula used in the comparison made in Figure &3his exercise was intended

to illustrate how the finite element program hasdlés phenomenon.

While the capacity predicted by finite element geesl did vary with the moments
of inertia about the major and minor axes, thers wa measurable influence
from the ratio of these two values. This indicates the effect of curvature is not
being considered during the analysis. The effectufature about the axis of
flexure, which is related to the ratio of the moitseof inertia about the plane of
bending and the orthogonal plane, has been long iknownfluence the buckling

moment (Michell 1899, Flint 1951). This is due te@upling of the curvature of
the member about the strong axis to the curvatooaitathe weak axis and to the
twist about the long axis, as shown by Trahair &dolcock (1973). This is

neglected in the usual derivation of the laterasitoral buckling expression,
Equation 2-6. Equation 3-6 from Trahair and Wookc¢t973) illustrates the full

effect, including torsion and flexure. In this etjaa, M, is the lateral torsional

buckling moment ignoring the effect of major axis\ature, M is the lateral-

torsional buckling moment corrected for the effettoending curvature; anid
andly are the moments of inertia about the axis of bepdind the out of plane
axis, respectively. These two axes are also theipal axes of the beam. lif is
less tharly, then the solution requires imaginary numberssThiconsistent with
the observation that beams bent about their weektgpically do not experience

lateral torsional buckling (Yura and Widianto, 2005

e8] e i
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Considering only the effects of the first term, whirelates the lateral bending
stiffness to major axis bending stiffness, theease in capacity for current rolled
“W” sections from North American rolling mills cdme up to 25% (MacPhedran
and Grondin, 2008). This increase is presentealfamtios of |/, in Figure 3-6.

This benefit is only apparent for elastic analysesinelastic effects will provide

an upper limit for beam capacity.

While it may appear that the torsional componerassmportant as the flexural
one in determining the increase in stren@ih,will always be larger tha®J. The
maximumJ occurs in closed sections where it is the santbeapolar moment of
inertia, l,. The ratio ofl, to Iy is at its maximum value of 2 whdp=1,. As
equation 3-7 shows, this expression reduces toetiin of Poisson’s ratio. As
Poisson’s ratio is positive for normal materiakhis will ensure that the increase
in strength due to the torsional component will @& be finite. For steel with a
nominal Poisson’s ratio of 0.3, the maximum incee@s the buckling moment

due to the St. Venant torsional component is afauit2.08.
Gl
1_2 =l1-—F :(1_§j: 1_L = 1-# -V [3-7]
El, El, E 20+v)E 1+v)) 1+v

The stiffening effect of major axis curvature ikely excluded from the analysis
due to the effect being considered a pre-bucklimgnpmenon. That is to say, it is
a higher order effect than simple buckling. Howevidris can be seen as
advantageous as most design standards ignore fibet, e0 that the analysis
results may be misinterpreted. Fortuitously, thislesion avoids some numerical
problems, as including the effect could give risedivision by zero or the

determination of the square root of a negative renribhe buckling analysis may
be inaccurate for real-world conditions, where st unlikely for beams to

experience lateral-torsional buckling when bent a&bdlbeir minor axis.

® Materials that have a negative value for Poissmatie are called “auxetic.” Auxetic materials
are very rare and are not used in structural eeging.
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Exceptions to this exist if the beam loads are iadpabove the shear centre
(Kennedyet al, 1993) or if there is a significant pre-existiogrvature, i.e.
camber, that must be countered by the applied mof¥mra and Widianto,
2005). However, since this effect always increabescapacity of the member,
the results of analyses neglecting it are conseevatthen used for structural

design.
3.4.3 Inelastic buckling behaviour

The ultimate load states of many steel frames dbpast the point of first yield
(ASCE 1971). The high ductility of steel that petsrthis behaviour is exploited
in the design of frames that must carry laterasre@ loadings to dissipate the

energy put into the structure.

The steel that has yielded is not considered toigeoany stiffness (Yura, 2006)
in stability analysis and thus the buckling capacg lowered once yielding
occurs. In design this is often accounted for bpgia tangent (reduced) modulus
of elasticity to represent the weakening of the mmen{Galambos, 1998). In finite
element analysis, this can be taken into accourgnwhpdating the system
stiffness matrix for the structure, as the analpsegyresses. If the displacements
of the structure are also reflected in the updatedrix, both the second order

effects and the effects of plasticity are incorpedanto the solution.

As there are possibilities for the analysis to giogmaturely when instabilities are
reached in the numerical model, special technigoag need to be employed to
generate a solution in the analysis of inelastitaimty. Such a technique used
by Abaqus is the Riks method (Riks 1979, 1984)sTisia method for following

the equilibrium path of an analysis, where thahpaty include unloading of the
structure, such as for a “snap-through” bucklingbtem, where a structure will

suddenly lose stiffness, then regain it at a ladigplacement, thus permitting the

analyst to progress past the point of instabilibd groviding post buckling
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behaviour. This requires that the stiffness maexupdated to reflect the new

position of the structure.

The Riks method approaches the solutions of in#talproblems as being an
equilibrium “path” of the load vector (scaled byarying scalar value) versus a
generalised displacement vector. Starting at a knpaint on the equilibrium
path, a solution is sought further down the patha alistance called an “arc
length.” The initial arc length is specified by thiser of Abaqus (2002). The
direction from the known solution point to the néxal solution is determined by
the tangent to the equilibrium path at the knowmpd his produces an assumed
applied force and a displacement vector. The tgalution is tested for
convergence, or equilibrium between applied loatithe restoring force from the
displaced structure. If there is an imbalance ettio forces, the assumed applied
force and displacements are adjusted. Howevemnetetrial solution is restricted
to load and displacement vectors in a set thattiegonal to the initial tangent. If
this problem were reduced to a 3 dimensional dme,sblution set would be a
plane, perpendicular to the initial tangent toeheilibrium path.

If convergence cannot be reached within a prewowsgecified number of
iterations, the procedure goes back to the lasivknequilibrium point and uses a

shorter arc length to provide a trial solution.
3.4.4 Buckling analyses used within this work

Both elastic and inelastic buckling analyses aredus this work. The elastic
buckling analysis provides a tool to see how a &amil behave when loaded,
while considering differing warping interactionstveen the frame members. The
elastic buckling analyses give a good picture of thaximum benefits or
penalties that are possible when the effects opivgrinteraction are included in

analyses.

Members analysed in this study were not signifigasiisceptible to the deviation

of the FEA lateral torsional buckling behaviourrfrahe theoretical behaviour
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noted above, in section 3.4.2. No corrections weaele for the effect of major
axis curvature. This was ignored as those effagtshaglected in design of these

members, and were also not provided in the geyexallilable analysis.

The inelastic buckling analyses used in this workluded non linear geometric
analysis, wherein the stiffness matrix is updatemtlude the displacement of the
structure at each load step. The solution technads® includes the Riks analysis

technique
3.5 Deformation of joint configurations

The effect of joint configuration on frame behaviowas investigated
(MacPhedran and Grondin, 2005). For this portiontre work, several joint
configurations, summarised in Figure 3-8, were nledaising S4 shell elements.
These joint configurations were selected as thexe Heeen modelled by other
researchers (Vacharajittiphan and Trahair (19743Jv® and Chambers (1977),
Krenk and Damkilde (1991), Wongkaew and Chen (20@2)d include the
common joint details, as well as some that are &samon. Common joint
details that do not transfer significant moment, éaample shear tabs or web
clips that only connect one member by its web,rareincluded as they do not
impart significant moment or torsion, and thus rerping is transferred between

the joined members.

Modelling was done with the W200x27 rolled widenfig section. This section

was chosen due in large part to its relatively higisional bending constant,
JEC,/GJ, of 1088 mm. This implies that the effects of wagpare applicable

for a relatively long beam length, and would ilhas¢ better the effects of
warping interaction between the members. The sedialso a class 2 section in
flexure for yield strengths below 460 MPa, so thalastic hinge could be formed
before local buckling of the section. The beam #&las a short minimum bracing
requirement. The characteristic length, value (i.e. the maximum unbraced

length for which the fully braced capacity canldtié developed) is 2.04 m for
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300 MPa steel to 1.63 m for 450 MPa. These valtebased on CAN/CSA-S16-
01 (CSA, 2005).

There can be significant imbalances in the warglafprmation of the flanges
when the flanges are not equally restrained. Thexemplified in the case of one
story versus two story frames modelled in the fipbtase of this project
(MacPhedran and Grondin, 2005). Here, elastic lngklinalyses were conducted
for two types of frames modelled using shell elemehtodal displacements, a
measure of the warping stiffness of the joint, waesasured for a unit torque of 1
kKN m. This warping stiffness relates fairly closely ttoe complexity of the

connection and to the elastic buckling strengtthefframe.

One frame type was a simple portal frame (Figu®,3he other a two storey
frame (Figure 3-10). In the two storey frame, thiefs under consideration were
those at the structure’s mid-height. All joint tgpeere included for the single
storey frame. However, for the two storey frame, ithpractical joint types were
not included. (These are those joint configuratiamere the column flanges are
not continuous through the joint.) In these analysiee single storey frames were
loaded with a uniformly distributed load on the tme& he two storey frames were
loaded only on the lower beam, again as a uniforditributed load. The
buckling load is calculated as a multiplier of thApplied load. Thus, the total

buckling load is the product of the original loawlahe buckling multiplier.

The results for the analyses of these frames asepted in Table 3-1. The single
storey frame is listed on the left; the two stofegme is on the right. The
buckling load, presented as the total uniformlyribsited load is given, followed
by the maximum warping displacements of the top bhotlom flanges of the
beam determined as described above. The actualimyidad is less interesting
than the relative change in buckling capacity aserd@ned by the joint
connection details. To focus on the relative chaimgthis factor, the buckling
load is normalised with respect to the lowest bagkktrength, in this case the

beam through joint. This value is also presentdtertable.
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The joints in the single storey frame show a diganey between the warping
displacements in the top flange, which is restiionely by the joint, and the

bottom flange, which is restrained by the joint @atlmn. The restraint provided
to both flanges by the continuous column in the starey frame permits the
warping displacements of the two flanges to becarmee similar. Thus, the lack
of restraint for the top beam flange in the singterey frame induces an
unsymmetric warping displacement in the connectidimis is somewhat

problematic if the warping bi-moment and displaceteeare assumed to be
equally distributed to both flanges, as they will lbe models using beam

elements.
3.6 Inelastic modelling in a frame context

In the second phase of this project (MacPhedranGanddin, 2006), models were
developed to investigate how the inelastic behavajuhe members influenced
the structural response. The W200x27 cross seatias used in modelling a
series of portal frames. The frames formed by tlsestions were loaded with a
uniformly distributed load acting vertically dowhrobugh the shear center of the

beam.

The models were constructed of the S4R shell elerhgre. The modelling
process for the frames was to analyse the framle thi¢ elastic buckling (i.e.
eigenvalue) solver of Abaqus and then apply theraigctors (buckled shapes) to
the shape to introduce initial imperfections to theodel. The maximum
imperfection was scaled to L/200 (0.005L), whichs@mewhat larger than the
maximum likely imperfections, which are on the ardéL/1000. The value of L
is the length of the horizontal beam in the fraflee larger imperfections were
used to promote the onset of buckling in the fra@mly the first buckling mode
was applied at this level, two higher modes werpliag at half this value.
However, higher modes did not play a large parthim model's response. The

models with initial imperfections were then re-aisald using the Riks approach.
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Beam end restraints were modelled as two conditibns first consists of a set of
displacement constraints on the bottom flange efidam at the beam-to-column
connection. These prevented the displacement dfahge out of the plane of the
frame. This was to prevent unrestrained twistinghefcolumn. The other set was
applied to all the nodes at the beam-to-columnt j@howing only displacements

in the plane of the frame, and preventing twisttled beam while allowing

warping of the cross-section. The two end cond#imere applied to examine the
differences in the restraint provided. The flangstraint models a more practical
restraint, where a single point is restrained atjtint, and the joint stiffness is

used to prevent twist at the joint. The full sesti@straint more closely models
the joint conditions when beam elements are uskdt ¢ase would assume that
there is no deformation of the joint and the webthe members. An example of
one joint modelled is shown in Figure 3-7. Thetfiesstraint condition is shown

as solid arrows on the lower flange, the secondrestifaint consists of the solid

arrows and the hollow arrows.

As lateral-torsional buckling has a significant pbsckling strengthening effect,
(loannidis et al, 1993, Woolcock and Trahair, 1974the major indicator of

lateral-torsional buckling was the loss of latestifness in the models. This loss
of stiffness was evidenced by reversals in the rdedtions or rapidly increasing
lateral deformations. This can be seen in Figuid 3xhich shows the results of a

plastic analysis of a portal frame made of W200wx&fmbers.

The strength increase in the frame when modelletth wio yield strengths,
300 MPa and 400 MPa, are summarised in Table 3k2 Jtrength increase
matches the predictions of Kirby and Nethercot @9Wherein the strength ratio

is about that of the square root of the yield satio

While not reflected in the analytical model, thenamiform warping behaviour

from the “helix” effect could also increase theffagss of the member (Trahair,

® A numerical study of I-shaped, stocky beams, veesiocted.
" Slender rectangular cantilever, I-shaped cantileaed I-shaped simply supported beam,
experimental and numerical work.
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2003). This effect is a torsional strengtheningh&f member due to extension of
the extreme fibre, and resulting compression of rtteember’s core. This effect
would be captured somewhat by the shell modelsyghanot at all by beam
element models. This effect is considered to bdigibte in the cases modelled

here, as the rotation required to mobilise thistmacsm is very high.
3.7 Member interaction using beam elements

The ultimate phase includes elastic modelling oftgloframes with beam
elements to determine the interaction of membenssidering the warping
displacements supported by those elements (Mac&meadrd Grondin, 2007a).

The frames considered are similar to that in Fii1ée

As the beam elements support the option of disgbbn enabling warping

connectivity at the ends of the members, the imibeeof this mechanism can be
separated in one model or incorporated into anotheromparison of these two
models illustrates the effect of warping displacateeon buckling analyses. The
beam elements also support plastic behaviour, andgove an idea of how the

warping can affect the inelastic buckling strength.
3.8 Chapter summary

This chapter presents a brief overview of the éiretement analysis used in this
work. There are some discrepancies between thdétgesfuthe analysis and the
theoretical solutions of the test cases used. Fostmractical situations, the
results from the analysis are conservative, butawarly so, in that they will

slightly under-predict the capacity of the struetuvhen compared to theoretical
strength predictions. The results can be extrerdégfgrent from the theoretical

predictions, but those cases are outside the pehatange of conditions: the

affected members are either very short or closeticses.
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The results from beam elements are affected by rioateartefacts that, while
inexplicable, do not greatly affect the strengtedictions for practical lengths

and sizes of beams.

The stiffness of a frame model increases with tmewnt of complexity of the
connections at the joints of the frame. This magns@an obvious observation, yet

it is a behaviour that is not well captured in beam element models.
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Table 31 Summary of joint displacements for frame, all mersb&200x27,
3000 mm columns.

One Bay, One Storey Portal Frame

One Bay, Two $terame

Beam Joint Buckling Warp of Warp of Relative | Buckling Warp of | Warp of | Relativ
Length (_See Load, Top Bottom Buckling Load, Top Bottom e
(mm) Figure KN/m Flange Flange Load KN/m Flange Flange | Bucklin
3-8) (mm) (mm) (mm) (mm) g Load
Beam
4000 | Through 19.4 0.385 0.37p i
Mitre 20.7 0.406 0.403 1.0y
Column
Through 26.9 0.374 0.367 1.39 326 0.36¢2 0.369
Box 32.9 0.185 0.144 1.7p 439 0.1p1 0.115 jl
Mitre +
Diagonal 32.9 0.205 0.23p 1.70
Box +
Diagonal 40.7 0.067 0.057 2.1 51p 0.0%6 0.0p7 1
Warping
Rigid 50 N/A N/A 2.58 63.7 N/A N/A 1.99
Beam
6000 | Through 11.1 0.517 0.48p i
Mitre 12.1 0.535 0.529 1.0
Column
Through 12.8 0.496 0.474 1.1% 15p 0.416 0.471
Box 15.3 0.245 0.164 1.3B 19|8 0.1p3 0.142 1]
Mitre +
Diagonal 15.6 0.244 0.30p 1.40
Box +
Diagonal 17.8 0.086 0.067 1.6 22 0.070 0.070 1
Warping
Rigid 20.8 N/A N/A 1.86 26 N/A N/A 1.69
Beam
8000 | Through 6.9 0.571 0.538 L
Mitre 7.7 0.592 0.584 1.1}
Column
Through 7.5 0.552 0.521 1.0 9.L 0.547 0.5p0
Box 8.7 0.282 0.17( 1.2p 111 0.1f0 0.153 il
Mitre +
Diagonal 9 0.261 0.34 1.3p
Box +
Diagonal 9.8 0.097 0.070 1.4] 121 0.077 0.0[77 1
Warping
Rigid 10.6 N/A N/A 1.53 13.7 N/A N/A 1.5]
Beam
10000 | Through 4.7 0.598 0.55 L
Mitre 4.9 0.617 0.6071 1.0%
Column
Through 4.9 0.57§ 0.538 1.06 6 0.5419 0.941
Box 5.5 0.307 0.163 1.18 I’ 0.118 0.1p6 1
Mitre +
Diagonal 5.4 0.260 0.36Y 1.16
Box +
Diagonal 6.1 0.104 0.069 1.3 7.p 0.040 0.0B0 1
Warping
Rigid 6.7 N/A N/A 1.44 8.4 N/A N/A 1.4Q

.35
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Table 3-2Strength ratios, based on portal frame

Joint Type
(Figure 3-8)

Yield Stress (MPa

Beam Length (mm)

2000

3000

4000

6000

8000

Beam Through

300

30.0

32.5

32.5

30.6

28.7

400

34.3

37.1

37.1

35.5

33.5

Ratio

0.875

0.877

0.877

0.862

0.855

Mitre

300

46.5

41.0

37.1

33.0

30.0

400

55.2

47.8

42.8

37.3

33.4

Ratio

0.842

0.858

0.867

0.885

0.898

Column Through

300

63.8

56.2

49.2

41.3

37.2

400

80.1

67.9

59.4

50.1

45.1

Ratio

0.797

0.827

0.829

0.823

0.826

Box

300

74.4

69.3

62.1

52.3

47.2

400

93.9

85.9

76.1

64.5

60.6

Ratio

0.793

0.807

0.816

0.812

0.779

Stiffened Box

300

81.4

81.8

75.4

67.0

63.4

400

104.6

101.9

92.0

84.6

80.2

Ratio

0.779

0.803

0.819

0.792

0.791
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Ratio of critical moment

FEM / Theoretical Simply Supported

2.5

15

0.5

LTB Critical Moment, W200x27 Section

,,,,,,,,,, - a————

1 Local buckling

Theory
Shell (S4 12 elem) —<—
Shell (S4 24 elem) —+—

Shell (S8R 12 elem) —3—

Beam (B320S) - HKeeer

BEAM189 --—= —-

Shell (S4R 24 elem) —*%—
!

2000

4000

6000

Length, mm

8000 10000

Figure 3-1 Analysis of buckling moment using various elements.
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Figure 3-2 Ratio of finite element analysis results to buaoglirrquation
prediction. Includes points of transition to ingéiledehaviour for standard W-
shapes.
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FEA Results
Equation 3-3 — ="

Figure 3-3 Difference between the Abaqus results and equ§Bid} for constant
moment, beam ends are pinned-pinned with respefiexare, and fixed-fixed
with respect to warping.
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Figure 3-4 ANSYS results for lateral torsional buckling anasysf simply
supported beam, compared with the fitted surfacedRNSYS and Abaqus
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Figure 3-5Ratio of FEA results to beam-column equation (R¢/7]) prediction.
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Figure 3-7 Detall of stiffened box joint from finite element model.
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Mitre Joint Mitre & Diagonal Beam Through

Column Through Box Box & Diagonal
Figure 3-8 Joint Configurations
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Figure 3-9Finite element model of single storey building.
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te element model of a two storey frame.
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Figure 3-11Load versus lateral displacement for the midpofriteam in single

storey frame, 8 m W200x27 beam with box jointsidrotflange restraint and
elastic material.
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4 Frame Analysis

How does the consideration of warping affect thalysis of the stability of steel
frames? To answer this question, the inter-memhdriater-modal interaction
considering torsional warping must be addressedth&ssituation is only of
interest in determining the predicted design cdpaid the elastic behaviour of
the members and structure of the frame, a compariseds to be made of how
the members interact, and how this interactionhanged when the torsional

warping is considered in the analysis.

This chapter will consider this question using agk storey portal frame to
investigate the effect of warping on the analysighaf forces / stability in the
frame. This is done through elastic buckling anedyss the intent is to determine

if the elastic stability is affected by warping.
4.1 Background: Frame behaviour, analysis and
design

A brief examination of the current design and asiglyprocesses is presented in
the following. There are many resources (Galamh888, Kulak and Grondin,
2006) that describe frame behaviour, analysis as@ydeThe main point of most
reviews is that the analysis and subsequent desigst consider the second order
effects on the structure as lateral loads and trésads are applied to the frame.

The Canadian design procedure in CSA-S16 (CSA, R@®Jresented as a
representative method. Most other design philosspfollow similar procedures
(Galambo$ 1998), The S16 method requires either a secother @nalysis or a

first order analysis modified by moment magnifiezsaccount for the B-effects.

! Chapter Sixteen, Frame Stability, Section 16.5s Thvers design procedures for four of the
major English language steel design standardsjdineg) the AISC Specification, EuroCode 3,
Australia’s AS4100 and S16. This chapter is thepss of being updated to cover the current
versions of these standards,
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These analyses would include the application oftitmal loads,” lateral loads
applied to the structure to account for the impaibas in the vertical alignment,
or “out-of-plumb” of the vertical members (ASCE,a®. The Canadian approach
for notional loads is to use a load of 0.005 tintles gravity load, more than
would be required to match the out-of-plumb impetitens of the vertical
members (Clarke and Bridge, 1995). The larger vausaeant to account for the
softening effect of member yielding in the struet(@Essa and Kennedy, 2000). In
general, the application of notional loads is a gligbaccepted practice, with
variations in detail. For example, the American Igsia (AISC, 2005) uses a
reduced stiffness to account for material softeramg lower notional load of
0.002 times the gravity load that only reflects tha-of-plumb of the structure
(Surovek.et al 2005).

The moment magnifier approach requires separatelesibn of the gravity load
effects, preventing sidesway with external restsaiftequired, and of lateral load
effects, that include any restraining forces thatewequired in the gravity load
analysis to prevent sway. The lateral load analysit always include the
notional loads. As this is a linear elastic (fister) analysis, the effects from
each load can be combined in a linear fashion. [Eberal load effects are
multiplied by a moment magnifier, callédh in S16, and added together with the
unmodified gravity load effects.

Full second order analyses that consider the sacgnchoments from load
displacement do not require moment magnifier factbtowever, these are not
linear analyses and so each load combination regjaiseparate analysis, whereas
the magnified first order analyses permit the lm&zaling and combination of the
load effects. Notional loads would still be reqdirfer elastic analyses to account
for initial out-of-plumb and material inelasticititowever, the magnitude of the
notional load may be reduced for those analysesiticarporate any geometric

imperfections in the original model.
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Full second order analyses that include the effettiselastic behaviour, initial
geometric imperfections and residual stresses (&ded Analyses”) would not
require notional loads. In these cases, the camditcaptured by the notional load
are taken into account by direct inclusion of tmatial out-of-plumb and

incorporation of inelastic behaviour in the anaysi the frame members.
4.1.1 Advanced analysis

If the analysis were to consider all of the relevdetiails in the frame, then many
of the other approximations, such as effective tlerigctors, moment magnifiers,
and the current design column and beam column suraa be eliminated. The
primary requirement is that the second order effentist be accounted for — the
displacements of the structure must be considerdéaei analysis, and equilibrium
must be found for the forces on the deformed atrectThe initial displacements,
or geometric imperfections, in the frame and memeust also be included in
the analysis. The out-of-plumb is described abdwat, the displacement of
member between its ends also contributes to thenseorder effects. The initial

out-of-straight imperfection of the member, and #m@ape of the imperfection
must also be incorporated into the model. For fleksatability, initial rotation of

the beam and displacements of the beam perpendtoutae direction of bending

also have an effect on the lateral-torsional bucklbehaviour. Also, the true
position of loading needs to be considered througlioe analysis. This can be
important for conditions such as the position cide relative to the vertical
position of a beam’s shear centre. All of the fi@tuand torsional responses
would need to be considered for complete secondrardelling. An argument

can be made to include axial member deformationstdube compressive (or
tensile) loads they experience, but these defoomativould be small compared
to the gross displacement of member ends relativeath other due to flexural

shortening.

Material nonlinearities and imperfections are alequired. This would include

the initial imperfections that result from residusttesses in the cross section
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created during its fabrication. These play a gpeat in how the cross section first
yields and how plastification progresses in the lm@mThe material’'s stress-

strain behaviour is also needed to model this hebav

The behaviour of the connections in the frame atsdributes to the behaviour of
the structure. This thesis addresses a portionhisf tbpic. While this work
considers that fully stiffened moment connectioreswsed and that these keep the
connected members at the same angles throughowtndeion, there are many
connection details that permit some differentightion between the connected
member& Current design provisions only require that thenther's angle of
twist be considered. Specifically, the member issidered to be prevented from
twisting at brace points. The torsional warping bédar is neglected for the most
part.

The true cross section should also be modellece-thitkness of the member’s
web and flanges, their length, any imperfectionthashape of the cross section,
such as out-of-square, out-of-parallel, or webagffitre can also have an effect, as
can the amount of twisting imperfection along teedth of the member. At this
point, it must be noted that in all practical sexygbere is a limit to the accuracy
of the analysis. For the most part, the analyste igrovide guidance on the final
design of the structure, when the real geometth@fframe is roughly known and
the member sizes unknown. Details at the levelhef dross section would be
impossible to establish in the finished structuaed cannot be modelled. The
analyst can only use idealised values for manyhef parameters considered
above. Idealised imperfections for the geometrg,dtness-strain behaviour of the
material and the residual stress magnitude andrpattan be used.

Analyses that fully model the second order effemtsl imperfections in the
members and the structure also no longer requicklipg checks, and the design
check is strictly a strength check. This offersiobg advantages for the designer.

However, the analysis is very intensive and cantibe consuming. The

2 These are known as partially restrained connestiBre Surovedt al (2005) for some design
guidelines
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analyst/designer is required to model all potelytiatitical load commbinations
individually. The other method permits the desigieemodel only the base load
cases — dead, live, wind, etc. — and combine thosdysis results. The latter is
much simpler. Also, there are only few inexpengvegrams that are capable of
carrying out these analyses. Thus, this is notuly tviable option. As well,
considering lateral torsional buckling, many of thealysis packages do not
provide sufficient capabilities to adequately mothad torsional warping effects
and structural response so that the full advanoatlysis advantage can be used
(Galambos, 1998). While research has been dongctogorate torsional effects
in advanced analysis (Trahair and Chan, 2003, Wasgkand Chen, 2002), this

has not yet found its way into the standard desigthodology.

Member behaviour after yielding begins plays aaaitpart in the detailed plastic
analysis of steel frames. The stiffness for bothpimey and lateral flexure drops
fairly rapidly with the onset of inelastic behavipas the flange tips are affected
first in compression. This reduction is due to leigbompressive residual stresses
being generated at the flange tips during the ¢abion of | shaped sections, and
those areas would reach their yield stress firsiceQthe material starts to yield,
the stiffness of the yielded portion of the crosst®n is effectively reduced to
zero. The effective warping constant and the lateeading stiffness are more
sensitive to the loss of stiffness in the flangss tithan in the tensile yielding of
the web-flange junction. As noted by Wongkaew areiC (20023, there is a
further complication in that an initially symmetiishaped section no longer acts
as a doubly symmetric section after yielding. Evesuaning yielding patterns that
are perfectly symmetrical about the weak axis,sttear centre will shift towards

the stiffer, i.e. tension, flange.

Inelastic behaviour also provides a common limitthe strength developed in
structural steel members. Members that can susiage deformations without
local buckling, have a maximum design capacity tisatestricted to the full

plastic capacity of the section. Elastic instapikffects will reduce the member

% Page 950
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strength below full plastic strength, but cannotréase the member capacity

above that value.

Local yielding in the members can lead to largalised inelastic deflections as
noted in the testing programs of Chi and Uang (20081 Zhang and Ricles
(2006). However, this is a condition that wouldbd®syond the point of failure in
most design philosophies and would be the submacpdst-failure or structural

integrity design considerations.
4.1.2 “Double w’

A further argument for the advancement of “advaraealysis” for the design of
frame members is a phenomenon that Trahair (1988) ‘@Woublew’. There is a
problem in accounting for the “moment magnifierfeet of the axial load and the
moment distribution in a beam column. The effeichpdy stated, is that there is a
secondary moment created as the product of the &oaa and the lateral
displacement of the member due to the applied mné€nhis is the B effect.
This may include a pre-existirlg deflection, which is the out-of-straightness of

the member.)

The problem, as Trahair indicates, is that the -#astent moment magnifier
value, the equivalent moment factos, did not properly converge to 1.0 as the
applied axial load approached zero. As the saméctor was used in the
calculation of the lateral-torsional buckling morhdme used the term “double’

to describe this.

This had been previously mentioned by Massonne6QlLvhen he wrote
comparing an interaction formula similar to the SfoBmula with another

formula:

“For large values of this ratid/My], [...] the interaction
formula slightly over-estimates the strength of the

* Point 2, page 107.
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column. This slight defect is a result of using Hane
expressionM ., = \/0.3(Mf +M 22)+ 04M M, for both

phenomena, i.e. collapse by bending in the plane of
applied moments and buckling by torsion-bending
normal to this plane. Actually two differeepressions
should be used to cover these cases, but at tlenssof
simplicity in the interaction formula. In the opam of

the author, there is no need to introduce such a
complication.”

Trahair apparently had a differing opinion and didggest more complex
formulae for the appropriate consideration of babe axial and flexural
components irw for moment magnification, based in large part lo& work of
Cuk and Trahair (1981). Among current design stedgjaEurocode 3 (CEN,
2005) also presents a fairly complex computatiomrofexpression equivalent to

w. As Massonnet indicated, these do complicate ¢iseyd.

However, this all presumes that only a first ordgastic analysis is required to
determine the design load effects. If a complet®isé order analysis, including
all flexural and torsional behaviours and all infpetions, is performed on the
members, as well as on the frame in general, athefhigher order effects are
accounted for in the member load effects. The merdasls already reflect the
moment magnification, and this eliminates the némdU,, U;, and thusa,

greatly simplifying member selection. The effects mioment uniformity,

reflected inay, would also be included in the analysis results.

As mentioned earlier, most analysis packages doinubtde modelling of the
torsional behaviour of the member, especially wébpect to torsional warping.
For these packages, and even those that suppr#gdhanism, the modelling of
the second order effects with respect to torsidaied imperfections is difficult.
The imperfections that are of concern are lateutdod-straightness imperfections,
where the member deviates horizontally from thee ljpining the ends and
rotational defects, where the principal axes oftf@mber rotate with respect to
the configuration at the ends. The former imperéectprovides an initial
curvature that produces a torsional component fitbm applied strong axis
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moment, as well as a torque from the product ofrbeshear and the lateral
distance from the line joining the endpoints. Taker imperfection produces an
initial weak axis bending component of the bendmgment, which is nominally

applied to the strong axis, and a larger torqusnfvertical loads that do not occur

at the shear centre of the cross-section.

Kim and White (2008) propose a modelling imperfeati whereby the

compression flange has a sinusoidal “sweep” of LO1@Ghd the tension flange
has no lateral imperfection. This produces bothwastt and a curvature
imperfection in the member. However, the model wgas for shell elements, and

this imperfection is not possible for beam elements

In turn, the warping displacements in the beamgiésndue to the applied loads on
the beam may drive the column to an earlier thdreretise predicted axial
buckling failure. The interaction that is considkleere is that the displacements
will cause an equivalent initial twist in the colapor a forcing torque, that would
accelerate the torsional buckling of the columny Aeduction in the torsional
buckling capacity would also reduce the laterasitoral buckling capacity of the

member.

The torsional buckling of an axially loaded memikinitiated by the rate of
change in the angle of twist of the member, asldtes to the length of the
member, and the axial load. The beam’s warpinglatigments are caused by the
component of the applied major axis moment thatlpeces torque on the beam.
The warping displacements are thus fairly small. Tigst-per-unit-length
considering the elastic warping of the members @dd low, if the column is
reasonably stiff in torsion. Torsional buckling dfie column for doubly

symmetric sections (i.e. I-shaped sections) woutdikely occur.
4.2 Interaction and Interactive Buckling

The interaction between the members and this ictierds effect on the buckling

strength of the structure can be determined thrauagtous methods. Schmitke
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and Kennedy (1985) present a method that can e tossodel the interactive
buckling of a collinear set of beams. The exampledus that paper was also
modelled in the Abaqus finite element program ® Isew well the results of that
method and of finite element analysis agreed. Ainaous beam with the cross-

sectional properties of a W310x28 rolled sectiors wedelled as in Figure 4-1

a).

The beam conditions in the Schmitke and Kennedykwgare such that the beam
was very close to the inelastic buckling point aneel in S16.1-M84, the then
extant Canadian steel design standard. As therdesiye for steel beams has not
changed in this standard since the advent of Istates design in 1974, these
provisions are still in effect. The behaviour wassidered sufficiently close to
that of elastic beams so that elastic buckling thean be used. Thus, the beam
was analysed for the elastic eigenvalue bucklinggmigr load. The beam
capacity predicted by Schmitke and Kennedy was(Lthbes the given loading
condition. The finite element analysis predicts akting capacity 1.078 times the
given load. This difference is due to the capapigdicted by Schmitke and
Kennedy being based on the design standard’'s dgppcediction as that

calculation includes inelastic effects, ignoredhis finite element analysis.

However, there is another aspect to the work predenére that is beyond the
simple case of a collinear beam presented in Sdkeidnd Kennedy. The
members are no longer to be considered as collibeaare perpendicular to each
other, as in Figure 4-1 (b), forming a single syp@ngle bay, braced frame. To
ensure that the analyses used for frames areegiedf as those used for collinear
beams, the frame configuration should also be a&edlyfor the inter-member
interaction phenomenon. To model such a frame imaaner similar to the
collinear beam, there must be no interaction batveanding moments and axial
loads. To prevent this force-moment interactioh,f@lir joints of the structure
were constrained so as to prevent the introdudfaxial loads into all members.
This also prevents relative displacements of thatgoimaking the structure a

braced frame.
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One difference between the collinear beam and Ordceme that must be

considered when comparing the analysis resulthastorsional fixity of the

members. In the collinear beam, the segments aresdtained against twist at
their ends. In the frame, if this condition is dligf applied, the joints between
vertical and horizontal members would be restraimgainst both twist and lateral
rotation, a much stiffer restraint than in the ic@hr beam. To offset this, the
possible restraint conditions were all modellege¢e which of these best related
to the original problem. These results are presemd able 4-1. As expected, if
all members are restrained at the joint, the sthersghigher than for a continuous
beam. If no additional restraint is provided — tlvast of each member is

restrained by the lateral flexural stiffness of geFpendicular member — then the
structure is somewhat weaker. However, if the galtmembers were the ones
restrained from twisting, implying that the horizahmember was restrained from
bending laterally at the joints, the strength (1)digdn close agreement with that

of the collinear beams (1.078).

4.3 Interaction in Frames

The frame analyses results presented below ared baseelastic eigenvalue
buckling analysis. This incorporates a form of setorder analysis, though it
does not incorporate the imperfections of the fraxmeof its members. As this is
an elastic analysis, any effects of inelastic b&havare also ignored. It is
recognised that the warping effects may be sigmifiiy influenced by inelastic
behaviour, elastic analyses are the first stepthasfocus of this work is to
examine the warping behaviour of the members, whiithbe more pronounced

in the elastic domain.

The primary frame model used in this part of thelgtis a single storey, single
bay, unbraced moment frame. The schematic of thrad is illustrated in Figure
4-2.
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As the target is to determine the stability contiitu of the continuity in

torsional warping through the frame, the frame ¥usd analysed with warping
displacements discontinuous at the joints. This irequthat the members
connected at each joint all be independent witpeaeisto warping. In the finite
element model, the warping degree of freedom onntieenbers at the nodes
representing the joints was released. This frame&leinds then analysed to

determine its buckling loads.

In the physical realm, this is an impossible sitratA moment connection at the
beam to column connection will transmit moments uabooth the strong and
weak axes. Thus, the bi-moment resulting from tle@pmg deformation must
also be transmitted into the connection, as it banconsidered as weak axis
bending of the member, but with the flanges bendingpposite directions. The
physical test that separates the flexural fixitypnir the warping fixity is

impossible. However, in structural analysis thendtad frame modelling

philosophy ignores the warping effects.

The second analysis incorporates the warping disptents being transmitted
into the members connected at each joint. This medxy directly connecting the
warping degrees of freedom of joined members togetbhdéhe connection. In
cases where the joint connects members of diffesings, a correction is made to
adjust the warping from one member to that in thieelotmember. This is
accomplished in Abaqus by the use of constrainagops, which can force the
transfer of partial displacements between elemditis. is required in Abaqus as
the degree of freedom for the torsional warpingpldisement is the maximum
displacement of the flange. The correction is daled as the ratio of the column
width to the beam width, so that the warping deitecof the beam is multiplied
by the ratio and used as the warping deflectiothéncolumn. This relationship is
applied using constraint equations, which are eckatsing the *EQUATION

command in Abaqus.
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The two elastic buckling analyses produce critioads that are multiples of the
applied loads. To assess the effect of considevagping in analysis, the
buckling load from the analysis considering warpings divided by that
determined from the analysis that neglected wardmgthe same moment/axial
load ratio. The ratio of buckling loads providesiadgication of how the warping
affects the capacity — either increasing or deangathe capacity if the ratio is
greater than 1.0 or less than 1.0, respectivelgisth directly gives a measure of

the amount of increase or decrease.

The applied loading should ensure that the colunthieeam both be close to their
respective buckling capacities. If the frame weoaded with a uniformly

distributed load on the beam, the relationship gqudion [4-1] would need to be
satisfied to produce lateral-torsional bucklingtire beam simultaneously with
weak axis buckling in the column. This would gt thonlinear relationship for

beam to column length in Equation [4-2].

2E| 2E| 2
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However, this would require very stiff beams toduroe the loading required for
simultaneous buckling of both members. As an exam@200x27 columns

would require short span beams of W690x125 sectionshorter columns. To

enable the beams to be stiff enough to supportabeired loadings, the beam
was braced at mid-span against lateral displacearahtwist. Short span beams
would likely exhibit considerable inelastic behaviow@ther than elastic buckling.
This was considered undesirable behaviour for ghigect, as the effects of
warping on the frame strength would not be as largen the frame’s resistance
is governed by fully plastic capacity. Also, whitkeep beams and relatively

slender columns are used in practice for framespthjority of previous research
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(Krenk and Damkilde 1991, Morredt al. 1996, Tonget al, 2005) used beam and
column members of the same size. To include thgsestof frames here, the
method of loading should permit equal sized memb&so, the loading method
used should not exclude members of different sizes.

The loadings chosen for the models were momentsvartital loads applied at
the connections, as shown in Figure 4-2. The grdodd was set to be a ratio of
the buckling capacityg, ranging from 0 to 1. The moment capacity of tearh
was then calculated using the reduced buckling nmbro@pacity in the column,
Mc, and the buckling moment capacity of the bedwn, While these did not
always produce the exact critical load due to Vit in the support conditions
assumed in determining the buckling loads, the doak scaled appropriately

during the buckling analysis.

Lateral torsional buckling often governs the desirbeam-columns in braced
frames. Out-of-plane buckling is rare in framest thee not braced against in-

plane sway displacements, but are braced agaimsifqlane sway. For out-of-

plane buckling to occur, the expressik, /k, <./l /1, must be satisfied

(Wongkaew, 2000). This is difficult, dg in this context is greater than one. Of
the relatively few standard rolled wide flange gew that satisfy this criterion,
the W200x27 section was chosen for modelling thgrita of the frames. This
had been selected as a representative sectioaraarthe project as it met several
other criteria, including a relatively longa™ (torsional bending constant,

JEECW i/iGJi) value and not being susceptible to local bucklbefore full

section yielding, i.e. it is at least Class 2 imdieg for commonly available steel

grades.

The columns in the frame model have initial maximunperfections of 0.002L
out-of-plumb. This is a linearly scaled defecttlsat at one end of the column the
value of the imperfection is zero, and at the othrat the imperfection is 0.002L.
The column also has an out-of-straightness impgofecof 0.001L. This

imperfection is a half sine wave, with a maximunueshalf the distance between
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supports. As the beams are braced at their midsipey have a maximum out-of-
straightness of 0.0005L, and the imperfectionfigllesine wave over the length of
the beam. A rotational imperfection was not inciidas the beam element
doesn’t support this. Each element must be rotatedrtain amount — the nodes

cannot be assigned a rotation.
4.3.1 Base plate fixity

Varying base plate fixity conditions were modeltedest the effect of the far end
conditions on the change in frame performance duedrping consideration at
the member connections. The three support conditandelled were: a fully
fixed conditions, where all displacements, rotagi@md warping are restrained at
the base plate; a simple or “pinned” connection rnehthe base plates only
provide restraint from translation and no resis¢atrotation or warping; and a
pinned support with full warping and translatiofizity (“warping rigid”), but no
rotational restraint. The last condition would lpiigalent to a very thick plate
welded to the end of the column, preventing tosiomarping of the column’s

cross section, but the plate is still free to ®ttthe base.

These conditions are modelled by manipulating heam element’'s restraint
conditions on the appropriate degrees of freedoon.tle fixed base, all seven
degrees of freedom are prevented from displacing.tiie pinned base, only the
three translational degrees of freedom are fixed! for the pinned, but rigid with
respect to warping, base the degrees of freedorrairesd are the three
translational and the warping degree of freedom.

The conditions for the two pinned base conditioreyenselected as providing
extremes bounds for the actual restraint providethe base of columns. The
simple support condition is somewhat less than abtial restraint typically
provided, as recognised in S16, where column btsgsare treated as “simply

supported” may be given a higher restraint tharinaqu support The warping

® Appendix G, CAN/CSA-S16-01, clause G4.
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displacements at the base plate would not be feyrained, as no base plate
could provide that much rigidity. However, this Wdive an “upper bound”
solution to the problem. The true warping behavioluthe base plates would lie
between the two conditions used for the pinned$ase

4.4 Analysis Results

The model described above was analysed using Abdoiner variables were
introduced to compare various effects to the refeeeconfiguration of an
unbraced frame composed entirely of W200x27 membeith column base
plates that provide full rigidity with respect terxding about both major axes, and

thus, full warping fixity.

The element type used is a three dimensional beameat, Abaqus beam
element B320S. The “2” in the designation meang tha underlying shape
function is quadratic, which requires a midspanendde “OS” indicates that this
iS an open-section element, meaning that it supptiv¢ warping degree of
freedom. While not pertinent to the analyses hertfia element also supports
Timoshenko beam theory, where shear deformatioesireorporated into the
stiffness matrix. For the purposes of this analysieear deformation does not
affect the buckling behaviour of the element, ahd difference between the
Timoshenko beam element behaviour and that of andddli-Euler beam is

negligible. However, the standard Bernoulli-Euleains in Abaqus incorporate
cubic shape functions, though they lack the warpliegree of freedom. To ensure
that sufficient degrees of freedom were used taaakely capture the buckling
responses, several of the quadratic elements wssd to model each frame

member. Each member was modelled with segmentsvidrat250 mm long.

The analysis results are presented starting wghrgi4-3. Each frame is typically
represented by a pair of graphs, one showing thédse” for the analysis results
for varying lengths of beam, given a constant calumaight, and for varying load

ratios () as presented in Figure 4-2. This graph is preseint an orientation that
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provides the best view of the surface’s featurdse $econd graph is a contour
plot of the surface, presented in the standarddinensional plot format. The
values measured are the increase in capacity amgydwarping transmission,
relative to the buckling capacity that does not assne warping displacement
transmission They do not represent absolute buckling capacifibis capacity
ratio, designatedR, on the graphs, was chosen so that differing frame

configurations could be compared directly.
4.4.1 Effect of base plate

The first effects that are apparent are thoseréq@aesent the effects of the base
plate fixity. Three base plate conditions were cele to represent the available
idealised end constraints: a base plate that pteahtranslations, rotations and
warping, hereafter called the “fixed base”; a basdate that prevents all
translations, but does allow free rotations andpivay displacement, the “pinned
base”; and a pinned base that prevents warpindgadesments, the “warping rigid
base.” The results for a representative frame udimg columns is presented
through Figures 4-4, showing the fixed base coowljti4-5, showing a pinned

base connection and 4-6, showing a warping rigggba

There are marked differences between the fixed basdition and the others.
However, the difference between the pinned base veagbing rigid base is
negligible. In general, this holds true for most tbe frames analysed. The
torsionally susceptible column discussed belowhis only one for which the
warping rigidity of the base plate makes a diffeen

The fixed condition presents an interesting profih a “valley” separating two
increased capacity regions. These represent ditfdsackling modes for the
frame, dominated by column buckling behaviour foghler axial loads and
shorter beams and beam buckling behaviour for lobhgams and lower axial

loads. The “valley” marks the decline of the cdmition of each mode.
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4.4.2 Effect of torsional susceptibility

The length at which torsional buckling of a columill govern over flexural

buckling about the weak axis is found by setting torsional and flexural
buckling loads equal (Equation 4-3) and solving tésulting relationship. This
results in the series of steps outlined below (Equoa 4-4 and 4-5), using doubly-

symmetric I-shaped sections where the warping enhst,,, can be represented

by 1,(d-t)*/4.

( - m°C,, Ej I an 43
E mE(l, (d-tf
’ 2(1+ U) L (K 4 J [4-4]
, 1,m2+o)(1, (a-ty
o e

For the standard rolled steel I-shape sectiondabtaiin North America, most of
the values ofL? in equation [4-5] are negative, indicating thae ttorsional
buckling load is always higher than the weak a¥exural buckling load, for
effective length factors of 1.0 for both weak aénding and warping. Of the 67
shapes found to be susceptible to torsional bugktime longest length for which
torsional buckling will govern is 3235 mm, for a3@0x134 section. The mode
transitions for these 67 cross sections are shawigure 4-7 plotted as the weak
axis slenderness ratio for a yield strength of 88@a versus member length at
which the failure mode changes from torsional bimgkto flexural buckling on
the horizontal axis. Bjgrhovde (1972) indicatest hom a slenderness less than
0.15, the full yield strength can be reached, soyrat these transitions would
occur after the full yield capacity was reachedn@wting the transition points

from slenderness to column strength using the S1@dlumn formula for
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flexural buckling gives Figure 4-8 where the colustrength relative to the full

section capacity is shown as a function of thesitaom length.

The columns that are most slender flexurally atithesition to torsional buckling
are sections that do not meet the local bucklimgirements in compression for a
yield strength of 350 MPa. Most of those sectionsndt meet the web local
buckling requirement. The most slender section (W287) has a slenderness
ratio of 0.31 at the transition length (2390 mmhieh gives a design strength of
96.9% of the yield strength according to the priovis of S16-01 (CSA, 2001).
Data points circled on these graphs indicate that member indicated will

experience local buckling before the predicted loal be reached.

Those members that do not meet the web slenderageagement for columns
and should be designed according to CSA S136-0A(@807). Some of these
sections do not satisfy Class 2 slenderness ragairtes for flexure. Most lengths
at which the buckling mode changes from weak d&iaufal buckling (just longer
than the transition length) to torsional bucklingst shorter than the transition
length) are such that the column behaviour is alnsompletely dominated by
inelastic behaviour, at least for the common yigieength of 350 MPa. This is
shown in Figure 4-8, as the minimum strength of eslymn is 0.91 times its full

yield capacity.

Local buckling and inelastic considerations were ade to permit an elastic
buckling comparison with the considerations useeévipusly for sections
susceptible to flexural buckling. An elastic buokjianalysis using the procedure
described above for a portal frame was conductéld aWW360x134 section. This
section has a transition length of 3235 mm. Thstelduckling analysis does not
consider the local buckling of the cross sectidime(plates composing the section
are not included in the section properties usedetermine the stiffness of the
finite elements used.) It also is not restrictedrmslastic effects, so any buckling
effects will not be masked by yielding.
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The results from these analyses are similar toetfimsthe other cross sections in
that the strength is never reduced by considehegffects of warping. However,
there is an interesting development in that there large range of beam lengths
and axial load ratios for which there is almostamange in capacity ratidiy,
when considering warping deformations. This ocdarghe case of fixed-based
columns (Figures 4-9, 4-10, and 4-11) and pin-baséadmnns with plates capable
of restraining warping (Figure 4-13). This is notdent in those frames with
simply supported column bases (Figure 4-12). Tladseccur in those cases with
longer beam lengths and higher axial load ratigss Tndicates that the critical
buckling modes for this frame do not include a itoral component, and are

unaffected by the beam’s warping.

The frames with pinned column supports do not shwawvked differences in the
capacity increase over the range of analysed dondit There is an increase in
capacity throughout, but the surface plot of thalysis (Figure 4-12) shows
gradual changes to the increases, and a flattditeptbroughout. This indicates
that the frame strength is influenced primarily thyg columns being stiffened
torsionally by the rest of the frame. The exceptiorthe trend mentioned earlier
in pinned ends occurs here. A comparison of thegarbase plate (Figure 4-14)
and the pinned, but warping rigid plate (Figure}-dhows that there is little to
no change in buckling capacity. This likely illustes a change of buckling modes

from torsional buckling to flexural (major axis)dkling for these conditions.
4.4.3 Deep beams

The majority of the work done by other researchgrauntil the start of the 21

century was done considering the horizontal antéioarmembers in the frame
were of the same cross section. This was primahl focus of the work
described herein as well, but the work of Chi arehg) (2002) and Zhang and
Ricles (2006) indicate that the use of a largernmbean produce post-failure

behaviour that shows significant warping displacetse
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Tests conducted by Zhang and Ricles (2006) inchaiaposite action between
the steel members and concrete floor slab. Whikeishthe construction method
that would be expected in real structures, therfklab would stiffen the beam’s
top flange, reducing the amount of warping expesehby the frame. It would

also provide significantly higher warping resistaneg all members of the frame at

service, and perhaps ultimate, load levels.

Extending the observation made earlier that if weee to look at achieving the
simultaneous buckling of both column and beamrgelabeam would not require
central bracing that was required for the moredsefeam modelled above. This

type of frame needs to be examined.

A representative frame was modelled, using W200x&Tical members with a
W690x125 horizontal member. The model was consttucimilarly to those

mentioned previously, and included the warping ldispment correction

described earlier. The results from these analgseplotted similarly in Figure 4-

16, for a representative fixed based frame, Figlifel for a pinned base frame,
and Figure 4-15 for a warping rigid base.

The frames with simply supported columns have gaoificant differences for the
two different warping restraint base conditionseféhis a marked difference in
the fixed base column condition (Figure 4-16), veheoticeable increases in
capacity for short beam lengths and high axial doa@htrast with relatively (and
absolutely) low increases for long beams and higments. This may reflect that

the influence of warping effects is less significtor long beams.

4.4.4 Braced frames

Braced frames are more susceptible to out-of-plarekling, as the - effects

are not as severe for strong axis buckling. Thermok of these structures are
more susceptible to weak axis buckling, and alserd&torsional effects. A set of
frames, similar to the unbraced set described abavéraced against sway by a

single restraint at the right column, were analyssithg the same conditions and
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measurements as above. Both of the single crosi®rsdames are presented —
the W200x27 frame and the W360x134 frame. The tesilthese analyses are
presented as Figures 4-17 through 4-23.

One important difference from the unbraced framayais previously conducted
with the torsionally sensitive W360x134 memberghis disappearance of the
“plateau” where the buckling capacity is unchanggdhe inclusion of warping.

A comparison of Figures 4-10 and 4-20 illustrates tiifference. This change
supports the presumption that the buckling modestfose conditions are not
affected by warping, and indicates that these caseglominated by the strong

axis buckling of the columns, as suggested by Waagk(2000).

Contrasting the braced and unbraced frame behafoodhe frame composed of
W200x27 sections for both columns and beam dravasffarent picture. The
unbraced frame behaviour (exemplified by Figure® &ad 4-4 for 4 m columns
with fixed bases) and that of the braced frame @helogue braced frame is
shown in Figure 4-18) shows negligible differenceshe values of the warping
effect. This forces the conclusion that for frameth columns that buckle about
the weak axis, the braced condition does not saamifly affect the effect of
warping transmission. The effect of column lengthoraced frames can be seen
by comparing Figure 4-17 with Figure 4-18. The feamith a longer column
length has a primary buckling mode based on theneolfor a longer range of
beam lengths than frame with shorter columns. @ifference in behaviour can
also be seen in the frames with W360x134 membepsesented in Figures 4-20
and 4-21.

A comparison between Figure 4-18 and Figure 4-i@tiates that the effect of
base plate restraint can be fairly important. IguFé 4-19, the frame with a
pinned column base shows a uniform strength ineteiaslicating that a single
buckling mode is dominant for all beam lengths adsr®d. This is also reflected
in Figures 4-22 and 4-23, where the single mod®minant over the lengths and

loads investigated. There is a small exceptionhis, tin Figure 4-23, for the
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region of the graph representing high axial load lEmg beams, where another
mode appears dominant. As this mode is not affelbtedarping restraint, this

mode would be a flexural buckling mode in the cahgm
4.4.5 Effect of warping direction

There are two conditions for continuity of the wiagpdisplacements (Basagliet,

al. 2007), one where the warping displacements mayrdmesferred directly
through the joint, and another where they reveige. $Vhich of these are active
depends on the joint configuration. The typicaptisement is the one in which
the warping displacements are directly transferiiéte reversed direction occurs
with some diagonal stiffener configurations. Theasapresented below have been
modelled with both direct warping displacements areversed warping
displacements. The reversed warping was also nemtlétd determine if this

condition could be forcing instability in the razenditions where it is produced.

The warping displacements have been noted as legtingr directly applied or
reversed in direction when they are transmittedugh the connection. For the
most part, the differences between the results fiteese two analyses are small.
The effect is plotted for the fixed and pinned eotusupport conditions for the
two column lengths of 3000 and 4000 mm. The fragwaposed of W200x27
members in Figures 4-24 (fixed base, unbraced}p &khned base, unbraced); 4-
26 (fixed base, braced); and 4-27 (pinned baseeHb)a The W360x134 frames
are shown in Figures 4-28 (fixed base, unbrace@p {4pinned base, unbraced);
4-30 (fixed base, braced); and 4-31 (pinned baseeh).

The fixed base columns show more complex surfamethése plots. In part, this
seems to change in concert with the dominant bogkihode. There does not
appear to be one warping direction that is moreaathgeous for strength. In
some cases, such as Figure 4-27, the direct warparsfer provided more
strength (ratios larger than one) and in othergn®lified by Figure 4-28, the

reversed warping provided more strength (ratiosllemthan one). In most cases
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the range was about 4% strength increase for ettbedition. However, the
torsionally sensitive cross section (W360x134) display more variance. The
range is from 1.04 in Figure 4-25 to 0.926 in Fegd¢30.

4.4.6 Effect of column length

Several column lengths (2m, 3m, 4m, 5m and 6uaje also modelled to
examine the effect that the relative lengths ofnbend columns have on the
effects of mutual warping restraint on the systerokting loads. The results from
selected frames are presented in Figures 4-324®. £ach curve on the charts
represents the change in frame capacity for varjgegm lengths for a single
column length. The relevant column length, in militres, is noted in the legend
of the graph. A single series of curves present gtiength increases for a
particulara (ratio of applied axial load to buckling capacitiglue. These charts
show the increase in buckling capacity for the dingarping transmission case.
For each frame, three load cases are selectece(thesg axial loads of 30, 50,
and 70 percent of the buckling load, ie.= 0.3, 0.5 and 0.7). These are
representative of the general trends for most efftames analysed. Only two
column base conditions, fixed and pinned, are smeed in the graphs. The
condition of pinned base, with a rigid warping citioth, follows the same general

trend as the pinned base case.

The most obvious effect is that shorter columnseegpce a larger change in
buckling strength compared to that of longer colarfor pinned base columns.
Examples of this can be found in Figures 4-34, 44380, 4-42, 4-45, 4-46, and
4-48. This effect agrees with the general thoubht tvarping is more important
for shorter members and any effects, beneficiahdrerse, would be larger for
shorter members. However, there are exceptionBisatrend, particularly in the
case of fixed column bases and shorter beam lgngtith as can be found in
Figure 4-32.
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Some of the gains do seem unrealistic. There apgedne an increase to more
than twice the capacity for short columns and sheam combinations. Figure 4-
48 is likely the best example of this. It must lmedl that for simply supported
member, Equation [3.5] predicts buckling capacitiesrise to over 2 if the

warping were completely suppressed at both ends @&pparent greater
stabilisation effect for shorter columns must bairtered by noting that in

practical columns, yielding and plastic behaviouitl Wominate the capacity.

Thus, these “gains” are not achievable in real &am

A comparison of normalised beam lengths, that isr@tthe data is graphed with
the beam length divided by the column length, shearee common patterns for
the capacity changes. One striking example is e frame with W200x27
columns and a W690x125 beam, shown in Figures 4f864-37. The pattern
shown there is quite similar to the increase inkbng capacity for a beam with
simple supports and warping restraint shown in fFe@+1. The same comparison

made with other pairs of graphs shows other inteig@s$rends.

Frames with pinned column bases show no defingadg whether the beam
lengths are normalised or not. The comparable pdifgures: Figures 4-34 and
4-35 using W200x27 for all members; and Figures848d 4-39 for W200x27
columns with W690x125 beams, show the same ladeositivity to a change in
beam length. While the corresponding normaliseglgia not shown for Figures
4-42 and 4-45, the graphs also show no apparerdglabon between beam length

and frame resistance.

The frames constructed with the W360x134 membeesented in Figures 4-40
and 4-41 for the unbraced, fixed base configuratelow that for high axial
loads, the transition to the strong axis bucklingden occurred at the same beam
length. As this buckling mode dominates the higtalaoad region of the graph,
the normalised graph does not show a good comel&igtween the behaviours of
the frames based on the normalised beam lengthcdinesponding braced frame

shown in Figures 4-46 and 4-47 shows no similansiteon to strong axis
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buckling, and presents a better correlation forrtbemalised beam length graph.
The unrealistic strength increase for short columraso shown in Figures 4-46
and 4-47.

The behaviour of the braced frame with fixed coluf@ses composed of
W200x27 members, is presented in Figures 4-43 addl #Figure 4-43 shows that
behaviour of the frames with longer beams and loavéal loads matches when
the absolute beam lengths are compared. Howewertrdhsition point between
buckling modes matches the normalised beam lengithrbetter, as shown in
Figure 4-44.

In all, there are features in the behaviour offtaees that are better represented
by the normalised beam lengths, particularly fa transition between column
buckling and beam buckling modes. The beam buckfioge correlates more to
the absolute beam length. The frames with no iatisupport at the base do not

show a trend with either the absolute or normaltseain lengths.
4.5 Summary

Finite element analysis can capture the interaafomembers in buckling when
considering moment (rotation) transfer at the mandoanections, as illustrated
in section 4.2 above. This has been extended ilatdéris chapter to look at the
transfer of bi-moments (or flange warping displaeats) across member

connections.

This chapter also presented the results of a sefifmme models that measured
the contribution of mutual warping restraint on takmstic stability of steel
moment frames. The five basic frames models predesre summarised in Table
4-2.

For each frame, there are three base conditionslteddfor the columns: fixed,
simply supported and simply supported but rigidhwigspect to warping. There
are 5 column heights (lengths) represented 2, { 4nd 6 m, and 13 beam
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lengths: 3m to 15m, with a 1 m increment. Thererevll load cases that
spanned the buckling capacity of the frame, comsigethe axial load in the

columns to be from zero load to full buckling capacFor each of these load
cases, the columns were loaded in a combinaticaxied and flexural loads that
would bring them close to the buckling point. Thvas done to measure the
influence of the warping deformations at or near ¢htical loads. Three types of
warping transmission at the beam-to-column conarcéire also considered for
the comparison: no warping transmission (the base)c full direct warping

transmission, and fully reversed warping transmissi There are small

differences between the latter two cases, but tleenot significant when

compared to the differences between the case wfanping consideration and full
treatment of the warping displacements.

In almost all cases, the buckling capacity of themfe is increased when the
warping of the beam and that of the column aretlpiconsidered, when

compared to the typical case where warping is mégdein the analysis of the
frame. Transitions between various buckling modesapparent in many analysis
results, where the buckling capacity shows diffgnmofiles. A striking example

is Figure 4-11, where three modes are evident. Mewesome frames simply
show a monotonic buckling increase over the capaddtermined without

consideration of the transmission of warping disptaents.

There are no cases where the buckling strengtiedeedsed. However, there are
cases where there is no apparent increase in tapdwen warping transmission
is considered. Some columns in unbraced framesweittontrolled by strong axis
column buckling and are unaffected by the strengtigeeffect provided to other
frames by warping. However, bracing the frame teilid to change the dominant
buckling mode of columns to a lateral (weak axig)in some extremely rare

cases, torsional buckling mode.
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Table 4-1Lateral buckling strength for various configuragasf members.

Restraint conditions Ultimate Strength
co-linear beams 1.078
joints restrained for torsion for horizontal member  1.011
joints restrained for torsion for vertical members 1.079
joints restrained for torsion for all members 1.162
joints restrained only by member interaction 0.917

Table 4-2Frames presented herein.

Column Section Beam Section Unbraced Braced
W200x27 W200x27 X X
W200x27 W690x125 X -

W360x134 W360x134 X X
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97



S

-

aPb o P
ey ey
I\/Icc + I\/ch cc t Mcb

Column Length

Figure 4-2Portal Frame

Beam Length

\ 4

98



o, ’ 0.6
Beam length, mm 12000 o, a, axial load/P,

16000 ~ 1

Figure 4-3 Strength increase due to warping, 4 m columns, \W2D®eams and
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Figure 4-4 Alternate view of Figurd-3, strength increase due to warping, fixed
base
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Figure 4-7 Transition length from torsional to flexural (weakis) buckling for
all standard rolled sections.
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Figure 4-9 Strength increase due to considering warping,cblimns,
W360x134 beams and columns, fixed column base.
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Figure 4-10Strength increase due to considering warping,c®lmmns,
W360x134 beams and columns, fixed column base.
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Figure 4-11 Strength increase due to considering reversedimgdeformations,
3 m columns, W360x134 beams and columns, fixednaolbase.
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Figure 4-12Strength increase due to considering reversed ngugeformations,
4 m columns, W360x134 beams and columns, simplgatgd, flexible column
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Figure 4-13Strength increase due to considering reversed ngugeformations,
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Figure 4-14 Strength increase due to considering reversedimgdeformations,
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bases.
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Figure 4-15Strength increase due to considering reversed ngugeformations,
4 m columns, W690x125 beams and W200x27 columnsgpl, warping fixed
column bases.

109



16000 T T T T

14000

12000

10000

8000

Beam length, mm

6000

4000

2000

0 0.2 0.4 0.6 0.8 1

a, axial load/P,

Figure 4-16 Strength increase due to considering warping dedtions, 3 m
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Figure 4-17Braced frame, all members W200x27, 3 m colummegficolumn

base.
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Figure 4-19Braced frame, all members W200x27, 4 m colummsplsi support
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Figure 4-32Length effects, W200x27 members, fixed base, wdndrame.
Column lengths are shown in the figure legends.
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normalised
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Figure 4-45Length effects, W200x27 members, pinned baseegdraame
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5. Joint Element with Warping Capability

The proper continuity of warping displacements asrmember discontinuities
(structural connections) is not ensured with the o$ finite element beam
elements, particularly for stiffened connectionhisTis due to the constraints on
the beam element, which include the lack of a maishato model the restraint
provided by the stiffeners in the joint. To circuemt this problem, a joint element
was developed to join beam elements and maintairpimg displacements

through the connection.

The new element accepts the warping degrees ofldreefrom the connected
beam elements and redistributes the warping tocshected members. This also
permits small torsional displacements within thiatjitself. However, there is no

flexural nor translational stiffness provided by #iement.

The basis for the element is Abaqus’ shell elem®#t, This element has several
features that were deemed essential. Primarilyeldgment supports the “drilling”

degree of freedom. This is the capability to supgomoment whose action is
within the plane of the element itself. Alternatiyethis can be described as a

moment vector perpendicular to the element.

As this element provides a flexible interface betwé¢he connected members, it
will reduce the warping resistance experiencechieymiembers at the joint. It acts
as a patrtially restrained connection, allowing¢banected members to warp with
a “spring” type interface between them, rather tthenrigid connection described
in Chapter 4.

The new element forms the basis of a new set dtielduckling analyses to
investigate the effect of considering warping couitly on the elastic stability of

frames.

143



5.1 Other joint elements

Special elements to model joints and connectionsstmctures have been
available for some time, though the frequency efrthse seems to be increasing.
These elements permit the analyst to model theactexistics of the connections
between members, without the need for modifying thember elements
themselves. However, there are arguments madeofwidering special cases in
member elements, such as plastic hinges, as sgemalelements (Krishnan,
2004).

Krishnan (2004) describes a special element thadeftsothe panel zone of a
connection — the area of “web” that the connectimgmbers share — in steel
moment frames. This permits analysis of the she&srohations in the joint and

how this affects the connected members and thesftaghaviour.

A similar joint for reinforced concrete structurissdescribed by Lowest al
(2004) for earthquake analyses. As reinforced @iacmembers and structures
are usually more massive than their counterpartsstimctural steel, the
connections take up considerable distances in rdwosttions, affecting the
geometry of the frame model. With this joint elemehe reinforced concrete
beams and columns can be modelled using their sfgams between joints and
the joints can be modelled individually to accofmt local effects within the

joint.
5.2 The shell element

The joint element discussed here is composed ofsig&dl elements within
Abaqus. This element is chosen in preference teralement types, such as the
hexahedral “brick” element, as the shell elememtnits the direct inclusion of
moments as well as forces. This allows the direapping of the flexural and
axial degrees of freedom of the beam element tocthieesponding degrees of
freedom in the shell element. In order to accomneddl of the degrees of

freedom required, a shell element supporting alldggrees of freedom in the
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translational and rotational directions is select@d the plate thicknesses are
small compared to the other dimensions in the jaimtk element theory, where
higher order effects on the stresses through tlemeit's thickness are
considered, are not applicable and thin shell thedlt be used.

The shell element stiffness matrix can be thoughasbeing divided into two

sub-elements, one for the out-of-plane (bendingsiedr) actions and one for the
in-plane (membrane) actions. These are shown ar&ig-1. One of the in-plane
actions is the drilling degree of freedom that p&na torque to be applied

perpendicularly to the element, causing rotationhef element in its own plane.
This is very important in the analyses performerkime as the drilling degree of

freedom will map to one of the flexural degreesfreedom of the connecting

beam element or the beam’s torsional degree ofidree

As the sensitivity of the entire joint element eslion that of the base element
type, an analysis of the suitability of the elensewas conducted. The available
shell elements from Abaqus, S4 and S4R, are comptreone used in the
program Aladdin (Austinet al. 2000) as developed by Jin (1994), in Table 5-1.
This table compares the displacements for a cagtilbeam example used in Jin
(1994). The structure being modelled is a platéngchs a cantilever beam 12
inches deep, 48 inches long and 1 inch thick. Taeeral used has a modulus of
elasticity of 30000 psi, and a Poisson’s ratio @50 A point load of 40 pounds is
applied to the tip. The theoretical solution is3&3 inches of deflection. The first
four models use a mesh of square elements. Thectlwomns denoted by an

asterisk (*) employ a mesh of irregularly spacedaso@s shown in Figure 5-3.

There are some problems noted with S4R, the elemigmta reduced number of
integration points. This element uses one integmapoint in its formulation,
compared to four in the case of S4. This reducedbau of integration points can
soften the element’s apparent stiffness, as shogwthévery large displacements
for small numbers of elements. While the error doesappear with more

elements in the joint model, the S4R does not perfas well as the full
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integration element, S4. Therefore, the S4 elemers selected as the basis for

the assemblage.

However, there is less error if the structure igdalling using more elements. A
comparison of models of an open shape with sevelaients shows less
difference for models using S4 and S4R elements. sftucture in question is a
cantilever beam composed of an I-shaped crossseaetith flange widths of 10

inches, a web depth of 10 inches, plate thickness85 inches and a length of
40 inches, The material has a modulus of elast@fitY0000 ksi and a Poisson’s
ratio of 0.3. The loading is composed of two oppggpoint loads applied in the
plane of the flanges of 1600 pounds each, produgitgrque on the beam. The
mesh size in Table 5-2 is twice the number of el@macross the height of the
web or the number across the width of the flandge fumber of elements along
the beam is the same as the number across the flihg results as reported by

Jin (1994) and results from Abaqus are summarisdéble 5-2.
5.3 The assemblage, or joint element

The beam elements that are used to model the bemmmus in the frame
support, among other degrees of freedom, the warpagyee of freedom. The
other degrees of freedom, bending and lineal digpleents, will be transmitted
directly between members at the nodes of the mdded. warping degrees of
freedom for connected members connect via the germent. In order for the
warping displacements to be transmitted from onmb® to another at a joint in
a frame, the joint element must accept the wargisplacements from both

members.

The joint itself is to be modelled as an assembtzEgehell elements, each using
the S4 element described above. However, the natagrees of freedom of the
shell elements and those it is meant to capture filmenbeam element are not
compatible, in that there is no direct method ofirexting the beam element’s

warping degree of freedom to the shell elemento Alse number of elements in
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the joints would outnumber those in the rest offtaene. This would mean that a
fairly simple structure’s model could become ovartymplex with the inclusion

of the joint element, and the results of interegshese of the beam-columns —
would be lost in the detail results of the joinerakent. To alleviate these
problems, some additional computation is requideduce the complexity of
the joint element and to align its degrees of fomedo those applied from the

beam elements.

The joint configuration chosen for this elemenbise where the flanges of the
column are continued vertically through the conioegtand “continuity plates”,
or horizontal stiffeners, are welded to both sidéshe web and to the column
flanges. There are, of course, many configuratithag can be used in these
connections, as shown in Figure 3-7, but the “bmftifiguration was chosen as it:
represents a fairly common configuration; is conigh@atwith multilevel frames;
and provides physical continuity between all noddg last condition would not

be satisfied for a mitre joint, for example. Theogetry is shown in Figure 5-2.

Each of the four faces of the element formed by ointhe “flange plates” will
need to provide support for a degree of freedonh ¢banects with an attached
beam-column element’s warping degree of freedomiléAtiot modelled in this
element, it is possible that the out-of-plane fat@y need to provide this degree
of freedom if there were the need to model tordieraping continuity for beam
framing into the “open” sides of the joint. Thisnéiguration is unlikely, as the
beams framing in that direction would typically usdy a shear connection. It is
not practical to establish a moment connectionbfeams framing into the weak

axis of a column.

Figure 5-4 shows the degrees of freedom for onee*faf the joint assemblage
that provide the warping displacement to suppatwiarping degree of freedom
of the beam element that frames into that faceniwarping displacement from
the beam will cause unit deformations at each coofig¢he plate forming this

face, in the directions shown. This will providetvaisting displacement in the
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assemblage that will produce the deformed shapersho Figure 5-5 (in the
same orientation as Figure 5-4) and in Figure ®6k{ng into the open face of
the joint). Note that both Figures 5-5 and 5-6 hidgnewarping deformation acting
in the opposite direction to the degrees of freedbown in Figure 5-4.

The joint in the frame is to be considered as @l fjigint with respect to bending,
so that the connected members are considered dte rtatgether. Therefore, the
joint element will not be rotationally flexible. #d, the panel zone is not
considered to be flexible with respect to the aalshearing loads in the
connected member. Therefore, the translationalratadional degrees of freedom
are all expressed at the centre of the assembiggesented by the three lines at
the centre of the assemblage shown in Figure 3i&.diagonal lines indicate the
face to which warping is applied and the arrowshat corner nodes show the
direction of the degree of freedom expressed irfjdimt element for the warping

behaviour of the beam column.
5.3.1 Sensitivity test

There are a number of considerations for determittie appropriate density for
the mesh of the joint element. While the final censed matrix is the same size,
that being determined by the number of degreeseedbm that are expressed, it
still reflects the complexity of the parent mesledisMore complex meshes will
take more time to generate initially, but should affiect the general solution
time, once condensed. However, the complexity efatiginal joint model should
be kept reasonably low.

The joint element was modelled using S4 elemendsvanious configurations to
find how large the aggregate element should bégrims of the number of shell
elements. The base configuration is as shown inr€i%-2 with four elements
across the face of the joint element. The base purabelements of the joint
element was varied to produce the results in Fgybr8, 5-9 and 5-10. For the

first two figures, the base model employed 32 elgmeacross the face of the
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joint, and only reflected S4R elements. Figure pr8sents the results of the
analysis excluding the outlier point in Figure 5tBat being the point for 2
elements across the face of the section. Thisrhbtistrates the trend of the other
points. A more complex model using 64 elementdhadtsis was also modelled
using a later version of Abaqus, version 6.7, drelresults of that analysis are
presented in Figure 5-10. Two element types weee @ the models — the fully
integrated S4 shell element and the reduced irttegr&4R shell element. The S4
element shows a larger error for coarse meshes dbas the S4R element.
However, the S4 element shows a smoother, moreicpabte curve. The
differences in error between the S4 and S4R elesmarg very small after
reaching 28 elements. A comparison of these twdiestundicates that the mesh
may be not yet be optimal, in that the error if st zero even with the 64
element mesh density. However, the time requirezbtmlense one of these larger

matrices is several times the solution time forghtre frame model.

A total of eight S4 elements across the face of jtiet was chosen as a
compromise between solution time and error in tiatjmodel. The error is
approximately 3% but the number of degrees of fseeds reasonable at about
3300. While the S4R elements appear to performebeitt this density, their
tendency to produce a more erratic error curve emssidered to be a factor
against using them.

5.4 Substructuring

Substructuring is the process used by Abaqus teergén the joint element.
“Substructure” is the term used in the Abaqus dantation for a technique that
other finite element analysis products call “suplements.” A substructure is an
assembly of several individual finite elements Wdrich only certain degrees of
freedom are “exposed” and available for use in g¢hebal stiffness matrix
(Abaqus, 2009. The other degrees of freedom of the individuahrents are

hidden internally by a process called “static corsdion” (Bathe and Wilson,

! Section 7.2, “Substructuring” Abaqus Analysis Uséfanual
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1976). This can be thought of as the solution of th#instss matrix formed by
the individual elements for unit displacements ggapin succession to the desired
degrees of freedom, while the other expressed degré freedom have a zero
displacement. As the degrees of freedom from thstsucture are more closely
connected than would be the degrees of freedomrefjaar element matrix, the
condensed stiffness matrix will typically be morélyf populated than standard
element stiffness matrices. That is, there willrblatively fewer zeroes in the
condensed matrix than a typical element stiffneaim

The substructuring capabilities of the finite eletanalysis program were used,
rather than assembling the super element “manualhd then eliminating the
undesired degrees of freedom. The manual methodbwequire incorporating a
subroutine that pre-calculates the reduced stiffnemtrix in a closed form
solution that incorporates the local geometry, sashplate thicknesses and
widths, and material properties, such as the modofidasticity, as parameters.
This approach is known in Abaqus as a “user elerh&his method would be a
more complex process for the analyst, requiringegegion and compilation of the
routine outside Abaqus. The substructure methadhjdemented entirely within

Abaqus.

To map the warping degree of freedom from the beslement to the
displacements in the substructure element, theecodisplacements in the
direction of the beam’s axis are constrained tedpgal to each other through the
use of the *EQUATION command. The *EQUATION constraint sets up linear
equations where the displacement of one degregeeddm is tied to other
degrees of freedom. In this case, each alternateecaode of the joint element is
set to have equal and opposite displacements inditleetion of the attached
beam. This requires three constraint equationggoer, and removes the relevant

degrees of freedom for the first node in each eguat

2 Section 10.3.1, pages 388-395
% Section 20.2.1, “Linear constraint equations” Abadnalysis User's Manual
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DOF =6(2(N, +1)(N, )+ 2(N, +1)(N, ) + (N, -1)(N, -1)) [5-1]

The total number of degrees of freedom in the juilit element can be found
from Equation [5-1] wherdy is the number of elements across the face of the
joint, Ny is the number of elements “down” one vertical faceN, is the number
along a horizontal face. The total number of degi#dreedom would increase at
about the same rate &°. An aspect ratio of 3:2 for botN,: N, and N, Ny
produces a total of 870 degrees of freedom forefnehts across the joint face,
3318 for 8, 12966 for 16 and 203910 for 64. Theitsoh of a stiffness matrix of
this size would be relatively slow, especially whemmpared to the stiffness

matrix for a small frame.

While it may be noted that the final element stitily expresses 10 degrees of
freedom, no matter how detailed the underlying getoyn this more complex

geometry still needs to be calculated. The larggiraal matrix must be condensed
to the smaller desired matrix and this requirexcgseing time, even if it is done

once per typical joint.

As the forcing degree of freedom for the substncts still a force, while that on
the warping degree of freedom is a bi-moment, tiffmass from the substructure
must be converted from a force to a bi-moment bytiplying by the flange
width, b, and depth between flange centroidsas per Equation [5-2] from Chen
and Atsuta (1977) This simplification can be done as the flange raots,My in
the top flange an#y, in the bottom flange, will be opposite and equakach

other and equal tb P, whereP is the flange tip force.

|\/|w:2[|\/|ft ~M = hM, =hbP [5-2]

4 Equation 6-9, page 273.
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5.4.1 Deficiencies of the joint element as a
substructure

The connection element is not as accurate as ee@taibdels of the connection
using shell or solid elements to model all the meraland the connections. The
major reason for this is imposed by the limitatibat the beam elements framing
into the connection consider warping only by a Erdpgree of freedom. While
this is consistent with other simplifications oetheam element, it does not allow
for the discontinuous warping of the cross sectierperienced when the
connection has differing support conditions for agfe flanges. An example of
this is the connection at the top “corner” of anfig with the lower flange of the
horizontal member connected rigidly to the verticember, and the upper flange
free. In this instance, the upper flange has aeladjstortion than the lower
flange. At a joint where the vertical member is towmous, the warping of the
beam flanges are closer to being equal. (See Babléor numerical values of this

phenomenon.)

The joint element also does not fully capture thesion within the joint. This
could be incorporated fairly readily by expressing torsional, or drilling, degree
of freedom of each flange plate in the substructdavever, this almost doubles
the nodes and, thus, the complexity of the joinbwiever, because the joint
covers a very short length, the warping behavioould/ be the primary torsional
component for the joint, and the additional effdocten twisting within the joint

would be small.

The substructure cannot be used with Eigenvalu&limgcanalyses in Abaqus as
the program does not generate the geometric stgfnaatrix for the element, and

will not allow the element to act as a complex fisgt restraint otherwise.

While the constraint equations use the local coatdi system for the element in

defining the warping degree of freedom as locgbldissment degrees of freedom,

these are translated into global coordinates ingéiban general analyses. When
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the local coordinates do not align with the glob@brdinate system, as is the case
with non-linear geometric analyses involving therotational aspects of the
elements, there is a cross-link between the degriereedom at a node that are
related to the substructure’s faces, and shouldhdvelled separately. The two
supposedly independent degrees of freedom becdateddo each other through
the global degrees of freedom. This cross-linkeadk to a situation whereby the
local degrees of freedom become related to eacker,otind ultimately to
themselves, causing a dilemma that Abaqus canrsmlve This is an over
constrained problem, however the cross-linkinghef degrees of freedom is only
required for the static condensation, and if theulteng reduced stiffness matrix

was used in place of the substructure, this ovasitaint would be avoided.

As noted previously, the stiffness from the sulzttite must be converted from a

force degree of freedom to a bi-moment degreeeafdom.

To avoid the above mentioned problems, the joietelnt is converted from the
substructure to a user element that allows eigemvahalysis. This also negates
the problem of cross linking of constraints, aseékposed degrees of freedom can

be manipulated outside the constraints of the selgenent.

The element does not fully incorporate the inteoscthat the joint experiences
with other forces, particularly the bending momeihist are applied to the faces
of the joint. To partially account for these, thiatps forming the box element
were restrained from bending about their weak akithe edge of the joint. This
would result from the restraint provided to thetgdaby the moment causing
strong axis bending in the joint, already considerethe rigid connection formed

by the beam-column members framing directly intoheather at the joint. This

modification did not greatly affect the stiffnedstioe joint element.
5.4.2 Using the substructure in Abaqus

While other finite element analysis programs empltis method of

substructures, albeit under other names, each tsaswn terminology and
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syntaxes for using the process in its program. értsthescription of the specifics

of the Abaqus implementation is included here tpl&r the process.

The substructure is generated the same way thatadl is created in Abaqus.
The nodes are laid out to follow the geometry @& thodel. The elements are
meshed between these nodes and are given the ahated geometric section
properties they require. A “load step” is then rtm perform the static
decomposition of the substructure to produce theaed stiffness matrix with the
expressed degrees of freedom. The substructuteresdsas a database file in the

same directory as the analysis will be executed.

Once the substructure has been formulated, ieastd¢d as another element. The
substructure nodes that support expressed degfdesedom are matched with
nodes in the full model. That is, the analyst nplate nodes in the full model
that are at the same locations as those in thérauhgse. These nodes are used to
define the orientation of the substructure as @meht in the full model. The
degrees of freedom at these nodes will be conndot¢de degrees of freedom
from the connecting elements. This sharing of degy# freedom would typically
be done through constraint equations. Simply u#iiegsame nodes as the beam
would not connect the flexural and axial degreesfreedom. Also, if the
substructure element is defined at one locatiom,eflement must be “translated”
to the appropriate location with a “*SUBSTRUCTURR®PERTY” command.
As the translation is represented by the distant@aged in three dimensions from
the original definition to the new location, it isonvenient to define the
substructure centered at the origin, and use thialnmordinates at which the
members meet for the translation distances.

A PERL script to generate the required substructorédbagus commands is
included in Appendix “A”. PERL is a programming tarage that is available for
most computer platforms (Wadt al, 2000).
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The stiffness matrix from a substructure is gemerdiy the use of the Abaqus
command “*“SUBSTRUCTURE MATRIX OUTPUT” during the muthat creates
the substructure.

5.5 Frame analysis with the joint element

To illustrate the effect that the stiffened conrecthas on frame stability, the
frames composed of W200x27 members and columns fixidd base plates,
discussed in the previous chapter, were re-analysedporating the substructure

element in the model.

In the first step of the analysis, the joint eletn®as formed as a substructure and
its stiffness matrix was generated. In this paléicease, the stiffness matrix was
collected for the joint element having only two exgsed degrees of freedom: the
warping degree of freedom for the vertical faced dhe warping degree of
freedom for the horizontal face. These two degmefreedom provide three
stiffness components: one for each warping degréeedom, plus an interaction
between the two warping degrees of freedom. As wlagping deformation
produces no net force on the element, the warfiffgess can be thought of as a
single degree of freedom stiffness, affecting aly displacements of the joint
element. The stiffness matrix from the substructuas multiplied by the depth
and width of the connection as described in Equnatjb-2] to maintain

consistency between the expected “force” degreézeflom.

These three stiffness components were appliedras #prings on the frame. It is
also possible to use the stiffness matrix direelya “user element”, but since
both approaches result in the same stiffness tegiptied to the model, the same
buckling capacities result from either procedufeany stiffness component is
negative, the user element would have to be useidalb stiffness values are
positive for this substructure.

Unfortunately, the Abaqus spring element will noedtly operate on the warping

degree of freedom, so an indirect method of commgd¢he springs was required.
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New “dummy” nodes were created to match each ofetig nodes of the beam
elements meeting at the joint. The warping degoédéeedom at the end nodes of
the beam elements meeting at the joint were eachtti a supported (i.e. lineal)
degree of freedom of one of these dummy nodes.diil@et warping stiffness
from the corner joint matrix was attached as a SRl element to the dummy
node. The SPRING1 element is an element that cesrtecone degree of
freedom and acts as a spring to produce a for¢bairdegree of freedom when it
is displaced. This is considered to be a spring lihks the degree of freedom
with the “ground”. This physically represents tlestraint of the joint node on the
warping degree of freedom of the beam or columre iRteraction between the
warping of the elements meeting at the joint isregped as a SPRING2 element
between the two supported degrees of freedom ofdtamy nodes. As a
comparison to the SPRING1 element, the SPRING2 eziéifimks two degrees of
freedom and generates a force between them aswthedeégrees of freedom
experience displacement. This model is illustraeasdschematic in Figure 5-11.
The rectangular beam elements are connected tdutheny nodes via constraint
equations, linking the beam elements’ warping degief freedom to the dummy
nodes’ lineal degrees of freedom. The SPRING1 ehksneonnect the dummy
nodes to ground and the SPRING2 element conneetswvih warping degrees of

freedom.

The results of these analyses are displayed inr€sgbr-12 to 5-16. These figures
show the relative change (always an increase) itkling capacity between

frames that are modelled without a connection betwaembers on their warping
degrees of freedom, and members that have thepingadegrees of freedom
connected through a joint element. The frames la@esame general format as
those presented in Chapter 4 — a beam supportéddidentical columns. Each

graph shows the results for one column heightwhilt several beam lengths. The
horizontal axes of the graphs are the beam lengthratio of the applied axial

load to the column buckling loadP,, considering the effective length of the
columns (an effective length factor & = 0.7 is used). The immediate

observation is that the strength increase is saaifly lower than that found in
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the rigidly connected frames presented in ChapterAgparently, the rigid
connection over-estimates the warping restraint nrwbempared to the joint

element.

However, it is difficult to completely restrain, ar this case transmit, warping
displacements in structures. Work by Ojalvo and raters (1977) included
testing of I-shaped beams with channel sectionsledeto the beam ends. These
channel sections were intended to prevent warpfrtgeoflanges as the webs of
the channels were welded to the beam flange tipd,tlae channel flanges were
welded to the web of the beam. This is a greatffestconnection than any
modelled herein. The test results are summarisetainie 5-3. The first two
columns in the table designate the particularligdteam section and length. The
third column is a ratio of the test load to theastrained buckling capacity. The
fourth column is the ratio of the theoretical bucgl moment for a beam with
warping completely restrained to the buckling motmiem a simply supported
beam. The last column presents the ratio of the@eevalues — the test result over
the fully restrained moment capacity. This shovet the very stiff restraints were

able to provide only about 90% of the theoreticle.

The rigid connections between the members’ wardegyees of freedom used in
Chapter 4 illustrate the maximum effects of mutuarping interaction. The

weaker interaction demonstrated by the joint eldnredicates that this maximum
may be significantly more than the amount of wagpimat can be transmitted by

the connection.

As the increase in stiffness is small, there isangireat deal of detail visible in
Figures 5-12 to 5-16. However, the buckling muiéplis largest for shorter
beams at low axial load ratios, as in Figure 5-42the shortest column, and
dropping to one or near one at the maximum axiadl lcatio. As the columns
increase in length, the increase in strength afflectger beams, as can be seen in
the progression from 3 m columns in Figure 5-13erghonly the shorter beam

lengths are affected, through the 4 m columns ptedan Figure 5-14, showing a
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rather steep drop-off in strength increase for éngeams. The trend is almost
complete in Figure 5-15, for 5 m columns where ahlg longest beams at the
lowest axial load show the decrease in strengthfiarshes in Figure 5-16, where
the entire graph shows a uniform plateau for bugk&iapacity increase.

As a check on the influence of the stiffness of jthiet element, the stiffness of
the springs was increased by a factor of 1000 aathar set of analysis models
generated. These are presented in Figures 5-172fb &d show a significant
increase in buckling strength. With the larger @ase in capacity, the progression
of a change in strength following the length of toéumn from 2 m in Figure 5-
17, to 3min 5-18, 4 m in 5-19, 5 m in 5-20 anch 6n 5-21 is illustrated better
than with the unmodified element. This parallelsnsoof the findings in the
rigidly connected frames discussed previously, wlilee ratio of the length of the
beam to the length of the column was shown to Ipeedictor of this buckling

behaviour.
5.6 Summary

This chapter outlined the creation of an assembtdgdements to represent the
warping at a stiffened moment connection in a dr@ghe. It also presented how
this could be adapted to form a mechanism to dy@ebdel the warping stiffness

at the joint in a frame situation.

The joint element acts as a spring, and is muchenfiexible than the direct

connections provided by rigidly connecting the beatumn elements together.
This reduces the strengthening contributions of rthgual warping interaction.

Because of the reduced stiffness introduced byadiné element when compared
to the rigidly connected warping degrees of freedorthe analyses presented in
Chapter 4, it is likely that the results from simgduckling analyses connecting
the members together may be optimistic. However filime does not experience
any weakening due to this interaction, strengthgrime conclusion that the

warping interaction in frames is not deleterioughe frame behaviour, and that
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ignoring that contribution in the design of framgsot unconservative. Also, the
strengthening effect considering the flexibility ¢fie joints appears to be

negligible, at least in some cases.
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Table 5-1Comparison between Aladdin and Abaqus elemeiptsigtilection of a

fixed cantilever with rectangular cross sectiortkies)

Meshes 4x1 8x2 16 x4 4x1% 8x2¢
Jin (1994) 0.34 0.35 0.35 0.31 0.35
% error 3.04% | 1.38%| 0.282%13.71%] 2.76%
Abaqus S4 Element 0.35 0.35 0.36 0.55 0.38
% error 1.83% | 0.619%0.873%| 54.5% | 7.94%
Abaqus S4R Element 55.01 0.47 0.39 33.30 047
% error 15400% 33.4% | 8.98% | 9270% 33.4916

Table 5-2Lateral displacement of flange tip for I-shapedtitaver experiencing

torque, (inches)

Meshes 2 4 8 16

Jin (1994) 0.139 0.147 0.149 0.150
ANSYS 5.0 (From Jin, 1994) 0.063 0.111 0.137 0.146
SAP 90 (From Jin, 1994) 0.104 0.131 0.144 0.148
Abaqus S4 Element 0.140 0.149 0.152 0.153
Abaqus S4R Element 0.181 0.158 0.154 0.154
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Table 5-3Results from tests from Ojalvo and Chambers (1@di@)pared to
theoretical warping fixed beam.

N

e [tormaleed lormaleed Trveon  nres
W21x49 2.7% 3.28 3.62 0.91
4.1d 2.89 3.15 0.92
5.47 2.63 2.82 0.93
6.83 2.46 2.61 0.94
8.2d 2.34 2.4§ 0.95
W30x99 2.1 3.45 3.85 0.90
3.27 3.09 3.42 0.90
4.36 2.8 3.08 0.91
5.45 2.61 2.83 0.92
6.54 2.47 2.65 0.93
W18x50 2.26 3.42 3.81 0.90
3.39 3.05 3.37 0.90
4.52 2.79 3.03 0.92
5.65 2.59 2.79 0.93
6.79 2.45 2.61 0.94
W24x100 1.8p 3.55 3.97 0.89
2.84 3.22 3.58 0.90
3.79 2.94 3.24 0.91
4.74 2.73 2.99 0.92
5.68 2.59 2.79 0.93
W21x112 1.9] 3.55 3.96 0.90
2.86 3.22 3.57 0.90
3.81 2.94 3.24 0.91
4.77 2.73 2.97 0.92
5.73 2.59 2.79 0.93
W12x53 1.67 3.63 4.06 0.89
2.51 3.33 3.71 0.90
3.34 3.06 3.39 0.90
4.18 2.85 3.13 0.91
5.02 2.69 2.92 0.92
Average 0.914
CoV 0.017

4
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Figure 5-1 Shell element with degrees of freedom separatedaflexural (out
of plane) and b) membrane (in-plane) degrees efifsm
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Figure 5-2 Joint element mesh, 4 elements across the face

163



12"

16" 4" 8" 20"

2@6"

2@ 8" 2@2'2@ 4" 2@ 10"

Figure 5-3Irregular mesh for cantilever (Jin, 1994)
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Figure 5-4 Displacement degrees of freedom in the joint eldrtteat form a

single warping degree of freedom.
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Figure 5-5 Joint element with warping displacement appliedre face, through
the unified degree of freedom.
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Figure 5-6 Side view of element with displacement on the wayplegree of
freedom.
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Figure 5-7 Schematic of joint element showing the linear degrof freedom
expressed for the warping displacement.
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Figure 5-8 Error in the S4R shell element model, relativerésults from 32
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0.014

0.012

®
0.010 |
0.008 | °
0.006 |

0.004 r

Error from 32 Element Model
o

0.002 r

0.000

4 6 8 10 12 14 16
Number of Elements Across Face
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of the joint element.
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Figure 5-13W200x27 frame — fixed base 3000 mm columns, jeiatent.
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Figure 5-15W200x27 frame — fixed base 5000 mm columns, jdigernent.
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Figure 5-17W200x27 frame — fixed base 2000 mm columns, stjffet
element.
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Figure 5-18W200x27 frame — fixed base 3000 mm columns, stjfiert
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Figure 5-19W200x27 frame — fixed base 4000 mm columns, stjfiert
element.
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Figure 5-20W200x27 frame — fixed base 5000 mm columns, stjffet
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Figure 5-21W200x27 frame — fixed base 6000 mm columns, stjfiert
element.
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6. Inelastic frame behaviour

The frame analyses performed in this work alsoudetl consideration of
inelastic behaviour. This is an important aspecttlod behaviour of steel
structures, and is an important limit state foustural stability, for all forms of
buckling. Part of the reason for the importancenetastic behaviour is that an
attractive aspect of steel in structural desighes ductility that steel provides
beyond its first yield. However, inelastic behaviasirnot accounted for in the
linear buckling analyses, nor fully in the jointeslent analyses presented in
Chapter 5. This work was done as the second pHabesqroject (MacPhedran
and Grondin, 2006).

Inelastic lateral torsional instability has been astigated for over 60 years
(Galambos, 1998). The results of investigationsseweral restraint conditions
have been presented in numerous texts such asa®@lgebui (1991) and Trahair

(1993). The results presented here show the sdew ak shown elsewhere — the
inelastic behaviour places limits on the maximumersgth of the frame. The

analyses also show interesting behaviour in themdras the dominant modes
change from those determined by stiffness to tloetermined by yield strength.

This helps illustrate post-buckling behaviour of thame.

6.1 Inelastic buckling considerations

While elastic buckling and fully plastic behavicane generally well understood
and defined limit states for structures, their asék buckling is not as
straightforward. Several approaches have been pedgbtm approximate inelastic
buckling behaviour in design. Examples for latéoasional buckling behaviour
in steel beams include ECCS (1976), which givesnacsh curve over the full
range of behaviour, and CSA-S16 (CSA, 2005) and AI®C Specification

(AISC, 2005) which both provide a three part degigrve with specific sections
considering fully plastic behaviour, inelastic blicg and elastic buckling joined

at limiting values for the slenderness ratio. Btita ECCS and S16 approaches
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use a slenderness ratio based on the fully plaapacity of the beam divided by
the elastic buckling capacity. The AISC approaclhased on the length of the
beam and specified lengths below one of which gebis considered to develop
its full plastic moment capacity and beyond the ptbere elastic buckling is

assumed to be unaffected by residual stresses.

Part of the work presented herein was to investigia¢ effect of end conditions
that provide varying amounts of warping restraintlom inelastic lateral torsional
buckling of beams. These end restraint conditionsnembers in steel frames
were generated using several common frame joint gg@a as shown in Table
6-1. These were modelled in the context of a singuhgle bay, single storey
frame (Figure 6-1). Various beam lengths were usdthe frame, incorporating
the effect of elastic and inelastic lateral torsldneckling as well as attainment of

the plastic moment capacity as the ultimate lirates

The elastic buckling moment for a beam, not congidehigher order effects, can

be represented as

2
z°El,GJ 77;2a2
Mch: 2y2 Q1+ 2.2 [6'1]
| e k2L

where the valu@, the torsional bending constant, relates both nahtend cross-

section properties, including,, the warping constant, and is expressed as
a=,/(EG,)/(G J) The effective length factork, andk,, associated with the

lateral buckling and warping lengths, are both fbOa simply supported beam.
The flexural component can be removed from theuflak torsional buckling
capacity for a restrained beam by dividing by thpacity for a similar simply
supported beam, leaving only the effective lengibtdrs related to the end
restraint conditions, and a value relatingo the torsional constant (L/a). This

ratio was expressed previouslyRsin Equation [3-4].
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However, when yielding is considered, the effedtaaal, flexural and warping
strains and stresses become much more tightly eduphis is because the strains
developed from all loading conditions can interaxtcause differing yielding
patterns, and the effects of warping and flexume mat be treated separately as
they can in the elastic case. This interactionieldyng patterns leads to complex
yield surfaces as illustrated by Daddaetoal (1983) who studied warping in Z
sections. The work of Yangf al (1989), although less broad in its scope than tha
of Daddazicet al, shows the complex interaction of yielding inieas modes for

| shaped sections. Both of these works illustrai@t the interactions between
yielding stresses due to the applied loadings @wecobmplex to uncouple easily.
For this reason, the results of the elastic eigerevanalyses of the frames should
not be directly compared to the inelastic instapiinalyses. However, these can
be contrasted to show the general effects of itielaghaviour and how it would

affect the predictions based on the elastic behavio

Current research on the topic of inelastic bucklsch as Trahair and Hancock
(2004) and Ziemiaret al (2008) use reduced stiffness to predict buckling,

include the use of elastic end restraints.

It is usual to include residual stresses in studfeselastic buckling, as these tend
to reduce the overall buckling capacity of the membHowever, the softening

effect was considered to reduce the influence efwhrping displacements from
the perspective of stability. In order to maximittee effects of the warping

interactions, residual stresses are not includeébdermodels here. It is recognised
that this will over-predict the capacity for theusture compared to the real
structure, the effects under investigation will inereased by neglecting the

residual stresses.
6.2 Modelling

The finite element analysis reported in this chapi&s conducted using the finite

element program Abaqus, version 6.4, running on 811100z computers. The
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frame models were discretised using the shell aienype S4R. A discussion of
S4R and S4 elements was presented in Chapter S5e\Wdowthere are two points
not included there. First, the reduced integratibows the shell element to avoid
shear locking to which the fully integrated elemeraty be prone. However, there
can be some zero-mode instability problems withrédtkiced integration element
(also known as hour-glassing). This mode is cabyeallack of apparent in-plane
shear stiffness with the integration scheme. Abgoavides a mechanism to
resist this by providing extra in-plane stiffne3sis has been shown to avoid
hourglassing with minimal side effects. The elembas a large displacement
formulation, with finite strains. The S4R elememtshbeen used successfully to
model the complex behaviour of structural membeth geometric and material

non-linear behaviour in stiffened steel plates (@hest al, 2003), in beam —

column — infill plate assemblies (Schumachkeal, 1999) and multi-storey steel
plate shear walls under cyclic loading (Behbahadijfat al. 2003). While it has

been noted in the previous section on the elastioer element that the S4R
element has some disadvantages when compared ®4tledement, these were

not considered to be relevant for this part ofwioek.

The beam and columns of the portal frame model weeshed using 4 shell
elements across the flange width and 6 elementughr the web. Element
dimensions along the length of the beam were datedhto produce an element
aspect ratio of 1.00 in the flanges. The aspea fat the elements in the web
was 1.05. The web elements were slightly largetha through-beam direction
than they were along the beam length. The meskthébox joint with diagonal

stiffener is presented in Figure 3-6.

Five joint conditions, illustrated in Table 6-1, m@eexplored in the study. While
the mitred end condition is not a usual conneci@tail in hot rolled steel
construction, it has been extensively studied iavimus works, for example
Krenk and Damkilde (1991). The column through aedrb through conditions
represent moment connections with no stiffenerse Tthers are moment

connections with varying amounts of stiffeners atlde
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Figure 6-1 shows a typical portal frame used fas thvestigation. The columns
were 2000 mm long and the beam length varied fr660Inm to 8000 mm. This
range was used to include a wide range of beamvimha from full plastic

moment to elastic lateral torsional buckling.

The beam and columns cross-section chosen fosthiy was a W200x27 wide
flange hot rolled section. This section was chdeernts large torsional bending
constant, noted ag™ in this work. The value of&’ is 1088 mm for this section.
It is also one of the sections that will experieteteral torsional buckling when
used as columns in side sway permitted frame. iEhasclass 2 (compact) section
in flexure for yield strengths up to 460 MPa. Thitical unbraced lengthL() at a
yield strength of 300 MPa is 2.04 m, based on CAMES16-01 (CSA, 2005).
This is the length at which the member is assuradzkttoo short to buckle either

elastically or inelastically, and at which it wdarry its full plastic capacity.

The frames were loaded with a uniformly distributedd acting vertically down
through the shear center of the beam. The anatietesmine the critical load in
terms of a multiplier for this load.

Each frame was analysed using the elastic eigeavadiver of Abaqus, which
provided an indication of the elastic buckling (eifurcation) load for later
comparison to the inelastic analysis results. Thgersalue analysis also
produced a set of eigenvectors used for creatitiglimperfections in the model.
For the models represented here, only the firstmbdmickling mode was
incorporated in the initial imperfection. Thesdiadiimperfections were scaled to
limit the maximum initial imperfection to 1/200 tie member length (0.005L).
Higher modes were included in preliminary modelghis part of the study, but
these did not appreciably affect the buckling loaus the deflected shape. The
higher mode imperfections had been scaled to Hathe first mode value. A
nonlinear analysis was then performed, using threBal imperfections, an elastic
| perfectly plastic material model using two yiedttengths of 300 MPa and
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400 MPa, and updated Lagrangian formulation teakigsing the modified Riks
procedure (Riks, 1984) available in Abaqus.

Two sets of end restraints were modelled on thenbedull restraint and flange
restraint. In the flange restraint set, the ouplaine displacement of the bottom
flange of the beam was restrained all along thenbeacolumn connection. This
boundary condition was implemented to prevent dyglane buckling of the
columns while allowing twisting via the distortioof the beam’s web at the
supports. For the full restraint set, all nodeghefcross-section of the beam at the
beam-to-column joints were constrained to move @itiiin the plane of loading,
thus preventing twisting of the beam’s cross-sectigthout preventing warping.

These two end restraint conditions are present&ture 3-6, in Chapter 3.
6.2.1 Analysis results

The elastic buckling analyses are relatively easwpterpret. The result is a single
load multiplier for each buckling mode extractedheTinelastic buckling results
are more difficult to interpret in that there is rasily identifiable point of

instability for some cases. The load versus latdispplacement loads must be

examined to determine the “buckling load”.

The plots for applied load and lateral displacenast presented in Figures 6-2
through 6-11 for the cases analysed. In each setigper diagram is for a frame
constructed of 300 MPa steel and the lower is @0 MIPa steel. Figures 6-2
through 6-6 are for the fully restrained beam ety Figures 6-7 through 6-11
are for the analyses where only the bottom flange westrained. The lateral
displacement plotted on the horizontal axis wasioktl at the centre node of the
beam. The vertical axis on the graphs representtottd proportionality factor —

the load multiplier for the initial loading.

Figures 6-2 and 6-7, which represent the shorteatmblengths (2 m), show the
expected buckling phenomenon. The load rises teat,and then falls off. Later

in the load path, the beam centre moves back taoritgnal position with no
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change in load. This is due to a decrease in tleealastiffness of the member,
which can result from either reaching the buckloagacity of the member or the
plastic moment capacity. At that point, the bearesdoot have the stiffness to
hold the beam away from the plane of the frame,aitidreturn back to a zero

lateral deflection. This can be a fairly abruptisition, also known as a snap-

though buckling mode.

The stiffer joint details retain this behaviour time next beam length of 4 m,
shown in Figures 6-3 and 6-8, but the more flexitdgails show an increased
load accompanying the return of the beam centrandsvits original position,
particularly in Figure 6-8. This trend continuestfe 6 m beam frames, shown in
Figures 6-4 and 6-9, to the point where the loatstance developed on the return
path is higher than the load experienced in theetoghe peak load.

In all of the preceding figures, the frames reagbeak load, and the load drops
before the beam starts its return to the originasitipn. This peak load is

considered the failure load and all of the othdraweour — the load decrease, the
reversal in lateral deflection and any subsequéenhgth gains — are all post-

failure mechanisms.

This trend does not appear to be continued indhgdr beams. Figures 6-5, 6-6,
6-10, and 6-11 show the behaviour of frames wheeeldad is increasing up to
the point of reversal of lateral deformation, ahdr continues to increase after
the point on the curve where the reversal occuesaBse the reversal in lateral
displacement indicates a change in the stiffneskeoktructure, the load at which
the reversal occurs was considered to be the éalhad. The failure load may
have been before this, even though the load cahbiethe structure was still
increasing, but the load — displacement relatignstibes not give a good
indication of where the failure should be consideieehave happened. The results
of the analyses considering these criteria forrdateng the failure load will be
used in the following section.
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The process is shown by the progression of an sisalyith a typical frame. In
the series of pictures starting with Figure 6-12raane formed with a 6 m beam
and using a yield strength of 300 MPa is followkrbtigh the load-displacement
path. In the first figure, lateral movement hag jusgun. The analysis results for
this frame were presented in Figure 6-9(a) as #@rbthrough end condition. In
Figure 6-13, the lateral displacement of the beamticues, even with large
rotations the frame capacity is increasing. Aftex peak loads are achieved, the
situation shown in Figure 6-14 is approached, whieedbeam’s lateral movement
is back towards its original location. In the firsthges, illustrated in Figure 6-15,
the beam and frame have failed completely. The eaxes have changed
orientation at midspan and the columns have bucKide: beam’s centre is
almost back to the original plane of the frame.

The results of the analysis for the stiffer endditons of the entire beam end
being restrained are presented in Figure 6-16 fRIGMPa yield strength and in
Figure 6-17 for 400 MPa yield strength. These chadpresent the strength
determined from all of the frame analyses previpysksented in Figures 6-2
through 6-11. The horizontal axis is the lengthnmalised by the torsional
bending constanta. As the value ofa is just over one meter for the members
considered in these graphs, so these are clo$e terigth in meters. The values
are converted from the uniformly distributed lo&d,in the solution to an end
moment ofwL?/12, the theoretical maximum elastic end moment. Feh lyield
strengths, there is a noticeable difference betvileetbeam capacity based on the
end restraints. This is considered an indicati@t the moments at the ends of the
beam could not reach the full capacity for thoseé é@etails and the connections
acted as partially restrained details, offeringeduced end capacity. The rapid
drop in capacity for the shortest beam in all casehie to the location of failure
moving to the column from the beam. The higherngjtie steel has a higher

capacity than the 300 MPa steel, as expected.

The inelastic analyses are compared to the elegfenvalue analyses in Figures
6-18, for 300 MPa, and 6-19, for 400 MPa. Thera tsend in all of the frames
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analysed for the ratio of results of the inelasti@alysis to those of the elastic
analysis to decrease linearly with the length ef lleam. While this is somewhat
expected, the inelastic strength shows a higheaapthan the elastic capacity
for longer beams. This is due to the post-buckétigngth in the beam permitting

the beam to carry more load than predicted by tlokling analysis.

The same data is presented for the weaker endirgstondition where only the
bottom flange at the beam-to-column connectiorestrained from displacing out
of the plane of the frame. The moment capacitiss,described above, are
presented in Figure 6-20, for 300 MPa vyield strengind Figure 6-21, for

400 MPa. These figures show a larger differencevéen the “weaker” joint

details of column through, beam through and mirets. However, Figures 6-22
and 6-23 show that the same general trend is pgrasen the results from the full

beam end restraint presented in Figures 6-18 &lfl 6-

The yield strength of the material does influenibe buckling strength of the
beam. Given two yield strengths of 300 MPa and M®&&, the ratio of the critical
loads for similar conditions were in proportionttee square root of the ratio of
the yield strengths, as predicted by Kirby and Metbt (1979). Table 6-2
presents the critical moments for five beam lengthg five joint types and the
ratio between the moments for the two yield stresgiresented. The ratio of the
critical strengths for the 300 MPa steel versus4b@ MPa steel has a mean value
of 0.832 with a standard deviation of 0.036. Therapch from Kirby and
Nethercot indicates a value of 0.866. This indisathat the phenomenon
investigated for most frames is actually inelastickling, and not plastic hinge
formation. For shorter (and stiffer) beams, therdéecreases. For extremely short
beams, inelastic buckling would be replaced bydalition yield, and the strength

ratios would become that of the yield strengthorafi0.75.

An extensive numerical investigation of elasti@tat torsional buckling of beams
was presented by Nethercot and Rockey (1971). Wiassone of the first studies

of elastic lateral-torsional buckling to use congsunethods, and was completed
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before the release of the first beam-column elemémat supported warping
(Barsoum, 1972). The technique used approximatéadstfor determining the
effects of loading and restraint and determinectatife moment factors for
various lengths of beams. One of the results frbat investigation was an
equivalent moment factorCf) for uniformly distributed loads and various end
support conditions. For beams loaded with a unifgrdistributed load at their
shear centres, these factors are expressed asidiq{&®] for beams fixed at
their ends with respect to warping, and Equatio3][@or beams fixed at their
ends with respect to bending about their weak aXise class Il and |li

designations are those of Nethercot and Rockey.

4106 A 1.263

C, = 1'2+—(L/a)2 +m

(Warping fixed: Class II) [6-2]

C, = 1.9—w+% (Laterally fixed: Class IlI) [6-3]

(L/a)®  (L/a)
Figures 6-24 and 6-25 present a compariso@pphs proposed by Nethercot and
Rockey with the results from the elastic eigenvamnalysis conducted in this
study. The curves from Nethercot and Rockey appgaohd lines for laterally
and warping fixed conditions. The data presented hppear as broken lines. The
three weaker end conditions are found to be coraitieweaker than the laterally
fixed condition presented by Nethercot and Rockeye $tiffened connections
appear to be at least as strong as the lateraig itondition, but no end condition
appears to provide full warping restraint. Howewadlrthose conditions follow the
same trends as the curves presented by Netherc®Raukety for a laterally fixed
condition. The stronger end joint conditions fromist study lies between
Nethercot and Rockey's curves for the laterally dixand warping fixed

conditions.

While it was expected that the short beams would réxqpee more benefit from

the connections that have higher warping rigidityg tesults appear to show that
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the longer members also experience proportionatbatgr benefits from the
stiffer connections. This is due to the greatdfr&ss in connecting the beam to
the columns, and the resulting increase in mobhdishe post buckling strength of
the full structure for the beam.

As a comparison, the current Canadian structuraél steesign standard,
CAN/CSA S16-01 (CSA, 2005) recommends a value of @rOCf, (or in the
nomenclature of S16) in that the end moments are equal. There is pdicix
guidance for load cases such as the uniformlyibiged load applied here. This
will be remedied in a future edition to account tbe moment distribution in
similar cases. In any event, the valueafcannot exceed 2.5, while Nethercot
and Rockey’s values can exceed 2.5. In all, thegdestandard is conservative in

its recommendations.
6.3 Summary

This chapter presents the results of a seriesabhstic analyses for a set of steel
frames to determine the effect of plasticity on behaviour of the frames. The
results of the inelastic analyses were compared kuithrcation or eigenvalue

buckling analyses of similar frames.

The inelastic analyses do not have a definitivenpof instability in the same
fashion that bifurcation buckling does, and thenpdor instability was chosen
considering the shape of the graph of load andadatisplacement. This could
give some optimistic values when compared to eldmstakling analyses for long
members, as there can be some significant postibgcktrength reserve in
beams experiencing lateral-torsional buckling (&rgh1996). As well, as has
been noted earlier in this work, there can be arease in buckling capacity for
shallower sections due to the pre-buckling deflectod the member. (The first
approximation for the W200x27 sections investigdiede would be on the order

of a 7% increase.)
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As could be expected, the inelastic effects dominlée behaviour of shorter
members, and significantly reduce the capacity frtme predicted elastic
buckling capacity. Longer members experience sommeefit in the inelastic
analysis over the elastic buckling analysis, dueftects ignored in the buckling
analysis. These would include the effect of thetindastiffnesses about the major
and minor axes of the member and the post-buckliegease in strength for

beams, as discussed in Chapter 3.

The weaker end conditions, the “column through”, &tmethrough” and mitre
joints do not provide sufficient restraint to deyelthe strength predicted by

current design equations.

However, the major effect of inelastic buckling ig thbvious one. As shown in
Figures 6-18, 6-19, 6-22, and 6-23 the effectsladtirity significantly reduce the
capacity of the structure for shorter members fribvat predicted by elastic
buckling. As the warping effects predominate forrsgfrtomembers, plasticity does
negate at least some of the effects of warpingaies$tn increasing the buckling
strength of steel members. However, there may stifiebits for the frame’s

stability to have greater warping restraint, eveerathe range of intermediate

beam lengths.
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Table 6-1 Frame joint configurations

Mitre Joint

Beam Through

|

Stiff Box

Column Through
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Table 6-2Summary of inelastic critical moments (kN m) andasfor modelled

yield strengths

Beam Length (mm)

. . I8
Joint Type Yield Strength (MP 150007 3000] 2000] 6000 8000
300 30.0] 32.5| 32.5| 30.6| 28.7

Beam Through 400| 34.3| 37.1| 37.1] 35.5| 335
Ratio 0.875/ 0.877| 0.877| 0.862| 0.855

300 46.5| 41.0] 37.1| 33.0/ 30.0

Mitre 400| 55.2| 47.8| 42.8| 37.3| 334
Ratio 0.842 0.858| 0.867| 0.885| 0.898

300| 63.8] 56.2| 49.2| 41.3| 37.2

Column Through 400| 80.1| 67.9| 59.4| 50.1| 45.1
Ratio 0.797, 0.827| 0.829| 0.823| 0.826

300| 74.4] 69.3| 62.1| 52.3| 47.2

Box 400| 93.9| 85.9| 76.1| 64.5| 60.6
Ratio 0.793 0.807| 0.816| 0.812| 0.779

300| 81.4| 81.8| 75.4| 67.0/ 634

Stiffen Box 400| 104.6| 101.9| 92.0| 84.6| 80.2
Ratio 0.779 0.803| 0.819| 0.792| 0.791
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Figure 6-1 Typical frame model, fully stiffened joints (boxné diagonal
stiffeners).
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7. Design Implications

To this point, discussion has focussed almost ex@lyson analysis. However, a
guiding interest in structural engineering researshinto applications for
incorporating the results of structural analysi® itite design of safer and more

economical structures.

Thus, the question that must now be answered iat'ate the implications of this
work on the design of structures?” The initial hiypsis of this study was that the
interaction of warping between members of a strectwould reduce the
structure’s capacity. If this were the case, theoaild be a need to require a

correction for member loads used in design.

On the face of this presentation, the conclusidhasthe effects of warping in the
joints of steel frames can be safely ignored inrtkdesign. The analyses that
include them are more complex than would normaléy required for such

structures and ignoring these effects is a conigevassumption, much like the
current practice of ignoring any stiffening effectk major axis curvature. The
warping effects also dominate the torsional behavioushorter members. This
is the same range of lengths that are governedday buckling. In the case of the
members considered in this work, this means thigast part of the cross section

will have yielded before the design capacity isiexd.
7.1 Increase in Strength

Current design methods already neglect a comparienttra strength. If the extra
stiffness of beams with respect to major axis dumeh (as per Trahair and
Woolcock, 1973) were included in design considergtthere could be significant
increase of the member capacity. For example, ub@gnoments of inertia for a

W360x216 section would require a simple calculatadetermine the ratio of the

! Also noted in Chapter 3 of this work.
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buckling moment,M,, (calculated using the procedure proposed by Trairal

Woolcock), to the nominal lateral-torsional bucklimpment,M g .

M. 1 = ! =1.288

M Jl_(l/lxj \/1_(283><106mm4)/(712x106mm4) [7-1]

This would increase the elastic buckling momenbtbgr 25%, and thus increase

the design capacity for any but the shortest mesder which the inelastic
behaviour would govern. However, this is not ingddin standard practice
(MacPhedran and Grondin, 2008).

The calculation to determine the strength incredise to the inclusion of the
warping contribution is much more involved than th&tively simple Equation
[3-6], and would provide a much smaller increasstiangth. The results from the
previous chapter show increases only of the orflarfew percent, and those are
for shorter members, where plasticity consideratiom more important than the

elastic buckling strength.

7.2 Post Failure Considerations

While not part of the scope of this project, a dggion of the tests from Chi and
Uang (2002) and Zhang and Ricles (2006) was ragselier. These tests looked
at the effect of plastic hinging and large rotatioh reduced beam sections
(typically used as “fuses” in seismic resistingiiess) on the behaviour of a frame.
There was significant plastic deformation of thenmbers involved, mostly

resulting from the localised warping of the conmatt following plastic hinging

in the adjacent reduced beam sections. Thesewestsconducted past the point
that normal design methods would consider the alinstrength of the frame
members. The warping displacements experiencedhaset tests would be
considered to occur after structural failure. Themay be a need for these

displacements to be considered for the structurabustness” or structural
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integrity design of the structure to ensure thatesre loading events do not cause

disproportionate failure.
7.3 Design Interaction Equations

S16-01 (CSA, 2005) standard has a separate equttainconsiders lateral
torsional buckling in beam-columns that will nopexience local buckling before
the development of full plastification of the cresection (noted as Class 1 or
Class 2 sections). This equation was introducefl1ié.1-M89 (Kennedy, Picard,
and Beaulieu, 1990) to address previous problertts laderal torsional buckling
in S16 (Trahair, 1986; Kennedy and Qureshi, 1988 current equation uses
“shape” specific factors to reduce the moment doution to the beam-column
equation of 0.85 for strong axis bending and (0.€04€\,), but not greater than
0.85, for weak axis bending. These mirror the factosed for the strength
interaction equation, which in turn reflect approate linear expressions for the
idealized plastic behaviour. The strength relatigps are based on earlier plastic
design expressions, Equations 7-2 and 7-3, (ASOEL} Previous editions of
S16, from 1984 (CSA, 1984) and dating back to 19&&d factors of 1.0 for
stability checks (MacPhedran and Grondin, 2007). Theent S16 also uses
factors of 1.0 for sections that will experiencecdb buckling between the
conditions of first yielding of the cross sectiomdafull plastic behaviour of the

cross section (Class 3 sections).

M

— B = 1.15{1— EJ [7-2]
M, P,

M 2

ooy —1191-| 2 [7-3]
M, P,

A case can certainly be made for the moment ratuction factors if the

members are reasonably short, that is, if theygarerned by inelastic or fully

2 page 137
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plastic behaviour. Longer, or more slender, memimdtsact in a fashion closer to

the fully elastic behaviour, so that the ineladftects, and thus the reduction
factor, are reduced. The increase in the momeiat fiaattor for weak axis bending

indicates that this has been considered in thetiemsa

However, the S16 cross section strength curve (ftqual2-9 (a)])
approximations appear to be unconservative forraes of P/ (Galambos and
Surovek, 2008) This may appear to conflict with data from Dawed a_ee
(1993), which show that the test data fall mosthp\e the design curfeThis
discrepancy can be explained by noting the ultimfiataural strength of a number
of short beam tests exceeding the calculated plastiment. This can be found in
collections of such data, as in White and Kim (20@4t is also shown in two of

the tests by Dawe and Lee.

The American steel design specification (AISC, 20Cfpproximates the
interaction curve with the two part equation in Bfijon [7-4]. For the portion of
the curve with higher axial loads (Equation [7-])(@ reduction factor of 8/9 is
applied to the factored moments. This equatiohightty more conservative than
the S16 equivalent, as the AISC expression usesembneduction factors of
(approximately) 0.89 compared to the maximum St€ofaof 0.85. As well, for
the portion of the curve where the moments are danj (Equation [7-4 (b)]) the

moments are not reduced.

M
PEM M <10, Poo2p (@)
F>|’ 9 MrX Mry
y [7-4]
P o[ My Mylcq0, peozp (b)
2Pr er ry

Equation [7-4 (b)] addresses the portion of the Bi€raction equation that was

noted above as being unconservative. Low valuestHer applied axial load

3 An example that shows this unconservative preatidé Figure 4.36
* Table 4, ultimate M/M, this is not plotted in Dawe and Lee, 1993, byticdted as Figure 9 in
Essa and Kennedy, 2000.
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(compared to the full yield strength of the crossti®n) do not greatly reduce the
moment capacity. This lessened reduction is hanjethe change in emphasis
from the axial load in [7-4 (a)] to the moment laad7-4 (b)].

Ziemian,et al (2008) indicate that Equation [7-4] may be unewuative in some
cases. One particular case is a beam-column of GOMZ® cross section, a 15
foot length (4572 mm), with an applied axial foroe 382 kN and an applied
moment of 349 kNn. These loads are calculated to be right on theslepe
defined by interaction Equation [7-4 (b)] usingesistance factor of 1.0. Finite
element analysis shows this predicted capacity-esgmates the failure load by
20%. The interaction equation from S16 (CSA, 20@&sjyation [2-9 (c)], is less
conservative, predicting a nominal resistance that25% of the FEA result.
(This is primarily due to the previously mentionedher aggressiveness of the
lower moment reduction factors in the S16 equalidime interaction equation
that does not use moment reduction factors givesteer prediction, though it
predicts the beam-column capacity to be 11% highan the FEA result. The
failure loads predicted by the finite element asmlyare too low to produce
plastic hinging in the member. The member is taxlst to experience elastic
lateral-torsional buckling, so the behaviour wodld governed by inelastic
buckling. It seems that even the unreduced momerdg be optimistic in
predicting member strength.

The plastic design manual (ASCE, 1971) does notausénilar reduction for
lateral torsional buckling.Also, a theoretical development of the interaction
between the axial and lateral torsional instabiitshows that there should be no
reduction for cross-section shape, consideringlp@lastic behaviour.

® Page 162, ASCE 1971.
® As presented in Chapter 2 of this thesis.
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7.4 Comparison With Standards

Figure 7-1 illustrates the results from one of previous analyses as the raw
magnifiers from the eigenvalue buckling analysistee points from these curves
were selected to demonstrate how the predictianaifn the design equations.
These points were selected to give a sample framesaich of the following cases:
moment governed; column axial load governed; anmi@nmediate point, on the
“ridge” of the surface. For each frame chosen, @inear, elasto-plastic analysis
was performed to obtain the ultimate strength efftame for that loading, given
the ratio between axial load and moment. The resiiim both the elastic
eigenvalue buckling analysis and second-order lalsistic analysis are
presented in Table 7-1. The strengths of frameb/se@ considering the warping
displacements to be continuous through the joinheations are higher than the
analyses that considered the warping to be fremétnained) at the joints. This
held true for both eigenvalue and second-orderyamal In these frames, all
members are W200x27 sections. The column heighttaedoeam length are

presented in Table 7-1.

The results from the second-order elasto-plastidysisawere used as the
loadings for an elastic frame analysis for a typicame analysis program (S-
Frame v6.21) to generate the member forces usifg\ &lastic analysis. These
results were used with the AISC (Equation [7-4])l @SA S16 design equations

to produce the values presented in Table 7-2.

For the Canadian design procedure, a notional &ddil5 % of the gravity loads
was used in-plane, and for AISC, notional load€0& % of the gravity loads
were applied in the in-plane direction, as the fambraced in the out-of-plane
direction. For the AISC design procedure, a redwstéthess factor is applied to
account for the inelastic effects for analysing fitsene. The AISC Specification

sets the reduced stiffnessl() as EI" = 0.87,El , wheret,, a factor that accounts
for the softening due to yielding, i = 4(P, /P, J1- P, /P,)< 1.0. The reduction

factor used in this case was 1),9s Surovek-Maleck and White (2004) note that
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the 0.8, value used in the AISC Specification has beerofadt with a resistance
factor of 0.9.

The design equations appear to be conservativehtrframes analysed. The
capacity of the column in frame 3 would be estirdaeabout 52% of its capacity
determined by analysis using the S16-01 approadhaarabout 62% using the
procedure in the AISC Specification. Part of thasan for the apparently large
difference between the design equations and thasihe analysis is a lack of
recognition by the elastic analysis of the redsttion of moments in the structure
as yielding progresses in an indeterminate framas Tedistribution is also
affected by the reduction of flexural member st#8a due to lateral torsional

instability. This latter effect is also not usualgcognised in the elastic analysis.

7.5 Costs

The hidden face of the work is that of economy anstruction. While ignoring
the warping displacements at the joints of the &amay be safe, would including
them in the design considerations improve the emgnof the structure? In all,
while there would be extra demands placed on psign, and engineering time,
taking advantage of the strength developed by tgiwg restraint would result
in a reduction in the weight of steel.

One aspect that would be required to ensure thpeprdevelopment of the
warping resistances would increase effort in joiesign and detailing. The extra
demands placed on the joint from the bimoment wahlahge the predicted local
joint loading, including the potential for tensilemands on welds that may be
assumed to carry only compression. This could rs#te#s more complex design
of the joint connections. However, the effectsha warping interaction appear to
be small enough that the current analyses, whigieoethese effects, do not
produce any significant under-estimation of the @mtion loads. In any event,
the increased reliability index for connections Wblead to member failure

before connection failure.
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Current construction trends are such that the obshaterials is a decreasing
proportion of the total cost of a structure overdi(Carteret al, 2000, Ruby and

Matuska, 2009). Ruby and Matsuka show how, over ghst 25 years, the
proportion of the cost of the steel in a structioré¢he total cost of the completed
steel erection has declined from about 40% in 18837% in 2008. This is not a
uniform decline, but the trend is evident. It mag Imore economical to use
heavier sections than are strictly required by design standards. It is also
advantageous to use less complex connection aetadis shop costs (basically

labour) have remained steady at about one-thitdeofotal cost.
7.6 Summary

In summary, ignoring the effect of warping of tha@inis appears to be safe.
Analyses that include the interaction between tleenivers of a frame result in a
higher capacity than that predicted by the curesrdlysis procedure. Including
the effect of the interaction in design is complexd would give minimal

decreases in steel material costs. As fabricatmsiscare higher than material
cost, the savings realised by incorporating theeiase in strength due to mutual
warping restraint may be more than offset by tleeagased design and fabrication
costs. The implication for design is that maintagnthe status quo would be the

preferable course of action.
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Table 7-1Analysis results for selected frame configuratitorseigenvalue and
second-order elastic-plastic analysis

Frame 1 Frame 2 Frame 3
Column Height (mm) 4000 4000 4000
Beam Length (mm) 11000 12000 13000
Nominal RpdPey 0.00 0.60 1.00
Peigen (Warp free) kN 0.00 527 819
Peigen (Warp cont.) kN 0.00 573 821
Pong(Warp free) kN 0.00 382 673
Pong (warp cont.) kN 0.00 409 675
Meigen (Warp free) kNm 201 114 15
Meigen (Warp cont.) KNm 207 124 15
Mong (Warp free) kNm 130 78 12
Mg (warp cont.) KNm 142 84 12

Table 7-2Design results from North American design guidedin

CSA-S16-01 Design AISC Design
Frame Equations Equations
Column Beam Column Beam
1 1.13 0.42 1.14 0.40
1.27 0.29 1.33 0.47
3 1.92 0.27 1.61 0.71
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8 Summary and Conclusions

The current design approach of isolating membeos frigid frames before
considering the effect of warping does not accdontthe possible interaction
between beams and columns. The purpose of this wask to investigate the
possibility that the warping deformations expereshdoy members in a steel
frame may cause failures at lower loads than wbel@éxpected in current design
procedures. There was concern in this regard dileetpossibility that the local
warping deformation of the members at the joint ldazreate additional forcing
torque to decrease the lateral-torsional buckliagacity of the members. This
project was considered to be a good candidatenfegstigation through finite
element analysis because of the capability of bedements to support the
warping degree of freedom in current high-levellgsia programs. The project
does not lend itself to experimental examinationthat while we can, and do,
separate the warping and flexural behaviours inatheysis and design of steel
structures, the behaviours are inextricably link@the warping of I-shaped
sections is analogous to bending of the flangespiposite directions about the
member’s weak axis. Thus it is inexorably linkedhe weak axis flexure that is

already included in moment connections.

As the work was analytical, an examination of alddé FEA elements was
conducted to determine how well they perform fas type of analysis. The beam
elements used were ones supporting warping degreéeedom, but having
guadratic formations, requiring several elements rpember to better capture
buckling effects. The elements behaved well whenpaoed to Viasov's (1961)
theory when fully restrained end conditions werpliggol. Theoretical predictions
for combined bending and axial loading were alsdl watisfied by the beam

elements.

There are two cases where the elements deviate dsqracted behaviour. One

case results in lowered capacity for very shortelets or those that would be
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very stiff torsionally. These members appear toehan inexplicable decrease in
buckling strength compared to theory. The rangenembers affected by this
phenomenon is small and not within the practicalgea of member sizes or
shapes. The other case is for an effect wherentpé&ane curvature will affect the
buckling strength. This effect prevents laterabtonal buckling in a straight
beam bent about its weak axis. This effect is igdoin the Abaqus buckling
analysis and the analysis will give a buckling matrfer a beam bent about its
weak axis. This is presumably due to the increasgacity being a pre-buckling

effect and not capable of being included in thpetpf analysis.

Despite these drawbacks, the elements were coediderbe adequate for the

required analyses.

The major part of the project involved using tharbeelements to form a simple
frame and these frames were analysed with and with@wping continuity

through the joints. The project analysed sevemh& configurations and found
that the effects of mutual warping deformations dwt negatively affect the

frame capacity.

A “corner element” was developed using the subsirirgy capabilities of the
Abaqus finite element analysis software to model ¢fffects of a typical joint
configuration. The stiffness provided by this lingi element was considerably
less than that of the continuous connection forrogddirectly connecting the
warping displacements in the frame as described eabdhe more flexible
connection means that the direct connection amalglsscribed above will give

unconservatively high values for buckling loadimgsframes.

The elastic buckling analyses also neglect thetdimplaced on the structure by
plastic behaviour. This will prevent the structén@m achieving the upper bound
given by buckling analyses for many structures wstihort members. The
strengthening effect of considering warping contyus higher for shorter
members, so the net result is that the greatestielauckling capacity increases
will not be reached in practical structures, asse¢hwiill be limited by plastic
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behaviour. Some shorter members may have capawitis Igiven by local or

distortional buckling effects on the cross sectoits component plates.

8.1 Conclusions

The current practice of neglecting the influence nafitual warping restraint
between members in the analysis and design of #i@eles appears to be a
conservative practice. Certainly from the perspectf elastic buckling, this is a
safe practice. The extra work involved to inclubdese displacements in analysis
is considerable. Developing the increased capatived from this relationship
in the design of steel frames is likely not of b@nen the design process,

particularly for frames constructed from rolled ts@as.

Any benefical effect of this warping restraint ist mpplicable to members where
the governing limit state is not lateral-torsioaickling, or a torsional buckling
mode. This means that members that will fail irsetabuckling about their strong
axis, which includes most columns in unbraced fafongkaew, 2000), do not
experience any increase in capacity due to thexefAlso, there is no benefit for
those members in which formation of plastic hingesurs before buckling or any
significant second order effect develops. This widag the case for braced frames
(Essa and Kennedy, 2000). The development of teediastic hinge is often the
governing limit state. Because of this criteridmere is less benefit to the frame’s
capacity from the mutual warping restraint tharréhe for fully elastic frames, as
the hinge capacity represents the maximum loads dla be resisted by the

frame.

Even in those members where there is a benefiadliantage varies with respect
to a number of variables, including the ratio ofahto flexural loadings, base
conditions and relative stiffnesses of the joinegimbers. This would mean that
any attempts to take advantage of the benefitaneqgignificant analysis to judge
their benefit for any given load case. There anmenous load cases that may be
critical in the design of frames, due to the alse@dmplex nature of beam-

column design and frame analysis. Even effectsareasimpler to calculate, such
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as the increase in theoretical buckling moment dtockier sections is not

generally considered. (Eurocode 3 (CEN, 2005) oheduthese effects in a general
sense, by including two separate design strengthesufor stocky and slender
beams.)

The joint element indicates that the warping séiffe developed in the connection
is not as large as the rigid connection assumeddiogct beam-element
connections would indicate. While it is apparent tin@ joint element would be
more flexible than a rigid connection, this elemamipears to be extremely

flexible.

8.2 Further work

It must be noted that the members and frames stuttienot cover the multitude
of all possible combinations. The structures arclices examined were thought
to be the most sensitive to the effects of warplefprmations on their torsional
stability. However, there may be unexamined strestuthat provide further
insight into the problem. In particular, sectionghvwery wide flanges would
provide more warping, but also have a larger weak moment of inertia that
would increase the lateral torsional buckling céya€hannel sections may also

be affected more by reason of their torsional pirtbgse

While the loads applied are also selected to madrthe effects of the warping,
these are not typical of the loadings experiencgdrdal structures. Actual
loadings will give rise to different conditions thaay trigger unexpected modes,
and investigations of those conditions might als@ @n insight not provided by

the ones used herein.

The joint element is very flexible relative to thgid connections assumed in the
direct beam to beam modelling. Its formulation cobé revisited to determine if
there should be incorporation of the other behasgiosuch as weak axis flexure
or twist. The interactions between all deformatians complex and may need to
be assessed to gain a better understanding adititdophaviour.
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The entire problem of lateral-torsional bucklingbeam columns is still open for
greater exploration. There may be unconservativ@igations in the formulae

used in design of very long Class 1 and Class fosecin the Canadian design
standard, as compared to the design of Class BisecThat interaction equation

is a different problem from the one addressedismlork.

There are instances beyond the scope of this wak ihdicate problems with
warping in post-failure scenarios (Chi and Uang 2002ang and Ricles 2006)
when reduced section (“dog-bone”) beams are usedmoment frames.
Investigation of the effects of mutual warping rastt in conditions of extreme
loadings may benefit structural integrity investigas in preventing progressive,

or disproportionate, collapses.

The effects of warping deformation in the connewi®mf moment frames are
currently neglected in the analysis and designhef frames. A study of these
effects and their impact on connection design andilde may prove of value in
the future. This is particularly of concern witretivork above by Chi and Uang
(2002), and Zhang and Ricles (2006).
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Appendix A: Substructure generation

The substructure described in Chapter 6 can beculiffto form by hand.
However it can be easily generated with an autotnptegram. The following
script is presented as one method of generatindpditeconnection substructure

element.

There are several variables that can be initialibgdthe analyst to enable
customisation of the substructure for various apntitions. The first is the
number by which the substructure will be referenc&tle others are the
geometric parameters for the depth between thgélgor continuity) plates in the
joint, and their thickness. The script uses the esdhickness for both plates.
While differing thicknesses could be used, the bedement attached to the
substructure is defined assuming uniform warpingistance and would not
accept the non-uniform warping restrained providgdunsymmetric conditions.
The same data is entered for the vertical platesfee thickness of the web.

The last parameter is the width of the substructirderms of shell elements.

This gives the analyst the option of using a déférmesh density.
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#!/usr/local/bin/perl -W

#

# Define substructure element for box joint

#

# Element number for library

$ElemeNum = 200;

# Required inputs for "box" type joint

# Centre to centre depth of beam, thickness of hori zontal plates
$depthb = 210 - 10.2;

$thikl = 10.2;

# Centre to centre width of column, thickness of ve rtical plates
$depthc = 210 - 10.2;

$thik2 = 10.2;

# web thickness

$webt = 5.8;

# full width of joint

$width = 133;

#

# Width by number of elements

$nelem = 16;

#

# This part writes the substructure element(s)

#

print "*HEADING\n This is a superstructure for a bo X type
joint\n";

#

# define geometry for joint

#

# The centre of the element is nominally at 0,0,0
#

$nelemup = int($depthb/Swidth * $nelem);

if ($nelemup % 2) == 1) {$nelemup++;}
$nelemfr = int($depthc/$width * $nelem);

if ($nelemfr % 2) == 1) {$nelemfr++;}
$nodenum = 1;

# Generate all nodes for joint

$dx = $depthc/$nelemfr;

$dy = $depthb/$nelemup;

$dz = $width/$nelem;

print "*NODE\n";

for ($h=0; $h<=$nelemfr; $h++) {
$x = ($h - $nelemfr/2)*$dx;
for ($i=0; $i<=$nelemup; $i++) {
$y = $dy*($i - Snelemup/2);
for ($j=0; $j<=$nelem; $j++) {
$z = $dz*($nelem/2 - $j);
print $nodenum,",", $x,",", $y,",", $z,"\n";
# Flag corner nodes

if ($h == 0) {
if ((($j==0) || ($j == Snelem)) && (($i==0) || ($i ==
$nelemup))) {

if (($j==0) && ($i==0)) {
$nodea = $nodenum;

} elsif (($j==0) && ($i==%nelemup)) {
$nodec = $nodenum;

} elsif (($j==%nelem) && ($i==0)) {
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$nodeb = $nodenum;
}else {
$noded = $nodenum;

}

}
} elsif ($h == $nelemfr) {
if (($j==0) || ($] == $nelem)) && (($i==0) ||
$nelemup))) {
if (($j==0) && ($i==0)) {
$nodee = $nodenum;
} elsif (($j==0) && ($i==%nelemup)) {
$nodeg = $nodenum;
} elsif (($j==$nelem) && ($i==0)) {
$nodef = $nodenum;
}else {
$nodeh = $nodenum;

}

}
} elsif (($x == 0) && ($y == 0) && ($z == 0)) {
$cntrnode = $nodenum;
}
$nodenum++;
}
}

}
# Nodes for "back" plate

print "*NSET, NSET=NODEA\n ".$nodea."\n";
print "*NSET, NSET=NODEB\n ".$nodeb."\n";
print "*NSET, NSET=NODEC\n ".$nodec."\n";
print "*NSET, NSET=NODED\n ".$noded."\n";
print "*NSET, NSET=FACEBA\n
".(($nelemup/2)*($nelem+1)+$nelem/2+1)."\n";
# Nodes for "front" plate
print "*NSET, NSET=NODEE\n ".$nodee."\n";
print "*NSET, NSET=NODEF\n ".$nodef."\n";
print "*NSET, NSET=NODEG\n ".$nodeg."\n";
print "*NSET, NSET=NODEH\n ".$nodeh."\n";
print "*NSET, NSET=FACEFR\n
".(($nelemup/2)*($nelem+1)+$nelem/2+1+(Snelem+1)*($
lemfr)."\n";
print ™*NSET, NSET=FACETP\n
".($cntrnode+($nelemup/2)*($nelem+1))."\n";
print "*NSET, NSET=FACEBO\n ".($cntrnode-
($nelemup/2)*($nelem+1))."\n";
# Node for "centre”
print "*NSET, NSET=CENTRE\n ".$cntrnode."\n";
#
# set up elements
#
print *ELEMENT, TYPE=S4R, ELSET=BACK\n";
$elem=1;
for ($n=0; $n<Snelemup; $n++) {

for ($m=1; $m<=$nelem; $m++) {

print

$elem."".($n*($nelem+1)+$m).",".($n*($nelem+1)+$m+

(($n+1)*($nelem+1)+Sm+1).",".(($n+1)*($nelem+1)+Sm

($| ==

nelemup+1)*$ne

1),

)."\n";
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$elem++;

}

}
#

print *ELEMENT, TYPE=S4R, ELSET=FRONT\n";
$noffset = ($nelem+1)*($nelemup+1)*$nelemfr;
for ($n=0; $n<Snelemup; $n++) {

for ($m=1; $m<=$nelem; $m++) {

print
$elem."".($n*($nelem+1)+$m+$noffset).”,".($n*($nel em+1)+$m+1+$no
ffset).",".
(($n+1)*($nelem+1)+$m+1+$noffset).",".(($n+1)*($ne lem+1)+$m
+$noffset)."\n";
$elem++;
}
}
#

print "*ELEMENT, TYPE=S4R, ELSET=TOP\n";
$noffset = ($nelem+1)*($nelemup);
for ($n=0; $n<$nelemfr; $n++) {
for ($m=1; $m<=%nelem; $m++) {
print $elem."".
($noffset+$m+$n*(Snelem+1)*($nelemup+1)).",".
($noffset+$m+1+$n*($nelem+1)*($nelemup+1)).",".
($noffset+$m+1+($n+1)*(Snelem+1)*($nelemup+1))."
($noffset+$m+($n+1)*($nelem+1)*($nelemup+1))."\n
Selem++;
}

}
#

print *ELEMENT, TYPE=S4R, ELSET=BOTTOM\n";
$noffset = 0;
for ($n=0; $n<Snelemfr; $n++) {
for ($m=1; $m<=%nelem; $m++) {
print $elem.",".
($noffset+$m+Sn*($nelem+1)*($nelemup+1)).",".
($noffset+$m+1+Sn*(Snelem+1)*($nelemup+1)).",".
($noffset+$m+1+($n+1)*($nelem+1)*($nelemup+1))."
($noffset+$m+($n+1)*($nelem+1)*($nelemup+1))."\n
$elem++;
}

}
#

print *ELEMENT, TYPE=S4R, ELSET=WEB\n";
$noffset = int($nelem / 2)+1;
for ($n=0; $n<$nelemfr; $n++) {
for ($m=0; $m<$nelemup; $m++) {
print $elem."".
($noffset + Sm*(Snelem+1) +
$n*($nelem+1)*($nelemup+1)).",".
($noffset + ($m+1)*($nelem+1) +
$n*(Snelem+1)*($nelemup+1)).",".
($noffset + ($m+1)*($nelem+1) +
($n+1)*($nelem+1)*($nelemup+1)).",".
($noffset + ($m)*($nelem+1) +
($n+1)*($nelem+1)*($nelemup+1))."\n";
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$elem++;

}

}
#

print "*SHELL SECTION, ELSET=BACK, MATERIAL=STEEL1\

print $thik2,"\n";

print "*SHELL SECTION, ELSET=FRONT, MATERIAL=STEEL1

print $thik2,"\n";

print "*SHELL SECTION, ELSET=TOP, MATERIAL=STEEL1\n

print $thik1,"\n";

print "*SHELL SECTION, ELSET=BOTTOM, MATERIAL=STEEL

print $thik1,"\n";

print "*SHELL SECTION, ELSET=WEB, MATERIAL=STEEL1\n

print $webt,"\n";

#

print "*MATERIAL, NAME=STEEL1\n";
print "*ELASTIC\n 200E3, 0.3\n";
print "*DENSITY\n 7.7E-9\n";

#

# Constraints

#

print "*EQUATION\n";

print "** Back face\n";

print "2\n";

print "NODEC, 1, 1, NODEA, 1, 1\n";
print "2\n";

print "NODEA, 1, 1, NODEB, 1, 1\n";
print "2\n";

print "NODEB, 1, 1, NODED, 1, 1\n";
print "** Front face\n";

print "2\n";

print "NODEG, 1, 1, NODEE, 1, 1\n";
print "2\n";

print "NODEE, 1, 1, NODEF, 1, 1\n";
print "2\n";

print "NODEF, 1, 1, NODEH, 1, 1\n";
print "** Top face\n";

print "2\n";

print "NODEC, 2, 1, NODED, 2, 1\n";
print "2\n";

print "NODED, 2, 1, NODEH, 2, 1\n";
print "2\n";

print "NODEH, 2, 1, NODEG, 2, 1\n";
print "** Bottom face\n";

print "2\n";

print "NODEA, 2, 1, NODEB, 2, 1\n";
print "2\n";

print "NODEB, 2, 1, NODEF, 2, 1\n";
print "2\n";

print "NODEF, 2, 1, NODEE, 2, 1\n";
#

# Generate element

#

print "*STEP\n";

# Note that type is of format Zn where 0<n<10000

printf "*SUBSTRUCTURE GENERATE, TYPE=Z2%d, OVERWRITE

MATRIX=YES\n",$ElemeNum;

\n";

1\n";

, RECOVERY
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print "*RETAINED NODAL DOFS, SORTED=NO\n";

# Lines to generate dof's - NodeNumber, dof_start, dof_end
print " ".$cntrnode.","."1,6"."\n";

print " ".$noded.","."1"."\n";

print " ".$nodeh.","."1"."\n";

print " ".$nodeg.","."2"."\n";

print " ".$nodee.","."2"."\n";

# End of definition

print "*END STEP\n";
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