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We present previously undescribed spatial group patterns that
emerge in a one-dimensional hyperbolic model for animal group
formation and movement. The patterns result from the assump-
tion that the interactions governing movement depend not only
on distance between conspecifics, but also on how individuals
receive information about their neighbors and the amount of infor-
mation received. Someof thesepatternsare classical, suchas sta-
tionary pulses, traveling waves, ripples, or traveling trains. How-
ever, most of the patterns have not been reported previously. We
call these patterns zigzag pulses, semi-zigzag pulses, breathers,
traveling breathers, and feathers.
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Pattern formation is one of the most studied aspects of animal
communities. Here we present 10 complex spatial patterns that

emerge in a one-dimensional mathematical model used to describe
the formation and movement of animal groups.

Some of themost remarkable examples of patterns observed in an-
imal groups are related to the behavior displayed by these groups [1].
Stationary aggregations formed by resting animals, migrating herds
of ungulates, zigzagging flocks of birds, and milling schools of fish
are only a few of the patterns. To understand the underlying mecha-
nisms, scientists use mathematical models to simulate these observed
biological patterns. The most spectacular examples of group patterns
shown by numerical simulations are obtained with individual-based
models: swarms, tori, and polarized groups [2],[3]. A second math-
ematical modeling approach is based on continuum models, which
are usually described by partial differential equations. In many areas,
the continuum models have been successful at deducing conditions
that give rise to biological patterns (e.g., morphogenesis [4]), even in
one spatial dimension [5]. However, this has not been the case for
animal grouping models. The one-dimensional continuum models
that investigate animal aggregations fail to account for the multitude
of complex patterns that one can observe in nature. Generally, the
patterns exhibited by these models are simple: local parabolic models
do not support traveling waves [6], and nonlocal parabolic models can
give rise to stationary pulses [7] or to traveling waves, provided that
diffusion is density-dependent [8]. Hyperbolic models give rise to rip-
ples [9] and aggregations [9],[10]. Considering that one-dimensional
models have not explained the complexity of the patterns observed
in biological systems, scientists have directed their attention towards
two-dimensional models. The results are more complex (e.g., ripples
[14], stationary aggregations [7], vortex-like groups [11], patches of
aligned individuals [12], [13]), but they still cannot account for the
multitude of observed patterns.

One possible reason for this failure is that the assumptions consid-
ered by these models do not fully describe the social interactions be-
tween individuals governing group formation. More precisely, these
models consider that the social interactions depend only on the dis-

tances between individuals. However, this assumption might not
be sufficient. In support of this statement, we examine a nonlocal
mathematicalmodel that focuses ondistance-dependent anddirection-
dependent social interactions, facilitated by animal communication.

The process of formation and movement of animal groups is the
result of the interplay between two elements. The first element is
represented by the movement-facilitated social interactions, namely
movement towards conspecifics or away from them and movement
to align with them. Previous models (both individual-based models
[2],[3],[15], and continuum models [7],[8]) assume that these interac-
tions are mainly distance-dependent. A few individual-based models
(e.g., refs. 2 and 3) take into account that individuals may not receive
information from behind because of a so-called “blind spot". Gen-
erally, attraction is considered to act on long ranges, alignment on
intermediate ranges, whereas repulsion acts on short ranges. In this
paper, we assume that superimposed on these movement-facilitated
social interactions, there is a second element: how individuals re-
ceive information about conspecifics, and the amount of information
received. This second element is typically not included in models.
However, this approach is reasonable, because there is evidence sug-
gesting that not all animals receive and respond in a similar manner to
the signals coming from their neighbors. For example, some species
of birds use directional sound signals (which require the emitter to face
the receiver) to coordinate the flock movements, and omnidirectional
signals (with emitters moving in any direction) to attract mates or to
repel intruders [16]. For Mormon crickets, the movement seems to
be influenced by the signals received from conspecifics approaching
from behind, and from those positioned ahead and moving away [17].
The movement direction of some fish is more frequently influenced
by the movement direction of the neighbors positioned ahead of them
than by those at their side [18]. We focus here only on the reception of
signals, because this plays a central role in the formation and move-
ment of animal groups, by allowing the receiver to make movement
decisions [19]. Moreover, the reception of signals is affected by envi-
ronmental conditions and the receiver’s physiological limitations, and
therefore different species make use of different signals and reception
mechanisms [20],[21].

We take these two elements and incorporate them into a mathe-
matical model that describes the formation and movement of animal
groups. We focus on five hypothetical submodels for signal recep-
tion, and use them to define the social interactions. These submodels
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are examples that illustrate how environmental and physiological con-
straints can be represented with our modeling paradigm.

The numerical simulations show the emergence of 10 types of
spatial patterns. Some of these patterns are classic: stationary pulses,
ripples, traveling trains, or traveling waves. However, most of the
patterns have not been described previously. We call these solutions
zigzag pulses, semi-zigzag pulses, breathers, traveling breathers, and
feathers. We investigate our five submodels of signal reception in
three cases (of which the first two are very common in existing mod-
els [7],[8],[9]): (a) only attraction and repulsion, (b) only alignment,
and (c) attraction, repulsion, and alignment. At the end, we focus
on case (c) to investigate the conditions for full alignment within a
population of individuals that is spread evenly over the domain. For
this, we answer the question: how does the strength of the alignment
force required in each of the five submodels depend on the amount of
information an individual receives from its neighbors?

Model description
In [22], the authors have introduced the followingmodel of hyperbolic
partial differential equations that describes the evolution of densities
of right-moving (u+) and left-moving (u−) individuals:

∂tu
+(x, t) + ∂x(γu+(x, t)) = −λ+u+(x, t) + λ−u−(x, t),

∂tu
−(x, t) − ∂x(γu−(x, t)) = λ+u+(x, t) − λ−u−(x, t),

u±(x, 0) = u±
0 (x). [1]

It is assumed that individuals move at a constant speed γ. The two
remaining symbols, λ+(λ−), denote the turning rates for the indi-
viduals that were initially moving to the right (left) and then turn to
the left (right). These rates describe the response of an individual,
through attraction, repulsion, and alignment, to the signals received
from its neighbors:

λ± = λ1 + λ2f
`

y±
r − y±

a + y±
al

´

[2]

We consider f to be a positive, increasing, and bounded function that
depends on three nonlocal social interactions: attraction (y±

a ), repul-
sion (y±

r ), and alignment (y±
al). Because the attraction and repulsion

have opposite effects, note that they enter the equation with different
signs. We will flesh out these terms shortly, when we discuss Table 1.
The other two constants, λ1 and λ2, approximate the random turning
rate and the bias turning rate, respectively.

As mentioned previously, the social interactions depend on signal
reception. We investigate five hypothetical submodels describing how
an individual can receive signals from its neighbors. Fig. 1 shows a
reference right-moving individual that is positioned at x, whereas its
neighbors are potentially positioned at x + s (ahead), and at x − s
(behind). The submodels are as follows: M1, the attractive and repul-
sive interactions depend on the stimuli received from all neighbors,
whereas the alignment depends only on the stimuli received from
those neighbors moving toward the reference individual (this case
was studied in ref. 22); M2, all three social interactions depend on
the stimuli received from all neighbors; M3, the social interactions
depend only on the information received from ahead (with respect
to the moving direction); M4, the social interactions depend on the
stimuli received from ahead and behind, only from those neighbors
moving toward the reference individual; and M5, the social inter-
actions depend on stimuli received only from ahead, and only from
neighbors moving toward the reference individual. To understand
Fig. 1, let us focus for example on M1 and, in particular, on the dia-
gram for attraction and repulsion. We assume here that an individual
is attracted (repulsed) by neighbors within the attraction (repulsion)

zone, regardless of their orientation. Suppose that the reference in-
dividual receives a stronger signal from ahead than from behind, that
is (u+ + u−)(x + s) > (u+ + u−)(x − s). If the signal comes
from within the repulsion zone, the individual will turn to avoid those
neighbors in front of it. If the signal comes from within the attraction
zone, it will continue moving in the same direction. The analysis for
left-moving individuals is similar [22]. Table 1 describes the nonlo-
cal terms obtained by summing up the information from all neighbors
(s ∈ (0,∞)), as depicted in the diagrams of Fig. 1. We define here
the total density at (x, t) to beu(x, t) = u+(x, t)+u−(x, t). The pa-
rameters qa, qr , and qal that appear in Table 1 represent the strength
of the attraction, repulsion, and alignment forces. The interaction
kernels are described by the following equations:

Ki(s) =
1

2πm2
i

exp
`

−(s − si)
2/(2m2

i )
´

, [3]

i = r, al, a; s ∈ [0,∞),

with mi = si/8 (i = r, al, a) representing the width of the inter-
action kernels, and si (i = r, al, a) representing half the length of
the interaction ranges, for the repulsion, alignment, and attraction
terms, respectively. For a biologically realistic case, we consider
sr < sal < sa.

These five submodels are not the only possible ones. The aim
here is not to describe all the possible ways of receiving information
from neighbors. Rather, it is to give the readers a flavor of the possi-
bilities offered by such a modeling procedure. In the following, we
will show that these submodels exhibit a wide variety of previously
undescribed spatial patterns.

Pattern formation
We investigate the types of spatial patterns that arise in the follow-
ing three cases: (a) only attraction and repulsion; (b) only alignment;
and (c) full model with attraction, alignment and repulsion. The nu-
merical scheme we use is a first-order upwind scheme, with periodic
boundary conditions. We use this type of boundary conditions to
compare our results with the results obtained by other models (either
continuum [8], [14]) or individual-based models [23]). Moreover,
certain experimental setups also called for periodic boundary condi-
tions [23]. The infinite integrals (Table 1) are approximated by finite
integrals on [0, 2si] (i = r, al, a). For the initial conditions, we focus
on the spatially homogeneous steady states (u+, u−) = (u∗, u∗∗)
(i.e., solutions of Eq. 1 that satisfy ∂tu

± = ∂xu± = 0). We can
write u∗∗ = A − u∗, where A is the total population density. We
choose the initial conditions for the numerical simulations to be small
perturbations of these steady states.

We verified the numerical results by comparing with analytical
predictions obtained by linearizing the equations about the homoge-
neous solution, including a linear stability analysis which predicts
the wavenumbers of perturbations which are unstable (see also ref.
22). For predicted unstable wavenumbers, the numerical simulations
show pattern formation, whereas for stable wavenumbers, there is no
pattern. Moreover, the number of groups that arise depends on the
wavenumber that becomes unstable: ki = 2iπ/L, i ∈ N, where L is
the domain length (L $ sa). To exclude the effect of the boundaries,
we doubled the domain size, and to exclude possible artifacts of the
numerical scheme, we refined the grid mesh. In all cases the results
showed no significant differences.

The numerical simulations reveal 10 types of spatial patterns,
shown in Figs. 2 and 3: pattern 1, stationary pulses formed of small,
high-density subgroups; pattern 2, stationary pulses that have a rela-
tively constant internal density; pattern 3, ripples; pattern 4, feathers;
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pattern 5, traveling pulse; pattern 6, traveling train ; pattern 7, zigzag
pulses; pattern 8, breathers; pattern 9, traveling breathers; and pattern
10, semi-zigzag pulses. Patterns 1–3, 5, and 6 are classic patterns (see
refs. 14 and 24). Zigzag pulses are traveling solutions that periodi-
cally change direction ([22]). We call feathers those stationary pulses
that, at the edge, lose and gain subgroups of individuals. Breathers
are stationary pulses that periodically expand and contract. Travel-
ing breathers are breather-like groups that travel through the domain.
The semi-zigzag pulses are pulses characterized by movement in one
direction, alternated by rest. These pulses are a temporal transition
between traveling trains (at the start of the simulations) and the sta-
tionary pulses (after the simulations run for a long time).

An interesting aspect of breathers and zigzag pulses is the fre-
quency of the turning manoeuver. In ref. 22, the authors have shown
that in case of zigzag pulses this frequency is influenced by the mag-
nitude of the turning rates: the smaller the turning rates, the larger
the frequency. A similar result holds also for breathers. However,
because of the large number of model parameters, it is possible that
other parameters may also influence the turning frequency.

By fixing all the parameters, we can investigate the role of differ-
ent model assumptions (M1 vs. M2, etc.) in determining the resulting
spatial pattern. We do this in the context of all three social interac-
tions: attraction, repulsion, and alignment (i.e., case (c)). We set
qr = qa = 4, qal = 2 (that is, attraction and repulsion greater than
alignment), and λ1 = 0.2, λ2 = 0.9. The rest of the parameters
are given in the Fig. 2 legend. Models M1 and M2 show stationary
pulses, as in Fig. 2, pattern 1. This suggests that for this particu-
lar case (i.e., qr, qa > qal), it does not matter whether the signals
received from within the alignment range come only from neighbors
moving toward the reference individual (M1), or from neighbors mov-
ing in both directions (M2). Model M3 shows feathers, as in Fig. 2,
pattern 4. In this case, the group as a whole is stationary. However,
those individuals positioned at the edge, facing away from the group,
leave and do not turn around. This happens because the individuals
do not receive information from behind. Model M4 shows traveling
breathers, as in Fig. 2, pattern 9. This behavior is the result of two
factors. First, because repulsion has the same magnitude as attraction,
individuals can escape the group. These individuals move faster than
the rest of the group. The rest of the group executes a sort of zigzag
(those very-high-density patches displayed by pattern 9). Second, the
boundary conditions are periodic. That is, individuals that have left
the group now are joining it again. This leads to expanding and con-
tracting moving groups (i.e., traveling breathers). Model M5 shows
ripples, as in Fig. 2, pattern 3. In this case, the individuals react
only to signals coming from ahead. This way, when two left-moving
and right-moving waves approach each other, the majority of indi-
viduals within each group turn around, to avoid collision. However,
there are some individuals that continue moving in the same direction.
This behavior leads to the appearance that the waves pass through one
another.

Table 2 shows a summary of the patterns observed in the three
cases: (a) only attraction and repulsion, (b) only alignment, and (c) at-
traction, repulsion and alignment. The dashes denote that the pattern
was not observed. Because we do not sample the entire parameter
space, we note that Table 2 might not be complete. Moreover, we
believe it is likely to find other new and interesting patterns, in dif-
ferent parameter subspaces. Our aim here is not to find all patterns,
but to open the door toward the numerous possibilities offered by our
modeling procedure.

Relation between information received and align-

ment
In addition to the discussed patterns, we investigate conditions under
which a population of individuals evenly spread over the domain has
most of its members aligned in the same direction. That is, we look
for spatially homogeneous steady states of the form (u∗, A − u∗),
with u∗ %= A/2. For this, we focus on the relation between the
strength of the alignment force required in each of the five submodels
M1-M5, and the amount of information an individual receives about
its neighbors. Fig. 4 shows the relationship between the strength of
this force (qal) and the spatially homogeneous steady states that arise
in each of the submodels. Depending on how much information it
receives about its neighbors, an individual requires different levels
of alignment. For example, we see that for M2, small qal already
leads to polarization. In this case, the individuals receive all possible
information about neighbors positioned ahead and behind them (see
Fig. 1). For M3, on the other hand, only a large qal value leads to
polarization. In this case, the individuals receive information only
from ahead. By comparing M3 and M4, we see that group polar-
ization occurs for smaller values of alignment (qal) when receiving
partial information from both ahead and behind (M4), as compared to
receiving full information only from ahead (M3). However, receiving
information only from ahead, and only from neighbors moving in one
direction (M5), leads to a lower level of polarization. Moreover, this
polarization happens only for some intermediate values of qal.

We conclude that there is an inverse relation between the amount
of information received and the strength of alignment force required
to fully align with neighbors. A similar result (not shown here) holds
also for the turning rates.

Discussion
In this paper, we have presented a one-dimensional mathematical
model for animal group formation that exhibits 10 complex patterns.
A one-dimensional continuum model for group formation exhibiting
such a variety of emergent patterns has not been reported previously.
We should note that the described new patterns hold scientific interest.
To our knowledge, some of these patterns (e.g., feathers) have never
been previously observed. The results also show that the way organ-
isms receive information may play a central role in the emergence of
complex patterns observed in biological aggregations. Some of the
patterns can be connected to observed group behaviors: zigzagging
flocks [25],[26], rippling behavior shown by populations ofMyxobac-
teria [14], traveling pulses and stationary pulses corresponding to
moving (e.g., traveling schools of fish) and resting groups of ani-
mals, traveling trains corresponding to waves of activity that prop-
agate through the groups [27]. Breathers might be associated with
the anti-predatory behavior observed in some schools of fish [28] or
flocks of birds [29], when the groups expand and then contract.

Because of the complexity of the animal aggregations, it has been
difficult to quantify the different types of groups and animal move-
ments. One step forward was made in ref. 23, where the results of an
individual based model were compared with laboratory experiments.
The results we present here invite further observations and experi-
mental investigations involving the manipulation of communication
in animal groups.

In the formulation of the model, we have restricted ourselves to
one spatial dimension. In nature, the majority of biological aggre-
gations are in two or three dimensions. However, the simulations
show that this model captures the essential features of some of the
observed patterns (e.g., higher population density at the front of the
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movinggroups [30], the structure of the turningmanoeuvre [31], [32]).
The one-dimensional model can approximate the behavior of animal
groups in two dimensions if they move in a domain which is much
longer than wide. However, for a more realistic and general case, the
model should be extended to two spatial dimensions (see for example
[33]).

Some of the patterns we obtained in this paper can be related
to the patterns displayed by the other continuum models existent in
the literature. In particular, the results in Table 2 show that case (a)
(i.e., only attraction and repulsion) almost always generates station-
ary pulses. This pattern was previously obtained by parabolic models
with attractive and repulsive interactions [7]. The traveling pulses
seem to be the result of the interplay between all social interactions
(case (c)). Compared to previous models [8], the pulses obtained here
have well-defined boundaries and persist for a very long time. The
ripples (similar to the ones described in refs. 9 and 14) are obtained
here for cases (a) and (c). We therefore conclude that our model not
only exhibits the patterns obtained by other one-dimensional contin-
uum models (i.e., stationary pulses, traveling pulses, ripples), but also
shows new types of solutions.

Furthermore, the results suggest that there is an inverse relation
between the amount of information received by an organism (due to
environmental or physiological limitations), and the strength of the
alignment that leads to a polarized population.

Future work includes investigating whether observed patterns
change if we change the nonlinear turning function (Eq. 2), or the
interaction kernels. For example, we observed that in model M1 all
but the semi-zigzag pulse patterns persist when we use odd kernels
for attractive and repulsive interactions [22].

We stress that this model approach provides a structure for fur-
ther modifications. The mathematical model can easily be adapted to
a particular species, by changing the way we model how organisms
receive information from their neighbors.
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Table 1. The nonlocal terms used to describe the social interactions. The terms y+
r,a and y+

al are the translation of
the diagrams from Fig. 1 into mathematical equations, when we sum up the information received from all neighbors
(s ∈ (0,∞)). The terms y−

r,a and y−
al are obtained through a similar process, when we consider a left-moving reference

individual. We define qa, qr, and qal to be the strength of the attraction, repulsion, and alignment forces. Also, we define
u to be the total density u = u+ + u−.
Model Attraction and Repulsion Alignment
M1 y±

r,a = qr,a

R ∞

0
Kr,a(s)(u(x ± s) − u(x ∓ s))ds y±

al = qal

R ∞

0
Kal(s)(u

∓(x ± s) − u±(x ∓ s))ds
M2 y±

r,a = qr,a

R ∞

0
Kr,a(s)(u(x ± s) − u(x ∓ s))ds y±

al = qal

R ∞

0
Kal(s)(u

∓(x ± s) + u∓(x ∓ s)−
u±(x ± s) − u±(x ∓ s))ds

M3 y±
r,a = qr,a

R ∞

0
Kr,a(s)(u(x ± s))ds y±

al = qal

R ∞

0
Kal(s)(u

∓(x ± s) − u±(x ± s))ds
M4 y±

r,a = qr,a

R ∞

0
Kr,a(s)(u∓(x ± s) − u±(x ∓ s))ds y±

al = qal

R ∞

0
Kal(s)(u

∓(x ± s) − u±(x ∓ s))ds
M5 y±

r,a = qr,a

R ∞

0
Kr,a(s)u∓(x ± s)ds y±

al = qal

R ∞

0
Kal(s)u

∓(x ± s)ds

Table 2. A summary of the different types of possible solutions exhibited by the five models, M1 - M5. Here (a), (b), and
(c) represent the three discussed cases: (a) only attraction and repulsion, (b) only alignment, (c) attraction, repulsion,
and alignment. The dashes mean that the pattern has not been observed. We focused on the parameter space where
the wavenumbers of the perturbations are unstable, as predicted by the linear stability analysis. However, since this
parameter space is very large, we have sampled only some parameter subspaces. Case (a): fix qal = 0, γ = 0.1, λ1 =
0.2, λ2 = 0.9, and A = 2. The sampled parameter subspace is (qa, qr), with qa, qr ∈ [0.5, 9]. For the initial conditions we
consider u∗ = u∗∗. Case (b): fix qa = qr = 0, γ = 0.1, A = 2, and investigate the influence of the turning rates on the
group structure. For this, we define λ1 = 0.2/τ , λ2 = 0.9/τ , and vary τ . The sampled parameter subspace is (qal, τ ), with
qal ∈ [0.5, 10], and τ ∈ [0.006, 1]. For the initial conditions we take u∗ %= u∗∗. Case (c): fix γ = 0.1, λ1 = 0.2, λ2 = 0.9, A = 2.
The sampled parameter subspace is (qa, qr), with qa, qr ∈ [0.5, 10]. For the initial conditions we consider u∗ = u∗∗. The
obtained patterns are robust to parameter changes, in the sense that each pattern is observed for range of parameters.
Model Travel. Travel. Stat. Zigzag Semi-zigzag Breather Travel. Feather Ripples

train pulse pulse pulse pulse breather
M1 (b) (c) (a),(b),(c) – (b) – – – –
M2 (b),(c) (b),(c) (a),(c) (c) – – – – –
M3 (b) (c) – – – – – (a),(c) –
M4 (b) (c) (a),(b),(c) (a),(c) (b) (a) (a),(c) – –
M5 – – (b) – – – – – (a),(c)
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Fig. 1. Five submodels for signal reception. A reference right-moving individual is positioned at x. Its right-moving (u+) and left-moving (u−) neighbors are
positioned at x + s and x − s. M1, for attraction and repulsion, the information is received from all neighbors, whereas for alignment the information is received only
from those moving towards the reference individual. M2, information is received from all neighbors (for attraction, repulsion and alignment). M3, information received
only from ahead (with respect to the moving direction of the reference individual). M4, information received from ahead and behind, but only from those neighbors
moving towards the reference individual. M5, information received only from ahead, and only from those neighbors moving towards the reference individual.
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Fig. 2. Examples of spatial patterns (shown is total density u = u+ + u−): Pattern 1, stationary pulses formed of small, high-density subgroups (shown M1:
qal = 0, qa = 2, qr = 2.4, λ1 = 0.2, λ2 = 0.9); pattern 2, stationary pulses (density even distributed over the group) (shown M2: qal = 0, qa = 4, qr =
0.5, λ1 = 0.2, λ2 = 0.9); pattern 3, ripples (shown M5: qal = 2, qa = 1.5, qr = 1.1, λ1 = 0.2, λ2 = 0.9); Pattern 4, feathers (shown M3: qal = 0, qa =
6, qr = 6.4, λ1 = 0.2, λ2 = 0.9); pattern 5, traveling pulse (shown M1: qal = 2, qa = 1.6, qr = 0.5, λ1 = 0.2, λ2 = 0.9); pattern 6, traveling trains (shown
M3: qal = 2, qa = 0, qr = 0, λ1 = 6.67, λ2 = 30.0); pattern 7, zigzag pulses (shown M2: qal = 2, qa = 6, qr = 1, λ1 = 0.2, λ2 = 0.9); pattern 8, breathers
(shown M4: qal = 0, qa = 2, qr = 1, λ1 = 0.2, λ2 = 0.9); pattern 9, traveling breathers (shown M4: qal = 2, qa = 4, qal = 4, λ1 = 0.2, λ2 = 0.9). The
rest of the parameters are: γ = 0.1, sr = 0.25, sal = 0.5, sa = 1.0, mr = sr/8, mal = sal/8, ma = sa/8. For these simulations, we choose the function f
in Eq. 2 to be described by f(x) = 0.5 + 0.5 tanh(x − 2). The initial conditions are random perturbations of amplitude 0.01 of the spatially homogeneous steady
states (u∗, A−u∗). For patterns 1, 2, and 4–9, simulations were run for 200, 000 time steps, and we plot here the last 20 to 80 time steps. For pattern 3, simulations
were run for 10, 000 time steps.
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Fig. 3. Semi-zigzag pattern (pattern 10). (a) Initially, all subgroups move to the left. After approximatively 20 time steps some groups of individuals (shown here
to be positioned in space around the mark 50) become stationary for a very short time (approximately 10-20 time steps). This leads to other neighboring groups,
which are positioned at their left, to become stationary for a short period of time. This stationary behavior propagates to the left, in a wave-like manner. Moreover, the
behavior is superimposed on the movement to the left displayed by these groups. (b) As time progresses, the groups remain stationary longer, and so, the temporal
length of this wave increases. For example, the groups positioned at the right-end of the domain are stationary for about 120 time-steps. Eventually, the spatially
nonhomogeneous solution will be formed only of high density stationary groups. The parameters are as follows: qa = qr = 0, qal = 2.2, λ1 = 0.667, λ2 = 3.0,
γ = 0.1, sr = 0.25, sal = 0.5, sa = 1.0, mr = sr/8, mal = sal/8, ma = sa/8. The simulations were run for 200, 000 time steps (up to time t=3900). Here
we plot some 300 time steps at the beginning of the simulations (a), and the last 180 time steps (b).

M5

*

1

u

q al

1.6

0.6

1.2

1.4

A/2=

0.4

1210864

0.8

2

M1
M2
M3
M4

Fig. 4. Bifurcation diagram comparing the spatially homogeneous steady states (u∗, A − u∗) displayed by the five models M1 - M5, as alignment increases (total
densityA = 2, qa = 1.5, qr = 1.1, λ1 = 0.2, λ2 = 0.9). We see that for M2, a small qal value already leads to polarization (i.e., the steady state is (u∗, A−u∗),
with u∗ "= A/2). M3, on the other hand, requires a larger value for qal. For M5, only intermediate values of qal lead to some polarization.
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