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Abstract

We propese a development methodology for multi-station Medium Access Control MACY protocols on
broadeast channels. We suggest that standard Open System Interconnection Formal Description Fechmgues
and their supporting tools arc poorly suited to specity and validate protocols for this sublaver: the mam
reasons being the lack of a channel description and the state space size. The correctness of these protocols
must therefore be established by a formal, inductive proof over the state space. To simphiy this proot, the
state space is partitioned into classes. The states in cach class are equivalent wath respect o a global
protocol property. This partitioning is protocol dependent, it docs not lend stselt 10 o mechamcal
derivation. We discuss a software environment to facilitate the process of discovering an appropriate
partition that is tested by random state exploration using multiple protocol views. The hirst view s the
implementation, the sccond is an observer executing in parallel and monitoring the implementaton. Our
case study develops a Carrier Sense Multiple Access with Collision Detect (CSMA/CD) protocol using

synchronized retransmissions.
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Chapter 1
Introduction

With the number of computers increasing rapidly, communication networks are becoming very common.
Communication protocols for these networks are based on distributed algorithms. The non-deterministic,
parallel execution of protocols magnifies the problem of ensuring software correctness relative to traditional
sequential programs. Existing research indicates various techniques 1o specify these protocols and ensure
their correctness. Before reviewing existing techniques, it is useful to define relevant terminology. The
litcrature has variations, most of what follows conforms to Sunshine [SUNS79]. A protocol entity is a
party communicating according to protocol rules, it is cquivalent here to a network station. The service
specification abstractly and informally defiries services provided by protocol eatities; this should maich
services desired by potential users. An interface specification dictates how users request services at the
service access points (SAPs) of protocol entities. The protocol specification abstractly describes protocol
cititics, that is, the interactions between them to provide requested services. Protocol specifications only
provide essential information (ie. messages exchanged by entities) while leaving out implementation
dependent details. There are various formal methods to specify protocols which include finite state
machincs (FSMs), Petri nets, algebraic calculi, high-level programming languages, abstract data types and
temporal logic, see [BOCH90] for a recent introduction to this topic. The complete internal descriptics
protocol entities is an implementation of the protocol. An implementation can be altemately -iewed as an
executable specification. This thesis considers communicating extended finite state machines for the
implementation of protocol entities.

The process of ensuring protocol software correctness is called protocol engineering {RUDI8S8].
Protocol comrectness can be divided into two aspects [SUNS79). To start, (non-terminating) communication

protocols must meet general properties such as:



1) Freedom from deadlock
2) Completeness

3) Stability

4) Progress

This aspect can be viewed as the syntactic component of protocol correctness [SUNST91: ensuring its
correctness is called protocol validation. General properties can be validated by protocol state exploration,
Freedom from deadlock means the protocol cannot enter a state without an exit, every state satisfics the
predicate P = “There exists an exit from this state”. Completeness infers that states anticipate all possible
incoming messages (ie. no unspecified receptions); a specification without completeness is underspecified.
The opposite error is overspecification in which a state anticipates a message that cannot arrive. This may
seem irrelevant since it cannot create a run time error. However, such errors indicate a protocol design error.
The worst overspecification case is when all anticipated messages cannot arrive, this defines a deadlock
state. Specification stability is the robustness to resume some form of normal behavior following
abnormal events such as hardware failure. Progress (ie. no livelocks) means that useful work is performed
by the network. It appears that general properties are dynainic since they involve state analysis. However,
they can be validated from a textual specification, that is a statc model can be built using a generic tool.
The key point is that these properties can be validated without an implementation,

The second aspect of ensuring protocol correctness relates to semantic conformance and is called
verification. This conformance means the specification or implementation provides functions specific o
that protocol. In analogy with sequential programs, protocol semantic correctness is more difficult o prove
than syntactic correctness. Semantic correctness involves not only a static analysis of states but their
dynamic behavior. There are two basic verification techniques, formal (algebraic) proofs or exhaustive state
space exploration. The algebras of most specification techniques are not sufficicntly understeod and/or
powerful enough to provide formal correctness proofs. Formal proofs are further complicated by protocol
event non-determinism which precludes complete knowledge of successor states.

The existing literature on semantic correctness proofs leans heavily towards cxhaustive (or partial)

state space exploration. The concept is simple, if each reachable state of a protocol satisfics a predicate P,



then P is a protocol property. This technique is also called reachability analysis, which means that states
reachable from the initial state are analyzed. In practice, exhaustive explorations often require excessive
computer resources and are not performed. The alternative is partial searches in which protocol correctness
probability is maximized for a given amount of resources. Some methods used for this “maximization” are
considered later in the chapter. From this discussion, verification state searches appear identical to those of
validation. They are conceptually similar, however verification is not well suited to generic tools and
typically requires an implementation. To illustrate, a protocol may guarantee packet delivery within a
period T (a service specification). Protocol conformance or non-conformance to such a property is difficult
to prove with generic tools since they may not reproduce implementation timing properties. In effect,
predicates P for semantic properties are more complex than those of syntactic properties. For a recent
article on tools used to validate and verify properties of specifications, see [PEHR90].

The testing of implementations by state caploration is called implementation verification or
conformance testing. Conformance testing can verify conformance to the protocol specification which
confirms the translation process from specification to implementation. Conformance testing may also
verify specification correctness. In this situation a correct translation is assumed; the implementation is
simply another state exploration tool to test syntactic or semantic properties of the .pecification.
Explorations usually involve state sequences that test protocol specifications under stressful conditions.
Some languages have been designed to express abstract test sequences. When there is no protocol
specification, conformance testing directly verifies implementation conformance to service properties. This
testing situatien is less rigorous as service specifications are usually informal.

The balance of this chapter expands on existing methods of protocol engineering. Network protocols
are usually specified and verified on a layered basis; the first section of this chapter deals with protocol
layering in the Open Systems Interconnection (OSI) model. Section 2 examines the use of Formal
Description Techniques (FDTS) to specify communication protocols. The thiru section examines how
simulation results can be used as a protocol testing tool. After this follows a general overview of
conformance testing in simulated and real environments. The last section considers how this thesis relates

to existing protocol engineering techniques and its new contribution to this area.
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1.1. Open Systems Interconnection Network Architecture

The most common network architecture is the Open Systems Interconnection (OSD reterence model based
on an Intemnational Standards Organization (ISO) proposal [ISO82] to facilitate connections of open
systems. A review of this proposal can be found in [DAY83]. OSI has been well accepted as a standard in
some areas but not in others, a summary of its acceptance is presented in [CARP89]. In OSI, the key
concept is protocol layering which is implemented at every protocol entity. The underlying technique is
divide and conquer as used in traditional programming. That is, to simplify a complex protocol break it
into layers with clean interfaces. For protocols, each successive layer abstracts higher level concepts
(services) by building on services of the previous layer. With appropriate layering, complex services are
provided through multiple but relatively simple primitives. An additional OSI benefit of layering is that it
facilitates the interfacing of independent implementations at adjacent layers. The OSI model specifies seven
protocol layers, these are:

1) Physical layer

2) Data link control layer

3) Network layer

4) Transport layer

5) Session layer

6) Presentation layer

7) Application layer

This layering is shown in figure 1.1, the communication medium is controlled by the physical layer. Users
(virtual layer 8) request services from the application layer. Bold vertical lines symbolize interfaces between
adjacent layers at a station. Lines joining layers n and n+/ correspond to service access points of layer n.
These interfaces specify services provided by layer n and used by layer n+1.

Figure 1.1 also shows horizontal interfaces between peer entity processes. Communications between
layer n peers are defined by layer n protocols. These protocols (n > 1) are viewed as direct missage
exchanges but are implemented as service requests to layer n-1. Only the physical layer has direct transfers,

its horizontal interfaces are physical interconnections. Horizontal interfaces at higher layers are virtual



connections as indicated by dashed lines. The number of peers at a layer is an important factor. The
Transport to Application layers generally have two peers per virtual channel; a separate channel exists for
cach communicating pair. Protocols for these layers specify the behavior of two communicating entities.
Lower layers can have an arbitrary number of peers depending on channel hardware and network topology.
Some protocols for layers 2 and 3 must account for a greater and variable number of communicating

entities. This thesis examines data link layer protocols that are burdened with this difficulty.

Application }p-~-vm-ccccc e e mr e e e e m e m e - o Application
Presentation }--~==-eccccccmmmmccanmncnsnanan— Presentation
] |
Session [ -~-erccecmece e rcr e e e e s e e Session
Transport te=c-~wcocec e e e e s s c e mr o - - - - Transport
| |
Network }f~-=~- Network  } - - - Network | ~ = - Network
| 1 l |
Datalink f=-=--« Datalink | ==« Datalink | =~ 4 Data link
] . | | |
Physical Physical Physical Physical

Figure 1.1 - OSI network layers

Recall that verification techniques explore protocol states to determine correctness. For layers 4 to 7, there
exist autonomous channels for each pair of communicating entities. Thus, the global state & is a product
of independent (orthogonal) channel states @ = Cj...Cg where K is the number of channels and C; the state
of channel i. Each channel state depends on the local states of two entities, C; = pod; where ¢; is a local
state. If each entity has s internal states, a channel has at most s2 states. In this case, it may be possible
to formally verify a protocol specification by exhaustive channel state space analysis. If this is not
possible, key portions of the state space can be explored to demonstrate partial correctness. A proof that

two peers (partially) operate correctly in a channel proves (partial) protocol correctness for that layer.



This thesis examines Medium Access Control (MAC) protocols in the data link layer. The OSI
refinement for this protocol class is examined in the next chapter. The studied subclass is Carrier Sense,
Multiple Access with Collision Detect (CSMA/CD). CSM£/CD protocols control access o0 a shared
medium (physical channel) on a demand basis. The number of stations sharing the channel is not defined a
priori, such protocols are required to cope with this feature. With CSMA/CD protocols, the global state
cannot be factored into orthogonal two-entitv channel substates. Every communication is broadcast; it is
heard by and affects all stations. The global state is a product of all local states, ® = ¢g...¢y.1 where X is
the number of stations. The maximum number of global states now increases to s*. An increasing number
of stations produces an intractable state explosion which precludes exhaustive state space analysis. To
complicate matters further, a proof of protocol correcti.2ss for a specific value of x does not demonstrate
correctness for a general number of stations. This protocol class requires new techniques for global state

description to permit verification.

1.2. Formal Description Techniques

To facilitate the Open in OSI, protocol specifications should permit a consistent interpretation by different
parties wishing to implement the protocol. This requires a precise and well known specification language.
In the early days of communication protocols (1970s), specifications were informal (natural language) and
tended to produce interpretation ambiguities. Implementation languages were standard procedural languages
which permitted further ambiguities and/or errors in the manual translation from specification to
implementation. Any analysis of these specifications was also performed manually. Correctness proofs
were related to formal interpretations placed on informal specifications. During this cra there were few
attempts to connect different implementations of the same protocol in a nctwork. This process which is
called interworking implementations is an obvious goal of OSI,

The 1980s saw a rapid proliferation of computer networks and dictated a need for inlcrv)orking
implementations. This prompted the emergence of Formal Description Techniques (FDTs) to specify

protocols. FDTs include the well known OSI languages LOTOS [LOTOR89] and Estelle [ESTE89] as well



as the CCITT language SDL {SDLS88] which have been proposed as standards. Introductions to these
languages can be found in [BOLO87], [BUDK87] and [BELI89] respectively. These languages have formal
constructs to specify communication protocols and their precise semantics permit rigorous analysis. These
languages have reduced but not eliminated specification ambiguities because of incompleteness in their
definitions. There is also the problem of differences between specification and implementation languages;
nuances can be lost in a translation.

With FDTs formal algebraic verifications of coraplex protocols have not been performed; the typical
analysis consists of mechanical state searches. When exhaustive searches are infeasible, selective searches
are performed. These searches explore states reached from the initial state by a collection of *“difficult” event
sequences called a fest suite. There exist abstract languages such as Tree Table Combined Notation (TTCN)
1o express test suites. A test suite determines the truth or falsity of predicates Pj = “This specification is
correct for event sequence i.” However, this does not prove P = “This specification is correct.” The
correctness problem then returns to human experience, in knowing where to look for specification errors. A
test suite forms a collection P that “almost” proves P, in the sense that networks should operate for long
periods before producing conditions that did not occur in some of the Py

Despite some limitations FDTs have demonstrated their usefulness with OSI protocol specifications,
particularly for layers 4 to 7 and to a lesser extent for layers 2 and 3. FDTs are well suited to two party
protocols with temporal relationships such as “event A precedes event B”. The first table in [BOCH90]
provides a list of FDT specifications for OSI communication protocols and services. There is considerable
research in validation and verification techniques for these specifications. Further, to reduce ambiguities in
producing implementations, this task has been partially mechanized. Sidhu and Blumer [SIDH90] provide
an introduction to the current state of semi-automatic OSI protocol implementation. The field of
conformance testing for FDT implementations also has mechanical support. Some authors have worked
on compiling abstract test sequences to FDTs or other executable languages, see [LINN9Q] for a sirvey.

In comparison, there is a dearth of formal specifications for the Medium Access Control sublayer.
The problem with FDTs at this level is their weak support for modelling signal propagation in

communication channels; a critical component of MAC protocols. There has been some effort to specify
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these protocols with formal languages. Parrow [PARRSS] attempted to specify asynchronous CSMA/CD
(eg. Etherner) with CCS (Calculus of Communicating Systems) and concluded: “Within CCS. it is
impossible to describe properties related to efficiency, throughput and other aspects related 1o time. Also, it
is impossible 1o describe fairness properiies and 1o prove absence of livelocks.” In describing the state
space, he limited his analysis to two parties for simplicity. An attempt was also made by P. Rudnicki at
the University of Albera to specify CSMA/CD with CSP (Cemmunicating Sequential Processes); it fead
to similar conclusions. The gzoblem encountered by both authors relates to describing signal propagation
using the FSM noiation, this involves precise delays in transporting messages, collisions, cte. Even if
CSMA/CD protocols could be specified with FDTs, there would still be verification problems because of
the number of protocol parties. As stated earlier, most FDT verification tools use state space exploration.
With 2 party protocols this is plausible but for a large and variable number of parties these tools are not
effective. The state space of CSMA/CD is essentially infinite; its verification requires an inductive
technique, not the brute force of exhaustive state exploration. The conclusion is that FDTs are useful for

most protocol specifications but MAC protocols are a noticeable exception.

1.3. Protocol Simulation

The previous sections described techniques to facilitate correct protocol design. There is yet another tool
available before a hardware implementation is created. [t is well known that computer simulations are often
more cost effective than hardware prototypes. Local Area Network Simulation Facitity (LANSF)
{GBURS89a, GBURS89b] applies this principle to communication )rotocols. Simulation is conformance
testing that uses a virtual implementation to perform state exploration. It rates a separate section here
because of its importance within this thesis. With LANSF simulations, it is possible to investigate not
only protocol correctness but also performance. Initially, MAC protocols were simulated with LANSF to
study their performance. The success in reaching this goal can be seen from the literature, some .xamples
include [DOBO88] and [DOBO89]. The advantage of this approach compared to analytic modelling can be

condensed from the LANSF documentation [GBUR89b]:



A mathematical model of the retwork is built and a formal analysis of that model is carried out.
Unfortunately, exact and tractable mathematical models exist for very few networks and protocols -
in most cases, one has to put up with some simplifications. These simplifications make the
model tractable, but at the same time, they affect its accuracy: the model does not reflect the reality

exactly and some details are lost.

Cases when the impact of the simplifying assumptions on the accuracy of the model is
investigated - at least discussed are rather scarce. Every simplification introduces an essentially

immeasurable amouni of uncertziuty into the research.

For the most part this c::ticism also applies to FDT spacifications; they provide no indication of protocol
performance. However, performance analysis was nci an initial OSU goal. This issue has received some

attention recently, for example (BOCH88]. Rudin {RUDI&8] summarizes this growing concern:

At the same time, interest in the performance of protocols, particularly the OSI family of
protocols, is rising sharply. There is a growing concern that straightforward implementation of
the OSI protocols will restrict throughput to a small fraction of what the underlying transmission

technology would allow.

In contrast, the problem of implementation correctness for LANSF MAC protocol research has received
little attention. One weakness is the lack of a formal specification language. Informal MAC protocol
specification precludes formal verification prior to implementation. There can also be ambiguities when
translating from an informal specification. A typical LANSF methodology for ensuring correctness has
been the following: Program the protocol (implementation) untit simulation throughput results seem
rcasonable, then assume the implementation is correct. In the author's opinion, this method although not
rigorous, is not without merit. Fer MAC protocils, it indicates some errors serious enough to produce a
lock (deadlock or livelock) with long but feasible random state explorations. Stated another way it validates
some general protocol properties.

The author has observed that protocol locks usually manifest themselves in the performance results of

two different simulations. To illustrate, the average throughput for simulations of 100 and 100,000 packets



1000

should statistically differ by something on the order of V 100-! - V100C00-! or about 10 Differences
beyond this limit suggest a lock after packet 100 but before packet 100,000, For example, a total network
lock appearing after 100 but before 50,000 packets should reduce throughput to less than half its expected
value for the longer simulation. A lock produced within 100 packets on a long run produces a throughput
so close to O that the implementation is clearly wrong. Thus, a lock appearing in the first 50,000 packets
should be discernable from the throughput of 100 and 100,000 simulated packets. The reason for believing
that potential locks occur within 50,000 packets is discussed later. To summarize, the author believes that
feasible simulations generally detect fatal MAC protocol errors. However, this optimism should be
tempered by a real time calculation for the transmission of 50,000 packets. Assuming an average packet
length of 1000 bits on a 10 Mbit/sec network, the simulation covers about 5 sec of real time.

Another potential problem is a partial lock involving a few stations. For example, in a S0 station
network, two locked stations decrease throughput by 4% which is within the stated margin. The author's
experience with MAC protocols suggests that this situation is unlikely if stations attempt to communicate
with all other network stations. There are not separate channels for cach communicating entity pair in this
sublayer, rather each station has one inward path (input buffer) and one outward path (output bulfer). Given
the restriction of total interstation network traffic, a lock in any station subset quickly propagaies through
the entire network as other stations attempt to communicate with a member of the locked subset.

The area of semantic correctness for LANSF protocol implementations has not been well addressed by
simulation. It is easy to have minor implementation errors that do not seriously affect throughput in a
network of homogeneous implementations (which usually includes simulated protocols). These minor
errors can produce major problems in real networks related to interworking different implementations. This
can be the legitimate result of arbitrary implementation choices permitted by specifications or possibly
logic and coding errors. In faimess, it is not the case that simulation cannot detect interworking crrors.
The point is that simulations generally use the same protocol implementation at all stations. In simulated
environments, interworking gray areas could be located and addressed by insisting on multiple protocol
implementations. As will be shown, a different type of multiple specification is exploited by LANSF

observers described in this thesis.
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Protoco! simulation is not restricted to MAC protecols with LANSF. There exist simulators for
FDT specifications, one example called Véda is described in [JARD88]. This simulation environmert
exccutes Esizlle specifications. It is of interest here for two reasons; the LANSF specification language is
syntactically similar to Estelle and there is research concerning observers in Véda. Simulation in general
and with LANSF in particular has shown itself to be a powerful tool. It provides a quick prototype and
permits experiments that are difficult to repraduce with physical networks. Fer <xample, hardware errors
can be simulated to test implementation robustness. The case of observation permitted in simulated
environments also exceeds that of physical networks. Finally, a protocol specified in LANSF can be tested
in a fricndly environment and then ported to a physical network with very few modifications. This is due to
the LANSF specification language (very similar to C) and the fact that it closely reproduces physical
environments. The main weakness of simulation is that hardware errors cannot always be reproduced; only

rcal environments show the robustness of protocols.

1.4. Conformance Testing

Conformance testing compares the behavior of an implementation under test (IUT) to some standard. Even
for implementations produced from FDT specifications, this is considered an essential step of ensuring
correctness. Rayner [RAYNS7] states “It is now widely accepted that OSI conformance testing is crucial to
the achicvement of the objectives of OSL.” An introduction to OSI conformance testing can be found in
|LINN90]. The standard in conformance testing is typically the protocol specification (if one exists), the
service specification or an independent implementation. Testing can be performed in real or simulated
environments, the latter provides greater flexibility. The simplest conformance test for a simulated IUT is
to manually compare its response to a few events with those expected from the service specification. This
technique is similar to print statements used in traditional programming. Extensive conformance testing
requires @ mechanical method (checking program) that encodes expected behavior. The idea applied here is
software redundancy which is multiple independent programs performing identical or related tasks. Molva

[MOLV8S] describes the role of software redundancy as follows:
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If a system is realized with redundant copies, faults occurring in one copy during exccution wall
provoke discrepancy between the behavior of this copy and the behavior of the non-taulty copics.

Then 1o get a correct diagnosis one has to discriminate the faulty copy.

An example of multiple programs performing identical tasks is given by Murphy et al. [MURPS9]. The
authors describe an experiment in which six implementations were produced with 3 different languages for
each of two protocols. These implementations were executed with test data and their output logged. The
log files were compared with a hamess program to check for differences. In this example, the observable

output should be identical. This experiment illustrates the principle of off-linc conformance testing.

H !

Observer | = ee-=- > Observer

a. Active observer b. Passive Observer

Figure 1.2 - Observer configurations

Conformance testing can also be performn:¢; on-line in real or simulated environments. A process that
performs real (simulated) on-line confc:mance testing is called a hardware (software) observer. Both
observer types can be either passive or active. Active observers interact with the IUT by sending test
sequences and monitoring subsequesit output. The corresponding information flow is shown in figure 1.2a.
Passive observers moaitcy ¥:1 30 not affect implementation operation, a possible exception is when they
detect an error. This ¢ ar--wn in figure 1.2b, information flows only from IUT 1o observer. The
implementation receives «..unts from another source (incoming line on the left). Observers may or may not
independently know of these events as indicated by its incoming dashed line.

The search space examined by the two observer types is quite different. Active observers produce a
directed search whereas a passive observer moniors a random search. The test suiles described earlier are an

example of a directed search. Active observers generally remember explored states by constructing a tree
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whose root is the initial state. In this manner, each state is explored at most one time. These observers
cxamine as many states as possible with their given resources. Using test suites the states examined first
are those reached by “difficuli” event sequences. An alternative proposed by Maxemchuk et al. [MAXES87]
first explores the most probable states. In contrast, passive observers generally have no memory. They
cannot control the explored states, so there is no point in remembering them to avoid redundant
cxplorations. Random state exploration has the advantages that it explores states rapidly and may discover
uncxpected errors missed by a directed search. West conducted an experiment with random state searches
which is described in [WEST86].

The last observer parameter is the network environment. Hardware observers have the usual advantage
of testing implementations in their true environment. An experiment by Molva et al. {M'/LV85] used
passive hardware observers 10 test a fault tolerant MAC protocol. These ob=ervers successfully detected
hardware failures; an impossible task for software observers. Software cbservers however have many
features not available in hardware systems. These include no filtering through lower protocol layers,
complete access to [UT variables, total control over simulation parameters and instantaneous knowledge of
cvents. A useful design methodology is to first implement and test a protocol in the friendiy software

environment and then refine it in the hardware environment.

1.5. Thesis Overview

This thesis describes the use of passive software observers to develop CSMA/CD pratocols in the LANSF
cnvironment. This class is not easily specified with OSI-FDTs so an alternate protocol design technique is
required. The existing LANSF methodology directly implements CSMA/CD protocols from informal
service specifications. In the case study of this thesis, three informal service specifications are formalized
with observers and used as conformance testing standards. Conformance testing experiments locate two
implementation errors relative to these standards. The knowledge of these errors and the observer model are
then used to re-implement the protocol. The first goal reached by this thesis is an improved LANSF

implementation for the semi-controlled subclass of CSMA/CD protocols that includes the case study.
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A second result of this thesis is a simplified formal model tor global states and tnung properies ot
semi-controlled CSMA/CD. The observers required a specification :»at was orthogonal o the
implementation. In section 2, it was argucd that the local state space of CSMA/CD protocols was oo
large to verify directly. It is also too compiex to reason about protocol properties using this view.
Observer global states @ cannot correspond to the complete global state of network stations (¢y). . 1), a
new outlook is required to describe states. The observer model created here partitions the state space into 2
fixed number of subsets (observer states @;) independent of the number of stations. This 1s a simplilied
model in which protocol timing properties can be proven based on the @;. It also provides a framework in
which to describe the operation of protocol entities. An example is demonstrated in chapter 7 for timing
constraints of network slots within protocol entities.

The thesis outline is as follows. The next three chapters revicw relevant existing work. Chapter 2
describes general features of CSMA/CD protocols and provides two examples, one with asynchronous amnd
the other with synchronous retransmissions. In the following chapter, the LANSF simulation environment
is presented; this includes a sample CSMA/CD protoco!l implementation. Chapter 4 introduces the case
study protocol for this thesis and its initial implementation prior to observer conformance testing.
Chapters 5 and 6 describe the observation of the initial LANSF implementation. This starts with a review
and general comments about observation as well as the definition of LANSF observers in chapter 5.
Chapter 6 presents the observer model and specification used for the case study as well as the experimental
results. The next two chapters examine how the protocol can be re-implemented on the basis of knowledge
gained from observers. Chapter 7 provides the formal abstract model (specification) and chapter 8 the

irmplementation. The last chapter lists the conclusions of this work.
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Chapter 2
CSMA/CD Protocols

This chapter reviews Carricr Sense, Multiple Access with Collision Detect (CSMA/CD) protocols. A well
known example of this protocol class is Ethenet!. CSMA/CD protocols are used for local area networks
with a multiaccess channel. Stations compete for channel access on a demand basis which leads to
collisions and packet retransmissions. CSMA/CD protocols attempt to simultaneously satisfy two goals:
utilize the channel efficiently and provide equitable service to stations. Conceptually, CSMA/CD stations
each have two connections (ports) to the channel. One port is used for input (listening) and the other for
output (transmitting). In practice, both logical ports are implemented with a single physical port. A
sample network with 4 stations labelled 0...3 is shown in figure 2.1. This figure depicts two packets in
the channel, one leaving station 0 and the other traveling from station 2. These packets will collide and

require retransmission.

Output Input
port port

- - —

Figure 2.1 - A CSMA/CD network

The first section of this chapter gives a history of CSMA/CD protocols. Se<tion 2 describes how the OSI
model is refined for this protocol class. It also examines timing constraints inherent with CSMA/CD. In
the last section two sample CSMA/CD protocols are discussed. The first (Ethernet) uses unsynchronized

packet retransmissions, the second (Dynamic Priority) uses synchronized retransmissions.

¥ Ethemet is a trademark of the Xerox Corporation.
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2.1. History of CSMA/CD Protocols

CSMA/CD starts in 1970 with the ALOHA network at the University of Hawaii |[ABRASS]. This network
had a central station and multiple peripheral stations. It used a multiaccess (MA) protocot with a radio
wave carrier as the common channel. Peripheral stations transmitted as soon as they received a packet, a
process called statistical multiplexing. This random transmission produced collisions based on statistical
factors. Peripheral stations did not immediately detect collisions: the protocol specified confirmation
packets from the central station. The lack of a confirmation within a specified period was interpreted as a
collision. The ALOHA retransmission algorithm was simple as expected from the first protocol using
statistical multiplexing. Damaged packets were retransmitted after a random delay determined locally. The
optimum retransmission delay is pulled in opposite directions by two factors. It should be short to
minimize packet delay but long to reduce the collision probability between retransmitted packets. One
method of approximating the optimum mean delay is considered shortly with the Slotted ALOHA protocol.

At low traffic densities a multiple access channel is usually free and ALOHA provides ncar optimal
performance. There is no wait time and stations use the entire channel bandwidth. Predecessors of ALOHA
such as Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM) did not have
both features. With TDM, stations wait for their tum even if all higher priority stations are idle. In FDM,
stations use only a fraction of the total bandwidth. For both TDM and FDM, idle stations restrict the
performance of busy stations. The ALOHA weaknesses relative to TDM or FDM are additional overhead
and the fact that collisions occur. Collisions increase mean packet delay and reduce maximum throughput.
This problem is worse at medium and high traffic densities. One apparent solution mixes the statistical
multiplexing of ALOHA at low traffic densities and TDM at high densities. The CSMA/CD-DP protocol

discussed later in this chapter presents one version of this mixture.

Slot1 , Slot2 | Slot3 | Slot4

—

b - - .

1 SlotO

o
> L--.

24 3A 4A 54

Figure 2.2 - Slotting time in 5 network
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An carly modification was Slotted ALOHA [ROBE72]. This protocol divides channel access into slots of
length A as shown in figure 2.2. In slotted networks transmissions only start on slot boundaries, an idea
taken from TDM. Slotted ALOHA transported statistical multiplexing to slotted networks. For an N
station TDM network, stations wait an average of 1—;— slots before transmitting. With Slotted ALOHA new
packets are sént during the next slot. If the packet does not collide its delay is on the order of one slot.
Siotted ALOHA also has the weakness that collisions occur but it reduces collision frequency relative to
ALOHA. To illustrate assume ALOHA packets are constrained to a fixed length A. Further, let the
interstation distance be negligible. An ALOHA packet started at T remains in the channel until T + A and
collides with other packets started between T - A and T + A. For a successful transmission there must be
no additional packets started during an interval 2A. With Slotted ALOHA, a packet arriving in the interval
S) = [ja, (j+1)A) is transmitted during slot j+1 and only collides with other packets arriving during S;.
Slotted ALOHA reduces the collision interval to A, or half the interval of ALOHA. The consequence is
fewer collisions and better performance. At low traffic densities the performance of the two protocols is

similar. At medium and high densities the difference is noticeable; Slotted ALOHA has shorter mean

packet delays and a higher maximum throughput. ALOHA has a maximum throughput of Ele- or about

18.4%. The corresponding value for Slotted ALOHA is é (packets/slot) or 36.8% [TANESS].

Slotted ALOHA provides an insight into the optimum mean delay of random retransmissions. After a
collision, sending stations do not know how many packets were involved; a first guess is that two packets

collided. Consider an algorithm wherz two stations randomly retransmit packets in one of the next n slots.

The collision probability during retransmission is %and the success probability 'l!_]l During the next n

slots, two retransmitted packets have an average throughput of ;1‘- *Q* rln—l or 2%12—1) packelts/slot. A choice

of n = 2 maximizes this throughput at 0.5 packets/slot. If a collision involves more than two packets, the
optimal value of n is higher. Tanenbaum {TAMES88] shows that the maximum throughput of Slotted
ALOHA (Poisson arrivals, infinite station population) occurs for an offered ioad (new and retransmitted
packets) of 1 packet/slot. This suggests that n colliding packets should be randomly placed in n slots to

maximize thenr average throughput (ignoring new packets). This result is not exact because it deals with a
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finite number of stations, however it illustrates that more slots are needed to efficicntly resolve larger
collisions. Of course, stations don't know the number of colliding packets but can increase their estimate
after each successive coilision. One such algorithm is Binary Exponential Backoff (BEB). With BEB, nis
set to 2 after the first collision of a packet and doubled for successive collisions. A version of BEB for
unslotted networks is presented later in the chapter where Ethernet is discussed.

Stations in ALOHA and Slotted ALOHA networks could not sense the channel status.  An
improvement is possible in unslotted networks when stations sense the channel (Carrier Sense or CS). In
these networks, stations can refrain from using a busy channel, that is they defer to existing transmissions.
A further improvement is possible if collisions are detected immediately (Collision Detection or CD). In
this case, transmissions are aborted and the channel silenced as soon as possible. Carrier Sense and
Collision Detection are not useful in slotted networks where transmissions are synchronous and slots
completed regardless of their status. The unslotted protocol class with Carrier Sense and Collision
Detection is CSMA/CD. A full description is found in the IEEE 802.3 standard [802.3] with similar
standards for Token Bus (802.4) and Token Ring (802.5) local area networks. The general service
specifications of CSMA/CD protocols are as follows. When a client packet arrives the channel is sensed
and if it is busy, stations defer until it becomes idle. If the channel is idle or when it becomes idle an inter-
packet gap is enforced. This gap permits the physical layer to separate successive packets. When sending
stations hear a collision, they abort transfers immediately. Stations then emit jamming signals to enforce
collisioris after which they wait until it is time to retransmit. Jamming signals ensure that collisions
propagate to and are heard by all network stations. The variations in CSMA,CD protocols relate to
retransmitting packets. There are subclasses in which stations retransmit based on an individual
asynchronous (uncontrolled) or a collective synchronous (controlled) algorithm. A sample protocol from

each subclass is considered in the last section of this chapter.
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2.2. OSI Standards for CSMA/CD Protocols

This section describes OSI standardization of CSMA/CD protocols. For this section the precise terms
frame and packet differentiate protocol data units in the data link and network layers respectively. A
ccinplete description is found in standard [{802.3] which refines the OSI model to isolate features of

CSMA/CD protocols. The two lowest OSI layers are split into sublayers as shown in figure 2.3.

JUPEE A LLC
e logical link control

MAC
medium access control

' PLS
Physical layer physical signaling

Data link layer

See, MAU
SseaL medium attachment unit

Figure 2.3 - CSMA/CD sublayers in the OSI model

CSMA/CD protocols act on the basis of thres channel states: idle, busy or collide. The CSMA/CD
standard specifies an enhanced physical layer to provide a channel status service. Figure 2.3 shows this
layer split into medium attachment unit (MAU) and physical signaling (PLS) sublayers. The MAU
sublayer performs bit transmission, the PLS sublayer monitors the channel and returns its status. The
IEEE LAN standards (802.3 - 802.5) split the data link layer into medium access control (MAC) and logical
link control (LLC) sublayers. The LLC sublayer specified by IEEE 802.2 is the same for all 3 LAN
standards. LLC protocols ensure reliable, efficient and orderly delivery of network layer packets. To
accomplish this, they embed packets into frame information fields and use cyclic redundancy checks (CRCs)
to ensure frame correctness. Efficient delivery is provided through multiple buffers specified in the window
size. The packet order is maintained by frame send and receive sequence numbers. In turn, this sublayer
calls on the MAC sublayer to deliver each frame collision free to peer LLC entities.

The MAC sublayer implements protocols referred to as CSMA/CD. Upon receiving a frame, a MAC

entity transmits it after possibly deferring to a current frame. If a collision occurs the frame is aborted and
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retransmitted at a later time until an atiempt is collision free or a limit is reached. The control of multiple
frames is not implemented at the MAC sublayer. Each station has one sending and one receiving bulter.
Frames are released when the MAC senses a successful transfer; this allows it to accept another LLC frame
(if available) and commence transmission as soon as permissible. Peer (receiving) MACS usually receive
frames cormrectly and pass them up to the peer (recciving) LLC. Other errors, such as inconsistent CRCs or
lost frames are detected at the peer LLC. When this occurs a retransmission is requested at the LLC
sublayer. The sending LLC then passes the frame to its MAC another time. This repetition is invisible to
MAGs, they transmit frames but do not interpret conicnts.

The MAC service specification produces a minimum frame length. Since frames are released when
successfully terminated, it is imperative that stations hear collision(s) before completion. To derive the
minimum frame length, define the channel length as L (time units) and channel status delay as S. Consider
a station A that starts transmitting at time T. The physical layer of a station Z at the far end hears activity
at T + L and its MAC sublayer learns of the frame at T + L + S. Hence, Z may start transmitting at any
time before T + L + S. A frame started at the last moment reaches the physical laycrof 4 at T + 2L + S
and its MAC sublayer at T + 2(L + §). Station A must be still transmitting so its absolute minimum
frame length is 2(L + S). This quantity is called the synchronization period and represented by A*. For
centrally located stations the synchronization period is shorter, however CSMA/CD applies a homogeneous
behavior. A margin of error & added to this period yields the minimum frame length indicated here by A.
In the Ethernet standard [ETHES80] the maximum synchronization period is 450 bits and the minimum
frame length 512 bits. The final CSMA/CD specification of this thesis uses actual channel length and
local clock grrors to determine A* and A. This provides a more stringent test of protocol correctness.

The sample protocols in the next section show that minimum frame length is related to virtual
CSMA/CD slots. Within this thesis A is also called slot length. This period is sufficient for transmitting
stations to know if other stations simultaneously access the channel. In a similar fashion, an idle period A
ensures that other stations refrain from seizing an idle channel after a synchronization event. /n general A is
used as the interval to synchronize network stations at the MAC sublayer. This is the case for all global

events in CSMA/CD such as packet iransmissions, collisions and idle periods.

.20 -



2.3. Two Sample CSMA/CD Protocols

This section describes two CSMA/CD protocols, one using an individual and the other a collective
retransmission algorithm. CSMA/CD can be partitioned into subclasses based on these techniques. Both
subclasses are modelled with normal and retransmission modes. The first mode is common, it statistically
multiplexes new packets. This mode has no interstation synchronization other than deferning to current
packets or collisions. This lack of co-ordination is referred to as uncontrolled behavior. Retransmission
mode differentiates the two subclasses. A retransmission scheme in which stations act independently is also
uncontrolled, whereas a co-ordinated retransmission is controlled. In this thesis, the name of the first
(sccond) protocol subclass is uncontroiled (semi-controlled ) CSMA/CD.

The initial CSMA/CD protocol is Ethernet as described in a paper by Metcalfe and Boggs [METC76].
Many attempts to improve Ethernet have spawned the CSMA/CD class. Ethernet is a member of the
uncontrolled subclass in which only stations participating in collisions switch to retransmission mode,
other stations remain in normal mode. The Ethernet retransmission algorithm is Binary E. ponential
Backoff, as described for Stotted ALOHA. In this algorithm a local collision counter (c) is reset when the
station acquires a new packet and incremented for cach collision. Following any collision, sending stations
first emit a jamming signal. For its cth packet collision, a station reserves 2°€ virtual slots equal to the
minimum frame length in which it can retransmit. Figure 2.4 shows the time line following the first
collision of a packet. Stations randomly choose a slot and retransmit during that slot while deferring to
current activity. Once the packet is transmitted without a collision, the station reverts to normal mode to
acquire and transmit its next packet. After 10 collisions the number of slots is frozen at 1024, Following

16 collisions the MAC sublayer gives up and passes an error message to the LLC sublayer.

SLOT 1 SLOT 2 L

Figure 2.4 - Ethernet retransmission mode
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CSMA/CD-DP (Dynamic Priority) illustrates the semi-controlled subclass in which all stations switch to
retransmission mode after a collision. Retransmissions are synchronized on the basis of esenved slots, even
for unslotted networks. An algorithm specifies which stations are required or forbidden to use cach slot.
When all reserved slots have elapsed, stations collectively return to normal mode. The DP slot access
algorithm is simple, a slot is exclusively allocated to each station. Retransmission priority rotates by one
station after each collision. Figure 2.5 shows the time line of an N station DP protocol network aller a
collision. It proceeds from normal or unconirolled mode (U) through a jamming () and channel clearing
(C) period. This is followed by N slots (S) before returning to normal mode. The privileged station is

indicated within each slot.

i N-1 0 i-1
S S S S U

U

Figure 2.5 - Dynamic priority retransmission mode

The slots in figure 2.5 are not a fixed length as with slotted networks. Each slot represents a common
acknowledgement that a station subset S* has exclusive channel access for a period of time. With the DP
protocol, the subsets S* consist of a single station. The time line after collisions also includes a channel
clearing delay to ensure jamming signals do not infringe on privileged stations in the first slot. The
clearing delay is another example of a synchronization interval whose length is A and is viewed as slot 0.
For other slots, their length must be sufficient to determine if a station(s) in S* wishes to use the slot and
if so, must allow the packet(s) enough time to finish (or collide). Their minimum length is A but can be
extended if a station seizes the slot and requires a longer period to complete its transmission.

The fact that all stations switch to retransmission mode imposes an additional constraint: stations
must maintain synchronized slots. This constraint does not exist for protocols such as Ethernet. To
illustrate, assume an Ethernet station decides to retransmit in slot 10. If the station has a fast clock it may
start its packet during slot 9. This is not a protocol error since the station was permitted to randomly

choose slot 9. The point is: uncontrolled protocols do not have global constraints that restrict channel
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access. For DP, a fast clock at station (m+1) mod N may cause it to start retransmitting during the slot
allocated 10 m. Several protocol errors could follow from such an incident. If station m also uses the slot
an immediate retransmission mode collision occurs, an event forbidden by the protocol. If station m does
not use the slot, other stations may disagree as to whether the packet was sent by station m or (m+1) mod N
based on when they hear the packet. Such disagreements desynchronize the slot count at different stations.
This can result in future retransmission mode collisions if network stations are out of synchronization.
There are two solutions to such problems, define a recovery procedure or try to prevent slot interpretation
errors. Chapter 7 models a prevention technique that accounts for local clock variat’ns.

The semi-contrclled CSMA/CD subclass has advantages over the uncontrolled subclass. To start,
semi-controlled protocols guarantee packet delivery in finite time. The DP protocol has a maximum packet
delay on the order of N slots, other semi-controlled protocols are comparable. Ethernet cannot make
delivery guarantees, there are only statistical success probabilities for each attempted transmission. A
second semi-controlled feature is higher maximum throughput. Figure 2.5 shows that if most stations use
their allocated slot, DP throughput can approach 100%. Slotted ALOHA has a corresponding maximum of
36.8%. A further point is that uncontrolled protocols are unstable. Instability is generally defined for an
infinite station number with a finite offered load. In this situation, Slotted ALOHA maintwains a maximum
throughput of 36.8% for a finite time. Eventually, an unfortunate but inevitable run of collisions overloads
the network. The protocol starts thrashing with this load and bogs down under an increasing number of
waiting stations and a throwghput that decreases to 0. To understand why, recall the features of Poisson
packet arrivals. An offered load of A packets/slot has probability e"‘t—l'( that k packets arrive during a slot.
The probability of 1 packet is Ae~* which represents the only situation for a successful transmission. This
probability also equals network throughput and has a maximum of e~*at A = 1. If the offered load forces
Ae~* below the arrival rate of new packets, the network is in trouble. At this point, it receives new packets
faster than it successfully transmits existing packets. The backlog increases which further decreases
throughput and eventually the network grinds to a halt. Using Slotted ALOHA and an infinite station
population, this instability occurs for any offered load above 0 [TANE88]. For a finite station number,

protocol thrashing in an overloaded network is still present but not as serious,
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To defend Ethernet and other uncontrolled protocols, one might argue that DP also has problems. An
example is the mean delay in retransmission mode. This delay is O (NA) even for collisions involving
only 2 packets. This is true but applies only to the simplest semi-controlled protocols. The Tree
Collision Resolution (TCR) protocol studied later does not have this problem. Its average delay is O (1)
and worst case delay O (logzN) slots to resolve two station collisions. A sophisticated TCR version
dynamically adapts to provide DP performance under heavy maffic loads.

These arguments demonstrate that the service specification of semi-controlled CSMA/CD protocols
results in superior performance when compared to uncentrolled protocols. The price to be paid is a more
complex protocol specification and implementation. In particular, it is difficult to specify slot timing
constraints for the retransmission mode of semi-controlled protocols. The thesis goal is the modelling,
implementation and verification of the semi-controlled CSMA/CD subclass. The DP protocol displays
gereral subclass features, only minor changes are required for other members. In gencral, semi-controlled
protocols have a dynamic number of retransmission slots with each slot allocated to a network station
subset. The implementation detailed in this thesis is flexible enough 1o easily incorporate such variations.

This is examined more thoroughly for the TCR protocol in the following chapters.
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{1 apte: 3
Local! Area Network Simulation Facility

This chapter introduces the i2ader 1c the Local Area Network Sirisitanon Facility /LANSF). LANSF is a
software package designed i the I'niversity of Alberta by P. Gburzynski and P. Rudnicki. It was originally
created to investigate the performance of Medium Access Control (MAC) leve! protocols anrd has since
evolved into a gencral modelling package for communication networks. A complete description of LANSF
is found in [GBUR89a) or [GBUR89L].

MAC protocol specifications describe station behavior in an environment including timers,
communication channels and clients. This ¢nvironment sends messages such as passage of time, channel
activity or client packet arrival. Stations respond to messages with internal actions and/or further message
exchanges with the environment. LANSF stations are modelled as Communicating Finite State Machines
(CFSM) in which state transitions are produced by messages from the environment. Chapter 1 listed
general service propertics that must be satisfied by LANSF implementations. FSM control states should
anticipate all potential messages; otherwise the implementation is incomplete. Further, it is imperative
that at least one awaited message arrives in finite time to avoid a deadlocked state. Stations must
demonstrate progress to avoid livelocks. A sample MAC livelock is a packet with infinite delivery time
because it continually collides when retransmitted. The stability property is not examined explicitly in this
thesis, our simulation environment models ideal hardware.

The first section of this chapter presents a LANSF overview, it describes the simulating application
and data file. The next section details the model of Communicating Finite State Machines used by LANSF
stations. Section 3 shows how CFSMs are coded in the LANSF specification (implementation) language.
The last section presents a specification of Ethernet as a warm up exercise to illustrate the existing

CSMA/CD specification methodology.



3.1. An Overview of LANSF

LANSF is programmed using the C language in a UNIX® environment. Given a specification, LANSFEF
produces a simulator 1o model networks using that protocol. These simulators operate as a collection of
UNIX processes. Standard network operations are performed by processes executing predefined LANSF code.
These generic processes producc the station environment and are automatically linked into simulators. They
include the master process which creates and co-ordinates processes. Other generic processes implement
tasks such as collecting statistics or simulating hardware. Processes simulating the station environment are
called Activity Interpreters (A/s). Protocol specific (station) operations are performed by processes based on
user defined specifications (C code). The three Als used in our protocols are TIMER, CLIENT and LINK. All
three provide immediate and future services, these correspond to immediate responses and luture interrupts
from the hardware layer. Immediate service requests are performed by calling functions reflecting their
nature, A future service request (interrupt) is a call to function wait_svent (ai, event, state). Parameler ai is
an integer specifying the appropriate A/ and event provides additional event specific information. The last
parameter indicates the new state following the event. Appendix A summarizes services used by
CSMA/CD station processes described in this thesis.

The TIMER A simulates a hardware clock. It returns the virtal time through variable current_time
and informs stations when a specified delay has elapsed. This includes modcliing local clock errors; a key
physical limitation for MAC protocols. CLIENT simulates station clicats generating packets.  Its
immediate service indicates whether a packet is available and if not, stations can request notification when
one amves. LINK simulates an ideal channel and its interface hardware. With LINK no packets are lost or
damagiu other than by collisions. LINK has immediate service requests to start, stop and abort packet
transmissions or to start and stop jamming signals. It also retumns the current channel status. Future
service requests produce a wake-up event when the channel enters a specific state. This includes channel
silence, the beginning or end of a packet transmission and the start of collisions. LINK does not simulate

physical layer delays (S = 0, in LANSF the synchronization period A* equal: i #ice ths channel length.

T UNIX is a registered trademark of AT&T Bell Laboralorics.
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The accuracy with which A/s reproduce the hardware layer is a key design fezture of LANSF,
particularly when considering implementation correctness. In this thesis, a generic state model is produced
and verified for a subclass of CSMA/CD protocols in the LANSF simulated environment. This
environment should reproduce the underlying hardware layer as closely as possible to minimize protocol
modifications for a hardware environment. In this context LANSF is quite respectable, its built-in software
functions have a close correspondence with physical layer hardware functions. As an example, the LANSF
Ethernet transmitter implementation presented later in this chapter has a one-to-one state correspondence
with the standard Ethemnet specification (ETHESO).

Our CSMA/CD protocol implementations use the current LANSF methodology of stations specified
by two processes, one for the receiver (logical input port), the other for the transmitter (logical output port).
The two station processes are independent, no communication between them is required. Messages from a
statiou process to the environment are based on LANSF functicns. In contrast, messages from the
environment to station processes are at the request of the latter as described previously. For example, when
LINK simulates a packet transmission, it informs other stations of the packet arrival if the station has
requested notification. In addition to exchanging messages with their environment, station processes require
local variables to simulate memory in network stations. The user defines local variables in a LANSF
include file; these are appended to the existing STATION structure created by LANSF for each network
station.

LANSF simulations are customized by data files of network parameters. These include the number of
stations and ports per station. CSMA/CD stations each have one port aliased as BUS. Data files state the
number and type of network channels (links in LANSF). They also specify port/link connections and
station locations. Following this, input files describe network (client) traffic which includes distribution,
size and frequency of packets. Our traffic was uniform, each station sent and received packets with equal
probability and with complete interstation communication. This addresses the problem of partial network
locks discussed in chapter 1. The last portion of data files contains protocol specific parameters. The

Ethemet specification uses this to describe features contained in its standard [ETHESO}.
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3.2. Communicating Finite State Machines

Consider now the LANSF model of protocol entitics which are Communicating Finite State Machines. A
CFSM is defined as a FSM capable of exchanging messages with other CFSMs and/or some environment.
When a CFSM communicates with a second CFSM the message is transmitted throug” +ir common
environment, hence all communications occur between CFSMs and the environment.  Simulsied CESMs
operate in discrete virtual time. An immediate service request occurs instantancously which approxinxes
the physical situation of high speed CPUs in MAC entities. Future services produce an interrupt al some

time equal to or later than the current time T.

delay
STATE_0 ;—D{ STATE 1 ‘————b[ STATE 3 j

client channel

packet dw"”:’[ event delay
even

[ STATE_2 |————§| STATE_4 —]

Figure 3.1 - A Communicating Finite State Machine

J

Figure 3.1 illustrates a sample CFSM state/transition diagram. States are depicted with rounded rectangles
and transitions by directed arcs. LANSF CFSMs have one initial state © " TE_0O indicated by a bold
outline. There are no final states since correct protocols never terminate. Eaci: .ntrol state has actions and
transitions. Actions are performed immediatcly upon cntering a state; they are not shown in the figure.
Afier performing state actions, CFSMs inform the environment of anticipated (transition) cvents and wait
for one to occur. Virtual iime flows only while CFSMs wait for transition cvents; no tlime clapses if an
event is available immediately. Otherwise, i transition is fired by the first temporal event. 1f multiple
events occur at the same discrete time, one is rai.lomly chosen by the cnvironment. Unlabeled transitions
such as that from STATE_0 are immediate, no event is required. Labelled arcs require an event, transitions
in bold are local events usually provided by CLIENT. Those in italic are events delivered by LINK.

Transitions labelled with plain text correspond to the passage of virtal time, TIMER provides these events.
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3.3. The LANSF Specification Language

This section reviews LANSF specifications of protocol entities. Station behavior is simulated by processes
cxccuting user C code. Hence in LANSEF, protocol specifications and implementations are identical. This
low level specification language has sirong and weak points. The strong point is that it closely maps
hardware details and implementations are easily ported to real networks. As stated earlier, LANSF attempts
to provide an A/l service corresponding to each physical layer service. The weak point is a lack of
specification abstraction. Formal languages specify minimal information to describe protocols. They
ignore implementation details which permits users to easily reason about specification properties. In
detailed low level specifications such reasoning is difficult, it resembles not seeing the forest for the trees.
A timely question to ask is: Is it possible to express a high level specification of protocol properties with
LANSF? The answer is YES, this thesis uses LANSF observers for that purpose as w.!! be demonstrated.
LANSF station processes are created during initialization with calls to new_process (code, version).
In CSMA/CD the two processes per station typically utilize code from functions named receiver and
transmitter. Station process code has the generic format of a single function, a skeletal version is shown

below.

station_process () {
switch (the_action) {

case INITIALIZE:
init_actions;
init_transitions;
return;

case STATE_1:
state_1_actions;
state_1_transitions;
return;

case STATE_N:
state_n_actions;
state_n_transitions;
return;
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The case constants of the switch statement represent control states. A call 10 station_process brianches w0
the state indicated by the_action where it performs state actions and spectfics transition cvents. LANSE
defines constant INITIALIZE, rew processes are initially awakened into this control state.  For efficiency
station processes are awakened only when transition events occur.  After returning from its call, a station

process is put to sleep. Let us now examine this specification language in action with a sample protocol.

3.4. An Ethernet Specification

The Ethernet specification demonstrates some current LANSF methodology used to implement CSMA/CD
protocols. An early ct is the simulation time unit. Wit 2SMA/CD, it generally equals the time 10
insert a single bit onto the channel. For 10 MBit/scc Ethernt, this unit cquals 0.1 psec. Virtual time is
represented by type TIME which is an extended integer with a length of 1 to 5 integers. The specifications
here use a single integer so type TIME cquals int. This is not general LANSF methodology but is used here
to simplify specifications. With this choice the simulation time must not exceed 23! bits (~200 scc).

The Ethernet specification is expressed as two non-interacting processes per siation called receiver and

transmitter. The receiver process code is generic to atl CSMA/CD protocols and is the following:

receiver () |
switch (the_action) {
case INITIALIZE:
case WAIT_FOR_PACKET:
wait_event (BUS, END_MY_PACKET, PACKET_RECEIVED);
return;
case PACKET_RECEIVED:

accept_packet (the_packet, the_port);
skip_and_continue_at (WAIT_FOR_PACKET);
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This process is awakened into state INITIALIZE at virtual time 0. From there, control proceeds to staic
WAIT_FOR_PACKET according to C switch statement semantics. The latter state requests notification
when the end of a packet addressed to its station occurs. This produces a transition to PACKET_RECEIVED
where an immediate service request (accept_packet) to CLIENT enters t}:> packet into simulaticon statistics.
A TIMER request delays for one unit before returning to WAIT_FOR_FACKET. This delay is necded in
LANSF so that state WAIT_FGR_PACKET does not repeatedly process .h» same packet. Figure 3.2

summarizes the behavior of receiver processes.

INITIALIZE —'—P(WAIT_FOR_PACKEﬂ

end of my dela
packet cay

1 unit

[PACKET_RECEIVE@

Figure 3.2 - CSMA/CD receiver states/transitions

Figure 3.3 shows the transmitter process control state diagram based on a version in [GBUR89b). It has
cssentially a one-to-one state mapping with the Ethernet standard FrameTransmitter process except that it
does not deal with excessive collisions. This process uses one station variable called collision_counter

appended to the generic STATION structure. Appendix B presents the complete transmitter specification.

INITIALIZE
l client backoff
\ packet delay
[ O.F ——'{ GAP H STOP_JAM ]
silent
transmission gap jam_length
delay collision

[ END_PACKET }ﬂ————{ TRANSMIT ]——-—-P(HEAR_COLLISION)

Figure 3.3 - Efaernet transmitter states/traasitions
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Control enters INITIALIZE at virwal time O and proceeds immediately to IDLE. Station transmitters leiave
IDLE only when they receive a client packet. This demonstrates the uncontrolled nature of Ethernet;
stations without packets do not monitor the channel. Stations recciving a packet enter state GAP, this state
first defers to current channel activity and then enforces an inter-packet gap. Upon leaving GAP control
transfers to TRANSMIT which initiates transmission. This state sets wake-up events for two possibilities,
a successful transmission or a collision. The first is represented by a delay equal to the transmission period.
The second is a LINK request for notification if a collision cccurs. A successful transmission transters
control to END_PACKET which terminates the packet. Following this is an immediate return 1o IDLE.

A collision transfers control to HEAR_COLLISION. In this stte, transmitting stations abort their
packets and emit jamming signals. Jamming signals are additional noise 1o ensure that collision . propagate
to all points on the channel with sufficient intensity to be recognizea. After the jamming period of a few
bytes, control switches to STOP_JAM which terminates the signal and calculates a backotf delay. For
Ethernet, this delay equals a random number of siots (512 bits) in the range {0, 2€ - 1] where ¢ is the
collision count. After this delay, control re-enters state GAP. The station is then in a similar situation as
when it first received the packet. It defers, enforces an inter-packet gap and starts transmission. The only
difference results from the backoff delay calculation if another collision occurs.

This implementation illustrates features of uncontrolled CSMA/CD protocols. The Carrier Sense
(CS) is implemented by state GAP which defers to current traffic. Collision detection is included in state
TRANSMIT. The uncontrolled nature is due to local determination of packet retransmission time found in
STOP_JAM. It is worth repeating that non-transmitting stations do not sensc the channel; if a collision
occurs they remain in normal mode. These features contrast those of a semi-controlled CSMA/CD protocol

(Tree Collision Resolution) described in the next chapter.
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Chapter 4
Tree Collision Resolution

This chapter discusses the initial protocol specification verified with LANSF observers. This specificatian
was independently written and presented to the thesis author for conformance testing. There werc o known
errors prior to conformance testing. A visual code check by the two specification authors revealed no errors
and the network throughput based on simulation results was within expected bounds. Conformance testing
then revealed an error and an ambiguity that were not discovered by informal correctness tests. A detailed
model of the second specification derived after conformance testing is presented in chapters 7 and 8.

The case study, Tree Collision Resolution or TCR, is a semi-controlled CSMA/CD protocol. Its
normal mode is the same as Ethermet. During retransmission mode, TCR implements globally
synchronized slots. Stations obtain channel access privilege during slots on the basis of a Tree Collision
Resolution algorithm. The original work on MAC protocols using TCR is due to Capetanakis {CAPE79].
In this paper, he proposed a new class of algorithms for slotted networks and examined their performance.
His abstract reads:

Previous accessing techniques suffer from long message delays, low throughput and/or ¢« ngestion
instabilities. A new class of high-speed, high-throughput, stable, multiaccessing algorithms is

presented. ... It is also shown that, under heavy traffic, the optimally controlled tree algorithm

adaptively changes to the conventional time-division multiple access protocol.

For slotted networks it is easily shown that TCR protocols have a higher maximum throughput than
uncontrolled protocols. Capetanakis states that an adaptive TCR protocol behaves as Dynamic Priority
(DP) for high traffic loads. Corsider the maximum DP throughput for an N station network. If collisions
occur during each uncontrolled slot, DP sequences have a normal mode slot followed by N retransmission

slots. The maximum throughput of -I:Iri—l packets/slot occurs when all stations are backlogged. This is the

ideal situation, real networks do not perform this well. The two protocols described by Capetanakis in
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(CAPET9] are static binary tree and optimum dynamic tree. Their maximum throughputs are 0.347 and
0.420 packets/slot respectively, the latter being 17% above Slotied ALOHA. A sccond point is that TCR
(and other semi-controlled) protocols are stable. Capetanakis proves that atl packet delay moments tor TCR
are tinite. Stable protocols do not thrash when overloaded; they indefinitely serve any offered toad below
their maximum throughput. In fact, the DP protocol only reaches maximum throughput when all stations
are backlogged. The general result about bounded TCR moments demonstrates the third property, that TCR
has a bounded packet delay which is the first moment. This is also a general result with semi-controlled
protecols, the maximum packet delay of this subclass is O (NA).

The model used by Capetanakis assumed an ideal slotted channel, his interest was protocol
performance. Further research with slotted networks has been performed 1o study TCR robustness in the
presence of channel errors. Early work considered uniform errors common to all protocol entities. Recent
work by Suda et al. [SUDA90] considers TCR robustness to non-uniform crrors. Their conclusion is that
TCR is robust and compensates for these error types. The slotted model is useful because it simplifics
research of performance and robustness on TCR and similar protocols. Its abstraction removes the problem
of implementing synchronous slots.

For most networks, slotted models are not realistic situations. Local Arca Networks (LANs) are
usually asynchronous and “slots” are created only when needed. Therefore, is the existing robustness
research applicable to CSMA/CD? The answer is a gqalified yes; results proven for slotted networks can be
partially transferred to unslotted (CSMA/CD} networks. It must be shown that CSMA/CD slots are
consistently interpreted by network tations, this is the slotted model abstraction. This proof can be tricky,
for example, consider a situation where « sending station views a successful packet transfer and another
station erroneously hears a collision. If the second station detects the “collision” towards the end of the
packet, it may jam the channel such that the jamming signal reaches the sending station after terminating
its packet. It is not obvious that both stations then sense the collision in the same slot so the proof of
synchronous CSMA/CD slots in this situation is by no means trivial. Such a proof is beyond the scope of

this thesis; synchronous slots are implemented here for an ideal channel.
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Previous research does not demonstrate how to implement controiled mode slots fo: semi-controlled
CSMA/CD protocols. This chapter examines the initial attempt at a LANSF specification for TCR which
incorporates this feature. The full specification is found in Appendix C, it is taken from [GBUR89b] with
minor changes. This chapter starts with an overview of semi-controlled protocols in a slotted network,
using the DP protocol as an example. Ii then examines how TCR operates with this type of network. In

the last section, the initial LANSF specification of CSMA/CD-TCR is presented.

4.1. Slotted Semi-Controlled Protocols

In chapter 2, an uncontrolled slotted protocol (Slotted ALOHA) and a semi-controlled unslotted protocol
(CSMA/CD-DP) were presented. Protocols such as DP or TCR implemented on slotted networks are called

semi-controlled slotied protocols. A sample time line for slotted DP is shown in figure 4.1,

SUREU] N1 | 0 i-1 U] e

Figure 4.1 - A slotted DP time line

This time line is similar 1o figure 2.5 for CSMA/CD-DP. There are also differences, the main one is that
normal mode also has slots labelled “U”. These normal mode slots permit channel access to all stations but
enforce synchronous transmissions. Other differences include the lack of channel jamming and clearing
periods after collisions. The slotted mode! dictates that stations learn the channel status (idle, 1 packet,
collision) before slots terminate. For semi-controlled protocols, uncontrolled collisions switch the network
into controlled mode. Controlled mode is characterized by restricted channel access; each slot has a
privileged station subset S*.

For slotted semi-controlled protocols, each Collision Resolution Interval (CRI) consists of an
uncontrolled slot plus any following controlled siots. The name CRI is taken from a TCR robustness
paper by Suda et al. [SUDA90). The shortest CRI is an uncontrolled slot that is idle or has a single packet.
If an uncontrolled slot suffers a collision, its CRI includes controiled slots used to resolve the initial

(uncontrolled) collision and subsequent (controlled) collisions. For DP, CRIs are always 1 slot when there
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is no uncontrolled collision or N+1 slots (uncontrolled collision) as collisions do not occur in controtled
mode. Slotted semi-controlled protocols have a common normal mode behavior, their differences are due 10
allocation of controlled slots. In general these protocols have a dynamic controlled slot algorithm, TCR is

one such example.

4.2. Slotted Tree Collision Resolution

Consider now a slotted protocol using Tree Collision Resolution for controlled mode. The TCR algorithm
is as follows: If an uncontrolled collision occurs, divide network stations into two subsets of comparable
size and reserve a controlled slot for cach subset. The best scenario occurs when uncontrolled collisions
involve exactly two stations, one from each subset. In this case the two initial reserved slots are adequate
to resolve the collision. However, if one or both controlled slots suffer a collision then further action is
required. The station subset for which the collision occurs is subdivided into two smaller subscts and an
additional slot is reserved for each subset. This process is performed recursively until the subscets are such
that at most one station attempts to access cach controlled slot. The worst case occurs when a subset must

be reduced to a single station before meeting this condition.

Figure 4.2 - A sample TCR virtual binary tree

With TCR, station subsets are determined according to a virtual network balanced binary scarch uee. Figure
4.2 shows a tree for a sample network of 8 stations. Subtree Tjj is defined as the j*h subtrec from the left in

the ith level and the entire tree is equivalent to Tgg. Tree leaves (labeled 0...7 and Ta; for j = 0...7)
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represent stations. TCR uses subtrees Tij as privileged subsets during controlled mode. To maintain
consistent notation, the privileged subsci (subtree) is changed from S* 1o T* for this protocol.

The TCR algorithm presented here is from [SUDA90]. This version is chosen because our CSMA-
CD implementation resembles it more than that of Capetanakis [CAPE79]. Capetanakis applies TCR to
slot pairs. Our unslotted algorithm and the {SUDA90] slotted algorithm apply TCR to individual slots. In
slotted TCR, uncontrolled mode has privileged subtree Tgp and remains active until a collision occurs.
Following uncontrolled collisions two controlled slots are reserved, one for Tyg and the other for Tyy; the
children of the previous privileged subtree Tpg. If controlled mode collisions occur, two more slots are
reserved for the children of the current T*. Hence if Tyy is privileged during a controlled collision, slots are
reserved for Tx+1,2y and Tx41,2y+1. Slots are reserved in a left to right prefix order of their privileged
subtree. As a consequence newly reserved slots precede existing slots and the reservation schedule is viewed
as a stack. Controlled mode terminates when all reserved slots have elapsed.

For TCR a Collision Resolution Interval is called a tournament, 2 name suggested by the trec
resolution of contestant positions in tournaments. Our implementation places an additional restriction on
controlled mode. Only stations attempting to transmit during the tournament uncontroiled slot can
participate. This corresponds to stations with packets before the tournament commences, ie. stations that
register in time. This restriction is a convention and not needed to obtain the TCR service properties
discussed shortly. Stations with packets when tournaments start are called tournament participants. Slotted
TCR is defined as an infinite loop of the following steps. Step 1 represents uncontrolled mode and is the
start of new tournaments. Steps 2 and 3 describe controlied mode.

1. Execute an uncontrolled mode slot (T* = Tgg). If no collision occurs repeat this step, otherwise

collision participants register themselves for controlled mode and all stations proceed to step 2.
2. Reserve two slots for the subtrees (children) of the current privileged subtree. Proceed to step 3.
3. If the reservation schedule is empty return to step 1, otherwise execute the first scheduled

(controlled) slot. If a collision occurs go to step 2, otherwise repeat this step.

A sample tournament can be demonstrated for the network of figure 4.2. Assume that stations 0, 2, 6 and 7

have packets at the siart of a tournament. The resulting tournament is shown in figure 4.3.
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Figure 4.3 - A slotted TCR tournament

The first (uncontrolled) slot produces a collision between the 4 competing stations. These stations register
as participants, others cannot use controlled tournament slots. Initially, there arc two slots with privileged
subtrees T10 and Ty respectively. Stations O and 2 transmit during the first slot and produce a collision
which reserves slots for T7g and T7;. Both new slots execute without collisions as the first (second) is
claimed by station 0 (2). Afterwards, packets from stations 6 and 7 collide during the T\ 1 slot, this reserves
slots with Tq9 (T93) privileged. This first slot is unused, the second produces another collision. The final
two slots are for subtrees of T3 and correspond to stations 6 and 7. Their exccution terminates the
tournament as both slots cannot suffer ccllisions. A new tournament then starts with the return 1o
algorithmic step 1. Note that all tournament participants have successfully transmitted.

Tournaments can be depicted with binary search trees as explained in [SUDAY0]. The tournament tice
for the previous example is shown in figure 4.4. A comparison shows that this tree is similar to the
network tree of figure 4.2. The common nodes are in the same location for both trees. However, the latter
tree contains only subtrees visited during the tournament. Nodes are labelled by the privileged subtree of
the corresponding slot, the root node represents the uncontrolled slot with T* = Tpg. Each collision
appends two children to the node depicting the corresponding slot. Internal nodes represent slots in which
collisions occurred, leaves correspond to slots without a collision. The slot order is determined by a prefix
left to right traversal. In the recursive TCR algorithm, tournaments can contain sublournaments. A
subtournament is defined as a stot in which a controlled mode collision occurs and successive slots used 10
resolve that collision. To illustrate in figure 4.4, the subtree rooted at Ty corresponds to a subtournament

which resolves the contention between stations 0 and 2.
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Figure 4.4 - A tournament tree for slotted TCR

Toumament trees help to reason about protocol properties. It was claimed that the maximum packet delay
for this protocol subclass is O (NA). To demonstrate for TCR, consider the maximum tournament length.
A tournament tree has at most N leaves which occurs if each station is visited individually. Binary trees
with N leaves have N - 1 interior nodes so an N station tournament has at most 2N - 1 slots. The
maximum packet delay is less than 2 complete tournaments or 4N slots. A second important protocol
property is the maximum number of consecutive idle slots. This defines the period over which stations
maintain synchronization without communication. To derive this quantity first note that deeper nodes are
only reached after collisions. Two sibling noaes cannot both be idle as their parent suffered a collision.
Hence, two or more consecutive idle nodes occur only when the traversal returns to the root. The longest
such path equals the number of tree levels excluding the root and leaves or logaN - 1. This path occurs
when the first two stations, 0 and 1, compete for the channel and produce logaN consecutive collisions
preceding successful transmissions. The logoN - 1 right sibling nodes are then traversed sequentially. TCR

produces less difficult synchronization problems than DP which permits up to N - 2 consecutive idle slots.
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4.3. LANSF Specification of CSMA/CD-TCR

The initial CSMA/CD-TCR specification is listed in Appendix C. Iis retransmission algonthm is intended
to be conceptually identical to slotted TCR. CSMA/CD produces implementation differences during
controlled mode due to the unslotted network. A gencral service specification of semi-controlled
CSMA/CD protocols is to maintain synchronous controlled slots which differ from those of sloted
networks, To start, CSMA/CD does not assume negligible channel length,  This length and physical
signalling delay are considered by the synchronization period A* described in chapter 2. With perfect clocks
A* defines the minimum slot length. The maximum slot length has no theoretical limit but is determined
by performance criteria. If a station seizes a slot, other staiions wait until it has finished so transmitting,
stations are responsible for respecting packet length limits. CSMA/CD networks also treat collisions
differently, they attempt to silence the chanael as soon as possible.

Let us state additional service propertics that the specification of Appendix C intends 1o satisly. The
uncontrolled mode properties listed previously are straightforward and not subjected to conformance testing.
The claimed properties of controlled mode are as follows:

1. Stations transmit only when they are within the privileged subtrce
2. Any station not participating in an uncontrolled (controlicd) collision will not transmit during the
subsequent tournament (sub-tournament).

3. All stations participating in an uncontrolled (controlled) collision successfully transmit during the

subsequent tournament (sub-tournament).

The process of verifying these properties is considered in chapter 6. For now consider the initial
CSMA/CD-TCR implementation. Figure 4.5 shows the ransmitter normal mode states. As with
Ethernet, stations start in INITIALIZE and proceed immediately to IDLE. Stalions wait in this state until it
is time to transmut or bus activity is sensed. Upon entering IDLE, an initial (est prevents a station with a
full buffer from acquiring another packet. This suggests a potential problem with respect to property 3
listed above. Is it possible for stations to be excluded from tournaments and still have buffered packets

when returning to IDLE? This will be determined in Chapter 6. Continuing the semantics of IDLE,

. 40 -



stations that have or acquirc a packet upon entry prepare 1o transmit. Before starting a transmission,
stations check for channel activity and if present proceed to CHANNEL _BUSY until the channel is idle.
Otherwise, a timer is set to enforce an inter-packet gap provided one has not yet occurred. The function of
Ethernet state GAP has now been incorporated into IDLE. After the gap, stations transfer to TRANSMIT.

In addition to starting the transmission, this state sets a local variable to differentiate transmitting stations.

INITIALIZE
bf‘s' client
LCHANNEL_BUSY )4- sl IC E H TRANSMIT I
collision end of ransmission collision
acket ‘
END_PACKET

HEAR_COLLISION HEAR_COLLISION

Figure 4.5 - CSMA/CD-TCR normal mode

With semi-controlled CSMA/CD protocols, all stations must know when collisions occur as they
collectively switch to controlled mode. Another difference of IDLE compared to Ethernet is that stations
hearing channel activity transfer to CHANNEL_BUSY. In this state they wait for a successful packet
termination or a collision; both events synchronize stations. During controlled mode stations must know
when packets terminate as this event signals the end of a slot. For uncontrolled mode, the end of a
successful transfer informs stations that they can freely compete tor bus access from state IDLE.

The controlled mode states of this protocol are shown in figure 4.6. Stations enter this mode at state
HEAR_COLLISION upon hearing a collision. In this state, ransmitting stations 2mit a jamming signal
and proceed to STOP_JAM. The latter state terminates the signal and enfor<es a chanael clearing delay. In
state HEAR_COLLISION, non-transmitting stations set a delay to wait through the jamming signals of
transmitting stations and the channel clearing period. All stations cnter state COLLISION_GONE at time

jam_length + collision_delay after first hearing the collision.
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k.gure 4.6 - CSMA/CD-TCR retransmission mode
The transition to COLLISION_GONE represents the start of the first slot after a colli., During

controlled mode, stations maintain tournament information using a bootean and two integer variables. The
boolean flag called tournament_in_progress is set when cntering COLLISION_GONE and reset by state
IDLE. The integer variables are defer_count and delay_count. The first indicates the number of controlied
slots remaining, the second how many slots until the station is within the privileged subtree. The latter
variable is maintained only by tournament participants.

After setting tournament variables in COLLISION_GONE, stations test if they are permitted to use the
first slot. To do so, they must have a buffered packet (transfer_pending) and be within the privileged
subtree (left_subtres). Packet possession is equivalent to being a participant as stations arc forbidden 1o
buffer packets during tournaments. A station meecting both criteria proceeds to statc TRANSMIT and
immediately commences its transmission. Stations that fail cither criterion sct a timer for delay_count
(defer_count) slots if they have (don't have) a packet. Subsequent cvents depend on what happens during
the slot. If another collision occurs, stations re-synchronize and reset tournament variables by proveeding
through the same state loop as for uncontrolied collisions. If the slot is idle but there are additional
participants, one or more stations eventually times out and procceds to REJOIN. In this state, stations

delay for a short period before continuing at TRANSMIT, This delay compensates for clock errors, without
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it stations could de-synchronize. For example, if station J (K) has a fast (slow) clock and both stations
wish to use the same slot, a packet from station J can start and reach K before the latter timer elapses.
Siation K incorrectly assumes the packet was intended for the previous slot and defers to station J. The
delay in REJOIN insures that all stations correctly rcalize the previous slot termination. A similar
technique is used when stations collectively return to uncontrolled mode (state IDLE). This situation has a
branch 1o state DEFERRED when a station perceives a tournament as finished.  After a short delay, the
station continues at IDLE. This delay insures that slow stations do not misinterpret an uncontrolled mode
packet from a fast station as a packet intended for the last controlled slot.

The last case for a controlled slot is being used by a single station. The sending station transmits its
packet and branches to END_PACKET. After releasing its packet, the station is no longer a participant so it
scts a timer for an inter-packet gap plus defer_count slots at which time it returns to normal mode via state
DEFERRED. Listening stations also branch to END_PACKET when they hear the end of packet. In a
similar manner, they set timers for a gap plus defer_count or delay_count slots with the intent of returning
to normal mode or using an awaited slot respectively.

This specification provides a prototype for semi-controlled CSMA/CD protocols. It claims to enforce
synchronous slots via the delay mechanism that transfers control to DEFERRED and REJOIN. In addition,
it auempts to satisfy the service specifications listed earlier in this section. Other semi-controlled protocols
can be specified simply by changing the calculation of variables defer_count and delay_count. So now we
pose the question: Does this specification accomplish its intended purpose? To answer this question, the
next two chapters discuss software observers used to formalize the service specifications and perform

implementation conformance tests.
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Chapter §
Implementation Observers

As stated previously, the primary goal of this thesis is to generate a verified CSMA/CD-TCR
implementation. The process of verifying implementation conformance to a standard is conformance
testing and the conclusion is called a verdict. Verification has two components, syntactic and semantic.
Validation or syntactic verification insurcs correctness of gencral propertics. The existing LANSE
methodology provides support for validation. Throughput can indicate a negative verdict regarding
conformance to general properties such as absence of locks. Further, LANSF functions contain self-
checking code. For exaraple, a run time error occurs if a buffer being filled already contains a packet. Sclf-
checking code helps to detect general programming errors. With these features, implementation non-
conformance to general properties should be detected if an erroncous state is explored during simulation,

In contrast, traditional LANSF protoco! development provides little support for semantic verilication
of implementations. There are no existing LANSF (mechanical) techniques to perform implementation
conformance tests to their protocol specific properties. It is possible to explore semantically incorrect
states during simulation and be unaware of this fact. This problem of veritying semantic correctness starts
at tl:c beginning of the LANSF protocol development cycle. The LANSF specification and impiementation
languages are the same; informal service specifications are directly coded into implementations. There is no
high level specification language to reason about protocol propertics prior to implementation.  The
dif". " v of reasoning with low level languages is well known, this was a fac:or driving the development of
FL i, However, reasoning based on implementations is all that is currently available to LANSF protocol
developers prior to simulation.

To correct this deficiency in LANSF MAC protocols, existing OSI-FDT rescarch suggests two
independent paths. The first is to develop a high level specification language applicable o MAC protocols.

This is beyond the scope of this thesis and is not considered further. A s:cond path is to gencrate
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implementation verification tools. This path is partially dependent on the first; if a formal specification
language exists, implementation verification tools are designed on the basis of this language. To
mechanically perform semantic verification without a formal language, service specifications must be
¢encoded into tools. Then, implementation conformance to this standard can be automatically performed.
The tool 1o be used for formal service specification and mechanical verification is called a LANSF observer.
Each observer will be programmed (specified) to monitor implementation conformance to a single TCR
service property given in the previous chapter.

Before examining LANSF observers or specific tests they perform, it is useful to review existing
rescarch related to verifying protocol implementations. The first section examines existing conformance
testing architectures and results, which is primarily in the area of FDT specifications. Section 2 examincs
unique observer features required for CSMA/CD protocols. In the last section, the LANSF observer model

and specification language are discussed.

5.1. Implementation Conformance Testing

Most of the existing conformance testing research relates to physical networks and the majority to
implementations of OSI-FDT specifications. A recent article on OSI protocol conformance testing is by
Linn [LINN90]. He lists three techniques for conformance testing a single layer which are the local,
distributed and coordinated methods. The coordinated method is conceptually similar but more difficult than
the distributed method and is not considered. The local test method corresponds to a local observer and the
distributed method to a global observer. Both observer types can operate in active or passive modc.
Passive observers only monitor implementations, an underlying assumption is the existence of at lcast two
protocol entities to communicate. Active observers exchange messages with the implementation under test
(IUT). In this case the observer and implementation comprise the “network”. The existing literature on
OSI-FDT observers primarily considers active observers.

In the local method, the lower and upper interfaces of the IUT (layer n) are both exposed. Thesc

interfaces are used as points of control and observation (PCOs) by active observers or points of observation
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by passive observers. Linn does not consider this architecture with passive observers. An upper (lowen)

tester is connected to the upper (lower) interface of the layer as shown in figure 5.1

P
Upper tester <
layer n layern
service requests SCIVice responses
Y Test
IUT Harness
layer n-1 layer n-1
service requests v service responscs
B>
Lower tester -

Figure 5.1 - Local conformance test system architecture

As an active observer, system test harnesses use PCOs to control [UT inputs and observe outputs. Layern
conformance is tested by exchanging layer n service primitives at the upper interface and notng layer n-/
primitives at the lower interface. The test harness coordinates the interfaces and logs essential information,
This method tests implementation conformance to the protocol specification. This includes static (catures
such as data unit encoding and dynamic features which include event sequencing. A positive verdict means
that layer n is correctly implemented in terms of layer n-1 services. The local test method does not venty
global service specifications. This logical extension is derived from an a priori proof that the protocol
specification meelts service specifications. The local method is applicable when there is a protocol
specification to use as a standard, this includes FDT specificd protocols but excludes MAC protocols.

The distributed method does not assume an exposed interface (PCO) below the IUT, however its upper
interface is still exposed (see figure 5.2). The upper tester imitates a layer n+/ entity within the same unit
that requests [UT services. With this method access to the lower interface is through the communication
medium. The lower tester and implementation are located in twe different units and the lower tester 1s a
layer n peer to the IUT. These peers communicate through the physical medium by requesting layer n-/

services. A test hamess interconnects the upper and lov..x testers and collects information from both peers.
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Figure 5.2 - Distributed conformance test system architecture

Global observers (distributed test systems) check multi-entity, or global properties. This test system as
described in [LINN90] is an active observer because upper testers request IUT services. This distributed
method is also poorly suited to MAC protocols. The combination of IUT and its peer (lower tester) define
the “complete” network which is reasonable for FDT specified protocois based on two entities. With these
protocols, the global state is a product of two local states ¢gd 1, one for the lower tester and one for the
implementation. The test hamess knows the lower tester state ¢g and can determine the expected IUT state
¢ from interactions with testers. Since two local states define the global state, the harness knows the
anticipated IUT behavior at all times and can render a conformance verdict. The sitation with multi-entity
MAC protocols is more complex. Here a test system for an N-entity network requires N upper testers and 1
lower tester, the latter being a peer to MAC entities. In monitoring this network, the harness must deal
with the recurring MAC problem of state space explosion. In addition, the harness must interpret complex
channei timing events. This feature is doubly complex because entities are physically separated {rom one
another and the test hamness is separated from the testers. In summary, there is too much information in a
physical MAC network to be monitored by a distributed test system created for the FDT model.

These two testing methods are complementary for FDT protocols as they are essentially orthogonal.
The local method tests IUT correctness with respect to vertical interfaces (figure 1.1), the distributed method
considers horizontal interfaces. The local method performs single entity tests that exclude potential errors
in lower layers. It is suited to initial testing within a friendly environment. The distributed method studies

the implementation in an actual environment which produces hardware errors and possible software errors in
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lower layers. Distributed testing also considers the effects of physical separation between entitics.  This
complicates the test harness ag it must consider transmission delays. For anotkser comparison of tocal and
global observers oriented towards FDT specifications, the reader is referred 1o [DSSO86]. In this paper, the
authors examine combining local and global observers as well as comparing the error detecting capability of
test architectures. They show that global observers have a greater crror detecting capability,

A paper describing a physical MAC protocol run time observation is by Molva et al, [MOLVSS).
The case study is a fault tolerant virtual ring for bus allocation. With this protocol, a single entity is
primary which means that it controls bus access. After a given period, the primary entity passes a privilege
token to its logical successor. The claimed protocol service propertics are:

1) Mutual exclusion - At any time, only one entity has the possibility of controlling bus access, ic.

being primary.

2) Robustness - The primary status can be temporarily lost but will be recreated within finite time.

3) TFairness - Every non-faulty entity will in tum receive primary status.

Note that these properties are informal, they reflect service specifications. This is expected as MAC
protocols typically lack a formal definition. These properties were monitored by a computer (obscrver) that
was physically connected onto the bus as an additional entity through a normal hardware interface. Molva
calls protocol entities workers and the testing hardware/software observer following the terminology of
[AYACT79]. The global protocol state was encoded into a Petri nct mode! for observer use. The observer
monitored other stations by “spying” on workers as a passive observer. These obscrvations indicated state
changes and were compared with valid behavior from the Petri net model. This cxperiment was successful,
a table in this paper lists observer detected crrors. These errors were due to hardware problems, the observer

located defective hardware. Molva describes the discovery of crrors as follows:

These faults were not visible for a human observer since the service provided to the users of the
communication system was perfectly correct. The observer was really useful because cven if the
external behavior of the experimental system under control seemed to be correct, the accumulation
of such not visible faults could induce errors on the external behavior of the system, i.c. on the

provided quality of service.
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Conformance testing with observers in simulated environments foliows along similar lines. Simulation
{(software) observers can also be either passive or aclive. The “iest architecture” of observers in simulated
systems is usually more powerful than that of figures 5.1 or 5.2. For example, observers in Véda
[JARD88] or LANSF are equivalent to global observers with upper and lower testers at each entity. These
observers have advantages not available with hardware observers that include:
1) Instantaneous knowledge of events - There is no transmission delay from testers to test harness.
This simplifies protocol modelling within the harness.
2) Complete implementation access - Hardware IUTs are typically black boxes that can only be
accessed via service access points. Simulation observers can validate internal consistency.

3) ‘“Hardware” control - A simulation systum models the communication medium and lower protocol

layers. It can fake any error in these components to ¢xamine protocol response.

Véda [JARDS8S] is a FDT simulator based on Estelle. An earlier description of this system and its observer
facility are found in [GROZ86). For those interested, a recent technical note [VEDAS89] (written in French)
describes Véda observers in more detail. These papers consider a simple protocol involving two separate
clocks. The service property is that these communicating clocks do not drift apart beyond a prespecified
limit. A specification is produced in which the clocks test their consistency and re-synchronize when needed
by sending messages. The specification claiming to satisfy the property is monitored and confirmed with
an observer. This example illustrates issues related to software observation, for example what should be
observed. With Estelle specifications, it is desirable to monitor process states, variables and interactions.
To designate observed objects, Véda uses the concept of probes. Observer probes are defined at compile
time to bind observed objects to observers. This is useful for the nested structure of Estelle specifications
as it eliminates the need for long pathnames at run time and filters out additional objects with identical
names from observation. In this manner, Véda observers can easily test invariants on monitored objects.

A second issue considered in these papers, primarily {GROZS86] is related to expressing service
properties. The MAC protocol of Molva [MOLV85] and clock example both informally describe service
properties. Formal service properties are preferable for the usual reasons; they eliminate interpretation

ambiguities and permit mechanical translation into observers. The authors of Véda considered regular
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expressions, temporal logic and cther formal languages as candidates to CXPIess service properties, It was
concluded that these languages were inadequate to express desired properties so the Estelle language was also
chosen to specify protocol properties (ie. to program observers). With its undesiying Pascal structure,
Estelle permits the expression of any recursively enumerable property. Thus, these observers can check any

property regarding the state of a Turing machine which includes all protocol implementations.

5.2. CSMA/CD Observers

To monitor CSMA/CD protocols, observers described in the previous section are not sufficient. As stated
earlier, work related to FDTs cannot address MAC channel phenomena. In addition, MAC hardware
observers [MOLV85] lack features to monitor contention based protocols. To illustrate, consider the case
of a TCR collision. A hardware observer hears the collision but cannot discern whose packets are involved.
Thus, tournament participants cannot be known in advance to such observers. It is here that the full power
of simulation observers is useful. These observers can request notification when stations transmit and keep
a log of current transmissions to register tournament participants when collisions occur.

Consider next the view that CSMA/CD observers should implement. An observer view is a partial or
complete description of the global protocol state ®. A view considered in chapter 1 is the product of local
states ¢¢...¢N-1. This view was judged unsatisfactory because of its state spacc explosion. It is also
awkward to express channel contents with this view. The DP time line (figure 2.5) shows this view is
unrelated to the human view of semi-controlled CSMA/CD. It is then presumably difficult to reason about
protocol properties in this view. So what alternate view should CSMA/CD observers implement? Figure
2.5 provides an answer. In the human view, a semi-controlled CSMA/CD protocol has global states which
include the following high level major states augmented by context information.

1) Uncontroiled silence
2) Uncontrolled transmission
3) Collision

4) Controlled silence (ie. unused slot)
5) Controlled transmission
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‘These major states are given the notation &;. The observer global state & is then expressed as one of the
®; with context information p. There is no claim that p contains all the network information, rather it
cncodes the minimal amount to test service properties. These high level states are an alternate description
that correspond to a (potentially infinite) subset of global states expressed as local products. For example
in TCR, uncontrolled silence includes the state with all ¢; equal to IDLE. This alternate network state
description using observers is a key point of this thesis. Each observer describes the combined state of ail
network entities using a single major state @;. Observer high level siates lead to synchronization
questions. Given that stations perceive the same event at different times, when should the observer change
states based on an event? For example, if a station starts an uncontrolled transmission should the observer
switch states immediately or wait until all stations have heard the packet and agree to defer to this packet?

These decisions are considered in the next chapter.

The last question is given an observer global view (®;, p), how do observers test implementation
conformance? Presumably, the network global state has a temporal evolution given by ® (T) = (&, p*)
where p* contains all of the context information. Observer verification corresponds to testing if p* 2 p, it
confirms that a subset of the context information is valid for the corresponding major state. To demonstrate
by example, consider TCR service properties listed in section 4.3. These properties describe constraints on
the observer context information p within specific major states &;. For example, during a controlled slot
unprivileged stations cannot transmit. Context information during the corresponding @; should inclufs
information such as the privileged subtree T* and station subset S; attempting to seize the slot. An
observer testing this property asserts the relation on p (ie. T* 2 S;) at some poii; duing this major state.
With LANSF, context information assertions occur immediately following each observer state transition.
Before considering the form of these assertions, a description of how LANSF observers perfor. =iate

transitions is presented in the next section. Conformance tests follow in the next chapter.
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5.3. LANSF Observers - Model and Specification

LLANSF observers are tools that validate global properties of LANSF protocol implementations.  Their
specification language is C, which means they can express any recursively enumerable property. As with
LANSF protocols, there are no mecharical methods 10 generate obscrvers. Each observer is user-
programmed to assert an informal service property. The environment ol LANSF observer processes
includes station and generic LANSF processcs. They are passive observers designed to dynamicatly monitor
but not interfere with protocol simulations. The ex:eption occurs when observers detect an error, in which
case they terminate the simulation and print a short diagnostic. LANSF observers have unlimited access to
simulation data structures. They assert the consistency of station process states/variables, virtual time and
their private data structures denoted by p. In principle, observers can modify simulation data structures but
are not used here for that pu-pose. Further, the observers described here only examine data structures within
the current station, that is, the station returning from a system wakeup call.

Observers do not respond to simulated network events and do not generate such events. Instead, they
respond to metaevents which include station process transitions and the passing of virtval time. As
LANSF transitions ar< atomic, observers cannot monitor stations while they change states. Observers use
LANSF environment services to learn of metaevents, this environment is an indircct method of monitoring
stations. The first metaevent type monitors the cont ol state of station processes. These metaevents occur
when a station process has set its transition conditions and returned conurol to the environment. The
environment wakes up any observer requesting to monitor the station in its current state. Recall that no
virtual time passes while a station performs its actions, so observers learn of stations entering a control
state instantly. For the second metaevent type, observers request to be awakened after a specified delay.

LANSF observers are also modelled as communicating EFSMs. These processes are awakened by
LANSF when an awaited metaevent occurs. Observers perform actions relevant to wakeup metastates
(updating and asserting relations on p), then set new metaevent wakeup conditions and return control o
LANSF. For efficiency, LANSF puts observer processes to sleep while they await metacvents. Observer

actions validate station process correctness 10 the same extent that assertions on p insure SCrvice propertics.
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For example, in two party protocols an observer can test if both parties are waiting for the other to act.

\vten such an assertinn is performed, obser - rs detect this particular case of protocol deadlock.

(

L MSTATE_0 r— ™ MBTATE 1

delay

- delay
L MSTATE_2 ]————’( MSTATE_3 )

Figure 5.3 - States/transitions of a LANSF observer

STATION_STATE

LANSF observer control structure is similar to that ot station processes, a sample state/transition diagram
is shown in figure 5.3. Observers have one initial metastate MSTATE _0 indicated by a bold outline.
Transitions occur by three different mechanisms. Direct transitions have no prerequisites and are depicted by
unlabeled arcs, the transition from MSTATE_O is an example. These transitions precede pending station
transitions and leave the observer environment unchanged. A second mechanism is the passing of virtual
time. Transitions of this kind label arcs with plain text such as “delay” in this figurc. The order of station
and observer transitions sct for the same virtual time is non-deterministic. The third transition type occurs
when station processes enter observed control states. The transition from MSTATE_S to MSTATE_1 is an
example and corresponding arcs are labelled with the observed state (STATION_STATE). These transitions
occur at the virtual time of stations entering the observed state. In this case, station transitions precede
observer transitions and stations perform state actions before control passes to observers.

Observers are typically created during the initialization phase along with station processes. To create
an observer, users call new_observer (code) where code is a pointer to the obsetver function. Figure 5.3
suggests that the LANSF observer structure is similar to that of station processes, this is indeed the case.
The code of observer processes is a single function with a switch statement based on global variable

the_observer_action. The generic code structure of an observer process is given below.
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observer_process () {
switch (the_observer_action) {

case INITIALIZE:
init_actions;
init_transitions;
return;

case METASTATE_1:
metastate_1_actions;
metastate_1_transitions;
return;

case METASTATE_N:
metastate_n_actions;
metastate_n_transitions;
return;

Metastate actions have been discussed previously, they are operations on context information p. Mctastate
transitions are set on the basis of two metacvent types and direct transitions. The first metacvent class o
monitor station states is supported by LANSF function inspect (s, p, v, a, ma). The first parameter indicates
which station(s) to monitor. Our observers that arec summarized in Appendix D monitor all stations as
indicated by constant ANY. The second parameter names the observed station process, only transmitter is
monitored here. Next comes the process version number which is not used in our examples and is set 1o
ANY. The fourth parameter names the observed station control state. There are several monitored states in
the TCR implementation. A final parameter indicates the state 10 which observers branch when the
metaevent occurs. The second metaevent type is the passing of virwal time and uses lunction timeout
(delay, ma). It has the wake-up delay and new observer state as parameters. Finally, obscrver . erform
direct transitions with LANSF function resume_at (new_state) to simplify their code.

A few general comments regarding the implementation of LANSF observers are i+, order here. These
observers do not drive the simulation, hence they provide no guarantee of exploring ny particular state. In
LANSF, network events are initiated by the CLIENT A/ which produces packels 1or delivery. This AL is
programmable and can be modified to generate specific event sequences. Howe-cr, there is no standurd
communication between this A/ and observers. To learn of network cvents (the behavior of CLIENT),
observers are dependent on station processes entering states which indicate such events. This dependency
assumes a certain degree of implementation liveness for observers to operate.  Without this hven

observers have no knowledge of network events and cannot modify their major state and context information
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accordingly. This is not a serious limitation on protocol development: observers should only be utilized to
verify an implementation that has previously demonstrated liveness. The lack of standard communication
from obsecrvers to CLIENT is a more serious limitation. It precludes dynamic state exploration that is
driven by observers on the basis of the current state or other information. Such exploration could be used

to produce stressful situations for the protocol in which the probability of errors 15 increased.
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Chapter 6
Verifying CSMA/CD-TCR

This chapter presents LANSF observers that verified the initial CSMA/CD-TCR implementation and the
testing results. In chapter 4 the foliowing controlled mode service properties were claimed for this protocol:
1. Stations transmit only when they are within the privileged subtree.
2. Any station not participating in an uncontroiled (controlled) collision will not transmit during the
subsequent tournament (sub-tournament).

3. All stations participating in an uncontrolled (controlled) collision successfully transmit during the

subsequent tournament (sub-tournament).

Conformance testing was used to search for implementation non-conformance to these propertics. A
separate observer was programmed for cach property, their names were check _privilege, chack_participant
and check_tournament respectively. Testing revealed incorrect behavior of protocol entitics relative to an
observer model while CLIENT drove the network through a random state space exploration.

The claimed properties relate to the question: Which stations have the privilege or responsibility of
accessing the channel? For testing purposes, observers maintain a global state ®; and context information
p to indicate their view. The primary context information is the current privileged subtree T* which is
applicable to all 3 propertics. The first property is directly tested, a check examines if a transmitting
station is a member of T*. The second and third properties use T* but require additional observer context
information when tests are performed. For example, the start and finish of tournaments are determined by
changes to the privileged subtree.

The first section of this chapter describes the common observer state model, that is, the major states
®; and how the privileged subtree is maintaincd. Section 2 examines the LANSF code for the first observer
and explains changes needed to obtain the other observers. The compiete observer code is listed

Appendix D. The final section summarizes results of experiments performed with these observers.
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6.1. CSMA/CD Observer States/Transitions

The chserver view (®j, p) corresponds to a partial state description that is orthogonal to that of stations.
The tests performed with this view use the idea that a station subset (T*) always has channel privilege and

stations not within T* arc forbidden channef access. The initial observer goal is to correctly maintain the
pair (5, p). Additional code allows obscrvers to test protocol properties. This section considers how
observers maintain the major state @; and context information p = T* that is applicable to any semi-
controlled CSMA/CD protocol. Consider first the observer model of uncontrolled CSMA/CD mode. There
are no claimed service properties for this mode but observers track its events to correctly switch to
controlled mode. Our observer model treats uncontrolled mode u5 a special case of controlicd mode to
simplify the control structure. Uncontrolled mode is viewed as a series of virtual slots in which the entire
trec is privileged. Figure 6.1 depicis a time line with these alternate views of uncontrolled mode. Note
that protocol entities do not implement uncontrolled mode slots. If that were the case they would transmit
only at the start of slots during this mode. Such behavior violates CSMA/CD uncontrolled mode

specifications. Virtual slots arc observer construcis used to present a systematic view of both modes.

Uncontrolled

0 A 24 3A 4A

Too Too Too Too

Figure 6.1 - Two views of CSMA/CD uncontrolled mode

Figure 6.2 shows the observer states used to track network slots, uncontrolled mode is a special case of this
figure. Obscrvers start in control state INITIALIZE and set the entire tree as privileged. From there, they
perform a direct transition to SLOT_STARTING. Even at network startup (uncontrolled mode) observers
iritiate virtual slots. From SLOT_STARTING there are 2 transitions. The transition to SLOT_FINISHED
occurs if there is no activity for a period slot_length which equals A presented carlier. For both modes

SLOY_FINISHED terminates the current virwal slot. In uncontrolicd mode, the terminated slot is replaced
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with an identical slot as shown in figure 6.1. In controlled mode, the new slot has a different privileged
subtree taken from the first rescrvation schedule item.  After modifying the privileged subtree, state

SLOT_FINISHED returr:; control directly to SLOT_STARTING.

INITIALIZE TRANSMIT
~ ‘ )\  TRANSMIT - '/\ \ HEAR_COLLISION
| SLOT_STARTING | D[ STATION_BOT | >
T lslot length END_PACKET l
SLOT__FINISHED )t { STATION_EOT J
- 0/ gap_length

Figure 6.2 - CSMA/CD observer slot states

The second observer traasition from SLOT_STARTING transfers control 10 STATION_BOT. This occurs
when a station enters state TRANSMIT or cquivalently starts transmitting a packet. A conscquence of this
transition 1s that the slot cannot time out as there are no timer transitions from STATION BOT. This
precludes observers testing local constraints such as a maximum packet length, Such tests however are
trivial, the objective here is 1o validate glotal synchronization constraints. Qbscrvers leave STATION_BOT
when the packet is successfully transmitted or a collision is reported (statc HEAR_COLLISION). Following
a successful transmission, observers proceed to STATION_EOT. From this state, control transfers o
SLOT_FINISHED immediately for uncontrolled mode. In controlled mode, there is an inter-packet gap
preceding the transition. An immediate transition is needed in uncontrolied mode 0 insure that observers
reach SLOT_STARTING before any station starts another packet. Otherwise, an uncontrolled transmission
could commence unknown to observers. In controlled mode, a short delay at the start of slots precludes this
possibility. State SLOT_FINISHED again terminates the current slot and transfers to SLOT_STARTING. [f
a collision occurs with the observer in state STATION_BOT, control switches to COLLISION _HEARD
which is discussed later. A third event, the start of additional packets is also awaited by state
STATION_BOT. This produces a transition back into the same state and guarantees a collision soon

afterwards. This additional transition insurcs observation of all attempted packet ransmissions.
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The previous observer state loops, for idle slots and successful transmissions, leave the network in
uncontrolled mode. In this mode the time at which obscrvers enter SLOT_STARTING is irrelevant. As
shown in figure 6.1, uncontrolled virtual slots are an alternate view of unrestricted channel access. When
uncontrolled transmissions commence, observers simultaneously transfer to STATION_BOT. For
successful transmissions, observers cnter state STATION_EOT simultancously with the packet termination.
As will be seen, synchronizing observers with the first station to know of events (transmissions,
collisions, etc.) simplifics observer control structure. However, this requires instantaneous communication
and is only possible with software observers. In controlled mode, there is always synchronous behavior
between observers and stations. For this mode, observers enter SLOT_STARTING simultaneously with the
first network station that commences the slot. This occurs after clearing of collisions, timeout of
controlled slots or termination of successfully controlled transmissions. To maintain perfect
synchronization through multiple slots, stations require errorless local clocks. This situation does not
exist, the next chapter examines the corresponding observer-station synchronization relation with impertect
station clocks.

The balance of observer states monitor networks through the resynchronization period following

collisions. Figure 6.3 shows the states/transitions involved in this process.

| CLEAR_COLLISlON}———D@EPER_SUBTREE}
HEAR_COLLISION jam_length

* TRAINSMIT + slot_length
[START_COLLISIO@ v
[ REPORT_BOT ] (SLOT_STARTING)

Figure 6.3 - CSMA/CD observer collision states

Observers enter START_COLLISION when a station (called the leading station) first hears a collision. The
time at which this station starts the first controlled slot (ie. collision cleared) is logged by this observer
state. Observers enter SLOT_STARTING at this same time (ignoring clock errors) to remain synchronized
with the leading station. In the interim, observers transfer control to CLEAR_COLLISION. This state

along with REPORT_BOT observes additional transmissions after the collision occurs but before it reaches
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all stations. Following the clearing delay couirol transfers to DEEPER_SUBTREE which adjusis the
privileged subtree for TCR. In other semi-controlled protocols, this state would adjust thr privileged
station subset according to its slot allocation algonthe:  Once the observer has adsusted the privileged
subtree, control passes directly to SLOT_STARTING.

If observers are synchronized with the leading station during the ‘irst controlled stot and both view
slots with equal periods (ignoring clock errors), it follows that they remain synchronized through successive
idle slots. However, when a station siezes a slot, the transmitting station is the first to know that it
commences and finishes the packet. For this situation observers resynchronize with the transmitting
station which becomes the new leading station. Resynchronization occurs when observers enter stites
STATION_BOT and STATION_EOT as transmitting stations cnter TRANSMIT and END _PACKET
respectively, this is shown in figure 6.2. After terminating a packet, transmitting stations wait through a
delay gap_length before starting the ncxt controlled slot. For controlled mode, obse s have a4 similar
delay in STATION_EOT preceding their return to SLOT_STARTING. To summarize, observer states have
three main functions; timing idle slots, tracking transmissions and resynchromzing after collisions. The
major states ®; start and terminate these functions as well as updating p. The context information p stores

associated information which always includes the privileged subtree.

6.2. A Sample Observer

This section examines LANSF observer check_privilege in detail. It tested the first CSMA/CD-TCR
preperty; only stations within the privileged subtree access the channel. Figure 6.1 shows that observers
treat uncontrolled mode as a special case of controlled mode. This view is enforced by check _privilege, 1t
examines al] transmissions to insure that transmilling stations are privileged. However, 1t s impossible 1o
generate exceptions in uncontrolled mode as all stations are privileged.

The only context information maintained by this obscrver is the current privileged subtree (p =T#),
In our implementation, T* is represented by an integer tree_depth and integer array tres. The clements of

tree are binary values: 0 (LEFT) or 1 (RIGHT). Variable tree_depth is initialized to O which indicates the



cntire tree is privileged. During controlled mode, the array elements 0...tree_depth - 1 form a binary
representation of T*. For ve -ry . i1 tree_depth equals 2 and tree (0] ([1]) is LEFT (RIGHT), T* is at level 2
and located by a left then a .., " . Sranch from the root which is cquivalent to T (figure 4.2). Stations are
placed in subtrees according to their binary LANSF identificr which lies between 0 and N - 1. The method
used differs from that indicated in figure 4.2; the low order bit of station identifiers is given highest priority.
That is, statons with an even identificr (last bit 0) arc within subtree Ty¢ and those with an odd identificr
(last bit 1) are members of Tyy. This reversal of bit priorities simplifies the problem of accommodating
variable length identifiers.

Chapter 4 suggests that a reservation schedule of privileged subtrees is maintained during controlied
mode. This is not the case, the privileged subtree for the next stot is calculated from the current T*. Two
operations change the privileged suburee. The first nccurs after collisions and is implemented by function
deeper_subtres in statc DEEPER_SUBTREE. For this case the privileged subtree becomes the left subtree
of the previous T*, ie. T* = L (T*) where L. = left child. The second operation is performed when slots
successfully terminate after a timeout or end of packel. The corresponding change to T* is performed by
function next_subtree within state SLOT_FINISHED. Conceptually this function pops the reservation
stack and sets the privileged subiree from the top item. Equivalently the successor node frem the
tournament tree becomes privileged, T* = S (T*). The successor is inferred in the following manner, The
simplest case is T* = Tgg as indicated by tree_depth equal to 0. In this situation the stack is emply, ie. the
protocol is in uncontrolled mode and T* does not change. A second case occurs when tree_depth exceeds 0
and the least significant element of tree is LEFT. Recall that slots are allocated in paurs, the first to the left
and the second for the right child of the previous subtree. The only slots that can interleave between
siblings are descendents of the left sibling. However, such slots require a collision in the left sibling slot
and cannot appear after a successful transmission. Hence if T* is the left child of a node, its depth is
unchanged during the next slot, only its last element changes from LEFT 10 RIGHT. The last case involves
tree_depth not equal to 0 and the last element of tree cqual to RIGHT (ic. T* = Tx41 2y+1). In this
situation, two siblings (Tx+1,7y and Tx+1,2y+1) have been made privileged 1o resolve a collision in their

parent Tyy. The successor to Ty} 2y+1 is then the s iccessor of its parent. If Tyy is one of the cases
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described previously, its successor is known. Otherwise Ty also has tree_depth = 0 and its last element 18
RIGHT so the successor process is applied recursively.

Observers update T* in states DEEPER_SUBTREE and SLOT_FINISHED as discussed previousty and
shown in figures 6.2 and 6.3. Observer variations appear in ests performed with this information.
Observer check_privilege tests the privilege of transmitting stations. The start of packets produce observer
transitions to STATION_BOT (REPORT_BOT) when the observer has not (has) been informed of a
collision. Both states call function privileged_station to assert the privilege of the transmitting station.
For illegal transmissions, this observer terminaies the simulation and reports the offending station.

The second and third TCR propertics listed in the chapter introduction require an array P to nuuntum
tournament (and sub-tournament) participants. For the corresponding observers, p = T* + P, This two
dimensional array is called participants. The first array index is the level; level O corresponds to
tournaments (uncontrolled participants) and higher levels to sub-tournaments. There is at most 1 acuve
(sub-) tournament for any level and the number of active sub-tournaments equals the depth of T*. The level
of network operation is always given by tree_deptk, observers register :msmitting stations at this level,
For example, uncontrolled transmissions are logged at level (). The second index identifies stations: hence
participants [depth] [station_id] is TRUE if station station_id is currently a participant at level depth. Both
observers use states STATION_BOT and REPORT_BOT to log participants. Instcad of testing station
privilege in these states, a call o log_participant records that station as a participant at level tree_depth.
State STATION_EOT calls function clear_participant to remove successfully transmitting stations as
participants in all active (sub-) tournaments, from level tree_depth down to (). Belfoic performing this
action, clear_participant ensnres that the station in question was indeed a participant.

Observer check_participant tests the validity of stations to transmit in a sub-tournament based on
properly registering at the previous level. For example, if tree_depth equals 1, the privileged subtree 1s
either Typ or T11. Stations transmitting with either value of T* must have participated in the level 0
collision, that is, when Tgg was privileged. This test is performed in STATION_B8OT and REPORT_BOT
before stations are logged for level tree_depth. Note that stations participating in a level M collision are

those that started transmitting at that level and did not successfully complete the transmission, hence therr
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logged-on status is still active. Obviously, there is no prior registration required to transmit in uncontrolled
mode. However, for sub-tournaments, staticns must have registered in the previous level to be valid
participants at the current level.

Observer check_tournament uses the participant array to test the third TCR property, that all stations
who log themselves successfully wransmit duning a (sub-) tournament. The most natural place to test this
property is within function next_subtree which is used to terminate slots. Note that a (sub-) tournament is
finished when this function decrements the value of tree_dapth. Hence, a test can be placed in this section
of code for remaining participants, this is performed by function level_empty. The modification to

next_subtree for this function is as follows:

if (tree [tree_depth - 1] == LEFT)
tree [tree_depth - 1} = RIGHT;
alse {
tree_depth--;
if (level_empty (tree_depth)) excptn ('Incomplete tournament’);
next_subtree ();

To illustrate, consider an example in which stations 2 and 7 collide in uncontrolled mode. Both are
registered as participants in level 0 prior to the uncontrolled collision. Station 2 seizes the first controlled
slot and is registered at level 1 when it commences transmission. If another collision occurred at this point,
station 2 would be legally registered to transmit with tree_depth equal to 2. However, the packet is
successtul so this station is deregistered at levels 1 and 0. After the second controlled slot, station 7 is also
deregistered from both levels. The testing procedure does not check for “completed tournaments” in the
leaves of tournament trees, only interior nodes are tested. [t is evident that a slot without a collision cannot
leave stations that commence but fail 1o terminate transmissions. As a consequence, level 0 following

successtul uncontrolled transmissions is also not tested.

.63 -



6.3. Results of Observer Conformance Testing

Let us now enumerate errors (or inconsistencies) located by observers while conformance testing the il
implementation. These are not listed in their discovery order, instead they are ordered tor pedagogical
clarity. The simplest eiToF was reported by observer check_participant. In its indtal version, this observer
tested whether stations transmitting during controlled mode had participated in the previous uncontrolied
collision. According to check_participant, this condition was yot met. This reported error was not due o
an incorrect implementation, rather it was an interface error between the implementation and observer. The
problem was that station processes performed direct state transitions which were invisible to the LANSE
environment and consequently observers. This is possible because of C swilch statement semantics. ImnCun
is syntactically permissible to omit a return or break statement at the end of case constants. As seenn

Appendix C, the code of state IDLE has the following form.

case IDLE:
if.(idle_period = current_time - last_silence < gap_len}gth) {
wait_event (DELAY, gap_length - idle _period, TRANSMIT):
return;
}
case TRANSMIT:

When control reaches the final if statement of IDLE and this test fails, control continues into TRANSMIT.
This constitutes an invisible, albeit efficient transition from IDLE to TRANSMIT dunng uncontrolled mode.
The LANSF environment and observers are ignorant of this transition. However, in controlled maode all
transitions to TRANSMIT are visible to the LANSF cnvironment, hence observers are awarce of all
controlled transmissions. This Jeads to the result that some controlled transmissions are considered ilewal
by this observer because it failed to sce the previous uncontrolled attempt. The solution to this problem is
simple, ;1] transitions must be externally visible. This is accomplished by cxplicitly terminating control
slates with a continue_at (new_state) statement as required. This modification affects states INITIALIZE and
IDLE in Appendix C. For this protocol, the direct wransition from INITIALIZE 1s of no concern because
entries into state IDLE are noi monitored. However, it is a good software engineening practice when

working with observers to explicitly perform all station transiuons.
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Once this change was made, check_participant reported problems with deregistering stations after they
finished a transmission. To illustrate the source, consider the following example. Staiion J successfully
transmits in uncontrolled mode. Obscrvers are instantaneously awarc of this fact and enter state
STATION_EOT (figure 6.2). A ncarby station K scon hears this end of packet and starts its own
ransmission after enforcing a gap. In the meartirne, observer control has progressed to SLOT_STARTING
and the packet from station K switches observer control to STATION_BOT. A third distant station Z does
not hear the end of packet from J until after K has started its transmission. This is because transmission
delays are simulated for network stations but not for observers. When Z hears the end of packet from J, it
enters state END_PACKET. The observer assumes this to be the end of packet for station K, as it has the
only current packet visible Lo the observer. However . test of the observed station identity contradicts this
assumption. As expected this situation only cccuired in large networks where the channel length exceeded
the inter-packet gap. With small networks, all stations hear the end of a packet before any station can begin
another packet. In large networks observers with their instantancous knowledge can be mislead by stations
reporting events considerably later. The problem here is the multiple meaning of state END_PACKET.
This state was entered by transmitting stations when a packet was completed and by listening stations when
they heard the end of packet. A simple solution is to differentiate transmitting and listening stations with
two different states, this is shown in the sccond implementation. As with the previous inconsistency this
was not a semantic implementation error, it was an interface error between implementation and observers.
It re-iterates a second software enginecring principle: 21l states should have a single meaning.

After making changes to overcome interface errors, observer check_participant discovered a minor
semantic error. The implementation permitted channel access during a tournament to stations not involved
in the uncontrolled collision. However, offending stations had their packets at the start of tournamenis.
This error was due to the implementation always forbidding stations from transmitting in uncontrolled
mode when they heard channel activity; see state IDLE in Appendix C. The sample error discovered was as
follows: It occurred when stations 1 and 2 were in a tournament and stations 0, 1 and 2 were backlogged
during that toumament. The f{irst tournament ¢nded with the transmission by station 2 which was then the

first station to transmit in uncontrolled mode. This packet reached station 1 before the latter started its
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transmission, a legitimate result of local clock crrors. Sution 1 thus refrained from transmatting,
However, the clock of station 0 was fasi, so it started to transmit betore heaning the packet from station 2,
A collision occurred and started the second tournament. Stations 2 and 0 registered for the tournament by
producing the collision. Station 1 did not participate in the collision but had its packet butfered when the
collision occurred. It then participated in the tournament and produced the observed error.

In the initial implementation, this error can only occur after tournaments. There is no prablem with
uncontrolled mode as stations enter IDLE immcediately after hearing the end of packet. The channel is idle so
backlogged stations buffer a packet and then set a timer to commence transmission alter a gap without
retesting channel status. However, after a tournament stations enforce the inter-packet gap before returming
to state IDLE so local clock errors permit some stations to reach this state faster than others. This error has
the advantage of permitting a higher throughput in uncontrolled mode. It also satisties the constraint thit
stations with buffered packets at the start of tournaments successfully transmit during the tournament,
which is closely related to property 2. The problem is not properly registering stations for tournaments; a
constraint attempting to impose network faimess. This error is traced to state IDLE trying to perform too
many operations and reinforces the principle that states should have one well defined meaning.

The last error, reported by check_privilege was packet transmission by unprivileged stations. This
obviously occurs only in controlled mode, a sample error is shown in figure 6.4, At the start of this
example, stations J and K have delay_count cqual to 1 and 2 respectively and no other stations compete for

slots. Defer_count equals 3 so stations revert to uncontrolied mode after station X ransmits.

Observer Unused Station J Station K U

IUT Unused Station J Unused Station K U

Figure 6.4 - Observer vs. IUT view of slots

Assume this situation was reached following a successful controlled transmission of a third stauon M. In
state END_PACKET of the original implementation, station J (K) sets a timer delay cqual 10 a packet gap

plus one (two) slots upon hearing the end of packet M. The intention of both stations is o seize the
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channel after their delay has elapsed. The timer of station J finishes first so this station commences and
successfully terminates its packet. The timer of K is stopped when it hears channel activity and not
restarted unti hearing the end of packet J. At this point, station K should simply enforce a gap and start
transmitting. A code examination shows that station K decrements delay_count by only one unit! The
result is that K resets its timer 1o wait through a gap and then an empty slot. For this example the
protocol requires an extra slot to finish the tournament. However, stations J and K remain synchronized
because neither station decremented their value of defer_count while waiting through the initial unused slot.
Stations J and K (and other network stations) have the same perception of when the network returns to
uncontrolled mode. However, their collective view is not consistent with that of observers.

Based on errors discovered in the initial IUT, the second TCR implementation and other semi-
controlled CSMA/CD protocols should satisfy the following enginecring principles and constraints:

1. All state transitions must be explicit.

2. States should have a single well-delined purpose.
3. The passing of idle slots must be noted by all stations.

The next chapter proposes a model for such an implementation. This model resembles the observer view

and implementation constraints are expressed in terms of the observer metastates.
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Chapter 7
Modelling Semi-Controlled CSMA/CD Protocels

The previous chapter presented an observer model to test the conformance of an imal CSMA/CD-TCR
implementation. As was shown, observers turned up two interface and two semantic errors. These tests
suggested general implementation guidelines and specific changes to the initial implementation. Another
outcome of observer testing results from the fact that their specification required a global model. The
correctness of a global model is not dependent on external variables in contrast to implementation models.
For the latter, correctness proofs typically rely on assumptions of correct behavior at other entities, This
introduces circular correctness proofs; entities must a priori behave in a certain fashion 1o prove that their
behavior is correct. However, with observers correctness is not dependent on ~xternal variables; observer
models define global states. By referring 10 a “correct” global observer model it is possible to prove
implementation properties within this framcwork.

This chapter presents an abstract model for a second implementation version of the TCR protocol. It
incorporates the lessons learned from observer testing and is applicable to all semi-controlled CSMA/CD
protocols. To be specific, it shows the behavior of station process transmitter. The next chapter presents a
LANSF implementation of this process. In this chapter, the observer-station state relations are cxamined in
detail to prove that stations behave correctly relative to the observer model.

The first section of this chapter models the uncontrolled mode of CSMA/CD and shows the
relationship of station states lo observer states within this mode. The next section examines constraints
associated with local clock errors for synchronized retransmissions. It then proposes a new model for
controlled slots to enforce these constraints. Section 3 models the retransmission mode of semi-controlled
protocols and again relates station states (o observers. The last section provides a partial correctness proof

for the slot model presented in section 2.
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7.1. The Uncontrolled Mode of CSMA/CD Protocols

Uncontrolled mode contains behavior common to a.  SMA/CD protocols. Its essential featu:e is that
backlogged stations transmit as sc .+ as the bus be 2s idle and an inter-packet gap is enforced. A
specification of this mode can be extracted from figur 3. This figure shows states used for an Ethernet
transmitter; uncontrolled mode is obtained by ignoring states HEAR_COLLISION and STOP_JAM. This
specitication is sufficient for uncontrolled CSMA/CD protocols. However, the TCR specification pointed
to a need for a more complex uncontrolled mode (figure 4.5). With semi-controlled protocols, all stations
monitor uncontrolled transmissions for the purpose of switching to controlled mode in case a collision
occurs. Figure 7.1 depicts uncontrolled mode for semi-controlled CSMA/CD protocols. A minor
modification makes it acceptable to uncontrolled protocols. This change removes the collision transition
from CHANNEL_BUSY and replaces the end of packet transition with a bus silent ¢vent. Given these
changes, listening stations remain idle while the channel is active and resume competing for the channel

ancer it has become silent; this defincs an uncontrolled protocol.

ﬁ[ CHANNEL_BUSY J‘T
bus

activity end of
packet
gap_length gap_length
INITIALIZE IDLE )d————{ HEAR_EOT J
client
packet‘ .
transmission
delay y
/( TRANSMIT J——-—P( END_PACKET }
collision

-«
Figure 7.1 - CSMA/CD uncontrolled mode

Station transmitters commence their operation in state INITIALIZE and transfer to IDLE after an initial inter-
packet gap. Upon entering IDLE stations first test if they are backlogged. This order insures that stations

with a packet upon entering IDLE attempt to seize the channel. When no packet is available immediately,

-69 -



stations wait for channel activity or client packet arrival. If a packet arrives, stations do not re-test the
channel status before proceeding to TRANSMIT. This insures that stations cannot enter CHANNEL BUSY
in uncontrolled mode with a buffered packet ready for transmission. Hence, stations do not enter into
tournaments with a packet yet having failed to participate in the initial coltision.

With a buffered packet, stations branch to TRANSMIT and immediately start ransmitting the packet.
A successful transmission leads to END_PACKET which terminates the transter and passes control 1o
HEAR_EOT. HEAR_EOT is used to force an inter-packet gap before returning to IDLE. The transition o
IDLE represents the end of one slot and the beginning of the next slot. For the transmitting station, its
transition to HEAR_EOT occurs immediately from END_PACKET. Stated equivalently, the transmitting
station hears its end of packet instantancously. When non-transmidting stations hear channel activity they
transfer control to CHANNEL_BUSY. This state waits for a successful packet termination or a collision. In
the first case control switches to HEAR_EOT before returning to IDLE. CHANNEL_BUSY considers the
possibility of collisions which insures thal stations switch to controlled mode when such an event vccurs.

Consider now a time line for observers and stations during a successful uncontrolled transmission, As
stated earlier, observers synchronize with transmitting stations during an uncontrolled “slot” scized by a
single station. If a transmission starts at observer time T, the trangmitting station and observer have
simultaneous transitions to states TRANSMIT and STATION_BOT respectively. Listening stations switch
to state CHANNEL_BUSY within a period L + S equal to channel length plus physical signalling delay.
Including clock errors the transmitting station procceds to END_PACKET and HEAR_EOT at T + P', where
P' is the packet length in observer time. Observers simultancously switch to STATION_EOT and
immediately proceed through SLOT_FINISHED and SLOT_STARTING to commence a new slot. The
transmitting station returns to IDLE at T + P' + G' where G’ is the inter-packet gap including local clock
errors. Listening stations follow through states HEAR_EOT and IDLE shortly afterwards bascd on the
physical signalling delay and their distance {rom the transmitting station.

As stated earlier, it is not the goal of this thesis to verify uncontrolled mode. The model of figure 7.1
is considered correct on the basis of previous research and the only “correctness™ criteria at this pomnt s its

interface with LANSF observers. The only problem that had 10 be resolved for uncontrolled inode was the
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possibility of invisible transmissions, that is, stations commencing packets unknown to observers. If
observers wait in STATION_EOT for a period cqual to G, they can miss the start of new packets for G' < G
in the transmitting station. It would also be possible for nearby stations with fast clocks to start premature
transmissions. For this reason, there is no observer delay in STATION_EOT, observers return immediately
to SLOT_STARTING. The fact that obscrvers break synchronization with transmitting stations at this
point is of no concern for uncontrolled mode. The objective of this mode is for observars to enter

controlled mode synchronized with transmitting stations and to insure that al! transmissions are observed.

7.2. Slot Synchronization for Semi-Controlled Protocols

Retransmission slots werc considered in the Ethernet and TCR implementations. It was shown that inexact
slot timing was acceptable for uncontrolled protocols. However for semi-controlled protocols, it is critical
that stations consistently interpret rewransmission slots. This section considers how to maintain
synchronized slots in an environment with local clock errors and finite inter-station distances. This model

is used for semi-controlled retransmission mode in the next section.
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Figure 7.2 - Different station views of slots

Let us review some ideas of chapter 2. To simplify this discussion assume therc is no channel stats delay
in the physical layer, ie. § = 0. Given a channel length of 0.5 A* the synchronization period, minimum
packet length and slot length are all A*. The worst synchronization case happens when events such as
collisions occur at one end of the channel. Two stations A and Z at opposite channel ends perceive these

events at times differing by 0.5 A* . Figure 7.2 displays how these stations interpret slots after such
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events given perfect clocks and assuming the event occurs at time 0 in front of A, If station 7 usex slot my,
it starts transmitting at T = (m + 0.5)A*. This packet is sensed by station A at (m + DA™, the very
instant at which A starts slotm + 1.

Consider now problems arising from the limited accuracy of local clocks. Fractional ciock erres s
quantified by € where dT = (1 + &) dT¢1ock. Fast clocks have negative €, slow clocks a positive value. The
termination of idle slots locally corresponds 10 dT¢jock = A*, s0 the true slot length is (1 + €) A*. Figure
7.2 suggests two possible errors, a packet from station Z arriving a slot late at A or a packel from A that 1y
early at Z. Both errors result trom a slow clock at Z or a fast clock at A. For example, if Z has ¢ = +0.1,
it starts slot m at Ty = (0.5 + 1.1 m) A*. A packet inserted into slot 1 leaves Z at 1.6 A* and reaches A at
2ic 3, =ccurate clock, A assumes this packet was placed in slot 2. Similarly, it 4 hase = -0.1,
ir oo s - imoat Ty = 0.9 mA*. Then, if A uses slot 3 the packet starts at 2.7 A* and reaches Z at
3.2 . Swauon Z erroneously assumes this packet to be in slot 2 given an accuraie clock.

The first (second) error can be corrected by a trailing (lcading) guard interval I'. The interval length
depends on the maximum clock error €ma¢ and number of consecutive idle slots M. Consider the first error
where packets sent from Z arrive a slot late at A, Append a trailing guard interval of length I = AA* 10
each slot and define the slot period as A = (1 + A)A*. The worst synchronization case is stations A and 7
having clock errors -€max and €mqax respectively, With this situation, the true slot lengths at A and 7 are
(1 - emax)A and (1 + gqmax)A respectively. For this case, the following constraints are satisfied:

a. At station A, slot m starts and finishes at (1 - £qax)mA and (1 - €qa)(m + 1A respectively.
b. For station Z, slot m starts at Ty = 0.5 A* + {| + gpax)mA.

€. A packet transmitted from Z in slot m reaches station A at time T, + 0.5 A* or equivalently at

A* + (1 + gppax)mA.

Consider a packet inserted into slot m by station Z. For a correct interpretation at A, this packet must

reach A before slot m finishes. Constraints a. and c. require: A* + (1 + €qax)MA < (1 - Eqax ) + 1A,

To simplify, substitute the identity between A* and A to produce (2 + 1) €max < Tr A re-

arrangement yields A > co where ¢ = (2m + 1) Emax. This cquation shows that there is no solution for

1

A when 2m + 1) €max 2 1. This is a result of appending a guard interval to cach slot; for a large number
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of consecutive idle siots the additional time consumed by guards creates an unlimited need for additional
guard length. The initial TCR implementation did not have this limitation, it appended a guard only to the
non-idle slot following a silent period. However, with realistic networks this singularity is not a
limitation, For €ax « 1, the denominator o term can be ignored to produce the result & > (2m + 1) €pax.
To provide a margin of error for this simplification, A can be set 1o (2m + 2) €mux for the largest vaiue of
m whichis M - 1 so A = 2Mgqax. The trailing guard length is then given by I' = 2MegaxA*. As
discussed carlier the dynamic priority protocol has M equal to N - 2 (N - 1 if the clearing slot is included)
and " R has at most logaN - 1 consecutive idle slots for N station networks.

The problem of packets from station A reaching Z carly is solved by a leading guard interval on slots.
Figure 7.3 shows a slot with both intervals of length I' = Aa*. Leading intervals have the same length as
trailing intervals since the problems they address are symmetric. The total slot length given by A is now
(1 + 20) A* or cquivaicntly A* + 2T" with A and T expressed above. The objective with such slots is for
stiions to begin transmission when they enter the gray zone depicted in figure 7.3, Other stations then

hear the swart of packets within the same slot, possibly during a guard interval.

- A >

<A Ax —d- 0P

Figure 7.3 - Slot with guard intervals

A review of the initial TCR implementation shows that it incorporated the ideas depicted in figure 7.3.
Chapter 2 stated that the maximum synchronization period A* in the Ethernet standard was 450 bits. This
standard also defines a minimumn packet length A of 512 bits. Hence, two symmetric guard intervals would
have lengths of approximately 31 bits cach. These are sufficient to handle realistic clock errors. In the
TCR implementation a short initial delay n is imposed by states REJOIN (DEFERFRED) for stations

wishing to access the channel during a controlled slot (or immediately after exting controlled mode). This
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is cquivalent to the leading guard interval discussed above. The traihing guard terval s autoniaticallhy
provided by the extra length of slots. Its length implicidy cquals A - A* - 1.

rhis slot model can be used to maintain eventless synchronization through M controlled slots
Afterwards the network must return to uncontrolled mode or produce a network event such as a collision o
transmission. Another problem for synchronizing slots not mentioned above is that CSMA:CD packets e
not of fixed length, only a minimum length A is imposed. This problem 1s not difficult to overcome as
shown in the initial TCR implementation. When a station transmits or hears a packet, it dvnamically
cxtends the current slot until the packet is finished. Afterwards, a short delay s entorced o produce an
inter-packet gap. This event resynchronizes network clocks and reduces the burden placed on the network by

long periods of silence.

7.3. The Controlled Mode of CSMA/CD Protocols

In the semi-controlled CSMA/CD subclass, all stations switch 1o retransmission mode when collisions
occur. This mode maintains slot synchronization so that consistent wnterpretations of privileged staiion
subsets S* are possible. Figure 7.4 shows the state diagram for controlled retransmission maode. Figure
7.1 indicates that transmitting (listening) stations enter this mode from state TRANSMIT
(CHANNEL_BUSY) when collisions occur. Al stations enter controlled mode into state
HEAR_COLLISION. This state first allocates a run of slots and defines privileged station subsets for cach
slot. The implementation in figure 7.4 assumes that all stations jam the bus following collisions. This 1s
a convention, the initial TCR had only wransmitting stations jam the channel. State HEAR_COLLISION
initiates jamming signals. After the jamming delay, control transfers 10 STOP_JAM. In this state, stations
terminate jamming signals and delay through a channel clearing interval before proceeding to NEW_SLOT.
This interval can be viewed as slot 0 (section 2.3). During this interval, obscrvers are synchronized with
the first station hearing the collision. Observers cnter state START_COLLISION when the leading station

enters HEAR_COLLISION.
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The remaining states arc described in context of the 3 slot cases: idle, used b .« -ingle station or used
by multple stations. The simplest case is an idle slot. Stations set a timer with delay A upon entering
NEW_SLOT. If the channel is silent through this period, a transition occurs to END_SLOT at the end of
the trailing guard interval depicted in figure 7.3, In END_SLOT, stations terminate the current slot and
adjust their reservation schedule accordingly. This is the local equivalent of changes made by observers 10
S* in SLOT_FINISHED. After slot iermination there are two possibilities: all reserved slots have been
cxecuted or there remains additional slots. The first case produces a return to unconuolled mode via state
IDLE after a guard interval 1s enforced. The delay insures that uncontrolicd packets are not misinterpreted as
packets inserted into the final controlled slot. The second case produces an immediate transition to

NEW_SLOT 10 commence the next con'rolled slot.

IDLE
HEAR_COLLISION ollision A
4 4 jam_length end of guard_length
* acket
[ STOP_JAM ] CHANNEL_BUSY HEAR_EOT }
I
collision slot_length bus gap_length
activity
I

NEW_SLOT

privileged

+ guard_length transmission
———{ LEADlNG_GUARD}——-»( TRANSMIT delay

-
J

END_SLOT }
7

slot_length

( END_PACKET }

Figure 7.4 - CSMA/CD controlled mode

In the case of a single ransmission during a slot, the transmitting station transfers from NEW_SLOT to
LEADING_GUARD at the slot start. After a delay equal to I', this station branches to TRANSMIT and at the
cnd of transmission to END_PACKET. From there control transfers to HEAR_EOT which enforces an inter-
packet gap. Afterwards, state END_SLOT produces a transition to IDLE or NEW_SLOT. Non-transmitting

stations hear the packet start in state NEW_SLOT and transfer control to CHANNEL_BUSY. This state has



two transitions, onre for a successful transter, the other for a collision. The [iest switches coentrol (o
HEAR_EOT which enforces an inter-packet gap before transterning control o END SLOT.

When multiple stations compete for a controlled slot, the collision 1s heard by cvery station,
Transmitting stations are in state TRANSMIT when they hear the collision and histemng stations 1
CHANNEL_BUSY. All stations proceed immediately to COLLISION_HEARD when thes hear vollisions,
This state readjusts the reservation schedule and resynchronizes the network, The DP protocol produces no
competition for controlled mode slots and such collisions never occur. In general, controlled mode
collisions are possible and the reservation schedule is dynamically adjusted atter such collisions. The Tree
Collision Resolution (TCR) protocol illustrates an example of this behavior, The next chapter produces a
LANSF implementation of the model illustrated i figures 7.1 and 7.3, This implementation 15 mitsally
written for DP but can be casily modified (o accommodate any CSMA/CD semi-controlled protocol. The

needed changes for TCR arc also given in chapter 8.

7.4. Timing Correctness of Controlled Mode Slots

Let us now demonstrate the consistency of slot interpretation as implemented by contolled mode states in
section 3. To accomplish this goal, the timing constraints ot stations will be proven consistent relatve to
the observer model. Consider a collision followed by M - 1 idle slots which produces M consecutive
cventless slots including slot 0, the channel clearing stot. Define T = 0 when the leading station starts slot
0 and assume the observer commences this slot simnitancously.  The problem of observer-station
synchronization during the short jamming period prier to ths slot is not considered. Finally let observer
slots have length A so that Ty = mA is the time at which observers comimence slot m. With these

=onditions, it can be skown that for 0 < m < M the following constraints hold:

a. All stations enter slot m (state NEW_SLOT) no earlier than Ty, - 0.5 T,
b. All stations using slot m start transmiuting no carlicr than Ty, + 0.5 T
¢. All stations enter slot m no later than Ty + 0.5 ' + 0.5 A*,

d.  Any transmission started in slot m is heard by all stations before Tyep - 0.5
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Several consequences flow from these constraints. The first is that no station transmits 1a slot m before
observers commence that slot, a result of the second constraint.  Constraint b. is based on the first
constraint, it follows trivially that no station can transmit in slot m before Ty + 0.5 T as there is a delay
of I from NEW_SLOT to TRANSMIT. A consequence of constraint d. is that transmissions are initiated and
observed before the intended slot m terminates. Thus, the intended transmission slot is properly interpreted
by observers. Of greater importance is whether intended slots are correctly wuterpreted by all stations. There
are two incorrect possibilities, packets intended for slot m can be viewed within slotsm - 1 or m + | by
other stations. To prove that neither situation occurs, we will consider a simplified situation in which there
is no signalling delay at the physical layer so that channel length equals 0.5 A*. A non-zero signalling
delay simply increases A* relative to the channel length and this longer synchronization period compensates
accordingly in the proofs. Further, assume clock errors arc small so that the lincar case in which €qax « 1,
A=(1+20)a*and A= (2M + 1) €44« Is applicable 10 proofs.

Consider the carliest and latest times ai which stations commence slot m, as denoted by T’y and T,
respectively. These times for an arbitrary station are given by m(l - €qa0)8 + @ and m(l + €qa)A + @
where a is the propagation delay from the leading station. It follows that T'y, = Ty - MEpaxA + & which
is greater than Ty, - 0.5 T + a since I' = 2Mepa4A*.  This directly proves timing constraint a. given
above. Similarly, T' =T + MEpaA + o < Ty + 0.5 T + 0.5 A* which proves constraint ¢, The
possibility of early transmissions is ruled out by censtraints a. and ¢c. No station can start transmitting
belore Ty + 0.5 T so its packet does not reach any other station before Ty, + 0.5 T + o All stations have
commenced slot m by that time. Late packets also cannot occur because the latest a station staris
transmitting in slot m is at Ty + 1.5 T + a including the delay to state TRANSMIT in slot m. This packet
is heard before Ty + 1.5 T + o + 0.5 A* by al- stations. This is less than Ty, + 1.5 T + A* which is
equivalent to T4 - 0.5 I” and cquals the carliest any station can terminate slot m.

This demonstrates the correct specificaiion of controlled mode timing constraints and illustrates the
uscfulness of the observer model as a fixed reference frame in which to reason about implementation timing

constraints. The proof above considered slots follcwing a collision; a similar proof is easy to generate
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following a successtul controlled wansmission. The final step ts now o examune how this model can be

specified with the LANSF implementation language, which is performed in the next chapter.
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Chapter 8
LANSF CSMA/CD Implementations

In the previous chapter, a control statec model was presented for semi-controlled CSMA/CD protocols. This
chapter converts the protocol model into a LANSF implementation. The semi-controlled CSMA/CD
implementation is writien generically which leaves two undefined functions. Minor extensions then
complete the implementauon for any protocol in this class. The extensions for Dynamic Priority (DP) and
Tree Collision Resolution (TCR) are presented here and Appendix E summarizes the TCR implementation.
Simulations to test implemer iion conformance are performed for approximately 109 typical CSMA/CD
packets under medium o heavy load. This packet limit occurs due to the implementation TIME data type
but can be casily modified if longer simulations are desired.

The generic LANSF implementation of semi-controlled protocols has some common flags and
variables 1o record the status of individual stations and the network. Network parameters are global
variables and station information is added to STATION structures (section 3.4). For timing controlled slots,
stations require a global slot length A given by slot_length. This implementation uses the minimum
synchronization penoed discussed in section 3.1 to test timing constraints under difficult conditions. Related
quanlitics applicable to il protocols of this subclass include the guard intervil 1 iguard_length),
synchronization period (A* or synch_period), maximum clock error (€45 0 max_clock_error) and the
potential number of consecutive idle slots max_idle_slots. In summary, the following definitions and

ntialization are added to the LANSF impiementation of a generic semi-controlled C5™ YA/CD protocol.

int svnch_pariod, guard_length, max_idle_slots, slot_length;
float max_clock_error;
struct STATION {

|nt normal_modes, is_transmitting, is_competing;
int defer_count, delay_count; };

.79 .



initialization () {

7 Read or calculate synch_period, max_idle_slots and max_clock ertor
guard_length = 2 * max_idle_slots * max_clock_error * synch_period ;
slot_length = synch_period + 2 * guard_lengti;

The additional local variables have the following purposes. The station protocol mode is kept in flag
normal_mode and is initialized to TRUE. A flag is_transmitting initialized to FALSE indicates if the station
is currently transmitting. [t differentiates transmitting and listening stations as they enter the collision
clearing phase. Flag is_competing indicates if the station has commenced but not vet successtully
completed a transmission. This tlag remains TRUE after a packet collides until a successful retransmisston,
It is a local equivalent of entries in the transmission matrix P maintained by observers (section 6.2), The
semi-contreiled model properties discussed in chapter 7 show that 1s_competing is equivalent to macro
transfer_pending utilized in the initial implementation (Appendix C). This macro returned TRUE 1f the
current station had a full buffer, tlag is_competing is sct and reset equivalently. The semantics of state
IDLE initiate an uncontrolled transmission when a packet is buffered which sets is_competing. Similarly,
this flag is rcset and the packet released in state END_PACKET following a successtul transmission.

The other two generic local variables are integers defer_count and delay_count. In controlled mode,
stations maintain a local counter of remaining slots and whea it reaches 0 stations revert to normal mode.
This counter is defer_count and is not initialized by stations. During tournaments, stations waitig tor a
controlled slot require a slot counter to indicate when they are within the privileged subset. This sfot count
is stored in delay_count whicis .. ™aintained when stations perform controlled mode and their IS_competing
flag is TRUE. These two variables contain local information that is collectively equivalent to the global
reservation schedule.

Consider now the case study for converting the CFSM model into a LANSFE implementation. In the
first section. a generic implementation is given for the uncontrolied mode of semi-controlled protocols.
The next section performs a similar task for their controlled mode. Scction 3 fills out details of the generic
implementation to complete Dynamic Priority. The fourth section solves this same problem for the TCR
protocol which completes the goal of re-implementing TCR based on the observer model. In scection S, the

expeiimental results obtained with the new TCR implementation and their significance are presented.
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8.1. LANSF Normal Mode Implementation

Figure 7.1 shows the normal mode CFSM of semi-conrolled CSMA/CD transmitters. Control state code
van be informally derived from this model. State INITIALIZE initializes ocal variables and produces a
delayed transition to IDLE. IDLE checks for a backlogged packet and if onc is not available, it waits for a
packet arrival or channci activity. This initial packet test is nceded when multiple stations wish to transmit
after the channel becon - idle. If station A detects the idle channel first, it waits through a gap and then
starts ransmitting. A secsod station 8 will hear the silence later and also wait through a gap. After this
gap it may hear the packet from A (or a collision) at the same time or slightly before it iniends to start
transmitting. CSMA/CD states that ~taxtion B must start its packet and force a collision in this situation,
hence the initial test to give prioritw « “acklogged packets. The code of states INITIALIZE and IDLE is
shown below. In IDLE, there is mo ;2 for simuliancous cvents within the else clause despite their
fexical order. The key feature is tha _.itions buffering packets are forced to statec TRANSMIT so that
slations in CHANNEL_BUSY during uncontrolled mode are guaranteed pot to have packets. This guarantees

that stations with packets at the start of tournaments participate in the uncontrolled collisicn.

case INITIALIZE:
the_station->normai_mode = TRUE;
the_station->is_transmitting = FALSE;
the_station->is_competing = FALSE:
wait_avent (DELAY, gap_length, IDLE);
raturn;

case IDLE:
if (get_packet (BUFFER, min_length, max_length, info_length)) {
continue_at (TRANSMIT);
} else {
wait_event (CLIENT, MESSAGE_ARRIVAL, IDLE);
wait_event (BUS, ACTIVITY, CHANNEL_BUSY);
return;

State TRANSMIT starts transmissions and waits for a result, either a successful transfer or a collision. It
also sets flags is_transmitting and is_competing. Note that transitions from IDLE to TRANSMIT arc

simultancous with packet acquisition. The code to implement TRANSMIT is the following:
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case TRANSMIT:
the_station->is_transmitting = TRUE:
the_station->is_competing = TRUE;
transmit_packet (BUS, BUFFER, END_PACKET):
wait_event (BUS, COLLISION, HEAR_ COLLISION):
return;

For a successful packet, the ‘ransmitting station branches to END_PACKET and then 1o EOT HEARD. The
first state terminates the transmission and releases the packel. 1 also resers the SEHOR Transmission status.
When stations successfully terminate packets they no longer compete for the channel as mdicated by
resetting flag is_competing. The purpose of HEAR_EOT is to enlorce mter-packet gaps and then transter
control to the appropriate state. In uncontrolled mode this state is IDLE, controlled mode 1s considered
shortly. The passing of all stations through this state after successtul transmissions proves the unobserved
service property that requires inter-packet gaps.

case END_PACKET:
the_station->is_transmitting = FALSE;
the_station->is_competing = FALSE;
stop_transfer (BUS?;
release_packet (BUFFER);
continue_at (HEAR_EOT);

case HEAR_EOT:
if (the_station->normai_mode) {
wait_event (DELAY, gap_length, IDLE);
return;
}  else {r" Controlled mode "/}

case CHANNEL_BUSY:
wait_event (BUS, EOT, HEAR_EOT);
wait_event (BUS, COLLISION, HEAR_COLLISION);
return;

Listening stations branch to CHANNEL_BUSY when they hear channel activity. For uncontrolled made,
stations in this state do not have buffered packets. Stations lcave CHANNEL R4y when the noghat iy
successfully terminated cr when a collision is heard. Hearing the end of a successful tansiissiog switches
control to HEAR_EOT where these stations also wait through a gap. If a collisicn .« tewd, listenming

stations also switch to retransmission mode starting with state HEAR_COLLISION.
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8.2. LANSF Controlied Mode Implementation

The CSMA/CD controlled mode introduces new control states and extends the operation of some existing
states. The first controlled mode state is HEAR_COLLISION. This state aborts transmissions, starts a
Jamming signal and prepares for the upcoming (or continuing) controlled mode. Stations prepare for the

tournament by adjusting their values of defer_count and for tournament panicipants delay_count.

case HEAR_COLLISION:
if (the_station->is_transmitting) {
abort_transfer (BUS);
the_station->is_transmitting = FALSE;

set_detfer_count ();

it (the_station->is_competing) set_delay_count ();
the_station->normal_mode = FALSE;
emit_short_jam (BUS, jam_length, STOP_JAM);
return;

After collisions variable is_competing remains unchanged. stations that have started but not finished a
packet leave it set. The number of tournament slots is calculated by set_defer_count. For competing
stations, the number of slots until they transmit is determined by set_delay_count. Stations then switch
modes and jam the bus to enforce the collision. The transition from HEAR_COLLISION is to STOP_JAM.
‘The latter stops the jamming signal and enforces a bus clearing delay before the first slot. Its code is:

case STOP_JAM:
stop_jam (BUS);
wait_svent (DELAY, slot_length, NEW_SLOT);
return;

After the idle slot enforced by STOP_JAM terminates, stations proceed to NEW_SLOT. Figure 7.4 shows 3
transitions from this state that correspond to an idle slot, a slot in which one station transmits or a slot in

which muitiple stations ransmit. The code of this state is:

case NEW_SLOT:
if (station_privileged ()) {
continue_at (LEADING_GUARD);
} alse {
wait_event (DELAY, siot_length, END_SLOT);
wait_event (BUS, ACTIVITY, CHANNEL_BUSY);
return;
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To understand the transitions it is useful o examine the 2 slot cases. The simplest 1s an adle slot. In this
situation, all stations fail the initial station_privileged test and sct a timer equal 1o the slot duration gnen
by slot_length. There is no activity during the slot so transitions to END_SLOT oceur after the specitied
delay. State END_SLOT adjusts tournament variables to reflect an clapsed slot. 1 there :re no remaining
slots, stations revert to uncontrolled mode. It controlled mode s not finished, stanons branch 1o

NEW_SLOT and backlogged stations wait through one less slot.

case END_SLOT:

the_station->defer_count--

it (the_station->defer_count == 0) {
the_station- >normal_maode = TRUE;
wail_event (DELAY, guard_length, lDLE)
return;

} else {
if (the_station->is_co Setmg the_station->delay_count--;
continue_at (NEW _SL

The second case for NEW_SLOT is a single transmission. The station at which station_priviteged 15 true
performs a transition to LEADING_GUARD. After waiting through a delay equal to the guard length i
branches to TRANSMIT and starts the transfer. When its transmission is compiete the sending station
changes state to END_PACKET and then HEAR_EOT as in normal mode. The act of resetting is_competing
in the first state removes the station as a tournament participant.  For controlled mode the latter state
enforces an inter-packet gap and then transfers control to END_SLOT. The purpose of END_SLOT is the

same as fo. an idle slot. The new statc LEADING_GUARD introduced here has the code:

case LEADING_GUARD:
wait_event (DELAY, guard_length, TRANSMIT);
return;

State HEAR_EOT handles both modes as follows:

case HEAR_EOT:
if (the_station->normal_mode)
| wait_event (DELAY, gap_length, IDLE),
else
wait_svent (DELAY, gap_length, END_SLOT);
return;



Listening stations that hear channel activity in NEW_SLOT again branch to CHANNEL_BUSY. This state
prevents a slot timeout in NEW_SLOT. When the end of packet reaches listening stations, they also branch
to HEAR_EOT. From there, they have the same route as ransmitting stations, 1o END_SLOT and then
iDLE or NEW_SLOT. The last casc in NEW_SLOT is when two or more stations use a slot.  Stations
transfer to HEAR_COLLISION upon hearing the inevitable collision. The privilcged stations are in state
TRANSMIT when this occurs and unprivileged stations in CHANNEL _BUSY. As with normal mede
collisions, this state synchronizes the network and adjusts the reservation schedule via local variables
defer_count and delay_count. Functions set_defer_count and set_delay_count consider whether the
collision occurred in normal or controlled mode to return appropriate valucs.

Let us now examine two protocols, DP and TCR, that are special cases of thiy gencric
implementation. To complete their implementations, specific versions of functions set_deter_count and

sat_delay_count as well as supporting information will be provided.

8.3. The DP Protocol Implementation

The DP protocol implementation is completed with its versions of set_defer_count and se!_ uelay_c:
For this protocol, stations rcquire onc additional local variable priority to kecp track of the station with
highest priority which is initialized to 0. Collisions occur only in normal mode so the two functions are
simplificd. Function set_defer_count allocates one slot per station as given below:

void sut_defer_count ()

{ the_station->defer_count = n_stations; }

Function set_delay_count indicates the number of slots until the station becomes privileged. It is based on
variable priority that indicates the station privileged during the first slot. Assuming a right circular rotation

for slot privilege this function is:
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void set_delay_count () {
int st3tion_id;

station_id = station_to_id (the_station);
the_station->delay_count = (n_stations + station_id - the _stalion->ptioriy} *s n_stations;

Variable priority is rotated after cach collision, this is accomplished by adding the following code to state

HEAR_CGLLISION after delay_count has been set.

the_ station->priority = (the_station->priority + 1) % n_stations

This completes the DP specification in terms of the generic semi-controllied miplementation. The next

example considers a more complex protocol in which controlled mode collistons are possible,

8.4. The TCR Protocol Implemeniation

The protocol specific aspect of TCR is the virtual network tree. The binary representation of station
identifiers operates as the basis for this binary trec. A binary digit of 0 (1) places the station in the left
(right) subtree. In gencral a station is a member of a subtree Tyy il the last x bits of its identifier are the
binary reversal of y. For example in Tz1, the level x equals 2 and the two binary digits ot y arc 01, Ths
subtree contains all stations whose binary identifier terminates with 10,

Consider the implementation of function set_defer_count. It sets the number of remaining controlled
slots following a collision. With TCR, collisions can occur in both modes so this function considers the
current mode. In normal mode, two slots are allocated after a collision. If controlled mode collistons occur,
the function should append = additional slots. However for controlled mode collisions stations avoud
control state END_SLOT which removes the slot in which the collision occurred. Hence the value of

defer_count is only incremented by 1 for this mode. The code for set_deter_count 15 given by:

void set_defer_count () {

it (the_station->normal_moda)
the_station->defer_count = 2;
else
the_station->defer_count++;



Function set_delay_count is more complex. After normal mode collisicns, stations in the left (right)
subtree of Tgg have a delay of O (1) slot. When a collision occurs in controlled mode with Ty prvileged,
the two new slots (Tx+1,2y and Tx+1,2y+1) precede existing slots. Hence, stations in the left (right) subtree
of Txy have delay_count sct to 0 (1); this is the first rule for set_delay_count. One way w implement this
rule is for stations to maintain the current privileged subtree as was performed by observers deseribed
previousty. However, it contradicts the local view of protocol entitics and introduces a needless
calculational burden to implementations.

A simpler method notes that privileged stations have delay_count eizzst * () when collisions occur,
This indicates T* is one of the suation's ancestors as stations not meeting tee - <adition must wait for the
termination of the sub-tournament within this subtree. For example, it station O participates i a collision,
the privileged subtree is Ty for some x. To uniquely determine the privileged subtree a local counter ply is
maintained. It is initialized to 0 when a collision occurs in normal mode and incremented cach time the
privileged subtree is set to a deeper node. Then, if a station participates in a collision and ply equals x, the
current privileged subtree is the station ancestor at level x. Once the subtree Tyy is uniquely determined,
privileged stations must determinc if they are members of Ty41,2y OF Tx412y+1. This is a simple test of
the xt low order identifier bit. For example, if T;q is the privileged subtrec then all privileged stations
have a 0 low order bit. The stations in the left (right) subtree of T have a O (1) in bt position 1. Note
that Ty becomes privileged after 1 collision which is the bit position tested in station identifiers.

The second rule for calculating deiay_count involves stations whose value of this counter is non-zero.
These ssations did not participate in the collision and are not within the privileged subtree Txy. Recall that
the two new slots for Tx+1,2y and Tx+1,2y+1 precede all existing slots. It appears that these values of
detfay_count should be incremented by 2. However, the slot in which the collision occurred has not yet

been removed so delay_count is only incremented by 1. This produces the following code:

int Yefi_subtree (int level) {
int station_id;

station_id = station_to_id (the_station);
return ((station_id >> level) % 2 == 0);
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void set_dslay_count () {
int station_id;

station_id = station_to_id (the_station);
if (delay_count == 0)
if (left_subtree (station_id, the_station->ply))
the_station->ply++;
else
the_station->delay_count = 1;
else
the_station->delay_count++,;

Variable ply is incremented for privileged stations following coilisions but remains unchanged for non-
privileged stations. Consider its effect following an uncontrolled collision. All stations have delay_count
initialized to 0 prior to calling set_delay_count. The stations in Tyg (T11) pass (fail) the test performed by
left_subtree. Upon incrementing ply, stations in T1g view the privileged subtree as Tyg, whereas those in
Ty still view it as Tyg. However, stations in Ty are barred channel access until their value of
delay_count decreases to 0 which occurs after completion of the Ty¢ sub-tournament. When this occurs,
they increment ply which fixes T* as T;. Sub-tournaments must terminate on a non-collision slot so a
line of code is added to state END_SLOT for this purpose. This line checks if delay_count has decreased to
0 in a participatirg station and increments ply when this occurs. This process insures that all stations have

a current view of T* when it is their turn to <ransmit.

8.5. Simulation Results with the TCR Implementation

The TCR implementation presented piecewise in the previous sections and summarized in Appendix E was
simulated using LANSF. Three nctworks weie considered with 2, 8 and 32 stations. Stations were
uniformly distributed along the channel at separations of 10 time units (bits) tc produce channe! lengths of
10, 70 and 310 bits. Stations had local clock crrors with a maximum value (Emax) of 0.02. The
synchronization period A* and slot length A were set to their minima to stress test the implementation.

Recall that A* equals 2*(L + S) and in LANSF the physical signalling delay S is 0. To account for local

clock errors and discrete LANSF time, A* was set 0 + 2. The denominator buffers against fast

1- max

local clocks and insures stations have a sufficient minimum packet length. The additional 2 time units
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eliminate the problem of simultaneous events being delivered in an incorrect order at cither end of intervals.
For example, if a collision occurs at the last possible instant, the transmiting station receives
simultaneous end of packet and collision events. LANSF delivers these events randonily and a protocol
error results with either order. If the end of packet is delivered first the transm-ting station incorrectly
believes its transfer was successful. When the collision event is lirst delivered. an end of packet event is

pending but not accepted by state HEAR_COLLISION which produces an unspecificd response.
Emax(Ms*A + G)

1 - €max

The guard length was set to + 2 where Mg is the masimum pumber of consecutive

idle slots and G the inter-packet gap. The denominator (1 - emax) accounts for second order effects ignored

in the linear approximation. The numerical valucs in simulated networks were as follows:

Network 2L A* Mq r A

1 20 22 0 4 30
2 140 144 2 9 162
3 620 634 4 55 744

The network traffic was uniformly distributed between stations with total interstation intercommunication,
Traffic density was set to provide a high load without overloading the network which produces a sitnation
where all stations are backlogged.

Two sets of simulations were performed on all 3 networks. The first set implemented observer
check_privilage which tested the first claimed property (chapter 6). Another sct implementing observers
check_participant and check_tournament tested the latter two propertics. Both scts of simulations detecied
no errors with simulation runs of 100,000 packets on all nctworks.

Based on these results, irnplementation correctness relative to formal observer service propertics has
been proven for the explored states. This of course does not impl. ~arrectness for all protocol states.
However, it demonstrates that the implementation has improved using observer tesung and the observer
model for protocol re-implementation. This supports the thesis title, “Developing CSMA/CD Protocols
with LANSF Observers”. As the title suggests, some protocols may well be oo complex to completely

verify. As in many engineering problems, it may be the case that improving the product is more realis:ic
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than trying to make it perfect. Further, if the view expressed in section 1.3 about the nature of CSMA/CD
errea is valid, then correct simulations of this length strongly imply a correct implementation.  The issue

of how to continue the CSMA/CD development and testing cycle is considered in the next chapter.
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Chapter 9
Conclusions

This thesis examined the problem of verifying a CSMA/CD-TCR protocol implementation. The well
accepted methods used in OSI-FDT specification and testing were found to be insufficient for this protocol
class. This was related 10 two CSMA/CD features; the need for a channel description technigue and an
arbitrary number of protocol entities. Formal Description Techniques do not contan a channel model and
their proof techniques are oricnted towards two party protocols. The veritication problem was then shilted
to Local Area Network Simulation Facility (LANSF). Given that LANSF has been successtully used to
specify and simulate CSMA/CD protocol implementations, could it also be used to test implementation
correctness? A recently added feature called observers offercd promise in this direction.

With observer tools to monitor LANSF simulations and an existing implementation of CSMA/CD-
TCR, the author set out to determine if the initial implementation was correct.  This lead o the first
question, correct with respect to what standard? In a comparatively mature field such as FDT specifications,
there is considerable literature regarding standards to which protocol specifications or implementations
should conform. Since LANSF has been used far less than FDTs, there is no cxisting body of conformance
standards. Some standards to which implemen*s"" g should conform are self-evident. These are general or
syntactic protocol properties which include the absence of locks, overspecification or underspecification as
well as liveness guarantees. The LANSF modelling system is quite well designed to handle some errors in
this category. Simulation results such as channel throughput provide additional diagnostic information.

The more difficult problem however is demonstrating that implementations conform o scmantc
properties, that is protocol specific features. The author chose to formally specify protocol service
properties and use these as standards for semantic conformance testing. Since the uncontrolled TCR mode
is well known from other CSMA/CD protocols, there were no service properties explicitly tested within

this mode. For the retransmission or controlled mode, three general service properties of the semi-
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controlled CSMA/CD subclass were first stated informally. Using these statements three observers were
programmed, one to test each property dynamically during LANSF simulations. cach observer
comesponded to a formal specification of a protocol service property.

The reason for formally specifying a standard to test an implementation is the same with LANSF or
FDTs. Thesc standards can be used mechanically to verify the correctness of large state spaces. With
LANSF, a random state cxploration was performed by the implementation while observers asserted service
propertics. The size of these explorations was quite beyond those feasible without mechanical assistance.
in tctal, two incidents of implementation non-conformance were revealed by observers. Of equal or greater
value was the underlying obscrver model, this provided a global temporal framework in which to reas..n
about protocol timing properties. This point is quite significant, previous rcasoning about timing
correctness was gencrally performed using a local point of view. This leads to difficult circular correctness
proofs. An alternaie viewpoint is to reason linearly about the correctness of a global model and show that
protocol entities conform to this model.

The protocol was re-implemented using the observer model as a reference. Three networks described in
the previous chapter were simulated and no discrepancies were discovered. Developing CSMA/CD
protocols with observers appears to be a success from the experiments conducted here. As indicated, the
second TCR implementation was conformance tested without any detected errors. It was also possible to
algebraically prove implementation timing constraints within the observer time frame. Before concluding
that this implementation is correct, two additional questions must be answered affirmitively, these are:

a. Do the observers test all protocol properties and are they correctly specified:

b. Was the entire protocol state spacc examined 1o insure total correctness?

Unfortunately neither question can be answered with an unqualified yes, it is only possible to present
arguments that support this response. To start, the properties of unconurolled mode were not formally
tested. These however are not of a global nature and can be demonstrated within the reference frame of 4

single protocol entity. For controlied mode three service properties were for : . -.2d, these gppear 1o cover

the essence of semi-controlled CSMA/CD protocols. However, it should be notcd that other protocol
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development techniques also lack exhaustive descriptions of sctvice propertics. Regarding the question of
observer correctness. it can be stated that observers were a second independent and simplified protwwl
specification. The conformance between an independent obscrver and implementation suggests that both are
correct.  Non-conformance usually indicates an error in the more complex specitication, which s the
implementation. As for the state spacc that was explored, this problem is examined further 1 the next

scction. Future research that can follow [rom this work is considered in the second section,

9.1. Random State Exploration

The entire question of random state exploration for protocol validation or verificaton is an open guestion,
Some papers have examined the fault coverage of event sequences based on test suites, ¢f. [DAHBRY].
[SIBH88). This however is not directly applicable t0 states visited on the basis of random events generated
in LANSF. In the case of random event generation, gencral statistical principles can be used as a starting
point. Consider a system with X global statcs where testing examines x states in a random, memoryless
fashion and the test states contain no errors. The probability of a state not being explored or cquivalently
the fraction of states not explored is e*/X. For subsequent operation, the average length of random
operation before entering an unexplored test state roughly equals the test length of x states. Thus the
minimym time of correct operation should be on the order of x states. This result is not very comforting as
pointed out earlier, a test of 50,000 CSMA/CD packets corresponds to a few seconds of real time.

An issue of more interest is to what extent the correct operation of tested states implics correctness of
unexplored states. Stated in another fashion, do the same errors occur repeatedly in different states or are
errors unique? If protocols tend to have a fcw conceptual errors that manifest themselves repeatedly, then
their de’.. ;»on and subsequent correction in a tested state should remove this same crror from unexplored
states. With regards to this question, experimental results give reason for hope. A puper by West
[WEST86] and experiments for this thesis both suggest widespread errors from a few common origins to be

the case. In his paper West states:
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When a complex protocol is validated using state-cxploration techniques, the majority of the errors
detected are found many times over in different states of the system. In the recent validation of the
OS1 Session Layer, approximately 3% of the system states explored manifested an error. In a
typical run, exploring 25,000 reachable states, individual errors were detected on average about 40

times.

Testing with LANSF observers leads to similar conclusions. The interface and semantic errors reported in
Chapter 6 occurred after short simulation runs, typically less than 100 packets. In these experiments,
obscrvers terminated the simulation after locating an crror so it cannot be stated when errors would re-
appear. However, it is reasonable to speculate that if the simulation had continued. the next error
«currance would have been quite soon. After correcting the original implementation for each crror,

simulation runs of 100,000 packets did not ¢ -detect the same error.

9.2. Future Directions

This thesis demonstrated a technique for verifying CSMA/CD implementation correctness relative o a
standard of service specifications. These siandards was informally stated and their formalization (ie. observer
coding) were performed manually. Such a technique can be expected to have similar problems as discussed
in the introduction for protocols preceding the FDT era. This includes an ambiguous interpretation of
informal specifications and translation errors ir vusc—er coding. Future research could produce a formal
language in which to specify protocol preperties. Afterwards, automatic translation tools could be
implemented to gencrate observer code. However, previous work by Groz [GROZ86] with Véda has
suggested that restricted formal languages are not well suited to express service properties. Their observer
language, like that of LANSF was also a general programming language.

A sccond area of future rescarch is suggested by developmentis with Formal Description Techniques.
For O31 protocols, the implementation is preceded by an abstract specification of protocol entities. This
permits a formal logical analysis prior to implementation. A similar mechanism should be constructed for

CSMA/CD and other MAC level protocols. This of course requires a Formal Description Technique tiiat
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contains concepts relevant to this sublayer. If such a FDT is produced, it would presumably be possible to
formally assert service propertics from these “FDT™ specifications. To round oft the hst of wols, an
automatic generation of LANSF codc from such specifications would also be desirable.

The formalization of the MAC sublaver as described above is a long term rescarch goal. Short term
research goals should be centered around the conformance testing of real protocots. The case study of this
theo's, TCR. is a good example of a hardware implementable protocol. However the simpiifications used
within this study ignore important details of the protocol environment. One example is physical layer
hardware errors, some of which are considered in Suda ct al. [SUDA90}. For future conformance testing,
the simulation environment stiould incorporate “hardware™ errors. Protocol implementations and the
observer model should consider such events. On this front, there are plans to extend LANSF so that tt wall
permit the simulation of random channel errors.

A second environment detail that should be considered is the continuous arnival of new stations. As
users log ontc networks, it should be assumed thal the station does not know the current network status.
With Ethernet this is not a problem, stations remain in uncontrolled mode until their packet collides.
Hence it is quite legitimate for new stations to transmit whenever a packst is buffered and they have deferred
to current channel activity. However with TCR there may be a tournament in progress; uncxpected
transmissions by new stations would disrupt the tournament and the protocol might not recover from such
events. One solution is to force new stations to wait until the network is in uncontrolled mode. For
example, a silent period of more than logsN slots guarantees uncontrolled mode as there cannot be that
many consecutive idle slots in controlled mode. Forcing new stations to ‘wait for such periods of silence
before transmitting has good and bad points. The bad point is that starvation can occur; the new station
may never have an opportunity to transmit. However, if the network is so heavily loaded that it doe: .4
have such periods of silence, it may be better to ban new stations untit the load decreascs.

If we consider it unacceptable to ban new stations, then old network stations should accept the
responsibility of helping new stations synchronize. For example, when transmitting packets it can be
obligatory to include a preamble such as the number of remaining tournament slots. With uncontrolled

transmissions, this field would be set to 0.
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However, the whole issue of transmissions by new stations may well be moot if the problem of
hardware errors is addressed. A new station transmitting randomly may indeed disrupt a tearnument but this
shculd not lock protocols robust enough to handie hardware errors. Such transmissions can simply be
vicwed as the result of a previous hardware error where the new station did not correcily synchron: ¢ because
of misinformation from its physical layer. If the protocol does demonistrate such rovustness. then e issue
of whether or not old stations should help synchronize new stations is a question of efficiency. The
overhead of *“synchronization™ information in packets must be weighed against time lost through needless
collisions produced by new stations.

In summary, future rescarch should minimize discrepancics between simulated and hardware
environments. In this situation, a LANSF observed implementation would be more easily accepted as a
reliable protocol. The hardware implementation would then be little more than taking the user specified

LANSF processes and placing them in ROM on a card with a previously implemented hardware layer.
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Appendix A

Services used by station processes in CSMA/CD Protocols

TIMER AT

Immediate service:

current_time

Return the current simulation time in this variable.

Future service (wake-up call):

wait_event (DELAY, delay _period, new_state)

In this call, delay_period is the delay until the transition should occur to state new_state. Paramcter

delay_period is type int.

Macros:

#define continue_at (new_state) wait_event (DELAY, 0, new_state);
return

#define skip_and_continue_at (new_state) wait_event (DELAY, 1, new_state);
return

CLIENT Al

Immediate service:

get_packet (BUFFER, min, max, frame_into)

BUFFER is the structure in which the packet is placed (if available). Parameters min and max are the limits
on the packet length and frame_info specifics the additional information bits on the frame. The return value

of this function indicates whether or not a packet was available.

Future service (wake-up call)
wait_event (CLIENT, MESSAGE_ARRIVAL, new_state)

This service request produces a station fransition 0 new_state when the client produces a packet.
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LINK AT

Immediate services (no response)

start_transfer (port_id, packet);
stop_transfer {port_ nd)
abort_transfer (port_id);
start_jam (port_id);
stop_jam (port_id);
In these calls, port_id is the station port through which the communication occurs. Variable packet is a

structure of type PACKET.

Future service (wake-up call)

wait_event (port_id, LINK_STATUS, new_state)

This service concerns the link connected to the station port indexed by port_id. It produces a transition (o
new_state when the link status matches that indicated by LINK_STATUS. Note that the first parameter is
not a single constant as for the two other Als. The other Als have large constant values so all small values

for the first parameter are assumed to identify ports and the request is directed to the LINK A/,

Macros:
#define  transmit_packet (port_id, packet, new_state)

start_transfer éﬁon id, packet);

wait_event (D ATpacket total _length, new_state)
#define  emit_short_jam (port_id, jam_length, new_state)

start_jam (port_id);
wait_event (DELAY, jam_length, new_state)
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Appendix B
LANSF Ethernet transmitter

#define  BUS 0
#define  BUFFER packet_buffer (0)
#detine  slot_length 512

transmitter () {

int min_packet, max_packet, info_length;
int jam_length, last_silence, idle_period, backoff ();

switch ({the_action) {
case INITIALIZE:

case IDLE:
if ('get_packet (BUFFER, min_packet, max_packst, info_length})) {
waTt_Fievent (CLIENT, MES—SDAGE_ARRI AL, IDLE);
return;

the_station->collision_counter = 0;

case GAP:
if (undef (last_silence = last_eoa_sensed (BUS))) {
wait_avent (BUS, SILENCE, GAP);
return;

|}f (idle_period = current_time - last_silence < gap_length) {
wait_svent (DELAY, gap_length - idle_period, TRANSMIT);
return;

case TRANSMIT:
transmit_packst (BUS, BUFFER, END_PACKET);
wait_event (BUS, COLLISION, HEAR_COLLISION);
return;

case END_PACKET:
stop_transfer (BUS);
release_packet (BUFFER);
continue_at (IDLE);

cass HEAR_COLLISION:
abort_transfer (BUS);
the_station->caliision_counter++;
amit_short_jam (BUS, jam_iength, STOP_JAM);
return;

case STOP_JAM:
stop_jam (BUS):
wait_event (DELAY, backoff (), GAP);
return;

int backoft () {
int mback, cc;
it (cc = the_station->»collision_counter > 10) ¢cc = 10;
mback = 1;

mback = mback << cc;
return (slot_length * I_uniform (0, mback));

-102 -



Appendix C
LANSF CSMA/CD-TCR tiansmitter

(Initial implementation)

#define  BUS 0

#define  BUFFER packet_buffer (0)

#define  transfer_pending flag_set (BUFFER->flags, BUFFER_FULL)
#define  slot_length 512

#define  loser_delay 512

#define  loser_wait(n) n“loser_delay

int min_packet, max_packet, info_length;
int jam_length, last_silence, idle_period, loser_delay;

transmitter () {
switch (the_action) {
case INITIALIZE:

case IDLE:
the_station->tournament_in_progress = NO;
if (transfer_pending) get_packet (BUFFER, min_packet, max_packe! info_length)
if ('transfer_pending)
wait_event (BUS, ACTIVITY, CHANNEL BUSY);
wait_event (CLIENT, MESSAGE_ARRIVAL, IDLE);
return;

1}f {undef (last_silence = last_eoa_sensed (BUS))) continue_at (CHANNEL _BUSY);
if (idle_period = current_time - lasi_silence < gap_length) {

wait_event (DELAY, gap_length - idle_period, TRANSMIT);

return;

case TRANSMIT:
the_station->active = YES;
transmit_packet (BUS, BUFFER, END_PACKET);
wait_event (BUS, COLLISION, HEAR_COLLISION);
return;

case CHANNEL BUSY:
wait_event (BUS, EOT, END_PACKET);
wait_event (BUS, COLLISION, HEAR_COLLISION);
return;

case HEAR_COLLISION:
if (the_station->active) {
abort_transfer (BUS);
the_station->active = NO
elmn__short_jam (BUS, jam_length, STOP_JAM);
else
wait_event (DELAY, jam_length + collision_delay), COLLISION_GONE);
return;

case STOP_JAM:
stop_jam (BUS);
wait_event (DELAY, collision_delay, COLLISION_GONE);
return;
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case COLLISION_GONE:
if (the_station->tournament_in_progress) {
the_station->tournament_in_progress = YES;
the_station->ply = 0;
the_station->delay_count = 0;
the_station->defer_count = 1;

the_station->defer_count++;
if (transfer_pending)
if (the_station->delay_ccunt == 0) {
the_station->ply ++;
it (left_subtrae (the_station->ply) continue_at (TRANSMIT);

the_station->delay_count++;

wail_event (DELAY, loser_wait (the_station->delay_count), REJOIN};
wait_event (BUS, ACTIVITY, CHANNEL_BUSY);

return;

}

wait_event (DELAY, loser_wait (the_station->defer_count, DEFERRED);
wait_event (BUS, ACTIVITY, CHANNEL_BUSY);

return;

case END_PACKET:
if (the_station->tournament_in_progress) {
the_station->defer_count--;
if (the_station->active) {
stop_transter (BUS);
release_packet (BUFFER);
the_station->active = NO;

wait_event (DELAY, %_a length + loser_wait (the_station->defer_count), DEFERRED);

wait_event (BUS, ACTIVITY, CHANNEL_BUSY);

return;

}
if (transfer_pending) {
the sta!‘%nadelay count--;

wan_event (DELAY, gap_length + loser_wait (the_station->delay_count), REJOIN);
T

wait_event (BUS, AC
return;

TTY, CHANNEL_BUSY);

}
wait_event (DELAY, gra length + loser_wait (the_station->defer_count), DEFERRED);

wait_event (BUS, ACTIVITY, CHANNEL_BUSY);
return;
} else
if {(the_station->active) {
stop_transfer (BUS);
release_packet (BUFFER),
the_statior->active = NO;

}
continue_at (IDLE);

case REJOIN:
the_station->delay_count = 0;
wait_event (DELAY, rejoin_delay, TRANSMIT);
return;

case DEFERRED:

wait_event (DELAY, rejoin_delay, IDLE);
return;
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Appendix D
LANSF CSMA/CD-TCR observers

#define LEFT
#define RIGHT

0
1
#define max_depth 6
#define max_stations 3

int
int
int
void

2

tree_depth, "tree;

participant {max_depth] [max_stations];
privileged__station ();

deeper_subtree (), next_subtree ();

check_privilege () {

switch (the_observer_action) {

case INITIALIZE:
tree_depth = 0;
tree = (int *) memreq (max_depth * sizeof(int))
resume_at (SLOT_STARTING);

case SLOT_STARTING:
timeout (slot_length, SLOT_FINISHED);
inspect (ANY, transmitter, ANY, TRANSMIT, STATION_BOT);
return;

case SLOT_FINISHED:
next_subtree ();
resume_at (SLOT_STARTING);

case STATION_BOT:
if (privileged_station {}}
excptn ("An unprivileged station is transmitting.");
inspect (ANY, transmitter, ANY, TRANSMIT, STATION_BOT),
inspect (ANY, transmitter, ANY, ENU_PACKET, STATION_EOT);
inspect (ANY, transmitter, ANY, HEAR_COLLISION, START_COLLISION);
return;

case STATION_EOT:
if (uncontrolled %)
I res?me_at( LOT_FINISHED);
else
timeout (gap_length, SLOT_FINISHED);
return;

case START_COLLISION:
collision_cleared = current_time + jam_length + siot_length;
resume_at (CLEAR_COLLISIONY),

case CLEAR_COLLISION:
timeout (coliision_cleared - current_time , DEEPER_SUBTREE);
inspact (ANY, transmitter, ANY, TRANSMIT, REPORT_BOT);
return;

case REPORT_BOT:
it (iprivileged_station (})
excptn ("An unprivileged station is transmitting."};
resume_at (CLEAR_COLLISIONY);

case DEEPER_SUBTREE:

deeper_subtree q_;
resume_at {SLOT_STARTING);
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int uncontrolled () { return (tree_depth == 0); }
void deeper_subtree () { tree [tree_depth++] = LEFT; }

void next_subtrea () {
if (tree_depth > 0) {

if (rae [tree_depth - 1] == LEFT) {
tree [tree_depth - 1} = RIGHT;

} else {
tree_depth--;
next_subtree ();

int bit_value {int an_integer, position) {

an_integer = an_integer >> position;
return (an_integer % 2);

int privileged_station () {
int index, station_id;

station_id = station_te_id (the_station);
for (index = 0; index <tree_de cf)th index++)
if (bit_ value station_id. index) != ree [index))
return (FALSE);
return (TRUE);

void log_participant () {
int station_id;

station_id = station_to_id (the_station);
participant [tree_depth] {station_id] = TRUE;

void clear_participant () {
int depth, station_id;

station_id = station_to_id &the _station);
if (participant [tree_depth] [station_id] )
for (depth = 0, depth <= tree dJ)th depth++)
| participant [depth] [station_id] = FALSE
else
excptn ("An unregistered station is finishing a transmission.”);

int level _empty (int the_level) {
int station_id;
for (statlon id = 0, station_id < n_stations, station_id++)

if (participant [the_level] [station_id]) return (FALSE);
return (TRUE);



Appendix E
LANSF CSMA/CD-TCR transmitter

(Final implementation)

#define  BUS 0
#define  BUFFER packet_buffer (0)

int min _ﬁacket. max_packet, info_length, jam_length;
int synch_period, guard_length, max_idle_slots, slot_length;
float max_clock_error;

transmitter () {
switch (the_action) {

case INITIALIZE:
the_station->normal_mode = TRUE;
the_station->is_transmitting = FALSE;
the_station->is_competing = FALSE;
wait_event (DELAY, gap_length, IDLE);
return;

cas? oy ket (BUFFER [ h f {
if (get_packet ( . min_length, max_length, info_length))
| E:cc:_n:t)inue_at (TRANSMITY; 9
else
wait_event (CLIENT, MESSAGE_ARRIVAL, IDLE);
wait_avent (BUS, ACTIVITY, CHANNEL_BUSY);
return;

case TRANSMIT:
the_station->is_transmitting = TRUE;
the_station->is_competing = TRUE;
transmit_packet (BUS, BUFFER, END_PACKET);
wait_event (BUS, COLLISION, HEAR_COLLISION);
return;

case CHANNEL_BUSY:
wait_event (BUS, EOT, HEAR_EOTE
wait_event (BUS, COLLISION, HEAR_COLLISION);
return;

case END_PACKET:
the_station-»is_transmitting = FALSE;
the_station->is_competing = FALSE;
stop_transfer (BUS);
release_packet (BUFFER);
continue_at (HEAR_EOT);

case HEAR_EOT:
if (the_station->normal_mode)
wait_event (DELAY, gap_length, IDLE);
else
wait_event (DELAY, gap_length, END_SLOT);
return;
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case HEAR_COLLISION:
if (the_station->is_transmitting) {
abort_transter (BUS);
the_station->is_transmitting = FALSE;

if (tha_station->normai_mode) {
the_station->delay_count = 0;
the_station->ply = 0;

set_defer_count ();

it (the_station->is_competing) set_delay_count ();
the_station->normal_imode = FALSE;
emit_short_jam (BUS, jam_length, STOP_JAM);
return;

case STOP_JAM:
stop_jam (BUS);
wait_event (DELAY, slot_length, NEW_SLOT);
return;

case NEW_SLOT:
if (station_privileged ()} {
continue_at (LEADING_GUARD);
} else {
wait_event (DELAY, slot_length, END_SLOT);
wait_event (BUS, ACTIVITY, CHANNEL_BUSY):
return,

case END_SLOT:
the_station->defer_count--;
if (the_station->defer_count == 0}
the_station->normal_mode = TRUE;
wait_event (DELAY, guard_length, IDLE);
return;
} else {
if (the_station->is_competing) {
the_station->delay_count--;
if (the_station->delay_count == 0) the_station->ply++,

}
continue_at (NEW_SLOT);
case LEADING_GUARD:

wait_event (DELAY, guard_length, TRANSMIT);
return;

int station_privileged ()

{ return (the_station->is_competing && the_station->delay_count == 0); }

void set_deler_count () {

if {the_station->normal_mode)
the_station->defer_count = 2;

alse
the_station->defer_count++;
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void set_delay_count () {

in

=4

int station_id;

station_id = station_to_id (the_station);
if (the_station->delay_count == 0)
if (left_subtree (station_id, the_station->piy))
the_station->ply++;
else
the_station->delay_count = 1;
else
the_station->delay_count++;

left_subtree (int level) {
int station_id;

station_id = station_to_id (the_ statlon)
return {(station_id >> level) % )
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