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ABSTRACT

Wolf (Canis lupus) movements are either beyond or within the territory boundary. Rare dispersal

movements beyond the territory boundary occur to colonize new territories. Within their territories wolves

raise pups and hunt. I analyze data from GPS collars on wolves and develop mathematical models for

movement both within and beyond the territory boundary. I derive an integrodifference model to investi-

gate the effects of reproduction, pair formation and dispersal on colonization rates. For within territory

movements, I develop a statistical model to determine the effect of GPS measurement error on measured

distributions of turning angles and directional biases. I test for a directional bias with respect to past kills,

the territory boundary and elevation gradients for within territory movements. Together these models

show the role of pair formation, GPS measurement error and ecological features in determining movement

patterns and population spread.
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Chapter 1

Introduction

Wolf (Canis lupus) behaviour and movements have been studied at length by biologists around the world.

Wolf hunting and pup-rearing movements are confined to a relatively fixed home range that is defended

from intruders with little overlap between neighbouring wolf packs (Mech and Boitani, 2003). The area

occupied is considered a territory and wolf territories have been documented to be as large as 1645 km2

(Ballard et al., 1987). However, when dispersing to search for a mate or new pack, wolves will move

beyond the boundary of their territories. Wolf dispersal is defined as the movement between the time a

wolf permanently leaves its natal home range and the time the wolf establishes or joins a new pack (Boyd-

Heger, 97). Wolf dispersal distances are known to range between tens of kilometers (Boyd-Heger, 97) and

greater than 800 km (Ballard et al., 1983; Fritts, 1983; Boyd and Pletscher, 1999). Therefore, on the basis

of spatial extent, wolf movements can be divided into two groups; 1) long distance dispersal movements;

likely associated with finding a mate or a new pack, and 2) shorter movements; likely associated with

hunting, territory defense and pup rearing.

Models of animal movement both, beyond and within the territory boundary, can be classified as are

either phenomenological or mechanistic. Phenomenological models focus on accurately describing observed

patterns. Worton (1987) reviewed phenomenological home range models. Two examples of phenomeno-

logical home range models are Minimum Convex Polygons (MCPs, Mohr 1947; Kie et al. 1996) and kernel

density estimators (Worton, ????; Kie et al., 1996). Mechanistic models focus on identifying processes

that cause observed patterns. Adams (2001) reviewed mechanistic home range models. Of mechanistic

models, diffusion models (e.g. correlated random walks) are particularly appropriate for modelling animal

movement where autocorrelation exists between successive animal locations (Kareiva and Shigesada, 1983).
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Modelling dispersing populations

Diffusion is a “phenomenon by which the particle group as a whole spreads according to the irregular

motion of each particle” (Okubo and Levin, 2001). In the context of animal populations, diffusion models

predict the spread of invading populations given the dispersal distances of individuals. Several past studies

use diffusion equations to model invading mammal populations (Skellam, 1951; Caughley, 1970; Clarke,

1971; Lubina and Levin, 1988).

Integrodifference equations (Kot et al., 1996) are a recent advance on the diffusion modelling framework

that allows for discrete yearly reproduction and dispersal as well as non-diffusive motion. They have been

used to model invasions of house finches (Carpodacus mexicanus, Veit and Lewis 1996), boll weevil (An-

thonomus grandis, Legaspi et al. 1998), a boll weevil parasitoid (Catolaccus grandis, Legaspi et al. 1998),

and plants (Clark, 1998; Neubert and Caswell, 2000). In Chapter 2, I derive an integrodifference model

that combines dispersal, pair formation, and reproduction to study wolf recolonization to the Greater Yel-

lowstone Ecosystem (GYE). I hypothesize that wolf spread is influenced by a reduced probability of finding

mates at low densities and quantify the effect of pair formation, reproduction, and dispersal parameters on

recolonization rates.

An Allee effect is “a positive relationship between a component of individual fitness and population

density or number” (Stephens et al., 1999; Boukal and Berec, 2002). Since a reduced probability of finding

mates at low densities is a mechanism that may cause an Allee effect, the contributions of Chapter 2 to

Allee effect theory are discussed. In particular, past studies have not made the distinction between Allee

effect mechanisms that reduce the probability of establishing new breeding units (i.e., pair formation)

and mechanisms that decrease the per capita growth rate of established breeding units (i.e., cooperative

hunting). I derive a mechanistic model where a reduced probability of finding mates at low densities

influences the probability of establishing new breeding units. The model I derive predicts wolf recolonization

to the GYE at a rate consistent with the observed rate of recolonization.

Modelling within territory movements

Wolf movements within a territory are influenced by many factors. Much of a wolf’s time is spent hunting

and hunting movements are most likely influenced by prey density and ecological features (Nelson and Mech,

1986; Fuller, 1989; Hebblewhite, 2005). The age of wolf pups also influences wolf hunting movements. In

North America, wolf pups are born in early spring. When canid pups are young and not yet able to travel

long distances, pack hunting movements are followed by return movements to the den (Siniff and Jessen,

1969). At five to ten weeks old (Mech, 1988) pups are old enough to be moved and pack members bring

2



food back to the pups at rendezvous sites. Pups are periodically moved to new rendezvous sites until they

are four to ten months old when they are able to travel with the rest of the pack (Mech, 1991).

Another factor that influences wolf movement within a territory is territory defense. Wolves advertise

the boundary of their territory through scent marking (Peters and Mech, 1975; Rothman and Mech, 1979)

and interspecific aggression (Mech, 1970; Murie, 1985). Wolves scent mark the boundary of their territory

at least every three weeks (Peters and Mech, 1975). Other factors that influence wolf movement within a

territory are snow depth (Nelson and Mech, 1986; Fuller, 1989; Hebblewhite, 2005) and distance to roads

(Whittington et al., 2004, 2005).

Data collection on space use within a territory has been greatly advanced by technological innovations

that allow Global Positioning System (GPS) collar units to be fixed to animals. Despite their widespread

use, atmospheric refraction of GPS signals, multipathing, and poor satellite geometry impact the accuracy

of GPS measurements (Johnson and Barton, 2004). For my thesis, GPS collars were deployed on five wolves

to record each wolf’s location every 15 minutes. Data from four of these collars was used to compare the

direction of recorded wolf movement to the direction of ecological features in order to identify directional

movement biases.

Several studies report that GPS measurement error can bias the results of movement (Johnson et al.,

2002; Jerde and Visscher, 2005) and habitat selection (Frair et al., 2004) models. It is likely that GPS

measurement error could influence my ability to detect directional biases. Therefore, Chapter 3 investigates

the effect of GPS measurement error on the measured distribution of turning angles (the difference in

direction for three successive locations, Turchin 1998) and directional biases (the difference in direction

between the animal’s next move and the direction of a bias point, i.e., the den, Siniff and Jessen 1969). The

effect of GPS measurement error on the measured distributions of turning angles and directional biases was

determined using numerical simulations and a statistical model. Furthermore, using numerical simulations,

I determine the step length above which the actual direction of movement can be detected in the presence

of GPS measurement error.

In Chapter 4, I study the patterns of space use within a territory for four wolves in southeastern Banff

National Park (BNP) and adjacent areas outside BNP. Past studies have shown that prey (MacDonald,

1980; Moorcroft and Lewis, 2005) and forage (Ward and Saltz, 1994) density influence animal movement.

Responses to scent marks influence the way that canids use space (Moorcroft et al., 1999). I hypothesize

that wolf movement is more likely, 1) towards locations of recent past hunting success, 2) towards the

territory boundary, and 3) in the direction of flat terrain. I use statistical tests to identify movement bias

in the direction of each of the aforementioned ecological features and find that wolves move parallel to their

3



territory boundary.
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Chapter 2

A spatially explicit model for the

Allee effect: Why do wolves

recolonize so slowly in Greater

Yellowstone?

Introduction

Biological invasion theory predicts that populations with high reproductive rates and long distance dispersal

will spread quickly (Fisher, 1937). In the Greater Yellowstone Ecosystem (GYE, Montana and Wyoming,

USA) the reintroduced gray wolf population (Canis lupus) increased by 65% percent between 1996 and 1997

(Smith, 1998). Wolves can also disperse distances greater than 800 km (Ballard et al., 1983; Fritts, 1983;

Boyd and Pletscher, 1999). Yet wolves do not recolonize as quickly as biological invasion theory predicts.

Assuming logistic population growth and a Gaussian distribution of dispersal distances, the Fisher model

(1937) predicts a recolonization rate of 93.9 km/year by wolves to the GYE (see Appendix A). The observed

GYE recolonization rate between 1997 and 2002 is an order of magnitude lower, only 9.78 km/year (Tab.

(2.3)). This slower than predicted spread suggests a possible Allee effect (Lewis and Kareiva, 1993; Kot

et al., 1996; Veit and Lewis, 1996; Wang et al., 2002). A reduced probability of finding mates at low

densities is a frequently hypothesized mechanism that can cause an Allee effect (Boukal and Berec 2002,

Bessa-Gomes et al. 2004; and references therein). The objective of this chapter, is to determine the effect
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of a reduced probability of finding mates at low densities on the spread rate of a sexually reproducing,

invading, population.

Recent work defines a component Allee effect as “a positive relationship between a component of

individual fitness and population density or number” (Stephens et al., 1999; Boukal and Berec, 2002) and a

demographic Allee effect as a positive relationship between total fitness and population density or number

(Stephens et al., 1999). Many mechanisms have been identified that may give rise to an Allee effect in a

component of fitness (Dennis, ????; Courchamp et al., 1999; Stephens and Sutherland, 1999; Moller and

Legendre, 2001). In canids, Allee effects may arise when hunting is cooperative, as shown for African wild

dog Lycaon pictus (see Courchamp et al. 2000). However, this is unlikely for wolves if small packs are able

to secure more prey per capita than large packs (Schmidt and Mech 1997, but see Vucetich et al. 2004). I

suggest the most likely source of an Allee effect in wolves is a reduced probability of finding mates at low

densities during the dispersal phase.

An excellent review of approaches used to model Allee effects is found in Boukal and Berec (2002).

Many studies have investigated the effect of a reduced probability of finding mates at low densities on

population dynamics (Engen et al. 2003; Bessa-Gomes et al. 2004; Berec and Boukal 2004; and numerous

others) and some have investigated the effect of a reduced probability of finding mates at low densities on

population spread rate (e.g. Veit and Lewis 1996; Wang et al. 2002).

A distinct difference between my model and other studies is that I model the population growth as two

separate processes; 1) establishment of new breeding units and 2) net annual change in breeding group

size/density through immigration, emigration, births and deaths. I model a reduced probability of finding

mates at low densities as influencing only the probability of establishing new breeding units. Even when

broken into these two separate processes, a decreased success in finding a mate at low densities should still

be considered an Allee effect, since a positive relationship exists between mate density and the probability

of finding a mate. This distinction between establishment and subsequent growth yields a biologically

realistic model which can be parameterized and validated with empirical data.

To model pair formation it is necessary to understand how organisms search for mates. Because little is

known regarding where wolves or other mammals search for mates with respect to the beginning and end

of their dispersal paths, I consider the extreme possibilities (searching for the mates at the very beginning

and very end). I determine the spread rates predicted by the extreme searching strategies and use these

as the upper and lower estimates for the predicted spread rate. The model is validated by comparing the

predicted range of spread rates for the parameterized model to an empirical estimate of the recolonization

rate for wolves in the GYE. This analysis demonstrates that an Allee effect generated by dispersal and pair
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formation is sufficient to explain the rate of recolonization of wolves to the GYE.

Model derivation

Lewis et. al., (in press) delineate three stages to an invasion process: initial establishment from a beachead,

early radial expansion, and the established spread of the population (Fig. (2.1)). This established spread

stage occurs when the geographic radius covered by the population is large compared to the length scale

for local dispersal. At this point in the invasion, a local view of the front shows it to be approximately

planar, with the front moving in direction u (Fig. (2.1)). Here the two-dimensional population model can

be simplified to a one-dimensional model describing progression of the invasion in direction u. However,

the process for doing this is subtle. It requires that the two-dimensional dispersal kernel is replaced by its

one-dimensional marginal distribution. That is the dispersal kernel integrated over direction v (Fig. (2.1)).

In the case of radially symmetric two-dimensional dispersal, the marginal distribution is the same in each

direction v (see also the Parameter estimation section). The one-dimensional model has the advantage of

being analytically tractable compared to two-dimensional model. The approach taken in this thesis is to

apply the one-dimensional modelling approach to all stages of the invasion, while recognizing that, in the

early stages of the invasion it only provides an approximate model.

I model local population density N(x) as the sum of the density of individuals in new packs and the

density of existing packs after reproduction,

Nt+1(x)︸ ︷︷ ︸
local density in year

t + 1

= f(Nt(x))︸ ︷︷ ︸
local density after
reproduction by
existing breeding

units

+ Dt(x),︸ ︷︷ ︸
local density from
formation of new
breeding units

(2.1)

where t indicates the year and locations in space are denoted as x. In Eq. (2.1), Nt+1(x) is the sum of the

density due to reproduction by existing breeding units and the density due to the formation of new breeding

units. The distinction between new and existing breeding units is that new breeding units were formed

less than 1 year ago (see Tabs. (2.1) and (2.2) for definitions and units of all variables and parameters).

The model derivation makes several simplifying assumptions:

A1. Space is homogeneous on the scale for which the model is parameterized.

A2. There is a critical density Nc, below which the population grows geometrically (at rate r) and no

dispersers are produced. Once local density has reached Nc it never drops below that level.
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u v

time

Figure 2.1: Invaded regions are shown in grey. As time progress the figure shows a “beachhead” (left most
polygon) that becomes more ecliptically shaped. The rightmost polygon shows an established population.
The speed of the planar front v advancing in the direction u is calculated using the marginal distribution
two-dimensional dispersal kernel. This figure is based on Lewis et. al., (in press).
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Table 2.1: Table of variables

Variable Definition Units

x location in space after dispersal km
y location in space prior to dispersal km
t time years
Nt density wolves/km
Dt density of individuals in new packs wolves/km
xt spatial extent of the disperser producing population km

9



A3. When local density exceeds Nc, dispersers are produced at density Gt(y) with a 1:1 sex ratio, where y

denotes locations in space prior to dispersal. The distribution of dispersal distances is denoted by the

pdf k which is unbiased in either direction (symmetric) and identical for male and female dispersers.

A4. Only dispersers can form pairs (new breeding units), and the establishment of new breeding units

depends on the density of dispersers, the distance at which dispersers can detect each other φ, and

the probability that dispersers that encounter will pair, ψ.

A5. Only dispersers that form pairs can reproduce. Failure to find a mate results in mortality before the

next breeding season.

I derive two sub-models for Dt where dispersers search for mates and form pairs, 1) prior to dispersal and

2) following dispersal.

Pair formation prior to dispersal

Let Gt(y) denote the density of dispersers produced at y as a function of local density. I assume an

equal sex ratio at any point in space such that the density of a single sex of disperser produced at y is

Ht(y) = Gt(y)/2. For a female located at y, the expected number of male dispersers she can detect (and

vice versa) is denoted by It(y) and is given by the formula,

It(y) =
1
2

∫ y+φ

y−φ

Gt(ξ) dξ, (2.2)

where φ is the detection distance in km. I approximate It by the mid-point rule such that It ≈ φGt.

Using the Law of Mass Action, the density of opposite sex encounters is Et(y) = Ht(y)It(y) ≈ φG2
t (y)/2.

Dispersers that encounter each other will pair with probability ψ, such that the density of pairs is ψEt.

Dispersal of pairs occurs via a redistribution kernel k(x−y) yielding Jt, the density of pairs after dispersal,

Jt(x) =
∫

Ωt

ψEt(y)k(x− y)dy,

= ψ
φ

2

∫

Ωt

Gt
2(y) k(x− y) dy, (2.3)

where Ωt is the region over which the density of pairs formed prior to dispersal is non-zero and x is an

individual’s final location after dispersal. Therefore, the density of individuals in new packs, Dt, when pair

10



formation occurs prior to dispersal is,

Dt(x) = σJt(x),

= σψ
φ

2

∫

Ωt

Gt
2(y) k(x− y) dy, (2.4)

where σ is the density of wolves in a newly formed pack when the pack is 1 year old.

Pair formation following dispersal

I derive an alternative sub-model for Dt where dispersers disperse first and then pair. The density of either

sex of dispersers after dispersal, but prior to pair formation is,

Ht(x) =
1
2

∫

Ωt

Gt(y)k(x− y) dy. (2.5)

In this case, the number of male dispersers It(x) that can be detected by a female disperser located at x

is,

It(x) =
1
2

∫ x+φ

x−φ

∫

Ωt

Gt(y)k(ξ − y)dy dξ,

≈ φ

∫

Ωt

Gt(y)k(x− y)dy. (2.6)

The density of encounters is Et = HtIt. Opposite sex encounters result in pair formation with probability

ψ; hence, the density of pairs is,

Jt(x) = ψEt(x) = ψHt(x)It(x),

= ψ
φ

2

(∫

Ωt

Gt(y)k(x− y)dy

)2

. (2.7)

The different pair formation strategies give rise to different densities of new breeding units. Fig. (2.2)

compares the density of pairs for the pair formation prior to dispersal (Eq. (2.3)) and pair formation

following dispersal (Eq. (2.7)) strategies. Given Eq. (2.7), the density of individuals in newly formed packs

is,

Dt(x) = σJt(x),

= σψ
φ

2

(∫

Ωt

Gt(y)k(x− y)dy

)2

. (2.8)
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Figure 2.2: Given an initial distribution of dispersers (dashed) I calculate the density of successful dispersers
for 1) pair formation prior to dispersal (fine line, Eq. (2.3)) and 2) pair formation following dispersal (bold
line, Eq. (2.7)). In the figure, the proportion of total dispersers that are successful (ρ) is the same for both
pair formation strategies. Parameter values are: α = 0.01, φ = 20 (pair formation prior), φ = 84.83 (pair
formation following dispersal), ψ = 1, γ = 0.1 and xt = 50.
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General model

I substitute these forms of Dt into Eq. (2.1). The general model for pair formation prior to dispersal is,

Nt+1(x) = f(Nt(x)) + σψ
φ

2

∫

Ωt

Gt
2(y) k(x− y)dy, (2.9)

and the general model for pair formation following dispersal model is,

Nt+1(x) = f(Nt(x)) + σψ
φ

2

(∫

Ωt

Gt(y) k(x− y) dy

)2

. (2.10)

The differences between Eqs. (2.9) and (2.10) are a result of dispersal occurring prior to the application

of the Law of Mass Action in the pair formation prior to dispersal sub-model (Eqs. (2.2)-(2.3)) and after

dispersal in the pair formation following dispersal sub-model (Eqs. (2.5)-(2.7)).

Functional forms

Here, I specify the functional forms of f(Nt), Gt, and k(x − y) that I used for the analysis. I defined

disperser production Gt as a piecewise function where a density of γ dispersers/km is produced when local

population density exceeds a critical threshold density Nc. Formally,

Gt(y) =





γ if Nt(y) ≥ Nc,

0 otherwise.
(2.11)

Given this definition of Gt(y), the region Ωt over which dispersers are produced is the region over which

Nt(y) exceeds Nc. I use a geometric population growth function,

f(Nt(x)) = rNt(x) for f(Nt(x)) ≤ Ne, (2.12)

where Ne is a critical threshold below which population growth is geometric with a reproduction ratio

r > 1. For simplicity I let Ne = Nc. I assume that once local density exceeds the critical threshold Nc it

will always remain above the Nc threshold. I do not define a form of the growth function for f(Nt) > Nc

as disperser production is constant for Nt ≥ Nc.
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I let k(x− y) be a Laplace kernel,

k(x− y) =
α

2
exp(−α|x− y|) dy. (2.13)

It was not possible to choose a dispersal kernel based on fit to the data, since I do not have data on wolf

dispersal distances in the GYE. I choose the Laplace kernel for k(x− y) since it can be understood mecha-

nistically as arising from a one-dimensional random walk where wolves ‘settle’ out from the population at

a constant rate to start new packs (Neubert et al., 1995). Substituting the functional forms of f(Nt), Gt,

and k(x− y) into the equation for pair formation prior to dispersal (Eq. (2.9)) yields,

Nt+1(x) = rNt(x) + σψφγ2 α

4

∫

Ωt

exp(−α|x− y|)dy, (2.14)

and into the equation for pair formation following dispersal (Eq. (2.10)) yields,

Nt+1(x) = rNt(x) + σψφγ2 α

8

∫

Ωt

exp(−2α|x− y|)dy. (2.15)

Parameter Estimation: GYE wolves

I estimated model parameters from demographic, dispersal, and pair formation data from the GYE wolf

population. All data used to parameterize models are provided as data tables in Appendix B. Wolves were

released into YNP following a period of confinement in reacclimation pens. I omitted data from the first

year after packs were released from reacclimation pens as forced confinement influenced the probability

that wolves would disperse upon release (Fritts et al., 2001).

Disperser production and critical population size (γ and Nc) were estimated using data on pack sizes

and the number of dispersers produced as provided in annual reports for the YNP Wolf Project1 (Phillips

and Smith, 1997; Smith, 1998; Smith et al., 1999, 2000, 2001; Smith and Guernsey, 2002; Smith et al.,

2003) and Rocky Mountain Wolf Recovery Project2 . However, these progress reports do not record when

no wolves dispersed from a pack. To correct for this, I augmented the disperser production data by adding

observations of no dispersers in the cases where all pack members were accounted for through mortality or

survival in the pack. To convert pack sizes and number of dispersers produced to densities, I divided these

values by the mean territory diameter (TD = 2
√

AT /π, where AT = 545.6 km2 (Carroll et al., 2003) is the

mean pack territory area). I used a maximum likelihood fit of Eq. (2.11) to the density data to estimate

1available on-line at http://www.nps.gov/yell/nature/animals/wolf/wolfup.html
2available online at http://westerngraywolf.fws.gov/annualreports.htm
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Table 2.2: Table of parameters

Parameter Definition Estimate Units

Nc critical threshold density that must 0.25 wolves / km
be exceed for disperser production

γ density of dispersers produced when 0.09 wolves / km
pack density exceeds Nc

α Laplace coefficient 0.02 per km

r geometric growth rate for packs 1.33 unitless
> l year old

σ the density of wolves in newly fomed 0.21 wolves / km / pair
breeding units at the end of the first
year

ψφ the probability that given two 20.7?, 39.2?? km
dispersers of the opposite sex meet,
they form a pair (ψ) multiplied by
the radius at which one disperser
can detect another (φ)

TD average territory diameter 26.4 km

? pair formation prior to dispersal
?? pair formation following dispersal
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the parameters γ and Nc.

Data on individual dispersal distances for GYE wolves were unavailable, but Smith et al. (2000) report

the mean dispersal distance for GYE wolves from 1995-1999 as ū = 76.7 km. I find that the mean

dispersal distance ū = 76.7 km, (Smith et al., 2000) can be equated with the mean of the two-dimensional

dispersal kernel with constant settling rate (Eq. (2.16)). The Laplace kernel (Eq. (2.13)) can be understood

mechanistically as arising from a one-dimensional random walk with diffusion coefficient D where wolves

“settle” out from the population at a constant rate a to start new packs (Neubert et al., 1995). When

the wolves are given enough time to settle, the distribution of settled wolves is given by Eq. (2.13) with

α =
√

a/D. Alternatively a two-dimensional random walk with constant settling rate yields,

k(x− y) =
α2

2π
K0(α|x− y|), (2.16)

where K0 is a zeroth order modified Bessel function of the first kind and x and y are the two-dimensional

locations in space before and after dispersal (Broadbent and Kendall, 1953). The marginal distribution of

this radially symmetric dispersal kernel is the Laplace kernel (Eq. (2.13)). Lewis et al. (in press) show that,

for an advancing “planar” invasion front, a one-dimensional model incorporating the marginal distribution

of the two-dimensional dispersal kernel is the appropriate model. Now consider an expanding population

where the invaded region lies between ±xt (see Fig. (2.3B)). I equate the mean of Eq. (2.16) with the

reported mean dispersal distance for wolves in the GYE (Smith et al., 2000), such that ū = π/(2α).

Therefore, I calculate the Laplace coefficient as α = π/(2ū) where ū = 76.7.

As ψφ occur as a product in this model (Eqs. (2.14) and (2.15)) it is not necessary to estimate the

values of ψ and φ separately. During the first four years of recolonization to the GYE the proportion of

dispersers that found mates was 0.47 (Smith et al., 2000). I estimate the product ψφ so that for each model

(Eqs. (2.14) and (2.15)) the proportion of dispersers that find mates in the first four years is 0.47.

I calculate ρ, the proportion of dispersers that find mates in the first τ years, for both the pair formation

prior to and following dispersal models (Eqs. (2.14) and (2.15)). I calculate the total number of successful

dispersers in any year as twice the integral of Jt over the entire region, where Jt is given by Eqs. (2.3)

and (2.7). The total number of dispersers produced in any year for both models is the integral of Gt(y)

evaluated on the interval Ωt = (−xt, xt). Therefore, ρ the mean proportion of dispersers that successfully

find mates each year for the first τ years of this model is,

ρ =
1
τ

τ∑
t=1

2
∫∞
−∞ Jt(x)dx∫
Ωt

Gt(y)dy
. (2.17)

16



For the pair formation prior to dispersal model, Jt is given by Eq. (2.3) such that,

ρ =
1
τ

τ∑
t=1

ψφ
∫∞
−∞

∫ xt

−xt
G2

t (y)k(x− y) dy dx∫ xt

−xt
Gt(y)dy,

(2.18)

and,

ψφ = ρτ

τ∑
t=1

∫ xt

−xt
Gt(y)dy∫∞

−∞
∫ xt

−xt
Gt

2(y)k(x− y)dy dx
. (2.19)

Substituting Gt (Eq. (2.11)) and k(x−y) (Eq. (2.13)) into Eq. (2.19), I calculate ψφ for the pair formation

prior to dispersal model as,

ψφ = ρτ

τ∑
t=1

∫ xt

−xt
γdy

∫∞
−∞

∫ xt

−xt

αγ2

2 exp(−α|x− y|)dy dx
. (2.20)

In Appendix A, I show that for the pair formation prior to dispersal model Eq. 2.20 is equal to ψφ = ρτ/γ.

For the pair formation following dispersal model, where Jt is given by Eq. (2.7),

ψφ = ρτ

τ∑
t=1

∫ xt

−xt
Gt(y)dy

∫∞
−∞

(∫
Ωt

Gt(y)k(x− y)dy
)2

dx
. (2.21)

Substituting Gt (Eq. (2.11)) and k(x − y) (Eq. (2.13)), ψφ for the pair formation after dispersal model

yields,

ψφ = ρτ

τ∑
t=1

∫ xt

−xt
γdy

∫∞
−∞

(∫ xt

−xt

αγ
2 exp(−α|x− y|)dy

)2

dx
,

=
4αρτ

γ

τ∑
t=1

xt

exp(−2αxt)(3 + 2αxt + exp(2αxt)(4αxt − 3))
. (2.22)

Hence, only the density of new breeding units formed varies between the two models (Fig. (2.2)). The

proportion of dispersers that find mates is the same for both the pair formation prior and pair formation

following dispersal models.

I estimate σ using data on wolf pack sizes in the GYE for the first three years following the formation

of a new pack. The parameter σ is the density of wolves in a newly formed pack when the pack is 1 year

old (where a pack is defined as 1 year old on the first April after pair formation). I convert all pack sizes to

densities by dividing by the average territory diameter TD. I calculate σ as the mean density of individuals

in newly formed packs at the first April following pair formation. To find the reproductive ratio r I divided

the total density of wolves at time t+1 by the total density of wolves at time t. I performed this calculation
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for t = 1 and t = 2 and estimated r as the mean of the results. Since r is the reproductive ratio of packs at

low densities which were established for at least 1 year, I included only packs that are 1-3 years old with

a density of less than or equal to Nc. I excluded packs that were influenced by human intervention (other

than legal control actions).

Model validation: Finding the observed rate of spread

I calculate the spread rate for the model (Eqs. (2.14) and (2.15)) in the next section. I validate the model

by comparing the predicted spread rate (Eq. (2.24)) to the observed rate of recolonization by wolves to

the GYE. I used maps of wolf territory locations from YNP Wolf Project annual reports from 1997-2002

to estimate the empirical rate of wolf recolonization in the GYE (km/year). I determine the area occupied

by disperser producing packs at the start of each year by estimating the 100% minimum convex polygon

(MCP, Mohr 1947; Kie et al. 1996) of all territories above the critical threshold for disperser production

using the Animal Movements extension (Hooge and Eichenlaug 1997) in ArcView 3.2 (see Fig. (2.4)). For

simplicity, the area encompassed by the 100% MCP is assumed circular, with a radius xt equal to the

extent of the disperser producing population at time t. The linear spread rate c (km/year) is the slope of

the linear regression of xt versus time. To be consistent, the linear regression does not include the range

radius of the population in 1996 as this is less than 1 year after wolves were released from reacclimation

pens.

Analysis and results

I analyzed a general model (Eq. (2.23)) of which the models (Eqs. (2.14) and (2.15)) are special cases. I

analyzed the model for two initial conditions. Given initial condition 1 (shown in Fig. (2.3A) and defined in

Eq. (A.12)), the region in space occupied by the disperser producing population Ωt is (−∞, xt]. Evaluating

Eqs. (2.14) and (2.15) in the region x > xt yields,

Nt+1(x) = rNt(x) + A exp(−wα(x− xt)), (2.23)

where w and A are: w = 1, A = σψφγ2/4 (pair formation prior to dispersal) and w = 2, A = σψφγ2/8

(pair formation following dispersal). In Appendix A, I show using proof of induction the spread rate for

Eq. (2.23) is,

c =
1

wα
log

(
r +

A

Nc

)
(2.24)

18



When parameterized Eq. (2.24) predicts a spread rate of 15.26 km/year for the pair formation prior

to dispersal model and 7.59 km/year for the pair formation following dispersal model (Tabs. (2.2)-(2.3)).

To estimate the actual rate that wolves introduced to YNP have recolonized the GYE, I calculated the

area occupied by wolf packs of density larger than Nc from 1997-2002 (Fig. (2.4)). The area occupied by

wolf packs of density greater than Nc increased from 6,542 km2 in 1997 to a maximum of 29,093 km2 in

2002. Assuming an approximately circular area, I calculated range radii of packs with density exceeding

the critical threshold as 45.6 km in 1997 increasing to 96.2 km in 2002. The linear regression of radii

versus time was significant, Radii = 25.02 + 9.78 × (years since reintroduction), F1,4 = 142.62, p = 0.0003,

R2 = 0.97 (Fig. (2.5)). The slope of the linear regression (9.78 km/year) is the mean spread rate, with

SE(c) = 3.43, resulting in a 95% confidence interval of 7.51− 12.05 km/year.

Discussion

These results provide a link between a mechanism that can cause a component Allee effect and population

spread rate. To understand population level dynamics at the leading edge of the invasion front, I derived a

model (Eqs. (2.14) and (2.15)) with biologically meaningful parameters that describes population density

when the probability of finding a mate decreases with decreasing density of potential mates. I parameterized

Eq. (2.24) and showed a reduced probability of finding mates at low densities may slow wolf recolonization

in the GYE (Tab. (2.3)). The model predicted a spread rate of between 7.59 and 15.26 km/year, which

is an order magnitude lower than the spread rate predicted by the Fisher model (see Appendix A). The

close agreement between the range of spread rates predicted by the model and the observed GYE wolf

recolonization rate of 9.78 km/year suggests that a reduced probability of finding mates at low densities

may be causing an Allee effect in GYE wolves.

One advantage of modelling a reduced probability of finding mates at low densities as a mathematical

model rather than a simulation model is that model outputs (in this case spread rate) can be expressed as

explicit functions of model parameters. Eq. (2.24) quantifies the effect of a reduced probability of finding

mates at low densities on population spread rate. This equation (Eq. (2.24)) also provides a useful rule

of thumb: if all individuals search for mates at the beginning of their dispersal path the population will

spread twice as fast when compared to a population where all individuals search for mates at the end of

their dispersal path. This rule of thumb holds for GYE wolves and all populations where A/Nc is much

greater than r (see Eq. (2.24)).
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Figure 2.3: Two different initial population densities are shown. A) For initial condition 1, a population has
invaded the left side of the domain. Formally, initial condition 1 is defined as N0(x) ≥ Nc for −∞ < x < x0

and N0(x) = 0 otherwise. Example solutions to Eq. (2.14) show the population spreading to the right.
The parameters are: α = 0.01, r = 1, A = 25, and Nc = 1. The extent population with density greater
than Nc is x0 = 1001, x1 = 1161, x2 = 1342, x3 = 1523. B) For initial condition 2, a population has
invaded the center of the domain. Formally, initial condition 2 is N0(x) ≥ Nc for −x0 ≤ x ≤ x0 and
N0(x) = 0, otherwise. Example solutions to Eq. (2.15) show the population spreading in both directions.
The parameters are: α = 0.04, r = 1.135, A = 12.5, Nc = 1. The extent of the population with density
greater than Nc is: x0 = 500, x1 = 811, x2 = 1137, x3 = 1464. In both A and B the dotted line indicates
that this analysis focuses on modelling the population dynamics at low densities.
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Figure 2.4: For each year, the area occupied by all wolf packs of density Nc or greater is calculated as
a Minimum Convex Polygon (MCP) and shown in grey scale. The Yellowstone National Park shape file
(black line) was provided by Spatial Analysis Center at Yellowstone National Park.
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Table 2.3: The predictions of two models compared to the observed spread rate for wolves recolonizing the
GYE

Model Spread rate (km/year)
Pair formation prior to dispersal 15.26
Observed spread rate (95% CI upper limit) 12.05
Observed spread rate 9.78
Pair formation following dispersal 7.59
Observed spread rate (95% CI lower limit) 7.51
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Separating the two processes that lead to population growth (breeding unit establishment and subse-

quent growth following the establishment of breeding groups) may result in different model outcomes (e.g.

unconditional extinction, unconditional survival, or extinction-survival scenarios (Boukal and Berec, 2002))

which may, in turn, suggest different strategies to best control the abundance of target species.

These results invite two main areas of future research. First, note that while Eq. (2.24) precisely

describes the relationship between model parameters and spread rate, it is only valid when the population

is spreading (e.g. spread rate is greater than zero). In this chapter, I have not determined the full range

of model outcomes. This may be especially relevant to wolf populations that were heavily exploited where

the population range may retact. Second, while a reduced probabilty of finding mates at low densities is

sufficient to explain the observed rate of recolonization other mechanisms may also sufficiently explain this

observation. For example, other mechanisms such as sex biased dispersal (as occurs in some large mammals

and birds, Pusey 1987) or dispersal triggered by food shortages, aggression, or inbreeding avoidance (?).

Future work is needed to derive models where the effect of these mechanisms on population spread rate is

determined.

This study provides three meaningful results; 1) the derivation of a spatially-explicit model for a reduced

probability of finding mates at low densities, 2) a reduced probability of finding mates at low densities may

cause an Allee effect for GYE wolves, and 3) a formula for the population spread rate that is a function of

demographic, dispersal and pair formation parameters (Eq. (2.24)). While other studies have investigated

Allee effects caused by a reduced probability of finding mates at low densities (see Introduction), the

utility of this work is in the additional realism garnered from separating breeding group establishment

and population size/density changes following establishment through immigration, emigration, births and

deaths.
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Chapter 3

GPS measurement error gives rise to

spurious 180 degree turns and strong

directional biases

Introduction

Global Positioning System (GPS) collar data are frequently used in ecological studies of mammal movement.

In these studies, GPS collars record the spatial location of an animal at fixed intervals by using satellite

technology to pinpoint the animal’s locations to varying accuracy. Despite widespread use, there are several

sources of error that influence the accuracy of measured GPS locations, such as, canopy cover (Rempel

et al., 1995; Moen et al., 1997; D’eon et al., 2002; Di Orio et al., 2003), elevation (Moen et al., 1997; Dussault

et al., 2001; D’eon et al., 2002), the type of collar (Di Orio et al., 2003), and the number (Moen et al., 1997;

Dussault et al., 2001) and geometry (Dussault et al., 2001; D’eon and Delparte, 2005) of satellites used

to determine the fix locations. Furthermore, most commercially available GPS units receive signals from

the Navigation System with Timing and Ranging (NAVSTAR) satellites (Johnson and Barton, 2004) and

signals from these satellites are degraded by selective availability (a pseudo-random noise code, Hofmann-

Wellenhof et al. 2001, p 15-16). Each of the aforementioned sources of GPS error can substantially bias

the parameterization of movement (Johnson et al., 2002; Jerde and Visscher, 2005) and habitat selection

(Frair et al., 2004) models. In this chapter, I determined 1) the effect of GPS measurement error on the

measured distribution of turning angles and directional biases and 2) the minimum distance that must be
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moved between GPS locations such that the true direction of movement can be detected in the presence

of measurement error.

Distributions of turning angles are frequently used to parameterize movement models, where turning

angle is the difference in direction for three successive locations (Fig. (3.1)). Measured distribution of

turning angles for wolves (Canis lupus) where locations were recorded every 15 minutes are shown in Fig.

(3.2). Fig. (3.2) shows a high frequency of direction reversals (180 degree turns) for short step lengths (the

distance between successive locations). While large error in measured turning angles can occur at short

step lengths (Jerde and Visscher, 2005), no previous studies have determined the effect of GPS error on

the distribution of measured turning angles.

I defined an animal’s directional bias as the difference in angle between the direction of the animal’s

move and the direction of the bias point (Fig. (3.1)). For a set of measured movement directions, many

observations of near zero difference indicates a strong directional bias. The bias point is a location in space

that the animal is thought to move with respect to (i.e., the den). Measuring the difference between the

direction of movement and the direction of the bias point allows researchers to determine if the animal

moves preferentially in the direction of the hypothesized bias point (e.g., Siniff and Jessen 1969).

If the distance between successive locations is large and GPS measurement error is independent of step

length, this error will play a proportionally smaller role in the error of the measured turning angles (Jerde

and Visscher, 2005). A secondary objective of this chapter was to determine a step length cutoff, where, for

move lengths less than the step length cutoff it is impossible to resolve the true direction of movement. For

every measured turning angle two step lengths can be calculated, 1) between the first and second location

Lt, and 2) between the second and third location (Lt+1, Fig. (3.1)). The magnitude of both step lengths

influences the ability to detect the true turning angle or direction of movement in the presence of GPS

error (Jerde and Visscher, 2005). While it would be possible to determine the step length cutoff curve for

each pair of measured step lengths, the implications of such a result would be cumbersome and challenging

to implement. A simpler approach is to determine a step length cutoff that both moves must exceed and

remove all locations from the GPS data that do not exceed the cutoff.

For any given study, the step length cutoff is influenced by the type of data used. I determined the step

length cutoff for, 1) measured distributions of turning angles which are used to parameterize individual

based movement models and random and correlated random walk models (Kareiva and Shigesada, 1983;

Turchin, 1998) and 2) measured differences between the direction of an animal’s movement and the direction

of a bias point (e.g. the den site, Siniff and Jessen 1969). For brevity, I refer to these models as 1)

turning angle, and 2) directional bias. In the following sections, I determined the distributions of measured
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Figure 3.1: The grey circles are used to denote a distribution of measurement error about the animal’s true
location which is shown as a dot labelled as (x∗i , y

∗
i ). True angles are measured with respect to the true

locations at the center of the GPS error distributions, whereas measured angles are calculated with respect
to measured locations drawn from the GPS measurement error distribution. A.i) shows the measured
turning angle τt calculated as the difference between the measured directions θt+1 and θt. A.ii) shows
the true turning angle τ∗t calculated as the difference between the true directions of movement, θ∗t+1 − θ∗t .
B.i) shows the measured directional bias ζt which is the difference between Θt − θt. B.ii) shows the true
directional bias ζ∗t calculated as Θ∗t − θ∗t
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Figure 3.2: GPS data from four wolves where the distribution of turning angles is shown as a function of
step length. A high frequency of 180 degree turns are shown in yellow/white for step lengths of < 400 m.
The figure was generated by discretizing wolf turning angles into 10 m increments of step length. The sum
of the angle frequencies for each step length bin is 1.
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turning angles and directional biases in the presence of measurement error using numerical simulations

and mathematical analysis. I used numerical simulations, for both types of data and determined the cutoff

step length above which the true direction of movement is detected using standard hypothesis testing

procedures.

Numerical simulations

Turning angles

I used a numerical simulation to determine the distribution of measured step lengths in the presence of

GPS error. The ∗ notation is used to denote true locations, directions, and turning angles. The absence

of ∗ indicates a measured location, direction, or turning angle. The numerical simulation consisted of the

following steps:

1. I defined a distribution k of GPS measurement error.

2. I defined the animal’s true location (x∗t , y
∗
t ) for three successive time steps (t = 1, 2, 3) and calculated

the true turning angle τ∗1 .

3. I choose one measured location (xt, yt) from the GPS measurement error distribution k, centered at

each of the three true true locations and calculated the turning angle τ1 between the three measured

locations.

4. I repeated step 3 100 times and used the V test (Zar 1998, p 618-620, see Appendix A) to test if the

distribution of turning angles was unimodal with a mean equal to the true turning angle.

5. I repeated steps 2-4 for different true step lengths L∗.

6. I found the minimum distance between the true locations L∗cut that must exist so that the true turning

angle is detected.

All directions were measured with respect to horizontal in the anticlockwise direction (see Fig. (3.1)).

I defined the GPS error distribution as,

k(r) =
1

2πb2
exp(−br) for 0 ≤ r < ∞, (3.1)

where r is the distance of the between the measured and true locations and b is a coefficient describing

the steepness of the exponential function. An exponential rather than a Gaussian distribution is used to
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model GPS error because this fits GPS data from a stationary collar better (H. McKenzie, pers. comm.).

The inverse cumulative method (Haefner ????, p 217-218) was used to select measured locations from the

distribution of GPS measurement error as described in Appendix A. Moen et al. (1997) expect that 95%

of GPS locations fall within 12-31 m of the collar’s true location. Assuming that 95% of GPS locations

fall with 31 m of the collar’s true location, I estimated b = 6.5. After having determined the measured

locations (x1, y1), (x2, y2), and (x3, y3), the directions of movement on the first and second moves were

calculated as,

θt =





tan−1 yt+1−yt

xt+1−xt
for xt+1 > xt and yt+1 ≥ yt,

180 + tan−1 yt+1−yt

xt+1−xt
for xt+1 < xt,

360 + tan−1 yt+1−yt

xt+1−xt
for xt+1 > xt and yt+1 < yt.

(3.2)

Furthermore, the measured turning angle was calculated as,

τt = θt+1 − θt. (3.3)

The V test (see Appendix A) was performed to test if the 100 τ1 values generated by Eq. (3.3) were

unimodal distribution with mean equal to the true turning angle τ∗1 . The true cutoff step length, L∗cut,

was the value of L∗ where the null hypothesis is rejected for all L∗ ≥ L∗cut. The effect of the GPS error

coefficient b and the true turning angle τ∗1 on the step length cutoff L∗cut was also determined.

However, L∗cut is the true step length cutoff and in the presence of GPS measurement error, short true

step lengths will be measured as much larger than they actually are (Jerde and Visscher, 2005). Therefore,

step lengths measured to be greater than L∗cut may actually be less than L∗cut. From the GPS data it is only

possible to determine the measured step length cutoff. Therefore, I determined the measured step length

where it was 95% certain that the true step length was greater than L∗cut using a numerical simulation.

I performed a simulation for true step lengths of 1, 2, ..., 99, 100 m. For each true step length, I found

three measured locations and calculated the two measured step lengths. I repeated this process 10000

times for each true step length and binned each measured step length at 5 m intervals. I calculated the

proportion of true step lengths less than L∗cut for each bin. The measured step length cutoff was the bin

that contained less than 5% true step lengths less than L∗cut.
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Directional bias

Numerical simulations to determine the effect of GPS measurement error on the measured distribution

of directional biases were identical to the turning angle simulation except that the difference between the

direction of the bias point and the direction of the next move was calculated rather than the turning angle

(Fig. (3.1)). The GPS measurement error distribution was Eq. (3.1). Two measured locations were drawn

from a distribution of GPS measurement error using the procedure described in Appendix A. The direction

between the first and second measured locations was calculated using Eq. (3.2). I let the true location of

the bias point be (χ∗t , ψ
∗
t ) and there was no measurement error around this point such that the measured

and true locations of the bias point were identical. I let the direction from the true first location to the

bias point be Θ∗1 = π. The direction from the first measured location to the bias point was calculated as,

Θt =





tan−1 ψ∗t−yt

χ∗t−xt
for χ∗t > xt and ψ∗t ≥ yt,

180 + tan−1 ψ∗t−yt

χ∗t−xt
for χ∗t < xt,

360 + tan−1 ψ∗t−yt

χ∗t−xt
for χ∗t > xt and ψ∗ < yt,

(3.4)

The difference between the direction of the bias point and the direction of the next move was,

ζt = Θt − θt, (3.5)

I calculated the V statistic (as shown in Appendix A) to test if the distribution of 100 ζ1 values generated

by Eq. (3.5) were drawn from a unimodal distribution with a mean ζ∗1 = π (since, θ∗1 = 0). The effect of

the GPS error coefficient b and the distance between the true location and the bias point, M∗
1 on the the

true step length cutoff were also determined.

As for the turning angle simulation, I used a numerical simulation to determine the relationship between

measured and true step lengths. I ran a simulation for true step lengths of 1, 2, ..., 99, 100 m. For each

true step length, I found two measured locations and calculated the measured step length. I repeated

this process 10000 times for each step length. Each measured step length was binned at 5 m intervals. I

calculated the proportion of true step lengths less than L∗cut for each bin. The measured step length cutoff

Lcut was the bin containing 5% or less true step lengths less than L∗cut.
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Analytical approach

I determined the expected distribution of measured turning angles for an animal that does not move

for three successive time steps. For analytic tractability, I used a Gaussian distribution to describe the

probability density of measured locations (i.e., the distribution of GPS measurement error). I used several

change of variables to find the measured distribution of turning angles. The first change of variables was

ut = xt+1 − xt, ut+1 = xt+2 − xt+1, vt = yt+1 − yt, and vt+1 = yt+2 − yt+1. These are the x and y

displacements for the first and second moves. I used the trigonometric relationship between displacements

and angles (i.e., ut = Lt cos θt) to change from an expression of the x and y displacements for the first and

second moves to an expression of the measured directions of the first and second moves. Lastly, I determine

the expected measured difference in angle between the directions of the first and second moves. I verified

the results of the mathematical analysis by modifying the procedure outlined in the Numerical simulations

section so that the distribution of GPS error is equal to a bivariate Gaussian distribution and for the case

where the animal does not move between locations (L∗ = 0).

Similarly, I determined the expected distribution of measured directional biases for an animal located

at the bias point that did not move for two successive time steps. With no loss of generality, I let the

bias point (χ∗t , ψ∗t ) be located at (0, M∗
t ). I used the change of variables wt = −xt and zt = M∗

t − yt.

The final change of variables was to define ζt as the difference between the direction of the bias point and

the direction of the measured move. All other changes of variables were as described above. Numerical

simulations were performed for a bivariate Gaussian distribution of measurement error where the animal

was located at the bias point and did not move for two successive time steps to verify the results of

the mathematical directional bias analysis. For further details on the mathematical techniques used to

determine the measured distribution of turning angles and directional biases see Appendix A.

Results

I found that GPS measurement error gives rise to spurious 180 degree turning angles and strong directional

biases. Fig. (3.3) shows the distribution of measured turning angles as a function of step length for true

turning angles of τ∗1 ∈ {−π,−3π/4, ..., 3π/4, π}. Note that at short step lengths there is a high frequency

of 180 degree turns. The step length cutoff (above which the true direction of movement can be detected)

is shown as a red line. The step length cutoffs were 0, 0, 4, 12, and 13 m respectively.

To show that for short step lengths GPS measurement error gives rise to spurious 180 degree turning

angles, I mathematically determined that the expected distribution of measured turning angles for an

32



0 5 10 15 20 25 30 35 40 45 50
0

180

360
True turning angle is 180 °

0.05
0.1
0.15
0.2
0.25

0 5 10 15 20 25 30 35 40 45 50
0

180

360
True turning angle is 135°

0.05
0.1
0.15
0.2
0.25

0 5 10 15 20 25 30 35 40 45 50
0

180

360

M
ea

su
re

d 
tu

rn
in

g 
an

gl
es

 (
de

gr
ee

s)

True turning angle is 90°

0.05
0.1
0.15
0.2
0.25

0 5 10 15 20 25 30 35 40 45 50
0

180

360
True turning angle is 45°

0.05
0.1
0.15
0.2
0.25

0 5 10 15 20 25 30 35 40 45 50
0

180

360

Step length (meters)

True turning angle is 0°

0.05
0.1
0.15
0.2
0.25

Figure 3.3: Three successive locations each with GPS error were simulated as described in the text. The
figure shows the effect of the true turning angle τ∗1 on the true step length cutoff value L∗cut (shown as
a red line). The proportion of measured turning angles τt are shown as a function of step length. Note
that at short step lengths there is a high frequency of measured 180 degree turns irrespective of the true
direction of movement. The step length cutoffs shown in the figure from top to bottom are 0,0,4,12,13 m.
The parameters for this simulation were b = 6.5 and 10000 iterations were performed.
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animal that does not move for three successive time steps as,

hτ,0(τt) =
24− 3 cos τt

(
2 cos τt +

√
4− cos τt

(
π + 2 tan−1

(
− cos τt√
4−cos2 τt

)))

4π (cos2 τt − 4)2
. (3.6)

(see Appendix A). This result demonstrates that a stationary animal is most likely to be measured as

turning 180 degrees (see Fig. (3.4A)) even though the true turning angle is undefined. I tested Eq. (3.6)

against the numerical simulations. The fit of Eq. (3.6) to numerical simulations is shown in Fig. (3.4A).

Fig. (3.4A) shows a very close agreement between the numerical simulations and the analytical results.

Similarly, I mathematically determined the expected distribution of measured directional biases for an

animal located at the bias point that did not move for two successive time steps. In Appendix A, I showed

that the measured distribution of direction biases was,

hζ,0(ζt) =
16− 4 cos ζt

(
2 cos ζt −

√
2− cos2 ζt

(
π + 2 tan−1

(
cos ζt√

2−cos2 ζt

)))

π(4 cos2 ζt − 8)2
. (3.7)

Eq. (3.7) has a maximum at ζ = 0 (see Fig. (3.4)). Eq. (3.7) shows a systematic error in measured

directional bias when the animal is near the bias point and does not move. Numerical simulations showed

a close agreement between the results of the numerical simulation and the analytical results (Fig. (3.4)).

The true step length cutoff varies as a function of the GPS error coefficient b and the true turning angle

τ∗1 . Fig. (3.5) shows the effect of b and τ∗1 on the true step length cutoff. The true step length cutoff is

a linearly increasing function of b and has a maximum when the true turning angle is zero. Similarly, for

directional biases, Fig. (3.6) shows the effect of the GPS error coefficient b and the distance between the

true location and the bias point M∗
1 on the the true step length cutoff. The step length cutoff was an

increasing function of b and a decreasing function of M∗
1 .

For b = 6.5 and τ∗1 = 0 the step length cutoff was 16.2 m (Fig. (3.5)). However, 16.2 m was the true step

length cutoff and in the presence of GPS measurement error, short true step lengths will be measured as

much larger than they actually are (Jerde and Visscher, 2005). For measured step lengths of between 50-55

m, I found that 95.1% of true step lengths were 16.2 m or greater (Fig. (3.7)). For the directional bias

simulations for b = 6.5 (implying that 95% of measured locations were within 31 m of the true location)

and M∗
1 = 15 m (i.e., 15 m between the animal’s location and the bias point) the true step length cutoff

was 15.8 m (Fig. (3.6)). For measured step lengths of between 50-55 m, I found that 95.2% of the true

step lengths were 15.8 m or greater (Fig. (3.7)).
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Figure 3.4: A) The grey bars are probability of measured turning angles generated using a numerical
simulation. The simulation assumed that the animal did not move for three successive time steps and
assumed a Gaussian distribution of GPS measurement error. For each iteration three measured locations
were generated and the turning angle calculated. 100000 measured turning angles were calculated. The fit
of the analytical solution (Eq. (3.6)) to the simulation data is shown as a black line. B) The grey bars are
the probability of measured difference in angle between the direction of the bias point and the direction
moved. 100000 iterations were performed and the fit of Eq. (3.7) is shown as a black line. Further details
on the simulation procedure can be found in the text.
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Figure 3.5: The true step length cutoff value determined for different, A) true turning angles τ∗1 for
b = 6.5 and B) values of the GPS error coefficient b for τ∗1 = 0. The mean L∗cut value is shown as a dot
and bootstrapped 95% confidence intervals are shown as vertical bars. 1000 iterations of the code were
performed and for each iteration 100 turning angles were generated.
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Figure 3.6: The true step length cutoff parameter determined for different, A) distances between the
location of the first move and the bias point M∗

1 for b = 6.5 and B) values of the GPS error coefficient
b for M∗

1 = 200. The mean L∗cut value is shown as a dot and bootstrapped 95% confidence intervals are
shown as vertical bars. 1000 iterations of the code were performed and for each iteration 100 directions of
movement were generated.
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Figure 3.7: The relationship between true and measured step length. A) I performed 10000 iterations
where I randomly chose 3 measured locations where the true step length for both moves was the same and
between 0 and 100 m. All measured step lengths were binned at 5 m intervals. I calculated the proportion
of true step lengths less than 16.2 m for each bin. For a measured step length of 50-55 m the proportion of
true step lengths less than 16.2 m was 0.049. An identical procedure was used in B) except that only two
measured locations were chosen on each iteration and the proportion of true step lengths less than 15.8 m
was calculated. For a measured step length of 50-55 m the proportion of true step lengths less than 15.8
m was 0.048.
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Discussion

The close agreement between the results of the numerical simulation and the mathematical analysis (Fig.

(3.4)) provides strong evidence to support the conclusion that spurious 180 degree turns and strong direc-

tional biases will result from GPS measurement error. These results show that turning angle measurement

error is a systematic rather than a random error. Specifically, when the distance between successive GPS

locations is small, GPS error will give rise to spurious 180 turns. The measured directional bias is also

affected by a systematic error. When the animal is near the bias point and moves only a short distance

between GPS locations, the directional bias is most likely measured as zero.

Insight into why spurious 180 degree turns arise from GPS error can be gained by considering a simpler

question: why, if an animal does not move for three successive time steps, is it likely that the measured

turning angle is 180 degrees? Consider a symmetrical distribution of GPS measurement error in two spatial

dimensions with a global maximum at the animal’s true location that monotonically decreases away from

this point. The most likely direction the animal was measured to have come from is φt−1 (see Fig. (3.8B)).

Fig. (3.8C) shows φt the most likely direction the animal was measured to have moved to. If line segments

where drawn through the point (xt, yt) in the directions of φt−1 and φt both line segments would pass

through the maximum of the GPS error distribution. However, φt−1 must terminate at the point from

which φt originates because φt−1 and φt are the directions of successive movements. Therefore, φt − φt−1

the most likely turning angle, must be 180 degrees. A similar argument can be used to explain why an

animal located at a bias point that does not move, would be most likely to have a measured directional

bias of zero.

The results in this chapter have useful implications for studies analyzing GPS data where turning angles

and directional biases are calculated. For example, a knowledge of the distribution of measured turning

angles that results from GPS measurement error is especially relevant to studies that identify movement

states using measured turning angles and step lengths (e.g., Franke et al. 2004; Morales et al. 2004). Because

the turning angle error is systematic spurious 180 degree turns at short step lengths are very likely to be

identified as a movement state. Furthermore, studies of an animal’s directional bias that fail to consider

the effect of GPS measurement error may detect directed movement towards a bias point when no directed

movements exists (e.g., Type I statistical error). The results in this chapter, however, do not imply that

wolves, for example, do not move with a high frequency of direction reversals for short step lengths. Instead,

these results, suggest that biologists should consider GPS measurement error as a possible explanation for

high frequency direction reversals when animals move only a short distance between locations. For the

wolf data shown in Fig. (3.2) visual inspection suggests that the direction reversals persist for moves up
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Figure 3.8: For an animal that does not move for three successive time steps, the distribution of GPS
error is centered at the same point. The probability density of measured animal locations is shown in grey
scale where darker shades represent higher probabilities. A) shows an animal moving in the direction of
the arrows with a measured turning angle of τt. For an animal measured at (xt, yt) the probability the
animal was measured to have come from the direction θt−1 is the sum of probabilities for all measured
locations with a direction of θt−1 between the measured location and (xt, yt). D) shows the probability
density function for the measured direction the animal came from, θt−1. The most likely direction the
animal came from is φt−1 (shown in B). Note that φt−1 is the direction of a vector that terminates at
(xt, yt) and travels through the maximum of the GPS error probability density function. Similarly, E)
shows the probability density function for the direction the animal was measured to have moved to, θt.
The most likely direction the animal was measured to have moved to is φt (shown in C). Turning angles
are measured as τt = θt+1 − θt. Therefore, the most likely measured turning angle is φt − φt−1 = 180 as
shown in B and C.

40



to 400 m. For an exponential distribution of GPS error, where 95% of locations are within 31 m of the

true location, GPS error can only account for the high frequency of direction reversals for step lengths up

to 50-55 m. Therefore, the wolf data in Fig. (3.2) may provide some evidence that a high frequency of

direction reversals may be more than a mere consequence of GPS measurement error or that measured

locations were less precise than expected.

For studies of turning angles or directional biases, I offer three approaches that could be used to reduce

the effect of GPS measurement error; 1) remove all short step lengths and locations near the bias point,

2) answer similar research questions that do not require measuring distributions of angles, or 3) increase

the measurement precision. For some animals, study areas, or research questions there may be no reason

to expect that turning angles or directional biases would be different at short step lengths than at longer

step lengths. In these cases it is recommended that short step lengths be removed prior to the analysis,

effectively characterizing movement as either resting (where the animal moves a negligible distance and

where the turning angle cannot be determined) and moving (where the step length and turning angle or

directional bias can be measured accurately). If removing short step lengths from the data is not an option,

researchers should consider whether calculating distributions of angles is necessary to answer the research

question. Measured angles are especially sensitive to measurement error because even small location errors

can result in large errors in measured angles. Therefore, more data can be retained for questions that

concern how animals use space than for questions concerning the angles at which animal’s move. This is

due to the lesser effect of location measurement error (e.g., suppose the error is equal to a few centimeters)

on estimating an animal’s true location (e.g., measured within a few centimeters) versus error in estimating

the animal’s true turning angle (e.g., measured with up to an 180 degree error). Lastly, Johnson and Barton

(2004) provide an excellent discussion of factors that influence GPS measurement error. The true direction

of movement could be detected at shorter step lengths if the effects of any of the factors discussed were

reduced, for example, by using differential correction or by choosing a flat study area.

For studies were removing short step lengths from the data is appropriate, in this chapter, I have deter-

mined that for measured step lengths of greater than 50-55 m the true turning angle and directional bias

can be determined (for b = 6.5). Note that the V test will detect movement in a particular direction, even

if that movement is very weak. Using higher step length cutoffs provides greater certainty in the measured

distribution of turning angles (Fig. (3.3)). Furthermore, when the difference in magnitude between the

true turning angle and 180 degrees is small, it may not be possible to detect the effect of the error. For

example, in Fig. (3.3) the step length cutoff is zero when the true turning angle is 135 degrees. A larger

sample size is needed for the V test to have sufficient power to detect small differences between 180 degrees
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and the true turning angle.

These results suggest a step length cutoff of 50-55 m. A step length cutoff of 50-55 m is not appropriate

when; 1) the GPS error coefficient is not 6.5 (Figs. (3.5) and (3.6)), 2) the animal is closer than 15 m

from the bias point (Fig. (3.6)), and 3) the number of angles used to test for the bias is much less than

the 100 simulated data points used to determine the step length cutoffs for this study. Fortunately, wolves

frequently move greater than 55 m when locations are sampled at 30 minute intervals. For animals that

move smaller distances a sampling scheme whereby the animal can move greater than 55 m per sampling

unit is recommended. For all species, the systematic effects of GPS error may be less likely to cause a

bias when the sampling interval of the GPS collar is longer, allowing a longer distance to travelled between

fixes.

This work demonstrates that a high frequency of 180 degree turns and strong directional biases may be

attributable to GPS measurement error, rather than actual animal movements. Because GPS error gives

rise to a systematic bias in measured angles it is very likely that movement models that fail to consider

the effect of GPS error could yield biased results, especially if the animal moves short distances between

location fixes. I determined a step length cutoff above which the true turning angle or directional bias can

be detected. Removing all GPS data observations where the step length does not exceed the recommended

cutoff is a simple step that can be taken to prevent GPS measurement error biasing movement model

results.
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Chapter 4

The e®ect of past kill sites, territory

boundary, and terrain on wolf

movements

Introduction

Recent advances in Global Positioning System (GPS) technology allow collar units worn by animals to

record the animal's location at ¯xed intervals. These technological advances have prompted a complemen-

tary advance in modelling animal movements (Turchin, 1998; Manly et al., 2002; Moorcroft and Lewis,

2005). Several recent studies focus on understanding the e®ect of landscape features on animal movements

(e.g., Fortin et al. 2005; Fortin 2005; Whittington et al. 2005). In this chapter, I use GPS data and mod-

elling to identify ecological features that in°uence wolf (Canis lupus) movement. In particular, I investigate

the e®ects of the location of past kill sites, the territory boundary, and elevation gradients on movement

directionality.

Wolf movement ful¯ls two main objectives; hunting and territory defense (Mech and Boitani 2003, p 30)











Figure 4.2: The GPS data for each of the four wolves used in the analysis are shown. Projection: UTM
(Universal Trans Mercator), Datum: NAD 1983, zone 11. The bottom left corner of the figure is 534872
Easting and 5678413 Northing and the top right corner is 638251 Easting and 5762115 Northing. The
period of data collection and number of fixes are shown in Tab. (4.1). Additional figures of the GPS data
collected for each wolf are contained in Appendix C.
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Testing for directional biases

I tested the hypotheses that wolves orient their movements with respect to the locations of past kill sites,

the territory boundary, and the direction of the steepest downhill slope. I also considered movement biases

at several different temporal scales. Chapter 3 showed that a move of 55 m is sufficient to determine the

actual direction of movement in the presence of GPS error, if the bias point is at least 15 m from the animal

and 95% of GPS locations fall within 30 m of the actual location. Hence, I removed all observations where

the wolf did not move at least 55 m. The direction of movement, θt, at the next step was calculated as,

θt =





tan−1 yt+1−yt

xt+1−xt
for xt+1 > xt and yt+1 ≥ yt,

180 + tan−1 yt+1−yt

xt+1−xt
for xt+1 < xt,

360 + tan−1 yt+1−yt

xt+1−xt
for xt+1 > xt and yt+1 < yt.

(4.1)

The direction of the bias point,Θt, was calculated as,

Θt =





tan−1 ψ∗t−yt

χ∗t−xt
for χ∗t > xt and ψ∗t ≥ yt,

180 + tan−1 ψ∗t−yt

χ∗t−xt
for χ∗t < xt,

360 + tan−1 ψ∗t−yt

χ∗t−xt
for χ∗t > xt and ψ∗t < yt.

(4.2)

The bias point (χ∗t , ψ∗t ) is either the location of a past kill site, the nearest point on the territory boundary,

or the point one step length away with the lowest elevation. The difference in direction between the

direction of the bias point and the direction of the next move is,

ζt = Θt − θt. (4.3)

(see also Fig. (4.1)).

Sub-sampling procedure

I tested for movement biases at different temporal scales, I subsampled the GPS data by including only

pairs of locations where the time between locations is 30, 60 or 120 minutes. I calculated the direction of
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movement for the subsampled data as,

φt =





tan−1 yt+i−yt

xt+i−xt
for xt+i > xt and yt+i ≥ yt,

180 + tan−1 yt+i−yt

xt+i−xt
for xt+i < xt,

360 + tan−1 yt+i−yt

xt+i−xt
for xt+i > xt and yt+i < yt,

(4.4)

where the difference in time between (xt, yt) and (xt+1, yt+1) is 15 minutes and i ∈ {2, 4, 8} (see Fig. (4.1)).

Testing for autocorrelation

I tested for autocorrelation between each successive movement direction as the statistical tests in the

following subsections assume independence of the data. Most movement models assume that the direction

of successive movements are uncorrelated. However, if movement directions are temporally autocorrelated

movement can be modelled as a persistent random walk (Kareiva and Shigesada, 1983; Wu et al., 2000).

Temporal autocorrelation in movement directions was tested for using a modified version of Pearson’s

correlation coefficient (Zar 1998 p 649-651, Fisher 1993, p 151, see Appendix A).

Bias toward locations of past kill sites

Kill sites were located by snow backtracking and ground truthing of Very High Frequency (VHF) radio

locations. VHF collared wolves were located using a VHF antennae. Wolf tracks were located in the

snow and followed backwards in the snow to locations visited previously by the pack. When kills were

encountered, the location, prey species, and estimated kill date (based on state of decomposition and age

of wolf tracks) was recorded. When wolves were observed near a kill during aerial telemetry flights the

location of the kill was recorded and then verified by travelling to the location of the kill on foot (i.e.,

ground truthing of VHF locations). Kill site locations were recorded for December 2003 - April 2004.

Procedures used for identifying kill sites were as described by ?. I tested for directed wolf movement for

0-5, 5-10, 10-15, 15-20, 20-25, and 25-30 days following each kill.

Only GPS data collected during the winter (i.e. wolves 77 and 78) were used to test for a movement

bias towards the location of past kills because snowtracking was only possible in the winter. For each kill

within a wolf’s territory during the GPS data collection period, I used GPS data between 0-5 days after

the day of the kill and calculated ζt where the bias point (χ∗t , ψ∗t ) is the location of a kill made 0 - 5 days

prior. Data from each kill was pooled into one estimate of the directional bias ζ for 0-5 days following a

kill. I used the V test (Zar 1998, p618-620, see Appendix A) to test for a directional bias towards kills
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made during the past 30 days. The distribution of ζ was similarly calculated for GPS data 5-10, 10-15,

15-20, 20-25, and 25-30 days after the kill.

Bias toward the territory boundary

To test for a bias toward the territory boundary, I defined the territory boundary as a 100% Minimum

Convex Polygon (MCP, Mohr 1947; Kie et al. 1996) for all data recovered from the GPS collared wolves.

Wolves scent mark at their territory boundary at least every 3 weeks (Peters and Mech, 1975) and it is

not necessary that wolves constantly patrol the boundary. I tested for biases that occurred only when

wolves were within one-quarter of the radius of a circle equal in area to the 100% MCP territory. The one-

quarter distance was chosen arbitrarily, but choices of one-half and one-eighth did not influence the results.

The bias point for this analysis is defined as the nearest point on the 100% MCP territory boundary. I

hypothesized that wolves will patrol their territory boundary by moving perpendicular to the direction

of the nearest point on the territory boundary (χ∗t , ψ∗t ) (i.e., moving parallel to the boundary). For any

point (xt, yt) there are two directions that a wolf could move in to patrol along the territory boundary.

Therefore, wolves that are patrolling the territory boundary move at a 90 or 270 degree angle with respect

to the direction of the nearest point the boundary.

I expected that, ζt (the difference in direction between the direction of the nearest point on the territory

boundary and the next move) is distributed as a mixture of von Mises distributions. The von Mises

distribution is used instead of a normal distribution when the data is circular and has been used to

model animal movements in numerous previous studies (i.e., Moorcroft and Lewis 2005). The von Mises

distribution has a strength parameter κ, and when κ = 0 the von Mises distribution is a uniform distribution

between 0 and 360 degrees. The von Mises distribution has one other parameter µ which is the mean of

the distribution. Because the wolves can patrol the boundary by moving in either of two directions, I

hypothesized that ζ was a weighted mixed of two von Mises distributions with means of µ1 = 90 and

µ2 = 270 degrees. Therefore, the hypothesized distribution of ζ is,

BV M(ζ, q, κ1, κ2) =
q

2πI0(κ1)
exp (κ1 cos (ζ − 90)) +

1− q

2πI0(κ2)
exp (κ2 cos (ζ − 270)) . (4.5)

The likelihood ratio test was used to test Eq. (4.5) against a uniform alternative as shown in Grimshaw

et al. (2001). The logarithmic likelihood for the uniform distribution, LL0, is the logarithmic likeli-

hood of BV M(ζ, 0, 0, 0). The logarithmic likelihood for Eq. (4.5), LL1, is the logarithmic likelihood of

BV M(ζ, q̂, κ̂1, κ̂2) where hats denote maximum likelihood parameter estimates. The likelihood ratio test
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statistic is calculated as,

Λ = 2(LL1 − LL0). (4.6)

This test statistic follows the standard approximation of the χ2 distribution (Grimshaw et al., 2001) with

3 degrees of freedom.

Bias towards downhill

I hypothesized that wolves move either toward or perpendicular to the direction of the steepest downhill

slope. The former is the hypothesis that wolves move downhill; the latter is the hypothesis that wolves

move along contours. I formulated six competing hypotheses where each hypothesis is expressed as a von

Mises distribution,

V M(κ, ζ) =
1

2πI0(κ)
exp (κ cos(ζ)) . (4.7)

Each of the six models are shown in Tab. (4.2) where ζ is the distribution of differences between the

direction of downhill and the direction of movement. The magnitude of the steepest downhill slope is εt.

To be consistent with Fortin (2005), Θ⊥t is defined as the direction perpendicular to the direction of the

steepest downhill slope that minimizes the difference between the direction of the last movement and Θ⊥t .

Because all models are not nested, Akaike Information Criteria (AIC, Burnham and Anderson 2002) was

used to select the best model among the six alternatives. AIC values are calculated as,

AICi = −2LLi + 2k (4.8)

(Burnham and Anderson, 2002) where k is the number of model parameters and LLi is the logarithmic

likelihood for model i. The ∆AIC is the lowest AIC value subtracted from all other models. ∆AIC

values greater than 10 indicate strong evidence to support the best model (i.e., lowest AIC, Burnham and

Anderson 2002). The data used for this analysis was subsampled at 30 minute intervals. For this analysis I

do not test for directed movement for the 60 or 120 minute subsampled data. At these sampling frequencies

there are large distances between (xt, yt) and (xt+i, yt+i) such that the elevations at (xt, yt) and (xt+i, yt+i)

are likely not representative of the change in elevation between the points.

Results

The autocorrelation statistics in Tab. (4.3) show that the direction of movement from the GPS collars

sampling the wolves’ locations every 15 minutes are temporally autocorrelated. However, when the data
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Table 4.2: Models for movement direction with respect to elevation

Models Description
V M(0, ζ) Movement is random with respect

to the downhill direction

V M(κ, ζ) Directed downhill movement

V M(dε, ζ) Magnitude of preference for downhill
depends on the magnitude of the
downhill slope

V M(0, ζ⊥) Movement is random with respect
to the direction perpendicular to
the downhill direction

V M(κ, ζ⊥) Directed movement perpendicular to
the direction of downhill

V M(dε, ζ⊥) Magnitude of the preference for movement
perpendicular to the downhill direction
is proportional to the magnitude of the
downhill slope
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are subsampled such that there is 30, 60, or 120 minutes intervals between locations the direction of

movement was uncorrelated for all wolves except for wolf 77 (subsampled at 60 and 120 minutes) and wolf

78 (subsampled at 120 minutes). Autocorrelated data are excluded from all subsequent analyses.

For bias towards kills made during the past 30 days, wolf 77 was found to move back to past kill sites

0-5, 15-20 and 20-25 days old. However, no movement biases were detected for wolf 78. Fig. (4.3) shows the

location of kills and GPS data used for the analysis. For all wolves and all uncorrelated subsampling regimes

except wolf 78 (subsampled at 60 minutes) and wolf 86 (subsampled at 60 minutes), I found a significant

preference for movement perpendicular to the direction of the nearest point on the territory boundary

(Tab. (4.5)). Fig. (4.4) shows all the GPS locations that were less than one-quarter of the territory radius

away from the boundary. For slope bias, there was strong evidence for movement preferentially in the

direction perpendicular to the direction of the steepest downhill slope for all four wolves (Tab. (4.6)).

Discussion

Wolves move to hunt and defend territory (Mech and Boitani 2003, p 30). Various ecological features such

as snow depth (Nelson and Mech, 1986; Fuller, 1989; Hebblewhite, 2005) and distance to roads (Whittington

et al., 2004, 2005) influence wolf movement. In this chapter, I found some evidence that wolves return

to locations of past kill sites, move perpendicular to the direction of the territory boundary, and move

perpendicular to the direction of the steepest downhill slope. Other results showed that the measured

direction of wolf movement, when locations are sampled every 15 minutes, are temporally autocorrelated

(Tab. (4.3)). When locations are sampled at 30 minute intervals, movement directions are no longer

temporally autocorrelated and all analysis were performed using GPS data subsampled at a 30 minute

intervals or longer. Wolves 77 and 78 showed autocorrelation at the 60 minute (wolf 77 only) and 120

minute subsampling intervals. GPS data for both these wolves was collected during the winter and temporal

autocorrelation in movement directions may be due to constraints imposed by deep snow.

Wolf 77 showed a bias towards kills that were 0-5, 15-20, and 20-25 days old; however, wolf 78 showed

no bias. These results are not conclusive and several additional factors may have influenced results. Firstly,

the study area in and near BNP is very mountainous and there may be a joint effect of elevation and the

location of past kill sites on wolf movement. Secondly, past kill sites are described as points in the model,

however, if past kill sites that are sufficiently close may be perceived as an area rather than two distinct

points. Thirdly, the location of only a few kill sites was known. These kill sites may not be representative

of the distribution of kill sites for the study period. Additionally, an overlap between the west boundary
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Table 4.3: Temporal autocorrelation results for movement directions for 4 different temporal subsampling
regimes

Wolf Subsampled at
15 mins 30 mins 60 mins 120 mins

77 raa -0.0008 -0.0009 -0.05 -0.07
No. of obs. 4349 2286 1158 584
Reject H0? yes no yes yes

78 raa -0.004 0.0001 -0.0007 -0.0081
No. of obs. 4062 2242 1141 576
Reject H0? yes no no yes

85 raa -0.0013 -0.0018 -0.0006 0.0016
No. of obs. 2241 1236 641 472
Reject H0? yes no no no

86 raa -0.0023 -0.0015 -0.009 -0.0013
No. of obs. 3255 1835 943 708
Reject H0? yes no no no
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Table 4.4: Bias towards kill sites from the previous 30 days.

Wolf Days after kill Subsampled at
30 mins 60 mins

77 0-5 n = 1968 u = 2.19* - -
5-10 n = 2434 u = -0.10 - -
10-15 n = 2324 u = 0.95 - -
15-20 n = 2677 u = 1.79* - -
20-25 n = 1797 u = 1.77* - -
25-30 n = 1337 u = 0.72 - -

78 0-5 n = 1390 u = 1.17 n = 706 u = 1.38
5-10 n = 1875 u = 0.07 n = 956 u = 0.67
10-15 n = 2243 u = 0.33 n = 1137 u = 0.95
15-20 n = 2677 u = 0.53 n = 1359 u = 1.29
20-25 n = 2674 u = -0.03 n = 1358 u = 1.30
25-20 n = 2555 u = 0.63 n = 1301 u = 1.28

The u-statistic is calculated for the V test. The number of observations used for the analysis is n. Only
uncorrelated movement directions are shown and * denotes a significant result.
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Figure 4.3: The location of kill sites found during GPS data collection period (*) for wolf 77 and 78. The
histogram shows the difference between the direction of a kill made 0-5 days ago and the direction in which
the wolf moved. Wolf 77 shows a significant bias towards the location of kills made 0-5 days ago where as
wolf 78 does not.

57



5.5 5.6 5.7 5.8 5.9 6 6.1

x 10
5

5.71

5.72

5.73

5.74

5.75

5.76

5.77
x 10

6

U
T

M
 N

or
th

in
g

Wolf 77

5.9 6 6.1 6.2 6.3 6.4 6.5

x 10
5

5.71

5.72

5.73

5.74

5.75

5.76

5.77
x 10

6 Wolf 78

5.7 5.8 5.9 6 6.1 6.2 6.3

x 10
5

5.68

5.69

5.7

5.71

5.72

5.73

5.74
x 10

6

UTM Easting

U
T

M
 N

or
th

in
g

Wolf 85

5.5 5.6 5.7 5.8 5.9 6 6.1

x 10
5

5.71

5.72

5.73

5.74

5.75

5.76

5.77
x 10

6

UTM Easting

Wolf 86

Figure 4.4: For each wolf, I calculated the radius of a circle with the same area as each territory 100%
MCP. GPS locations that were less than a quarter of this radius away were classified as near the boundary
(black). All other GPS points are shown in grey. The 100% MCP territories are shown as grey lines
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Figure 4.5: The difference between the direction of the next move and the direction of the territory boundary
is shown as a histogram for four wolves. p-values are shown for the likelihood ratio test. The maximum
likelihood parameter estimates are: wolf 77, q̂ = 0.64, κ̂1 = 0.73, κ̂2 = 1.58, wolf 78, q̂ = 0.29, κ̂1 =
2.10, κ̂2 = 0.80, wolf 85, q̂ = 0.50, κ̂1 = 1.05, κ̂2 = 1.17, and wolf 86, q̂ = 0.44, κ̂1 = 1.20, κ̂2 = 0.74.
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Table 4.5: Bias perpendicular to the nearest point on the territory boundary.

Wolf Subsampled at
30 mins 60 mins 120 mins

77 LL1 -2130.8 - -
Λ 15.0 - -
p < 0.005 - -

78 LL1 -832.2 -436.1 -
Λ 22.7 2.7 -
p < 0.001 > 0.25 -

85 LL1 -1032.5 -526.5 -461.8
Λ 19.2 20.3 13.8
p < 0.001 < 0.001 < 0.005

86 LL1 -860.8 -435.8 -306.2
Λ 9.72 3.21 12.6
p < 0.01 > 0.25 < 0.01

Autocorrelated subsampling regimes are not shown. LL1 is the logarithmic likelihood for Eq. (4.5) and Λ
is calculated as shown in Eq. (4.6). The p-value for the χ2 test is shown.
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Table 4.6: Movement direction with respect to the direction of the steepest downhill slope

Model LL k AIC ∆ AIC
Wolf 77
V M(0, ξ) -2216.5 0 4433.0 1782.2
V M(κ, ξ) -2216.5 1 4435.0 1784.2
V M(dε, ξ) -2216.4 1 4434.9 1784.1
V M(0, ξ⊥) -2216.5 0 4433.0 1782.2
V M(κ, ξ⊥) -1324.4 1 2650.8 0
V M(dε, ξ⊥) -2216.5 1 4435.0 1784.2
Wolf 78
V M(0, ξ) -2648.4 0 5296.8 1925.4
V M(κ, ξ) -2648.2 1 5298.4 1927.0
V M(dε, ξ) -2647.1 1 5296.2 1924.8
V M(0, ξ⊥) -2648.4 0 5296.8 1925.4
V M(κ, ξ⊥) -1684.7 1 3371.4 0
V M(dε, ξ⊥) -2648.4 1 5298.8 1927.4
Wolf 85
V M(0, ξ) -1841.6 0 3683.2 1688.8
V M(κ, ξ) -1841.6 1 3685.2 1690.8
V M(dε, ξ) -1841.6 1 3685.2 1690.8
V M(0, ξ⊥) -1841.6 0 3683.2 1688.8
V M(κ, ξ⊥) -996.2 1 1994.4 0
V M(dε, ξ⊥) -1841.6 1 3685.2 1690.8
Wolf 86
V M(0, ξ) 1020.0 0 2040.0 929.4
V M(κ, ξ) 1019.1 1 2040.2 929.6
V M(dε, ξ) 1019.6 1 2041.2 930.6
V M(0, ξ⊥) 1020.0 0 2040.0 929.4
V M(κ, ξ⊥) 554.3 1 1110.6 0
V M(dε, ξ⊥) 1020.2 1 2042.0 931.4

LL is the logarithmic likelihood for each model, k is the number of model parameters and the AIC value
is calculated using Eq. (4.8). ∆AIC is calculated by subtracting the lowest AIC value from all other AIC
values. A description of models is found in Tab. (4.2). Model parameters are described in the text.
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of the wildhorse pack and the east boundary of the Ya Ha Tinda pack territories is evident from the GPS

data (Fig. (4.2)). Several kills where located within this region of overlap, and the wolves may have moved

differently towards kills made in the proximity of the boundary.

The four wolves showed evidence of boundary patrolling (Tab. (4.5)) at the 30 minute sampling interval.

At longer sampling intervals this effect became less evident, suggesting that movement was non-directed or

influenced by other factors. This result is reasonable as it is unlikely that more than a few hours are spent

marking the boundary. While I found that wolves patrol their territory boundaries, I have not determined

what impact this would have on wolf space use, which is a direction for future research.

However, just as elevation and the territory boundary may have influenced the results of the past kill

site analysis, past kill sites and elevation may have influenced the territory boundary analysis. If any two

of the three factors hypothesized to influence movement are spatially indistinct a mechanism causing the

bias cannot be isolated. For some wolves some of the MCP territory boundaries fall along mountain ranges

or valleys (e.g. the north and east MCP territory boundary for wolf 77). Yet, wolf 78 shows a strong bias

towards the territory boundary and the 100% MCP territory boundary for this wolf appear unassociated

with elevation. Therefore, wolf 78 shows evidence of movement parallel to the territory boundary. Wolves

77, 85 and 86 also show evidence of movement parallel to the territory boundary, however, this result may

be due in part to the association of the territory boundary with mountain ranges or valleys.

The same GPS data was used to define the territory boundary and test for a bias with respect to the

boundary, there are two reasons why using the same data to define the territory boundary would not bias

my results. Firstly, the shape of the MCP territory boundary is influenced by only the outer most points.

Therefore, there are many combinations of temporally sequenced points that could exist within the same

MCP. Secondly, the vertices of the MCP territory were not necessarily visited in order. Therefore, the

animal is not required to move from one vertex to the next and will not necessarily travel along the MCP

territory boundary.

Lastly, all of the wolves showed very strong evidence in support of movement in the direction perpen-

dicular to the direction of the steepest downhill slope (Tab. (4.6)). For a continuous surface, the gradient

in the direction perpendicular to the direction of the steepest downhill slope is zero (Stewart 1999, p 696).

Therefore, these results suggest that wolves move along contour lines. Again, the implications of this

movement strategy on patterns of space use by wolves is an area of future research.
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Future directions

The earliest mechanistic models for animal home ranges assumed that animals moved with a bias towards

a central point (Holgate, 1971; Okubo, 1980). More recently, Lewis and Murray (1993) showed that home

ranges may also arise due to movement away from the territory boundary. Both mechanisms give rise

to finite ranges, but the use of space within these ranges is different. Moorcroft et al. (1999) show that

the pattern of space use that arises when the magnitude of the centralizing tendency is dependent on the

density of foreign scent marks is more consistent with coyote GPS collar locations than a model with a

constant bias towards the home range center.

The results in this chapter identify new movement strategies that are consistent with the measured

distributions of directional biases for GPS data recovered from four wolves in the BNP-Ya Ha Tinda

region. Zub et al. (2003), in contrast to Peters and Mech (1975), found that wolves scent mark uniformly

throughout their territories. Yet, the densities of space use within a wolf territory influences scent mark

densities. The expected space use density, given wolf boundary patrolling movements can be determined

using the methods shown in ? and Moorcroft and Lewis (2005). The effect of contouring movements on

patterns of space use could also be determined using these methods. Understanding the mechanisms that

give rise to the observed pattern of space use is particularly relevant to predator-prey dynamics where

differences in predator density can result in shifts in prey distribution which can in turn impact vegetation

(Fortin et al., 2005). Furthermore, consideration of predator movements have been notably absent from

past studies of predator-prey dynamics (Lima, 2002).

While useful, the numerical methods used in ? and Moorcroft and Lewis (2005) are computationally

intensive. The methods described in this chapter are a preliminary step that can be used to identify

the best mechanisms to test in the simulation models of Moorcroft and Lewis (2005). In this chapter I

showed that, 1) when wolves are near the territory boundary, they exhibit patrolling movements along the

boundary edge, and 2) wolves move along contour lines perpendicular to the direction of downhill. I found

some evidence of a wolf returning to the location of a kill made less than 30 days prior, however, further

studies are needed to identify the frequency and factors which influence return movements to past kills.

This chapter, provides a simple methodology for testing animal movement hypotheses. These hypotheses

can be used to understand how wolves use space.
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Chapter 5

Concluding Remarks

Wolves (Canis lupus) raise pups and hunt within the bounds of their territories. While most of a wolf’s life

is spent within a territory, wolves will disperse from their natal territories. Wolf movements are primarily

for hunting and territory defense within the territory. Wolves disperse beyond the territory boundary to

search for mates or a new pack.

Mechanistic models can identify underlying processes that give rise to observed patterns. Furthermore,

diffusion models (Okubo and Levin, 2001; Moorcroft and Lewis, 2005) have been used to model mammal

dispersal (Skellam, 1951; Caughley, 1970; Clarke, 1971; Lubina and Levin, 1988) and home range movements

(Lewis and Murray, 1993; Moorcroft et al., 1999; Moorcroft and Lewis, 2005). The conventional diffusion

modelling framework (Fisher, 1937) when parameterized for wolf recolonizing the Greater Yellowstone

Ecosystem (GYE, Phillips and Smith 1997; Smith 1998; Smith et al. 1999, 2000, 2001; Smith and Guernsey

2002; Smith et al. 2003) predicted a rate of recolonization an order of magnitude faster than the rate of

recolonization calculated from range maps from 1997-2002. Slower than expected spread rates may be

caused by Allee effects (Lewis and Kareiva, 1993; Kot et al., 1996; Veit and Lewis, 1996; Wang et al.,

2002).

The most likely mechanism causing an Allee effect in wolves is a reduced probability of finding mates

at low densities. In Chapter 2, I showed that when the Allee effect is considered, the predicted rate of

recolonization is consistent with the observed rate of recolonization for wolves to the GYE. The reduced

probability of finding mates at low densities influences only the establishment of new breeding units and

not the growth of established breeding units. Most models for the Allee effect do not distinguish between

the establishment and subsequent growth of breeding units. Using a proof by induction, I quantified the

expected rate of recolonization when wolves have a reduced probability of finding mates at low densities
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as a function of reproduction, pair formation and dispersal parameters.

GPS measurement error will bias the results of movement (Johnson et al., 2002; Jerde and Visscher,

2005) and habitat selection (Frair et al., 2004) models if not dealt with properly. In Chapter 3, I showed

that GPS measurement error gives rise to a systematic error in measured turning angles and directional

biases. For an animal moving a very short distance with an actual turning angle equal to zero degrees, I

showed that in the presence of GPS measurement error the animal is most likely to be measured as turning

180 degrees. Similarly, an animal that is near the bias point (e.g., the den) and moves a short distance away

is most likely to be measured moving towards the bias point. These results are demonstrated using both

numerical simulations and mathematical analysis. In Chapter 3, I also determined that for measured step

lengths of 50-55 m, the actual turning angles and directions of movement can be detected in the presence

of GPS measurement error when 95% of GPS locations are measured within 31 m of the true location.

GPS collar technology has enabled researchers to record patterns of territory space use by animals.

In Chapter 4, this data is used to understand the effect of ecological features on the direction of wolf

movements. I showed that when sampled at 30 minute intervals wolves moved parallel to territory boundary.

This result suggested that wolves patrolled the boundary and did so for no more than a few hours. I also

showed that wolves moved preferentially in the direction perpendicular to the direction of the steepest

downhill slope. Because the distance moved between locations was small, this result likely demonstrates

that wolves move along contour lines. These new movement behaviours can be incorporated in future

mathematical models of movement to understand the effects on wolf space use.

Future directions

The modelling framework in Chapter 2 could be modified to investigate the effect of harvest on the rate

of range expansion. Determining the level of survivorship necessary for the population to persist will aid

wolf conservation planning and management. For the modelling framework presented in Chapter 2, it is

not only the survivorship that influences wolf spread rate, but who is killed - a disperser or a resident. An

understanding of the effect of harvesting dispersing and resident wolves on range expansion and retraction

could contribute to understanding the effects of wolf livestock depredation and wolf population dynamics.

I showed that removing all GPS observations less than 50-55 m is travelled between locations will

remove turning angle and directional biases. However, the true step length cutoffs were much smaller, 16.8

and 15.2 m respectively. Results for numerical simulations determining the relationship between measured

and true step lengths are shown in Jerde and Visscher (2005). However, mathematical results similar to

those presented in Chapter 3 for turning angles and directional biases would complement these results.
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Understanding factors that influence predator movement will aid future work on predator-prey dy-

namics. Understanding predator prey dynamics in heterogeneous landscapes requires understanding, 1)

how predators and prey respond to ecological features such as snow, terrain, and territory boundaries, 2)

how predators and prey respond to each others movements (e.g., Hugie and Dill 1994), and 3) how these

responses influence space use by both the predator and prey (e.g., Lewis and Murray 1993; Moorcroft

et al. 1999; Lewis and Moorcroft 2001). While not simple, advances gained from incorporating predator

movement in studies of predator-prey dynamics will be valuable (Lima, 2002).

Results in this thesis demonstrate how mechanistic models can be used to understand observed patterns.

I showed that density dependent pair formation for wolves that disperse beyond the territory boundary

influences wolf recolonization rates, that spurious 180 degree turns and strong directions biases can arise

from GPS measurement error and that wolf movement within a territory is influenced by the territory

boundary and elevation gradients.
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Appendix A

Fisher’s model

Fisher’s model overestimates the rate of wolf recolonization to the GYE. Fisher’s model is,

∂N

∂t
= rN

(
1− N

K

)
+ D

∂2N

∂x2
(A.1)

(Fisher, 1937). The diffusion coefficient D is calculated as D = ū2/π (Shigesada and Kawasaki, 1997)

where ū is the mean dispersal distance (ū = 76.7, Smith et al. 2000). The reproductive rate r is calculated

as the slope of a linear regression of Nt+1−Nt versus Nt, where Nt is the density of wolves is YNP at time

t (see Tab. (B.1)). We assume the area of YNP is 10,000 km2 and calculate the density of wolves in YNP

from 1996–2002. The spread rate is calculated as c =
√

rD, r = 1.18, D = 1872 km2/year.

Calculating ψφ

To estimate ψφ, I derive a relationship between ψφ and ρ the proportion of dispersers that find mates. For

GYE wolves ρ = 0.47 (Smith et al., 2000) for the first four years following the initial introduction (τ = 4).

I use this information to calculate the product ψφ for the pair formation prior and the pair formation

following dispersal models. For the pair formation prior to dispersal model, ψφ is given by Eq. (2.20). Eq.

(2.20) is,

ψφ = ρτ

τ∑
t=1

∫ xt

−xt
γ dy

γ2
∫∞
−∞ k(x) dx

,

= ρτ

τ∑
t=1

∫ xt

−xt
dy

γ
∫∞
−∞ k(x) dx

, (A.2)
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where,

K(x) =
∫ xt

−xt

α

2
exp(−α|x− y|) dy. (A.3)

Making the substitution u = x− y,

K(x) =
α

2

∫ x−xt

x+xt

exp(−α|u|) du. (A.4)

The integral of Eq. (A.4) is,

K(x) =





exp(αx) sinh(αxt) for x ≤ xt,

(1− exp(−αxt) cosh(αx)) for −xt < x < xt,

exp(−αx) sinh(αxt) for x ≥ xt.

(A.5)

Let,

L(x) =
∫ ∞

−∞
K(x) dx (A.6)

Using the result from Eq. (A.5),

L(x) =
(∫ −xt

−∞
exp(αx) sinh(αxt) dx +

∫ xt

−xt

1− exp(−αxt) cosh(αx) dx

+
∫ ∞

xt

exp(−αx) sinh(αxt) dx

)

=
1
α

(2 exp(−αxt) sinh(αxt) + 2αxt + exp(−2αxt)− 1)

= 2xt

(A.7)

Substituting Eq. (A.7) for the denominator of Eq. (A.2) yields,

ψφ = ρτ

τ∑
t=1

∫ xt

−xt
dy

2γxt
,

= ρτ

τ∑
t=1

2xt

2γxt
,

=
ρτ

γ
(A.8)

For GYE wolves, ρ = 0.47 where τ = 4 (Smith et al., 2000). The parameter γ is estimated using the

methods in the Parameter Estimation section of Chapter 2. These values were used to calculate ψφ = 20.7

for the pair formation prior to dispersal model. For the pair formation following dispersal model, Eq. (2.22)
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can be written as,

ψφ = ρτ

τ∑
t=1

∫ xt

−xt
γdy∫∞

−∞K2(x) dx
(A.9)

where K(x) is given by Eq. (A.3). Using the result from Eq. (A.5) where L(x) is the denominator of Eq.

(A.9),

L(x) = γ2

(∫ −xt

−∞
exp(2αx) sinh2(αxt) dx +

∫ xt

−xt

(1− exp(−αxt) cosh(αx))2 dx

+
∫ ∞

xt

exp(−2αx) sinh2(αxt) dx

)
,

=
γ2 exp(−2αxt)(3 + 2αxt + exp(2αxt)(4αxt − 3))

2α
.

(A.10)

Substituting Eq. (A.10) for the denominator of Eq. (A.9) yields,

ψφ = ρτ

τ∑
t=1

∫ xt

−xt
γ dy

γ2 exp(−2αxt)(3+2αxt+exp(2αxt)(4αxt−3))
2α

,

=
4ταρ

γ

τ∑
t=1

xt

exp(−2αxt)(3 + 2αxt + exp(2αxt)(4αxt − 3))
. (A.11)

To estimate ψφ I use the information that ρ = 0.47 and τ = 4. The parameters γ and α were estimated as

0.09 and 0.02 in the Parameter Estimation section of Chapter 2. Furthermore, x1, x2, x3, x4 are equal to

10.4, 45.5, 57.5, and 65.6 respectively, as estimated in the Model Validation section. Therefore, ψφ = 39.2

for the pair formation following dispersal model.

Finding the spread rate of Eq. (2.23)

Initial condition 1

I find Nt+1 and the population spread rate c for Eqs. (2.14) and (2.15) for two different initial conditions.

Initial condition 1 (Fig. (2.3A)) is defined as,

N0(x) ≥ Nc for −∞ < x ≤ x0,

= 0 otherwise. (A.12)
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Given initial condition 1, the region in space occupied by the disperser producing population Ωt is (−∞, xt].

Evaluating Eqs. (2.14) and (2.15) in the region x > xt yields,

Nt(x) = rNt−1(x) + A exp(−wα(x− xt−1)), (A.13)

where w and A are: w = 1, A = σψφγ2/4 (pair formation prior to dispersal, Eq. (2.14) and w = 2,

A = σψφγ2/8 (pair formation following dispersal, Eq. (2.15)). I suppose that solutions for Eq. (A.13) have

a slope of exp(−wαx) for x > xt such that,

Nt(x) = Bt exp(−wαx) for x > xt. (A.14)

Substituting Eq. (A.14) into Eq. (A.13) yields,

Nt+1(x) = rBt exp(−wαx) + A exp(wαxt) exp(−wαx),

= Bt+1 exp(−wαx),

where,

Bt+1(x) = rBt + A exp(−wαxt) for x > xt. (A.15)

Therefore, I show that if Nt has a slope of exp(−wαx), Nt+1 also has a slope of exp(−wαx). I look for

solutions in the region x > x0 by solving Eq. (A.13) for t = 1, where N0(x) is described by initial condition

1,

N1(x) = A exp(wαx0) exp(−wαx) for x0 < x. (A.16)

Therefore, B1 = A exp(wαx0) and Nt and Nt+1 have a slope of exp(−wαx) for all t.

Solutions to Eq. (A.13) have an exponential slope for x > xt where A > 0 such that,

Nt(x) = Bt exp(−wαx) for x > xt. (A.17)

The point at which the population starts the exponential drop is xt where,

Nt(xt) = Nc. (A.18)
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I calculate xt from Eqs. (A.17) and (A.18) to yield,

exp(wαxt) =
Bt

Nc
. (A.19)

I can substitute Eqs. (A.17) and (A.19) into equation A.13 to find the relationship between Bt+1 and Bt

such that,

Bt+1 = Bt

(
r +

A

Nc

)
,

= B1

(
r +

A

Nc

)t

, (A.20)

where B1 = A exp(wαx0). Substituting Eq. (A.20) into Eq. (A.17), Nt is given by the equation,

Nt(x) = exp(−wα(x− x0))
(

r +
A

Nc

)t−1

for x > xt. (A.21)

Eq. (A.21) is graphically depicted in Fig. (2.3A). The extent of the disperser producing population is,

xt+1 =
1

wα
log

(
exp(αx0)

A

Nc

(
r +

A

Nc

)t−1
)

, (A.22)

and I find the rate of population spread is given explicitly in terms of the model parameters as,

c = xt+1 − xt =
1

wα
log

(
r +

A

Nc

)
. (A.23)

Initial condition 2

I show that the spread rate for Eqs. (2.14) and (2.15) is the same for both initial conditions. Initial

condition 2 (Fig. (2.3)) is defined as,

N0(x) ≥ Nc for −x0 ≤ x ≤ x0,

= 0 otherwise. (A.24)

For this initial condition it is not possible to provide a general model for different values of w.
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Pair formation prior to dispersal

Evaluating Eq. (2.14) where the limits of integration are dictated by initial condition 2 gives Ωt = [−xt, xt].

Therefore, Eq. (2.9) where x > xt yields,

Nt+1(x) = rNt(x) + 2A exp(−αx) sinh(αxt), (A.25)

where A = σψφγ2/4. I consider solutions to Eq. (A.25) of the form Nt(x) = Bt exp(−αx) for x > xt.

Substituting Nt into Eq. (A.25), the relationship between Bt+1 and Bt is,

Bt+1 = rBt + 2A sinh(αxt). (A.26)

I evaluate B1 as,

B1 = 2A sinh(αx0) x > x0, (A.27)

and therefore show that Nt = Bt exp(−αx) for all t where x > xt. I use Eq. (A.19) (w = 1) to calculate

the extent of the disperser producing population,

exp(αxt+1) = r
Bt

Nc
+

2A

Nc
sinh(αxt). (A.28)

I substitute Bt = Nc exp(αxt) from Eq. (A.19) to yield,

xt+1 =
1
α

log
(

r exp(αxt) +
2A

Nc
sinh(αxt)

)
. (A.29)

Eq. (A.29) can be evaluated through cobwebbing (as shown in Fig. (10) in Kot et al. 1996). The cobwebbing

diagram for Eq. (A.29) is shown in Fig. (A.1). The spread rate for this model, c = xt+1−xt, is the vertical

distance between the dashed line and the 1:1 line. Note that the spread rate for Eq. (A.29) becomes constant

as t →∞. The spread rate, c = xt+1 − xt, becomes constant as xt →∞,

c = lim
xt→∞

1
α

log
(

r exp(αxt) +
2A

Nc

(
exp(αxt)− exp(−αxt)

2

))
− xt. (A.30)

Since exp(−αxt) → 0 as xt →∞,

c = lim
xt→∞

1
α

log
(

exp(αxt)
(

r +
A

Nc

))
− xt,

= lim
xt→∞

1
α

log
(

r +
σψφγ2

4Nc

)
. (A.31)
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Figure A.1: Finding the extent of the disperser producing population via cobwebbing. Eq. (A.29) (dark
line) predicts the spatial extent of the disperser producing population xt+1 as a function of xt for initial
condition 2. The 1:1 line is shown as a light line. The vertical distance between the dashed line and the
1:1 line is the spread rate for a given value of xt. This figures shows an asymptotically constant spread
rate because the two curves are parallel for large xt. The parameter values used to generate this figure are:
r = 1.33, α = 0.05, A = 1.1, and Nc = 0.247.
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Therefore, Eq. (A.31) yields the same result as Eq. (A.23) and the spread rate for Eq. (2.14) is the same

for either initial condition.

Pair formation following dispersal

For initial condition 2, I evaluate Eq. (2.15) as,

Nt+1(x) = rNt(x) + 2A(exp(−2αx)(cosh(2αxt)− 1), (A.32)

for x < xt where A = σψφγ2/8. I let Nt = Bt exp(−2αx) and substitute Nt into Eq. (A.32). Therefore,

Bt+1 as a function of Bt is,

Bt+1 = rBt + 2A(cosh(2αxt)− 1). (A.33)

I evaluate B1 as,

B1 = 2A(cosh(2αx0)− 1) where x > x0, (A.34)

and therefore I show that Nt = Bt exp(−2αx) holds for all t where x > xt.

I use Eq. (A.19) (where w = 2) to find xt+1 for Eq. (A.33),

exp(2αxt+1) = r
Bt

Nc
+

2A

Nc
(cosh(2αxt)− 1). (A.35)

I substitute Bt = Nc exp(2αxt) from Eq. (A.19) into Eq. (A.35) and calculate the extent of the disperser

producing population, xt+1 as,

xt+1 =
1
2α

log
(

r exp(2αxt) +
2A

Nc
(cosh(2αxt)− 1)

)
. (A.36)

Eq. (A.36) can be evaluated by cobwebbbing (see Fig. (A.1)). The spread rate, c = xt+1 − xt becomes

constant as xt →∞, therefore the asymptotic spread rate is,

c = lim
xt→∞

1
2α

log
(

r exp(2αxt) +
2A

Nc

(
exp(2αxt) + exp(−2αxt)

2
− 1

))
− xt. (A.37)

Since exp(−2αxt) → 0 and exp(2αxt) >> A/Nc as xt →∞,

c = lim
xt→∞

1
2α

log
(

exp(2αxt)
(

r +
A

Nc

))
− xt, (A.38)

= lim
xt→∞

1
2α

log
(

r +
σψφγ2

8Nc

)
, (A.39)
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where Eq. (A.38) yields the same results as Eq. (A.23) and therefore the population spread rate for Eq.

(2.15) does not depend on the initial condition.

V test

The V test (Zar 1998, p 618-620), also referred to as the Rayleigh test for a specified mean (Fisher 1993, p

151), tests for a unimodal circular distribution with a specified mean, µ. The test statistics were calculated

as,

V = R cos(ϑ̄− µ), (A.40)

where ϑ̄ is the mean direction of movement, R is the resultant length of the measured angles ϑ, and n is

the total number of observations. The mean direction ϑ̄ and R the resultant length are calculated as,

R =
√

X2 + Y 2, ϑ̄ = cos−1 X
R ,

X =
Pn

i=1 cos ϑi

n , Y =
Pn

i=1 sin ϑi

n ,

The u-statistic was used to determine significance. The u-statistic was calculated as,

u = V

√
2
n

, (A.41)

and the critical u value for α = 0.05, n = 100 is u0.05,100 = 1.645 (Zar (1998), Table B.35).

Numerical procedure for selecting a measured locations from a

distribution of GPS measurement error

The distribution of GPS measurement error is k, Eq. (3.1). The three true locations are (x∗1, y
∗
1), (x∗2, y

∗
2)

and (x∗3, y
∗
3). The notation ∗ is used to denote actual locations, directions, and turning angles. It resulted

in no loss of generality to assume that the first move is in the x-direction so that,

(x∗1, y
∗
1) = (0, 0) (x∗2, y

∗
2) = (L∗, 0),

where L∗ is the step length for the first move. Since, the step length cutoff is the step length that must be

exceeded on both steps in order for the actual turning angle to be detected, the distance moved between
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the second and third location is also L∗. I let,

(x∗3, y
∗
3) = (L∗(1 + cos τ∗1 ), L∗ sin τ∗1 ).

I determined the distance between the true and measured locations, ri,t (where i is index notation for each

iteration of the code), by generating a random GPS error using the inverse cumulative method (Haefner

????, p 217-218). I choose a random number ρi,t from a uniform distribution between 0 and 1 and calculated

the numerical cumulative density function of K(r) = 2πrk(r). I determined ri,t as the minimum value of

r where K(r) > ρi,t. The locations x1, x2, y1, and y2 were calculated as,

x1 = x∗1 + ri,1 cos εi,1, y1 = y∗1 + ri,1 sin εi,1,

x2 = x∗2 + ri,2 cos εi,2, y2 = y∗2 + ri,2 sin εi,2,

x3 = x∗3 + ri,3 cos εi,3, y3 = y∗3 + ri,3 sin εi,3,

(A.42)

A similar procedure was used for the directional bias simulations where only two measured locations were

drawn from the distribution of GPS measurement error.

Analytically determining the distributions of measured turning

angles and directions

Each measured location is a random variable drawn from a distribution of GPS measurement error. To

determine the expected distribution of measured turning angles, I use several change of variables to move

from distributions of GPS error in location to distributions of GPS error in angles. For the function f(x)

and the change of variables x = w(y), where and D is the range of the transformation,

g(y1, ..., yn) =
∫

...

∫

D

f(w1(y1, ..., yn), ..., wn(y1, ..., yn)) |J | dy1...dyn, (A.43)
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(Bain and Engelhardt 1997 p 206-7) where x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) and where |J | is the

determinant of the Jacobian matrix,

J =

∂x1
∂y1

∂x1
∂y2

... ∂x1
∂yn

∂x2
∂y1

...
...

∂xn

∂y1
... ∂xn

∂yn
,

. (A.44)

Turning angles

The turning angle is defined as τt = θt+1 − θt. With no loss of generality, I let θ∗t = 0 such that τ∗t = θ∗t+1.

On the first move the animal moves a distance of L∗t . The restriction that Lt = Lt+1 (from the Numerical

simulation section) is relaxed for greater generality and, therefore, I let the actual distance moved on the

second step be L∗t+1. I let the actual locations of the animal be,

(x∗t , y
∗
t ) = (0, 0), (x∗t+1, y

∗
t+1) = (L∗t , 0),

(xt+2, yt+2) = (L∗t + L∗t+1 cos θ∗t+1, L
∗
t+1 sin θ∗t+1).

I define a measurement error function ft that describes the probability density for a measured location

(xt, yt). Functions in this section are indexed as τ to indicate that these functions are steps in the procedure

to calculate the distribution of measured turning angles. In this section a Gaussian distribution of error is

used for analytic tractability. I define the GPS error distribution as a bivariate Gaussian distribution with

σx = σy and covariance ρ = 0,

fτ,t(xt, yt) =
1

2πσ2
exp

(
− (x2

t + y2
t )

2σ2

)
. (A.45)

The probability density function for the measured location at t + 1 is,

fτ,t+1(xt+1, yt+1) =
1

2πσ2
exp

(
− ((xt+1 − L∗t )

2 + y2
t+1)

2σ2

)
, (A.46)

and finally the probability density function at t + 2 is,

fτ,t+2(xt+2, yt+2) =
1

2πσ2
exp

(
− (xt+2 − (L∗t + L∗t+1 cos θ∗t+1))

2 + (yt+1 − L∗t+1 sin θ∗t+1)
2

2σ2

)
. (A.47)
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The probability of any three successive locations (xt, yt), (xt+1, yt+1) and (xt+2, yt+2) is,

jτ = fτ,t(xt, yt)fτ,t+1(xt+1, yt+1)fτ,t+2(xt+2, yt+2) (A.48)

I use the change of variables,

ut+1 = xt+2 − xt+1, ut = xt+1 − xt,

vt+1 = yt+2 − yt+1, vt = yt+1 − yt,
(A.49)

in Eq. (A.48) such that,

gτ (ut, ut+1, vt, vt+1) =
1

12π2σ4
exp

(
− (ut − ut+1)2 − utut+1 + (vt + vt+1)2 − vtvt+1 + c1

3σ2

)
, (A.50)

where,

c1 = L∗t (L
∗
t − 2ut − ut+1)

+ L∗t+1[L
∗
t+1 − ut+1 + (L∗t − ut − 2ut+1) cos µ− (vt + 2vt+1) sin µ].

I change to polar coordinates where,

ut = Lt cos θt, vt = Lt sin θt,

ut+1 = Lt+1 cos θt+1 vt+1,= Lt+1 sin θt+1,

and make the substitution τt = θt+1 − θt (as shown in Eq. (A.43)) such that,

hτ (τt) =
∫ 2π

0

∫ ∞

0

∫ ∞

0

LtLt+1

12π2σ4
exp

(
−L2

t + L2
t+1 + LtLt+1 cos τt + c2

3σ2

)
dLt dLt+1 dθt, (A.51)

where,

c2 = L∗t (L
∗
t − 2Lt cos θt − Lt+1 cos(τt + θt))

+ L∗t+1(L
∗
t+1 − Lt cos(θt − µ)− 2Lt+1 cos(τt + θt − µ) + L∗t cos µ).

I was not able to solve Eq. (A.51) and instead find solutions for the special case L∗t = L∗t+1 = 0 when the

animal does not move between locations.
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Special case: L∗t = L∗t+1 = 0

For the special case L∗t = L∗t+1 = 0, c2 = 0 in Eq. (A.51) such that,

hτ,0(τt) =
∫ 2π

0

∫ ∞

0

∫ ∞

0

LtLt+1

12π2σ4

exp
(
−L2

t + L2
t+1 + LtLt+1 cos τt

3σ2

)
dLt dLt+1 dθt,

=
∫ ∞

0

∫ ∞

0

LtLt+1

6πσ4

exp
(
−L2

t + L2
t+1 + LtLt+1 cos τt

3σ2

)
dLt dLt+1,

(A.52)

Integration on the plane (Lt, Lt+1) is performed over the first quadrant. Changing to polar coordinates,

Lt = R cosβ, Lt+1 = R sin β, where |J | = R, such that,

hτ,0(τt) =
∫ π/2

0

∫ ∞

0

R3 cosβ sin β

6πσ4
exp

(
−R2(1 + cos β sin β cos τt)

3σ2

)
dR dβ,

=
1

6πσ4

∫ π/2

0

cos β sin β

∫ ∞

0

R3 exp
(
−R2(1 + cos β sinβ cos τt)

3σ2

)
dR dβ.

(A.53)

Using another change of variables (e.g. see Eq. (A.43)),

η =
R2(1 + cos β sin β cos τt)

3σ2
, dη =

2R(1 + cos β sin β cos τt)
3σ2

dR

hτ,0(τt) =
1

6πσ2

∫ π/2

0

cosβ sin β

(
3σ2

1 + cos β sin β cos τt

)2

1
2

∫ ∞

0

η exp (−η) dη dβ,

=
3
4π

∫ π/2

0

cosβ sin β

(1 + cos β sin β cos τt)2
dβ.

Let,

hτ,0(τt) =
3
4π

dF

dx
. (A.54)
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where x = − cos τt and,

dFτ,0

dx
=

∫ π/2

0

cos β sin β

(1− x cos β sinβ)2
dβ, (A.55)

=
∫ π/2

0

d

dx

1
1− x cos β sin β

dβ,

=
d

dx

∫ π/2

0

1
1− x cos β sin β

dβ. (A.56)

Therefore, taking the antiderivative yields,

Fτ,0(x) =
∫ π/2

0

1
1− x cos β sin β

dβ. (A.57)

I apply the standard change of variables z = tan β, such that,

cosβ sin β =
cosβ sin β

cos2 β + sin2 β
=

sin β
cos β

1 +
(

sin β
cos β

)2 =
z

1 + z2
, (A.58)

Substituting Eq. (A.58) into Eq. (A.57) where dβ = dz/(1 + z2) yields,

Fτ,0(x) =
∫ ∞

0

1
1− xz

1+z2

dz

1 + z2
, (A.59)

=
∫ ∞

0

1
1− xz

1+z2

dz

1 + z2

=
∫ ∞

0

dz

z2 − xz + 1
=

∫ ∞

0

dz(
z − x

2

)2 + 1− x2

4

=
∫ ∞

0

dz

(
1− x2

4

)



(
z− 1

2 xq
1− x2

4

)2

+ 1




. (A.60)

Finally, let,

φ =
z − 1

2x√
1− x2

4

, dz =

√
1− x2

4
dφ,
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Fτ,0(x) =
1√

1− x2

4

∫ ∞

− x

2
√

1− x2
4

dφ

φ2 + 1
.

=
1√

1− x2

4

tan−1 φ

∣∣∣∣∣∣

∞

− x

2
√

1− x2
4

(A.61)

=
π + 2 tan−1

(
x√

4−x2

)
√

4− x2
.

dFτ,0

dx
=

2
(

x2

(4−x2)3/2 + 1√
4−x2

)

√
4− x2

(
1 + x2

4−x2

) +
x

(
π + 2 tan−1

(
x√

4−x2

))

(4− x2)3/2
(A.62)

=
8− x

(
2x−√4− x2

(
π + 2 tan−1

(
x√

4−x2

)))

(x2 − 4)2

(A.63)

Substituting Eq. (A.62) into Eq. (A.54) and re-substituting x = − cos τt,

hτ,0(τt) =
3
4π

dFτ,0

dx
, (A.64)

= hτ,0(τt) =
24− 3 cos τt

(
2 cos τt +

√
4− cos τt

(
π + 2 tan−1

(
− cos τt√
4−cos2 τt

)))

4π (cos2 τt − 4)2
.

(A.65)

Directional bias

The directional bias is defined as ζt = Θt − θt. I let Θ∗t = π such that ζ∗ = π − θ∗t . On the first step the

animal moves a distance of L∗t . The distance between the the actual location of the animal at time t and

the bias point is M∗
t . I let the actual locations of the animal and bias point be,

(x∗t , y
∗
t ) = (0, 0), (x∗t+1, y

∗
t+1) = (L∗t , 0), (χ∗, ψ∗) = (0,M∗

t ).

The distribution of measurement error for each of the animals actual locations are Eqs. (A.45) and (A.46).

There is no measurement error about the bias point. The probability of any pair of locations (xt, yt),
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(xt+1, yt+1) is gζ = ftft+1. I use the change of variables,

ut = xt+1 − xt, vt = yt+1 − yt,

wt = −xt, zt = M∗
t − yt,

where wt and zt are the x and y displacements. The product of Eqs. (A.45) and (A.46) with the change of

variables is,

hζ,0(ζt) =
1

4π2σ4
exp

(
−w2

t + (M∗
t − zt)2 − (L∗t + wt − ut)2 + (M∗

t − zt + vt)2

2σ2

)
. (A.66)

I use another change of variables,

ut = Lt cos θt vt = Lt sin θt

wt = Mt cosΘt zt = Mt sinΘt

where |J | = LtMt and ζt = Θt − θt such that,

hζ,0(ζt) =
∫ 2π

0

∫ ∞

0

∫ ∞

0

LtMt

4π2σ4
exp

(
L2

t + 2M2
t − 2LtMt cos ζt + c3 + c4

2σ2

)
dLt dMt dθt, (A.67)

where,

c3 = L∗t (L
∗
t − 2Lt cos θt + 2Mt cos(ζt + θt)),

c4 = M∗
t (2M∗

t + 2Lt sin θt − 4Mt sin(ζt + θt)),
(A.68)

I was not able to solve Eq. (A.67) and instead find solutions for M∗
t = L∗t = 0.

Special case: M∗
t = L∗t = 0

I find analytic solutions for the distribution of the directional biases for the special case where the animal

is located at the bias point and does not move between locations such that c3 and c4 are equal to zero in

Eq. (A.51). Therefore,

hζ,0(ζt) =
∫ 2π

0

∫ ∞

0

∫ ∞

0

LtMt

4π2σ4

exp
(
−L2

t + M2
t − 2LtMt cos ζt

2σ2

)
dLt dMt dθt,

=
∫ ∞

0

∫ ∞

0

LtMt

2πσ4
exp

(
−L2

t + M2
t − 2LtMt cos ζt

2σ2

)
dLt dMt,

(A.69)

90



I consider Lt and Mt as two coordinates and integration on the plane (Lt,Mt) is performed over the first

quadrant. Changing to polar coordinates, Lt = R cosβ, Mt = R sin β,where |J | = R, such that,

hζ,0(ζt) =
1

2πσ4

∫ π/2

0

cosβ sin β

∫ ∞

0

R3 exp
(
−R2(3− cos 2β − 2 cos ζt sin 2β)

4σ2

)
dR dβ. (A.70)

I make another change,

η =
R2(3− cos 2β − 2 cos ζt sin 2β)

4σ2
, dη =

R(3− cos 2β − 2 cos(ζt) sin(2β))
2σ2

hζ,0(ζt) =
1
π

∫ π/2

0

∫ ∞

0

4 cos β sin β η exp (−η) dη

(3− cos 2β − 2 cos ζt sin 2β)2
dβ. (A.71)

=
4
π

∫ π/2

0

cos β sin β

(3− cos 2β − 2 cos ζt sin 2β)2
dβ.

Let,

hζ,0(ζt) =
4
π

dFζ,0

dx
. (A.72)

where x = 2 cos ζt and,

dFζ,0

dx
=

∫ π/2

0

cos β sin β

(3− cos 2β − x sin 2β)2
dβ, (A.73)

=
∫ π/2

0

d

dx

1
2(3− cos 2β − x sin 2β)

dβ,

where d/dx can be taken out of the integral because the last integral is convergent for all x between −1

and 1.

Fζ,0(x) =
∫ π/2

0

1
2(3− cos 2β − x sin 2β)

dβ. (A.74)

Using the double angle formula,

3− cos 2β − x sin 2β = 3(cos2 β + sin2 β)− (cos2 β − sin2 β)− 2x cosβ sin β,

= 2(cos2 β + 2 sin2 β + x cos β sin β),

Furthermore,

2(cos2 β + 2 sin2 β + x cos β sin β) =
2(2z2 − xz + 1)

1 + z2
, (A.75)
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where z = tan β and the steps used to find Eq. (A.75) are shown in Eq. (A.58). Substituting Eq. (A.75)

into Eq. (A.74) and completing the square and factoring the denominator yields,

Fζ,0(x) =
1
4

∫ ∞

0

dz

2z2 − xz + 1
, (A.76)

=
1
8

∫ ∞

0

dz

(
1
2 − x2

16

)



(
z− x

4q
1
2− x2

16

)2

+ 1




.

Finally, let,

φ =
z − x

4√
1
2 − x2

16

, dz =

√
1
2
− x2

16
dφ,

Fζ,0(x) =
1

8
√

1
2 − x2

16

∫ ∞

− x

4
√

1
2−

x2
16

dφ

φ2 + 1
,

=
1

8
√

1
2 − x2

16

tan−1 φ

∣∣∣∣∣∣

∞

− x

4
√

1
2−

x2
16

,

=
π + 2 tan−1 x√

8−x2

4
√

8− x2
. (A.77)

dFζ,0

dx
=

16− 2x2 + πx
√

8− x2 + 2x
√

8− x2 tan−1
(

x
8−x2

)

4 (x2 − 8)2
,

=
16− x

(
2x− π

√
8− x2 − 2

√
8− x2 tan−1

(
x√

8−x2

))

4(x2 − 8)2
. (A.78)

Substituting Eq. (A.78) into Eq. (A.72) and re-substituting x = 2 cos ζt,

hζ,0(ζt) =
4
π

dFζ,0

dx
(A.79)

=
16− 4 cos ζt

(
2 cos ζt −

√
2− cos2 ζt

(
π + 2 tan−1

(
cos ζt√

2−cos2 ζt

)))

π(4 cos2 ζt − 8)2
.

Testing for correlation between two directions

I tested for temporal autocorrelation in movement directions using a modified version of Pearson’s cor-

relation coefficient (Zar 1998 p 649-651, Fisher 1993, p 151, see Appendix A). The correlation coefficient
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was,

raa =

n−1∑
j=1

n∑
k=i+1

sin(aj − ak) sin(bj − bk)
√

n−1∑
j=1

n∑
k=i+1

sin2(aj − ak)
n−1∑
j=1

n∑
k=i+1

sin(bj − bk)

(A.80)

(Fisher and Lee, 1983), where aj = θt, bj = θt+i and n is the total number of (θt, θt+i) pairs extracted

from the GPS data. Here, the quantity aj − ak is the difference between each element of a and all other

elements where j < k. I tested for the temporal autocorrelation in movement angles for each wolf and each

subsampling regime using the computational version of Eq. (A.80),

raa =

4

��
nP

t=1

c1c1

��
nP

t=1

s1s2

�
−
�

nP
t=1

c1s2

��
nP

t=1

s1c2

��
vuut n2 −

�
nP

t=1

c21

�2

−
�

nP
t=1

s21

�2
! 

n2 −
�

nP
t=1

c22

�2

−
�

nP
t=1

s22

�2
! (A.81)

(Zar 1998 p 649-651, Fisher 1993, p151) where c1 = cos(θt), c2 = cos(θt+i), s1 = sin(θt), s2 = sin(θt+i), c21 =

cos(2θt), c22 = cos(2θt+i), s21 = sin(2θt), s22 = sin(2θt+i). For values of raa close to zero, θt and θt+i are

uncorrelated. I tested whether raa is significantly different from zero for α = 0.05. For all wolves and all

subsampling regimes, n >> 25; therefore, the appropriate test for H0 : raa = 0 was performed as in Fisher

(1993, p 152 - for n < 25 a different test for significance is suggested). If p < 0.05, raa is significantly

different from zero and θt and θt+i are correlated.
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Appendix B

Supplemental Data

Data sources are Phillips and Smith (1997), Smith (1998), Smith et al. (1999), Smith et al. (2000), Smith

et al. (2001), Smith and Guernsey (2002) and Smith et al. (2003) all of which are available online at,

http://www.nps.gov/yell/nature/animals/wolf/wolfup.html.
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Table B.1: Number of wolves in YNP 1996-2002.

Year Number of wolves
1996 20
1997 38
1998 80
1999 83
2000 90
2001 122
2002 138
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Table B.2: Year of formation for GYE wolf packs.

Pack name Date formed Formed naturally Year 1
Rose Creek March 29, 1995 No n/a
Mollie’s Pack (Crystal Ck) March 31, 1995 No n/a
Yellowstone Delta (Soda Butte) March 31, 1995 No n/a
Leopold Pack Jan, 1996 Yes 1996
Druid Peak Apr, 1996 No n/a
Chief Joseph Apr, 1996 No n/a
Nez Perce Apr, 1996 No n/a
Lone Star Apr, 1996 No n/a
Thorofare Apr, 1996 Yes n/a
Washakie 1996 Yes 1997
Sheep Mtn (Cf Joseph II) early 1996* Yes 1996
Teton 1998 Yes 1999
Sunlight March, 1998** Yes 1998
Gros Ventre (Jackson Trio) 1998 Yes 1999
Swan Lake 2000*** Yes 2001
Absaroka 2000*** Yes 2001
Beartooth 2000*** Yes 2001
Taylor 2000*** Yes 2001
Gravelly 2000*** Yes 2001
Mill Creek 2000*** Yes 2001
Tower early 20014 Yes 2001
Cougar Creek 2001 Yes 2002
Freezeout 2001 Yes 2002
Pinedale 2001 Yes 2002
Meeteetse 2001 Yes 2002
Big Piney 2001 Yes 2002
Red Lodge 2001 Yes 2002
Buffalo Fk 2002 Yes 2003
Geode 2002 Yes 2003
Agate 2002 Yes 2003
Greybull R 2002 Yes 2003
Green R 2002 Yes 2003
Bechler 2002 Yes 2003

Year 1 is the year of the first April after pack formation
* Formed due to a split of Chief Joseph Pack. Date of first disassociation with main pack
** Paired too late to reproduce
*** Evidence that this date is the correct data of pair formation is in the 2001 YNPWP annual report
4 Formed due to a split of the Rose Creek Pack. Date of split reported in 2001 annual report.
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Table B.3: Disperser production and pack size of GYE wolves

Pack size Number of Pack name and year Method of
at yr start dispersers Estimation

produced
during yr

2 0 Crystal Ck, 1997 inferred
5 0 Soda Butte, 1997 inferred
5 2 Druid, 1997 documented
10 1 Rose Ck, 1997 documented
2 0 Thorofare, 1997 inferred
2 0 Washakie, 1997 inferred
8 0 Crystal Ck, 1998 inferred
8 1 Soda Butte, 1998 documented
8 0 Cf. Joseph I, 1998 inferred
3 0 Cf. Joseph II, 1998 inferred
7 1 Druid, 1999, documented
22 4 Rose Ck, 1999 documented
13 0 Leopold, 1999 documented
16 1 Crystal Ck, 1999 documented
11 2 Cf. Joseph, 1999 documented
3 0 Gros Ventre, 1999 inferred
7 2 Soda Butte, 1999 documented
6 1 Sheep Mt, 1999 documented
2 0 Sunlight, 1999 inferred
2 0 Teton, 1999 inferred
11 2 Leopold, 2000 documented
13 1 Crystal Ck, 2000 documented
8 1 Cf. Joseph, 2000 documented
13 1 Nez Perce, 2000 documented
5 0 Grox Ventre, 2000 inferred
13 2 Leopold, 2001 documented
22 1 Nez Perce, 2001 inferred
4 0 Mollie’s, 2001 inferred
5 0 Absaroka, 2001 inferred
3 0 Beartooth, 2001 interred
18 5 Rose Ck, 2001 documented*
37 9 Druid, 2002 documented*
2 1 Tower, 2002 documented
14 4 Leopold, 2002 documented
6 2 Mollies’s, 2002 documented
11 4 Cf. Joseph, 2002 documented
18 3 Nez Perce, 2002 documented
16 1 Yellowstone Delta, 2002 documented
12 5 Teton, 2002 documented

* Pack split. Documented means that progress reports specify the number of dispersers produced in the
text. Inferred applies to observations of zero dispersers only and means that this years pack size is equal
to last years pack size plus pup production and known usurptions and minus known mortalities.
Therefore as the fate of all pack members is known, no members of the pack have dispersed.
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Table B.4: Reason for pack size disperser observation non-inclusion in Table B.3

1. Pack was released from an acclimation pen less than 1 year ago
Rose Creek, Crystal Creek, and Soda Butte (1995), Druid, Chief Joseph, Nez Perce, and Lonestar (1996).

2. USFWS intervention
Nez Perce (1998 – recaptured), Chief Joseph II (1997 – supplemental feeding)

3. Fate of all previous years pack members unknown
Leopold and Rose Creek (1998), Nez Perce (1999), Druid, Soda Butte, Sheep Mountain, Chief Joseph,
Washakie, Sunlight and Rose Creek (2000), Druid, Swan Lake, Chief Joseph, Yellowstone Delta, Teton,
Taylor, Gravelly and Sheep Mountain (2001), Rose Creek, Swan Lake, Cougar Creek, Sunlight, Beartooth
and Grey Bull River (2002).

4. Last years pack size + known reproduction + usurption - known mortality exceeds this reported
years pack size
Teton, Sheep Mountain, Soda Butte and Druid (2000)

5. Exact number of pack members in previous year unknown
Sunlight and Gros Ventre (2002)

6. Pack was first formed less than a year ago
Freezeout (2001), Green River, Slough Creek, Geode, Bechler and Agate (2002)
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Table B.5: Pack sizes in the first 3 years for naturally formed packs

Pack name Pack size after
1 year 2 years 3 years

Leopold 5 9 13
Washakie 6 0 0
Sheep Mountain 3 9 7
Teton 6 4 12
Sunlight Basin 2 9 10
Swan Lake 8 8 16
Absaroka 8 9 4
Taylor Peaks 3 4 4
Gravelly Range 3 0 0
Tower 2 2 0

This data represents all the naturally formed packs where pack size is known exactly for the first three
years.
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Appendix C

This appendix contains figures of the GPS data used for the analysis in Chapter 4. All of the data shown

was collected at a 15 minute sampling frequency. Further details of the collar success rate can be found in

Tab. (4.1)
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Figure C.1: The GPS data for wolf 77. Projection: UTM (Universal Trans Mercator), Datum: NAD 1983,
zone 11. UTMs for the bottom left corner are 555963 Easting, 5716158 Northing, and for the top right
corner, 608462 Easting and 5756294 Northing
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Figure C.2: The GPS data for wolf 78. Projection: UTM (Universal Trans Mercator), Datum: NAD 1983,
zone 11. UTMs for the bottom left corner are 568668 Easting, 5709044 Northing, and for the top right
corner, 638224 Easting and 5762157 Northing
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Figure C.3: The GPS data for wolf 85. Projection: UTM (Universal Trans Mercator), Datum: NAD 1983,
zone 11. UTMs for the bottom left corner are 563696 Easting, 5680970 Northing, and for the top right
corner, 627381 Easting and 5729570 Northing
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Figure C.4: The GPS data for wolf 86. Projection: UTM (Universal Trans Mercator), Datum: NAD 1983,
zone 11. UTMs for the bottom left corner are 555276 Easting, 5717506 Northing, and for the top right
corner, 608516 Easting and 5758364 Northing
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