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Abstract 

In the construction industry, safety standards are not only a priority but a necessity due to the 

dynamic nature of the field. Workplace safety is a complex issue influenced by a variety of factors 

that are constantly evolving. Each incident has the potential to impact the industry's intricate 

structure, causing project delays, and more importantly, direct impact on human lives. The adverse 

effects of workplace incidents reverberate not only within the construction companies themselves 

but also on a national and global scale. To enhance safety in the construction industry, this thesis 

explores two crucial aspects - the influence of weather conditions and the interplay of worker 

demographics. These factors are integral in fortifying this vital sector and contributing to a safer 

and more resilient industry 

In the first study, there was a comprehensive examination of the influence of weather conditions 

on the frequency of incidents. By utilizing advanced machine learning methods, predictive models, 

including Random forest, Decision trees and K-Nearest Neighbors were constructed with high 

accuracy. Particularly, the Random Forest model demonstrated superior performance with an 

accuracy of 97%. In addition to model creation, an executable application was developed to enable 

stakeholders to conduct real-time risk assessment. This innovation has the potential to facilitate 

proactive incident management in situations where weather conditions are constantly evolving. 

In the second study, a detailed analysis of the interaction between worker demographics and 

incident rates was examined. By employing root cause analysis, significant factors contributing to 

incidents, such as insufficient training, inadequate hazard identification, and ambiguous operating 

procedures, were identified. Additionally, the utilization of time series analysis further enhanced 

the understanding of incident rates by uncovering dynamic fluctuations among different age 

groups, occupational categories and experience levels. This comprehension of the influence of 
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demographic variables on workplace safety establishes a solid foundation for the development of 

effective strategies to mitigate risks in areas with high incident rates 

Bringing these two studies together, we recognize the pivotal role that comprehensive safety 

management plays in addressing workplace incidents. While the first study emphasizes the 

significance of predictive models in managing incident risks related to weather conditions, the 

second underscores the intricate relationship between worker demographics and safety. Together, 

they forge a comprehensive approach to proactive safety management in high-incident zones, 

ultimately aiming to make such environments safer and more resilient. 

This revised structure encapsulates both studies within a unified thesis, maintaining the 

distinctiveness of each while emphasizing the collective pursuit of enhanced workplace safety. 
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1. Introduction 

1.1 Background 

The Canadian construction industry is a dynamic sector, encompassing a wide array of projects 

ranging from residential and commercial developments to infrastructure improvements, plays a 

pivotal role in driving economic growth and the construction of vital infrastructure. However, 

within this foundation of growth and development lurk challenges of paramount importance, 

notably those pertaining to safety and risk management. 

Incidents within the construction sector can have a profound and multifaceted impact, which 

extends far beyond mere statistics. The safety of its workforce and the reliability of structures are 

two fundamental concerns.  

The first research study, explores the complex interplay between weather conditions and incident 

rates. In an environment where the safety of the workforce is paramount, the research delves into 

the intricate relationship between meteorological variables and incident occurrence. With the 

application of advanced machine learning techniques and the development of weather metrics, this 

study offers a predictive model to estimate incident likelihood and frequency under diverse 

weather conditions. This approach, which yielded commendable accuracy rates, endeavors to 

empower stakeholders in making informed decisions, proactively managing risks, and enhancing 

incident management within the variable and dynamic weather conditions faced by the industry. 

The second research study, situated within high-incident zones where dynamic weather conditions 

prevail, extends its focus to the multifaceted realm of occupational safety. Root cause analysis and 

time series analysis converge to dissect and understand the temporal patterns of incidents. Notably, 

the study emphasizes the crucial examination of worker demographics, task attributes, and incident 

rates. By doing so, it reveals fundamental contributors to incidents, namely, inadequacies in 

training, hazard identification, and operating procedures. Simultaneously, a time series analysis 

unravels the nuanced patterns that underscore the variations in incident rates across different age 

groups, trade classifications, and experience levels. 
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2 Machine Learning and text mining: A new approach to determine the weather effects 

on construction incidents 
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2.1 Introduction 

The construction industry is one of the largest industries in the world. It is heavily influenced by 

factors of outdoor environmental quality (OEQ), such as temperature, humidity, wind speed, and 

precipitation which significantly affects the safety performance of construction workers (Lee et 

al., 2021). Therefore, accurate prediction and management of incidents are essential for mitigating 

risks and ensuring worker well-being. 

Some other researchers have also emphasized the significance of weather conditions in safety 

incident prediction. These include the development of a machine learning model that incorporates 

weather data to predict safety incidents in construction sites and the utilization of machine learning 

techniques to predict safety incidents based on weather conditions, emphasizing the need for 

improved incident prevention strategies (Liu et al., 2020; Nguyen et al., 2020). 

Weather conditions, including temperature, precipitation, and wind, have profound implications 

for construction activities and, in turn, worker safety. Understanding these impacts is essential for 

effective project planning and management. Temperature variations can affect construction 

materials and worker productivity. Extreme heat or cold can impact the workability of concrete, 

leading to structural issues and compromised durability. High temperatures pose significant risks 

to construction workers, particularly in hot climates or during summer months. Heat stress is a 

significant concern and can result in heat-related illnesses, such as heat exhaustion and heat stroke 

(Tang et al., 2017). Studies have shown a correlation between high temperatures and increased 

falls, slips, and trips, possibly due to fatigue, dehydration, and decreased alertness (Yi et al., 2017; 

Choi et al., 2019). Moreover, high temperatures can cause thermal discomfort, leading to decreased 

concentration, irritability, and distractions, contributing to errors and accidents (Wong et al., 

2014). Combining high temperatures with other factors, such as high humidity, exacerbates the 

risks. High humidity reduces the body's ability to dissipate heat through sweating, impairs 

evaporative cooling, and increases the risk of heat-related illnesses (Kjellstrom et al., 2018). 

On the other hand, low temperatures present unique hazards in construction environments and can 

increase the risk of incidents. Studies have identified several ways low temperatures contribute to 

accidents and injuries. For instance, cold temperatures can impair manual dexterity and decrease 

workers' ability to grip tools properly, increasing the likelihood of hand-held equipment accidents 
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(Liu et al., 2017). In addition, cold weather can cause surfaces to become icy or slippery, leading 

to slips, trips, and falls (Amin et al., 2016).  

Precipitation, i.e., rain or snowfall, can cause delays in various construction operations. Heavy 

rainfall can hinder site preparation, excavation, and concrete pouring, leading to project delays and 

increased costs. It can also result in soil erosion and affect the stability of slopes and foundations. 

Additionally, rainwater infiltration can delay surface finishing activities such as painting and 

asphalt paving (Sacks et al., 2018). Similarly, snowfall can impede transportation, disrupt supply 

chains, and hinder worker mobility, causing setbacks in project schedules (Bouzidi et al., 2016). 

The effects of precipitation can also be seen to impact construction equipment significantly. 

Exposure to rain and excessive moisture can lead to corrosion, rust, and electrical system 

malfunctions (Hua et al., 2019). Construction equipment is particularly vulnerable to water ingress, 

damaging sensitive components, affecting electronics, and leading to equipment downtime. Snow 

and ice can also cause equipment malfunctions, reduce traction, and increase the risk of accidents 

(Liu et al., 2017). Therefore, developing a comprehensive and integrated framework that leverages 

weather information and real-time incident data for informed risk mitigation is essential. 

Wind also adversely affects construction operations, particularly those involving work at height. 

Strong winds can compromise worker safety and require the temporary suspension of specific 

tasks, such as crane operations and exterior finishing works. Wind can also impact material 

handling, leading to increased risks of accidents and property damage. Furthermore, wind gusts 

can cause instability in temporary structures, scaffolding, and formwork systems (Kamat et al., 

2020), which can also pose challenges to the safe operation of construction equipment, especially 

aerial and lifting machinery. Strong winds can cause instability, compromising the stability and 

balance of cranes, scaffolding, and other elevated equipment (Nguyen et al., 2020). Wind gusts 

can also affect material handling, leading to accidents and property damage. Construction sites in 

windy areas require careful monitoring of wind speeds and the implementation of wind-related 

safety protocols to prevent equipment failures and protect worker safety using ML techniques. 

Machine learning (ML) techniques that use meteorological data as a predictor have gained 

popularity in the research community to improve incident rate predictions.  

Several studies have employed machine learning (ML) and weather data to analyze and predict 

incidents in the construction industry, and these studies have highlighted the importance of 
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incorporating weather data in predicting safety incidents, ultimately improving project planning 

and risk management (Chen et al., 2019; Fan et al., 2021).  These studies collectively showcase 

the benefits of ML algorithms such as Random Forest (RF) to predict incidents using weather 

information. Random Forest (RF) is a supervised ensemble learning method that constructs 

multiple decision trees and combines their predictions to enhance accuracy and robustness. RF has 

demonstrated its capability in predicting occurrence and identifying relevant attributes 

contributing to incidents. The ensemble nature of RF mitigates bias and variance, yielding reliable 

predictions even in the presence of noisy or unbalanced data (Liaw et al., 2002). 

Another ML technique is the K-nearest neighbors (k-NN) algorithm, a fundamental non-

parametric classification and regression technique. It operates on the principle of proximity, where 

the classification or prediction for a data point is determined by the majority class of its k-nearest 

neighbors. The k-NN algorithm is known for its simplicity, adaptability, and applicability to 

various domains. The analysis forms descriptive statistics to ascertain whether the data consists of 

a set of distinct subgroups (Hastie et al, 2009). 

Another supervised ML algorithm is the decision tree algorithm, which partitions the feature space 

into subsets, using hierarchical decision rules to guide classification or regression tasks. They offer 

transparency in decision-making processes and facilitate the interpretability of model results. By 

visually representing decision rules, decision trees allow practitioners to comprehend the criteria 

that influence risk categorization, enhancing the interpretability of the model (Géron et al., 2017). 

K-Means is a popular unsupervised clustering algorithm that partitions data into distinct groups by 

minimizing the sum of squared distances between data points and cluster centroids. It provides 

insights into data structures and assists in identifying natural groupings. 

In this context, data normalization is critical in data analysis. It ensures that variables are 

consistently scaled, mitigating biases or distortions arising from differing units or magnitudes. 

This process is critical when dealing with diverse data types or integrating multiple datasets for 

analysis. By incorporating working hours as a normalization factor, the analysis accounted for 

variations in project durations and labor inputs, providing a standardized measure of incidents per 

hour worked. 

While previous studies have explored the relationship between weather conditions and workplace 

incidents, a notable research gap exists in understanding how specific combinations of weather 
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variables, particularly in regional variations, influence incident rates. Furthermore, the extent to 

which incident prevention strategies are adapted to these conditions remains underexplored. This 

research seeks to employ ML techniques to address these gaps by providing a comprehensive 

analysis of incident likelihood about specific weather thresholds, focusing on tailored risk 

mitigation measures. 

2.2 Methodology 

The data for this research consisted of an incident dataset of 113,551 records (2004 - 2023) 

obtained from an industrial construction company in Alberta, Canada and the weather information 

extracted from Environment Canada (Historical Climate Data, 2023) using the specific geolocation 

of incident. The incident dataset contained information about the incident date, incident 

description, work category, incident type, etc., while the weather information had fields related to 

hourly wind speed (km/h), temperature (o C), precipitation (mm), and relative humidity (%). All 

the CSV files containing each monthly weather information were combined to create a 

comprehensive document containing the weather data for each incident record.  The weather data 

now contained information describing the incident location, incident date and time, temperature, 

wind speed, relative humidity, and precipitation. The methodology adopted in this study is shown 

in Figure 2-1. 

 

 

Figure 2-1. Research methodology adopted in this study 
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2.2.1 Data Pre-processing 

The datasets were cleaned by handling missing and null values for each record. Within the weather 

data, this was handled by deleting the specific row with null values. The Pandas library in Python 

was utilized for the data pre-processing steps. After data pre-processing, keyword extraction was 

conducted to include incidents related to weather conditions.  

The following keywords: “snow, wind, ice, sunny, hot, degree, visibility, freezing, fog, dark, heat, 

storm, lightning, temperature, sun, slip, rain, cold, sunny, wet” were identified from literature to 

be related to weather and a keyword extraction was done to limit the incident data to only records 

associated with these words.  

2.2.2 Data Fusion 

Next, the weather data was merged with the incident data for each project based on the project 

location, incident date, and time columns, which gave the weather information for each incident 

record. The weather information recorded was at the time each incident occurred. 

2.2.3 Feature Engineering 

Feature engineering was conducted to transform the raw data into meaningful and informative 

features that can enhance the predictive power of a model. This step allowed the analysis of the 

incidents based on temperature ranges and the identification of potential relationships between 

temperature and incident occurrences. A new feature representing temperature categories was 

created from -45o C to 35oC, in increments of 5oC and also, for wind speed categories from 

0km/hr to 60km/hr, in increments of 5km/hr.   

For the relative humidity, the values were represented from 0% to 100%, in increments of 5%, and 

finally, the precipitation categories were from 0mm to 5.5mm, in increments of 0.5mm. Data 

Frame methods like between () and cut () were used to bin the weather values into various 

categories. 

2.2.3.1 Aggregated Data Frame 

An aggregated data frame was created to store the counts of each category. This step allows us to 

summarize and analyze the distribution of incidents across different temperature and wind speed 

categories. 
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2.2.3.2 Incidents Count per Category 

The number of incidents with each category was counted to provide insights into the frequency of 

incidents in different temperature and wind speed ranges. 

2.2.3.3 Incident Proportions 

Next, the proportion of incidents in each category was calculated by dividing the count by the 

total number of incidents.  

This crucial step in the analysis process aims to enhance the comprehension of the frequency and 

distribution of incidents across various temperature and wind speed categories.  

2.2.4 Data Normalization 

To analyze the relationship between incident occurrences and weather conditions, it is essential to 

normalize the data based on the working hours for each month. This helps to improve the 

performance and training stability of the ML model. 

The steps for the normalization involved the incident dataset, which contains information about 

project incidents, merged with the working hours dataset, which includes the corresponding 

working hours for each month. This merger was performed based on the common date column. 

The incidents were normalized by dividing the incidents per month by the respective working 

hours, assuming that each row in the dataset represents all incidents that occurred for that specific 

month. The normalized incidents per hour worked were calculated as incident density. 

A scatter plot was generated to visualize the relationship between temperature, wind speed, and 

incident density using the Plotly Express library in Python. 

2.2.5 Calculating Incident Counts per Month 

The incident data was grouped by month, and each month's incidents were counted using the group 

by () and size() functions. This step provided the total incident count for each month. 

2.2.6 Normalization Using Working Hours 

The incident counts were normalized by dividing them by the corresponding working hours for 

each month. This normalization process considered variations in the number of working hours in 
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different months, ensuring an accurate comparison of incident occurrences. The incident counts 

were divided by the working hours using the element-wise division operation in the Pandas library. 

2.2.7 Merging Normalized Data with Weather Information 

The normalized incident counts were merged with the weather data using the month as the common 

key. This step ensured the normalized incident data was associated with each month's respective 

temperature and wind speed categories. 

2.2.8 Grouping and Averaging 

Weather categories further grouped the merged data for each month. The average value of the 

normalized incident counts was calculated for each temperature and wind speed category. This 

step summarized the average incident occurrences for different weather conditions. 

2.2.9 Clustering 

Clustering was done to identify distinct clusters of incidents with similar patterns, and similar data 

points were grouped based on their shared characteristics. 

2.2.10 Feature Selection  

Temperature, wind speed, humidity, and precipitation were selected as the attributes for clustering, 

as these were the four key weather variables identified. These features were used to create a 4-

dimensional dataset for further analysis. 

2.2.11 K-means Clustering 

With the preprocessed data, K-means clustering algorithm was applied. The elbow method (which 

plots the cost function value produced by different k values) was used to determine the appropriate 

number of clusters (Dangeti, 2017). The optimal number of clusters was three, indicating low, 

medium, and high-risk regions based on the weather variables. 

After clustering, the results were visualized using a 3D scatter plot. Each cluster was assigned a 

distinct color, allowing easy identification of the risk levels for different regions. 
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2.2.12 Prediction Model Development 

The dataset was split into training and testing sets for the prediction models. This is useful in 

developing machine learning models that can accurately predict new, unseen data.  Cross-

validation was used in dividing the data into subsets (for training and testing). Three models, 

namely, DT, RF, and KNN were used for evaluation. 

A Decision Tree classifier was built using the training data. The Decision Tree algorithm 

recursively splits the data based on the selected features, creating a tree-like structure. 

Next, a Random Forest classifier, an ensemble learning method that combines multiple decision 

trees to improve prediction accuracy, was developed. This ensemble learning method combines 

multiple decision trees to provide robust and highly accurate predictions, and it excels in handling 

complex datasets and capturing intricate patterns.  

The KNN algorithm predicts the class of a data point by considering its k-nearest neighbors. The 

KNN model was trained, and the optimal value of k was determined through cross-validation. This 

model relies on the proximity of data points for classification, making it sensitive to noise and 

outliers. 

2.2.12.1 Model Evaluation 

 The performance evaluation of each model was conducted using accuracy as the chosen metric. 

In addition, confusion matrices were generated to give insight into true positive classifications, 

true negatives, false positives, and false negatives. These matrices depict how the models' 

classifications align with actual outcomes. 

2.2.12.2 Model Comparison 

After evaluating all three models, their performance was compared based on the prediction 

accuracy to select the best predictor for incident risk levels.  

2.2.13 Application Build 

Creating an executable application bridges the gap between technical and non-technical users. This 

process adheres to the following steps: 
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Tool Selection: The PyInstaller tool was chosen for its simplicity and effectiveness in packaging 

Python scripts into standalone executables. 

Application Script: The heart of the application lies in a Python script that integrates the weather 

prediction model based on the meticulously crafted clustering and machine learning models 

developed during the research. 

Executable Generation: By running the PyInstaller command, the Python script is transformed into 

an executable that includes all necessary dependencies, eliminating the need for users to install 

Python. 

Usability Enhancement: The executable application features a user-friendly interface where users 

can input weather parameters, such as temperature, wind speed, humidity, and precipitation. The 

application then employs the pre-trained model to predict the low, medium, or high-risk severity 

level associated with the provided conditions. 

The outcome of this process is a self-contained executable application that seamlessly integrates 

the prediction model. Users can execute the application without worrying about any technical 

prerequisites. This makes it accessible to a broader audience, including non-technical stakeholders 

and field experts who may lack Python expertise. In this research, Python version 3.10 and 

RapidMiner 10.1 were utilized. 

2.3 Results and Discussions 

2.3.1 Categorization and Proportions 

Weather attributes, including temperature, wind speed, humidity, and precipitation, were 

categorized into suitable bins for analysis. The data was divided into intervals of 5℃ for 

temperature and 5 km/h for wind speed, while humidity and precipitation were categorized into 

intervals of 5% and 0.5 mm, respectively. For example, incidents recorded at a temperature of -

8.7oC were grouped into the -10 to -5o C. Proportions of incidents within each weather category 

were then calculated, providing insights into the relative occurrence of incidents under different 

weather conditions. 
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2.3.2 Heatmap Visualization 

A color scale ranging from cool shades (e.g., blue) for lower incident occurrences to warm shades 

(e.g., red) for higher incident occurrences was used. High-risk areas with increased incident risks 

were identified based on specific temperature and wind speed combinations, with darker color 

shades, while cooler shades indicated regions with lower incident occurrences. The heatmap was 

displayed in a two-dimensional plot, showing temperature vs. wind speed. Figure 2 shows that 

most incidents occurred between temperature values of -0.1oC-10oC and Wind speed values of 5-

9km/hr., with an incident count of 42. This concentrated region highlights a critical area of interest, 

signifying that incidents will most likely occur within these specific weather conditions. The 

combination of lower temperatures and moderate wind speeds poses a heightened risk to 

workplace safety. Understanding this hotspot is pivotal for enhancing incident management and 

risk mitigation strategies. 

In addition, Figure 2-2 underscores the dynamic nature of incident occurrence concerning varying 

weather conditions. The incident count notably decreases as the temperature and wind speed 

deviate from this hotspot. This suggests the importance of proactive measures and targeted 

interventions in conditions diverging from the identified high-risk zone, thereby minimizing the 

incident occurrence and its associated impact on worker safety. 

 

Figure 2-2. Two-dimensional heat map of Temperature vs. Wind speed. 
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2.3.3 Scatter Plot Visualization 

A 4D scatter plot was developed to identify the relationship between weather attributes and 

incident occurrences (Figure 2-3). Each data point represents an incident record, with the point 

size indicating the severity of the incident and the color representing the frequency of incidents at 

that particular weather combination. The clustering of data points in the scatter plot revealed 

incident patterns and identified potential high-risk regions. These clusters signify that incidents 

tend to congregate under specific combinations of weather conditions. 

 

Figure 2-3. Four-dimensional scatter plot of four weather variables (temperature, wind speed, relative humidity and 

precipitation). 

2.3.4 Clustering 

K-means clustering was applied to group similar incidents based on weather attributes. The 

clustering analysis identified distinct incident risk areas with similar weather conditions. To 
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determine the appropriate number of clusters, the elbow method was used. The optimal number of 

clusters was three, indicating low, medium, and high-risk regions based on the weather variables. 

Incidents within the same cluster were associated with similar weather patterns and incident risks, 

providing valuable insights for resource allocation and preparedness efforts. From the plot, 

cluster_2, cluster_1, and cluster_0 represent high, medium and low severity risk levels, 

respectively.  

Risk level 
Temperature 

(oC) 

Relative 

Humidity (%) 

Precipitation 

(mm) 

Wind Speed 

(km/hr) 

 Low severity 0.7 80 0 18 

High severity -11.8 77 0 24 

Low severity -2.4 96 0 8 

High severity -30.2 69 0 11 

High severity -11 70 0.023 11 

High severity -24.5 68 0 15 

High severity -24.3 69 0 17 

High severity -21.9 76 0.3 13 

Medium severity 29.9 20.0 0.0 26.0 

Table 2-1. Table showing clusters for different combinations of weather variables. 

Table 2-1 presents insights derived from the K-means clustering analysis applied to the incidents 

based on weather attributes. This analysis aimed to identify patterns in incident occurrences 

influenced by weather conditions.  

The table consists of the following columns: 

1. Risk Severity Level: This column categorizes incidents into three distinct risk levels: high, 

medium, and low. These risk levels were determined through clustering, where incidents 

with similar weather attributes were grouped. 

2. Temperature: This column represents the temperature associated with each incident cluster. 

It provides information about the temperature range for each risk severity level and indicates 

the average or representative temperature within the respective clusters. 



15 
 

3. Humidity: The humidity values corresponding to each incident cluster are provided in this 

column. Similar to temperature, humidity patterns are revealed for different risk severity 

levels, aiding in understanding how incidents relate to varying humidity conditions. 

4. Precipitation: This column shows the precipitation data for each incident cluster. It 

illustrates the precipitation experienced within the clusters representing different risk 

severity levels. 

High severity cluster (Cluster 2): Incidents falling under this cluster are associated with higher 

temperatures, specific humidity levels, and perhaps significant precipitation. This suggests that 

weather conditions in this cluster are conducive to incidents with higher severity levels. 

Medium severity cluster (Cluster 1): This cluster might exhibit moderate temperature, humidity, 

and precipitation values, indicating conditions that lead to incidents of moderate severity. 

Low severity cluster (Cluster 0): Incidents in this cluster correspond to relatively lower 

temperature, humidity, and precipitation levels. This cluster represents conditions less likely to 

result in incidents or incidents of lower severity. 

 
Temperature Wind Speed Humidity Precipitation 

 
min max min max min max min max 

Label 
 

Cluster 0 -10.4 23.2 0 45 57 100 0 5 

Cluster 1 -12.5 31.3 0 46 16 67 0 0 

Cluster 2 -40.2 -5.8 0 34 52 96 0 0.7 

Table 2-2. Minimum and Maximum values for each cluster 

Table 2-2 illustrates each variable's minimum and maximum clusters and depicts the variability in 

weather attributes across the identified clusters resulting from the K-means clustering analysis. 

Each cluster represents a distinct grouping of incidents characterized by similar weather 

conditions. The minimum and maximum values for each variable within these clusters provide an 

understanding of the range of conditions present within each cluster. 

In the analysis: 
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• Minimum Value (Min): This refers to the lowest observed value of a specific weather 

attribute within a particular cluster. It indicates the extreme lower end of the range for that 

attribute within the cluster. 

• Maximum Value (Max): This signifies the highest observed value of the same weather 

attribute within the cluster. It represents the upper range boundary for that attribute within 

the cluster. 

The application of these minimum and maximum values lies in their ability to provide a 

quantitative description of the variability and diversity of weather conditions within each cluster. 

Specifically: 

• Cluster Characterization: By examining the range between the minimum and maximum 

values for each variable in a cluster, analysts can discern the scope of weather conditions 

that contribute to incidents in that cluster (Tan, P., 2005). 

• Intra-cluster Comparison: By comparing the minimum and maximum values across 

clusters for a given weather attribute, patterns of variation can be identified between 

clusters (Boomija, M., 2008). 
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Figure 2-4. Scatter plot of K-means clustering 

Figure 2-4 illustrates the scatter plot resulting from the K-means clustering. Each cluster captures 

a specific subset of incidents with similar attributes regarding the analyzed weather attributes. Each 

cluster resembles a unique "zone" where incidents exhibit comparable weather-driven behaviors. 

Cluster 0, Cluster 1, and Cluster 2 exhibit different arrangements of data points, which point to 

areas where the interplay of weather attributes leads to varying degrees of incident risk. 

2.3.5 Performance of Prediction Models 

For this study, KNN, Random Forest (RF) and Decision Tree (DT) models were developed to 

classify incidents into low, medium, and high-risk categories based on the weather conditions 

using RapidMiner software.  
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The RF model performed best with an accuracy of 0.970, followed by DT with an accuracy of 

0.967 and KNN with 0.852. While evaluating the three models, significant efforts were directed 

toward optimizing their predictive performance. 

The RF achieved the highest accuracy of 97.0% through careful parameter tuning. By meticulously 

fine-tuning parameters like the number of trees and the maximum depth, a balance was struck 

between complexity and generalization. 

Similarly, DT exhibited good performance with an accuracy of 96.7%. Detailed hyperparameter 

tuning, including controlling the tree's depth and applying pruning techniques, allowed for a more 

refined decision boundary. The emphasis on preventing overfitting while maintaining the model's 

inherent capacity for capturing intricate patterns resulted in the notable accuracy achieved. 

On the other hand, k-Nearest Neighbors yielded an accuracy of 85.2%, relatively lower than the 

other two models. Despite careful parameter optimization, it's possible that k-Nearest Neighbors 

might not have been the optimal fit for predicting incidents based on the given weather attributes. 

 

ML MODEL ACCURACY 

Random forest 97.0% 

Decision tree 96.7% 

K-nearest neighbors 85.2% 

Table 2-3. Accuracy of different ML classifiers 
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Figure 2-5. Machine learning model built in RapidMiner. 

Figure 2-5 shows a visual representation of the machine learning model developed using 

RapidMiner, incorporating the three distinct algorithms (RF, DT and KNN). This model plays a 

pivotal role in the research by enabling the prediction of incident likelihood based on the interplays 

of weather attributes. To ensure the robustness and reliability of the machine learning model, a 

cross-validation technique was adopted for each of the three algorithms integrated within the 

RapidMiner-based model. Cross-validation enabled the assessment of the model's performance 

across multiple folds of data, effectively mitigating potential bias introduced by a single training-

test split.  

Furthermore, to establish the statistical significance of any observed differences among the 

algorithms, a t-test analysis was conducted, which allowed for the quantitative assessment of 

whether the model performance variations were statistically significant. 
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2.3.6 Risk Severity Predictor Application 

As part of the broader research into weather-related incident prediction, a key challenge is ensuring 

that the developed tools are accessible and usable by a wider audience. However, sharing Python 

applications with non-technical users can be daunting due to the requirement of Python 

installation. To address this, an executable application has been developed (Figure 2-6), which 

leverages the PyInstaller tool that encapsulates the prediction model, allowing users to assess the 

risk severity associated with specific weather conditions easily. 

 

Figure 2-6. Risk Severity Predictor Application. 
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2.4 Recommendations 

The culmination of the research into predicting incident likelihood based on weather variables 

yields valuable insights with great potential for enhancing incident management and risk 

assessment strategies. The predictive model stemmed from a comprehensive analysis of weather-

related incidents and offers a tool to address potential incidents proactively. This research extends 

the work of other scholars by delving into the intricate interplay of temperature, wind speed, 

relative humidity, and precipitation in various regional contexts, elucidating their influence on 

incident rates. It presents an exhaustive analysis of the likelihood of incidents occurring under 

distinct weather thresholds, with a dedicated focus on devising tailored strategies to mitigate 

associated risks. 

Building upon the findings, this study proposes the following recommendations: 

2.4.1 Extreme Weather Precautions 

Develop weather-specific safety protocols for extreme high and extreme low cases. For example, 

measures such as providing thermal insulation during cold spells and enforcing heat stress 

prevention strategies during hot weather can be implemented. 

2.4.2 Real-time Incident Monitoring and Early Warning Systems 

Integrate the predictive model into real-time monitoring systems to provide timely alerts and early 

warnings based on changing weather conditions. By identifying high-risk conditions through the 

predictive model, resources can be deployed effectively to implement preventive measures, 

thereby minimizing the impact of incidents (Jung et al., 2021). 

2.4.3 Task-weather Compatibility 

Assess the compatibility of tasks with prevailing weather conditions. Design work schedules that 

minimize exposure to adverse weather, rescheduling outdoor tasks during extreme conditions. 

2.4.4 Planning and Maintenance 

Incorporate predictive insights into infrastructure planning and maintenance strategies (Achouch 

et al., 2022). High-risk areas can be prioritized for enhanced infrastructure maintenance, reducing 

the vulnerability of critical systems to weather-related incidents and minimizing disruptions. 
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2.5 Limitations and Implications for Future Research 

2.5.1 Data Quality and Generalizability 

The accuracy, completeness, and generalizability of incident and weather data are crucial aspects 

that impact the reliability of research findings. Variations in data quality may introduce errors or 

omissions, potentially skewing the outcomes of safety assessments. Furthermore, findings derived 

from high-incident zones might not seamlessly translate to regions with different weather patterns 

or occupational practices. The limitations in data quality and generalizability can be attributed to: 

• Diverse Data Sources: Incidents and weather data often come from diverse sources, leading to 

discrepancies in accuracy and completeness. Standardized reporting mechanisms are essential 

to enhance the consistency and reliability of the data. 

• Regional Disparities: The applicability of research findings may be limited by regional 

variations in weather patterns and safety practices. Different geographic locations may have 

distinct occupational norms and diverse climates, rendering generalizations challenging. 

2.6 Conclusion 

In conclusion, the research has provided an approach to predicting incident likelihood using 

weather variables. The developed prediction models, decision tree, random forest, and k-nearest 

neighbors, accurately forecasted incident likelihood based on weather variables.  

It also provides a pioneering solution that helps decision-makers (managers, supervisors, safety 

officers and high-level executives) mitigate risks and enhance incident management by effectively 

merging weather conditions with incident occurrences. 

Integrating these predictive models into real-world project planning and management fosters 

resilience, preparedness, and efficient resource utilization. Creating an executable application 

enables translating complex data analysis and machine learning models into a practical tool that a 

diverse range of stakeholders can effortlessly use. This approach extends the research's impact, 

making its outcomes accessible and valuable to field personnel and other stakeholders in managing 

weather-related risks. The executable application harmonizes advanced data analysis with user-

friendly accessibility, embodying the research's mission to bridge the gap between technical 

analysis and real-world application. 
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Finally, the work contributes to advancing the field of incident prediction and presents a tangible 

opportunity to create a safer and more resilient society while leaving a lasting and positive impact 

on incident management practices worldwide. 
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3 Enhancing Risk Assessment for Occupational Safety: Discerning the relationship 

between worker attributes, weather variables and incident rates to develop effective risk 

mitigation strategies within high incident zones 
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3.1 Introduction 

Occupational safety within high-incident zones is a paramount concern across various industries. 

These zones are characterized by their exposure to dynamic weather conditions, which can 

significantly influence worker safety. Worker vulnerability encompasses an array of factors that 

influence the safety of individuals in the workplace. Research conducted by Smith et al. (2019) 

underscores the importance of considering worker experience as a determinant of safety outcomes. 

Their findings indicate that less experienced workers tend to be more vulnerable to incidents, 

particularly those related to adverse weather conditions. This vulnerability is further exacerbated 

when workers lack appropriate training in coping with challenging weather circumstances. 

Understanding how worker vulnerability, task attributes, and weather variables interact is crucial 

for developing tailored risk mitigation strategies. 

Task attributes, which encompass the nature and characteristics of tasks performed within high-

incident zones, are another pivotal facet. Tasks vary significantly in complexity, duration, and 

susceptibility to weather elements. For instance, tasks involving work at heights or the operation 

of heavy machinery are often associated with higher risks (Johnson & Brown, 2018). These tasks 

are particularly vulnerable to weather-related incidents, necessitating a comprehensive analysis of 

their attributes. 

Weather variables, such as temperature, wind speed, precipitation, and humidity, substantially 

influence occupational safety. Research has demonstrated that extreme temperatures can adversely 

affect worker productivity and heighten the risk of heat-related illnesses (García-Trabanino et al., 

2020). Conversely, high wind speeds can jeopardize the stability of temporary structures and 

scaffolding (Li & Ng, 2017). Precipitation, in the form of rain or snow, can lead to slippery surfaces 

leading to incidents and project delays (Wang et al., 2019). 

Incident severity classification is a fundamental aspect of occupational safety research, serving as 

a pivotal tool to categorize incidents based on their potential impact and consequences. In the 

research context, the aim is to enhance risk assessment in high-incident zones by understanding 

how incidents are classified. 

Several studies have emphasized the significance of incident severity classification in occupational 

safety. Liu et al. (2020) and Nguyen et al. (2020) emphasized the need for improved incident 

prevention strategies, including considering weather conditions in incident severity classification. 
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In addition to weather conditions impacting incidents, task attributes and worker demographics 

also play an important role. Long working hours, often extending beyond the conventional 8-hour 

shift, can lead to fatigue and cause incidents. Research has shown a noteworthy correlation 

between extended work hours and incident rates within the construction sector (Lingard et al., 

2013; Chen et al., 2019). It is crucial to recognize that the impact of long working hours on incident 

occurrence may vary based on several factors. The type of construction work, environmental 

conditions, and individual worker characteristics can all influence the degree to which extended 

work hours contribute to safety risks. Therefore, a nuanced understanding of these factors is 

essential for developing effective strategies to mitigate the impact of long working hours on 

incident occurrence in the construction industry. 

Despite the extensive research on occupational safety and its correlation with weather variables, a 

notable research gap exists in understanding how specific combinations of weather variables, 

particularly in regional variations, influence incident rates within high-incident zones. 

Furthermore, there is a lack of comprehensive studies investigating how incident prevention 

strategies are adapted to these conditions. Existing studies have predominantly focused on 

individual aspects, such as worker vulnerability or the impact of specific weather variables, 

without considering their combined effects in high-incident zones. Therefore, there is a clear need 

for research that employs a holistic approach, incorporating data on worker demographics, task 

attributes, and various weather variables, as well as conducting thorough time series analyses. This 

comprehensive approach can lead to the development of more effective and tailored risk mitigation 

strategies, ultimately enhancing the safety of workers in construction sites. 
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3.2 Methodology 

This study employs a multi-faceted approach, encompassing data analysis and modeling, to 

comprehensively investigate and address safety issues within high-incident zones. The data for 

this research consisted of an incident dataset of 113,551 records (2004 - 2023) and also workers' 

demographic information, including workers’ age, trades and experience level obtained from an 

industrial construction company in Alberta, Canada. The methodology adopted in this study is 

shown in Figure 3- 1Error! Reference source not found.. 

 

Figure 3- 1. Research methodology adopted in this study 

. 
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3.2.1 Data Pre-processing 

In the initial phase, collection and preprocessing of the dataset took place, comprising incident 

reports from the high-incident regions.  

Data Cleaning: This was done for the removal of several duplicate and irrelevant records and for 

handling missing data. 

Data Integration: The incident reports were integrated with the worker demographic information, 

for a more comprehensive analysis. 

Data Transformation: The incident date and time information were standardized to a common 

format, and additional features, such as grouping incidents by month/year, were created to 

facilitate time series analysis. 

3.2.2 Data Analysis 

Hotspot Identification: The first stage of data analysis involved identifying incident hotspots or 

clusters within high-incident regions. A heatmap generation approach proposed by Atsegbua et al. 

(2023) was utilized to achieve this. This technique enabled the pinpointing of areas with the highest 

number of incidents. Classification based on their impact and seriousness was conducted to gain a 

deeper insight into the severity of incidents. This classification was executed in alignment with a 

risk matrix, dividing incidents into categories such as A, B, and C, reflecting different levels of 

risk and impact.  

3.2.3 Root Cause Analysis 

Incident Investigation: For a deep dive into understanding the root causes of incidents, a 

comprehensive root cause analysis took place. This process involved meticulous examination of 

each incident within the dataset. 

Identification of Causal Factors: During the root cause analysis, a number of causal factors 

contributing to each incident were identified and were mapped to the Process Safety Management 

(PSM) elements. The PSM framework is a systematic approach to managing hazardous processes 

and preventing incidents. It encompasses a set of principles and practices designed to enhance 

safety in various industries. This step provided a robust framework for understanding how 

deficiencies in specific PSM elements contributed to incidents.  
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3.2.4 Risk Mitigation Strategies 

Enhancing Safety Measures: Proposed measures to enhance safety for vulnerable worker 

categories and high-risk tasks based on worker susceptibility and task analysis. These safety 

measures encompass targeted strategies aimed at improving the safety of worker categories 

particularly susceptible to incidents and tasks identified as high-risk. 

3.2.5 Worker Demographic Analysis 

3.2.5.1 Stratified Sampling 

Acknowledging the potential for dataset imbalances, particularly with demographic categories, we 

implemented stratified sampling techniques, using the scikit-learn library in Python. 

Using Python, specific age groups were created, enabling the categorization of workers into groups 

such as '18-30', '31-40', '41-50', and '51-60' and 61+ based on age. In contrast to the age 

classification, the trade classifications and experience levels were inherently structured in the 

original datasets, eliminating the necessity for further classification and enabling direct integration 

into the analysis.  

3.2.5.2 Temporal Exploration 

Preceding the time analysis, Python was utilized to intricately fuse incident data with worker 

demographic data using the date and time information. 

3.2.5.3 Trade Classification 

The trades were classified as follows within the dataset: 'Carpenter', 'EQ', 'Electrician', 'Instrument', 

'Ironworker', 'LAB', 'Materials', 'Millwright', 'Other', 'Pipefitter', 'Scaffolder', 'Welder', 'Welder B 

Pressure', 'Welder CWB', 'Welder W/Rig'. 

3.3 Results and Discussions 

3.3.1 Temperature vs Wind Speed Heatmap 

The heatmap (Figure 2) serves as a visual representation of the distribution of incidents across 

various combinations of temperature and wind speed categories and is an adaptation of the original 

figure used in a prior study (Atsegbua et al., 2023), where the relationships between weather 

conditions and incident severity were explored.  Each cell in the heatmap corresponds to a specific 

range of temperature and wind speed, and the color intensity within each cell indicates the number 

of recorded incidents falling within that category. The heatmap is divided into multiple grids, each 

focusing on different severity levels of incidents, and the process of generating this heatmap was 
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instrumental in uncovering patterns and insights related to occupational safety within high-incident 

zones. From Figure 3- 2Error! Reference source not found., a high number of incidents were 

recorded in the temperature category of 0oC- 5 oC and wind category of 10 – 20km/hr. 

 

Figure 3- 2. illustrates the heatmap depicting the distribution of incidents based on temperature and wind speed 

3.3.2 Analysis of Incidents by Severity Classification and Work Activity Category 

In the dataset, the incidents have been categorized into three distinct classifications: A, B, and C, 

based on a rigorous risk matrix assessment, as seen in Table 3- 1Error! Reference source not 

found.. This classification system aids in identifying and prioritizing incidents according to their 

potential impact and severity. It is essential to note that within this classification, class A represents 

the most severe incidents, while B and C denote lower levels of severity. 

The presence of category B incidents, numbering 12 within the work activity categories, is 

particularly noteworthy. These incidents serve as a focal point for the research, as they represent 

occurrences that possess a level of severity that demands attention but may not be as immediately 

critical as Category A incidents. Targeted risk mitigation strategies can be formulated by closely 

examining the characteristics, causes, and patterns associated with Category B incidents. The aim 

is to prevent these incidents from progressing to more severe categories and to enhance overall 

safety within high-incident zones. 
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Work Activity Category Incident Classification 

 A B C 

Equipment operator 0 2 9 

Plumbing and Pipefitting 0 1 4 

Scaffolding 0 1 4 

Laborer 0 0 5 

Millwright 0 4 1 

Iron Worker 0 1 3 

Specialty 0 1 2 

Carpenter 0 1 2 

Insulator 0 1 1 

Equipment Maintenance 0 0 2 

Table 3- 1. The distribution of Class A, B, and C incidents across the work activity categories 

Identifying the top work activity categories provides insights into the types of tasks that are most 

frequently associated with incidents in these high-risk areas. This information is provided in Figure 

3- 3. 



38 
 

 

Figure 3- 3. Pie chart of the top 10 work activity categories involved in incidents. 

From Figure 3- 1, "Equipment operator" has the highest count of incidents among all work activity 

categories. However, most of these incidents fall under the C classification (Error! Reference s

ource not found.), signifying that they are less severe. This pattern is intriguing and aligns with 

findings from prior research on occupational safety (Wu et al., 2020). 

Literature suggests that the work of equipment operators often involves repetitive tasks and routine 

operations. While these tasks can lead to a relatively higher number of incidents, they are typically 

less severe (Wu et al., 2020). Such incidents may include minor equipment malfunctions, near 

misses, or minor injuries that require minimal medical attention. 

In the context of risk mitigation, it's crucial for organizations to recognize that while incidents 

involving equipment operators may be frequent, they tend to be less harmful. Therefore, safety 

strategies for this category should focus on preventing minor incidents, maintaining equipment 

properly, and providing adequate training to ensure operators are well-versed in equipment 

operation and safety protocols (Hallowell et al., 2015). 

3.3.3 Incident Analysis and Root Causes Using the PSM Framework 

To enhance safer workplaces and accident prevention, understanding the root causes of incidents 

becomes paramount. To this end, a comprehensive analysis of a series of incidents involving 

Equipment Operators was conducted, aiming to pinpoint their root causes by aligning each incident 
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with specific elements of the Process Safety Management (PSM) framework, as defined by the 

Center for Chemical Process Safety (CCPS). 

 

Figure 3- 4. CCPS Risk-based 20 PSM Elements (CCPS, 2011). 

 

3.3.3.1 Incident 1:  

"On Monday January 25, 2016, at approximately 2:20 pm, an Equipment Operator was operating 

a John Deere 744K loader in the Abalone stockpile area.   The worker was tasked with loading 

material from the winter stockpile containment area into Rock Trucks to be transported into the 

battery limits for backfilling.  This containment area is constructed of multiple 5 x 2½ concrete 

Lego blocks that weigh approximately 5000lbs.  The containment area was 3 Lego blocks high 

thus making it approximately 7½ feet tall.  This containment area was covered with tarps and was 

fed with Herman Nelson heaters at the front of the containment area in order to keep the material 

at optimal temperature for backfill.   The containment area is also equipped with a conductor barrel 

(Steel Pipe) that runs under the material, fed with a 1 million BTU heater that is also in place to 

heat the soil to operational temperature.   On this particular occasion, the operator had a spotter 

roll back the tarp and drove forward to pick up a load of dirt with his bucket.  The material being 

scooped up was 6 feet away from the back end of the containment area.  The operator then curled 

his bucket up and backed up the loader.  While backing up the loader, the operator noticed that the 

top 2 levels of the Lego blocks at the back of the containment area had tipped over in a south 
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direction.  The operator froze the scene, notified Abalone Supervision and Safety immediately, 

and Supervision notified PCL Supervision immediately.  The Canadian model was followed." 

 

Figure 3- 5. Root cause analysis of first incident 

 

 

Lack of adherence to these Process Safety Management (PSM) elements: Element 1 (Process 

Safety Culture), Element 8 (Operating Procedures), and Element 12 (Training and performance 

assurance). 

 

3.3.3.2 Incident 2: 

" Stones from sand being spread by a Bouchier sanding truck contacts the passenger window off 

the drive side of a shuttle van that had stopped at 4 way stop sign causing it to break. The drive 

states that he heard multiple stones contacting the vehicle as the sanding truck passed but did not 

realize the window that was directly behind him was shattered, until he felt a draft while making 
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a right turn from the stop sign. He then pulled over then notified his supervisor, the drive was the 

only occupant of the vehicle at the time of the incident." 

 

Figure 3- 6. Root cause analysis of second incident 

 

Lack of adherence to these Process Safety Management (PSM) elements: Element 7 (Hazard 

Identification and Risk Analysis), Element 8 (Operating Procedures), and Element 12 (Training 

and Performance Assurance). 

 

 

3.3.3.3 Incident 3: 

"Operator was carrying a compressor with a loader-jib from hertz lay down to area 145. The 

compressor was 5 feet off the ground with a tagline attached. While transporting the compressor 

just west of the cold storage area, a KPCL SUV was parked on the road due to offloading material 

by another group. The Loader Operator did not see the SUV stopped in front of him due to his 

vision being obstructed by the compressor. As the loader progressed the front side of the 
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compressor made contact with the SUV’s back window resulting in extensive damage to window 

and surrounding window supports.” 

 

Figure 3- 7. Root cause analysis for third incident 

 

 

Lack of adherence to these Process Safety Management (PSM) elements: Element 8 (Operating 

Procedures), Element 1 (Process Safety Culture), and Element 12 (Training and Performance 

Assurance). 



 
 

3.3.3.4 Incident 4: 

“A Monad worker transported a Herman Nelson Heater to the new water storage tank area, south 

of the power house using a Zoom Boom. When he pulled off the main road in front of the mill and 

started north towards the water tank, he encountered a change in elevation. The frontend of the 

heater made contact with the ground causing the opposite end of the heater to rise, making contact 

with the jib and caused minor damage to the top of the heater and cover on the built in containment 

compartment for the fuel tank. The operator immediately stopped and called his supervisor to the 

area.” 

 

Figure 3- 8. Root cause analysis for fourth incident 
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Lack of adherence to these Process Safety Management (PSM) elements: Element 8 (Operating 

Procedures), and Element 12 (Training and Performance Assurance), Element 7 (Hazard 

Identification and Risk Analysis). 

 

Building upon the detailed analysis of incidents and the identification of the key PSM elements 

associated with each, the next step involves ranking these elements to reveal the relative 

significance of each element in the occurrence of these incidents. Figure 3- 9 shows the prevalence 

of the PSM elements across the eleven incidents, highlighting the elements that emerged more 

frequently. 

 

 

Figure 3- 9. Ranking of PSM Elements 

Training and Performance Assurance (29.4%): Training and Performance Assurance takes the 

joint top spot in incident relevance, representing a significant portion of the incidents at 29.4%. 

This illustrates the importance of adequately training and maintaining the competence of 

personnel. A substantial number of incidents can be attributed to insufficient training or 

performance issues, highlighting the critical need for comprehensive training programs and 
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ongoing performance monitoring. Robust training and performance assurance measures are crucial 

to reducing incidents and enhancing overall safety. 

Operating Procedures (29.4%): Operating procedures also has a representation of 29.4%. This 

shows its critical importance in maintaining safe work practices. The significant percentage 

suggests that incidents often occur due to a lack of clear or effective procedures. Ensuring well-

defined operating procedures is essential to providing workers with clear instructions and 

minimizing the risk of errors, accidents, and deviations from safe practices. Regular reviews and 

updates of procedures can address this gap and contribute to a safer work environment. 

Process Safety Culture (17.6%): Process Safety Culture, with a representation of 17.6%, 

underscores its importance in building a safety-conscious work environment. While it ranks 

slightly lower than other elements, it remains a crucial factor in incident relevance. A positive 

process safety culture is essential for promoting a collective mindset focused on safety, where 

every individual prioritizes and contributes to the overall well-being of the workplace. Incidents 

associated with process safety culture highlight gaps in communication, awareness, or the overall 

commitment to safety principles. Organizations should emphasize building and maintaining a 

robust process safety culture, encouraging open communication, fostering a sense of 

responsibility, and reinforcing safe behaviors among all personnel. 

 

3.3.4 Worker Demographics Analysis 

To help understand the relationship between worker demographics and workplace incidents, an 

evaluation was conducted which focused on time series. 

3.3.4.1 Correlation Analysis 

In the correlation analysis, the heatmap visually represents the frequency distribution of incidents 

across different trade classifications and age groups within the construction workforce. Darker 

shades signify higher incident frequencies, revealing notable patterns of correlation between 

specific trades and age categories, as seen in Figure 3- 10 below. 
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Figure 3- 10. Correlation of trade classifications across age groups 

The heatmap was refined to spotlight the top 10 combinations of trade classifications and age 

groups, offering a concise visualization that prioritized the most impactful correlations within the 

dataset. 

 

Figure 3- 11. Top 10 combinations of trade classifications across age groups 
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Examining the correlation analysis in Figure 3- 10 and Figure 3- 11 above, a clear and impactful 

trend emerges, highlighting the specific group: Rig welders within the 31-40 age bracket. This 

group exhibits an exceptionally high correlation rate of 28.45. This focused insight directs our 

focus squarely on the intersection of occupational role and age, pinpointing a critical area for 

targeted safety measures. 

 

3.4 Recommendations 

3.4.1 Data Quality 

Implementing a standardized incident reporting template across multiple work categories is 

recommended to enhance data quality and facilitate more detailed incident breakdowns. In an 

effort to improve the current incident reporting framework, additional categories can be included 

to help facilitate a detailed root cause analysis. This enhanced framework, developed 

collaboratively with input from affected workers and supervisors, will ensure it is comprehensive, 

user-friendly, and applicable to various scenarios. The framework can include specific fields that 

guide the reporting parties in providing essential details about the incident, such as: 

• Timeline of Events: 

o Sequential breakdown of events leading up to the incident to establish a chronological 

timeline. 

• Environmental Factors: 

o Identification of relevant environmental conditions, including weather, lighting, and 

visibility. 

• Equipment and Tools Involved: 

o Listing of equipment and tools used, specifying make, model, and condition. 

• Human Factors: 

o Exploration of human elements involved, including worker actions, training, and 

potential stressors. 

• Supervisory Response: 

o Assessment of the immediate response by supervisors and actions taken to mitigate the 

incident. 
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3.4.2 Training and Safety Awareness 

3.4.2.1 Recruitment Requirements 

It is crucial to prioritize safety in staff recruitment, ensuring that prospective employees not only 

express commitment to safety awareness but also demonstrate proficiency in safety protocols and 

operational competencies. This proficiency must be integrated in the organization's safety culture. 

To achieve this: 

• Develop a comprehensive and standardized safety training program for all new employees, 

focusing on both theoretical knowledge and practical application. 

• Incorporate safety assessments into the recruitment process to evaluate candidates' 

understanding of safety responsibilities. 

3.4.2.2 Ongoing and Effective Safety Training: 

Continuous training is vital to ensure that staff members maintain a thorough understanding of 

safety responsibilities. To achieve this: 

• Establish a regular schedule for safety training sessions, incorporating updates on emerging 

safety trends. 

• Utilize technology to facilitate flexible and accessible safety training for employees. 

3.4.3 Proactive Monitoring System 

3.4.3.1 Age-Specific Monitoring 

Given the discovery that rig welders aged 31-40 were involved in the most incidents, implementing 

a proactive monitoring system specific to this age group is essential. This system should: 

• Track and analyze incident data related to rig welders aged 31-40 to identify patterns and 

trends. 

• Introduce targeted safety interventions, such as additional training programs or toolbox talks, 

based on the insights gained from monitoring. 

3.4.4 Confidential Feedback System 

3.4.4.1 Rig Welders (31-40) 

In response to the high incident rates among rig welders aged 31-40, the introduction of a 

confidential feedback system within this specific field is recommended. This system should: 
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• Provide a secure platform for workers to report safety concerns anonymously, fostering open 

communication. 

• Use the feedback received to address hazards proactively and enhance overall safety measures 

within the rig welding domain. 

3.4.5 Job Rotation Opportunities 

3.4.5.1 Diversifying Skill Sets 

Introducing job rotation opportunities within the age group and trades can enhance workers' 

experience and skill sets, which helps to greatly mitigate the occurrence of incidents. To implement 

this: 

• Design a structured job rotation program that exposes workers to different aspects of their job 

roles. 

• Encourage cross-functional training to broaden employees' understanding of safety 

requirements in various work environments. 

3.4.6 Process Safety Culture 

3.4.6.1 Integration of Process Safety Culture 

Recognizing the importance of process safety culture as one of the top three PSM elements, it is 

imperative to integrate this aspect into the overall safety improvement strategy: 

• Conduct regular assessments of process safety culture, focusing on leadership commitment, 

employee involvement, and continuous improvement. 

• Implement targeted training programs and initiatives to enhance process safety awareness and 

adherence to established protocols. 

3.4.7 Risk Severity Predictor 

3.4.7.1 Integrating into Operational Procedures 

In an effort to enhance safety within high-incident zones, it is strongly recommended to integrate 

the developed Risk Severity Predictor into the standard operational procedures. This can be 

achieved by incorporating a comprehensive risk assessment checklist that includes weather-related 

considerations. The checklist should serve as a proactive tool, guiding workers through a 

systematic evaluation of potential risks associated with specific tasks before their initiation. 
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 Latent Cause PSM Element Recommendation 

1 Training programs did not specify 

proximity limits for loading 

operations 

Training and Performance 

Assurance 
Develop a comprehensive and 

standardized safety training 

program for all new employees, 

focusing on both theoretical 

knowledge and practical 

application 

2 Inadequate training on the effects of 

weather on equipment components, 

resulting in corrosion and seal 

deterioration 

Training and Performance 

Assurance 

3 The supervisors did not value safety Process Safety Culture Incorporate safety assessments into 

the recruitment process to evaluate 

candidates' understanding of safety 

responsibilities 

4 Weather-adaptive safety measures 

were not incorporated in standard 

operating procedures 

Operating Procedures 

Integrate the developed Risk 

Severity Predictor into the standard 

operational procedures. 

5 Limited integration of weather-

adaptive operating procedures in 

pile driving activities 

 

Operating Procedures 

Table 3- 2. Summary of Key Recommendations 

 

3.5 Conclusion 

In summary, this study examined the area of occupational safety within high-incident zones, with 

a specific focus on conducting a detailed Root Cause Analysis of incidents and analyzing the 

relationships between worker demographics. By utilizing incident records from 2015-2018 and 

worker demographic data for the same time period, the research discovered crucial insights into 

incident drivers and their correlation with worker attributes. 

 

The root cause analysis identified three crucial elements of the Process Safety Management 

(PSM)—Training and Performance Assurance (29.4%), Operating Procedures (29.4%), and 
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Process Safety Culture (17.6%). These findings underlined the critical need for robust training 

programs, a positive process safety culture, and well-defined procedures to elevate overall safety. 

Exploring worker demographics revealed a significant correlation between rig welders aged 31-

40 and incident rates, emphasizing the necessity for targeted safety measures in this specific 

demographic. 

In consideration of these insights, the study proposes recommendations to enhance data quality, 

fortify training and safety awareness, implement proactive monitoring, establish confidential 

feedback systems, introduce job rotation opportunities, and integrate process safety culture into 

safety improvement strategies. 

3.6 Limitations and Implications for Future Research 

3.6.1 Limitations 

First, the study's scope was confined to a specific industry and a limited timeframe, potentially 

limiting the generalizability of its findings to other sectors and time periods. Additionally, the 

reliance on incident reports introduced variability in data quality and completeness, as some 

incidents may have been underreported or lacked comprehensive details. Moreover, the analysis 

primarily concentrated on organizational processes and PSM elements, overlooking the valuable 

perspectives and experiences of the workers directly involved in the incidents. Lastly, it's important 

to recognize that the study identified correlations between PSM elements and incidents but did not 

establish causation, leaving room for further exploration into the underlying causal factors. 

3.6.2 Future Research 

Given these constraints, future research in the field of workplace safety presents promising 

opportunities for advancement. Broadening the scope to encompass various industries and 

extended time periods can facilitate the identification of common trends and industry-specific 

challenges. Also, improving data quality through standardized incident reporting processes and 

conducting thorough incident investigations can enhance the accuracy and completeness of 

incident data. Additionally, future research should prioritize engaging with workers who have 

encountered incidents, gaining insights into their perspectives, challenges, and suggestions for 

safety improvement. Lastly, more in-depth investigations into causation, involving detailed 

analyses of incidents related to specific Process Safety Management (PSM) elements, can reveal 
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the causal relationships between these elements and incidents, enabling more targeted safety 

improvements. 
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4 Conclusion 

This comprehensive research amalgamates findings from two distinct yet interconnected studies, 

offering a conclusion that shows the relevance of safety management in high-risk environments, 

particularly within the construction industry. These studies have been carried out to enhance our 

understanding of the intricate dynamics influencing safety and incidents. 

In the First Study, the focus was on advancing incident prediction using a predictive model driven 

by weather variables. The research utilized the power of machine learning, with the development 

of three models: The Decision Tree, Random Forest, and K-Nearest Neighbors. The Random 

Forest model, boasting a high accuracy of 97%, emerged as the most accurate, offering precise 

incident likelihood forecasts based on weather conditions.  

The creation of an executable application highlights an important step in this research, bridging 

the gap between complex data analysis and user-friendly accessibility. This practical tool offers 

invaluable support for proactively managing and mitigating incident risks associated with variable 

weather conditions. By bringing together the technical insights and real-world application, this 

work enriches the safety landscape, fostering resilience, preparedness, and efficient resource 

utilization. 

The Second Study, on the other hand, takes a deep dive into the realm of occupational safety. 

Focused on high-incident zones, it unveils critical insights through root cause analysis and the 

examination of worker demographics. This study focused on two datasets: incident records and 

worker demographic data. Root cause analysis highlighted three primary Process Safety 

Management (PSM) elements driving incidents – Training and Performance Assurance (29.4%), 

Operating Procedures (29.4%), and Process Safety Culture (17.6%). These revelations underscore 

the need for robust training, a positive process safety culture, and clear operating procedures in 

enhancing safety. 

The exploration of worker demographics provided a dynamic perspective, revealing how incident 

rates evolve across various age groups, trade classifications, and experience levels through time 

series analysis. This knowledge empowers organizations to tailor risk mitigation strategies and 

enhance safety management in high-incident zones. 
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In conclusion, these studies collectively inform practical applications, guide decision-makers, and 

bridge the chasm between technical analysis and real-world practices. The findings from the First 

Study empower the prediction and management of weather-related incident risks, while the 

insights from the Second Study enhance safety measures, offering a robust foundation for 

fortifying the workforce's safety within high-risk environments.  
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Appendix A: Incident description of assigned PSM elements for 11 incidents 

 

No Incident Description Task Division PSM Elements 

1 Operator was carrying a compressor with a loader-jib from hertz lay 

down to area 145.The compressor was 5 feet off the ground with a 

tagline attached. While transporting the compressor just west of the cold 

storage area, a KPCL SUV was parked on the road due to offloading 

material by another group. The Loader Operator did not see the SUV 

stopped in front of him due to his vision being obstructed by the 

compressor. As the loader progressed the front side of the compressor 

made contact with the SUV’s back window resulting in extensive 

damage to window and surrounding window supports. 

Operating 

loading 

equipment 

Hazard Identification 

and Risk Analysis/ 

Operating Procedures/ 

Management of 

Change 

2 Stones from sand being spread by a Bouchier sanding truck makes 

contact with the passenger window off the drive side of a PCL shuttle 

van that had stopped at 4 way stop sign causing it to break. The drive 

states that he heard multiple stones making contact with the vehicle as 

the sanding truck passed but did not realize the window that was directly 

behind him was shattered, until he felt a draft while making a right turn 

from the stop sign. He then pulled over then notified his supervisor, the 

drive was the only occupant of the vehicle at the time of the incident. 

Driving site 

vehicles 

Hazard Identification 

and Risk Analysis/ 

Operating Procedures/ 

Training and 

Performance 

Assurance 

3 Approximately 03:50 am an OE operator was dropping off a cable reel 

with Zoom Boom. Worker stepped out of zoom boom to unstrap the 

load. Workers left foot slipped where crane mat transitions to the dirt. 

Worker felt no initial discomfort. Upon walking back to camp worker 

felt minor discomfort to left ankle and noticed slight swelling. Worker 

Walking to/from 

job area 

Safe Work Practices/ 

Training and 

Performance 

Assurance/ Hazard 
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reported incident to foreman at following start of shift. Supervision was 

notified and worker taken to on-site Medical for assessment. Worker 

assessed for mild sprain occupational illness/injury. No treatment was 

provided & worker released â€œreturn to work regular. Worker to 

follow up with on-site medic at start of next shift. 

Identification and 

Risk Analysis 

4 A Monad worker transported a Herman Nelson Heater to the new water 

storage tank area, south of the power house using a Zoom Boom. When 

he pulled off the main road in front of the mill and started north towards 

the water tank, he encountered a change in elevation. The frontend of 

the heater made contact with the ground causing the opposite end of the 

heater to rise, making contact with the jib and caused minor damage to 

the top of the heater and cover on the built-in containment compartment 

for the fuel tank. The operator immediately stopped and called his 

supervisor to the area. 

Handling 

material 

Training and 

Performance 

Assurance/ Operating 

Procedures/ 

Management of 

Change 

5 On Monday January 25, 2016, at approximately 2:20 pm, an Equipment 

Operator was operating a John Deere 744K loader in the Abalone 

stockpile area.   The worker was tasked with loading material from the 

winter stockpile containment area into Rock Trucks to be transported 

into the battery limits for backfilling.  This containment area is 

constructed of multiple 5 x 2½ concrete Lego blocks that weigh 

approximately 5000lbs.  The containment area was 3 Lego blocks high 

thus making it approximately 7½ feet tall.  This containment area was 

covered with tarps and was fed with Herman Nelson heaters at the front 

of the containment area in order to keep the material at optimal 

Handling 

material 

Hazard Identification 

and Risk Analysis/ 

Operating Procedures/ 

Training and 

Performance 

Assurance 
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temperature for backfill.   The containment area is also equipped with a 

conductor barrel (Steel Pipe) that runs under the material, fed with a 1 

million BTU heater that is also in place to heat the soil to operational 

temperature.   On this particular occasion, the operator had a spotter roll 

back the tarp and drove forward to pick up a load of dirt with his bucket.  

The material being scooped up was 6 feet away from the back end of the 

containment area.  The operator then curled his bucket up and backed up 

the loader.  While backing up the loader, the operator noticed that the 

top 2 levels of the Lego blocks at the back of the containment area had 

tipped over in a south direction.  The operator froze the scene, notified 

Abalone Supervision and Safety immediately, and Supervision notified 

PCL Supervision immediately.  The Canadian model was followed. 

6 While walking BH305 Excavator out of trench to go for coffee break, 

the front bottom window fell out and broke. 

Digging trenches Asset Integrity & 

Reliability/ 

Management of 

Change/ Training and 

Performance 

Assurance 

7 On Saturday, April 15, 2017, at approximately 10:30 am, a worker was 

in the CWA-8 area along the 16-1 rack, when they noticed a fluid leak 

under a Wacker Neuson ground heater. The worker placed absorbent 

spill pads underneath the ground heater to contain the fluid.  The worker 

notified supervision and PCL HSE attends the scene and obtains 

photographs.  It was determined that approximately 50-75 liters of 

Digging trenches Hazard Identification 

and Risk Analysis/ 

Management of 

Change/ Training and 

Performance 

Assurance 
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RECOFREEZE PG 50/50 glycol fluid had been released.  Workers 

cleaned up the spilled fluid and dispose of contaminated soil in the 

appropriate bins. 

8 While driving the first battered pile at an angle of 14 degrees from 

vertical in area 125 the Hydraulic hammer fell off leads of an Enteco. E-

7060 pile driver. 

Operating 

piledriving 

equipment 

Asset Integrity & 

Reliability/ 

Management of 

Change/ Training and 

Performance 

Assurance 

9 Loading snow out; hit hidden manhole broke the collar of the manhole Other Hazard Identification 

and Risk Analysis/ 

Operating Procedures/ 

Training and 

Performance 

Assurance 

10 Operator was using skid steer to back blade snow off of crane pad. 

Operator raised bucket above eye level to ensure no one in path of 

travel, causing a blind spot where the raised arms were. Operator drove 

forward towards edge of pad, when bucket came into contact with 

bottom edge of upper crane cab, pushing it from its travel position, 

further towards boom, causing damage to upper cab assembly. 

Operating 

excavation 

equipment 

Hazard Identification 

and Risk Analysis/ 

Operating Procedures/ 

Training and 

Performance 

Assurance 
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11 A crew was moving equipment out from between Boiler #3 and the 

Superdeheater building. While moving an EWP the rear wheel of the 

EWP made contact with a fixed scaffold ladder causing a slight bend in 

the beam or rail of the ladder. No one was in the line of fire. 

Operating 

manlifts 

Hazard Identification 

and Risk Analysis/ 

Operating Procedures/ 

Training and 

Performance 

Assurance 

Table A- 1. Incident description of assigned PSM elements for 11 incidents 
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Appendix B - Root Cause Analysis  

 

 

Figure B- 1. Root cause analysis for incident 5 

 

 

Figure B- 2. Root cause analysis for incident 6 
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Figure B- 3. Root cause analysis for incident 7 

 

Figure B- 4. Root cause analysis for incident 8 
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Figure B- 5. Root cause analysis for incident 9 

 

 

Figure B- 6. Root cause analysis for incident 10 
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Appendix C - Definition of ABC Incidents 

 

ABC Incidents refer to a categorization system based on a risk classification matrix that assesses 

the severity and potential impact of incidents within a given context. In this classification: 

1. A - Incidents (Most Severe): These incidents represent the highest level of severity and are 

characterized by their significant potential for adverse consequences. They demand immediate 

attention due to their potential to cause major disruptions, substantial harm, or severe financial, 

environmental, or human consequences. A - Incidents necessitate swift and comprehensive 

intervention and preventive measures to mitigate the risk. 

2. B - Incidents (Moderate Severity): B Incidents denote a moderate level of severity. While they 

may not pose an immediate threat of extreme consequences, they still have the potential to 

cause notable disruptions, injuries, or financial impacts. B - Incidents require prompt action to 

prevent their escalation into more severe incidents. Timely intervention and management are 

essential. 

3. C - Incidents (Least Severe): C Incidents are associated with a lower level of severity compared 

to A and B Incidents. While they may not pose an immediate risk of major disruptions or 

significant harm, they still warrant attention and monitoring. C - Incidents are typically less 

urgent and may be addressed through routine procedures and ongoing monitoring to prevent 

any potential escalation. 


