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Abstract

Current alignment based secondary protein structure prediction methods are close to 

reach accuracy limit and recent research shows that consensus methods that utilize 

several complimentary prediction methods are the future. To this end, a novel 

classification problem related to the structure prediction in three states for protein 

structural fragments (SF) is considered. This thesis includes investigation of a novel 

attribute based sequence representation that improves ability to distinguish between the 

structures, analysis of relation between certain sequence properties, performance 

comparison for several prediction algorithms and finally attribute selection for 

prediction of SFs. Based over 50000 experiments and using carefully prepared protein 

data, the results show that on average 50% error rate reduction, when compared to 

prediction using standard protein representation can be achieved. This research 

provides useful guidelines for design of prediction methods not only for structure, but 

also more universally for structural class and content prediction tasks and for computer 

assisted molecular design.
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1 Introduction

Knowledge of protein structures is a key to understand the protein functions and their 

interactions with other molecules. Research in protein function and interactions is 

based on tertiary structure, which in turn depends on secondary structure conformation. 

Secondary structure prediction continues to be of significant impact due to large gap 

between number of known protein sequences and number of proteins for which the 

secondary and tertiary structure is known. For instance, NCBI database contains 

approximately 2 millions different proteins and SWISS-PROT stores over 150000 of 

high quality annotated protein sequences (Boeckmann et al„ 2003), while only about 

30000 protein secondary and tertiary structures stored in the Protein Data Bank (PDB) 

are known (Berman et al., 2000). Experimental methods for discovery of tertiary 

structures, such as X-ray crystallography and nuclear magnetic resonance 

spectroscopy, are time consuming, labor expensive, and cannot be applied to some 

proteins (Ganapathiraju et al., 2004). Computational methods for predict tertiary 

structure with an intermediate step of predicting secondary structure, which is usually 

classified in three states: helix, strand and coil became significant. Their main 

advantages are low cost, error-free repeatability, and relatively fast delivery of results, 

but they suffer from relatively low prediction quality. Given slow pace of learning new 

tertiary structures by experimentally (only a few thousands per year), development of 

reliable computational methods is of paramount importance.
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Currently, existing computational structure prediction methods use multiple 

alignments, which is based on observation that proteins with similar protein sequences 

have similar secondary structure, While a query sequence can be aligned with high 

confidence to a set of sequences with known structure, the alignment will generate 

predicted secondary structure with average accuracy of no more than 88%, which is 

due to natural variations observed in structural families (Rost et al., 1994; MacCallum, 

1997). Current alignment based protein secondary structure prediction methods achieve 

accuracy around 80% and soon they may reach accuracy limit. Since majority of 

prediction approaches are based on multiple alignment, research in methods that do not 

utilize this information is a viable alternative to design complementary prediction 

methods. Before new prediction method can be developed, solid foundations and 

possible architectures need to be researched and developed.

To this end, instead of following the common track of “blindly” improving accuracy of 

current alignment based structure prediction methods, this research defines a new 

problem. The problem aims to answer how the three secondary structures can be 

distinguished based on the primary sequence information and without using alignment. 

Here, protein sequences are divided into three sets of structural fragments, i.e. for helix, 

strand, and coil fragments. A classification model is build for each of the sets and 

ability of these models to distinguish between structures and correctly classify each 

fragment is evaluated through strict statistical tests. This research draws on several 

research papers to develop new and improved representation of protein sequence, to 

investigate which factors and prediction algorithms result in improving ability to

2
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distinguish between the different structures, and finally to propose new architectures 

for prediction of protein structure.

Past results show that simple representation of the sequences based on propensities of 

the protein residues and probability-based classification gave results for structure 

prediction about 60% to 66% accuracy (Chou & Fasman, 1978; Gamier et al., 1978; 

Gibrat et al., 1987; Rost & Sander, 1994; Rost et al., 1994). This research shows that 

for the analogous problem of classification of structural fragments using the same 

representation and similar classification methods gives about 65% accuracy. Where as 

improving the sequence representation and grouping structural fragments of similar 

length results in significant improvement in the accuracy. For the same classification 

methods, accuracy of over 84% was achieved, reducing the error rates by 50%, which 

shows that design on high quality non-alignment structure prediction methods is 

possible. In addition, some prediction algorithms are shown to produce superior 

prediction results, and thus selection of the proper algorithm is important to achieve the 

best possible results. We note that the research does not describe a new or compare 

with existing structure prediction methods, but rather analyzes different aspects of the 

related problem of structural fragment prediction. This problem allows addressing 

fundamental difficulties for all protein prediction tasks, including structure, structural 

class and content prediction, and since it is solved with high accuracy, it provides 

invaluable source of useful information.
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This chapter includes a short introduction to computational biology, an overview of 

protein structures and protein databases, description of the related work, motivation 

and problem definition, overview of the research goals and finally organization of the 

remaining part of the thesis.

1.1 Computational Biology

Computational Biology is defined as the development and application of data by 

analytical and theoretical methods, mathematical modeling and computational 

simulation techniques to the study of biological, behavioral, and social systems (NIH, 

2000). The methods have their origins in various scientific disciplines including those 

in physics, chemistry, engineering, and computer science. One of the promises of 

Computational Biology is the ability to manipulate vast amount of data in a time span 

not possible to achieve by traditional experimental techniques. An important sub area 

in Computational Biology is Molecular Biology.

There have been many fundamental changes in Molecular Biology research in the 

recent years due to spectacular advances in Genomics as well as computer 

technologies. New initiatives are now taking shape after the completion of genome 

sequencing projects, such as structural genomics, functional genomics or proteomics. 

There is now a shift in emphasis - from sequence to structure, from genes to proteins 

and their complexes, protein-protein interactions and post-transitional modifications.

Furthermore there is a need for characterizing structure and function at different levels 

to establish the link between genotype (internally coded, inheritable information) and

' 4
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phenotype (outward, physical manifestation). Experimental research should be 

conducted in coordination with theoretical and computational methods that allow for 

high throughput analysis and organization of biological data.

Molecular Biology is a field that encompasses a wide range of topics, ranging from 

molecular modeling to large-scale analysis of genome/ proteome data. For many years, 

an important and heavily explored problem in Molecular Biology is prediction and 

analysis of protein structure. Primary protein structure (protein sequence) consists of a 

sequence of protein residues called amino acid (AA) monomers. During synthesis 

protein sequence first folds into different secondary structures, which subsequently 

form a three dimensional (tertiary) molecule. Computationally identification of protein 

tertiary structure from protein sequence (Primary structure) is inaccurate. Hence, 

protein secondary structure prediction is used as an important intermediate step for 

predicting tertiary structure, protein function and protein structural change, as well as 

for computer-assisted molecular design (Truhlar et al., 1999). The molecular design is 

a basis for rational drug design and development of novel treatments for many 

diseases, especially genetic diseases such as cancer, cystic fibrosis, and autoimmune 

disorders.

1.2 Overview of Protein Structures

Proteins are required for the structure, function and regulation of the body cells, tissues 

and organs. Hormones, antibodies and hemoglobin are just few examples of proteins. 

Protein is a large bio-molecule consists of one or more amino acid (AA) chains. The

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



order of the AA’s in a protein chain and the properties of their side chains determine 

the 3D-structure and function of the protein.

1.2.1 Amino acids

An AA, also known as protein residue, is composed of a constant chemical group and a 

variable amine group as shown in Figure 1. Hence, AA chains have the same backbone 

structure and only differ in their side chains. Some AAs are hydrophobic, which means 

that they have water fearing side chains, which tend to turn themselves inward in the 

interior of the protein. In contrast, hydrophilic side chains tend to turn outward, to the 

exterior of the protein. Hydrophobic side chains can participate in hydrogen bonding. 

Side chains can also be charged.

M
t ;

* H ,N  -  C -  COO*
I

Figure l.Gcneral Structure of an Amino acid (Bruce, 1994)

Positively charged and negatively charged side chains can attract each other forming a

salt bridge. Interaction of these properties allows a chain of the AAs to fold into a 

unique, reproducible 3D structure. Twenty common AAs are responsible for forming 

proteins, which are shown in Figure 2. They are classified into four main families 

based on their chemical properties such as acidic, basic, uncharged polar and non polar 

(Bruce, 1994).

6
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Figure 2. Amino acid chart 

AAs are denoted by a single letter code in protein sequence as given in Table 1.

Table 1. Amino Acids

Amino Acid 3-Letter Code 1-Letter Code
Alanine Ala A
Cysteine Cys C
A spartate Asp D
Glutamate Glu E
Phenylalanine Phe F
G lycine Gly G
Histidine His H
Isoleucine He I
Lysine Lys K
Leucine Leu L
M ethionine M et M
A sparagine Asn N
Proline Pro P
Glutam ine Gin Q
Arginine Arg R
Serine Ser S
Threonine The T
Valine Val V
Tryptophan Trp W
Tyrosine Tyr Y

7
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1.2.2 Protein Structures

Protein structure is usually explained in terms of a structural hierarchy, from primary to 

quaternary.

Primary structure: Refers to the linear sequence of AAs in a protein chain as shown 

in Figure 3. Protein primary structure also referred as primer, protein sequence, 

primary sequence or one-dimensional (ID) protein structure.

Example-1.1: For 1FV5A protein from PDB the protein sequence is:

G S L L K P A R F M C L P C G IA F S S P S T L E A H Q A Y Y C S H R I

jionofi, i*v/f ivvw

Note: two cysteines form  a disulphide bridge.

Figure 3. Primary Structure

Secondary Structure: Refers to folding AA chain into one of the three states - helix or 

strand or coil as shown in Figure 4. Protein secondary structure is also referred as 

protein three-state structure, protein secondary sequence or two-dimensional (2D) 

protein structure. Secondary structure of a protein is determined by assigning one of

8
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the three states (Helix, Strand, Coil) to each AA in the protein sequence. Each state is 

represented by a single letter such as H= Helix, E= Strand and C=Coil.

Example-1.2: For 1FV5A protein from PDB the secondary sequence is: 

CCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHCCCCC

B eta -p lea ted  sheeT

T he secondary  s t ru c tu re  is o b se rv ed  in a 
localised portion  o f  o p ro te in .

Figure 4. Secondary Structure

Tertiary structure: The tertiary structure refers the way secondary structure fold with 

respect to each other to form a protein as a whole molecule, which is shown in Figure 

5. It is also known as three-dimensional (3D) protein structure. AAs, which are very 

distant in the primary structure, might be close in the tertiary structure, because of the 

folding of the chain.
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Figure 5.Tertiary Structure

Quaternary structure: Quaternary structure refers the association of one or more AA 

chains into a multi-subunit structure as shown in Figure 6.

Only p ro te in *  w ith  m ore thon
one ch a in  hove a  q u a te rn a ry  s t r u c tu r e

Figure 6.Quaternary Structure

1.2.3 Protein Structure Units

Domain: A Domain is a structurally distinct fragment of the protein sequence. Domain 

within a protein often performs different functions, and can have completely different 

structures and folds. Protein domains are typically 100 to 400 residues long. A protein 

can have one to many (10-12) domains connected by loops (coils).

10
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Folds: A protein fold is the tertiary structure of a protein domain, i.e. the order and 

spatial relationship of the secondary structure elements, which form the domain. Fold 

is described by the number, order and relative position. The number of distinct fold 

appears to be limited, and is about a thousand.

Motif: A motif is a pattern of secondary structures that can be found in various 

proteins. For example, motifs are the coiled coil (two helices twisted around each 

other) and the helix-loop-helix pattern.

Structural Fragment (SF): A structural fragment is a fragment of protein sequence 

that has uniform secondary structure state.

1.2.4 Protein Structure Forces

The protein structure and form is a result of numerous physical forces between 

individual AAs and atoms (Brand6n, 1991). Main forces are listed below:

Hydrogen Bonds: Hydrogen bonds occur when a pair of nucleophilic atoms such as 

oxygen and nitrogen shares hydrogen between them. Hydrogen bonds are directional 

and their strength deteriorates rapidly with changes in angle, such that they control and 

limit the geometry of interactions between side-chains. The pattern of hydrogen 

bonding is essential in stabilizing basic secondary structures such as a-helix and p- 

strand. Because of this, protein tends to form hydrogen bonds to maximize the number 

of hydrogen bonds.

1 1  '
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Hydrophobic Effect: Proteins are composed of AAs that contain side chains of 

hydrophobic and hydrophilic type. In aqueous solutions, hydrophobic residues tend to 

concentrate towards interior of the protein due to fear of water, while hydrophilic 

residues stays at the surface in contact with water. This confirmation is energetically 

favorable. Each exposed hydrophobic residue disrupts the pattern of hydrogen bonding 

and destabilize the structure. The hydrophobic force is one of the strongest 

determinants of protein structure.

Van der Waal forces: Van der walls forces are the interactions between immediately 

adjacent atoms, i.e. atoms nucleus and its neighbor’s electrons. They minimize the 

distance between atoms. Van der Waals interactions stabilize the central hydrophobic 

core of proteins.

Electrostatic forces: Oppositely charged side chains can form salt-bridges, which pull 

chains together. Charged side chains can inhibit certain folds. These electrostatic forces 

are relatively strong, and stabilize secondary and tertiary structure.

1.2.5 Relation between Structure and Sequence

The following points are considered to analyze the relation between structure and 

sequence:

Nature of the side chains: 20 AAs have different side chains that exhibit a large 

variation in size, polarity, charge, hydrophobicity, etc. These properties and above- 

mentioned forces will impact the confirmation of the protein.

12
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Secondary structure propensities: Energy calculations and statistics shows different 

residues prefer helices versus strands. Such preferences are determined by analyzing 

the composition of a-helices and P-strands from a large sample of known structures.

Additionally, protein homology plays an important role in protein structure, i.e. two or 

more closely related proteins may show high sequence homology and it can be detected 

by sequence alignment methods. However, there are strong evolutionary relationships 

between proteins. Proteins can be related and have the same overall structure, even if 

they have 25% or less sequence homology. This observation supports that protein 

sequence diverged during evolution in a way that allows the conservation of structure, 

as well as function, while allowing sequence to change. Thus, protein structure is more 

highly conserved than sequence, and it is important to be able to classify proteins based 

on their structure. A classification scheme often used for this purpose is known as 

structural classification of proteins.

1.2.6 Experimental Determination of Protein Structure

As structures are solved, they are stored in a centralized database called the Protein 

Data Bank (PDB) (Berman et al., 2000). Two main techniques are used to determine 

the structure of a given protein: X-ray Crystallography and Nuclear Magnetic 

Resonance (NMR). Both methods are relatively slow, labor-intensive, and expensive. 

They are dependent on used resolution and equipment.

13
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1.2.6.1 X-ray Crystallography

X-ray Crystallography is a technique that finds accurate 3-D positions of the atoms in 

the protein molecule. The protein is first isolated and purified to yield a high- 

concentration solution. This solution is then used to grow crystals containing the 

protein ‘frozen’ in one conformation. The resulting crystal is then exposed to an X-ray 

beam that diffracts regularly placed molecules in the crystal. The diffraction pattern 

represents the Fourier transform of the electron density in the molecule. Since electron 

density is higher near atoms, this information, in conjunction with the protein 

sequence, determines the position of the atoms within the protein and finally its 

structure.

A major disadvantage of X-ray Crystallography is the need to crystallize the protein, 

which is the most difficult task. In addition, the crystalline structure of a protein may 

be different from its structure in vivo. Hence, multiple maps may be needed for 

consensus. Many of the first structures of proteins were determined using this 

technique.

1.2.6.2 Nuclear Magnetic Resonance (NMR)

NMR finds atomic structure of proteins in solution rather than crystallizing the protein. 

A spinning tree of certain atomic nuclei generates a magnetic moment -  NMR 

measures the energy levels of such magnetic nuclei. These levels are sensitive to the 

environment of the atom- what they are bonded to, which atoms they are close to

14
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spatially, what the distances are between different atoms etc. By careful measurement, 

the structure of the protein can be constructed.

A disadvantage of NMR is the constraint on the size of the protein. It also requires a 

purified protein. Finally, the process needs to be done at an unrealistic pH, while 

protein structure is very sensitive to pH.

Given the long and labor-intensive nature of these experiments, it would be extremely 

valuable to have good computational methods to predict the structure of a protein based 

on its sequence to reduce the sequence-structure gap.

1.3 Protein Databases

Currently, a variety of protein databases exists. Simple sequence repositories store 

data with little or no manual intervention in the creation of the records. Expert curate 

databases include the original sequence data enhanced by manual addition of further 

information. Due to move in research from the genome to the proteins encoded by it, 

the databases will play an even more important role as central comprehensive resources 

of protein information. The databases can be divided into primary and derived 

databases. Primary database records are generated from original data with or without 

manual intervention, whereas derived databases are derived computationally from 

primary databases sources as shown in Figure 7.

15
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Figure 7.0verview of Protein Databases

For instance, AA as well as nucleotide sequences, protein structure and binding data 

are stored in the primary database. Alignments of AA sequences, protein models and 

phylogenetic trees are stored in derived database. One of the main sources of the 

primary database is PDB. A number of PDB derived, specialized secondary structure 

databases was created, e.g. DSSP (Kabsch & Sander 1983), PDBFINDER (Hooft et al.,

1996), PDBSELECT (Hobohm & Sander, 1994), SCOP (Murzin et al., 1995; Andreeva 

et al., 2004), and BLOCKS (Henikoff et al., 1991). Some of the most widely used 

protein databases are discussed next.

1.3.1 Primary Databases

1.3.1.1 SWISS-PROT and TrEMBL

SWISS-PROT protein knowledge base was started in 1986 by Amos Bairoch in the 

Department of Medical Biochemistry at the University of Geneva and developed by the 

Swiss Institute of Bioinformatics (SIB) and the European Bioinformatics Institute 

(Rodriguez-Tome, 1996). This database is generally considered as one of the best 

protein sequence databases in terms of the quality of the annotation. SWISS-PROT is a
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curated protein sequence database, which means that groups of designated curators 

(scientists) prepare the entries from literature and/or contacts with external experts. 

SWISS-PROT strives to provide a high level of annotation such as the description of 

the function of a protein, its domain structure, post-transactional modifications, 

variants, etc., with a minimal level of redundancy and a high level of integration with 

other databases. The databases can be accessed and searched through the SRS 

(Sequence Retrieval System) at ExPASy (Expert Protein Analysis System). One can 

download the entire database as one single flat file. As of May 24, 2005, SWISS-PROT 

(release 47.1) contains 181,821 entries. TrEMBL (Translated EMBL ) is a computer- 

annotated supplement of SWISS-PROT that contains all the translations of nucleotide 

sequence entries not yet integrated in SWISS-PROT. TrEMBL provides a 

comprehensive and high-quality view of the current state of knowledge about proteins.

Ongoing developments of SWISS-PROT are supplemented by functional and 

automatic annotation in the databases, provision of additional resources such as the 

International Protein Index (DPI) and XML format of SWISS-PROT and TrEMBL to 

the user community. The SWISS-PROT database has some legal restrictions and 

commercial companies must pay a license fee to SIB for using SWISS-PROT.

1.3.1.2 Protein Data Bank (PDB)

Protein Data Bank (PDB) was established in the 1970s at the Brookhaven Lab on Long 

Island, New York State, US. Since 1999, the Research Collaboratory for Structural 

Bionformatics(RCSB) manages PDB, which is a joint organization between Rutgers
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University, San Diego Supercomputer Center and NIST (National Institute of 

Standards and Technology). The PDB is a repository for 3-D structural data of proteins 

obtained by X-ray crystallography or NMR spectroscopy. They are submitted by 

biologists and biochemists from around the world (Bernstein, 1977). The PDB entries 

contain the atomic coordinates, some structural parameters connected with the atoms 

(B-factors, occupancies), computed from the structures such as secondary structure and 

contain some annotation, but it is not as comprehensive as in SWISS-PROT. 

Fortunately, there arc cross-links between the databases in both file formats. There are 

no legal restrictions on the use of the data in the PDB. Hence, PDB is released into the 

public domain and can be accessed free. The PDB is a key resource in structural 

biology and is critical in structural genomics. Countless derived databases and projects 

have been developed to integrate and classify the PDB in terms of protein structure, 

protein function and protein evolution.

1.3.2 Derived Databases

1.3.2.1 SCOP

One of the most accurate classifications of protein structures is the SCOP (Structural 

Classification of Proteins) database, which is constructed in large part manually. The 

SCOP database started by Alexey Murzin in 1994 at the Lab of Molecular Biology, 

MRC (Medical research Council), Cambridge, UK (Murzin et al., 1995; Andreeva et 

al., 2004). Its purpose is to classify 3D protein structures in a hierarchical scheme of 

structural classes with four levels. Experts manually maintain SCOP database. Protein

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



structures in the PDB are classified as shown in Figure 8 and stored in SCOP. SCOP is 

frequently updated as new structures are deposited in the PDB.

Class 

Folds 

Super Families 

Fam ilies

Figure 8. SCOP classification

The SCOP classes include:

• Family: At the bottom of the hierarchy are the individual domains of proteins,

extracted from the PDB. Sets of such domains are then grouped into families,

which consist of domains that have sufficient similarities in sequence, structure 

and function to imply a common evolutionary origin.

• Super-family: Often there are strong similarities in structure and function

between families, while the sequence itself differs from family to family. 

Families sharing common structure and function, but lacking strong sequence 

similarity are grouped into super families.

• Fold: Super-families that have similar tertiary structures are grouped together 

in sets called folds.

• , 19 •
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• Class: Finally folds with similarities in secondary structure are grouped 

together into 4 classes, which is the highest level of the hierarchy. These four 

classes are:

o a-helices: The secondary structure consists almost exclusively of a- 

helices.

o P-sheets: The secondary structure consists exclusively of P sheets 

(strands).

o a+ P : The secondary structure has both a  helices and mainly parallel P 

sheets (strands).

o a /j5: The secondary structure has both a  helices and mainly antiparallel 

P sheets.

The first official SCOP release 9 years ago consisted of 3179 protein domains grouped 

into 498 families, 366 super-families and 279 folds. The seven main classes in the 

latest release (1.65) contain 40452 domains organized into 2327 families, 1294 super­

families and 800 folds. These domains correspond to 20619 entries in the Protein Data 

Bank (PDB) (Westbrook J., 2002) and 1 literature reference to a structure with 

unpublished coordinates. Statistics of the current and previous releases, summaries and 

full histories of changes and other information together with parsable files encoding all 

SCOP data are available from the SCOP website (http://scop.mrc-lmb.cam.ac.uk/scop/) 

(Lo Conte L., 2002).

2 0 '. • ■
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1.3.2.2 PDBSELECT

The PDBSELECT database is a subset of the structures in the PDB that does not 

contain (highly) homologue sequences. The representative lists of protein chains are 

intended for anyone interested in working with currently known protein structures. 

They are intended to save time and effort by offering a representative selection that is 

currently about a factor of five or six smaller than the entire database (Hobohm & 

Sander, 1994). Typical uses are introductory browsing, analysis of protein 

architecture, development of prediction methods, and model building by moduiar 

construction. To use the lists, a user needs access to datasets from the Protein Data 

Bank and software that reads protein structure files.

1.3.2.3 DSSP

The Dictionary of Secondary Structures of Proteins (DSSP) (Kabsch & Sander 1983) 

database mainly contains secondary structure assignments for all protein entries in the 

PDB. The DSSP program defines secondary structure, geometrical attributes and 

solvent exposure of proteins, given atomic coordinates in PDB format. The DSSP 

annotates each protein residue belonging to one of the eight secondary structure types: 

H (alpha-helix), G (3-helix or 310 helix), I (5-helix or rc-helix), B (residue in isolated 

beta-bridge), E (extended strand), T (hydrogen bond turn), S (bend), and (any 

other). Typically they are reduced to 3 groups: helix (H, which includes “H” and “G”), 

strand (E, which includes “E” and “B”), and coil (C, which includes remaining types) 

(Moult etal., 1997).
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1.3.2.4 PDBFINDER

The PDBFINDER database is a database that is constructed using a PERL script from 

the PDB, DSSP and HSSP (Homology derived Secondary Structure of Protein) 

databases (Hooft R.W.W, 1996). View Objects, View Sequences or Import to 

workbench are aids to displays the original database annotation, associated sequences 

and sequence information for comparison and alignment. Many of the fields contained 

in the PDBFINDER database are difficult to access from the original databases. Some 

information is retrieved from the original literature.

1.3.2.5 PROSITE

PROSITE (Database of protein families and domains) is a method of determining what 

is the function of uncharacterized proteins translated from genomic sequences. It 

consists of a database of biologically significant sites, patterns and profiles that help to 

reliably identify to which known family of protein (if any) a new sequence belongs 

(Bairoch, 1993).

1.3.2.6 BLOCKS

BLOCKS are multiply aligned ungapped segments corresponding to the most highly 

conserved regions of proteins. The blocks for the BLOCKS database are made 

automatically by looking for" the most highly conserved regions in groups of proteins 

represented in the PROSITE database. These blocks are then calibrated against the 

SWISS-PROT database to obtain a measure of the chance distribution of matches. 

These calibrated blocks that make up the BLOCKS database (Henikoff, S, 1991).
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Block Searcher, Get Blocks and Block Maker are aids to detection and verification of 

protein sequence homology. They compare a protein or DNA sequence to a database of 

protein blocks (current version), retrieve blocks, and create new blocks, respectively.

1.4 Related W ork

Ultimate goal of computational approaches is to determine 3D protein structure based 

purely on protein sequence. Several approaches have been designed to predict protein 

structure. One of the important computational problems in predicting protein structure 

is the secondary structure prediction, which is the key focus in this research. The DSSP 

annotates each AA that constitutes the primary structure as belonging to one of the 

eight secondary structure types, which are typically reduced to three states: helix (H), 

strand (E) and coil (C). Three-state secondary structure (secondary sequence) of a 

protein aims to assign one of the three states of secondary structure to each AA in the 

protein sequence.

Example-1.3: 1FJNA protein from PDB has:

Protein s e q u e n c e :  g f g c p n n y q c h r h c k s i p g r c g g y c g g w h r l r c t c y r c g

Three-state structure: c c c c c c h h h h h h h h h h c c c c c e e e e c c c c c c c e e e e c c c

Secondary structure prediction currently incorporates structure prediction, content 

prediction and structural class prediction tasks. In structure prediction, each AA in a 

protein sequence is assigned to one of the three states of the secondary structure, which 

is usually performed using database search methods. In content prediction, prediction
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of the secondary structure content of a given protein sequence is done based on 

sequence properties. In structural class prediction, folds with similarities in secondary 

structure are grouped together, which is usually performed using data mining methods. 

Predictions performed with use of multiple alignment profiles (described later) are 

known as alignment methods and methods that are directly based on sequence is 

known as attribute methods, see Figure 9.

prediction
algorithm

prediction
algorithm

m ultiple
alignm ent

attribute
representation

protein
database

primer

secondary structure 
information 

structure 
content
structural class

- type
dom ains, etc.

Figure 9.0verview  of the protein structure prediction approaches

Structure prediction is mainly performed by alignment methods, while majority of the 

structural class and content prediction is performed by attribute methods. The later 

represent different protein sequences by an attribute vector of the same length, which 

allows using standard machine learning and data mining methods for prediction. 

Structure prediction methods use different datasets and different approaches. The 

methods most often use PSI-BLAST profiles (Altschul, 1997) as input and usually do 

not use other information derived from the protein sequence. Over the last couple of 

years, their underlying architecture stays the same.
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1.4.1 Structure Prediction Methods

Over the last 30 years numerous prediction methods have been developed and continue 

to improve accuracy, from early results of about 60% to state-of-the-art methods that 

achieve about 80% accuracy (Rost, 2001). The first generation prediction methods 

were based on single AA propensities (Chou & Fasman, 1978; Garnier et al., 1978). 

Second-generation methods have been based on 3-51 adjacent residues propensities 

(Gibrat et al., 1987; Rost & Sander, 1994), and achieved accuracy of less than 66%. 

The third generation methods use evolutionary information and large protein databases, 

and consider global properties associated with protein families. They use multiple 

alignment and position specific profiles, and commonly apply PSI-BLAST (Altschul et 

al., 1997; Hargbo & Elofsson, 1999; Jones, 1999; Rost & Sander, 2000). Recent years 

brought advancements in prediction evaluation with the CASP (Moult et al., 2003) 

CAFASP (Fisher et al., 2003), and EVA (Eyrich et al., 2001) procedures, and 

integrated tools for prediction using multiple servers (Kurowski & Bujnicki, 2003). 

Strong interest is continuously observed, e.g. EVA monitors quality of 19 third 

generation methods. Most of the early structure prediction methods used single 

sequence information while recent methods use multiple sequence alignment 

information as input for prediction.

1.4.1.1 Attribute Methods

The principal idea behind early methods for secondary structure prediction is the fact 

that segments of consecutive residues have preferences for certain secondary structure
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states (Branden, 1991). The goal is to predict whether the residue at the center of a 

segment of typically 13-21 sequence-consecutive residues is in a helix, strand or in 

none of the two (non-regular secondary structure, often referred to as the 'coil' or 'loop') 

(Rost, 2001). Thus, the predictive information is sequence-local. Many different 

algorithms have been applied to tackle this simplest version of the protein structure 

prediction problem: physico-chemical principles, rule-based devices, expert systems, 

graph theory, linear and multi-linear statistics, nearest-neighbor algorithms, molecular 

dynamics, and neural networks (Rost, 1996). The early methods by Nagano (Nagano, 

1973), Chou and Fasman (Chou, 1974) and Gamier and colleagues (Gamier et al., 

1978) relied on statistical treatment of compositional information for predicting three- 

state secondary structure.

Following these prediction achievements, attempts have been made by using sequence 

information at a more abstract and general level, such as the hydrophobicity rules 

applied in Lim’s method (Lim, 1974). Prediction is also achieved by training, in most 

cases, a Neural Network (NN) on fixed-size sequence windows classified by the state 

of the central residue. However, until 1992 performance accuracy for three-state 

prediction seemed to have been limited to about 60%. In general, attribute methods 

represent the sequence by a fixed length vector that describes certain properties, such 

as AA composition, hydrophobicity, weight, etc. The limited accuracy was argued to 

result from the fact that all methods used only local information in sequence (window 

of less than 20 adjacent residues). Since last decade, the main improvement in 

accuracy was due to using family-derived profiles for both training and input.
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1.4.1.2 Alignment methods

The principle idea behind sequence alignments is to optimally align the strings of 

amino (or nucleic) acid sequences for similarity. In protein sequences, finding the best 

alignment usually requires introduction of gaps in one sequence, or insertions in the 

other. Each alignment scheme assigns a penalty for each change and optimizes the 

alignment so that the total cost is minimized. Similarities between two sequences are 

represented by pairwise alignments as shown in Figure 10 and the similarities between 

three or more sequences are represented by multiple alignments as shown in Figure 11.

ACGGCTTACTAC
ACGGCATACTAC

Figure 10. Pair-wise alignment

Pairwise Alignment Methods: Needleman and Wunsch (Needleman & Wunsch, 

1970) created the first automated global pairwise alignment algorithm that optimizes 

alignment over the entire length of the two sequences. Smith and Waterman introduced 

local sequence alignments (Smith & Waterman, 1981), which find more highly 

conserved subsequences. Dayhoff (Dayhoff, 1978) and Henikoff (Henikoff, 1991) 

assign different penalties for substituting AAs that are similar than for substituting AAs 

that are very different using scoring matrices, which are based on probabilistic 

principles (Durbin, 1998). In addition to developments in optimal sequence alignment, 

work on approximate alignments has been very important for practical use. The
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FASTA (Lipman and Pearson, 1985) and BLAST (Altschul, 1990) algorithms both 

advanced the practicality of searching sequence databases for local alignments because 

they have greatly increased search speed over optimal alignments. Both work on the 

principle of heuristic elimination of sequence regions that are unlikely to produce good 

local alignments. BLAST (Basic Local Alignment Search Tool) has been the dominant 

sequence alignment program because of its superior speed and a well-developed 

statistical interpretation of the results. Modifications to the algorithm, such as PSI- 

BLAST(Position Specific Iterative BLAST) (Altschul, 1997), have also been 

significant for finding more distantly related sequences.

Multiple Alignment Methods: Multiple sequence alignment is useful for displaying 

the commonalities in a family of sequences that may have common structure or 

function see Figure 11.

GGTIiAIQAQGDLTLAQKKIVRKTWH
A ----------------------GLTAAQIKAIQDHWFLNIKG
  ---------------- LSADQISTVQASFDKVK--------- - - G
  -------------GLSAAQRQVXAATWKDIAGA

Figure 11. Multiple alignments

Although pairwise alignment may provide some of this information, it does not 

optimize the comparison across all the sequences in the family. Optimal multiple 

sequence alignment is extremely costly and most practical methods use a variety of 

heuristics to perform multiple alignments. As with pairwise alignments, many 

variations and improvements have been made to multiple alignment methods (Gusfield, 

1997). ClustalW ( Thompson, 1994) is a popular multiple sequence alignment program
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that illustrates the type of approximation algorithms that may be used to speed up the 

alignment. ClustalW first performs pairwise alignments between all the pairs of 

sequences to be aligned. The similarity scores are used to create a tree by clustering 

sequences that are more similar. The sequences are then progressively aligned starting 

with the most similar sequences. Sequences are merged into profiles that can then be 

merged with other sequences or profiles. A variety of other heuristic refinements 

improves the performance of the algorithm. By observing the aligned portion of the 

sequences, many patterns can be easily observed. The first method that reached a 

sustained level of three-state prediction accuracy above 70% was the profile-based 

neural network system PHD that uses evolutionary information derived from multiple 

sequence alignments as input (Rost, 1996). By stepwise incorporation of particular 

evolutionary information, prediction accuracy was pushed above 72% accuracy (Rost 

& Sander, 1993a, 1993b, 1994, 1996). At the beginning of twenty first century 

methods, such as PROFsec (Rost, 2000) and PSIPRED (Jones, 1999) reached a level of 

76% three-state per-residue accuracy (Eyrich, 2001; Rost, 2001). Furthermore, 

significantly fewer residues are confused between the helix and strand states, which is 

the most frequent mistake.

Other Multiple Alignment Methods: Gibbs sampling techniques have been used to 

accelerate multiple alignment (Lawrence, 1993). This method is commonly used to 

find short local alignments that are motifs in relatively divergent groups of sequences. 

Many other patterns, such as consensus sequences or HMMs (Eddy, 2001), utilize 

multiple sequence alignments as a preprocessing step.
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1.4.2 Content and Structural Class Prediction Methods

Since the last decade, an increased interest in prediction of other structural aspects, 

such as structural class and content is observed. In the former case the protein sequence 

is used to predict structural class (Wang & Yuan, 2000) usually defined based on the 

SCOP method (Murzin et al., 1995). In the latter case the amount of each of the three- 

state secondary structures in a given protein sequence are predicted (Lin & Pan, 2001). 

Each of these tasks gives insight into protein structure, and provides invaluable 

information that can be used to improve structure prediction. Other prediction tasks 

include protein type prediction (membrane and soluble), and protein domain partition.

1.5 Motivation

Since predicting the complete protein 3D structure is difficult, many researchers have 

focused on trying to predict the secondary structure of a protein. Unfortunately, 

predicting secondary structure of a protein is also a very difficult problem because it 

depends on the overall 3D structure of the fold. Most of these existing computational 

prediction methods for protein secondary structures use alignment approach, which is 

based on observation that protein chains of similar primary structure have similar 

secondary structure. The prediction of secondary structure by the alignment methods is 

limited, on average to no more than 88% accuracy. The state-of-the-art alignment 

prediction methods currently achieve around 80% accuracy for the three-state (H, E, C) 

secondary structure prediction (Petersen et al., 2000; Pollastri & McLysaght, 2005),
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and soon they will reach the accuracy barrier. Research shows that prediction accuracy 

is limited by accuracy of the template alignments, and that present methods do not 

overcome misalignments (Schonbrun et al., 2002). Further breakthrough can be 

expected by combining results produced by several different and complimentary 

methods. This was shown in the recent CASP4 study, when CAFASP-consensus 

method, which combines results from several, automated servers, performed better than 

any individual method (Sippl et al., 2001). Since majority of current prediction 

approaches are based on multiple alignment and recent research shows that consensus 

methods that utilize several complimentary prediction methods are the future. To this 

end, this thesis defines a novel classification problem related to the structure prediction 

in three states for protein structural fragments (SF) are considered based on the protein 

sequence information and without using alignment information.

1.6 Research Aim

A novel classification problem related to the structure prediction in three states is 

considered. Protein sequences are divided into three sets of structural fragments, 

defined as the longest fragments of protein sequence that correspond to the same 

secondary structure state, and an automated classification of the fragments to the 

corresponding secondary structure states without using sequence alignment is 

performed. The classification problem allows addressing several important hypotheses 

and questions: 1) How well helix, strand, and coil fragments can be distinguished using 

state of the art advancements from the existing protein structure, content and structural
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class prediction fields? 2) Which factors and prediction algorithms result and do not 

result in improving the ability to distinguish between the three secondary structures? 3) 

Are methods that do not utilize alignment are feasible to reliably distinguish between 

different secondary structures? and 4) How novel non-alignment based structure 

prediction methods can be developed?

1.7 Overview of the Research Goals

The main goals of research include investigation of a novel attribute based sequence 

representation, analysis of relation between certain sequence properties like length, 

position and information at the edges, comparison of several prediction algorithms 

performance and finally optimum attribute selection to improve ability to distinguish 

between the three secondary structures. This work performs comprehensive sets of 

experiments using wide range of Machine Learning based classification systems, to 

address multi-goal investigation using carefully selected large protein database. 

Detailed description of the goals is provided later in the thesis.

1.8 Organization

The remaining thesis is organized as follows. Chapter 2 includes background 

information related to Machine Learning including basic definitions, concepts related 

to classification, various classification systems and performance measures. Chapter 3 

describes attribute representation of protein sequences used by current methods and a 

new proposed representation. Chapter 4 defines the problem of structural fragment
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prediction, dataset preparation and detailed goals. Chapter 5 discusses comprehensive 

experimental results and analysis of the goals. Finally, Chapter 6 concludes with the 

summary and future work of the considered prediction problem with respect to 

commonly performed protein structure, content and structural class prediction tasks.
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2 Background in Machine Learning

Machine Learning (ML) is defined as a “computer program that can learn from 

experience with respect to some class of tasks and performance measure” (Mitchell,

1997). Prediction is the key for learning, which is the essence for intelligence. Many 

problems in biological systems cannot be defined well except by using examples 

(experimental data). Humans can specify the input/output pairs, but the relationship 

between the inputs and outputs are unknown (e.g. the protein folding mechanism). As 

pointed out in (Baldi, 1998), ML methods, such as neural networks, hidden Markov 

models, and belief networks, are ideally suited for areas where there is a lot of data but 

little theory. This is exactly the situation in Molecular Biology. In particular, molecular 

biologists are constantly faced with induction and inference problems, where they are 

building models from available data. ML methods are suitable for Molecular Biology 

data due to the learning algorithm’s ability to construct hypotheses that can explain 

complex relationships in the data. Finally, the hypotheses can then be interpreted and 

validated by a domain expert, who either accepts or refuses them. In this section, basic 

definitions and concepts used in ML and most popular classification systems, which 

are applied was described.

2.1 Definitions

Attribute is a property, used to distinguish individuals. Its value is nominal or 

numerical. Attribute data can be continuous or discrete.
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Example-2.1: 1FV5A protein has a sequence length 35.

Protein Id and sequence length are attributes of a protein.

Protein Id =1FV5A is a nominal value 

Sequence length =35 is a numerical value.

Discrete Attribute has only a finite number (countable) of values. The values cannot 

be subdivided meaningfully. Discrete information can be categorized into a 

classification.

Example-2.2: Secondary structure state belongs to {helix, strand, coil}. Hence,

secondary structure state data is discrete.

Continuous attribute has larger number of unique values. The values can be broken 

down into smaller parts and still have meaning. Different discretization methods are 

available to convert continuous into discrete form.

Example-2.3: Protein length varies between several to several hundreds of AAs. 

Hence, protein length is continuous.

Tuple is set of attributes that describe of an individual, also referred as object, 

example, sample or instance. Most commonly, tuple is represented as a row in a table.

Example-2.4: As shown in Table 2, each row represents a tuple described by attributes 

of a protein.
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Table 2. Protein Dataset

Protein Id Protein sequence___________________ Secondary sequence_______________  . .
1 E D S A  T T L Y T S L H G Y F V F G P T G C N L E G F F A T L G G E I  C C C C C C C C C H H H H H C C C C C C C C C C C C C C C C C -^   "

1 Q K 7 A  G C L G D K C D Y N N G C C S G Y V C S R T W K W C V L A G P W  C C C C E E E C C C C C C C C C E E E E C C C C E E E E C C C C ^ — tUP 'e

1 J D M A  M G IN T R E L F L N F T I V L IT V I L M W L L V R S Y Q Y  C C C C C C C H H H H H H H H H H H H H H H H H H H C C C C C  ______

Dataset is a named collection of data that contains tuples having the same attributes. 

Its most popular representation is a table, which consists of rows and columns. Row 

represents a tuple and column represents an attribute.

Example-2.5: Above Error! Reference source not found, is a dataset of proteins that 

contains protein objects.

Class attribute is defined by the user and usually is discrete. Its value is defined by a 

condition that involves combination of the predicting attribute values, which referred 

as class or class label.

Predicting attributes used to define a class, i.e. all attributes except the class 

attributes.

Training Data is a finite subset of dataset, in which class is predefined. Training 

dataset is used for generating a model in a learning process.

Test Data is a finite subset of dataset, in which class is not defined (unknown). Test 

data is used in a classification (prediction) process, and is not used in the learning 

process.

Example-2.6: In Table 3, where Structure_type is a class attribute. Length, 

Molecular_weight and Average_hydrophobicity are predicting attributes. Training data
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contains first three rows where class is predefined and test data contains last three

rows.

Table 3. Protein subsequences dataset 

,— — Predicting attributes--------------, class attribute
I + i  +

Length Molecular Average_hydroph Structure 
_weight obicity___________ _T ype

14 134.36 -0.22 H < -
9 118.36 0.28 E Training Data

5 120.75 -0.64 G «*-
11 124.36 -0.22 —

17 108.36 0.64 — Test Data

15 110.75 -0.22 . . . <-

Positive and Negative examples objects in a dataset that satisfy the class condition are 

called positive (+ve) examples and remaining are called negative (-ve) examples.

Example-2.7: Protein subsequences dataset shown in Table 4, where class ‘H’ is 

defined by a condition If length>5 then ‘H ’. Positive examples are the first three rows 

that satisfy the given condition and negative examples are last three rows that do not 

satisfy the given condition.

Table 4. Protein Dataset w ith+ve a n d -v e  examples

Length Molecularjweight Average_hydrophobicityStructure_ Type
6 95 0.42 H
9 150 0.32 H
7 136 -0.54 H

4 124 -0.62 E
3 108 0.44 E
2 110 0.92 C

+ve
examples

-ve
examples
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2.2 Machine Learning Concepts

Learning Schemes: Generally there are two types of ML schemes. Supervised 

learning where the goal is to learn patterns from the training data in order to predict 

class labels of unseen (unlabeled) test data; and unsupervised learning where the goal 

is to group or cluster unlabeled data based on observed patterns or associations. The 

overall tasks for the learning system (learner) are to classify, characterize, and group 

the input data. Both supervised and unsupervised learning are used extensively in 

computational biology research. General ML topics can be found in (Mitchell, 1997). 

This section is focused on ML in the protein secondary structure prediction problem, 

which is generally applied in a classification problem framework.

Classification Problem: Classification problems are supervised learning tasks in 

which the classification system learns patterns from a training set. A  training set T = ( A ,  

C) consists a subset of objects A = ( A j  . . .  A n )  belonging to class labels C = ( C j  .  .  . 

Cn). Each object of the training set ( A j ,  C j )  may correspond to an individual protein (or 

its structural fragment) A j ,  and its known class label C j .  Each protein is represented as a 

set of attributes Aj = ( a j j ,  a j 2,  . . . .  a j m ) .  The learning process generates classification 

model that can consequently be used to make a class label prediction Cj for each 

object A t from a test set. Finally, evaluation of the performance by comparing the 

predicted class labels with the original class labels of the test set objects is performed 

using metrics and testing procedures which are described later. The process is shown in 

Figure12.
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Figure 12. Learning and Classification Process

2.3 Testing and Evaluation Techniques

While performing classification task on test set (unseen during training), several 

performance metrics and testing procedures are used to validate and evaluate the 

generated model.

Testing: Generally, two testing procedures are utilized to validate the model.

•  Single-split testing: In this procedure, the original data is divided into training 

and testing sets. These sets are disjoint, and the first one is used to derive data 

model, and the second to test it.

• k-fold cross validation testing: In this procedure, the data is divided into k 

subsets of approximately equal size. Model is generated k times by a ML 

algorithm, each time leaving out one of the subsets from training, but using 

only the omitted subset to calculate tests. Test results report mean values and
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standard deviations of the prediction quality, averaging through k tests. Ten­

fold cross validation is the most often used cross validation procedure.

K-fold cross validation method is more reliable test procedure than the single-split 

method. It shows the true performance in terms of validity and of tested classification 

system. Using the single-split procedure may lead to fitting the generated model to the 

test set, which may lead to falsifying the true performance of the tested algorithm. 

Therefore, a 10-fold cross validation testing procedure is used in this research.

Performance of classification system is commonly evaluated using a confusion matrix. 

A confusion matrix contains information about actual and predicted classifications 

done by a classification system (Kohavi & Provost, 1998). The following Table 5 

shows confusion matrix that results from the prediction of a binary classification, in 

which 2 classes are defined. Several performance metrics have been defined using this 

confusion matrix. The entries in the confusion matrix have the following meaning:

Table 5. Confusion Matrix

Predicted Negative Predicted Positive
Actual Negative a b
Actual Positive c d

• a is the number o f  correct predictions that an example is negative,

• b is the number o f incorrect predictions that an example is positive,

• c is the number o f  incorrect predictions that an example negative, and

• d  is the number o f correct predictions that an example is positive.
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Performance metrics:

The accuracy (AC) is the proportion of the total number of predictions that were 

correct:

Ar> — a + d  
M a + b + c + d

The sensitivity (true positive rate or TP or recall) is the proportion of positive cases 

that were correctly identified:

TP = —j —r c + d

The fa lse  positive rate (FP) is the proportion of negatives cases that were incorrectly 

classified as positive:

FP: b
a +  b

The specificity ox true negative rate (77V) is defined as the proportion of negatives 

cases that were classified correctly:

a + b

The fa lse negative rate (FN) is the proportion of positives cases that were incorrectly 

classified as negative:

FN-. c + d

The precision (P) is the proportion of the predicted positive cases that were correct:
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The accuracy metric may not be an adequate performance measure when the number of 

negative cases is much greater than the number of positive cases (Kubat et al., 1998), 

Suppose there are 1000 cases, 995 of which are negative cases and 5 of which are 

positive cases. If the system classifies them all as negative, the accuracy would be 

99.5%, even though the classification system missed all positive cases. Hence, metrics 

like sensitivity measures how many of the examples described by the rules as positive 

were truly positive and specificity measures how many of the examples described by 

the rules as negative were truly negative. Sensitivity and specificity enable evaluation 

of how the rules perform on the positive and negative data separately, which is very 

important in case when the numbers of positive and negative examples are different. 

Only the results with high values for accuracy, sensitivity and specificity can assure 

high confidence in the generated model.

2.4 Classification system s

The classification systems can be divided based on the generated model into the 

following families:

• Black-box systems, generate models, which cannot be interpreted by the user.

• W hite-box systems, generate interpretable models. These systems can be 

further divided into:
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o Rule-based systems - generate models that consist of production rule 

sets.

o Decision tree systems - generate models that consist of decision trees, 

o Probabilistic systems - generate probabilistic models.

2.4.1 Neural Network Classification Systems

Neural Networks (NNs) are one of the widely used ML algorithms and they are the 

earliest technique applied to the field of biological analysis (Stormo et. al., 1982). NN 

models are based on the operation of synaptic connections in neurons of the brain, 

where input is processed on several levels and mapped to a final output. NNs are built 

from multi-layer of nodes linking each other. Generally, there are three layers in the 

network, the input layer, the output layer and a hidden layer(s) in between them. The 

most common NN model is the multilayer perceptron (MLP) that is as a supervised 

network because it requires a desired output in order to learn. The goal of this type of 

network is to create a model that correctly maps the input to the output using training 

data, so that the model can be used to produce the output when the desired output is 

unknown. A graphical representation of an MLP is shown in Figure 13. The MLP and 

many other NNs learn using an algorithm called back-propagation. With back- 

propagation, the input data is repeatedly presented to the NN. With each presentation, 

the output of the NN is compared to the desired output and an error is computed. The 

error is then fed back (back-propagated) to the NN and used to adjust it such that the 

error decreases with iteration and the neural model gets closer to producing the desired
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Figure 13. two hidden layer multiplayer perceptron (MLP)

output. MLP NNs are capable to learn and solve many real-world problems, but lack of 

explanatory power is their main limitation. It is hard to interpret the decisions and 

approaches of each node in the networks and thus validation of the networks becomes 

infeasible.

Neural Networks have been widely used in the protein structural and functional 

prediction (Hirst & Sternberg, 1992; Qian & Sejnowski, 1988; Sasagawa & Tajima, 

1993; Nakata, K. 1995; Macklin & Shavlik 1993) and protein classification (Wu et. al. 

1995; Ferran & Ferrara, 1992).

2.4.2 Decision Tree Classification Systems

The decision tree (Quinlan, 1986) is a supervised learning technique, which is one of 

the widely used ML algorithms due to simplicity. The decision tree allows 

classification of a test data by following series of decisions from the root to a leaf of 

the tree. Each node in the tree represents a decision on one of the predicting attributes
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and a leaf node represents a class label. Decision about which branch to follow is made 

on basis of the value of a predicting attribute. The classification returned for an object 

is found as the decision process reaches the leaf node containing the appropriate class 

label. A graphical representation of a simple decision tree is shown in Figure 14.

A1

A2 A4Cl

C4A3 A5C5

ClC2 C3C3

Figure 14. A decision tree with attributes A1 ...  A5 and classes C l ... C5

Some decision tree classification systems are CART (Breiman, L.,1984), ID3 (Quinlan, 

J R., 1986), C4.5 (Quinlan, J.R, 1993), T1 (Holte, R.C, 1993), and C5.0 (RuleQuest 

Research, 2003). Among all decision tree learners, the most scalable, and at the same 

time most accurate in terms of the generated rules and trees is the C5.0 learner (Cohen, 

1999)

The advantages of decision trees are that they are easy to use, practical, robust to noise 

and capable of learning disjunctive expressions. Over fitting of the data and
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overlapping in the classes are some possible drawbacks of decision trees. Furthermore, 

the decision trees are hard to optimize.

Shimozono et. al. (Shimozono et. al., 1992) used the decision trees to classify 

membrane protein sequences according to functional classes. Cherkauer, Shavlik 

(Cherkauer and Shavlik, 1993) and Selbig et al. (Selbig et al., 1999) applied them for 

protein structure prediction, and Salzberg (Salzberg, 1995) used decision trees to locate 

protein-coding genes.

2.4.3 Probabilistic Classification systems

Probabilistic classification generates models based on probability. Naive Bayes (NB) is 

one of the most popular probabilistic classification system used in the ML community. 

NB considers all attributes as random variables and assumes independence among 

attributes. Given a object with attributes (Aj, A2 ,...,A n) and goal is to predict class C, 

it finds the value of C that maximizes P(C| Ai, A 2 ,...,A n ). Naive Bayes classification 

systems can be applied only with discrete attributes.

Conditional probability:

P(Ah A2, ..., An |C) = P(A,| C) P(A2| C )... P(An| C), where P(A, | C) = |A,|/ Nc .

If some attributes are dependent, then other techniques such as Bayesian Belief 

Networks (BBN) can be used. Detailed descriptions of Bayesian networks can be found 

in Mitchell (Mitchell, 1997).
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Probabilistic classification systems are robust to isolated noise points, handle missing 

values and are robust to irrelevant attributes.

Probabilistic systems have been used by Schmidler et al. (Schmidler et a l ,  2000) to 

predict protein secondary structure and Cai et al. (Cai et al., 2000) to model the splice 

sites.

2.4.4 Rule-based Classification Systems

Rule based classification systems are widely accepted due to their easy 

understandability and interpretability. Rule discovery has been studied for more than 

twenty years and a number of methods have been proposed. Rule discovery algorithms 

use the divide and conquer approach, which finds a first “best" rule from a dataset and 

then all objects covered by the rule is removed from the dataset. This procedure 

repeated until there are no objects left in the dataset. The “best" rule is usually found 

using heuristics. Some typical systems in this category are AQ family of algorithms 

(Kaufman, 1999), INDUCE (Dietterich, 1981), FOIL (Quinlan, 1990), REP (Cohen,

1993), IREP (Furnkranz, 1994), RISE (Domingos, 1994), RIPPER (Cohen, 1995,

1996), SLIPPER (Cohen, 1999), LAD (Boros, 2000), LERILS (Chisholm, 2002) and 

IREP++ ( Dain, 2004). RIPPER (Cohen, 1995) learner was shown to have very 

competitive accuracy, and better complexity due to using a divide-and-conquer 

approach combined with a greedy set-covering based search procedure during the rule 

induction process. After a rule is generated, it is immediately pruned in a greedy 

manner. SLIPPER (Schapire, 1998) is one of the most advanced rule learners. It is
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shown to improve upon the accuracy o f RIPPER learner by applying a boosting 

strategy in the induction process. SLIPPER learner is characterized by low complexity, 

which is asymptotically identical to RIPPER’s complexity. The RIPPER and SLIPPER 

learners are selected as a representative of rule learners in this research for the 

experimental comparison.

The disadvantage of rule-based systems is their heuristic nature. Many traditional rule- 

based classification systems prefer small rule sets to large rule sets, and small 

classification systems may be sensitive to the missing values in unseen test data.

Rule-based classification systems have been applied in several research areas in 

computational biology such as protein structure prediction (Sternberg et. al., 1992) and 

learning drug properties (King et. al., 1995).

2.4.5 Other Classification Systems

Other classification systems such as Hidden Markov Models (HMMs), Support Vector 

Machines (SVMs) and Genetic Algorithms (GAs) are also become popular in 

computational biology.

HMMs are statistical models that predict the class based on the probabilities of the 

model states. Every probability in the states is summed up to give a final score and the 

prediction is based on the score. Background about HMM can be found in (Durbin et. 

al., 1998; Baldi and Brunak, 1998). The states in the model are associated with 

meaningful biological attributes (Durbin et. al., 1998). Profile HMMs (Gribskov &
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Veretnik, 1996) are most popular to treat the gaps in systematic way for the sequence 

alignments.

The main idea of an SVM (Vapnik, 1995) is to separate classes with a surface that 

maximizes the margins between them. Also, it is a powerful classification learning 

approach, which applies a concept that non-linear input vectors are mapped through a 

very high dimension attribute space where the linear decision of the input vectors can 

be computed. Although SVMs have good generalization performance, the 

disadvantages of this method are time intensive test phase and lack of expressive 

power. SVMs have been used in several applications in molecular biology such as 

protein fold recognition (Ding and Dubchak, 2001), classification of microarray data 

(Furey et. al., 2000) and recognition of translation initiation sites (Zien et. al., 2000).

The main idea of GAs (Davis, 1991) is to maintain a population of data that represent 

the candidate solutions to the problem. The population undergoes recombination 

(crossover between two strings) and mutation (changes in a string) processes to adapt 

the new environment. The ultimate goal of the candidate solution is to become the 

fittest (best solution) in the environment. The main disadvantage of GAs is non­

transparent learning process and high computational complexity. GA has been widely 

used in DNA fragment assembly (Parsons et al., 1995; Cedeno, & Vemuri, 1993; 

Fickett & Cinkosky, 1993) and were applied in multiple alignments (Zhang & Wong,

1997).
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3 Protein R epresentation

The prediction of secondary structure is performed with an intermediate step that 

transforms the protein sequences into their attribute space representation. This is due to 

differences in the length of the protein sequences for different proteins, i.e. the protein 

sequences length can vary between several to several hundred residues (amino acids), 

while ML algorithms usually assume input data of fixed length. The usual attributes 

that describe a protein sequence are the amount and the position of AAs that compose a 

given protein, which are referred as composition vector and composition moment 

vector. Researchers already recognized that the most commonly used composition 

vector is not sufficient for prediction purposes and therefore alternative solutions were 

sought (Dubchak et al., 1997; Zhang et al., 2001; Lin and Pan, 2001; Cai et al., 2003; 

Ruan et al., 2005; Luo, Feng and Liu, 2002; Chou and Cai, 2004). The main drawback 

of the current representations is insufficient number of used attributes. This research is 

the first to use a comprehensive attribute representation of a protein (sub) sequence that 

draws from numerous recent papers, and to perform selection of a subset of best 

attributes in terms of improving prediction accuracy. This chapter explains current 

protein representations and proposes a new comprehensive representation.

3.1 Current Representation

Majority of structural class and content prediction is performed by attribute methods. A 

typical attribute space representation consists of just a few attributes, e.g. composition
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vector and molecular weight. Recent methods use advanced representation that 

includes hydrophobicity and higher order composition moment vectors. Some content 

prediction methods use structural class (Zhang et al., 2001) as an input. The structural 

class prediction enjoys the widest selection of prediction algorithms and attribute 

representations. Recent representative prediction methods are summarized in Table 6. 

An integrated PROSPECT-PSPP server was developed recently. It applies several 

prediction tasks including homology, protein type, domain partition and to perform 

integrated secondary structure prediction (Guo et al., 2004).

Table 6. Summary information for representative secondary structure, content and structural
class prediction methods

1 (Rost, 1996), 2 (Jones, 1999), 3 (Ouali & King, 2000), 4 (Karplus, 2001), 5 (Przybylski & Rost, 2002), 6 (Pollastri et al., 2002), 7 

(Guo et al., 2004), 8 (Pollastri & McLysaght, 2005), 9 (Eisenhaber et al., 1996), 10 (Zhang et al. 1998), 11 (Zhang et al., 2001), 12 

(Lin & Pan, 2001), 13 (Cai et al., 2003), 14 (Ruan et al., 2005), 15 (Wang & Yuan, 2000), 16 (Li & Lu, 2001), 17 (Cai et al., 

2003), 18 (Chou & Cai, 2004)

Pred. Method Ref Prediction Multiple Protein
task algorithm alignment representation

PHD l neural network BLAST N/A

PSIred 2 neural network PSI-BLAST N/A
PROF 3 neural net & BLAST N/A

s discrim inants
uP SAM -T 4 hidden m arkov models BLAST N/A
s PHDpsi 5 neural network PSI-BLAST N/A

SSpro 6 neural network PSI-BLAST N/A
PM SVM 7 support vector machines PSI-BLAST N/A
Porter 8 neural network PSI-BLAST N/A
SSCP 9 vector decom position N/A com position vector
IMLR-1 10 multiple linear regression N/A com position vector,

. +-> autocorrelation.c
QJ IM LR-2 11 multiple linear regression N/A same as above
Gor  \ IMLR-3 12 multiple linear regression N/A com position vector,

U autocorrelation., hydrophobicity
— 13 neural network N/A pair coupled com position vector
— 14 neural network N/A com position mom ent vector

13 — 15 Bayesian N/A com position vector
. . . 16 diversity measure N/A protein sequence

i  ^ — 17 support vector machines N/A com position vector
oo . . . 18 intimate sorting predictor N/A functional dom ain com position
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3.2 Proposed Representation

The main difference between proposed and the existing representations lies in 

comprehensiveness of attribute sets used for describing a protein sequence. In contrast, 

existing representation consider very limited attribute space representation. The 

proposed representation considers a large and diverse attribute sets and performs 

attribute sets selection to find an optimal representation in terms of prediction quality. 

This investigation assumes attribute representation that is based on protein and AA 

properties. The considered attribute sets together with detailed description, motivation 

for introduction and references are summarized in Table 7. Each attribute set contains 

one or more attributes and explained in detail below. A subset of the attribute sets in 

the proposed representation was used in a recent method for content prediction (Kurgan 

& Homaeian, 2005).

Table 7. Attribute representation for a protein sequence

1 (Ruan et al., 2005), 2 (Lin & Pan, 2001), 3 (Muskal & Kim, 1992), 4 (Syed & Yona, 2003), 5 

(Eisenhaber et al., 1996), 6 (Zhang et al. 1998), 7 (Zhang et al. 2001), 8 (W ang & Yuan, 2000), 9 (Luo, 

Feng & Liu, 2002), 10 (Cai et al., 2003), 11 (Ganapathiraju et al., 2004), 12 (Nelson & Cox, 2000), 13 

(W ang, J„ et al, 2000), 14 (Yang & W ang, 2003), 15 (Hobohm & Sander, 1995)

Attribute set Description Motivation References
name _________________________________ _______________________________

length #  o f  residues may be related to content

com position norm alized com position percentage o f considered as standard for most 2, 5, 6, 7, (content)
vector each AA in the protein sequence content and structural class 8, 9, 10 (struct

m ethods class)

com position l sl order com position vector that supplem enting com position with 1 (content)
m om ent vector incorporates position o f  AAs in the position was shown to improve

sequence content prediction
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hydrophobicity average and accum ulated (sum m ed) hydrophobic force is one o f  the 1 ,2  (content) 
average hydrophobicity com puted strongest determ inant factors o f  a
using a hydrophobic index protein structure

m olecular sum o f m olecular weights o f  neutral, m ay be related to content and 3 (content), 4
weight free AAs function (function)

Auto- autocorrelation value computed reflects profile of hydrophobic 2, 6, 7 (content)
correlation using hydrophobic index indices along the protein

sequence

electronic
group

divides AAs into neutrals, electron electrostatic forces stabilize 11 (structure)
donors or acceptors structure

R group combines hydropathy, molecular may be related to structure and 12
weight and pi content

exchange
group

some AAs can be substituted by represents conservative
other without impact on the replacements through
structure evolution

(structure/content)

13 (family), 14 
(structure)

hydrophobic divides AAs into hydrophobic and the same as for hydrophobicity 4, 15 (function) 
group hydrophilic

other groups considers the following mixed
classes: charged, polar, aromatic, 
small, tiny, bulky, and polar 
uncharged

chemical
g ro u p

chemical groups are associated 
with AAs

may be related to function 4, 15 (function)

may be related to structure 11 (structure)

Length defines the number of AAs that constitute a sequence.

Composition vector and composition moment vector provide information about AA 

propensities and position in a sequence (Ruan et al., 2005). Composition vector and 

composition moment vector values for each AA are calculated using the following 

equation (1):
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k
( i )

d = 0

Where N is the length of the AA sequence, ny is the j Ul position of the ith AA, Oi 

represent the occurrence (composition) of the i^ AA in a sequence, and k is the order of

the composition moment vector. Zero and first order composition moment vector 

values are used in the proposed representation. Note that, zero order composition 

moment vectors reduce to the composition vector.

Hydrophobicity can be used to represent a protein sequence by using a hydrophobic 

scale, or its transformation, in which each AA of a sequence is replaced by its 

hydrophobic index value. Average hydrophobicity Havg and accumulated average 

hydrophobicity H  avg values are calculated using the following equations (2) and (3) 

respectively.

N

(2)

avg (3)
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where hj is the hydrophobicity index value for each AA and N is the length of the 

sequence. Two hydrophobic indexes are considered in proposed representation: 

Esienberg’s hydrophobic index (Eisenberg, 1984) as shown in Table 8 and the 

Fauchere et al hydrophobic index (Fauchere & Pliska, 1983) as shown in Table 9.

Table 8. Eisenbcrg’s hydrophobicity index values

Amino Acid A /M C/N D /P E/Q F/R G/S H /T I/V K /W L/Y

Hydrophobicity 0.62 0.29 -0.90 -0.74 -1.19 0.48 -0.40 1.38 -1.50 1.06

index value 0.64 -0.78 0.12 -0.85 -2.53 -0.18 -0.05 1.08 0.81 0.26

Table 9. Fauchere et al hydrophobicity index values

Amino Acid A /M C/N D /P E/Q F/R G/S H /T I/V K /W L/Y

Hydrophobicity 0.42 1.34 -1.05 -0.87 2.44 0.00 0.18 2.46 -1.35 2.32

index value 1.68 -0.82 0.98 -0.30 -1.37 -0.05 0.35 1.66 3.07 1.31

M olecular weight refers to the sum of the atomic weight of all of the atoms within the 

AA. Average molecular weight of a sequence is calculated using the equation (4), 

which used AA molecular weight information shown in Table 10 (Black & Mould, 

1991).

M  =avg

Nz
/=1

m .

N (4)

Where m* represents the molecular weight of the ilh neutral free AA and N is the length 

of the sequence.
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Tabic 10. Molecular weight for AA’s (Black & Mould, 1991)

Amino Acid A/M C/N D/P E /Q F/R G/S H/T I/V K/W L/Y

Hydrophobicity 0.42 1.34 -1.05 -0.87 2.44 0.00 0.18 2.46 -1.35 2.32

index value 1.68 -0.82 0.98 -0.30 -1.37 -0.05 0.35 1.66 3.07 1.31

Auto-correlation refers to the profile of the hydrophobicity indices of AAs along the 

sequence. Autocorrelation function rn of a sequence is calculated using the following 

equation (5) (Zhang et al., 2001):

N-n

r-=~!v^r ®

where h |,h 2 ,  hn is the numerical sequence that is created by replacing each AA by its

Fauchere et al hydrophobicity index value, hj is the hydrophobicity index for the ith 

AA and N is the length of the sequence. Note that value of n= l,2 ...10  is used in this 

research, i.e. 10 auto-correlation functions are computed.

Attribute groups divide the AAs into groups related to specific characteristics of an 

individual AA. Each attribute group’s vector value is calculated using the equation (6) 

in the proposed representation.

a  - E l

A  "  N  (6)
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where a\ represents the occurrence of the ilh group in a sequence and N is the length of 

a sequence. Attribute groups, such as electronic group, r-group, exchange group, 

hydrophobic group, other groups and chemical groups, are explained below.

Electronic group divides AAs based on their electronic properties, i.e. if they are 

neutral, electron donor or electron acceptor. Five electron groups are used in the 

proposed representation, see Table 11.

Tabic 11. Electronic group for AAs

Electronic Groups AAs
Electron donor D, E, P, A
W eak electron donor V, L, I
Electron acceptor K, N, R
W eak electron acceptor F, Y, M, T, Q
Neutral G, H, W , S

R-group divides AAs by combining the hydropathy index, molecular weight and pi 

value together (Nelson, 2000). Five R-groups are used in proposed representation, see 

Table 12.

Tabic 12. R-group for AAs

R-groups AAs
Nonpolar aliphatic A, V, L, I, M, G
Polar uncharged S, P, T , C, N, Q
Positively charged K, H, R
Negative D, E
Aromatic F, Y, W

Exchange group represents conservative replacements of AAs through evolution. 

Three exchange groups are used in proposed representation, see Table 13.
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Table 13. Exchange group for AAs

Exchange Groups AAs
B A, G, P, S, T
C D, E, N, Q
F I, L, M

Hydrophobicity group divides AAs into hydrophobic, which are insoluble or slightly 

soluble in water, in contrast with hydrophilic, which are water-soluble. Two types of 

hydrophobicity groups are used in representation see Table 14.

T able  14. H y d rophob ic ity  g ro u p  fo r  AAs

Hydrophobicity Groups AAs
Hydrophobic V, L, I, M, A, F, P,

W , Y, C, G
H ydrophilic polar with S, T, N, Q
uncharged side chain

Other groups divides the AAs by considering the seven types, such as, charged, polar, 

aromatic, small, tiny, bulky, and polar uncharged, see Table 15.

T ab le  15. O th e r  g ro u p  fo r  AAs

 Other Groups ___________AAs
Charged DEKHRVLI
Polar D EKHRNTQSYW
Arom atic FHW Y
Small AG ST
Tiny
Bulky

AG
FHW Y R

Polar uncharged _______ NQ

Chemical group is associated with individual AAs. Ten chemical groups are used in 

the proposed presentation; those are CH, CO, NH, CH3, CH2, CAROM, CHAROM, 

CH2RING, C, and OH.

The following example shows all the attribute values of a protein subsequence to 

illustrate the proposed representation.
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Example-3: 1NB LA protein from PDB 

Protein sequence:

K S C C R N T L A R N C Y N A C R F T G G S Q P T C G IL C D C IH V T T T T C P S S H P S  

Protein structural fragments based on uniform secondary structure:

K S C C R , N T L A R N C Y N A C R F T , S Q P T C G I L C ,  G G , D C I H V T T T T C P S S H P S  

For fragment KSCCR the considered attribute values are shown in Table 16.

Tabic 16. Attribute representation Example

Attribute set name Attribute values for Subsequence KSCCR
Length 5
composition vector 0.0,0.4,0.0,0.0,0.0,0.0,0.0,0.0,0.2,0.0,0.0,0.0,0.0,0.0,0.2,0.2,0.0,0.0.0.0,0.0

composition moment 0.0,0.35,0.0,0.0,0.0,0.0,0.0,0.0,0.05,0.0,0.0,0.0,0.0,0.0,0.25,0.1,0.0,0.0,0.0,0.0

vector
Hydrophobicity -0 .7 2 6 ,-1 .8 6 0 ,-0 .0 1 8 ,-0 .3 2 4

molecular weight 133.56

Auto-correlation -0.009925, -1.237267, -0.870250, 1.849500, 0.0, 0.0, 0 .0 ,0 .0 , 0 .0 ,0 .0

electronic group 0.0, 0 .0 ,0 .4 , 0 .0 ,0 .2

R group 0.0, 0.6, 0.4, 0 .0 ,0 .0

exchange group 0.2, 0.0, 0.0

hydrophobic group 0.4, 0.2

other groups 0.4, 0.6, 0.0, 0.2, 0.0, 0.2, 0.0

chemical group 1.0, 1.0, 1.2, 0.0, 2.0, 0.0, 0 .0 ,0 .0 , 0.2, 0.2
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4 Prediction Scenario and Detailed G oals

This research investigates impact of protein representation, certain sequence properties 

and prediction algorithms on the quality of prediction of secondary structure for 

structural fragments (SF). SF prediction problem allows to evaluate accuracy limits and 

characteristics of the attribute based secondary structure prediction, and simultaneously 

to lay foundations for the development of a new family of protein structure prediction 

methods. Before describing the considered problem, protein structural fragment (SF) is 

defined as the longest fragments of protein sequence that correspond to the same 

secondary structure state as shown in the example below.

Example-4: 1FJNA protein from PDB

Protein sequence: g f g c p n n y q c h r h c k s i p g r c g g y c g g w h r l r c t c y r c g

Secondary sequence: c c c c c c h h h h h h h h h h c c c c c e e e e c c c c c c c e e e e c c c

SFs: G F G C P N ,N Y Q C H R H C K S , I P G R C , G G Y C , G G W H R L R ,C T C Y ,R C G

4.1 Structural Fragment Prediction

4.1.1 Problem Definition

Structural fragment prediction is defined as prediction of secondary structure state for a 

given protein structural fragment based on models inferred from SFs for which the 

corresponding structure state is known; see Figure 15. Solid lines denote how the 

models are generated, while dotted lines show how they are used to perform prediction.
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database attribute database o f known SF prediction

o f known SF representation represented by attributes algorithm

model o f  helix SFs
model o f  strand SFs
model o f coil SFs

—  "i ir
unknown prim ary 
sequence fragm ent

....... ► classification
predicted secondary structure 

state for the fragment

Figure 15. Structural fragment prediction

The SF prediction allows investigating how difficult it is to distinguish between 

different secondary structure states, and analyzing how to improve quality of the 

prediction by using certain protein sequence properties, prediction algorithms, and 

protein representations. Information about specific ways in which the three state 

secondary structures can be better distinguished. This prediction will provide 

invaluable help in performing prediction of not only protein secondary structure, but 

also content, structural class, and other structure related prediction tasks.

4.1.2 Selection of SFs

The assessment of the quality of the prediction for SFs is based on two assumptions. 

First, the PDB is used as a source of data that includes primary and secondary protein 

structure. A custom set of filters, which are described later, is used to guarantee high 

quality of the input data. Second, this research divides the protein sequences into SFs. 

This is an idealized situation where the fragments are uniform and span the entire
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corresponding primary subsequence. The actual known method for dividing the 

sequences into fragments guarantees uniformity, but at the same time the resulting 

fragment usually are only subsequences of the entire corresponding primary 

subsequences (Ruan et al., 2005). For instance, based on primary and secondary 

protein sequences shown in the example-4, the idealized scenario realized in this 

research divides the protein sequence into GFGCPN, NYQCHRHCKS, IPGRC, 

GGYC, GGWHRLR, CTCY, and RCG, while the actual division might be GFGCPN, 

NYQC, HRHCKS, IPGRC, GGYC, GGW, HRLR, CTCY, and RCG. Application of 

the idealized scenario may results in overestimating the accuracy of the resulting 

classification, but it provides certain benefits such as direct evaluation of the accuracy 

of classification of the SFs into three state secondary structures. It also allows 

performing additional studies related to investigation of the relation between SFs and 

their secondary structure. Figure 16 describes the method used to assess quality of the 

prediction of SFs.

To accommodate the considered scenario, the proposed representation given in Table 7 

was supplemented with following attribute sets:

Number of duplicates, which equals to number of occurrences of a given SF in the 

entire dataset. Bigger value gives higher confidence that the SF is associated with a 

given secondary structure.

Relative position, which defines SF’s position in terms of which quarter of the 

sequence a majority of the SF resides. This allows studying relationship between SF
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position and structure. In example-4, KSCCR fragment belongs to the first quarter of 

1NBLA protein sequence.

s e c o n d a r y  structure  
o  n tm ii Ulrica cm

Divide sequence into SFs based on 
Secondary Structure (defined in PDB)

prim ary sequence -----
GTM LLG M LM ICSA TEK

Structural fragments 
GTM, LLGMLM, ICSA, TEK

Structural fragm ents 
LLGMLM 
GTM, ICSA 
TEK I

helix
coil
strand

Protein Data Bank 
(PDB)

Com pare with original secondary 
structure assignment from PDB 
and evaluate accuracy

Classifier, classifies each o f the 
structural fragm ents into the 
corresponding secondary structure

Figure 16. The method used to assess quality of prediction of SFs

4.1.3 Dataset Preparation

Since the SF prediction task was not considered in the past research, a suitable database 

of SFs was created. First, the primary and corresponding protein sequences were 

extracted. Next, the sequences were spliced into SFs, which were further converted into 

attribute representation is grouped by their corresponding secondary structure label.
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Preprocessing: The main goal was to assure high quality of the used protein 

sequences. The data was extracted from PDB, release as of August 12, 2004. For 

proteins with multiple chains, the last one was selected. Next, the proteins were filtered 

to eliminate errors and inconsistencies. The proteins with missing primary or secondary 

sequence, with sequence length < 5, with sequence containing unknown or incorrect 

residues, with helices of length < 3, and with strands of length < 2 were filtered out. 

After filtration, 5834 proteins were left. Among them, a subset of 539 high quality non- 

homologous proteins was selected using 25% PDB SELECT list (Hobohm and Sander,

1994). The 25% PDB SELECT list is about a factor of fifteen smaller than the PDB 

database and includes only high quality non-homologous proteins, i.e. proteins scanned 

with high resolution and with low about 22% - 45% sequence identity. Detailed 

description of the filtering procedure can be found in (Kurgan and Kedarisetti, 2005). 

Next, the 539 proteins were spliced into helix, strand, and coil SFs, and put into 

separate sets for each structure. In each set duplicates and inconsistent SFs were 

counted and removed, and helix SFs of length < 3, and strand and coil SFs of length < 

2 were eliminated to improve quality of the data. Total of 7056 SFs were generated. 

Schematic diagram for the entire dataset preparation procedure is shown in Figurel7.

Datasets generation, In order to investigate impact of protein sequence properties on 

the ability to distinguish between different corresponding secondary structure states, 

the following datasets with the corresponding number of SFs were created:

■ DA (7056), which includes all SFs,
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PDB 
September 2004

Filtered to 
^elim inate errors

5834 protein 
sequences

25% PDB 
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539 protein 
sequences

Divide into SFs

9337
Fragments Filtered to 

improve quality

1863 helix (H) 
fragments

3339 coil (C) 
fragments

Remove
duplicate

1956 strand (E) 
fragments

Remove
duplicat^

Remove 
duplicates 
 ^

1861 distinct 
helix fragments

1939 distinct 
strand fragments

3289 distinct 
coil fragments

Remov
inconsi
fragmei its

tent 7056 Structural 
fragments

Compute
attributcsX

Classification 
system input data

Figure 17. The dataset preparation procedure

■ D1 (423), D2 (924), D3 (1338), and D4 (1800), which include only first,

first two, first three, and first four SFs, with respect to the protein head, for

each protein,

■ d2 (501), d3 (414), d4 (462), and d6 (429), which include only first, second, 

third, and fourth SF respectively,

■ DA-2 (5284), DA-4 (3590) and DA-6 (2557), which include all SFs, but

with removed 2, 4, and 6 residues on the SF ends (1, 2, and 3 residues are

removed on each side),

■ DA-s(hort) (2213), DA-m(edium) (2309), DA-l(ong) (1841), and DA- 

vl(verylong) (693) that include subsets of DA with different lengths defined 

to ensure similar distributions, see Table 17.
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Tabic 17. Division of SFs by their length

dataset helix strand coil
length # SFs length # SFs length # SFs

DA-short 4-r9 629 3-r4 591 3-r4 993
DA-medium 10-rl4 587 5-r6 694 5-5-7 1028
DA-long 15-F22 467 7-5-9 469 8-rl5 905
DA-very-long 23-f 68 176 lO-f-26 170 16-F74 347

Distribution of each SF type, i.e. helices, strands, and coils, for each dataset is shown in 

Figure 18. Datasets D l, d3, and D3 were discarded due to highly skewed distribution, 

which would result in inaccurate prediction results and remaining 13 datasets were kept 

further experiments. SFs in these sets were converted into the proposed attribute 

representation.

datasets

Figure 18. Distribution o f the 3 secondary structures for considered datasets

The summary information for all the considered datasets of SFs is shown in Table 18.

Example-4 that splices 1FJNA protein, shown earlier, and puts resulting SFs into 

corresponding datasets is given in Table 19. Since the protein contains relatively short 

SFs, no fragments for datasets DA-1 and DA-vl were extracted.
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Table 18. Summary information for the considered datasets of SFs

Dataset State # frag­
ments

length Dataset State # frag­
ments

length
Min. Max. Min. Max.

DA H 1863 4 68 d3 H 13 5 24
E 1956 3 26 E 3 5 10
C 3339 3 74 C 398 3 15

D2 H 282 4 68 d4 H 258 4 59
E 225 3 19 E 184 3 17
C 417 3 74 C 20 3 18

D4 H 553 4 68 d6 H 204 4 59
E 412 3 19 E 203 3 17
C 835 3 74 C 22 3 18

DA-2 H 1667 4 66 DA-s H 629 4 9
E 1334 3 24 E 591 3 4
C 2238 3 72 C 993 3 4

DA-4 H 1432 4 64 DA-m H 587 10 14
E 640 3 22 E 694 5 6
C 1518 3 70 C 1028 5 7

DA-6 H 1231 4 62 DA-1 H 467 15 22
E 278 3 20 E 469 7 9
C 1048 3 68 C 905 8 15

d2 H 267 4 68 DA-vl H 176 23 68
E 223 3 19 E 170 10 26
C 11 3 15 C 347 16 74

T ab le  19. R esu lts o f  sp licing  1FJN A  p ro te in  in to  S Fs (all S Fs a r e  in  italics)

dataset structural fragments
DA GFGCPN, NYQCHRHCKS, IPGRC, GGYC, GGW HRLR, CTCY, RCG
D2 GFGCPN, NYQCHRHCKS
D4 GFGCPN, NYQCHRHCKS, IPGRC, GGYC
d2 NYQCHRHCKS
d4 GGYC
d6 CTCY
DA-2 FGCP,YQCHRHCK, PGR, GW H RL
DA-4 QCHRHC, W HR
DA-6 CHRH
DA-s GGYC, CTCY, RCG
DA-m GFGCPN, NYQCHRHCKS, IPGRC, GGW HRLR

4.1.4 Prediction Algorithms

The SF prediction can be performed using a wide range of prediction algorithms. In 

this research, eight representative prediction algorithms were considered based on a
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generated model. These can be divided into two categories. Black-box algorithms 

generate models that cannot be interpreted by a user, and white-box algorithms 

generate interpretable models. The latter are further divided based on specific models 

into rule-based, decision trees and probabilistic algorithms. Representative prediction 

algorithms shown in Table 20 for each of the categories are used.

Table 20. Representative algorithms used to perform structural fragment prediction

algorithm type algorithm name reference
black-box M ultiple layer perceptron neural network (MLP) (Hornik et al., 1989)
white-box rule-based RIPPER (RIP) (Cohen, 1996)

SLIPPER (SLI) (Cohen & Singer, 1999)
decision trees ID3 (Quinlan, 1986)

CART (Breim an et al., 1984)
C5.0 (RuleQuest, 2003)
bC5.0 (C5.0 with boosting) (RuleQuest, 2003)

probabilistic Nai've Bayes (NB) (Duda and Hart, 1973)

To accommodate for ensemble methods, which were recently applied in context of 

structural class prediction (Tan et al., 2003), C5.0 algorithm was used with boosting, 

which generates and combines several models to increase accuracy (Schapire and 

Singer, 1998). Data generated for predicting attributes in this research are continuous. 

For Naive Bayes algorithm, predicting attributes were discretized using equal- 

frequency discretization.

Implementation of these algorithms was obtained from the authors, and in case of the 

ID3, CART, MLP, and NB systems, the TANAGRA version 1.1.3 software, available 

at http://eric.univ-lyon2.fr/~ricco/tanagra/ was used; The C5.0 system combined with 

boosting option was obtained at http://rulequest.com/; RIPPER and SLIPPER systems 

can be obtained at http://www-2.cs.cmu.edu/~wcohen/.
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4.2 Detailed Specific Goals

The general problem of SF prediction was used to address a number of specific goals 

related to how the three secondary structures can be distinguished (predicted) based on 

the primary sequence:

GOAL 1: Investigation of quality of different prediction algorithms. Eight different 

algorithms from four distinct families were tested and their accuracy was compared.

GOAL 2: Investigation of impact of particular sequence properties on the prediction 

accuracy. Several properties were investigated, including length of SFs, SF position in 

the sequence, and impact of the quality of secondary structure information for the outer 

most SF residues, i.e. residues on both SF ends. These goals directly translate into 

hypotheses that are more general:

SUB-GOAL 2.1 investigates if prediction should be performed using all known SFs as 

a reference, or if they should be separated into sub-groups, in this case based on length, 

to improve the prediction accuracy

SUB-GOAL 2.2 answers if the quality of prediction depends on the position of a given 

SF in the sequence.

Finally, SUB-GOAL 2.3 questions if structure prediction for residues on the edge 

between different SFs suffers from decreased reliability of the secondary information, 

and if discarding these residues would results in changes with respect to prediction
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accuracy. It also allows addressing a situation when SFs would be extracted from a 

protein with some mistakes.

GOAL 3: Optimal attribute sets selection for representation. A comprehensive 

representation consisting of attribute sets described in section 3.2 and 4.1 were used for 

selection. An optimal subset of attribute sets was chosen with respect to prediction 

accuracy. Finally, three different representations, i.e. composition vector 

representation, selected attribute sets representation and the comprehensive 

representation, were compared.

Original dataset DA was used to investigate for goal 1. Size-wise datasets, DA-s, DA- 

m, DA-1, and DA-vl were used to investigate the sub-goal 2.1 and Goal 3. Position 

corresponding datasets, d2, d4, d6, D2, and D4 were used to investigate the sub-goal 

2.2. Information missing at edges datasets, DA-2, DA-4, and DA-6 were used to 

investigate the sub-goal 2.3.

These above goals address issues related to investigation of specific factors and 

algorithms related to improving the ability to distinguish between secondary structure 

states, and thus lay foundations for development of a new family of structure prediction 

methods. Next chapter presents experimental results in support of each the defined 

goals.
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5 Experim ents, Results and  Goal Analysis

In this chapter, specific goals defined in Section 4.2 were verified experimentally. The 

experiments are divided into two parts. The first set of experiments relates to the Goal 

1 and Goal 2 and investigates the performance of the prediction. The second set of 

experiments relates to Goal 3 that concentrates on selection o f attribute sets for 

prediction and compares the results with other representations.

5.1 Prediction  Experim ents

The first major set of experiments covers the SF prediction for the considered 13 

datasets with eight prediction algorithms. To ensure statistical validity experiments 

were performed using ten-fold cross-validation. Over 1000 experiments were 

performed. Results report average accuracy and standard deviations. For all prediction 

algorithms, except RIPPER and SLIPPER that do not provide sufficient reports, 

average sensitivity and specificity were computed to give further insights. The results 

are summarized in Table 21. Discussion of the results is divided by the corresponding 

goals defined in section 4.2.

5.1.1 Goal 1: Prediction Algorithm Selection

Average accuracy for the eight prediction algorithms for DA dataset is 68.4%, which 

shows that simple prediction for general sets of SFs is similar with respect to accuracy 

of the first and second generation methods for protein structure prediction, which was
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between 60% and 66%. The slightly higher accuracy is a result of considering simpler 

problem of SF prediction and using more advanced protein sequence representation.

Table 21. Experimental results for prediction of protein SFs structure

MLP RIP SLI ID3 CART C5.0 bC5.0 NB Avg.
72.6+0.5 68 .8±2 .1 67.6±2.3 66.7+0.6 67.6+0.5 66.5±2.8 72.0±1.4 65.8+0.2 68.4
79.6±0.8 78.3±1.4 76.7± 1.9 77.5±0.6 77.4±0.5 77.3±2.3 78.8+3.5 78.4+0.2 78.0
85.0±0.5 84.5±2.6 84.0±3.3 87.7±1.1 87.5±1.5 84.0±2.1 86.9±1.0 85.1 ±0.6 85.6
87.5+0.6 89.7±1.5 87.5±3.2 87.8±0.8 88.1 ±0.3 89.2± 1.7 89.9+1.9 87.9+0.4 88.5
86.7±0.7 88.3+3.1 87 .0± 4 .1 87.0+0.4 87.2±1.0 88.0±4.5 90.8+3.0 88.6+0.4 87.9
83.8±1.1 80.0±5.3 78.4±4.2 80.2±0.4 80.3±0.6 79.2±4.3 79.2+6.0 79.7±0.7 80.1
79.0+0.7 77.3+6.3 76.2±6.1 78.3+0.6 76.8±1.4 73.0±2.3 77.9±4.0 74.7±0.6 76.6
80.9±1.1 77.1 ±6.8 77 .0± 6 .1 78.9+0.5 78.0±1.2 73.4±5.5 79.9+5.0 78.0±1.2 77.9
75.2±1.1 68.0+4.4 68.3±2.8 68.8±1.0 69.4+0.8 69.3±5.1 75.4+5.1 67.7±0.3 70.3
72.9±0.4 66.1 ±2.0 66.2±3.4 65.8±0.6 66.3±1.0 65.0±3.4 72.0±3.1 67.6±0.2 67.7
73.5+0.4 69.0±3.0 67.0±2.3 67.3±0.7 68.0±0.5 68.0±2.5 72.3+2.8 67.8+0.1 69.1
73.3+0.2 68.8±2.8 67.2±2.8 67.5+0.7 67.5+0.7 67.1±3.6 73.9±1.8 67.1 ±0.2 69.0
75.0±0.6 71.2±3.8 70.5±3.6 69.5+0.7 70.1 ±0.7 68.0±1.8 73.7+2.1 67.7±0.3 70.7
74.1 71.5 70.5 71.7 71.5 69.8 73.6 69.8
7 1 / 8 5 — — 6 5 / 8 2 6 4 / 8 2 6 4 / 8 2 7 0 / 8 5 6 6 / 8 3 67/83
7 8 / 8 9 — — 7 7 / 8 8 7 6 / 8 8 7 6 / 8 8 7 8 / 8 9 7 8 / 8 9 77/88
8 6 / 9 2 . . . — 8 5 / 9 1 8 5 / 9 1 8 5 / 9 1 8 8 / 9 3 8 6 / 9 2 86/92
8 7 / 9 3 — — 8 9 / 9 4 8 9 / 9 4 8 9 / 9 4 9 0 / 9 4 8 9 / 9 4 89/94
8 7 / 9 3 . . . — 8 7 / 9 3 8 7 / 9 3 8 8 / 9 3 9 1 / 9 5 8 9 / 9 4 88/93
5 7 / 8 9 . . . 5 5 / 8 8 5 5 / 8 8 5 4 / 8 7 5 4 / 8 7 5 4 / 8 7 55/88
5 5 / 8 6 — — 5 5 / 8 6 5 4 / 8 6 5 5 / 8 3 5 7 / 8 6 5 5 / 8 3 55/85
6 1 / 8 8 — — 5 6 / 8 7 5 5 / 8 6 6 0 / 8 4 6 6 / 8 8 6 5 / 8 7 60/86
73 /  87 — — 6 7 / 8 3 6 8 / 8 4 6 8 / 8 4 7 3 / 8 7 6 9 / 8 4 70/85
7 1 / 8 6 — — 6 4 / 8 2 6 3 / 8 1 6 3 / 8 1 7 0 / 8 5 6 9 / 8 4 67/83
7 2 / 8 6 — . . . 6 6 / 8 3 6 6 / 8 3 6 7 / 8 3 7 1 / 8 6 68 /  84 68/84
69 / 82 — — 6 2 / 8 2 6 3 / 8 3 6 3 / 8 3 6 9 / 8 6 6 7 / 8 4 66/84
6 4 / 8 2 — — 5 9 / 8 2 5 7 / 8 2 5 7 / 8 2 6 2 / 8 5 6 7 / 8 4 61/84
72/88 — — 68/86 68/86 68/86 72/88 71/87

Dataset
DA 
DA-s 
DA-m 
DA-1 
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d2 
d4 
d6 
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DA-6 
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The eight algorithms were ranked using average accuracy. MLP is the most accurate 

and bC5.0 is the second best, see Figure 19 (standard deviations are shown using 

vertical bars). Average accuracy, sensitivity and specificity shown in Figure 19, also 

confirm superiority of the two methods. High average specificity value of 83% means 

that false positives are very low and thus low accuracy is a result of relatively low 

sensitivity, i.e. low number of true positives.
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Figure 19. Ranking of prediction algorithms on the DA dataset

This means that algorithms generate very selective models that can be further improved 

by relaxing some constrains, e.g. by pruning, to shrink gap between sensitivity and 

specificity and thus increase accuracy. For further insights, the average sensitivity and 

specificity of the models generated for each secondary structure state against prediction 

algorithms is plotted, see Figure 20. This graph shows that again MLP and bC5.0 

prediction algorithms are generating better models for each secondary structure state 

when compared to other prediction algorithms. MLP and bC5.0 prediction algorithms 

are best suited for prediction of each of secondary structure states. In addition, 

independent of the prediction algorithm, specificities of helix and strand models are 

higher than the corresponding sensitivities. High specificity is most desirable than high 

sensitivity in medical data, i.e. low false positives are preferred. Hence, models
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generated for predicting helix and strand secondary structure states are more suitable 

for prediction when compared to the model generated for coil structure.

Specificity 'H' class Sensitivity 'E' class 
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prediction algorthim

0.4000
NB C5.0 Id3 CART bC5.0 MLP

Figure 20. Sensitivity and specificity of each state model vs. prediction algorithms

5.1.2 Goal 2: Sequence Properties

Sub-Goal 2.1:

Results of prediction using all SFs. i.e. dataset DA, were compared to prediction when 

the data is separated by SF length into DA-s, DA-m, DA-1, and DA-vl (DA-size in 

short). Figure 21 shows comparison of results where wavg is a weighed, by the datasets 

size, average of accuracies when using DA-size datasets. The results show that 

prediction from SFs of similar length on average reduces errors by 50%, i.e. from 68% 

accuracy for DA to 84% when using subsets of similar length SFs. The specific amount 

of improvement is independent of the prediction algorithm, but the algorithms perform

■ 74 .
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with more similar accuracy when compared to prediction from all SFs. Also, as 

expected the best accuracy is achieved for long and very long SFs since they contain 

more information than short and medium SFs. At the same time, prediction accuracy 

for short and medium SFs is still substantially better when compared to using dataset 

DA.

100.00 n
95.00

90.00

85.00

80.00

75.00

70.00

65.00 H

60.00

accuracy
•D A

DA-I
DA-s
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■DA-m
•w a v g  DA-smlvl

gfa- ' -TL~ .T ------ T . .  . . __________ — ”

I ................ • r

prediction algorithm

NB C5.0 ID3 SLI CART RIP bC5.0 MLP

vertical bars show confidence intervals equal to doubled standard deviation computed based on average over 10-folds cross- 

validation

Figure 21. Results for prediction when using SFs o f similar length

Closer analysis based on average, over all algorithms, sensitivity and specificity, shows 

that both true and false positive scores are always better than in case of DA-size 

datasets, see Figure 22. The best results are achieved for helical SFs, with specificity of 

99% and sensitivity of 95%, which shows that 95% of helical SFs were classifies as 

helices and only 1% of other SFs was misclassified as helices. For coils, the sensitivity 

and specificity are similar and equal to about 85%, while on average sensitivity and
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specificity are the worst for strand fragments. These results show a significant pattern. 

In general, when the original data is divided into subsets the overall prediction 

accuracy evaluated using cross-validation is similar or worse. In contrast, the above 

results show that dividing SFs by their length allows distinguishing better between the 

structures.

100.00
95.00 -I
90.00
85.00
80.00
75.00 -
70.00 -
65.00 -
60.00

■  sensitivity, wavg DA-smlvl •  specificity, wavg DA-smlvl 
□  sensitivity, DA O specificity, DA

0

all

□

helix strand

8

coil

folds

Figure 22. Sensitivity and specificity when using SFs of similar length

Most importantly, the average accuracy of SF prediction in this case is over 84%, 

which is significantly better than current accuracy of about 80% of the third generation 

alignment based structure prediction methods. This shows that the non-alignment based 

prediction, if properly performed, can potentially generate relatively high quality 

results.
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Sub-Goal 2.2

Results when dataset DA was used were compared with results using d2, d4, d6, D2, 

and D4 datasets to evaluate if quality of prediction depends on the residue position, see 

Figure 23. The results show that dividing SFs into subsets of the same relative position 

in the protein sequence results in some improvements. For the d2, d4, and d6 the mean 

accuracies are 80%, 77%, and 78% respectively, which reduces the error by 30% 

compared to results when using all SFs.

- d4 — d6'DA

90.00 -i
accuracy

85.00 -

80.00 -

75.00 -

70.00 -

65.00 -
prediction algorithm

60.00
SLI CART RIP bC5.0 MLPC5.0 ID3NB

vertical bars show confidence intervals equal to doubled standard deviation computed based on average over 10-folds cross- 

validation

Figure 23. Results of prediction when using sequence position specific SFs

On the other hand, merging adjacent sequences starting at the protein head, i.e. D2 and 

D4 datasets, does not result in significant improvements. Thus, in contrast to results for 

sub-goal 2.1, the results are inconclusive and show no strong evidence of difference in

77 :
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prediction accuracy relative to where in the sequence, with respect to the protein head, 

a SF is positioned.

Sub-Goal 2.3

Results when dataset DA was used were compared with results on DA-2, DA-4, and 

DA-6 datasets to analyze if information for residues on the edge between different SFs 

suffers from decreased reliability with respect to SF prediction, see Figure 24. The four 

datasets use all SFs, but without respective residues on the outer edges. The results 

show that independently of the used prediction algorithm there is no negative impact of 

information located on the SF edges when compared to the results when the entire SFs 

were used, i.e. for DA dataset.

D A -2
D A -6D A -490.00 i

accuracy
85.00 -

80.00 -

75.00 -

70.00 -

65.00 -
prediction algorithm

60.00
SLI CART RIP bC5.0 MLPNB C5.0 ID3

vertical bars show confidence intervals equal to doubled standard deviation computed based on average over 10-folds cross-

validation

Figure 24. Results of prediction when removing residues on SF edges
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This indicates that performing prediction on SFs that are incomplete or containing 

errors, i.e. some residues on the fragment edges are missing, would lead to similar 

ability to distinguish between different structures as in case when complete fragments 

would be used.

Average sensitivity and specificity values are computed on different groups of datasets 

to give further insights, see Table 22. Results show that a group containing DA-size 

datasets obtains on average the best results in case of both true and false positive 

scores, see the bolded values in columns five and nine. Helix models perform best 

when compared with coil and strand models independently of the dataset group, see 

bolded values in the last row. Out of all helix models, those generated from DA-size 

datasets are the best.

Tabic 22. Average sensitivity and specificity for each state model on dataset groups

G roup________ Sensitiv ity_____________  Specificity
H elix S tra n d  C o il A v erag e H elix S tran d C oil A vera

d2,d4,d6 80 81 08 56.33 83 78 99 86.67
D2.D4 67 63 75 68.33 88 88 76 84.00
DA-2,4,6 75 49 72 65.33 81 91 80 84.00
DA-s,m,l,vl 94 77 84 85.00 98 92 86 92.00
DA 62 62 76 66.67 90 86 74 83.33
Average 76 66 63 68.33 88 87 83 86.00

In addition, on average, models generated by considering SF-position (d2, d4, d6, D2 

and D4) and information at edges (DA-2, DA-4, and Da-6) has the similar average 

sensitivity and specificity values when compared to dataset DA. This means that both 

of these factors have both no positive or negative impact on prediction accuracy.
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5.2 Attribute Sets Selection Experiments and Results

The second major set of experiments was performed using ten-fold cross-validation 

with a total number of over 50000. These comprehensive experiments use four DA-size 

datasets, as they give the most accurate prediction, and three representative prediction 

algorithms, i.e. ID3, MLP, and NB. There are a total of 15 attribute sets considered for 

the selection, which is shown in Table 23.

Table 23. Attribute sets considered for representation

A ttribute A ttribute set nam e #  o f  set A ttribut A ttrib u te set #  o f  set
set Id# attributes e set Id# nam e attributes
1 S F  len g th 1 9 au to c o rre la tio n 10
2 #  d u p lic a tes 1 10 e le c tro n ic  g ro u p 5
3 re la tiv e  p o sitio n 1 11 R g ro u p 5
4 E ise n b e rg ’s 2 12 e x c h a n g e  g ro u p 3

h y d ro p h o b ic ity
5 F a u c h e re ’s

h y d ro p h o b ic ity
2 13 h y d ro p h o b ic

g ro u p
2

6 m o le c u la r  w e ig h t 1 14 o th e r  g ro u p 7
7 co m p o sitio n  v e c to r 20 15 ch e m ic a l g ro u p 10
8 c o m p o s itio n  

m o m e n t v ec to r
20

The goal is to find a subset of the attribute sets representation described in section 3.2 

and 4.1 that uses only selected attribute sets while giving comparably good results. 

Attribute set selection was performed iteratively, where in each step each attribute sets 

was individually tested, and the best one was selected. The first iteration uses one 

attribute set at a time for prediction and results are shown in Table 24. Bolded values in 

the table show the best results. Each value in this table represents the average 

prediction accuracy of the 10 fold-cross validations. Results show that prediction using 

composition moment vector attribute set has the similar average accuracy as the
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prediction with SF length attribute. The composition moment vector was selected 

because of it was best more often. On average up to 25% worse accuracy is achieved 

by using the single attribute set for prediction when compared with prediction using all 

attribute sets. Hence, the second selection iteration is executed. The second iteration of 

experiments is done by considering a pair of attribute sets in each step for the 

prediction, which includes the first selected attribute set and one attribute set from the 

remaining attribute sets.

Tabic 24. Experimental results for prediction accuracy in iteration 1

Attribute 
set Id 
/Dataset NB

DA-short 

ID3 MLP

DA-medium  

NB ID3 MLP NB

DA-long 

ID3 MLP

DA-very long 

NB ID3 MLP

Avg.
Accu.

1 70 69 70 69 68 68 84 82 84 78 73 72 73.92
2 45 42 45 44 42 44 49 n/a 49 50 n/a 50 46.00
3 45 43 45 44 39 45 49 48 50 50 49 50 46.42
4 56 49 49 52 56 50 53 56 53 54 56 52 53.00
5 45 57 54 61 64 61 60 64 59 62 66 63 59.67
6 69 44 45 44 46 47 49 .49 50 50 50 49 49.33
7 62 65 56 73 72 72 72 73 74 66 72 83 70.00
8 75 78 55 64 83 68 66 84 77 64 87 79 73.33
9 67 73 69 79 79 76 68 65 70 58 65 65 69.50
10 68 66 59 68 62 63 61 62 63 62 60 65 63.25
11 61 61 58 65 64 56 62 59 60 57 58 61 60.17
12 65 65 61 66 60 55 60 58 62 56 57 60 60.42
13 56 45 57 53 47 49 54 49 51 50 50 51 51.00
14 62 67 56 61 69 60 62 62 61 54 57 58 60.75
15 67 63 64 73 72 64 72 71 70 63 70 73 68.50
Average 61 59 56 61 62 59 61 63 62 58 62 62 60.50
All
Attributes

78 80 78 88 85 85 88 87 88 87 87 89 85

Experimental results are shown in Table 25, which resulted in the selection of sequence 

length attribute because of its superior accuracy when compared with any other pair of 

attribute sets. The third selection iteration was executed since still 2% to 19% less
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accuracy is achieved by using the pair of attribute sets when compare with using all 

attribute sets.

Table 25. Experimental results for prediction error in iteration 2

Attribute 
set Id 
/Dataset NB

DA-short

ID3 MLP

DA-medium

NB ID3 MLP NB

DA-long

ID3 MLP

DA-very long 

NB ID3 MLP

Avg.
Accu.

1 76 79 76 76 83 82 86 88 89 88 87 86 83.00
2 62 78 56 56 64 68 65 n/a 77 64 n/a 79 66.90
3 61 78 55 55 64 68 64 84 77 64 87 79 69.67
4 61 79 56 56 64 67 65 86 76 62 86 79 69.75
5 62 79 58 58 66 69 67 86 78 66 86 81 71.33
6 62 78 54 54 64 68 64 84 77 64 87 78 69.50
7 69 78 55 55 73 73 72 84 80 66 84 85 72.83
8 — — — — — — — — — — — ...............

9 76 78 71 71 81 81 73 83 82 67 84 82 77.42
10 67 78 60 60 72 72 67 84 78 68 86 80 72.67
11 66 79 64 64 66 71 65 84 78 65 86 78 72.17
12 63 79 63 63 67 68 64 84 78 64 86 78 71.42
13 64 79 63 63 65 69 65 84 76 64 87 79 71.50
14 64 79 60 60 64 72 64 84 77 66 85 79 71.17
15 66 79 65 65 73 71 70 85 79 67 86 81 73.92
Average 66 79 61 61 69 71 68 85 79 67 86 80 72.67
All
Attributes

78 80 78 88 85 85 88 87 88 87 87 89 85.00

The third iteration was performed by considering three attribute sets at each step for the 

prediction, which includes the selected 2 attribute sets and the third attribute set from 

the remaining attribute sets. Experimental results are shown in Table 26, chemical 

group attribute set was selected due to its high average accuracy and large number of 

times it resulted in achieving highest accuracy.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 26. Experimental results for prediction error in iteration 3

Attribute DA-short DA-medium DA-long DA-very long Avg.
set Accu»

/Dataset NB ID3 M LP NB ID3 M LP NB ID3 M LP NB I D 3 M L P
1 ----- ___ ----- ----- . . . . . . — — ___ ___ . . . _
2 76 79 76 83 83 82 86 n/a 89 88 n/a 86 82.80
3 76 79 76 83 84 82 86 87 89 89 87 87 83.75
4 76 80 76 83 84 80 88 87 88 88 87 86 83.58
5 77 80 77 84 85 82 89 88 88 88 87 86 84.25
6 75 79 76 83 84 82 86 87 88 89 87 86 83.50
7 76 80 75 83 85 84 86 88 87 88 87 88 83.92
8 — . . . . . . — . . . . . . . . . . . . . . . — — . . . . . .

9 76 79 76 84 84 83 88 87 87 88 88 88 84.00
10 78 79 77 84 85 83 86 88 88 89 87 87 84.25
11 75 79 77 83 84 83 86 87 88 88 86 86 83.50
12 76 79 77 83 84 82 87 88 87 88 87 86 83.67
13 77 79 76 84 84 82 87 87 88 88 87 85 83.67
14 75 79 76 83 84 82 87 87 87 88 87 85 83.33
15 77 80 78 85 85 83 88 88 88 87 87 87 84.-42
Average 76 79 76 83 84 82 87 87 88 88 87 86 83.58
All
Attributes

78 80 78 88 85 85 88 87 88 87 87 89 85.00

5.2.1 Goal 3: Selection of Attribute Representation

Summary of attribute selection results for the above three iterations is shown in Table

27. Table 23 explains numbering of attribute set ids. Selected attribute sets are shown 

in gray color and best five in each iteration are shown in bold. The attribute sets are 

ranked based on prediction accuracy and the rank values are shown in Table 27.

Tabic 27. Attribute selection results

Iteration/ 
Attribute set id# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 avg
1 avg accuracy 74 46 46 53 60 49 70 70 63 60 60 51 61 69 60.5

# times best 4 0 0 0 0 0 1 2 0 0 0 0 0 0
rank 1 15 14 11 10 13 3 g a l 4 6 9 8 12 7 5

2 avg accuracy 70 72 72 73 72 75 78 75 74 73 73 73 75 74.5
# times best 0 0 0 0 0 0 m M 1 0 1 0 0 0 1
rank | 11 14 12 7 13 4 l l l f 2 5 6 8 9 10 3

3 avg accuracy 83 84 84 84 83 84 Ba/aij 84 84 84 84 84 83 83.8
# times best 1 0 0 3 1 3 |w j| 1 1 0 0 0 0
rank Im m 13 10 9 2 12 5 H i! 3 4 8 7 6 11 !
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Selection process stopped at the third iteration since the selected attribute sets already 

gave accuracy comparable with accuracy when using all attribute sets. The attribute set 

rank in all iterations given in Table 27 shows that autocorrelation, electronic group, and 

composition vector also contribute to improved accuracy. For virtually all experiments, 

hydrophobicity attribute set computed using Fauchere’s index was superior to the 

Eisenberg’s index. The composition moment vector gave on average significantly 

better results than commonly used composition vector, which confirms results in (Ruan 

et al, 2005a). In short, the results show that only a handful of attributes is needed to 

distinguish between the three types of SFs, but at the same time the selected attributes 

are different than the commonly used attribute representations. As such, the results 

provide useful guidelines for attribute selection.

Additionally, prediction accuracies when using 1) all attribute sets, 2) the selected 

attribute sets consists of composition moment vector, SF length and chemical group, 

and 3) most commonly used representation that includes composition vector, were 

compared. The experiments were performed using eight representative prediction 

algorithms applied on DA and DA-size datasets, see Table 28. Bolded values in bold 

help to perform side-by-side comparison of the best accuracies for different 

representations and for using all SFs vs. dividing the SFs by their length. The main 

finding shows that division of SFs by length does not bring significant improvements 

when insufficient attribute representation is used, e.g. see results for the representation 

1 for the most accurate MLP algorithm. This result confirms problems of the first and
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second-generation protein structure prediction methods. Although these methods 

usually used polypeptide sequences of similar size to perform prediction, apparently 

lack of sufficient information and use of neural networks were their limiting factors.

Tabic 28. Comparison o f prediction with different attribute representations

Note: 1 (composition vector only), 2 (selected best attributes), 3 (all attributes), wavg (weighted average 
for DA-size datasets)

Prediction DA-s DA-m DA-1 DA-vl wavg DA
algorithm 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
MLP 66 80 80 72 85 85 72 89 87 72 86 87 70 85 84 68 72 73
RIP 76 76 78 84 84 85 82 89 90 73 74 88 80 82 84 65 68 69
SLI 71 76 77 80 84 84 76 86 88 70 70 87 75 81 83 63 67 68
ID3 68 77 78 73 84 88 72 88 88 66 87 87 70 83 85 64 67 67
CART 72 77 77 78 84 88 76 88 88 70 87 87 75 83 84 64 67 68
C5.0 73 76 77 81 84 84 76 89 89 71 87 88 76 83 84 64 67 66
bC5.0 78 79 79 85 87 87 85 90 90 82 91 91 83 86 86 68 71 72
NB 56 78 78 72 85 85 74 88 88 83 87 89 69 84 84 65 67 66
Average 70 78 78 78 84 86 77 88 88 73 84 88 75 83 84 65 68 68

The results show that on average, 10% accuracy was gained by dividing SFs by their 

length, and additional 9% was gained by using the new attribute representation. Using 

just improved attribute representation without dividing by SF length gives relatively 

small, about 3%, average improvement in accuracy. In short, methods, which combine 

both using fragments of relatively similar length and apply the proposed protein 

sequence representation, are expected to be able to distinguish between different 

secondary structures with high accuracy.
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6 Summary and Future Work

6.1 Sum m ary

Protein structure is the key to understand protein functions and interactions with other 

molecules. Research in computational methods for prediction of protein structures from 

sequences is in high demand due to huge known-sequence structure gap and 

availability of different protein databases. Although many advanced prediction 

methods exists, we are still far from being able to achieve a highly accurate solution for 

this problem. Most of the current methods for predicting 3-state secondary structure are 

alignment-based, while this study explores attribute representation based on protein 

sequence information to predict the 3-state secondary structure for protein structural 

fragments (SF).

This study proposes and analyzes a novel SF prediction problem to investigate how 

well 3-state secondary structures can be distinguished based on sequence information 

using a comprehensive attribute representation. Three goals are defined. Goal 1 

investigates performance, in terms of the SF prediction accuracy, of the eight 

representative prediction algorithms Goal 2 investigates the impact of three different 

factors on SF prediction accuracy. Those factors are structural fragment length; 

structural fragment position in the protein sequence and removal of information at 

structural fragment edges. Goal 3 performs feature selection to find optimal, in terms of 

the trade-off between accuracy and number of features, protein sequence 

representation.
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Based on comprehensive experimental study this research investigates the defined 

goals. Results for goal 1 show that two prediction algorithms, namely multiple layer 

feed-forward neural network and boosted C5.0 decision tree, perform best among the 

considered eight algorithms. Therefore, selection of a suitable method for a prediction 

application that needs to distinguish between the three secondary structures is one of 

critical considerations. Results for goal 2 show that significant improvements can be 

made by grouping SFs of similar length. On the other hand, the results show that the 

ability to recognize SFs does not depend on their position in the sequence, as well as it 

does not depend on the availability of structural information on the fragment’s edges. 

Finally, investigation of the goal 3 shows that currently used attribute based 

representation of a protein sequence should be modified to include composition 

moment vector, SF length, chemical group, hydrophobic autocorrelation, and electronic 

group information to improve ability to distinguish between different secondary 

structure states. In short, results for different goals show that on average considering 

SFs of similar length increases prediction accuracy by 10%, and using proposed in this 

thesis attribute representation provides further increase of 9%. Combining best attribute 

sets selection and SFs of similar length reduces the prediction error by 50%.

The considered SF prediction problem task provides useful guidelines to improve the 

existing attribute methods and design of new prediction methods for structure, content, 

and structural class. Although different prediction algorithms and representations are 

used by current prediction methods, they fail to provide major improvements due to 

insufficient attribute representation and using all SFs at the same time.
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6.2 Future W ork

The SF prediction problem can be seen as generalization of other protein structure 

prediction tasks, i.e. structure, content and structural class prediction. All these 

problems aim to predict one of the three state protein secondary structures, and thus 

using the SF prediction task to discover a set of guidelines concerning ability to better 

distinguish between the structures would provide researchers in the structure prediction 

domain with very important information.

The SF prediction can be also directly applied to perform protein structure prediction. 

Figure 25 shows how it can be applied to perform protein structure prediction.

primary sequence with 
unknown structure

sequence
splicing

primary sequence 
fragment

primary sequence 
fragment

primary sequence 
fraement

primary sequence 
fra ament

^  classification 4

^  classification 4

^  classification <

classification

model o f  helix SFs
model o f strand SFs
model o f coil SFs

secondary structure 
-► predicted for each 

fragm ent

Figure 25. Structure prediction task based on the considered SF prediction

In this case SFs models are used to classify protein fragments. To increase accuracy, 

appropriate models generated for four DA-size datasets should be used by matching the 

size of the protein fragment with the sizes of the SFs from the datasets. The main 

challenge in this application is to splice the protein into structurally uniform fragments, 

which can be done in at least two ways:
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-  by prediction of structure sequence turn points (from helix or strand to coil and 

from coil to helix or strand). This is due to regularity in which secondary 

structure aligns, i.e. helix and strand SFs are very rarely directly connected, but 

rather are connected through a coil SF.

-  by using idea of protein fingerprint (Ruan et al., 2005b). The protein fingerprint 

consists of a set of four hydrophobicity based curves that are used to splice the 

sequence into structurally uniform fragments.

The SF prediction can be also applied to perform content and structural class 

prediction. In this case, a sliding window of fixed size will be applied to classify the 

corresponding sequence fragments to one of the structures. The sequence fragment 

under the window will be classified to one of the structures, and the number of times 

each of the structures was recognized will be used to compute the content values and 

the corresponding structural class.

The size of the window should correspond to average sizes of SFs from one of the DA- 

size datasets, and models generated for this dataset should be used for classification. To 

improve accuracy several passes with windows of different sizes, which correspond to 

different DA-size datasets, should be performed. The overall diagram showing this 

prediction application is shown in Figure 26. Results for goal 2.3 have important 

implications in case of both applications. The spliced sequence fragments and window 

sizes do not have to precisely correspond to sizes of SFs from the datasets that were 

used to generate the helix, strand, and coil models.
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Figure 26. Content and structural class prediction task based on the SF prediction

Results for goal 2.3 show that even if a sequence would be spliced into fragments that 

are slightly smaller or the window size will be slightly too small with respect to the SFs 

size, the prediction of the corresponding structural class should be still reliable. These 

applications are beyond the scope of this research, and will be addresses as the future 

work.
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