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ABSTRACT

This thesis is composed of three individual papers in information system area. In the first

paper, we build an economic model to study the problem of o↵ering a new, high-certainty

channel on an existing business-to-consumer platform such as Taobao and eBay. In the

second paper, we use game theoretical models to study how software firms should determine

their anti-piracy e↵orts and product prices when the network e↵ect exists. In the third

paper, we investigate a setting where heterogeneous healthcare providers (HPs) can join one

or two competing HIEs (monopoly and duopoly case). We use a game theoretical model

to investigate how HIEs should price the basic and value-added services to maximize their

profits.
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Chapter 1

Introduction

This thesis is composed of three individual papers in information system area. I will briefly

describe what I have done in the thesis in the introduction.

In the first paper, we build an economic model to study the problem of o↵ering a new,

high-certainty channel on an existing business-to-consumer platform such as Taobao and

eBay. On this new channel, the platform owner exerts e↵ort to reduce the uncertainty

of service quality. Sellers can either sell through the existing low-certainty channel, or go

through additional screening in order to sell on this new channel. We model the problem as a

Bertrand competition game where sellers compete on price and exert e↵ort to provide better

service to consumers. In this game, we consider a reputation spillover e↵ect which refers to

the impact of the high-certainty channel on the perceived service quality in the low certainty-

channel. Counter-intuitively, we find that low-certainty channel demand will decrease as the

reputation spillover e↵ect increases, in the case of low inter-channel competition. Also,

low-certainty channel demand increases as the quality uncertainty increases, in the case of

intense inter-channel competition. Furthermore, the platform owner should o↵er a new high-

certainty channel when: (i) the perceived quality for this channel is su�ciently high, or (ii)

sellers in this channel are able to e�ciently provide quality service, or (iii) consumers in this

channel are not so sensitive to the quality uncertainty, or (iv) the reputation spillover e↵ect

is high. In the one-channel case, the incentives of the platform owner and sellers are aligned

1



for all model parameters. However, this is not the case for the two-channel solution, and our

model reveals where tensions will arise between parties.

In the second paper, we use game theoretical models to study how software firms should

determine their anti-piracy e↵orts and product prices when the network e↵ect exists. A

unique aspect of our model is that anti-piracy e↵orts have both a direct e↵ect and a cross

e↵ect on software piracy. We explore the problem in a monopoly setting and then in a

duopoly setting. We contribute to research on software anti-piracy in three ways. First,

we analyze how the network e↵ect and competition influence the firm’s anti-piracy e↵orts

and product prices. We find that an increase in the network e↵ect does not necessarily

mean lower anti-piracy e↵orts or higher product prices, as previous literature has suggested;

instead, higher network e↵ects may require higher anti-piracy e↵orts and lower product

prices. Second, we study the impact of anti-piracy e↵ort’s cross e↵ect which has not been

studied in the previous literature. Since an increase in one firm’s cross e↵ect could cause its

competitor’s pirated product to be less attractive and could potentially benefit its competitor,

we find a counter-intuitive result: a firm should exert more, instead of less, e↵ort in anti-

piracy to control software piracy when its cross e↵ect increases. Third, we have obtained

other interesting results through comparative statics. Those results could have important

managerial implications for managing software piracy and pricing.

In the third paper, we investigate a setting where heterogeneous healthcare providers

(HPs) can join one or two competing HIEs (monopoly and duopoly case). The utility for

a healthcare provider is determined by the intrinsic value o↵ered by an HIE and also the

network e↵ect, i.e., the number of healthcare providers adopting the same HIE. We use

a game theoretical model to investigate how HIEs should price the basic and value-added

services to maximize their profits. We investigate the government subsidy di↵erences between

monopoly and duopoly case. We also compare di↵erent settings in the monopoly and duopoly

cases, and find out how parameters a↵ect the basic service price and value-added service

price.
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Chapter 2

Business-to-Consumer Platform Strategy: How Vendor Cer-

tification Changes Platform and Seller Incentives

2.1. Introduction

Online retail sales worldwide reached 1.55 trillion US dollars in 2015 and are projected to

grow to 3.4 trillion US dollars in 2019 (Statista.com, 2016). Much of online retailing is car-

ried out through business-to-consumer (B2C) platforms. B2C platforms such as eBay.com

and Taobao.com allow retailers to sell products directly to consumers. As more and more

consumers purchase products conveniently online, such platforms play an increasingly im-

portant role in today’s economy. However, a B2C platform’s value diminishes when issues

related to counterfeit products and perceived uncertainty of product quality arise.

One issue is the sale of counterfeit products (products that imitate more expensive,

well-known brand-name products). This is a pervasive problem on e-Business platforms.

Counterfeit products not only hurt consumers’ utility, but also harm firms that sell legitimate

products and the related e-Business platforms, as illustrated by a 4% decline in Alibaba’s

U.S. stock price when a counterfeit product issue became known (Wu, 2015). The Chinese

e-Business company, Alibaba Group, which owns Taobao.com, was reported to have removed

114 million suspect listings in the first nine months of 2013 (Grant, 2014). In addition, it

spends approximately $16 million U.S. dollars each year to combat this threat, including
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the establishment of a professional IP protection team of more than 5000 people (Simpson,

2014). eBay has also taken extensive measures to reduce counterfeits (eBay, 2015).

Another issue is the consumer’s uncertainty of perceived product quality. Compared to

brick-and-mortar stores, B2C firms are at a disadvantage as products are not immediately

available for physical inspection by consumers before purchasing. This requires B2C plat-

forms to provide services which reduce consumer uncertainty and garner consumer trust to

compete with traditional brick-and-mortar stores. For instance, sellers can be encouraged

to employ more customer service representatives to better handle consumers’ questions and

problems in a timely manner. Another mechanism is generous return policies and free ship-

ping for returns which reduces the consumer’s purchase risk by lowering the transaction costs

associated with product returns (eBay Seller Center, 2016). Additionally, companies such

as Best Buy o↵er low-price guarantees. All of these quality assurance actions on the part of

sellers lead to higher consumer trust in the products sold through online platforms.

It may not be economically viable for an e-Business platform to solve these issues solely

on their existing platform. An emerging solution is for an e-Business platform to create a

second vetted channel where only certified sellers passing additional screening are allowed to

sell. For instance, Alibaba, the owner of Taobao.com, established a second vetted channel

called Tmall.com. Sellers wanting to sell in Tmall.com have to pay higher deposits, provide

more certification material, and pay high fines if caught selling counterfeit products. At the

same time, they pay higher transaction fees to Alibaba, the platform owner, to participate

in this vetted channel (Tmall, 2016, Don, 2015). Product searches on Taobao.com yield

both Tmall.com and Taobao.com sellers, with Tmall.com designations being prominently

displayed. eBay also has created a similar secondary vetting mechanism. The Canadian

version of eBay (eBay.ca) has a special website area called “Brand Vault”, in which only

vetted sellers can participate. Thus, we see examples of e↵orts by platform owners to es-

tablish second vetted channels, seemingly in response to problems with counterfeit products

and consumer uncertainty.
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In this paper we use a game theoretic model with price (Bertrand) competition. Con-

sistent with Bertrand competition, we observe competition on quality (and therefore price)

between channels such as Tmall.com and Taobao.com. We examine the conditions and ef-

fects of introducing a second, vetted channel. We will show the impact on platform owner

and seller demand and profit when this vetted channel is introduced. Reputation spillover,

quality, seller e�ciency to provide high-quality service, and consumer sensitivity to quality

in the vetted channel will be examined in terms of the impact of these model parameters

on demand and profits. We will illustrate conditions when the one-channel or two-channel

solution is best for the platform owner. Our model will reveal where tensions will arise

between parties when a second, vetted channel is introduced.

2.2. Literature Review

There are four streams of literature related to our paper. The first stream is related to prod-

uct competition. Vandenbosch and Weinberg (1995) investigates product di↵erentiation on

two dimensions. It finds that two firms tend to maximize di↵erentiation on one dimension

and minimize di↵erentiation on the other dimensions, which is di↵erent from the one dimen-

sion case where firms tend to maximize di↵erentiation. Dewan et al. (2003) incorporates the

roles of the Internet and flexible manufacturing technologies (which can reduce design costs

to produce tailored consumer goods) into the model of product customization and flexible

pricing. It shows that when customization and information collection technologies improve,

a monopoly seller may earn the highest profits by producing both standard and custom prod-

ucts, and can raise prices for both types of products. It also shows that in the duopoly case

simultaneous adoption of customization reduces the di↵erentiation between their standard

products but does not intensify price competition. This illustrates that competition on qual-

ity and price can occur simultaneously. Mendelson and Parlaktürk (2008) investigates two

firms competing on price and product variety. The first firm is a traditional firm choosing

a limited set of product configurations, and the second firm is a customizing firm producing
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any configuration to order. It finds that the customizing firm’s profit may decrease with the

market size and its ease of customization and the traditional firm’s profit may decrease with

its holding cost. This illustrates that e↵orts to customize a product o↵ering can be a↵ected

by stimuli in unique ways for di↵erent sellers. Casadesus-Masanell and Zhu (2010) analyzes

the optimal strategy of a high-quality incumbent facing a low-price competitor with ads. It

shows that the incumbent needs to reconfigure the business model when an ad-sponsored

rival enters the market. This illustrates that high quality sellers will adjust strategies when

competing with low quality sellers.

Caro and Mart́ınez-de Albéniz (2012) investigates the satiation e↵ect: when purchasing

too much too quickly, consumers become satiated with a product. It finds that when a

firm competes with a strategic competitor without managing its product’s satiation e↵ects,

its profit may significantly reduce while the competitor will largely benefit. It also finds

that when a firm manages the satiation e↵ect more e�ciently, the competitor may benefit if

competition is on the product only, but not if the competition is on the price and product.

The satiation e↵ect illustrates that the actions of one competitor may benefit another com-

petitor. Zeithammer and Thomadsen (2013) finds that when consumers seek varieties, then

price competition will either soften or intensify, depending on the di↵erence in firm qualities

and the strength of consumer preference for variety.

While in our paper the di↵erence in consumers’ perceived quality between the two-channel

is caused by platform owner’s channel design, in the previous papers the sellers have di↵erent

product qualities which enable competition. These papers often assume duopoly competition.

In our model, since many sellers participate, the competition is more likely to be perfect

competition instead of duopoly competition.

The second stream of related literature is on channel competition and coordination. For-

man et al. (2009) empirically investigates the trade-o↵ between the benefits of buying online

versus buying in a local retail store. It finds that the disutility costs of purchasing online

and the transportation costs of physical channels are important. Overby and Jap (2009)
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examines buyer and seller use of electronic and physical channels in the used vehicle market

with uncertain quality. It finds that when quality uncertainty is high, products tend to be

sold in a physical channel, and when quality uncertainty is low, products tends to be sold

in an online channel. Tsay and Agrawal (2004) develops a model with key attributes of

“channel conflict”. It finds that when a manufacturer can adjust the price, a new direct

channel will not necessarily hurt the reseller. Balakrishnan et al. (2014) studies how the

browse-and-switch option e↵ect a↵ect physical retail and online pricing strategies and prof-

its. It demonstrates that browse-and-switch behavior can indeed occur under equilibrium.

The analysis further shows that the option for consumers to browse-and-switch intensifies

competition, reducing the profits for both firms. In this stream of literature, the sellers de-

termine whether to have a new channel (for instance, the e-business channel). In our paper,

it is the platform owner who determines whether to open a new channel. Additionally, since

there are many sellers in our problem, the sellers have less bargaining power compared with

only a few sellers as is traditionally found in this stream.

The third stream of literature discusses the economics of B2C platforms. Liu et al. (2015)

studies the problem of a website which maximizes its profit through optimally scheduling

personalization services. Ryan et al. (2012) considers a single retailer, who currently sells its

product only through its own website, but who may also choose to contract with Amazon to

sell its product through the marketplace system. It finds conditions when the retailer should

choose to sell through the marketplace system. Hagiu andWright (2014) investigates whether

an intermediary should choose to be a marketplace (in which sellers sell their products

directly to buyers) or be a reseller (by purchasing products from sellers and reselling to

buyers). However, none of these previous works take the perspective of the marketplace

owner considering whether or not to establish a second vetted channel with high product

quality and certainty. Bhargava and Choudhary (2004) also studies the decision of whether

to establish a second channel. In contrast to Bhargava and Choudhary (2004), our paper

considers both sellers’ and the platform owner’s e↵ort. Their paper finds that the two-
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channel case is always better with respect to the channel owner’s profit, while we find that

the two-channel case is better than the one-channel case in certain parameter regions.

Finally, we present the fourth area of literature. Our paper introduces the concept

of reputation spillover e↵ect with respect to the platform itself. There are mainly three

streams of literature related to reputation spillover e↵ect. The first type of spillover e↵ect,

which is not considered in our paper, is where a firm’s action a↵ects the reputation of its

competitors and collaborators (Yu and Lester, 2008, Lester and Sengul, 2002, Barnett and

Ho↵manross, 2008, Kang, 2008, Lee and Rim, 2016); For example, Yu and Lester (2008) finds

that that a reputational crisis may spillover from one organization to other organizations

that are either geographically or structurally close to the focal organization. In the second

type of spillover e↵ect, one branded product’s reputation a↵ects another same-firm similarly

branded product’s reputation. Sullivan (1990) investigates the practice of umbrella branding

(i.e., labelling more than one product with a single brand name). Umbrella branding is

commonly used by multi-product companies. This paper finds that spillovers happen to

identically branded products when information about one product a↵ects the others. Voss

and Gammoh (2004) examines the e↵ect of an alliance with two, one, or zero well-known

brand allies on evaluations of a previously unknown focal brand. It finds that the presence

of a single brand ally significantly increases perceived quality and hedonic and utilitarian

attitudes. In the third type of spillover e↵ect, a product sold by di↵erent sellers is perceived

di↵erently. In this situation, the seller’s reputation has an impact on the perceived product

quality (e.g., an identical pair of pants sold by Walmart versus Neiman Marcus may be

perceived as having di↵erent product quality due to the reputation spillover from the seller

to the perceived product quality). Purohit and Srivastava (2001) assesses the e↵ects of

manufacturer reputation, retailer reputation, and product warranty on consumer perceptions

of product quality. It highlights the important role that the retailer plays in assessments of

product quality. Roggeveen et al. (2014) finds retailer’s reputation can improve the e↵ect

of a guarantee policy. Wang et al. (2016) finds that the e↵ect of product presentation on
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product evaluation is weakened by seller reputation under low-involvement situations.

Both the second and third streams of reputation spillover literature relate to our work.

In our work, all authentic products are the same and have the same quality (similar to the

third example). However, there is a chance that the product purchased will turn out to be

non-authentic or a poor match and we consider consumer’s perceived product quality at the

time of purchase as an expected value that considers all these possible scenarios. Therefore,

even though authentic products have the same innate quality, consumer’s perceived product

quality at the time of purchase might be di↵erent based on the channel (e.g., Tmall.com or

Taobao.com). When products are sold in a vetted channel such as Tmall.com, consumers’

perceived product quality is high, while in the unvetted channel such as Taobao.com, con-

sumers’ perceived product quality can be considerably lower. This relates to the third type

of reputation spillover literature where the seller’s reputation has an e↵ect on consumers’

perceived product quality. In our situation it is the reputation of the channel that is spilling

over onto customer perceptions.

2.3. Exploratory Empirical Investigation

In this section, we present the results of an empirical analysis of Alibaba’s unvetted seller

platform Taobao.com and their vetted seller platform Tmall.com. The data was collected

during March and April, 2016 from all 6 key product categories identified by the selling

platform (baby, home life, electronics, women, men, and outdoor sports). Each category

contains 100 best selling products as identified by the platform.

Table 2.1: Case Distribution for Each Category

Baby Homelife Electronic Men Women Sports
Case 1: Only Tmall 24 27 60 31 15 25
Case 2: Both Tmall and Taobao 15 23 40 36 12 18
Case 3: Only Taobao 61 50 0 33 73 57

For any given product, there are three possible channel distribution cases (see Table 2.1).
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Table 2.2: Chi-squared Test Results (p-values)

Homelife Electronic Men Women Sports
Baby 0.2286 0.0000 0.0001 0.1750 0.8070
Homelife x 0.0000 0.0364 0.0037 0.5642
Electronic x x 0.0000 0.0000 0.0000
Men x x x 0.0000 0.0014
Women x x x x 0.0587

Table 2.3: Product Classification by Transaction Volume in Case 2

Baby Homelife Electronic Men Women Sports
Tmall transaction ¿ Taobao transaction 13 22 40 35 12 18
Tmall transaction ¡ Taobao transaction 2 1 0 1 0 0

Table 2.4: Product Classification by Price in Case 2

Baby Homelife Electronic Men Women Sports
Tmall price ¿ Taobao price 8 12 25 24 9 14
Tmall price ¡ Taobao price 4 9 12 6 2 2
Tmall price = Taobao price 3 2 3 6 1 2

In Case 1, only Tmall sellers have 1 or more transactions, while no transactions exist for

Taobao. For all six categories, there are 182 products for which only Tmall sellers have 1

or more transactions, while Taobao sellers have no transactions. It is possible that sellers

with no sales exist in Taobao that o↵er the product. In Case 2, both Tmall and Taobao

have sellers with 1 or more transactions. For all six categories, there are 144 products for

which both Taobao and Tmall sellers have 1 or more transactions. In Case 3, only Taobao

sellers have 1 or more transaction. For all six categories, there are 274 products for which

only Taobao sellers have 1 or more sales transactions.

We use the Chi-squared test to determine whether categorical variables are independent.

We test whether categories e↵ect the products’ distribution between the three cases. The

null hypothesis is that categories do not e↵ect the products’ distribution among the three

cases. We find that categories a↵ect the distribution of products among the three cases. For

instance, in the digital home products category, there are no instances in which products are

sold by Taobao sellers only (Case 3). However, in other categories, there are products which
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are sold on Taobao only. Of the 15 pairwise comparisons between categories conducted to

determine if the distribution between the cases are the same or di↵erent (see Table 2.2), 10 are

significantly di↵erent at the p=0.05 level, and an 11th at the p=0.10 level. We therefore find

strong evidence that product categories a↵ect the products’ distribution of sellers between

the two channels.

When a product is simultaneously sold in both Taobao and Tmall, the Tmall transactions

are typically greater than in Taobao (see Table 2.3), but the Tmall price is not necessarily

higher than prices found in Taobao (see Table 2.4). A possible reason is that when consumers

search for a product, they search by keywords, and di↵erent keywords may lead to di↵erent

results. For example, in some searches, the Taobao product seller with the higher price may

be shown, and the vetted Tmall seller with the lower price may not be shown. Thus, once

in a while, consumers may only observe Taobao sellers, depending on the keywords selected.

Our conclusion is that Taobao sellers with higher prices are possibly seeking extremely small

volume sales at higher prices, and are in search of uninformed customers.

In the next section, we present a model to explore the phenomena where the B2C platform

owner has an option to open a second vetted channel in direct competition with the first

channel.

2.4. Model

Sellers and consumers sell and buy a single type of a product at an online platform. A

game theoretic model is used to examine the impact of the platform owner introducing a

second vetted channel. This vetted channel is a high-certainty channel with respect to service

quality, which includes all experiences with the seller. The unvetted channel is considered to

be a low-certainty channel. During the first stage of the game theoretic model, the platform

owner decides whether to establish a new high-certainty channel. At the second stage, the

platform owner decides how much e↵ort to exert in order to reduce uncertainty in the high-

certainty channel, and how much to charge sellers for selling on the platform. Then at the
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third stage, sellers decide whether to sell, and if they do sell, they must decide on the selling

channel and how much e↵ort they want to exert to increase certainty which will increase

consumers’ utility. At the final stage, the set of sellers engage in a Bertrand competition

where they compete on price, given the quality, and consumers choose the channel and the

seller (consumers may opt-out from the market entirely). Model notation is presented in

Table 2.5.

For simplicity, we assume that each seller has one unit of the product for sale and one

consumer buys one unit of the product. A seller with multiple units of product for sale can

be considered as a segment of sellers, each with one unit of product. A consumer can not

physically inspect a product before purchasing it online, but rather can only learn about

the product and the seller through online descriptions and consumer reviews. Therefore, the

consumers have uncertainty about the product quality and seller dependability, such as how

well a product fits and whether a product sold by a particular seller is authentic or not.

The platform owner can o↵er two channels: high-certainty and low-certainty channels.

We consider all purchase experience, after-sales experience from owning the product, and all

experience with the seller as service experience, which we will refer to as service. When only

the low-certainty channel exists, the perceived quality of the service has a distribution with

mean 1 and variance �
2
0. Before purchasing from a certain channel, the consumers’ belief

includes the following factors: the probability that the product is authentic, the perceived

quality of the authentic product, and the probability of finding that the product does not

match his or her needs. The product of these two factors determines the consumers’ expected

quality of product. In general, the consumers’ expected quality of product is defined as:

Expected quality of product = Probability(authentic product) * Quality(authentic product)

+ Probability(non-authentic product) * Quality(non-authentic product)

- Probability(authentic but a poor match to consumer’s needs) * Cost (poor match)

where Probability(authentic product) + Probability(non-authentic product) =1. For sim-

plicity, we normalize the quality of the non-authentic product to be zero. Note that Qual-
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Table 2.5: Model Notation

Parameters:
↵ Seller e�ciency, uniformly distributed U(0, 1)
⇣h, ⇣l Seller e↵ort coe�cient when they exert e↵ort to increase consumer

utility in the high- and low-certainty channels
kp Platform owner’s e↵ort coe�cient when they exert e↵ort to decrease

quality variance in the high-certainty channel
v0(e), vh(e), vl(e) Consumer utility as a function of seller e↵ort e in one-channel,

high-certainty, and low-certainty channel cases
q Perceived quality in the high-certainty channel
✓ Consumer quality preference parameter, uniformly distributed U(0, 1)
r Reputation spillover parameter
�
2
0, �

2
l
, �2

h
Service quality variance in the one-channel, low- and high-certainty
channels

sh Consumer sensitivity to quality variance in the high-certainty channel
Platform owner’s
decision variables:
c0, cl Seller unit transaction cost for using the low-certainty channel in the

one- and two-channel cases
ce Additional unit transaction cost for using the high-certainty channel

in the two-channel case
ep Platform owner’s e↵ort to decrease quality variance in the

high-certainty channel
Seller decision
variables:
e0, eh, el Seller e↵ort in one-channel, high-certainty, and low-certainty channel

cases
Intermediate variables:
p0, ph, pl Product price in one-channel, high-certainty, and low-certainty

channel cases
D0, Dh, Dl, Dt Demand in one-channel, high-certainty, low-certainty, and combined

two-channel cases
S0, Sh, Sl, St Supply in one-channel, high-certainty, low-certainty, and combined

two-channel cases
Outcome variables:
⇧1, ⇧2 Platform owner’s profit in the one- and two-channel cases
⇡0, ⇡h, ⇡l Seller profit in one-channel, high-certainty, and low-certainty channel

cases
SP0, SPh, SPl, SP2 Total seller profit in one-channel, high-certainty, low-certainty, and

combined two-channel cases
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ity(authentic product) can be improved with outstanding service such as a better return

policy and rapid shipping. In the benchmark’s case, let P0 be the authenticity probability,

and q0 be the corresponding quality. Thus, we obtain:

Expected quality of product for benchmark case = P0 ⇤ q0

+ Probability(non-authentic product) * Quality(non-authentic product)

- Probability(authentic but a poor match to consumer’s needs) * Cost(poor match)

= P0 ⇤ q0 - Probability(poor match to consumer’s needs) * Cost(poor match),

and we normalize the expected quality of product for benchmark case to be 1 in our paper.

In the high-certainty channel, sellers o↵er generous return policies, pay higher deposit

(which will be used to guarantee the authenticity of the product), or display the manu-

facturer’s permit to sell. Then consumers’ belief about the authenticity probability in the

high-certainty channel (PH) may rise (i.e., PH > P0). Also, it is in the sellers’ interest to

describe the products truthfully given the generous return policies and other restrictions of

the high-certainty channel. Having more information on the true state of the product, a

consumer will have a lower probability of finding the product unfit and incurring a cost to

return it. Therefore, expected quality of product in the high-certainty channel (qH) should

be higher than that in the benchmarks’ case (i.e., qH > q0).

Furthermore, a consumer, evaluating his or her utility of buying at the low-certainty

channel, might also visit the high-certainty channel. Because the sellers in the high-certainty

channel may be required to provide a generous return policy, for example, the high-certainty

channel sellers are likely to provide a much clearer and more accurate description of the prod-

uct. The description by sellers in the high-certainty channel could confirm this consumer’s

understanding of the product and reduce the chance of returning the product, thereby also

leading to a higher expected quality in the low-certainty channel. That is the positive e↵ect

of reputation spillover between channels in our model. On the other hand, if a seller in the

high-certainty channel displays the manufacturer’s permit to sell while the counterpart in the

low channel does not, then a consumer might trust such a seller in the low-certainty channel
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less and the authenticity probability in the low-certainty channel (PL) becomes smaller than

P0. This is the negative reputation spillover e↵ect, where PL < P0. As a result, the channel

spillover e↵ect (r) could be greater than, equal to, or less than 1. However, our analytical

results are derived from comparative statics and hold regardless of whether r is larger than

1 or less than 1. We do not have any a priori presumption of the expected directionality of

r.

As a platform owner exerts more e↵ort on verifying and monitoring sellers’ certification on

the high-certainty channel, consumers’ uncertainty of buying via the high-certainty channel

is lower. Therefore, we model the variance �
2
h
for the high-certainty channel as equation

�
2
h
= (1 � ep)�2

l
, where ep is the platform owner’s e↵ort. The platform owner can require

the sellers in the high-certainty channel to provide more certification materials or other

activities which could increase the workload of the platform owner. The platform owner can

also become involved in the transactions between sellers in the high-certainty channel and

consumers by adjudicating disputes between sellers and consumers and distributing deposits

held in escrow from sellers in the high-certainty channel to consumers in the event of seller

misbehavior. These measures can make consumers more confident to purchase from the

high-certainty channel, which will decrease the consumers’ perceived quality variance.

Sellers need to determine whether to sell the product, and if they do, which channel to

sell in for the two-channel case. Once they have chosen the channel, competition between

these sellers and demand from consumers, together, will determine the price of the product.

We denote the price as p0 for the one-channel case, and ph and pl for high- and low-certainty

channels in the two-channel case. At the same time, each seller can exert some e↵ort e to

serve customers and increase consumers’ utility. We assume that the cost of e↵ort is e0/↵

for the one-channel case, and eh/↵ and el/↵ for high- and low-certainty channels in the

two-channel case. Here ↵ denotes the seller’s type and has a uniform distribution between

0 and 1, representing the fact that some sellers are very e�cient at serving customers and

some are not. The consumer utility gained by the seller’s e↵ort is v0(e0) for the one-channel
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case, and vh(eh) and vl(el) for high- and low-certainty channels in the two-channel case. For

tractability of the model, we assume v0(e0) = ⇣le
1/2
0 , vh(eh) = ⇣he

1/2
h

and vl(el) = ⇣le
1/2
l

,

where the utility is an increasing function of e↵ort with diminishing marginal returns. That

is, when e↵ort is high, the seller should exert more e↵ort to gain the same extra unit of utility.

Continuing with the concept of diminishing marginal returns, in this paper we are interested

in the case when ⇣l > ⇣h, where consumers usually get more incremental satisfaction from

the low-certainty channel given an identical amount of incremental service e↵ort. We discuss

the case when ⇣h > ⇣l in Section 2.6.4.

In the one-channel case, consumer utility is determined by three factors: the channel

chosen, the price of a particular seller p0 and the additional utility v0(e0) due to the e↵ort

exerted by this seller. We have:

u0 = ✓ � �
2
0 � p0 + v0(e0) (2.1)

where ✓ denotes the consumer’s type of quality preference, and it is uniformly distributed

between 0 and 1. We have normalized consumer sensitivity to quality uncertainty in the

low-certainty channel to 1. In the two-channel case, the consumer’s utility of buying from

the high-certainty channel is:

uh = ✓q � sh�
2
h
� ph + vh(eh) (2.2)

where sh is the consumer sensitivity to the quality uncertainty in the high-certainty channel.

If a consumer is more sensitive to the quality uncertainty, then the consumer’s utility would

be lower given the same amount of uncertainty. To ensure consumers can get positive utility

even when sellers don’t exert any e↵ort, we require q > sh�
2
l
. In the two-channel case, the

consumer’s utility of buying from the low-certainty channel is:

ul = ✓r � �
2
l
� pl + vl(el) (2.3)
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where r is the perceived quality in the low-certainty channel including the impact of the

reputation spillover e↵ect.

In a particular channel, all sellers present the same utility value to a customer. At

equilibrium, consumers who decided to buy the product are indi↵erent to buying from one

seller or another. Otherwise, if this is not the case, a seller could adjust the price to attract

consumers. Therefore, we can see from (2.1) that the di↵erence between price and the extra

utility generated by a seller’s e↵ort should be the same across sellers. As a result, we define

the following:

p0 � v0(e0) = �0 (2.4)

ph � vh(eh) = �h (2.5)

pl � vl(el) = �l (2.6)

As explained above, �0, �h and �l should be constants. Otherwise, suppose in the one-

channel case, there are two sellers with di↵erent �0
0
and �0

00
values, where �0

0
is greater than

�
00
0 . Then the seller with high �

0
0 could increase their price and obtain a higher profit. Thus,

at equilibrium, we should have �0
0
= �

00
0 and �0 is a constant. We can show that �h and �l

are constants in the same way.

Seller profit is determined by three factors: the price of the product, the e↵ort exerted,

and fees charged by the platform owner. We denote the fees charged by the platform owner

as c0 in the one-channel case, and cl in the two-channel case. In the two-channel case, a

seller pays an extra transaction fee of ce to be able to sell in the high-certainty channel.

For example, sellers at Tmall (the high-certainty channel of Alibaba) have to pay higher

transaction fees. Thus, in the one-channel case, the seller profit is:

⇡0 = p0 � (c0 +
e0

↵
) (2.7)
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In the two-channel case, the seller profit in the high-certainty channel is:

⇡h = ph � (cl +
eh

↵
+ ce) (2.8)

while the seller profit in the low-certainty channel is:

⇡l = pl � (cl +
el

↵
) (2.9)

2.5. Analysis

In this section, we present the analysis of one- and two-channel cases. We begin with the

one-channel case.

2.5.1 One-channel case

In the one-channel case, sellers who decide to sell the product choose the e↵ort and price

to maximize their profit (2.7) subject to the constraint (2.4). We can solve p0 from (2.4)

and substitute it into (2.7). Then the optimization problem is transformed to maximizing

⇡0 with respect to e0, where:

⇡0 = �0 + ⇣le
1/2
0 � (c0 +

e0

↵
) (2.10)

From (2.10), optimal seller e↵ort level is obtained as follows:

e0 = (
↵⇣l

2
)2 (2.11)

Only sellers with profit higher than 0 will participate. Substituting equation (2.11) into

(2.10), we have:

⇡0 = �0 +
↵⇣

2
l

2
� (c0 +

↵⇣
2
l

4
) > 0 (2.12)
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and therefore the market participation condition is:

↵ > ↵0 ⌘
4(c0 � �0)

⇣
2
l

(2.13)

In other words, only sellers who serve customers more e�ciently than the type ↵0 seller will

be in the market. Thus, the supply for the market is:

S0 = 1� ↵0 (2.14)

For consumers, only those with utility u0 (given by (2.1)) higher than 0 will be in the market.

Substituting (2.4) into (2.1), we get:

u0 = ✓ � �
2
0 � pl + v0(e0) = ✓ � �

2
0 � �0 > 0 (2.15)

which implies:

✓ > ✓0 ⌘ �
2
0 + �0 (2.16)

That is, only consumers who value the product su�ciently high (✓ > ✓0) will buy the product.

Thus, the demand of the product is given by:

D0 = 1� ✓0 (2.17)

In equilibrium, the supply of the product (2.14) equals the demand (2.17). That is:

4(c0 � �0)

⇣
2
l

= �
2
0 + �0 (2.18)

which gives the expression of �0:

�0 =
4c0 � �

2
0⇣

2
l

⇣
2
l
+ 4

(2.19)
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The platform owner’s profit ⇧1 in the one-channel case is given by the product demand D0

multiplied by the unit cost charged by the platform owner (c0). By using (2.16), (2.17), and

(2.19):

⇧1 = D0c0 = (1� 4c0 � �
2
0⇣

2
l

⇣
2
l
+ 4

� �
2
0)c0 (2.20)

Next, we find the optimal cost c0 that maximizes the platform owner’s profit (2.20) by using

the first-order condition and get:

c0 = ((⇣2
l
+ 4)� 4�2

0)/8 (2.21)

Then, by using (2.21), we obtain the optimal demand of the product from (2.17):

D0 =
1

2
� 2�2

0

⇣
2
l
+ 4

(2.22)

and the optimal platform owner’s profit from (2.20):

⇧1 =
(⇣2

l
� 4�2

0 + 4) 2

16 (⇣2
l
+ 4r)

(2.23)

From the expression of seller profit (2.12), we can get the profit for seller of type ↵:

⇡0(↵) =
1

8
⇣
2
l

✓
2↵� 4�2

0

⇣
2
l
+ 4r

� 1

◆
(2.24)

By using (2.13) and (2.23), we find the total seller profit in the one-channel case:

SP0 =

Z 1

↵0

⇡0(↵)d↵ =
⇣
2
l
(⇣2

l
� 4�2

0 + 4) 2

32 (⇣2
l
+ 4) 2

(2.25)

20



2.5.2 Two-channel case

For the two-channel case, the platform owner’s profit function is:

⇧2 = Dlcl +Dh(cl + ce)� kpep
2 (2.26)

The first term Dlcl, and the second term Dh(cl + ce) are total transaction fees from the low-

and high-certainty channels, respectively. The third term, kpep2, is the cost of e↵ort for the

platform owner which increases quadratically due to increasing marginal costs. The platform

owner chooses ep, cl, and ce to maximize their profit.

The sellers in the high-certainty channel choose the e↵ort and price to maximize their

profits (2.8) under constraint (2.5). Using (2.5), we transform the problem into profit maxi-

mization with respect to eh:

⇡h = �h + ⇣he
1/2
h

� (cl +
eh

↵
+ ce) (2.27)

Therefore, by using the first-order condition for (2.27), we obtain the optimal seller e↵ort

eh:

eh = (
↵⇣h

2
)2 (2.28)

The sellers in the low-certainty channel choose the e↵ort and price to maximize their profit

(2.9) under constraint (2.6). Using (2.6), we similarly transform the problem into profit

maximization with respect to el:

⇡l = �l + ⇣lel
1/2 � (cl +

el

↵
) (2.29)

Similarly, we obtain the optimal e↵ort el:

el = (
↵⇣l

2
)2 (2.30)
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A seller will only participate in a channel if the profit is greater than zero:

⇡h = �h + ↵⇣
2
h
/4� cl � ce > 0 (2.31)

and

⇡l = �l + ↵⇣
2
l
/4� cl > 0 (2.32)

Sellers will only choose the high-certainty channel when ⇡h is greater than ⇡l and 0. Similarly,

sellers will only choose the low-certainty channel when ⇡l is greater than ⇡h and 0. At ⇡h = ⇡l

we have the seller of type ↵l who is indi↵erent between selling via the low- and high-certainty

channels:

↵l =
�4ce + 4�h � 4�l

�⇣
2
h
+ ⇣

2
l

(2.33)

Since ⇣h < ⇣l, we have ⇡h < ⇡l when ↵ > ↵l. In other words, sellers who serve customers

more e�ciently than seller of type ↵l will choose the low-certainty channel. The intuition is

that those sellers can exert more e↵ort with less cost, and therefore choose the low-certainty

channel which values e↵ort more. On the other hand, sellers who serve customers less

e�ciently than seller of type ↵l will either choose the high-certainty channel, or will not sell

if ⇡h < 0 in which case the seller is below ↵h. By setting ⇡h = 0 in (2.31), we obtain:

↵h =
4ce + 4cl � 4�h

⇣
2
h

(2.34)

As a result, the supply of the high- and low-certainty channels are:

Sl = 1� ↵l (2.35)

Sh = ↵l � ↵h (2.36)
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Both channels exist with positive supply and demand when the following holds:

↵l > ↵h (2.37)

On the consumer side, a consumer will buy from the high-certainty channel when their

utility uh (given by (2.2)) is greater than ul (given by (2.3)) and 0. Likewise, a consumer will

buy from the low-certainty channel when ul is greater than uh and 0. At uh = ul, consumer

of type ✓h is indi↵erent between buying from the low- and high-certainty channels. By using

(2.2) and (2.3), we obtain:

✓h =
�h � �l � �

2
l
+ sh�

2
l
� epsh�

2
l

q � r
(2.38)

Since the perceived quality in the high-certainty channel is higher (q > r), we can see from

(2.2) and (2.3) that, uh > ul when ✓ > ✓h. That is, a consumer who values service quality

more than the consumer of type ✓h will buy from the high-certainty channel. It follows then

that consumers in the range ✓l to ✓h will buy from the low-certainty channel, where customer

of type ✓l is indi↵erent between buying the product or not. By setting ul = 0 in (2.3), we

obtain:

✓l =
�l + �

2
l

r
(2.39)

As a result, the demand of the high- and low-certainty channels are:

Dh = 1� ✓h (2.40)

Dl = ✓h � ✓l (2.41)

Both channels exist with positive supply and demand when the following holds:

✓h > ✓l (2.42)
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We define A, B, and C as follows, in order to simplify expressions in this section and in the

appendix:

A ⌘ �
2
l

�
⇣
2
h
� sh

�
⇣
2
l
+ 4r

�
+ 4r

�
+ (q � r)

�
⇣
2
l
+ 4r

�
(2.43)

B ⌘ kp

�
�⇣

4
h
+ ⇣

2
h

�
⇣
2
l
� 4r

�
+ 4q⇣2

l
+ 16r(q � r)

�
� s

2
h
�
4
l

�
⇣
2
l
+ 4r

�
(2.44)

C ⌘ B (⇣2
l
� 4�2

l
+ 4r)

⇣
2
l
+ 4r

� A (4kp (⇣2h + 4r))

⇣
2
l
+ 4r

(2.45)

In equilibrium, the supply equals the demand: Sl = Dl and Sh = Dh. From these two

equations and by using (2.33) to (2.41), we obtain �l and �h. Substituting �l and �h into the

platform owner’s profit in (2.26), we find the optimal cl and ce that maximize the owner’s

profit as follows:

cl =
4r + ⇣

2
l
� 4�2

l

8
(2.46)

ce =
⇣
2
h
� ⇣

2
l
+ 4(q � r + (1 + (�1 + ep)sh)�2

l
)

8
(2.47)

Substituting cl and ce back into (2.26), we get the optimal e↵ort ep that maximizes the

owner’s profit (through the first order condition):

ep =
sh�

2
l
A

B
(2.48)

Then, the optimal demands Dh and Dl can be derived from (2.40) and (2.41) as:

Dh =
2kpA

B
(2.49)

Dl =
C

2B
=

1

2

✓
(⇣2

l
� 4�2

l
+ 4r)

⇣
2
l
+ 4r

� Dh (2 (⇣2h + 4r))

⇣
2
l
+ 4r

◆
(2.50)

and the total demand in the two-channel case is given by

Dt = Dh +Dl =
2Dh (⇣2l � ⇣

2
h
) + ⇣

2
l
� 4�2

l
+ 4r

2 (⇣2
l
+ 4r)

(2.51)

24



The platform owner’s optimal profit in (2.26) can be written as:

⇧2 =
8DhA+ (⇣2

l
� 4�2

l
+ 4r) 2

⇣
2
l
+ 4r

(2.52)

Total seller profit in the high- and low-certainty channels are given by:

SPh =
k
2
p
⇣
2
h
A

2

2B2
(2.53)

SPl =
(⇣2

l
C + 8kp⇣2hA)C

32B2
(2.54)

2.6. Results and Insights

In this section, we summarize the results of our model. All proofs for theorems and table

entries are presented in the Appendix. Our model assumptions and constraints are also listed

in the Appendix.

The one-channel case will be used to compare the e↵ects of introducing a second vetted

channel. As discussed before, the one-channel case is assumed to be a low-certainty channel

with respect to service quality. The impacts of parameters on demand and profit for the

one-channel case are presented in Theorem 1 and Table 2.6.

Table 2.6: Parameter Impacts on Demand and Profit in One-Channel Case

D0 ⇧1 SP0

�
2
0

@D0

@�
2
0
< 0 @⇧1

@�
2
0
< 0 @SP0

@�
2
0
< 0

⇣l
@D0
@⇣l

> 0 @⇧1
@⇣l

> 0 @SP0
@⇣l

> 0

Theorem 1. For the one-channel case, the following hold:

i. When �
2
0 increases, the demand in the one-channel case D0, the platform owner’s profit

⇧1, and seller profit SP0 decreases.
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ii. When ⇣l increases, the demand in the one-channel case D0, the platform owner’s profit

⇧1, and seller profit SP0 increases.

It is intuitive that when the quality variance �
2
0 increases, consumers’ utility of buying

from the channel will decrease. In that case, more consumers may prefer not to buy and stay

out of the market. As a result, the demand for the one-channel case will decrease. In turn,

the platform owner will charge less for sellers to use the channel, so the platform owner’s

profit will decrease. When the seller e↵ort coe�cient ⇣l increases, sellers will be more e�cient

at increasing consumers’ utility, everything else being the same. Therefore, sellers will be

able to attract more consumers and the demand will increase. Consequently, the platform

owner will be able to charge more from sellers to use the channel, so the platform owner’s

profit will increase.

We argue that, when the sign of the partial derivatives for a particular parameter is the

same for two parties, then the incentives with respect to that parameter for those two parties

are aligned. Note that as presented in Table 2.6, the incentives for the platform owner are

perfectly aligned with the sellers in the one-channel case.

2.6.1 Parameter impacts on demand in two-channel case

In the two-channel case, the partial derivatives of demand with respect to model parameters

are presented in Table 2.7. In terms of demand, the platform owner (represented by total

demand Dt) is no longer perfectly aligned with either the low- or high-certainty channel

sellers. We first analyze the comparative statics on the demand of the high-certainty channel

Dh.

Theorem 2. In the two-channel case, the following hold for the demand in the high-certainty

channel Dh:

1. When q or ⇣h increases, demand in the high-certainty channel Dh increases.

2. When sh, r, �2
l
, or ⇣l increases, demand in the high-certainty channel Dh decreases.
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Table 2.7: Parameter Impacts on Demand in Two-Channel Case

Dh Dl Dt

q
@Dh
@q

> 0 @Dl
@q

< 0 @Dt
@q

> 0

sh
@Dh
@sh

< 0 @Dl
@sh

> 0 @Dt
@sh

< 0

r
@Dh
@r

< 0 @Dl
@r

7 0⇤ @Dt
@r

7 0⇤

�
2
l

@Dh

@�
2
l
< 0 @Dl

@�
2
l
7 0⇤ @Dt

@�
2
l
< 0

⇣l
@Dh
@⇣l

< 0 @Dl
@⇣l

> 0 @Dt
@⇣l

> 0

⇣h
@Dh
@⇣h

> 0 @Dl
@⇣h

< 0 @Dt
@⇣h

7 0⇤

⇤ Indicates sign changes depending on the cuto↵ point(s).

When the service quality of the high-certainty channel q increases, some consumers will

move from the low- to high-certainty channel. When consumers become more sensitive to

quality variance in the high-certainty channel (sh increases), then the utility penalty for

quality variance in the high-certainty channel (sh(1� ep)�2
l
) will increase. This will decrease

demand in the high-certainty channel Dh. Likewise, the same occurs when the quality

variance in the low-certainty channel �2
l
increases, because this causes the high-certainty

channel to become less attractive than before, due to the dependence of �2
h
on �

2
l
.

When seller e↵ort becomes more e↵ective in attracting consumers in the low-certainty

channel (⇣l increases), some consumers will move from the high- to low-certainty channel.

Thus, the demand in the high-certainty channel Dh will decrease. When seller e↵ort becomes

more e↵ective in attracting consumers in the high-certainty channel (⇣h increases), some

consumers will move from the low- to high-certainty channel. Thus, the demand in high-

certainty channel Dh will increase.

Theorem 3. In the two-channel case, the following hold for the demand in the low-certainty

channel Dl:
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1. When q or ⇣h increases, demand in the low-certainty channel Dl decreases.

2. When sh or ⇣l increases, demand in the low-certainty channel Dl increases.

3. When r < r
0
1 and r increases, then demand in the low-certainty channel Dl decreases.

Conversely when r > r
0
1 and r increases, then demand in the low-certainty channel Dl

increases. See proof for the definition of r01.

4. When sh is su�ciently small, i.e., sh < (⇣2
h
+ 4q) / (⇣2

h
+ 4r), demand in the low-

certainty channel Dl decreases as �
2
l
increases.

(a) Small q (q = 1.4) (b) Large q (q = 8)

Figure 2.1: Dl vs. r (⇣h = 0.3, ⇣l = 1.2, kp = 1, �l = 0.5)

(a) Small q (q = 1.4) (b) Large q (q = 8)

Figure 2.2: Dl vs. �l (⇣h = 0.3, ⇣l = 1.2, kp = 1, r = 0.7)

For demand in the low-certainty channel Dl, parameters q, sh, ⇣l and ⇣h have the opposite

compared to their e↵ect on the high-certainty channel demand Dh. The impact of reputation

spillover r and quality variance �
2
l
both become conditional in the low-certainty channel.
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When the perceived quality in the high-certainty channel q increases, some consumers

will move from the low- to high-certainty channel. When consumer’s sensitivity to quality

variance in the high-certainty channel sh increases, consumer utility in the high-certainty

channel will decrease, and some consumers will move from the high- to low-certainty channel.

When reputation spillover r is high enough, then as r increases, the low-certainty chan-

nel becomes more attractive to the consumers than the high-certainty channel. Thus, the

low-certainty channel demand Dl will increase when r is high enough. Numerical analysis

provides more insight on the impact of parameter q on the cuto↵ point r
0
1. It should be

noted that parameter r should fall within a certain range, specifically �
2
l
< r < r̂, where r̂

is the upper bound. Consequently, a valid threshold r
0
1 should be within the same range as

well. Otherwise, we set the threshold to the corresponding boundary value. For example,

if r01  �
2
l
, then the threshold is set to r

0
1 = �

2
l
and Dl will increase with all values of r

(see proof for details). A similar situation holds for other threshold values mentioned in the

paper, as well. The ranges for which thresholds are valid are presented in the corresponding

proofs. Keeping this in mind, we see from Figure 2.1a that when q is small, r01 equals its

lower bound and therefore Dl increases for all possible values of r. Also, Dl is higher for

any given value of r as sh increases. As seen in Figure 2.1b, the situation changes when q is

large. In this case, r01 is valid (i.e., r01 takes an interior value within its bounds) and therefore

Dl decreases with r before r
0
1 and increases afterwards. Again, Dl is higher for any given

value of r as sh increases.

Intuitively, one may think that when reputation spillover e↵ect r increases, the low-

certainty channel demand Dl will always increase, since the consumers in the low-certainty

channel will gain more utility. However, we find that demand in the low-certainty channel

Dl decreases with r for a parameter region where r is quite low relative to q (see Figure

2.1b). This is primarily due to the fact that the inter-channel competition is not so intense

in this region. For small values of r, as r increases, sellers in the low-certainty channel

increase their price p while keeping their e↵ort el the same (see (2.30)), while the channel
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owner increases transaction cost cl (see (2.46)). As a result, the demand in the low-certainty

channel Dl initially decreases. However, as r gets closer to q, the inter-channel competition

intensifies and as r increases, the low-certainty channel start to take some demand away

from the high-certainty channel, leading to an increase in Dl.

Similar numerical examination of Dl versus �
2
l
also yields interesting results. As seen

in Figure 2.2a, when q is small, Dl decreases with small values of sh, but increases with

large values of sh. In contrast, when q is large, as seen in Figure 2.2b, Dl only decreases as

�
2
l
increases. The intuition behind this e↵ect is that, when q is small, there is an intense

inter-channel competition. In this case, for large values of sh, as �2
l
increases, sellers in the

high-certainty channel will be penalized more than sellers in the low-certainty channel. Then,

the low-certainty channel gains market share at the expense of the high-certainty channel.

Theorem 4. In the two-channel case, the following hold for the total demand Dt:

i. When q or ⇣l increases, total demand in the two-channel case Dt increases.

ii. When sh or �
2
l
increases, total demand in the two-channel case Dt decreases.

iii. When r < r
0
2 and r increases, then total demand in the two-channel case Dt increases.

Conversely, when r > r
0
2 and r increases, then total demand in the two-channel case Dt

decreases. See proof for definition of r02.

iv. When ⇣h < ⇣
0
h
and ⇣h increases, then total demand in the two-channel case Dt increases.

Conversely, when ⇣h > ⇣
0
h
and ⇣h increases, then total demand in the two-channel case

Dt decreases. See proof for definition of ⇣ 0
h
.

v. There exists a region with respect to the reputation spillover (r002 < r < r
000
2 ) for which the

total demand in the two-channel case Dt will be greater than demand in the one-channel

case D0. See proof for definitions of r002 and r
000
2 .

Total demand Dt for the platform owner is aligned with the high-certainty channel de-

mand Dh for parameters q, sh, and �
2
l
, while ⇣l is aligned with the low-certainty channel
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(a) Small q (q = 1.2) (b) Large q (q = 8)

Figure 2.3: Dt vs. ⇣h (r = 0.7, ⇣l = 4, kp = 1, �l = 0.8)

demand Dl. When q increases, the high-certainty channel will become more attractive and

get some consumers from the low-certainty channel. To compete with the high-certainty

channel, sellers in the low-certainty channel will lower their price, attracting some consumers

who previously did not buy. Then, the total demand Dt will increase.

When sh increases, consumer utility in the high-certainty channel will decrease and some

high-certainty channel consumers will switch to the low-certainty channel. As the channel

becomes more desirable, the low-certainty channel sellers will increase their price. As a

result, some marginal consumers will leave the market and choose not to buy the product,

and total demand Dt will decrease.

When �
2
l
increases, the low-certainty channel becomes less attractive to marginal con-

sumers (near the indi↵erent customer with ✓ = ✓l), causing them to leave the market.

Therefore, the total demand Dt decreases. The opposite is true for ⇣l, hence Dt increases

with ⇣l.

As seen in Figure 2.3, Dt increases as sh decreases for any given value of ⇣h. As illustrated

in Figure 2.3a, when q and sh are small, threshold ⇣
0
h
is set to its upper bound and therefore,

Dt is increasing with ⇣h. However, for a large sh (sh = 3.0), threshold ⇣
0
h
is within bounds

and therefore, Dt first increases until ⇣ 0h and then decreases as ⇣h continues to increase. For

a large value of q, as seen in Figure 2.3b, we observe that threshold ⇣
0
h
is set to its lower

bound and therefore, Dt only decreases as ⇣h increases.

31



The last part of Theorem 4 defines the range for which the total demand for the two-

channel case Dt will exceed the demand for the one-channel case D0 with respect to r. It is

interesting to see that the total demand in the two-channel case is higher only if the spillover

e↵ect is not too high or not too low. If the reputation spillover e↵ect is low (r < r
00
2), then a

low-certainty channel is not so valuable to consumers and the total demand drops. On the

other hand, if the spillover e↵ect is too high (r > r
000
2 ), the low-channel channel sellers can

charge high price and the marginal consumers near the indi↵erent consumer (✓ = ✓l) drop

out of the market and the total demand Dt becomes less than the demand in the one-channel

case D0. As a result, adding a second certified channel increases the total demand only if

the reputation spillover e↵ect is in a middle range.

We illustrate the e↵ect of reputation spillover r on the platform owner’s choice to open

a second vetted channel in Figure 2.4. In this figure, the y-axis is labeled D for demand.

Reputation spillover is key to understanding the addition of the second vetted channel. Both

very low r and very high r values will cause the two-channel demand Dt to be lower than

the alternative one-channel demand D0.

Figure 2.4: Dt and D0 vs. r (q = 1.4, ⇣h = 0.3, ⇣l = 1.2, kp = 1, sh = 2, �l = 0.6)

2.6.2 Platform owner’s e↵ort in two-channel case

We now examine the impact of changes in various parameters on the platform owner’s e↵ort

in the two-channel case. Results are presented in Table 2.8 and Theorem 5 below.

Theorem 5. In the two-channel case, the following hold for the platform owner’s e↵ort ep:
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Table 2.8: Parameter Impacts on Platform Owner’s E↵ort in Two-Channel Case

q sh r �
2
l

⇣l ⇣h

ep
@ep

@q
> 0 @ep

@sh
7 0⇤ @ep

@r
< 0 @ep

@�
2
l
7 0⇤ @ep

@⇣l
< 0 @ep

@⇣h
> 0

⇤ Indicates sign changes depending on the cuto↵ point(s).

i. When q or ⇣h increases, the platform owner’s e↵ort ep increases.

ii. When r or ⇣l increases, the platform owner’s e↵ort ep decreases.

iii. When sh < s
0
h
and sh increases, then the platform owner’s e↵ort ep increases. Con-

versely, when sh > s
0
h
and sh increases, then the platform owner’s e↵ort ep decreases.

See proof for definition of s0
h
.

iv. When �
2
l
< �

00
l

2 and �
2
l
increases, then the platform owner’s e↵ort ep increases. Con-

versely, when �
2
l
> �

00
l

2 and �
2
l
increases, then the platform owner’s e↵ort ep decreases.

See proof for definition of �00
l

2.

(a) Small q (q = 1.4) (b) Large q (q = 4)

Figure 2.5: ep vs. sh (⇣h = 0.3, ⇣l = 1.2, kp = 1, r = 0.7)

The incentives for the platform owner’s e↵ort ep with respect to parameters q, r, ⇣l,

and ⇣h are identical to the incentives for the high-certainty channel demand Dh. When q

increases, the high-certainty channel becomes more attractive for consumers and the channel

owner. When ⇣h increases, the high-certainty channel sellers exert more e↵ort. In both of

these cases for q and ⇣h, it is beneficial for the platform owner to increase their e↵ort ep to
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(a) Small q (q = 1.4) (b) Large q (q = 4)

Figure 2.6: ep vs. �l (⇣h = 0.3, ⇣l = 1.2, kp = 1, r = 0.7)

attract more consumers and increase revenues. On the other hand, when r or ⇣l increases,

the high-certainty channel becomes less attractive and platform owner will decrease their

e↵ort ep.

From Figure 2.5, it is interesting to see that the platform owner’s e↵ort ep first increases

and then decreases as sh increases. When sh is small, as sh increases, the platform owner

reacts by increasing their e↵ort in order to make the high-certainty channel more attractive.

However, as sh further increases to higher levels, the platform owner reacts by exerting less

e↵ort. This result occurs because of diminishing returns on e↵ort for the platform owner.

In Figure 2.6, we observe that ep increases as �l increases, especially when �l is small.

When service quality uncertainty �l increases, both channels look less desirable to consumers.

The platform owner reacts by reducing the uncertainty via ep and make the high-certainty

channel more attractive. In Figure 2.6b, the threshold �
00
l

2 is set to its upper bound, and

therefore the platform owner’s e↵ort ep increases for all possible values of �l. However, for a

certain parameter region (for example, in Figure 2.6a when q is small and sh is large) when

�l further increases to higher levels, the platform owner reacts by reducing e↵ort because of

the diminishing returns.
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2.6.3 Parameter impacts on profit

For the two-channel case, partial derivatives for total seller profit for the high-certainty

channel SPh, total seller profit in the low-certainty channel SPl, and platform owner’s profit

⇧2 with respect to model parameters are presented in Table 2.9.

Table 2.9: Parameter Impacts on Profit in Two-Channel Case

SPh SPl ⇧2

q
@SPh
@q

> 0 @SPl
@q

< 0 @⇧2
@q

> 0

sh
@SPh
@sh

< 0 @SPl
@sh

> 0 @⇧2
@sh

< 0

r
@SPh
@r

< 0 @SPl
@r

7 0⇤ @⇧2
@r

7 0⇤

�
2
l

@SPh

@�
2
l

< 0 @SPl

@�
2
l
7 0⇤ @⇧2

@�
2
l
< 0

⇣l
@SPh
@⇣l

< 0 @SPl
@⇣l

> 0 @⇧2
@⇣l

> 0

⇣h
@SPh
@⇣h

> 0 @SPl
@⇣h

7 0⇤ @⇧2
@⇣h

> 0

⇤ Indicates sign changes depending on the cuto↵ point(s).

Theorem 6. In the two-channel case, the following hold for total seller profit in the high-

certainty channel SPh:

i. When q or ⇣h increases, total seller profit in the high-certainty channel SPh increases.

ii. When sh, r, �
2
l
, or ⇣l increases, total seller profit in the high-certainty channel SPh

decreases.

The partial derivative directions for SPh match the partial derivative directions for Dh

for all parameters (see Tables 2.7 and 2.9). The intuition for the results of Theorem 6 is

similar to the intuition for Theorem 2, which is presented in Section 2.6.1.
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Theorem 7. In the two-channel case, the following hold for total seller profit in the low-

certainty channel SPl:

i. When q increases, total seller profit in the low-certainty channel SPl decreases.

ii. When sh or ⇣l increases, total seller profit in the low-certainty channel SPl increases.

iii. When r > r
0
3 and r increases, then total seller profit in the low-certainty channel SPl

increases. See proof for definition of r03.

iv. When ⇣h < ⇣
00
h
and ⇣h increases, then total seller profit in the low-certainty channel SPl

decreases. See proof for definition of ⇣ 00
h
.

(a) Small q (q = 1.4) (b) Large q (q = 8)

Figure 2.7: SPl vs. r (⇣h = 0.3, ⇣l = 1.2, kp = 1, �l = 0.5)

The partial derivative directions for SPl match the partial derivative directions for Dl for

all parameters, except ⇣h (see Tables 2.7 and 2.9). Therefore, the intuition for the results of

Theorem 7 is similar to the intuition for Theorem 3, except for the impact of ⇣h.

As the high-certainty channel sellers become more e�cient in exerting e↵ort (⇣h increases),

high-certainty channel sellers will increase their e↵ort levels and sellers in both channels will

raise prices. When ⇣h is small, the high-certainty channel sellers are very ine�cient and

therefore not so competitive, compared to the low-certainty channel sellers. In this case,

when ⇣h increases, the e↵ectiveness and competitiveness gain for the high-certainty channel

relative to the low-certainty channel is high and therefore the decrease in Dl is large. The

increase in price does not make up for the decrease in Dl initially and SPl decreases.
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Theorem 8. In the two-channel case, the following hold for the platform owner’s profit ⇧2:

i. When q, ⇣h, or ⇣l increases, the platform owner’s profit ⇧2 increases.

ii. When sh or �
2
l
increases, the platform owner’s profit ⇧2 decreases.

iii. When r > r
0
4 and r increases, the platform owner’s profit ⇧2 increases. See proof for

definition of r04.

From Table 2.9 and Theorem 8, we get the following results:

Corollary 8.1. When q, r, or ⇣h is su�ciently high or when sh is su�ciently low, the

platform owner’s profit increases if they o↵er a vetted channel.

Theorem 8 and Corollary 8.1 help us gain more insights into the research question of when

to o↵er a second, high-certainty channel. When the high-certainty channel consumers are not

so sensitive to the quality uncertainty (sh is su�ciently low) or when the perceived quality

q in the new channel is su�ciently high, then this new channel is valuable to the channel

owner and should be o↵ered to the consumers. Another case in which the channel owner

would benefit from o↵ering the high-certainty channel is when the sellers in this channel are

e�cient in o↵ering service (⇣h is su�ciently high). We can draw some managerial insights

from Corollary 8.1. In order to maximize the profit through o↵ering a new channel, channel

owner should focus on building brand recognition for the new channel, so that the perceived

quality q of this new channel would be high. Also, the platform owner should focus on

building system functionalities in the new channel so that it is easier for sellers in the new

channel to provide service to consumers, which would allow high-certainty channel sellers to

have a high ⇣h value.

2.6.4 Results when ⇣h > ⇣l

In the case where ⇣h > ⇣l, consumers in the high-certainty channel are more sensitive to

sellers’ extra e↵ort than consumers in the low-certainty channel. An example of a plausible
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scenario where ⇣h > ⇣l is as follows. If consumers return the product, they still need to

pay the transportation fee. But if the sellers provide free return insurance that covers the

transportation fee to consumers, consumers who pay more for the product will derive higher

utility from this extra e↵ort. Consumers in the high-certainty channel are more sensitive

to the quality of the product because they pay more, thus consumers in the high-certainty

channel will feel happier than consumers in the low-certainty channel when the free returns

insurance is provided. This reversal of assumptions will cause the following changes to occur

as shown in Table 2.10.

Table 2.10: Parameter Impacts on Demand, E↵ort and Profit in Two-Channel Case

Dh Dl Dt ep SPh SPl ⇧2

q • • @Dt
@q

= 0 • • • •

sh • • @Dt
@sh

= 0 @ep

@sh
7 0⇤ • • •

r • @Dl
@r

> 0 @Dt
@r

> 0 • • @SPl
@r

> 0 @⇧2
@r

> 0

�
2
l

• • • • • • •

⇣l • • • • @SPl
@⇣l

7 0⇤ • •

⇣h • • @Dt
@⇣h

= 0 • • @SPl
@⇣h

< 0 •

⇤ Indicates sign changes depending on the cuto↵ point(s).

• Indicates no change in the sign irrespective of whether ⇣h > ⇣l or ⇣h < ⇣l.

Theorem 9. When ⇣h > ⇣l, most results remains the same as the ⇣l > ⇣h case, except the

followings:

i. When r increases, demand in the low-certainty channel Dl increases.

ii. When q, sh and ⇣h changes, Dt remains the same. When r increases, Dt increases.
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iii. When sh increases, the platform owner’s e↵ort ep will first increase and then decrease

or always decrease.

iv. When ⇣
2
l
increases, total seller profit in the high-certainty channel SPh will always in-

crease under certain conditions, and under other conditions there is a cuto↵ point. When

⇣
2
l
is greater than this cuto↵ point, SPh increases with ⇣

2
l
.

v. When r increases, total seller profit in the low-certainty channel SPl increases. When

⇣h increases, total seller profit in the low-certainty channel SPl decreases.

vi. When r increases, the platform owner’s profit ⇧2 increases.

2.7. Conclusion

Large B2C platforms have created channels for certified (e.g., vetted) sellers in response

to customer concerns over seller service quality. We seek to explain key managerial issues

related to the B2C platform owner’s decision to open a second vetted B2C channel. This

paper contributes to the literature through economic modeling analysis.

This paper provides an economic modeling analysis of an e-Business B2C platform owner’s

decision to expand from one-channel to add a second channel with vetted sellers. Insights

are provided using partial derivatives for demand and profit with respect to a variety of

model parameters. Parameters examined are the customers’ sensitivity to service quality,

the reputation spillover between channels, the perceived quality in the high-certainty channel,

the channel quality uncertainty, and the seller e�ciency coe�cient for each channel. Insights

regarding platform owner’s e↵ort are also presented. We examine when the second vetted

channel will be added by the platform owner. Also, we examine the impact of reputation

spillover on relative demand between the one- and two-channel cases.

The impact of parameter changes on demand and profits is generally in opposite directions

for the low- and high-certainty channels. Thus, the low- and high-certainty channel sellers
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are at odds with each other, and they would like to see the parameters move in di↵erent

directions. This natural tension causes incentive misalignment.

While the platform owner and sellers are aligned for all parameters in the one-channel

case, there is misalignment for some parameters between the platform owner and sellers in

both the low- and high-certainty channels in the two-channel case. Due to these misaligned

incentives in the two-channel case, there will be conflict between the platform owner and

sellers, and between the sellers in separate channels. The platform owner must therefore

strike a between their incentives and the incentives of the low- and high-certainty channel

sellers. With Corollary 8.1, we present some conditions under which it will be desirable for

the platform owner to introduce the second high-certainty (or vetted) channel to increase

their profits.

Our model has yielded several interesting results. We find that when reputation spillover

r increases, consumers’ perceived quality in the low-certainty channel increases. One might

expect that the demand in the low-certainty channel Dl will increase. However, we show

that Dl does not always increase. When r increases and the channel competition is not so

intensive (r is small), sellers in the low-certainty channel can increase price, leading to a

decrease in Dl. We also find that opposite to what one might expect, the total demand

Dt could decrease in r in the region of high r since some customers are priced out of the

market in this case. Another interesting and important result is that the platform owner’s

profit ⇧2 decreases with r when the channel competition is not so intensive. Our managerial

insight from this result is that the platform owner should only o↵er a second, vetted channel

only if the reputation spillover e↵ect is strong and the new channel can lead to an intensive

competition. Our analytical model also yields other interesting results. For example, when

�l increases, the channel owner’s e↵ort ep first increases to reduce the uncertainty in the

high-certainty channel and make it more attractive. However, as �l increases further, ep

starts to decrease due to the decreasing marginal return.

In this paper, a seller would only sell in one-channel. Future extensions to this work
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include the consideration of the case where a seller can sell in both channels simultaneously.

Another possible extension could examine the impact of possible cooperation between sellers,

such as defacto price-setting or quality-setting schemes between sellers. On the buyer side,

the impact of consumer recommendations could be considered. Also, we consider an identical

product sold in di↵erent channels by di↵erent sellers. Future work could consider the impact

of non-identical rather than identical products being sold. How will di↵erent sellers with

non-identical products choose the channel in which to sell? Additionally, we have considered

whether the platform owner should establish a high-certainty channel. However, in many

cases, the high-certainty channel is not established by the same platform owner, but is rather

o↵ered by another platform owner who does not own the low-certainty channel. A future

research question is to consider the word-of-mouth (WOM) e↵ect in a social network context

(Bai et al., 2015). How will a channel owner’s decisions be a↵ected by the existence of such

WOM? Another extension is to incorporate channel competition between di↵erent channel

owners. If there is already another high-certainty channel in existence, how will this change

the incentives of a low-certainty channel platform owner?

41



42



Chapter 3

Analyzing Software Anti-piracy Strategies in a Competitive

Environment

3.1. Introduction

Software piracy has become a serious issue all over the world. In a report by the anti-piracy

group The Software Alliance (BSA) (2016), out of 116 markets investigated around the world,

more than half of PC software used in each of 72 markets is unlicensed. In 2013, the total

commercial value of unlicensed installations was approximately $62.7 billion (BSA, 2014); in

2015, that value was still around $52.2 billion (BSA, 2016). Pirated software can be easily

downloaded from many websites or peer-to-peer (P2P) file-sharing networks. According

to International Data Corporation’s Dangers of Counterfeit Software Survey (Gantz et al.,

2013), 45% of pirated software was obtained from online websites and P2P networks.

Facing the threat of software piracy, software firms take various anti-piracy measures.

For example, Microsoft has a worldwide anti-piracy team to track and trace criminal ac-

tivity related to software piracy. This team includes former police o�cers, prosecutors, IP

attorneys, and intelligence analysts. It works closely with law enforcement agencies to sup-

port criminal prosecutions (Microsoft, 2010). In 2012, it settled 3,265 counterfeiting suits

worldwide (Kerr, 2013) and it continues to prevent software piracy by filing lawsuits (Keizer,

2016). Furthermore, software firms also form industrial alliances in order to jointly control
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software piracy activities, with anti-piracy watchdog BSA being a good example. Hereafter,

this paper uses the terms “publisher” and “software firm” interchangeably to identify the

software firm that is the legitimate owner of the software. Many governments have taken

legal actions to reduce piracy. In the United States, people convicted of copyright infringe-

ments could be imprisoned for up to five years and fined up to $250,000. Repeat o↵enders

could be imprisoned for up to 10 years and held responsible for damages or lost profits up

to $150,000 per work (U.S. Copyright O�ce, 2011). Australia has similar legal measures

(Australia Copyright Act 1968).

Previous literature has argued that piracy can sometimes be beneficial to publishers for

several reasons including network e↵ect (Conner and Rumelt, 1991) – a product or service

becomes more valuable when more people use it. The network e↵ect can be generated in

several ways. For example, users can get help from other users around them more easily

if more people use the same product. Also, a user can search on the Internet for help.

If fewer people are using the product, it is less likely that a particular question has been

answered on the Internet. Also, users often post their questions to online user forums to

seek answers. There, a similar situation happens: if more people use this software, quick

feedback is more likely. Another source of the network e↵ect is that when more coworkers

use the same software, it is more likely that a user can share files with them directly. In

summary, the utility of a software package will be higher when more people use it.

In this paper, we consider both the direct e↵ect and cross e↵ect of anti-piracy e↵orts.

On the one hand, a publisher’s anti-piracy e↵ort can directly increase the cost of pirating its

software – a direct e↵ect. On the other hand, the firm’s anti-piracy e↵ort can also increase

the cost of pirating software from a similar firm – a cross e↵ect which has received little

attention in the existing literature. We consider two sources of the cross e↵ect. The first

source is that when a publisher solicits a government’s help in anti-piracy, this e↵ort will

benefit other software firms as well. When the government makes stricter regulations and

laws to combat anti-piracy and puts more e↵ort into anti-piracy, all software piracy o↵enders
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will face higher fines or greater probability of being caught, leading to higher piracy costs.

All software firms in the industry will benefit as a result. The second cross e↵ect source is

that when a publisher sues a piracy channel such as websites, P2P networks, or suppliers

which pirate its products, this channel could be shut down. Then individual users would

have greater trouble finding pirated software produced by a di↵erent firm so the time cost

of pirating one firm’s software could increase as a result of a competitor’s anti-piracy e↵ort.

In this paper, we study the case of two software firms which sell similar products. Each

product also has a pirated version. One example pair of products is MATLAB and Mathe-

matica, which are widely used in science, engineering, and business. The two products have

many similar functions and are viewed as competitors. In this paper, we will build game

theoretical models to study the competition between the two publishers where each firm

determines its anti-piracy e↵orts and product prices. The following are the main research

questions we study: First, how will the network e↵ect and competition a↵ect a publisher’s

decisions about anti-piracy e↵ort and product price? Second, how will the cross e↵ect influ-

ence a publisher’s decisions? Third, how will anti-piracy coordination through an industrial

alliance or a government a↵ect a publisher’s pricing decisions?

To answer these questions, we first investigate the case of a monopoly. Previous lit-

erature (Conner and Rumelt, 1991, Shy and Thisse, 1999) has shown that if the network

e↵ect increases, publishers tend to use weaker copyright protection. In contrast, we find

that a firm’s anti-piracy e↵orts should actually increase with the network e↵ect when both

the quality of the pirated product and the anti-piracy e↵ort costs are high, but the network

e↵ect is low. In the duopoly case, we study the impact of the network e↵ect and other pa-

rameters in both symmetric and asymmetric scenarios. In both scenarios, when the network

e↵ect increases, we find that a software firm’s anti-piracy e↵orts should also increase; when

its network e↵ect increases, its optimal price reduces when the anti-piracy e↵orts are not

costly, contrary to the result in the monopoly case. The additional competition between

two pirated products drives this counter-intuitive result. If a pirated product, say Product
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1, gains significant competitive power from the other pirated product, the software firm of

Product 1 then needs to reduce its price to compete with the pirated Product 1, even if

the network e↵ect increases. We also study the cases of industrial alliance and government

planning. In the industrial alliance case, an industrial alliance (e.g., BSA) can represent the

industry to determine the anti-piracy e↵orts necessary to control the piracy and maximize

all software firms’ profits. In the government planning case, a government determines the

anti-piracy e↵orts and maximizes the social welfare that includes both publishers’ profit and

legitimate consumers’ surplus. Interestingly, compared with a government agency to man-

age anti-piracy, an alliance can under- or over-invest in anti-piracy. Our findings also have

implications for research in gray market (Zhang and Feng, 2017) where a consumer can get

a product at a lower price through an unauthorized channel. There is a great similarity

between gray market and software piracy.

The rest of the paper is organized as follows. Section 3.2 reviews the related literature

and Section 3.3 builds an analytical model for a duopoly setting. In Section 3.4, we analyze

the model and obtain results through comparative statics. We consider model extensions in

Section 3.5 and conclude the paper in Section 3.6.

3.2. Literature Review

Our paper is related to a stream of literature on the network e↵ect. Katz and Shapiro (1985)

propose three sources for the network e↵ect: the direct network e↵ect, indirect network

e↵ect, and post-purchase service network e↵ect. They investigate the impact of the network

e↵ect on competition and on the firms’ compatibility decisions. Brynjolfsson and Kemerer

(1996) build a hedonic model to determine the impact of the network e↵ect on the price of

microcomputer spreadsheet software. They find that the network e↵ect significantly increases

the publisher’s optimal price of spreadsheet products. Cheng and Liu (2012) develop a unified

framework to investigate which free trial strategy was preferred in the presence of the network

e↵ect. In our model, users of legitimate or pirated software both enjoy the network e↵ect.
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We show that the network e↵ect can increase or decrease the optimal level of anti-piracy

e↵orts in a nonlinear way.

Our paper is also related to a second stream of literature on software piracy. Chen and

Png (2003) explore how a monopolistic publisher should set both prices and spending levels

on detection when a government sets the cost of piracy. Sundararajan (2004) investigates

how a publisher should choose the optimal pricing schedules and technological deterrence

level when digital piracy exists in the market and the degree of piracy can be influenced by

implementing digital rights management (DRM) systems. Gu and Mahajan (2005) study

the e↵ects of piracy on the profits of software firms when competition exists. They show that

piracy can reduce price competition and can be beneficial to firms when their markets have

high wealth gaps. Wu and Chen (2008) find that when there is no piracy, a single version

is the optimal strategy for an information goods provider (i.e., a publisher). However, when

piracy exists, such firms tend to o↵er more than one version; this versioning strategy is

an e↵ective and profitable instrument to fight piracy under some conditions. August and

Tunca (2008) consider whether a software firm should allow pirating users to update security

patches. They find that if the piracy tendency is low, then the publisher’s software security

patch restriction is optimal only when the piracy enforcement level is high. When patching

costs are su�ciently low, an unrestricted patch release policy by the publisher can maximize

its profit. Johar et al. (2012) investigate a publisher who gains profit through advertisement

when providing content to consumers who have heterogeneous valuations. The publisher

needs to determine two dimensions, the content quality and content distribution delay, in its

content provision strategy. They find that when piracy exists, the publisher should improve

on at least one dimension of content provision. Zhang et al. (2012) investigate strategies

to fight counterfeits when there are two competing brand name products and a counterfeit

product. Tunca and Wu (2013) explore the e↵ects of suing file-sharing P2P networks or

consumers who share copyrighted material on the P2P network; such action can turn out

to hurt legitimate publishers of information goods. Lahiri and Dey (2013) find that when
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piracy enforcement is low, the monopolist publisher has more incentive to invest in quality.

Our paper considers the network e↵ect and cross e↵ect. The focus of our paper is on the

network e↵ect’s impact on software anti-piracy and software pricing.

Here we highlight some papers investigating the positive impact of piracy. This stream of

literature closely relates to our paper. Conner and Rumelt (1991) incorporate the network

e↵ect into the model and examine piracy’s e↵ect on a software firm’s profit. When more

people use the software, either legitimate or pirated version, consumers can gain higher

utility and are willing to pay more for the product. They find that if the network e↵ects are

large, then publishers can benefit from piracy. Shy and Thisse (1999) extend the monopoly

results of Conner and Rumelt (1991) to a duopoly framework. They show that software

firms will allow piracy (i.e., not combat it intensely) in order to increase the market size.

If the network e↵ects are strong, then firms can benefit from not exerting e↵ort on anti-

piracy. Jain (2008) finds that strong network e↵ects may lead to higher levels of copyright

protection in some cases. When the network e↵ect is strong, stronger copyright enforcement

can reduce price competition. Dey et al. (2016) investigate how piracy a↵ects the supply

chain of information goods. They find that piracy can increase the profits of the publisher

and the retailer on the supply chain as well as increase consumer welfare. Herings et al.

(2017) employ a dynamic stochastic model to determine the optimal pricing policy of music

recordings when P2P file-sharing (piracy) exists. They find that if a music publisher exerts

large e↵ort to fully enforce the intellectual property rights, then consumer surplus and total

welfare decrease. Di↵erent from the works by (Conner and Rumelt, 1991, Shy and Thisse,

1999), our results show that a stronger network e↵ect can encourage publishers to invest

more in controlling software piracy.

Our work is most relevant to Jain (2008)’s work. However, our scenario is di↵erent in three

important ways. First, Jain (2008)’s paper assumes that the number of potential pirating

users is proportional to that of the potential legitimate users. This proportion is exogenously

given. Also Jain (2008)’s paper does not consider anti-piracy e↵orts. In our paper, we assume
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each potential consumer will choose to buy or pirate, and that the competition between

legitimate and pirated products determines the demand for the pirated product. Second,

in Jain (2008)’s work, consumers of legitimate products are located on a Hotelling line.

Then demands for legitimate products are derived based only on direct competition between

legitimate products. Demand for a pirated product is (exogenously) proportional to demand

for the legitimate product. In our paper, consumers for both pirated and legitimate software

are located on a single Hotelling line. Product demands are derived from more complex

competition which includes competition involving pirated products. Third, we introduce

the cross e↵ect, which was not considered in the previous paper. We show that the cross

e↵ect influences anti-piracy e↵orts in an unexpected way – a firm’s optimal anti-piracy e↵ort

increases with the cross e↵ect although such an increase in e↵ort could benefit its competitors.

3.3. Model

We consider a one-period model where two software firms sell substitutable software, labeled

as Product 1 and Product 2. These two firms are located at the endpoints of a unit Hotelling

line. Following the literature on information goods (Essegaier et al., 2002, Fishburn and

Odlyzko, 1999), we assume the marginal cost of producing an extra copy of the software

is 0. Each product also has a pirated version. We assume that the consumer demand is

normalized to 1 and individual demands are uniformly distributed on the Hotelling line.

Also, the quality of both products is assumed to be large enough so that the market is fully

covered (otherwise, each firm will act as a local monopolist and there is no competition

between two firms). Table 4.1 contains the notation used in this paper.

3.3.1 Consumers’ Decision Making

Under the assumption of full market coverage, consumer will take one of the following four

actions: buying Product 1 or 2, or pirating Product 1 or 2.
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Table 3.1: Summary of notation

Notation Description
Parameters

qi quality of product i (i = 1, 2 in this table)
✓i discount factor relative to a legitimate version
ki coe�cient of a product’s network e↵ect
ri coe�cient of anti-piracy e↵ort cost
x a consumer’s location on the Hotelling line
t coe�cient of unfitness cost of using a legitimate version

Intermediate Variables
⇡i profit of software firm i

Ui Consumers’ utility of using ith legitimate software prod-
uct

U2+i Consumers’ utility of using ith pirated software product
Di demand of legitimate product i
D2+i demand of pirated product i

Decision Variables
pi price of product i
ei anti-piracy e↵ort exerted by software firm i

pm price of Product 1 in monopoly case, a special case of p1
em anti-piracy e↵ort of software firm 1 in monopoly case
pd price of Product 1 and 2 in duopoly case
ed anti-piracy e↵ort of software firm 1 and 2 in duopoly

case

For a consumer located at x, the utility of buying Product 1 is given by

U1 = q1 � tx+ k1(D1 +D3)� p1. (3.1)

where t is the unfitness cost coe�cient of Product 1 and k1 is the network e↵ect coe�cient

of Product 1. Also D1 is the demand of legitimate Product 1 and D3 is the demand of the

pirated version.

Similarly, the utility for a consumer located at x of buying Product 2 is given by

U2 = q2 � t(1� x) + k2(D2 +D4)� p2. (3.2)

However, if consumers choose to use a pirated version, they might not get the full func-

tionality o↵ered by the legitimate version. For example, software firms usually provide

customer service and technical support to legitimate users only (Microsoft, 2016). Also,

software firms constantly create new features and add-ons for their products as upgrades.
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These upgrades might be available for legitimate versions only (Omron, 2016). As a result,

compared with a user of the legitimate software, a user of a pirated version can only use part

of the product’s features, and therefore both network externality and unfitness cost t are dis-

counted correspondingly. Similar to Jain (2008), our model uses a single discount factor ✓1

(✓2) to represent the percentage of quality, unfitness cost, and the network e↵ect associated

with the pirated Product 1 (pirated Product 2), relative to the legitimate version (Our main

results and insights would still apply with three di↵erent discount factors). For simplicity,

we will call ✓1 (✓2) the discount factor of the pirated software from now on. Accordingly, the

utility of a consumer located at x who uses the pirated version of Product 1 is

U3 = ✓1[q1 � tx+ k1(D1 +D3)]� c1(e1, e2). (3.3)

In Equation (3.3), the term c1(e1, e2) represents the cost of using the pirated Product

1, detailed as follows. First, as software firms may not provide patches for pirated versions

(August and Tunca, 2008), users of pirated software could face security risk and therefore

incur costs. Second, those people face the possibility of being caught using pirated software

and then paying a costly fine (Copyright Law of the United States 2011). Also, using pirated

software could damage those users’ reputation among their peers. This cost c1(e1, e2) is not

only a function of Firm 1’s anti-piracy e↵ort e1 but also Firm 2’s e↵ort e2 due to the cross

e↵ect of anti-piracy e↵orts: when Firm 2 exerts e↵ort, the penalty cost of using Firm 1’s

pirated product will also increase. In particular, we assume c1(e1, e2) = a1e1+b1e2 to simplify

the model. Since the direct e↵ect of the anti-piracy e↵ort is likely to be larger than the cross

e↵ect, we assume a1 > b1.

Similarly, the utility of a consumer located at x who uses the pirated version of product

2 is given by

U4 = ✓2[q2 � t(1� x) + k2(D2 +D4)]� c2(e1, e2). (3.4)

where c2(e1, e2) = a2e1 + b2e2. Also, we assume b2 > a2.
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We can prove the following lemma by using the above utility functions (3.1) to (3.4)

(see the appendices for all the proofs of theorems and lemmas). Lemma 1 describes the

consumers’ choice of a particular product according to their unfitness level. Furthermore,

consumers will choose a product that yields a higher utility in the duopoly case, as depicted

in Figure 3.1.

Lemma 1. For a particular product, user who have a lower software unfitness level will

favor the option of buying; otherwise they favor the option of pirating.

Figure 3.1: Consumer demands in the duopoly case

3.3.2 Firms’ Decision Making

For the two firms, their profits are given by

⇡i(pi, ei) = Dipi � rie
2
i
, i = 1, 2, (3.5)

where pi, Di, ei are respectively price, demand, and anti-piracy e↵ort for product i, i = 1, 2.

Each publisher chooses a price and e↵ort to maximize its profit. We assume that firm i’s

e↵ort cost is a quadratic function of e↵ort ei, denoted as rie2i . This formulation captures the

property that when the e↵ort ei increases, the cost will increase; as it is more costly to exert

an anti-piracy e↵ort, the marginal cost of ei will also increase.

The decision time sequence of players in this model is the following. In the first stage,

both firms simultaneously decide their anti-piracy e↵ort e1 and e2. In the second stage, both

firms simultaneously decide the prices p1 and p2. In the third stage, consumers choose which

product to obtain and whether to buy or pirate it.
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3.4. Analysis of the Model

We first consider the case of a monopolist selling a software product to di↵erentiated con-

sumers. This analysis serves as a benchmark for the analysis of the duopoly case.

3.4.1 Benchmark: Monopoly Case

We assume that the monopolist (Product 1) is at one end of the Hotelling line, Point 0,

without loss of generality. Similar to the duopoly case, the firm decides on anti-piracy e↵ort

em in the first stage and price pm in the second stage. In the third stage, consumers make

their decision of purchasing, pirating, or not using it. Since there is only one product, no cross

e↵ect of anti-piracy e↵ort exists. Then ci(e1, e2) becomes c(em). In particular, c(em) = a1em.

Figure 3.2: Consumer demands in the monopoly case

In the monopoly case, consumers can purchase legitimate Product 1, gaining utility U1

given by (3.1), or use a pirated version, gaining utility U3 given by (3.3). Similar to Figure

3.1, Figure 3.2 depicts the consumers’ choices in the monopoly case. Consumers located at

x1 are indi↵erent between buying Product 1 or pirating it; and those at x2 are indi↵erent

between pirating Product 1 and not using it. Variables x1 and x2 satisfy the following two

equations:

U1|x=x1 = U3|x=x1 (3.6)

and

U3|x=x2 = 0. (3.7)

We can get x2 from (3.7):

x2 =
✓1q1 � a1em

✓1(t� k1)
(3.8)
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and then x1 from (3.6):

x1 = ��a1emk1 + a1em✓1t+ ✓1k1pm � ✓1pmt+ ✓
2
1q1(�t) + ✓1q1t

(✓1 � 1) ✓1t(t� k1)
. (3.9)

The boundary case x2 = 1 does not give interesting results and therefore is not considered

in this analysis.

The firm’s profit can be written as:

⇡m(pm, em) = Dmpm � r1e
2
m
, (3.10)

where the demand for legitimate product Dm is x1. In the monopoly case, maximizing ⇡m by

em and pm sequentially is equivalent to doing so simultaneously, so we can get the optimal

anti-piracy e↵ort e⇤
m
and optimal price p

⇤
m
simultaneously by maximizing (3.13) :

e
⇤
m
=

a1 (✓1 � 1) ✓1q1t (✓1t� k1)

a
2
1 (k � ✓1t)

2 + 4 (✓1 � 1) ✓21r1t(k1 � t)2
(3.11)

and

p
⇤
m
=

2 (✓1 � 1)2 ✓21q1r1t
2(k1 � t)

a
2
1 (k1 � ✓1t)

2 + 4 (✓1 � 1) ✓21r1t(k1 � t)2
. (3.12)

where in Appendix 6.2.3, we have verified that the optimal solutions (3.11) and (3.12) satisfy

the second-order conditions as well. Substituting (3.11) and (3.12) into (3.10), we can obtain

the firm’s profit ⇡⇤
m
:

⇡
⇤
m
= � (✓1 � 1)2 ✓21q

2
1r1t

2

a
2
1 (k1 � ✓1t)

2 + 4 (✓1 � 1) ✓21r1t(k1 � t)2
=

q1p
⇤
m

2(t� k1)
. (3.13)

Comparative Statics of Network E↵ect k1

From Equations (3.11) to (3.13), we can obtain further analytical results through comparative

static analysis. In Theorem 10, we present the results related to the optimal e↵ort e
⇤
m

concerning the network e↵ect. For clarity, the results are also summarized in Table 3.2.

54



Theorem 10. In the monopoly case, when the network e↵ect increases, there are two regions.

1. When the discount factor of the pirated software is small (✓ < 1/2), the publisher’s

anti-piracy e↵ort decreases with the network e↵ect, i.e.,
@e

⇤
m

@k1
< 0.

2. When the discount factor of the pirated software is large (✓ > 1/2), there are two

sub-regions.

(a) When anti-piracy e↵ort cost is small (r1 < rm1), the publisher’s optimal anti-

piracy e↵ort decreases with the network e↵ect, i.e.,
@e

⇤
m

@k1
< 0.

(b) When anti-piracy e↵ort cost is large (r1 > rm1): (1) when the network e↵ect is

small (0 < k1 < k̄1), the publisher’s optimal anti-piracy e↵ort increases with the

network e↵ect, i.e.,
@e

⇤
m

@k1
> 0; (2) when the network e↵ect is large (k̄1 < k1 < ✓1t),

the publisher’s optimal anti-piracy e↵ort e⇤
m
decreases with the network e↵ect, i.e.,

@e
⇤
m

@k1
< 0.

The threshold values k̄1 and rm1 are defined in the proof.

Table 3.2: Impact of k1 on e
⇤
m

r small r large
✓ small ✓ large

k1 small @e
⇤
m

@k1
< 0

@e
⇤
m

@k1
< 0

@e
⇤
m

@k1
> 0

k1 large
@e

⇤
m

@k1
< 0

In Theorem 11, we provide the comparative static result related to price p⇤
m
with respect

to the network e↵ect.

Theorem 11. In the monopoly case, the product optimal price p⇤
m
increases with the network

e↵ect, that is,
@p

⇤
m

@k1
> 0.

From Theorem 11, the product price increases monotonically with the network e↵ect.

The explanation is the following. When the network e↵ect increases, the product becomes
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more attractive and the consumers’ utility of using legitimate software increases. Then the

monopolistic firm can charge a higher price and obtain a higher profit. Theorem 10 shows

a very interesting result concerning the network e↵ect. As previous literature (Shy and

Thisse, 1999, Jain, 2008) has shown, if the network e↵ect increases, firms tend to use weaker

copyright protection. Our results contrast with the previous literature by showing that this

result is only true in two cases: (i) when the quality of anti-piracy product (✓1) is small

so that using pirated software is not attractive, or (ii) when the anti-piracy e↵ort cost (r1)

is small so that a publisher could exert a su�cient amount of anti-piracy e↵ort. In either

case, the firm can keep the piracy activity under control. Then when k1 increases, it is more

valuable to take advantage of the increased network e↵ects and enlarge the whole user base

by reducing its anti-piracy e↵ort.

However, in the case of large ✓1 and r1, when the network e↵ect k1 increases, a producer

should increase its anti-piracy e↵ort in the small k1 range but reduce it in the large k1 range.

This non-intuitive result is due to the trade-o↵ between two conflicting factors. On the one

hand, to encourage the purchase of legitimate software, a firm needs to control the demand

for the pirated product. On the other hand, it also wants to grow its network and make its

product more attractive by taking advantage of the network e↵ect. Then, it could charge

a higher price for legitimate software. In the case of a strong network e↵ect (large k1), it

is more beneficial for a publisher to increase its user base and charge more for its product.

Therefore, it would reduce the anti-piracy e↵ort to expand its user network by allowing the

previous non-users to use the software through pirating. When k1 is small, the result is

more interesting. Given that the pirated product quality is large and it is costly to exert an

anti-piracy e↵ort, the demand for pirated software is high. When k1 increases, the demand

for pirated software becomes higher. Since the network e↵ect by pirated software is not

significant in this small k1 region, the software firm increases its anti-piracy e↵ort to bring

the piracy under control. The insight, in this case, is that the firm can simply focus on

discouraging piracy and increasing the demand for its legitimate software.
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To summarize, when responding to a change in network e↵ect, a manager responsible

for a publisher’s anti-piracy e↵ort needs to jointly consider various factors such as the cost

of anti-piracy e↵orts (r1), discount factor of pirated software (✓1), and network e↵ect (k1).

Care must be taken in the case of large r1 and ✓1: the change in anti-piracy e↵ort could be

opposite, depending on the value of the network e↵ect.

Other Comparative Statics

For the purpose of comparison with the results in the duopoly case later, we summarize in

Table 3.3 the results about the impacts of q1, ✓1, a1, and r1 on e
⇤
m
and p

⇤
m
.

Table 3.3: Impacts of q1, ✓1, a1 and r1 on e
⇤
m
and p

⇤
m
in the monopoly case

q1 a1 r1 ✓1

e
⇤
m

@e
⇤
m

@q1
> 0

@e
⇤
m

@a1
> 0

@e
⇤
m

@r1
< 0

@e
⇤
m

@✓1
> 0

p
⇤
m

@p
⇤
m

@q1
> 0

@p
⇤
m

@a1
> 0

@p
⇤
m

@r1
< 0

@p
⇤
m

@✓1
< 0

When the product quality q1 increase, the consumer’s utility increases, which implies that

a software firm can charge a higher price to gain more profit. Also, as the value of adding

an additional consumer increases due to a higher price, the firm will exert more anti-piracy

e↵ort to make customers purchase instead of pirating, further increasing profit. Similarly,

when the anti-piracy e↵ort (a1) is more e↵ective, a publisher can exert more e↵ort and also

charge more. On the other hand, when anti-piracy e↵ort cost (r1) increases, the results are

opposite to those of a1: the optimal e↵ort and price decrease. Finally, when ✓1, the quality of

the pirated software (relative to the legitimate version) increases, the competition between

the legitimate and pirated products intensifies. Then a firm needs to increase the anti-piracy

e↵ort and decrease the price to make the legitimate version more attractive, causing the

profit to decrease.

Will such comparative static results in the monopoly case still hold in the duopoly case?

We will explore this question in Section 3.4.2.
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3.4.2 Duopoly Case

We now consider the case that two competing software firms (publishers), Firm 1 and Firm

2, are in the market. They lie at the opposite ends of the Hotelling line. Without loss of

generality, let Firm 1 be located at Point 0 and Firm 2 at Point 1.

We use backward induction to solve this case according to the decision sequence given in

Section 3.3. At Stage 3, a consumer makes a decision to buy or pirate to maximize his or her

utility, as shown in Figure 3.1 of Section 3.3.1. Variables x1, x2, and x3 represent indi↵erence

points. For a consumer located at x1, the utility U1 of using the legitimate software (given by

Equation (3.1)) equals the utility U3 of using the pirated version (given by Equation (3.3)).

That is,

q1 � x1t+ k1(D1 +D3)� p1 = ✓1[q1 � x1t+ k1(D1 +D3)]� c1(e1, e2). (3.14)

At x = x3, utilities U2 and U4, given by Equations (3.2) and (3.4) respectively, should be

the same:

q2 � (1� x3)t+ k2(D2 +D4)� p1 = ✓2[q1 � x3t+ k2(D2 +D4)]� c2(e1, e2). (3.15)

Furthermore, at x = x2, U3 = U4:

✓1[q1 � x2t+ k1(D1 +D3)]� c1(e1, e2) = ✓2[q2 � (1� x2)t+ k2(D2 +D4)]� c2(e1, e2), (3.16)

where

D1 +D3 = x2 (3.17)

and

D2 +D4 = 1� x2. (3.18)

From Equations (3.14) – (3.16), we can obtain x1, x2, and x3.
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The publishers’ decisions about ei and pi are made in the first and second stages to

maximize their own profits, as given by Equation (3.5). We can find the solutions of e⇤
i
and

p
⇤
i
through backward induction. They are complicated so that we do not present them here.

To gain insights from the results, we again resort to comparative statics.

Comparative Statics in an Asymmetric Setting

In this asymmetric setting, when studying the impact of a particular parameter (for instance

k1), we first take the derivative of this parameter by holding the other parameters constant

and then set the parameters to be symmetric: k1 = k2 = k etc. For each parameter, ki,

ai, bi, qi, and ri, i = 1, 2, we study its impact on each software firm’s anti-piracy e↵ort and

price by using comparative statics. We first show the impact of the network e↵ect ki on the

anti-piracy e↵ort in Theorem 12. For ease of understanding, we also summarize the results

in Table 3.4.

Theorem 12. In the duopoly asymmetric setting, there are two regions where the impacts

of Firm 1’s network e↵ect are di↵erent.

1. In the region where the discount factor of the pirated software is low (✓  ✓
00), Firm

1’s anti-piracy e↵ort decreases with its network e↵ect, i.e.,
@e1

@k1
|k1=k2=k < 0. Also,

(a) When the e↵ort cost is small (r < rdDC), Firm 2’s anti-piracy e↵ort decreases

with Firm 1’s network e↵ect, i.e.,
@e2

@k1
|k1=k2=k < 0.

(b) When the e↵ort cost is large (r > rdDC), Firm 2’s anti-piracy e↵ort will first

increase and then decrease with Firm 1’s network e↵ect, i.e., there is a threshold

value k̄dDC for a given r: when k < k̄dDC,
@e2

@k1
|k1=k2=k > 0;

@e2

@k1
|k1=k2=k < 0

otherwise.

2. In the region where the discount factor of the pirated software is high (✓ > ✓
00), Firm

2’s anti-piracy e↵ort decreases with Firm 1’s network e↵ect (
@e2

@k1
|k1=k2=k < 0) when r

is small enough or large enough. Also,
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(a) When the e↵ort cost is small (r < rdDB), Firm 1’s anti-piracy e↵ort decreases

with its network e↵ect, i.e.,
@e1

@k1
|k1=k2=k < 0.

(b) When the e↵ort cost is large (r > rdDB), Firm 1’s anti-piracy e↵ort will first in-

crease and then decrease with its network e↵ect, i.e., there is exactly one threshold

value k̄dDB:
@e1

@k1
|k1=k2=k > 0 if k < k̄dDB and

@e1

@k1
|k1=k2=k < 0 otherwise.

The threshold values ✓
00, rdDB, rdDC, kdDB, and kdDC are defined in the proof.

Table 3.4: Impacts of k1 on e
⇤
i
, i = 1, 2

r small r large
✓ small ✓ large

k1 small @e
⇤
1

@k1
< 0

@e
⇤
2

@k1
< 0

@e
⇤
1

@k1
< 0

@e
⇤
2

@k1
> 0

@e
⇤
1

@k1
> 0 @e

⇤
2

@k1
< 0

k1 large
@e

⇤
2

@k1
< 0

@e
⇤
1

@k1
< 0

When Firm 1’s own network e↵ect coe�cient k1 increases, its anti-piracy e↵ort changes

in a similar way as in the monopoly case (shown in Theorem 10). The explanation is similar

to that in the monopoly case. We find that when the e↵ort cost r is small, e⇤1 and e
⇤
2 change

in the same direction. Similar to the monopoly case, software piracy is under control and the

network e↵ect is important to both firms. When the network e↵ect coe�cient k1 increases,

both firms choose to decrease the anti-piracy e↵ort. When both ✓ and r are large, software

piracy is severe. When k1 increases, pirated Product 1 will attract some demand from

consumers who are using pirated software 2, causing software piracy to be less attractive

and therefore less problematic for Firm 2. Then Firm 2 can decrease its anti-piracy e↵ort.

The impact of k1 on Firm 2’s anti-piracy e↵ort is more interesting when r is large and

✓ is small. In this case, the pirated software is not so attractive and software piracy is also

under control. Firm 1 values the growth of the network more than controlling piracy. Firm 1

will choose to decrease its anti-piracy e↵ort as the network e↵ect increases. Then as pirating

Firm 1’s software becomes easier, the demand for Firm 2’s pirated product decreases, causing

the overall network e↵ect of Product 2 to decrease. When the network e↵ect coe�cient k1
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is small, Firm 2 will value anti-piracy more than network growth and will choose to exert

more e↵ort in anti-piracy. However, when k1 is large enough, exerting e↵ort in anti-piracy

will be less attractive than increasing the network e↵ect, so Firm 2 will choose to decrease

its anti-piracy e↵ort.

To sum up, we find that the cost of anti-piracy e↵ort, the discount factor of pirated

software, and the size of network e↵ect influence the optimal reaction of anti-piracy e↵ort

when the network e↵ect changes. The managerial implication is that a manager needs to

consider each of these three factors when responding to a change in the network e↵ect.

We have also studied the impact of the network coe�cient k1 on the publishers’ optimal

prices. The results are shown in Theorem 13.

Theorem 13. In the duopoly asymmetric setting, there are three regions where the impacts

of Firm 1’s network e↵ect are di↵erent. When Firm 1’s network e↵ect increases,

1. In the case that the e↵ort cost is small (r < rdDD), Firm 1’s price decreases with its

network e↵ect, i.e.,
@p1

@k1
|k1=k2=k < 0. When r is small enough, Firm 2’s price decreases

with Firm 1’s network e↵ect, i.e.,
@p2

@k1
|k1=k2=k < 0.

2. In the case that the e↵ort cost is medium (rdDD < r < rd4), Firm 1’s price first

increases and then decreases with its network e↵ect, i.e., there is a threshold value k̄6:

when k < k̄6,
@p1

@k1
|k1=k2=k > 0;

@p1

@k1
|k1=k2=k < 0 otherwise. Due to complexity, we are

unable to determine the impact of Firm 1’s network e↵ect on Firm 2’s price.

3. In the case that the e↵ort cost is large (r > rd4), Firm 1’s price increases with its

network e↵ect, i.e.,
@p1

@k1
|k1=k2=k > 0. When r is large enough, Firm 2’s price increases

with Firm 1’s network e↵ect, i.e.,
@p2

@k1
|k1=k2=k > 0.

The threshold values rdDD, rd4, and k̄6 are defined in the proof.

A counter-intuitive result arises in the case of small e↵ort cost r. When the network

e↵ect k1 increases, Firm 1’s product becomes more attractive. Therefore, one would expect
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Firm 1’s price to increase. Surprisingly, we find that Firm 1 should actually reduce its

price, contrary to what we have seen in the monopoly case. We can explain the results by

considering the competition between legitimate and pirated products. As k1 increases, Firm

1’s pirated product becomes more attractive than Firm 2’s pirated product. Then Firm 1

gains market share by attracting consumers who are using Firm 2’s pirated product, and

those consumers become more important to Firm 1. In this sense, we can view that Firm

1’s pirated product has increased its bargaining power. Furthermore, as Theorem 12 shows,

Firm 1 reduces its anti-piracy e↵ort as k1 increases, making software piracy more attractive.

Therefore, Firm 1 needs to reduce its price to compete with software piracy, contrary to the

monopoly case. Also from Theorem 13, we can see that the sign of
@p

⇤
1

@k1
is a↵ected by the

e↵ort cost r. In other words, given a change in the network e↵ect k1, Firm 1 in the duopoly

case needs to react di↵erently regarding price in the di↵erent regions of e↵ort cost. However,

in the monopoly case, a firm’s price always increases with the network e↵ect k1.

Table 3.5: Impact of q1, a1, r1 and b1 on e
⇤
1, e

⇤
2, p

⇤
1, and p

⇤
2 in the asymmetric setting

q1 a1 r1 b1

e
⇤
1

@e
⇤
1

@q1
> 0

@e
⇤
1

@a1
> 0

@e
⇤
1

@r1
< 0

@e
⇤
1

@b1
> 0

p
⇤
1

@p
⇤
1

@q1
> 0

@p
⇤
1

@a1
> 0

@p
⇤
1

@r1
< 0

@p
⇤
1

@b1
> 0

e
⇤
2

@e
⇤
2

@q1
7 0†

@e
⇤
2

@a1
> 0

@e
⇤
2

@r1
< 0

@e
⇤
2

@b1
> 0

p
⇤
2

@p
⇤
2

@q1
7 0†

@p
⇤
2

@a1
> 0

@p
⇤
2

@r1
< 0

@p
⇤
2

@b1
> 0

† indicates sign changes depending on the threshold value(s).

From Table 3.5, we see that when any of Product 1’s quality q1, its anti-piracy e↵ort’s

direct e↵ect a1, or the cross e↵ect b1 increases (other factors staying the same), Firm 1’s

optimal e↵ort and price increase. When Firm 1’s e↵ort cost r1 increases, Firm 1’s e↵ort and

price decrease. The intuition for the impacts of product quality, direct e↵ect, and e↵ort cost

is the same as that in the monopoly case. Di↵erent from the monopoly case, the duopoly case

includes the anti-piracy e↵ort’s cross e↵ect b1. When the cross e↵ect increases, it becomes
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more costly to pirate Product 1 due to Firm 2’s anti-piracy e↵ort. Then the competition

between pirated Product 1 and legitimate Product 1 will be less intensive and Firm 1 will

have the motivation to increase the price to extract more profit. As the price increases, Firm

1 can gain more profit when converting a pirating user to a legitimate one. Therefore Firm 1

will be motivated to exert higher anti-piracy e↵ort e⇤1. As e
⇤
1 increases, it also becomes more

costly to pirate Product 2. Therefore, similar to Firm 1, Firm 2 can increase both price and

e↵ort.

It is interesting to see that when Product 1’s quality q1 increases, Firm 2’s e↵ort and

price will not change monotonically. In Appendix 6.2.9, we show that when the e↵ort cost

is large enough, Firm 2’s e↵ort and price decrease; When the e↵ort cost is small enough,

Firm 2’s e↵ort and price increase. The explanation is the following. When q1 increases,

Firm 1’s anti-piracy e↵ort increases. On the one hand, if the e↵ort cost r1 is large, the anti-

piracy e↵ort will not change by much. Then pirated Product 1 will be more attractive and

draw additional users who were pirating Product 2. Consequently, Firm 2’s concern about

software piracy is somewhat alleviated, implying that Firm 2 should decrease its anti-piracy

e↵ort to save cost. Since the anti-piracy e↵ort decreases, Firm 2 will also decrease its price to

compete with its own pirated version. On the other hand, when r1 is small, the anti-piracy

e↵ort increases greatly as q1 increases. Then pirating Product 1 becomes less attractive and

some users of pirated Product 1 will switch to pirated product 2. To keep the piracy activity

under control, Firm 2 increases its anti-piracy e↵ort. Then Firm 2 can increase its price

since using pirated Product 2 becomes less attractive. Finally, the impact of its anti-piracy

e↵ort’s direct e↵ect, cross e↵ect, or e↵ort cost on Firm 2 is the same as for Firm 1.

Next, we study the setting where the two firms are symmetric.

Comparative Statics in a Symmetric Setting

In this subsection, we consider the setting where two firms are symmetric, i.e., ki = k, ri = r,

qi = q, and ✓i = ✓, i = 1, 2; a1 = b2, and a2 = b1.
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Since the optimal anti-piracy e↵orts for the two publishers Firm 1 and Firm 2 are sym-

metric, we can denote the optimal anti-piracy e↵ort and optimal product price as e⇤
d
and p

⇤
d
,

which are given by

e
⇤
d
=

(✓ � 1)(k + 2q) (a1(✓k + k � 2✓t) + b1(✓ � 1)k)

2 ((a1 + b1) (a1(✓k + k � 2✓t) + b1(✓ � 1)k) + 8(✓ � 1)✓rt(k � t))
(3.19)

and

p
⇤
d
=

�2(✓ � 1)2✓rt(k + 2q)(k � t)

(a1 + b1) (a1(✓k + k � 2✓t) + b1(✓ � 1)k) + 8(✓ � 1)✓rt(k � t)
. (3.20)

We can get the following comparative statics results in Theorem 14 (also shown in Ta-

ble 3.6) about the network e↵ect coe�cient k:

Theorem 14. In the duopoly symmetric setting, when the network e↵ect increases, there

are two regions.

1. In the region where the discount factor of the pirated software is low (✓ < ✓
00), anti-

piracy e↵orts decrease with the network e↵ect, i.e.,
@e

⇤
d

@k
< 0.

2. In the region where the discount factor of the pirated software is high (✓ > ✓
00),

(a) When the e↵ort cost is small (r < rdDF ), the anti-piracy e↵ort decreases with the

network e↵ect, i.e.,
@e

⇤
d

@k
< 0.

(b) When the e↵ort cost is large (r > rdDF ), the anti-piracy e↵ort will first increase

and then decrease with the network e↵ect, i.e., there is a threshold value k̄dDF

for any given r within the feasible region: when k < k̄dDF ,
@e

⇤
d

@k
> 0,

@e
⇤
d

@k
< 0

otherwise.

The threshold values ✓
00, rdDF , and k̄dDF are specified in the proof.

These results are similar to those in the asymmetric setting (see Table 3.4). We can

understand Theorem 14 in the following way. In either case: (i) when ✓ or r is small, the

piracy activity is under control, or (ii) when both ✓ and r are large, and k is also su�ciently
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Table 3.6: Impact of k on e
⇤
d

✓ small ✓ large
r small r large

k1 small @e
⇤
d

@k1
< 0

@e
⇤
d

@k1
< 0

@e
⇤
d

@k1
> 0

k1 large
@e

⇤
d

@k1
< 0

large, both firms will value the network e↵ect more than controlling piracy activity. As the

network e↵ect increases, they will choose to decrease the anti-piracy e↵ort. However, in the

case when ✓ and r are large, and k is small, the network e↵ect is small, and software piracy

level is high. Then both firms will value controlling piracy activity more than the network

e↵ect. They will exert more anti-piracy e↵ort as k increases.

We can also understand the results in Theorem 14 by using the results from the asym-

metric setting. Mathematically,
@e

⇤
d

@k
= (

@e
⇤
1

@k1
+

@e
⇤
1

@k2
)|k1=k2=k = (

@e
⇤
1

@k1
+

@e
⇤
2

@k1
)|k1=k2=k. When

r is small or when both r and k are large, we have
@e

⇤
1

@k1
< 0 and

@e
⇤
2

@k1
< 0 from Table 3.4.

Then we can conclude
@e

⇤
d

@k
< 0. However, when r is large and k is small,

@e
⇤
1

@k1
and

@e
⇤
2

@k1
have

di↵erent signs. Since the network e↵ect k1 a↵ects Firm 1’s anti-piracy e↵ort directly and

Firm 2’s anti-piracy e↵ort indirectly, we can expect k1 has a larger e↵ect on e
⇤
1 than on e

⇤
2.

Therefore, the sign of (
@e

⇤
1

@k1
+

@e
⇤
2

@k1
)|k1=k2=k is determined by

@e
⇤
1

@k1
.

We can also analyze the impact of k on price, and the results are summarized in Theo-

rem 15.

Theorem 15. In the duopoly symmetric setting, when the network e↵ect increases, there

are three regions.

1. When the e↵ort cost is small (r < rdDG), the price decreases with the network e↵ect,

i.e.,
@p

⇤
d

@k
< 0.

2. When the e↵ort cost is medium (rdDG < r < rdF ), the price first increases and then

decreases with the network e↵ect, i.e., there is a threshold value k̄dDG: when k < k̄dDG,
@p

⇤
d

@k
> 0;

@p
⇤
d

@k
< 0 otherwise.
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3. When the e↵ort cost is large (r > rdF ), the price increases with the network e↵ect, i.e.,
@p

⇤
d

@k
> 0.

The threshold values rdDG, rdF , and k̄dDG are specified in the proof.

Table 3.7: Impacts of k on p
⇤
d

k small k large

r small
@p

⇤
d

@k
< 0

r medium
@p

⇤
d

@k
> 0

@p
⇤
d

@k
< 0

r large
@p

⇤
d

@k
> 0

When r is small, we know that the anti-piracy e↵ort decreases in k (Theorem 14) and so

the utility of pirating products increases. To compete with pirated software, firms decrease

the product price. When r is large, the anti-piracy e↵ort will not change much as k increases.

Then both firms can increase their product price to exploit the increased network e↵ect.

Similarly, we can also explain the results of Theorem 15 from Theorem 13.

Table 3.8: Impact of q, a1, r, and b1 on e
⇤
d
and p

⇤
d
in the duopoly symmetric setting

q a1 r b1

e
⇤
d

@e
⇤
d

@q
> 0

@e
⇤
d

@a1
> 0

@e
⇤
d

@r
< 0

@e
⇤
d

@b1
> 0

p
⇤
d

@p
⇤
d

@q
> 0

@p
⇤
d

@a1
> 0

@p
⇤
d

@r
< 0

@p
⇤
d

@b1
> 0

From Table 3.8 (proofs are in Appendix 6.2.13), we can see that each firm’s e↵ort and

price increase with the product quality, anti-piracy e↵ort’s direct e↵ect, and cross e↵ect; and

they decrease with anti-piracy e↵ort cost. The results concerning product quality, direct

e↵ect, and cross e↵ect can be generated from results shown in Table 3.5 in the asymmetric

case. Here we find that when the cross e↵ect increases, both the e↵ort and price of both

firms increase. We can explain the results as follows. As the cross e↵ect b1 increases, each

firm has a greater impact on the other firm’s overall anti-piracy e↵ort. By increasing its
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anti-piracy e↵ort, each firm can make the other firm’s pirated software less attractive to use.

As a result, its own pirated software is also less competitive. Then each firm can increase

its price. Firms react in the same way when the direct e↵ect a1 increases but for a di↵erent

reason. When it is more cost e↵ective to control software anti-piracy (a1 increases), each

firm increases its anti-piracy e↵ort to discourage software piracy. As a result, each firm can

increase its price.

3.5. Extensions

In this section, we study how coordination via industrial alliance or government regulation

can a↵ect anti-piracy e↵ort and product price.

3.5.1 Industrial Alliance

As is observed in reality, individual software firms can form industrial alliances such as BSA

that exert an anti-piracy e↵ort on individual firms’ behalf. An industrial alliance’s objective

is to maximize the total benefit of the system which consists of the alliance and member

firms.

In this case, each consumer’s utility of buying the legitimate products is the same as

before, given by Equations (3.1) and (3.2). However, the utility of pirating a product is

di↵erent from the previous duopoly case. There is no cross e↵ect any more since only the

alliance will exert anti-piracy e↵ort. We assume the alliance’s anti-piracy e↵ort will have the

same e↵ect on both pirated products, with the piracy cost being given by a0ea (subscript

“a” stands for industrial alliance). Then the consumers’ utility functions of pirating Product

1 and 2, U3a and U4a, are

U3a = ✓1 [q1 � tx+ k1(D1a +D3a)]� a0ea (3.21)
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and

U4a = ✓2 [q2 � t (1� x) + k2 (D2a +D4a)]� a0ea. (3.22)

By letting U1 = U3a, U2 = U4a, U3a = U4a, we can get legitimate Product 1 and 2’s demand

D1a and D2a as a function of ea.

At the first stage, the industrial alliance chooses the optimal e↵ort e⇤
a
to maximize the

total system profit given by

⇡a = D1ap1a +D2ap2a � re
2
a
, (3.23)

where r is the e↵ort cost coe�cient. The optimal e↵ort e⇤
a
satisfies

@⇡a

@ea
= 0. Then in the

second stage, the firms choose their price simultaneously to maximize their profit, which is

given by:

⇡1a = D1ap1a � re
2
a
/2 (3.24)

and

⇡2a = D2ap2a � re
2
a
/2 (3.25)

where the cost of the anti-piracy e↵ort is shared by the two firms equally. In Equations

(3.24) and (3.25), we assume that each firm shares the anti-piracy cost equally. We can find

p
⇤
1a and p

⇤
2a by solving

@⇡1a

@p1a
= 0 and

@⇡2a

@p2a
= 0.

To simplify the analysis, we assume the two firms are symmetric, i.e., ki = k, qi = q,

✓i = ✓, i = 1, 2. Through backward induction, we can obtain

e
⇤
a
=

a0 (✓ � 1) (k + 2q)

2 (a20 + 2 (✓ � 1) rt)
(3.26)

and

p
⇤
a
= p

⇤
1a = p

⇤
2a = � (✓ � 1)2rt(k + 2q)

2 (a20 + 2(✓ � 1)rt)
(3.27)

from which we can find the impact of the network e↵ect k on the anti-piracy e↵ort and price:
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Lemma 2. In the industry alliance case, when the network e↵ect increases, both the indus-

trial alliance’s anti-piracy e↵ort e⇤
a
and each member firm’s product price p

⇤
a
increase.

In the industry alliance case, the anti-piracy e↵ort changes in a pattern di↵erent from

those in the monopoly case and symmetric duopoly case. In the monopoly case and sym-

metric duopoly case, anti-piracy e↵ort increases with the network e↵ect only when (i) the

quality of pirated software and the anti-piracy e↵ort cost are large, and (ii) the network e↵ect

is low. However, in the industrial alliance case, the anti-piracy e↵ort will always increase

with the network e↵ect. We can explain this result as follows. In the industry alliance case,

the anti-piracy e↵ort is not determined by the individual firms but by the alliance. When

the alliance determines the anti-piracy e↵ort, it considers the total system profit. The total

demand for each firm’s product (legitimate and pirated) is 1/2 since these two firms are

symmetric. Then the network e↵ect of using a legitimate product is k/2. As the network

e↵ect coe�cient k increases, the legitimate product becomes more valuable, and therefore

the alliance should exert more anti-piracy e↵ort to discourage software piracy, leading to

higher demand for the legitimate software. Then each firm can charge a higher price to gain

more profit.

3.5.2 Government Planning

In the government planning case, the government exerts anti-piracy e↵ort in order to max-

imize the total social welfare by considering the software firms’ profit, legitimate users’

surplus, and the cost of anti-piracy e↵ort.

In this case, the consumers’ utility functions are similar to those in the industrial alliance

case. From the utility functions, the demands of the legitimate products of both firms, D1g

and D2g (subscript “g” stands for government planning), are similar to those in the industrial

alliance’s case.
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The total consumer surplus for those who buy Product 1 is

CS1 =

Z
D1g

0

U1gdx, (3.28)

and that for buying Product 2 is

CS2 =

Z 1

1�D2g

U2gdx. (3.29)

In the first stage, the government needs to maximize the social welfare given by

SW = CS1 + CS2 +D1gp1g +D2gp2g � re
2
g
, (3.30)

by choosing an optimal e⇤
g
. In the second stage, each firm chooses its price to maximize its

profit. When the firms are symmetric, we can find the optimal e↵ort and price e
⇤
g
and p

⇤
g

through backward induction:

e
⇤
g
= � a1(✓ � 1)(k + 2q)

2 (a21 + 4(✓ � 1)2rt)
(3.31)

and

p
⇤
g
= �(✓ � 1)(k + 2q) (a21 + 2(✓ � 1)2rt)

2 (a21 + 4(✓ � 1)2rt)
. (3.32)

Then from (3.31) and (3.32), we can obtain the impact of the network e↵ect k, as ex-

pressed in the following lemma:

Lemma 3. In the government planning case, the optimal anti-piracy e↵ort e⇤
g
and optimal

product price p
⇤
g
increase with the network e↵ect.

The results in Lemma 3 are similar to those in Lemma 2. In both cases, as the network

e↵ect increases, the central planner (the alliance or the government) increases anti-piracy

e↵ort to discourage piracy. This allows the firms to increase their price to take advantage of

the increased network e↵ect and higher piracy cost. In the government planning case, the
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government cares about consumer surplus. It is interesting to see how the consideration of

consumer surplus a↵ects the price and anti-piracy e↵ort. We find the results as follows:

Theorem 16. When the discount factor of pirated software ✓ is large (✓ > 1/2) and the

piracy cost r is large (r > rp), the anti-piracy e↵ort, product price, and demand for legitimate

software in the industrial alliance case are smaller than those in the government planning

case. Otherwise, the anti-piracy e↵ort, product price, and legitimate demand in the industrial

alliance case are larger than those in the government planning case. The threshold rp is

specified in the Appendix 6.2.16.

When software piracy is more tempting due to a high discount factor of pirated soft-

ware ✓ (✓ > 1/2), intuitively we would expect an industrial alliance to invest more than

a government does to prevent software piracy and maximize the total profit for the whole

industry. However, Theorem 16 shows that this intuition is only true when the anti-piracy

cost r is low. When the anti-piracy e↵ort becomes expensive, the situations di↵er because

unlike the government, which needs to prevent too many consumers from using pirated soft-

ware as well as consider the industry’s profit, the industrial alliance only needs to maximize

the total profit of the two firms. In other words, without considering legitimate consumers’

surplus, the industrial alliance invests less than the socially optimal level in the anti-piracy

measure in order to save more on the anti-piracy e↵ort. Then due to a lower anti-piracy

measure, firms have to set their prices lower in the industrial alliance case than they do in the

government planning case. As a result of under-investment in anti-piracy, the demand for

legitimate software will also be lower in the industrial alliance case. In other scenarios when

software piracy is not tempting, either because of a low discount factor of pirated software

✓ or high-level of anti-piracy measure due to a low r, an alliance over-invests in anti-piracy

in pursuing the total profit of software firms, compared with the government planning case.

Then firms can charge more, therefore hurting consumer surplus for buying and using legit-

imate software. According to the above discussion, an industrial alliance would over-react

when left alone. If a government regulatory body wants to increase social welfare, it should
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help the industrial alliance in controlling software piracy when piracy issue is severe (high

✓ and r); on the other hand, if the piracy issue is not so severe, the government regulator

should discourage the alliance from over-investing.

3.6. Conclusion

In this paper, we analyze software firms’ optimal strategy to control software piracy through

anti-piracy e↵ort and product price. We find in both the monopoly and duopoly cases, a

firm’s anti-piracy e↵orts decrease with network e↵ect if one of the following conditions holds:

(i) the quality of the pirated software is small, (ii) the anti-piracy e↵ort cost is small, or (iii)

the quality of pirated product, the anti-piracy e↵ort cost, and the network e↵ect are large.

Di↵erent from previous literature, a counter-intuitive result in our paper is that a firm’s

anti-piracy e↵ort increases with the network e↵ect under certain conditions. Although an

increase in the network e↵ect could make software piracy potentially more beneficial to the

firm, the software firm does not always decrease its anti-piracy e↵ort and tolerate piracy

more. In other words, the software firm can exploit the network e↵ect of pirated software to

increase profit even while it also faces the problem of controlling the piracy activity. When

determining the anti-piracy e↵ort, the firm should balance the gain from the network e↵ect

and the loss from piracy.

However, the impact of the network e↵ect on product price in the monopoly case is

di↵erent from that in the duopoly case. In the monopoly case, the product price always

increases with the network e↵ect. The reason is the following. When the network e↵ect

increases, a consumer’s utility of using legitimate software increases; then a firm can charge

a higher price. However, in the duopoly case, we have obtained a counter-intuitive result:

When the anti-piracy e↵ort cost is small and a firm’s software network e↵ect increases, its

optimal product price actually decreases, di↵erent from that in the monopoly case. The

di↵erence between the monopoly case and duopoly case arises from competition between

legitimate products and their pirated counterparts. When a firm’s network e↵ect increases,
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its pirated product becomes more attractive. Given that the firm needs to lower its anti-

piracy e↵ort in the region of small e↵ort cost, the firm has to lower its price for the legitimate

software as well in order to compete with the pirated software. The implication is that in

the duopoly case, the product price does not always increase with the network e↵ect; a firm

should also consider the competition e↵ect when determining its price.

In both the asymmetric case and symmetric case in the duopoly scenario, we find that

when one firm’s cross e↵ect increases, both firms’ anti-piracy e↵ort and price increase. An

explanation is that an increase in cross e↵ect can make pirated products less attractive

and weaken the competition between legitimate products and their pirated counterparts.

Then firms can increase their prices. As a result, firms increase anti-piracy e↵orts to reduce

software piracy and increase sales.

We have also studied the industry alliance and the government planning cases. In both

cases, when network e↵ect increases, firms will exert more anti-piracy e↵ort and charge a

higher price. This result of the anti-piracy e↵ort is di↵erent from the duopoly symmetric case.

The reason is that in the industry alliance and government planning cases, the anti-piracy

e↵ort is not determined by the firms. An industry alliance or a government increases the

anti-piracy e↵ort as the network e↵ect increases. As a result, pirated products become less

attractive and thus the software firms can increase their product prices. Our result also shows

that an industry alliance can over- or under-invest compared with a government agency. The

policy implication is that when the piracy tendency is very strong, a government regulator

should help the industry alliance in fighting software piracy in order to increase social welfare.

In other situations, the government regulator should discourage over-investment in an anti-

piracy e↵ort by the industry alliance.

Here are some possible extensions to our paper. One could make product quality a

decision variable and study vertical competition based on quality. New insights could be

generated when adding this dimension of quality competition, such as considering whether a

higher-quality firm has more incentive to control software piracy. It would also be interesting
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to see the interaction between vertical and horizontal competitions. One could also consider

the existence of ethical consumers such as corporate users who will only choose between

legitimate products. Such consideration could also introduce direct competition between

legitimate products. Finally, one could extend the model in this paper to include the arrival

of new consumers and study their impact on firms’ anti-piracy investment.
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Chapter 4

Analyzing Healthcare Information Exchanges’ Strategies in

a Competitive Environment

4.1. Introduction

Healthcare spending constitutes the largest share of public spending in most OECD countries,

reaching 8.9% in 2015 (OECD, 2015). In US, it reached $3.0 trillion and accounted for 17.5%

of the nation’s GDP (Centers for Medicare and Medicaid Services, 2014). In Canada, the

total health expenditure is expected to reach $219 billion and represent 10.9% of GDP

(Canadian Institute for Health Information, 2016).

Despite of the enormous amount of expenditure, there are constant deep concerns of

quality and e�ciency of healthcare systems such as overuse of diagnostic testing services,

avoidable hospitalization and readmission, preventable deaths and etc (Kohn et al., 2001,

Weinberger, 2011, Mishra et al., 2012). One underlying reason of such high spending in

healthcare is fragmented information infrastructure. For example, a patient may be required

to have a CT test, even though he or she has already done some similar tests in a di↵erent

hospital before. Another example is drug prescription. A physician without access to a

patient’s previous prescription history may not be able to prescribe e↵ective medicine and

as a result prolong treatment.

Healthcare information technology (HIT) has been identified as a potential solution to
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reducing cost and improving quality of service (Kohn et al., 2001, Garg et al., 2005, Hillestad

et al., 2005, Chaudhry et al., 2006). Given the importance of health IT for transforming

health care, US Congress passed Health Information Technology for Economic and Clinical

Health Act (HITECH) in 2009. It provided more than $30 billion in stimulus fund to

encourage healthcare providers to adopt HIT under the coordination of the O�ce of the

National Coordination for Health Information Technology (ONC); it requires all medical

records to be in standardized electronic forms by 2014 with establishing Health Information

Exchange (HIE) programs as being one main objective (Blumenthal and Tavenner, 2010).

HIE is a technological platform that allows health providers to 1). Securely access and share

patients’ vital medical history, no matter where patients are, whether in physicians’ o�ces,

labs, or emergency rooms and 2). provide safer, more e↵ective care tailored to patients’

unique medical needs. Therefore, adopting HIE could ultimately lead to better and more

e�cient healthcare.

In general, there are two types of services provided by an HIE. One is the basic service

which provides the core functionalities of an HIE to support the sharing of healthcare in-

formation. For instance, Southeast Texas Health System (SETHS) is a collaborative HIE of

rural hospitals in Texas. It provides basic services for its members such as patient manage-

ment, record locator provision, and so on (Demirezen et al., 2016). In addition to providing

base functionalities, an HIE can provide additional services, called value-added service, which

could be valuable to healthcare providers. For example, an HIE could o↵er an integrated

portal with data warehousing and data mining capability. A HP could use such portal to

discover disease patterns and provide innovative care.

In our paper, we consider several types of network e↵ect. The first type of network e↵ect

comes from using basic service. When more HPs use basic service, a provider can gain more

utility for using the same basic service. The second type of network e↵ect comes from value-

added service. When there are more HPs using basic service, a provider with value-added

service could utilize patients’ records from those providers to discover patterns and design
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new treatment methods. In other words, a provider with value-added service could benefit

from the installed base of basic service. Finally, among HPs adopting value-added service,

they could benefit from each other by practices such as sharing solution development and

deployment experiences. That is, there is a network e↵ect among HPs using value-added

service.

We study the e↵ect of competition on the pricing of basic and value-added services. Our

main research questions are:

1. How should an HIE determine the basic service price, value-added service price, and

value-added service quality?

2. When will an HIE provide basis service only, and when will an HIE provide both basic

and value-added services?

3. How will an HIE’s decision changes when parameters change?

4. Should the government subsidize HIEs so that HIEs can gain higher profit and sustain?

We build game-theoretical models to address the above research questions. Our contri-

butions will be mainly in three ways. First we study the competition among HIEs and how

competition a↵ects the pricing and service strategies. Second, our results show how HIE(s)

determine the basic service price, the value-added service price, and the value-added service

quality. Third, our results will show how a government should optimally subsidize the HIEs

in di↵erent setting.

4.2. Literature

There are two streams of literature related to our paper. One stream of literature is network

e↵ect (network externality), which means that the value of a product or service will be

a↵ected by the total number of users. It is often assumed that consumers will have the same

network e↵ect. In particular, even though consumers valuate a product di↵erently, they have
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the same network e↵ect (Fudenberg and Tirole, 2000, Niculescu et al., 2012). In our paper,

when other HPs use basic service (value-added service), a HP will gain network e↵ect for

using basic service (value-added service), which is the same as the network e↵ect described

by the literature. However, we also include a type of network e↵ect that when other HPs

use basic service, a HP can gain network e↵ect for value-added service.

Another stream of literature is HIE policy. The policy could be from the government’s

perspective, and it could also be from HIEs’ perspective. Since HIE can seamlessly transfer

patients’ information from one place to another, the U.S. government encourages HIEs to ef-

fectively connect HPs (Walker et al., 2005, Adler-Milstein et al., 2011). Khuntia et al. (2017)

use surveys data of HIEs in the United States from 2008 to 2010 and find that HIEs need to

provide value-added service besides basic service. They also find that the services should be

bundled appropriately using transaction-, subscription- or mixed-fee models. Adjerid et al.

(2018) use a national panel data set of the largest insurer in the United States to study

whether HIEs can reduce spending for the insurer. They find that HIE can significantly

reduce the spending in healthcare markets. Yeager et al. (2014) examines what a↵ect use of

the HIE in Louisiana. They find that ”Meaningful Use” requirements play a critical role in

participating in the HIE. Yaraghi et al. (2014) investigate actual adoption and use behaviors

of 2,054 physicians. At the level of medical practices, they find what a↵ect HIE adoption

and use. Demirezen et al. (2016)’s work related to our paper the most. They use game

game-theoretic to investigate sustainability of HIEs. They find the equilibrium behaviors

of an HIE provider and the HPs. The similarity between Demirezen et al. (2016) and our

paper comes in two ways. First both paper discuss the basic service price, the value-added

service price, and the quality of the value-added service. Second, both paper has investigated

the monopoly case. However, there are several di↵erence between Demirezen et al. (2016)

and our paper. First, we assume even though consumers valuate a product di↵erently, they

have the same network e↵ect (Fudenberg and Tirole, 2000, Niculescu et al., 2012), while in

Demirezen et al. (2016)’s paper, HIE valuations and the benefits HPs obtain from the net-
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work are correlated. Second, we investigate the duopoly case and solve the result. However,

in Demirezen et al. (2016)’s paper, they only list the duopoly case model but cannot solve

it.

4.3. Model Setup and Notations

We first consider a monopoly case and then a duopoly case. In each case, we have two

sub-cases, basic service (hereby we use BS for abbreviation) sub-case and basic and value-

added service (hereby we use B&VS for abbreviation) sub-case. In the BS case, HIE(s)

will only provide basic service, while in the B&VS case, HIE(s) will provide both basic and

value-added service.

We use Hotelling model instead of vertical competition model to investigate the duopoly

case. In the vertical competition case, the functions of one HIE contains the functions of

another HIE, while in the Hotelling model, both HIEs may have some unique functions. The

di↵erence between two cases implies that when the two HIEs’ prices are the same, the HIE

with higher quality is always preferred in the vertical competition case, while both HIEs will

be chosen by some HPs in the Hotelling case, better matching the reality.

In the duopoly case, we assume two HIEs are located on two endpoints of a Hotelling line.

Without loss of generality, let HIE 1 be at Point 0 and HIE 2 at Point 1. We also assume

that HPs are located uniformly on the Hotelling line. In the comparative static analysis, we

first investigate the asymmetric case, that is, only one parameter of an HIE changes. Then

we study the symmetric case, that is, a common parameter of both HIEs changes.

4.3.1 Monopoly Case

In the monopoly case, we assume that only HIE 1 exists, and is located at the endpoint 0.

For the monopoly case, we have two sub-cases, BS sub-case and B&VS sub-case.
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Table 4.1: Summary of notation

Notation Description

Parameters
qi the value of HIE i’s basic service for HPs

k1 (k1i) Network e↵ect of using basic service in the monopoly case (with
regard to HIE i in the duopoly case)

k2 (k2i) Network e↵ect of using value-added service due to the users of basic
service in the monopoly case (with regard to HIE i in the duopoly
case)

k3 (k3i) Network e↵ect of using value-added service due to the users of value-
added service in the monopoly case (with regard to HIE i in the
duopoly case)

Mh Government subsidy to an HIE per adopted HP
x A HP’s location on the Hotelling line, representing its ideal choice

of service
t HP’s unfitness cost of choosing an HIE

cv (cvi) value-added service cost coe�cient in monopoly (duopoly) case
Decision Variables

p
m↵ HIE’s price for service type ↵ in the monopoly case (↵ = b for basic

service and ↵ = v for value-added service in this paper)
p
d↵

i
HIE i ’s price for service type ↵ in the duopoly case

Qi the value of HIE i’s value-added service for HPs
Intermediate Variables

U
m↵ A HP’s net utility of using service type ↵ in the monopoly case

⇡
m↵ the HIE’s total profit for providing service type ↵ in the monopoly

case
U

d↵

i
a HP’s net utility of using HIE i ’s service type ↵ in the duopoly
case

⇡
d↵

i
the HIE i ’s total profit of providing service type ↵ in the duopoly
case
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BS Sub-case

We consider the case of HIE 1 o↵ering only basic service to HPs. In this case, HIE 1 acts as a

monopolist. When a HP joins an HIE and chooses the basic service, it will obtain utility q1.

At the same time, it will face the unfitness cost for the location di↵erence from the endpoint

0. Assume the unfitness cost coe�cient is t1, and the location of HP is x, then the unfitness

cost of the HP with respect to HIE 1 is t1x. Since an HIE has strong network e↵ect, we need

to incorporate the network e↵ect into our model. Let xmb

1 be the indi↵ernce point at which

HP will have the same utility between using the basic service and not joining HIE 1. Then,

D
mb

1 , the demand of HPs joining HIE 1 is given by D
mb

1 = x
mb

1 . Let k1 be the network e↵ect

coe�cient of using the basic service. Then we have a HP’s reservation price of using HIE 1,

u
mb = q1 � tx+ k1D

mb
. (4.1)

Let HIE 1 charge HP price pmb for basic service, then we conclude HPs’ utility of using HIE

1’s basic service is

U
mb = u

mb � p
mb
. (4.2)

Let HPs located at x = x
mb are indi↵erent between joining and not. Then we have

U
mb|x=xmb = 0. (4.3)

HIE 1’s profit is given by

⇡
mb = D

mb
�
Mh + p

mb
�

(4.4)

where Mh is the subsidy per HP from the government to the HIE for providing service.

The HIE’s objective is to maximize its profit given by Equation (4.4) by choosing the basic
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service price, i.e., @⇡mb
/@p

mb = 0. Then we can have

p
mb⇤ =

1

2
(q1 �Mh) , (4.5)

x
mb⇤ = D

mb⇤ =
Mh + q1

2 (t1 � k1)
, (4.6)

and

⇡
mb⇤ =

(Mh + q1) 2

4 (t1 � k1)
. (4.7)

The B&VS Case

We consider the case of HIE 1 o↵ering both basic and value-added service to HPs. Then

some HPs will only choose the basic service, while others will choose both basic and value-

added service. By following the literature Demirezen et al. (2016), we assume that HPs can

not use value-added service without basic service.

For health providers that choose both basic service and value-added service, they have two

reservation prices, the basic service reservation price and the value-added service reservation

price. The basic service reservation price is the same as before, given by Equation (4.1).

For a HP joining HIE 1 and choose value-added service, it will obtain utility Q1 from the

value-added service. Assume the unfitness cost coe�cient is t2, then the unfitness cost of

the HP’s value-added service with respect to HIE 1 is t2x. Let xmv

1 be the indi↵erence point

at which HPs will have the same utility when they choose both services or only the basic

service. Then the demand of HPs using value-added service is Dmv

1 = x
mv

1 .

When a HP uses the value-added service, it can benefit from both the user base of basic

service and that of the value-added service. Let k2 be the network e↵ect coe�cient due to

the adoption base of basic service, and k3 be the network e↵ect coe�cient due to the base

of value-added service. Then a HP’s reservation price of using value-added service, umv, is

u
mv = Q1 � tx+ k2D

mb + k3D
mv (4.8)
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and its utility of using HIE’s value-added service is

U
mv = u

mv � p
mv

. (4.9)

Let x = x
mv be the location that an HP is indi↵erent between choosing only basic service

and both basic and value-added service. Then we have

U
mb|x=xmv = (Umb + U

mv)|x=xmv (4.10)

We can prove the following lemma by using (4.10) (see the appendices for all the proofs

of theorems and lemmas). Lemma 1 describes HPs’ choice of service according to their

unfitness level.

Lemma 4. For a particular HIE, HPs who have a lower unfitness level will favor the option

of using both basic and value-added service; otherwise they favor the option of using basic

service only.

Then we can depict HPs’ choice of services in the B&VS case in Figure 4.1.

Figure 4.1: HPs’ choice of service(s) in monopoly B&VS sub-case

The profit of HIE 1 will be

⇡
mv = D

mb
�
Mh + p

mb
�
+D

mv
p
mv �Q

2
1cvD

mv (4.11)
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HIE 1 will first determine the quality of the value-added service Q1 and then the prices of the

basic service and the value-added service. Since there is only one decision maker (HIE 1),

the sequential decision result is equivalent to the simultaneous decision result. To maximize

Equation (4.11), HIE 1 needs to determine the value-added service quality, basic service

price, and value-added service price. We have

p
mb⇤ =

1

4

✓
k2 (2k2cv (Mh + q1)� k1 + t1)

cv (k2
2 � 4 (k1 � t1) (k3 � t2))

+ 2 (q1 �Mh)

◆
, (4.12)

p
mv⇤ =

4k2cv (k3 � t2) (Mh + q1)� 6 (k1 � t1) (k3 � t2) + k
2
2

4cv (k2
2 � 4 (k1 � t1) (k3 � t2))

, (4.13)

Q
⇤
1 =

1

2cv
, (4.14)

⇡
mv⇤ =

�4cv (Mh + q1) (4cv (t2 � k3) (Mh + q1) + k2) + k1 � t1

16c2
v
(k2

2 � 4 (k1 � t1) (k3 � t2))
, (4.15)

x
mb⇤ = � k2 � 8cv (k3 � t2) (Mh + q1)

4cv (k2
2 � 4 (k1 � t1) (k3 � t2))

, (4.16)

and

x
mv⇤ =

�2k2cv (Mh + q1) + k1 � t1

2cv (k2
2 � 4 (k1 � t1) (k3 � t2))

. (4.17)

In the previous sub-section 4.3.1 we have studied the case where an HIE provider o↵ers

only basic service. Then one will ask: what is the optimal strategy for an HIE to provide

services? In other words, is it always optimal to o↵er value-added service? By comparing

the two profit functions (4.7) and (4.15), we find that

⇡
mv⇤ � ⇡

mb⇤ = � (2k2cv (Mh + q1)� k1 + t1) 2

16c2
v
(k1 � t1) (4 (k1 � t1) (k3 � t2)� k

2
2)

> 0. (4.18)

which leads to the following lemma

Lemma 5. In the monopoly case, the value-added service should always be provided.

Will this result hold in the duopoly case? This is one of the questions we are going to

investigate next.
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4.3.2 Duopoly Case

In the duopoly case, we use Hotelling model to investigate the competition between two

HIEs. The duoply case also has two sub-cases, the BS sub-case and B&VS sub-case. The

o↵ering of services is depicted in Figure 4.2.

Figure 4.2: HPs’ choice of service(s) in duopoly B&VS sub-case

BS Case

We consider the case of two HIEs o↵ering only basic service to HPs. When a HP joining HIE

i and chooses basic service, it will obtain utility qi. To ensure all HPs are covered (otherwise,

each HIE will act as a local monopolist and there is no competition between two HIEs), we

assume qi is large enough. At the same time, HPs will face the unfitness cost for the location

di↵erence from the endpoints. Assume the unfitness cost coe�cient is t1, and the location

of HP is x, then the unfitness cost of the HP with respect to HIE 1 is t1x, and the unfitness

cost of the HP with respect to HIE 2 is t1(1� x). Let xdb

ih
be the indi↵erence point at which

HPs will have the same utility between using the basic service of HIE i and both services

of HIE i. Let xdv

1h be the indi↵erence point at which HPs will have the same utility between

using the basic service of HIE 1 and the basic service of HIE 2. Then D
db

1h = x
db

1h will be the

demand of HIE 1’s basic service; Ddb

2h = 1� x
db

1h will be the demand of HIE 2’s basic service.

Also, let k11 and k12 be network e↵ect coe�cient of using basic service. Then we can have
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HPs’ reservation price of choosing HIE 1 and HIE 2.

u
db

1 = q1 � t1x+ k11D
db

1 (4.19)

u
db

2 = q2 � t1(1� x) + k12D
db

2 (4.20)

then the utility function

U
db

1 = u
db

1 � p
db

1 (4.21)

U
db

2 = u
db

2 � p
db

2 (4.22)

The profit function will be

⇡
db

1 = D
dB

1

�
Mh + p

dB

1

�
(4.23)

and

⇡
db

2 = D
dB

2

�
Mh + p

dB

2

�
(4.24)

By maximizing ⇡
db

1 with respect to p
db

1 and ⇡
db

2 with respect to p
db

2 under the condition

U
db

1 |
x=x

dB
1

= U
db

2 |
x=x

dB
1
, (4.25)

we have

p
db⇤
1 =

1

3
(�k11 � 3Mh � 2k12 + q1 � q2) + t1, (4.26)

p
db⇤
2 =

1

3
(�2k11 � 3Mh � k12 � q1 + q2) + t1, (4.27)

⇡
db⇤
1 = �(k11 + 2k12 � q1 + q2 � 3t1) 2

9 (k11 + k12 � 2t1)
, (4.28)

and

⇡
db⇤
2 = �(2k11 + k12 + q1 � q2 � 3t1) 2

9 (k11 + k12 � 2t1)
. (4.29)
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When the two HIEs are symmetric, let q2 = q1, k11 = k12 = k1, we have

p
db⇤
1 = p

db⇤
2 = �Mh � k1 + t1 (4.30)

and

⇡
db⇤
1 = ⇡

db⇤
2 =

1

2
(t1 � k1) . (4.31)

B&VS Case

We consider the case of two HIEs o↵ering both basic and value-added service to HPs. HPs

joining HIE 1 and 2 will gain utility U
db

1 and U
db

2 from basic service, given by Equation (4.21)

and Equation (4.22). At the same time, when HPs use the value-added service, they can

also gain extra utility

U
dv

1 = u
db

1 + u
dv

1 � p
db

1 � p
dv

1 (4.32)

and

U
dv

2 = u
db

2 + u
dv

2 � p
db

2 � p
dv

2 , (4.33)

where u
dv

1 and u
dv

2 are the reservation price for the value-added service, and

u
dv

1 = Q1 � t2x+ k21D
db

1 + k31D
dv

1 (4.34)

and

u
dv

2 = Q2 � t2(1� x) + k22D
db

2 + k32D
dv

2 . (4.35)

Let xdb

ih
be the indi↵erence point at which HPs will have the same utility between using the

basic service of HIE i and both services of HIE i. Let xdv

1h be the indi↵erence point at which

HPs will have the same utility between using the basic service of HIE 1 and the basic service

of HIE 2. Then D
dv

1h = x
dv

1h will be the demand of HIE 1’s value-added service; Ddb

1h = x
db

1h

will be the demand of HIE 1’s basic service; Ddb

2h = 1 � x
db

1h will be the demand of HIE 2’s

basic service; Ddv

2h = 1� x
dv

2h will be the demand of HIE 2’s value-added service.
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Two HIEs’ profit function will be

⇡
dv

1 = D
db

1

�
M1 + p

db

1

�
+D

dv

1 p
dv

1 �Q
2
1cvfD

dv

1 (4.36)

and

⇡
dv

2 = D
db

2

�
M1 + p

db

2

�
+D

dv

2 p
dv

2 �Q
2
2cvsD

dv

2 (4.37)

To maximize each HIE’s profit, each HIE will first determine the quality of value-added

service, and then the price of basic service and value-added service. From Equation (4.25),

D
db

1 +D
db

1 = 1, (4.38)

U
db

1 |
x=x

dv
1

= U
dv

1 |
x=x

dv
1
, (4.39)

and

U
db

2 |
x=x

dv
2

= U
dv

2 |
x=x

dv
2
, (4.40)

we can express Ddv

ih
and D

dv

ih
as a function of pdv

ih
and p

dv

ih
. Substituting the demand expression

into the profit function, we can express the profit as a function of pdv
ih

and p
dv

ih
. Then by solving

@⇡
dv

i

@p
db

ih

= 0, (4.41)

and
@⇡

dv

i

@p
dv

ih

= 0, (4.42)

we can express pdv
ih

and p
dv

ih
as a function of Q1 and Q2. Substituting the price function into

the profit function, by solving
@⇡

dv

1

@Q1
= 0 (4.43)

and
@⇡

dv

2

@Q2
= 0, (4.44)
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we can solve the value-added service quality,

Q1 =
1

2cvf
(4.45)

Q2 =
1

2cvs
(4.46)

Substituting them into the price function, we have p
db⇤
1 , p

db⇤
2 , p

dv⇤
1 , p

dv⇤
2 , p

dv⇤
1 , and ⇡

dv⇤
1 .

However, there expressions are too complex, and we write them in the Mathematica file.

When the two HIEs are symmetric, let q2 = q1, k11 = k12 = k1, k21 = k22 = k2, and

k31 = k32 = k3, we will have

Q
⇤
1 = Q

⇤
2 =

1

2cv
(4.47)

p
db⇤
1 = p

db⇤
2 =

2k2
2cv + k2

8k3cv � 8t2cv
�Mh � k1 + t1 (4.48)

and

p
dv⇤
1 = p

dv⇤
2 =

1

4

✓
3

2cv
+ k2

◆
. (4.49)

Then, we have the profit

⇡
dv⇤
1 = ⇡

dv

2 =
4k2

2c
2
v
� 1

64c2
v
(k3 � t2)

+
1

2
(t1 � k1) (4.50)

By comparing the two profit functions (4.31) and (4.49), we find that

⇡
dv⇤
i

� ⇡
db⇤
i

=
4k2

2c
2
v
� 1

64c2
v
(k3 � t2)

. (4.51)

from which we can obtain the following lemma:

Lemma 6. In the duopoly case, the value-added service should be provided if the network

e↵ect k2 or the value-added service quality cost coe�cient cv is low enough; otherwise only

basic service should be provided.

Compared with Lemma 5 in the monopoly’s case, we can see that an HIE provides the
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value-added service only if the network e↵ect k2 or the quality cost coe�cient cv is low

enough. Where there is competition, o↵ering value-added service does not always benefit an

HIE. One needs to make a careful cost-benefit trade-o↵ to determine the service o↵ering.

4.4. Analysis

In this section, we do the comparative statics. We first list the parameters’ impact on the

basic service price and the value-added service price of both monopoly and duopoly case in

Table 4.2. Then we will analyze these result in detail and list the results in theorem format.

Table 4.2: Results Related to price

Monopoly Duopoly
B B+V B B+v

p
mb⇤

p
mb⇤

p
mv⇤

p
db⇤
1 p

db⇤
1 p

dv⇤
1

Mh

@p
mb⇤

@Mh
< 0 @p

mb⇤

@Mh
< 0 @p

mv⇤

@Mh
> 0 @p

db⇤
1

@Mh
< 0 @p

db⇤
1

@Mh
< 0 @p

dv⇤
1

@Mh
= 0

q1
@p

mb⇤

@q1
> 0 @p

mb⇤

@q1
7 0† @p

mv⇤

@q1
> 0 @p

db⇤
1

@q1
> 0 @p

db⇤
1

@q1
> 0 @p

dv⇤
1

@q1
> 0

q2 • • •
@p

db⇤
1

@q2
< 0 @p

db⇤
1

@q2
< 0 @p

dv⇤
1

@q2
< 0

k1
@p

mb⇤

@k1
= 0 @p

mb⇤

@k1
< 0 @p

mv⇤

@k1
> 0 • • •

k11 • • •
@p

db⇤
1

@k11
< 0 @p

db⇤
1

@k11
< 0 @p

dv⇤
1

@k11
> 0

k12 • • •
@p

db⇤
1

@k12
< 0 @p

db⇤
1

@k12
< 0 @p

dv⇤
1

@k12
< 0

k2 • @p
mb⇤

@k2
< 0 @p

mv⇤

@k2
> 0 • • •

k21 • • • •
@p

db⇤
1

@k21
< 0 @p

dv⇤
1

@k21
> 0

k22 • • • •
@p

db⇤
1

@k22
< 0 @p

dv⇤
1

@k22
< 0

k3 • @p
mb⇤

@k3
< 0 @p

mv⇤

@k3
> 0 • • •

k31 • • • •
@p

db⇤
1

@k31
< 0 @p

dv⇤
1

@k31
> 0

k32 • • • •
@p

db⇤
1

@k32
< 0 @p

dv⇤
1

@k32
< 0

cv • @p
mb⇤

@cv
> 0 @p

mv⇤

@cv
< 0 • • •

cv1 • • • •
@p

db⇤
1

@cv1
> 0 @p

dv⇤
1

@cv1
< 0

cv2 • • • •
@p

db⇤
1

@cv2
> 0 @p

dv⇤
1

@cv2
> 0

† indicates sign changes depending on the threshold value(s).
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4.4.1 Government Subsidy

From our intuition, government’s subsidy to HIEs can decrease the HIEs’ price and increase

HIEs’ profit. This result is true in the monopoly BS sub-case. However, the results is

di↵erent in other sub-cases.

In the monopoly B&VS sub-case, the subsidy can decrease the basic service price, and

increase the HIE’s profit. These results are consist with the monopoly BS sub-case. However,

we find that government’s subsidy will increase the value-added service price. The intuition

is that when the government increases the subsidy, more HPs will use the basic service. Then

HPs’ network e↵ect of using value-added service will also increase. An HIE can extract more

profit from HPs by increase the value-added service price.

In the duopoly case, the basic service price will decrease, which is consistent with the

monopoly case. However, the value-added service price will not change. The reason is that

in the duopoly case, the competition exists. When the government increases the subsidy,

both HIEs will have motivation to decrease the basic service price. In euqilibrium, their

basic service demand will not change. HIEs’ network e↵ect of value-added service due to

basic service demands will not change. Then the value-added service price will not change.

We also find that the profit of both HIEs will not be a↵ected by government subsidy. The

explanation is that the competition between two HIEs leads two HIEs to decrease their price,

which will transfer all the subsidy to the HPs. We can gain some insights from this result.

When the competition between two HIEs is very intense and all potential HPs will join one

HIE, then government’s subsidy to sustain HIEs is not e↵ective when their subsidy strategy

is paying the HIEs per new HP joing them.

Summarizing our analysis, we have the following theorem.

Theorem 17. When government increase the subsidy,

1. In all cases, the basic service price will decrease.

2. In the monopoly B&VS sub-case, the value-added service price will increase.
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3. In the duopoly B&VS sub-case, the value-added service price will not change.

4. In duopoly case, HIEs’ profit is not a function of government’s subsidy.

4.4.2 Basic Service Quality

When one HIE’s basic service quality increases, one may conclude the HIE’s basic service

price and the value-added service price increase. The intuition is higher basic service quality

can lead to higher HPs’ utility. Then HIEs can charge higher price to maximize its profit. At

the same time, more HPs will be willing to join the HIE. When there are more HPs using the

basic service, HPs can gain more network e↵ect from the value-added service. Then HIEs

will charge higher price for the value-added service.

However, we find that in the monopoly B&VS sub-case, the basic service price does not

increase monotonically. When the network e↵ect of value-added service due to the basic

service demand (k2) is small, the basic service price increases with the basic service quality;

else, the basic service price decreases with the basic service quality. When k2 is large, the

basic service demand has large e↵ect on the network e↵ect of value-added service. When

the basic service quality increases, decreasing the basic service price will lead to higher basic

service demand. Then value-added service’s network e↵ect will increase. HIEs can charge

higher price for the value-added service. The intuition is that the value gained by the higher

value-added service o↵sets the loss of lower basic service. when k2 is small, the basic service

demand does not play an important role in the network e↵ect of value-added service. The

explanation will be similar to the explanation in the last paragraph.

In the duopoly case, because of the competition, even the basic service price decrease,

the basic service demand will not increase as much as in the monopoly case. Then the

network e↵ect of value-added service due to basic service demand will not change too much.

HIEs have no motivation to decrease the basic service price to increase the network e↵ect of

value-added service due to basic service demand. Instead, HIEs have motivation to increase

the basic service price.
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In the monopoly case, HIE’s profit will increase with network e↵ect. Also in the duopoly

case, when one HIE’s basic service quality increases, its profit will increase, at the same

time, the other HIE’s profit will decrease. However, when two HIEs are symmetric, HIEs’

basic service quality does not have impact on their profits. The reason is the competition

between two HIEs. Two HIEs’ quality e↵ect are o↵set by each other. In summary we have

the following theorem

Theorem 18. When one HIE’s basic service quality increase,

1. In the duopoly case and monopoly BS sub-case, the basic service price will increase.

2. In the monopoly B&VS sub-case, the basic service price increases with the basic service

quality when the network e↵ect k2 is small, otherwise, the basic service price decreases

with the basic service quality.

3. HIE’s profit will increase.

In the symmetric case, when HIEs’ basic service quality increase, their profits will not change.

4.4.3 Network E↵ect k1

When the network e↵ect k1 increases, the results in duopoly and monopoly case are quite

di↵erent. In the monopoly BS sub-case, the basic service price is not a function of the

network e↵ect k1. The intuition is like this. When the network e↵ect k1 increases, although

HPs’ utility will increase, the network e↵ect will also increase. By balancing the gain for

higher price and the gain from more HPs, the HIE will choose to increase the total demand.

In the monopoly B&VS sub-case, the basic service price decreases with the network e↵ect

k1. This result is not obvious. The reason is that sacrificing the benefit gaining from basic

service, the demand in value-added service will increase, at the same time, the price of value-

added service will increase. Then the HIE can gain more from the value-added service than

the lose from the basic service.
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In the duopoly BS sub-case, the HIE’s basic service price will increase. Although the

basic service price is decreasing in both B&VS cases and the duopoly BS sub-case, the reason

behind them are di↵erent. In the duopoly BS sub-case, the reason is that the competition

between two HIEs are intensified. In the B&VS cases, the basic service price decrease. There

are two reasons, one is the intensified competiton between two HIEs and the other one is to

increase the demand of basic service so that the value-added service’s network e↵ect increase,

leading to high profit from the value-added service. For the other HIE, the basic service price

will decrease in the duopoly case. In summary, we have the following theorem,

Theorem 19. When one HIE’s network e↵ect k1 increases,

1. In the monopoly BS sub-case, the basic service price does not change.

2. In the monopoly B&VS sub-case, the basic service price decreases.

3. In the duopoly case, the basic service price decreases.

4. In the duopoly case, the other HIEs’ basic service price will decrease.

4.4.4 Network E↵ect k2 (k2i) and k3 (k2i)

The result and explanation related to network e↵ect k2 and k3 are similar, so we discuss

them together. When network e↵ect k2 and k3 increase, HPs will have higher network e↵ect

from the value-added service. Then HIEs have higher motivation to increase the network of

value-added service. By decreasing the basic service price, the value-added service network

e↵ect will directly and indirectly increase. HIEs can increase the value-added service price

and gain more profit from the value-added service.

Here we can see that in the duopoly B&VS case, when one HIE’s network e↵ect k2i and

k3i increase, the other HIE’s basic service price and value-added service price will decrease.

The reason is that facing the higher competition for the HIE, the other HIE should lower its

price. In summary, we have the following theorem.

94



Theorem 20. When one HIE’s network e↵ect k2 (k2i) or k3 (k3i) increases,

1. In all cases, the basic service price decreases.

2. In all cases, the value-added service price increases.

3. In the duopoly case, the other HIE’s basic service price and value-added service price

decrease.

4.4.5 Value-added Service Quality Cost Coe�cient

In the monopoly case, when the value-added service quality cost coe�cient increases, HIE

will incline to decrease the value-added service quality and decrease the value-added service

price. Then some HPs will choose not to use the value-added service. Since the demand for

value-added service decreases, the value-added service network e↵ect will decrease. The HIE

will find that keep the basic service price to a low level to increase the value-added service

network e↵ect is not worthy. Then the HIE will increase the basic service price.

However, in the duopoly case, when one HIE’s quality cost coe�cient cv1 increases, we

find the other HIE’s the basic service price will increase. We have explained that when one

HIE’s quality cost coe�cient increases, its basic service price will increase, which means that

the competition between two HIEs decrease. Then the other HIE can also increase its basic

service price. In summary,

Theorem 21. When one HIE’s quality cost coe�cient increase,

1. In both monopoly case and duopoly case, the value-added service price decreases and

the basic service price increases.

2. In the duopoly case, the other HIE’s basic service price increases.
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4.5. Conclusion

In this paper, we have investigated the problem of HIEs providing basic and value-added

services. We analyzed the cases when HIE(s) choose to provide basic service only and both

basic and value added services. We find that in the monopoly case, the value-added service

should always be provided. However, in the duopoly case, the value-added service should be

provided if the network e↵ect k2 or the value-added service quality cost coe�cient cv is low

enough; otherwise only basic service should be provided.

We have investigated how government subsidy a↵ect basic service price, value-added ser-

vice price, and HIE(s)’ profit. We find that in the duopoly case, HIEs’ profits are not a↵ected

by the government subsidy. We also find that the value-added service price increases with

the subsidy. The implication is that if the government intends to sustain HIEs’ operation,

it is not e↵ective in the duopoly case than in the monopoly case.

With regard to basic service quality, we find that in the monopoly B&VS sub-case, the

basic service price does not increase monotonically with basic service quality. When the

network e↵ect of value-added service due to the basic service demand (k2) is small, the

basic service price increases with the basic service quality; otherwise, the basic service price

decreases with basic service quality. We have studied how network e↵ect and value-added

service cost impact the basic service price and value-added service price. The results show

that competition plays an important role in the optimal pricing decisions.

One possible extension to our paper is that we can include di↵erent types of HPs to our

model such as hospitals and clinics. When di↵erent types of HPs exist simultaneously, the

model will be more complex but could yield more interesting results. For example, an HIE

needs to consider the network e↵ect in di↵erent types of HPs. Another extension could be

considering the e↵ect of multi-homing – an HP could subscribe to the services of multiple

HIEs simultaneously. There, an interesting question is to investigate how multi-homing could

change the intensity of competition. Finally, one could also consider an interesting scenario
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that by subscribing to an HIE, an HP could benefit from the network e↵ect of other HIEs

due to the information sharing among HIEs. Then, one can explore the impact of sharing

and compatibility decisions on service o↵ering and pricing.
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Chapter 6

Appendices

6.1. Proof of Chapter 2

6.1.1 Appendix 1: Proofs for ⇣l > ⇣h Case

Assumptions and Constraints

In this paper, we make the following assumptions: (6.1)-(6.4), (6.8)-(6.12), (6.14), (6.17),

and (6.19). The rest of the sub-section explains the reasons why we make these assumptions.

The utility functions are given by (2.1), (2.2), and (2.3). Since 0 < ✓ < 1, to ensure that

the utility function (2.2) is positive even when a platform owner’s e↵ort is 0,

q > sh�
2
l

(6.1)

Similarly, we make the following assumptions

r > �
2
l

(6.2)

to ensure (2.3) to be positive and

�
2
0 < 1 (6.3)

to ensure (2.1) to be positive. Since consumers in the high-certainty channel are more
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sensitive than consumers in the low-certainty channel, we shall have:

sh > 1 (6.4)

Let cp1 be the solution to B = 0. Then we have ep = 0 when kp = 1, and ep = 1 when

kp = cp1. Therefore the feasible range of kp is between cp1 and 1. Then from (2.44), we

have B > 0 since the coe�cient of kp in B is positive. As a result, to ensure Dh > 0 and

Dl > 0, we have

A > 0 (6.5)

B > 0 (6.6)

Then from Equation (2.45), we can see that

B > C (6.7)

Define ŝh as A|sh=ŝh
= 0 , and b

�
2
l
as A|

�
2
l =

c
�
2
l
= 0. We have A > 0 when

sh < ŝh =
⇣
2
h
�
2
l
+ q⇣

2
l
� r⇣

2
l
+ 4r�2

l
+ 4qr � 4r2

�
2
l
(⇣2

l
+ 4r)

(6.8)

since A is a decreasing function of sh. Or equivalently, A > 0 when

�
2
l
<

b
�
2
l
=

(q � r) (⇣2
l
+ 4r)

sh (⇣2l + 4r)� (⇣2
h
+ 4r)

(6.9)

Using the same way, we can find an upper bound of r, a lower bound of ⇣l, and an upper

bound of ⇣h. That is

r < r̂ (6.10)

⇣l > ⇣̂l (6.11)

⇣h > ⇣̂h (6.12)

110



To ensure Dl > 0, we have

C > 0 (6.13)

Furthermore, to make the problem realistic, ep should be finite. Therefore, we need an lower

bound on kp. We make the following assumption of the lower bound on kp which will simplify

our analysis as well:

kp > sh�
2
l
/4 (6.14)

Then

C|kp=sh�
2
l
= �kp

�
⇣
2
h
� ⇣

2
l
+ 4�2

l

� �
⇣
2
h
� 4sh�

2
l
+ 4q

�
(6.15)

which should be greater then 0, so

⇣
2
h
� ⇣

2
l
+ 4�2

l
< 0 (6.16)

Since �
2
h
= �

2
l
(1� ep), the platform owner’s e↵ort should be less than 1. Then from (2.48),

sh�
2
l
A� B < 0 (6.17)

When Dh > 0, Dl > 0, and Dh +Dl < 1, we have

0 < ✓l < ✓h < 1 (6.18)

To ensure ce > 0 for all ep, we shall have

⇣
2
h
� 4sh�

2
l
� ⇣

2
l
+ 4�2

l
+ 4q � 4r > 0 (6.19)

Then we have

4q � 4r � 4sh�
2
l
> ⇣

2
l
� ⇣

2
h
� 4�2

l
> 0. (6.20)
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That is

q � r � sh�
2
l
> 0 (6.21)

Proof of Theorem 1

For D0 in (2.22), since 2�2
0

⇣
2
l +4

increases with �
2
0 and decreases with ⇣

2
l
, we can conclude D0 is

a increasing function of ⇣l, and a decreasing function of �2
0. From (2.23), we have

@⇧1

@⇣
2
l

=
1

16
� �

4
0

(⇣2
l
+ 4) 2

< 0. (6.22)

So, ⇧1 decreases with ⇣
2
l
. Since ⇣

2
l
� 4�2

0 + 4 decreases with �
2
0 and is greater than 0. We

can conclude ⇧1 decreases with �
2
0. From (2.25), we get

@SP0

@⇣
2
l

=
�16 (⇣2

l
� 4) �4

0 + (⇣2
l
+ 4) 3 + 8 (⇣2

l
+ 4) �2

0

32 (⇣2
l
+ 4) 3

> 0 (6.23)

@SP0

@�
2
0

=
⇣
2
l
�
2
0

(⇣2
l
+ 4) 2

� ⇣
2
l

4 (⇣2
l
+ 4)

< 0 (6.24)

So SP0 increases with ⇣
2
l
, and decreases with �

2
0.

Proof of Theorem 2

Using the expression of Dh in (2.49), we can have

@Dh

@x
= 2kp

@A

@x
B � @B

@x
A

B2
(6.25)

where x is a parameter of interest.

Also, we can have
@

@x

✓
@A

@x
B � @B

@x
A

◆
=

@
2
A

@x2
B � @

2
B

@x2
A (6.26)

(i) Dh vs. q
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We have:
@A

@q
= ⇣

2
l
+ 4r (6.27)

@B

@q
= 4kp

�
⇣
2
l
+ 4r

�
(6.28)

Then we have:

1

(⇣2
l
+ 4r)

✓
@A

@q
B � @B

@q
A

◆
= kp

�
⇣
2
h
+ 4r

� �
�⇣

2
h
+ ⇣

2
l
� 4�2

l

�
+sh�

2
l

�
⇣
2
l
+ 4r

� �
4kp � sh�

2
l

�
> 0

(6.29)

according to the conditions (6.14) and (6.16). So Dh increases with q.

(i) Dh vs. ⇣
2
h

We have
@A

@⇣
2
h

= �
2
l
> 0 (6.30)

@B

@⇣
2
h

= �kp

�
2⇣2

h
+ 4r � ⇣

2
l

�
(6.31)

Then we have ✓
@A

@⇣
2
h

B � @B

@⇣
2
h

A

◆
|
⇣
2
h=⇣̂

2
h
=

@A

@⇣
2
h

B|
⇣
2
h=⇣̂

2
h
> 0 (6.32)

by using A|
⇣
2
h=⇣̂

2
h
= 0.

From (6.26),
@

@⇣
2
h

✓
@A

@⇣
2
h

B � @B

@⇣
2
h

A

◆
= 2kpA > 0 (6.33)

by using (6.30) and (6.31). Therefore, for all ⇣̂h  ⇣h < ⇣l, we get

@Dh

@⇣
2
h

> 0 (6.34)

(ii) Dh vs. sh

First we have
@A

@sh
= �

2
l

�
�
�
⇣
2
l
+ 4r

��
< 0 (6.35)
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@B

@sh
= �2sh�

4
l

�
⇣
2
l
+ 4r

�
< 0 (6.36)

Then we can get
@A

@sh
B � @B

@sh
A = �

2
l

�
⇣
2
l
+ 4r

�
(2sh�

2
l
A� B) (6.37)

It is easy to see that (2sh�2
l
A�B) is concave since the coe�cient of s2

h
in (2sh�2

l
A�B)

is negative. By using the expressions of A and B (given by (2.43) and (2.44)) and (6.26), we

can get
@(2sh�2

l
A� B)

@sh
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= 0 (6.38)

Define

N = kp

�
⇣
2
l
+ 4r

� �
⇣
4
h
� ⇣

2
l

�
⇣
2
h
+ 4q

�
+ 4r⇣2

h
� 16qr + 16r2

�
+
�
�
2
l

�
⇣
2
h
+ 4r

�
+ (q � r)

�
⇣
2
l
+ 4r

��
2
.

(6.39)

We can show that:
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2)|sh=ŝh

= 0 (6.40)

That is, at sh = ŝh, (2sh�2
l
A� B) reaches the maximum value which is negative:

�
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2
l
A� B

�
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=
N

⇣
2
l
+ 4r

|sh=ŝh
< 0 (6.41)

according to (6.40). Then we can conclude

@Dh

@sh
< 0 (6.42)

(iii) Dh vs. r

First we have
@A

@r
= �4 (sh � 1) �2

l
� ⇣

2
l
+ 4q � 8r (6.43)
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@B

@r
= 4kp

�
�⇣

2
h
+ 4q � 8r

�
� 4s2

h
�
4
l

(6.44)

Plugging the expression of A and B into @A

@r
B � @B

@r
A and after some simplification, we

have
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2
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by using (6.14). From both equations (6.1) and (6.16), we can show that the second term of

the right side of (6.45) is positive
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2
l
+ 8r

�
+ 16r2 > 0 (6.46)

while the third term is negative according to (6.16). Therefore we have

@A

@r
B � @B

@r
A < 0 (6.47)

Therefore @Dh
@r

< 0.

(iv) Dh vs. �
2
l

First we have
@A

@�
2
l

= ⇣
2
h
� sh
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⇣
2
l
+ 4r

�
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by ⇣h < ⇣l and sh > 1.
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2
l
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h
�
2
l

�
⇣
2
l
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�
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Also,
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which is a quadratic and concave function of �2
l
, and according to (6.26), we have
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Therefore, by setting (6.51) to be zero, the maximum point of @A
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2
l
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2
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�
2
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(6.52)

At this maximum point,
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�
2
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c
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< 0 (6.53)

So, @A

@�
2
l
B � @B

@�
2
l
A < 0 for all �2

l
. That is

@Dh
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2
l

< 0 (6.54)

(v) Dh vs. ⇣
2
l

We have
@A
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2
l
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2
l

(6.55)
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@⇣
2
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2
h
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�
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2
h
�
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Then
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2
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h
+ 4r
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(6.57)

which is a quadratic and convex function of sh. Also,
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2
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◆
|sh=0 = �kp
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⇣
2
h
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Since
@A

@⇣
2
l

|sh=ŝh
= ��

2
l
(⇣2

h
+ 4r)

4r + ⇣
2
h

< 0 (6.59)

we have ✓
@A

@⇣
2
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B � @B

@⇣
2
l

A
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|sh=ŝh

=
@A

@⇣
2
l

B|sh=ŝh
< 0. (6.60)

So, we can conclude for all 1 < sh < ŝh,

@Dh

@⇣
2
l

< 0. (6.61)

Proof of Theorem 3

(i) Dl vs. q

From (2.50), we have
@Dl

@q
= �2 (⇣2

h
+ 4r)

⇣
2
l
+ 4r

@Dh

@q
< 0 (6.62)

according to (6.29).

(ii) Dl vs. ⇣
2
h

Similarly, according to (6.34), Dh increases with ⇣
2
h
. From (6.64), we can conclude Dl

decreases with ⇣
2
h
.

(iii) Dl vs. sh
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Similarly,
@Dl
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= �2 (⇣2

h
+ 4r)

⇣
2
l
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> 0. (6.63)

according to (6.42).

(iv) Dl vs. ⇣
2
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Dl in (2.50) can be written as
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⇣
2
l
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(6.64)

According to (6.61), Dh decreases with ⇣
2
l
. Then we can conclude Dl increases with ⇣

2
l
.

(v) Dl vs. r

From (6.2) and(6.10), we have �
2
l
< r < r̂ where Ar=r̂ = 0.

Then from the expression of Dl in (2.50), we have
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Also, we can show that @C
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B�@B

@r
C = A1r

2+A2r+A3 whereA1 = 64kpsh�2
l
(4kp � sh�

2
l
) >

0 according to (6.14). Also, we can show the coe�cient A2 is positive:
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Let r1 and r1
0 be the two roots of @Dl/@r = 0 and r1 < r1

0. If A3 � 0, r10  0 and Dl

increases with r. On the other hand, if A3 < 0, r1 < 0 and r1
0
> 0. We have @Dl

@r
positive

when r > r1
0 and negative otherwise.

For r
0
1 to be valid, �2

l
< r

0
1 < r̂ should hold, otherwise a valid threshold does not exist

and we set the threshold to the corresponding boundary value. For example, if r01  �
2
l
,

then the threshold is r01 = �
2
l
and Dl will increase with r, for all valid values of r. A similar

situation holds for the upper bound as well.

(vi) Dl vs. �
2
l
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From (2.50), we have
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When �l = 0, the numerator of @Dl
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2
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is �8kp (⇣2h � sh (⇣2h + 4r) + 4q)B|�l=0. When sh >
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is positive and when sh < (⇣2

h
+ 4q) / (⇣2
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The expression in square brackets in (6.67) can be expressed as a cubic function of �
2
l
,
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6
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4
l
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We have C2, and C0 are positive. When sh < (⇣2
h
+ 4q) / (⇣2

h
+ 4r), C3, and C1 are

positive. That is, the numerator is positive. Since the denominator is negative, we have

@
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Therefore, we can conclude that Dl decreases with �
2
l
for all �2

l
for a su�ciently small
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h
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Proof of Theorem 4
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Since Dt < 1, we have B > G.

(i) Dt vs. q

From (2.51), we can see that Dt increases with q since ⇣
2
l
� ⇣

2
h
> 0 and Dh increases with q

according to (6.29).

(ii) Dt vs. ⇣
2
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From(6.14) and (6.21), we can have @G
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2
l
> 0 and @B
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From (6.21), @G
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2
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> 0. Since B > G,
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So, @Dt

@⇣
2
l
> 0.

(iii) Dt vs. sh

Similarly, Dt decreases with sh since Dh decreases with sh according to (6.42).

(iv) Dt vs. �
2
l

From (2.51), we can see that Dt decreases with �
2
l
, since ⇣

2
l
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2
h
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with �
2
l
according to (6.54).

(v) Dt vs. r

First we have
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and
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Then
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For r02 to be valid, �2
l
< r

0
2 < r̂ should hold. Otherwise a valid threshold does not exist

and we set the threshold to the corresponding boundary value.
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That is
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0
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h
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0
h
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l
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l
)1/2 should hold. Otherwise a valid threshold does

not exist and we set the threshold to the corresponding boundary.
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(v) Dt vs. D0,
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⇤
h
+D

⇤
l
> D

⇤
0, we need to ensure that:

2
�
⇣
2
l
+ 4

�
(kp

�
�⇣

4
h
+ 4

�
⇣
2
l

�
�sh�

2
l
+ 2q � r

�
+ 4(q � r)

�
r � �

2
l

��
+ ⇣

2
h

�
4sh�

2
l
+ ⇣

2
l
� 4q

��

+ s
2
h
�
4
l

�
�⇣

2
l
+ 4�2

l
� 4r

�
)�

�
⇣
2
l
� 4�2

0 + 4
�

⇥
�
2kp

�
�⇣

4
h
+ ⇣

2
h

�
⇣
2
l
� 4r

�
+ 4q⇣2

l
+ 16r(q � r)

�
� 2s2

h
�
4
l

�
⇣
2
l
+ 4r

��
> 0 (6.83)

The left hand-side is a quadratic function of r, which can be written as A1r
2 + A2r + A3,

where:

A1 = �128kp�2
0 < 0.

A1r
2+A2r+A3 = 0 has two roots, r002 and r

000
2 . Without loss of generality, let r002 < r

000
2 . When

r
00
2 < r < r

000
2 , we have A1r

2 + A2r + A3 > 0, and thus D⇤
t
> D

⇤
0.

Proof of Theorem 5

(i) ep vs. q or ⇣
2
h

ep can be written as a function of Dh, and

ep =
sh�

2
l
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2kp
(6.84)

Since Dh increases with q (or ⇣2
h
), ep will increases with q (or ⇣2

h
).

(ii) ep vs. r and ⇣
2
l

From (6.84), since Dh decreases with r (or ⇣2
l
), ep will decreases with r (or ⇣2

l
).

(iii) ep vs. sh

From (2.48), We have ep’s first order derivative with respect to sh
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We can find sh
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A is a quadratic function of sh and the coe�cient of
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the quadratic term is ⇣2
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By (6.20), we can prove @ep
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|sh=1 > 0.

Let s0
h
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So, ep will first increase and then decrease with sh.
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is s2
h
(q � r) (⇣2
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+ 4r) 2, which is positive.
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We define �
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should hold. Otherwise a valid threshold does not exist

and we set the threshold to the corresponding boundary value

Proof of Theorem 6
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We can conclude that SPh and Dh will change in the same direction as a parameter changes.

Proof of Theorem 7
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2
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2
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(6.97)

Since
A

B
=

Dh

2kp
(6.98)

SPl = ⇣
2
l
F

2 + 4⇣2
h
DhF (6.99)

where F =

✓
(⇣2l �4�2

l +4r)
⇣
2
l +4r

� Dh(2(⇣2h+4r))
⇣
2
l +4r

◆
.
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h
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l
)
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h
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2
l
) (⇣2

l
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l
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(⇣2
l
+ 4r) 2

(6.100)

which is a linear function of Dh. Dh approaches the limit of 1/2 as q goes to infinity. Then

@SPl

@Dh

|Dh=0 =
16r (⇣2

h
� ⇣

2
l
) (⇣2

l
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l
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l
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< 0 (6.101)
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|
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4
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l
� 4�2

l
))
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l
+ 4r) 2

< 0 (6.102)

we can conclude @SPl
@Dh

< 0.

(i) SPl vs. q

@SPl

@q
=

@SPl

@Dh

@Dh

@q
(6.103)

Since @SPl
@Dh

< 0 and @Dh
@q

> 0, @SPl
@q

< 0.

(ii) SPl vs. sh

@SPl

@sh
=

@SPl

@Dh

@Dh

@sh
(6.104)

Since @SPl
@Dh

< 0 and @Dh
@sh

< 0, @SPl
@sh

> 0

(iii) SPl vs. ⇣
2
l
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2
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=
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2
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+
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@Dh
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We can easily see
⇣
2
l �4�2

l +4r

⇣
2
l +4r

� Dh(2(⇣2h+4r))
⇣
2
l +4r

increases with ⇣
2
l
. Therefore, @SPl
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2
l
> 0

Since @SPl
@Dh

< 0 and @Dh
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2
l
< 0, @SPl

@Dh
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2
l
> 0

We can see @SPl

@�
2
l
+ @SPl

@Dh

@Dh

@�
2
l
> 0.

(iv) SPl vs. r

dSPl

dr
=

@SPl

@r
+

@SPl

@Dh

@Dh

@r
(6.106)

Since @SPl
@Dh

< 0 and @Dh
@r

< 0, @SPl
@Dh

@Dh
@r

> 0. @SPl
@r

’s sign is the same as F whereDh is considered
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as a constant. When Dh = 0 (r = r̂), F =
⇣
2
l �4�2

l +4r

⇣
2
l +4r

increases with r. Then we can see

dSPl
dr

> 0 at r = r̂ .

When Dh = 1/2, F =
⇣
2
l �4�2

l �⇣
2
h

⇣
2
l +4r

decreases with r. There could be several roots to

@SPl
@r

+ @SPl
@Dh

@Dh
@r

= 0. Let the largest cuto↵ point be r
0
3. Therefore we shall have dSPl

dr
> 0

when r
0
3 < r  r̂.

For r03 to be valid, �2
l
< r

0
3 < r̂ should hold. Otherwise a valid threshold does not exist

and we set the threshold to the corresponding boundary value.

(v) SPl vs. ⇣
2
h

dSPl

d⇣
2
h

=
@SPl

@⇣
2
h

+
@SPl

@Dh
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Since @SPl
@Dh

< 0 and @Dh

@⇣
2
h
> 0, @SPl

@Dh

@Dh

@⇣
2
h
< 0. At ⇣h = ⇣̂h (Dh = 0), we have the following from

(6.99)
@SPl

@⇣
2
h

|Dh=0 = 0 (6.108)

Then we can see that dSPl

d⇣
2
h

< 0 at ⇣h = ⇣̂h.
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|
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1
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2
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(⇣2
l
+ 4r) 2
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which can be positive or negative. There could be several roots to @SPl

@⇣
2
h
+ @SPl

@Dh

@Dh

@⇣
2
h
= 0. Let

⇣
00
h
be the smallest cuto↵ point that is greater than ⇣̂h. Therefore we shall have dSPl

d⇣
2
h

< 0

when ⇣̂h < ⇣h < ⇣
00
h
. For ⇣

00
h
to be valid, ⇣̂h < ⇣

00
h
< (⇣2

l
� 4�2

l
)1/2 should hold. Otherwise a

valid threshold does not exist and we set the threshold to the corresponding boundary.

Proof of Theorem 8

(i) ⇧2 vs. q

From (2.52), since Dh and A increase with q (Theorem 2), we can conclude ⇧2 increases

with q.

(ii) ⇧2 vs. ⇣
2
l
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Define ⇧2 =
H

16B , then
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(6.110)

From
@⇧2

@⇣
2
l
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2
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we find that
@⇧2

@⇣
2
l

|
⇣l=⇣̂l

=
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l
+ 4r) 2 � 16�4

l

(⇣2
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> 0 (6.112)

So
⇣

@H

@⇣
2
l
B � @B

@⇣
2
l
H

⌘
|
⇣l=⇣̂l

> 0

Since we have

@
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2
l

✓
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2
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H

◆
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�
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�
⇣
2
h
+ 4q

�
� 2s2

h
�
4
l

�
B > 0, (6.113)

then for all ⇣l > ⇣̂l,
⇣

@H

@⇣
2
l
B � @B

@⇣
2
l
H

⌘
> 0. That is ⇧2 increases with ⇣l.

(iii) ⇧2 vs. ⇣
2
h

From (2.52), since A and Dh increase with ⇣h (Theorem 2), we can conclude ⇧2 increases

with ⇣h.

(iv) ⇧2 vs. sh

From (2.52), since A and Dh decrease with sh (Theorem 2), we can conclude ⇧2 decreases

with sh.

(v) ⇧2 vs. �
2
l

First A and Dh decrease with �
2
l
(Theorem 2). Also, (⇣2

l
� 4�2

l
+ 4r) 2 decreases with �

2
l
.

Then we can conclude ⇧2 decreases with �
2
l
.

(iv) ⇧2 vs. r

From (2.52), we can see
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Dh (32�2
l
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l
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2
h
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l
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l
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+
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(6.114)
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From (6.2), we can see that the first term of (6.114) is a decreasing function of Dh. When

Dh = 1/2, this term is positive. So we conclude that for all 0 < Dh < 1/2, this term is

positive. Since Dh decreases with r, we can conclude
�
2
l A

⇣
2
l +4r

@Dh
@r

is negative.

When r = r̂, we have A = 0 and then @⇧2
@r

> 0.

We denote r
0
4 as the largest root of (6.114). Then we have @⇧2

@r
> 0 when r

0
4 < r < r̂.

For r04 to be valid, �2
l
< r

0
4 < r̂ should hold. Otherwise a valid threshold does not exist

and we set the threshold to the corresponding boundary value.

6.1.2 Appendix 2: Proofs for ⇣h > ⇣l Case

We will make the following additional assumptions: (6.122), (6.124), and (6.125). Reasons

for the assumptions are explained below. The demand side is the same as the ⇣l > ⇣h case,

while the supply side is di↵erent. When ⇣h > ⇣l, we have ⇡h > ⇡l when ↵ > ↵h. To ensure

⇡l > 0, we have ↵ > ↵l. By letting ⇡h = ⇡l at ↵h and ⇡l = 0 at ↵l, we can get the expression

↵h =
�4ce + 4�h � 4�l

⇣
2
l
� ⇣

2
h

(6.115)

↵l =
4cl � 4�l

⇣
2
l

(6.116)

The demand in the high-certainty channel will be Dh = 1� ↵h, and the demand in the low-

certainty channel will be Dl = ↵h � ↵l. By letting the demand and supply in each channel

equal, we can get the following expressions:

Dh =
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+ 4q � 4r)

2kp (⇣2h � ⇣
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Dl =
�
2
l
(4kp (⇣2h � sh (⇣2l + 4r) + 4q) + s

2
h
�
2
l
(⇣2

l
� 4�2

l
+ 4r))

2 (⇣2
l
+ 4r) (kp (�⇣

2
h
+ ⇣

2
l
� 4q + 4r) + s

2
h
�
4
l
)

. (6.118)

Dt =
1

2
� 2�2

l

⇣
2
l
+ 4r

(6.119)
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ep =
sh�

2
l

2kp
Dh (6.120)

We can also find the solution for SPh, SPl, and ⇧2 in a similar way. Since

⇣
2
h
� 4 (sh � 1) �2

l
� ⇣

2
l
+ 4q � 4r > 0, (6.121)

to ensure Dh > 0,
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⇣
2
h
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2
l
+ 4q � 4r
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� s

2
h
�
4
l
> 0 (6.122)

To make sure Dh < Dt < 1/2, we should have
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�
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That is

4kp (sh � 1) �2
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2
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�
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> 0 (6.124)

Since the denominator of Dl is negative, and s
2
h
�
2
l
(⇣2

l
� 4�2

l
+ 4r) > 0 from (6.2), to

ensure Dl > 0, we need
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⇣
2
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�
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Proofs about Dh

(i) Dh vs. q, r , ⇣2
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by (6.124). Then we have:
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< 0 (6.127)
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(ii) Dh vs. sh
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(6.130)

When sh =
⇣
2
h�⇣

2
l +4q�4r

4�2
l

+1, the numerator of @Dh
@sh

will get the maximum value: 2kp (�⇣
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, which is negative by (6.122). We see that @Dh
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< 0.
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When �
2
l
=

⇣
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h�⇣

2
l +4q�4r

4(sh�1) , the numerator of @Dh
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will get the maximum value:
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Proofs about Dt
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⇣
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(6.132)

We can find Dt increases with r and ⇣l; Dt decreases with �
2
l
; Dt remains the same when q,

sh, and ⇣h.

Proofs about Dl
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by (6.124).

(ii) Dl vs. sh

Since Dt =
1
2 � 2�2

l

⇣
2
l +4r

, which does not change with sh, and Dh decreases with sh, we can
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conclude Dl increases with sh.

(iii) Dl vs. r

Since Dt increases with r, and Dh decreases with r, we can conclude Dl increases with r.
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2
l

@Dl

@�
2
l

=
kps

2
h
�
2
l
((⇣2

l
+ 4r) (�⇣

2
h
+ ⇣

2
l
� 4q + 4r) + 2�2

l
((sh � 3) ⇣2

l
+ 2 (⇣2

h
+ 2rsh + 4q � 6r)))

(⇣2
l
+ 4r) (kp (�⇣

2
h
+ ⇣

2
l
� 4q + 4r) + s

2
h
�
4
l
) 2

+
�2k2

p
(⇣2

h
� ⇣

2
l
+ 4q � 4r) (⇣2

h
� sh (⇣2l + 4r) + 4q)� 2s4

h
�
8
l

(⇣2
l
+ 4r) (kp (�⇣

2
h
+ ⇣

2
l
� 4q + 4r) + s

2
h
�
4
l
) 2

(6.135)

When �
2
l
= 0, we can see the numerator is positive. From (6.124), we can get the upper

bound of �2
l
at which point the numerator will be s
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negative by (6.121). So, Dl will first increase and then decrease with �
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(v) Dl vs. ⇣
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2
l
and Dh decreases with ⇣l, we can conclude Dl increases with ⇣
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.

Proofs about Dt
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(6.136)

We can find Dt increases with r and ⇣l; Dt decreases with �
2
l
; Dt remains the same when q,

sh, and ⇣h.

Proofs about ep
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by (6.124).

(ii) ep vs. sh

1

�
2
l

@ep

@sh
=

(kp (⇣2h � ⇣
2
l
+ 4q � 4r) (⇣2

h
+ 4 (1� 2sh) �2

l
� ⇣

2
l
+ 4q � 4r) + s

2
h
�
4
l
(⇣2

h
� ⇣

2
l
+ 4 (�2

l
+ q � r)))

4 (kp (⇣2h � ⇣
2
l
+ 4q � 4r)� s

2
h
�
4
l
) 2

(6.141)

When sh = 1, the sign of ⇣2
h
+ 4 (1� 2sh) �2

l
� ⇣

2
l
+ 4q � 4r is undetermined. When the sign

of this term is negative and kp is large enough, the numerator will be negative. When the

sign of this term is positive, the numerator will always be positive.
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The numerator is a quadratic function of �2
l
. When �

2
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= 0, the numerator will be kpsh (⇣2h � ⇣

2
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(i) SPh vs. q, sh, r, and �
2
l
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Dh and ⇡h increase with q and decrease with sh, r, �2
l
, and thus we can conclude SPh

increases with q and decreases with sh, r, �2
l
.
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where M = 2s2
h
⇣
2
l
�
4
l
(⇣2

l
� 4�2

l
+ 4r).

When ⇣
2
l
reaches the lower bound, that is 0, the numerator of the fraction part will be

4rkp⇣2h (4 ((sh � 1) �2
l
� q + r)� ⇣

2
h
), which is negative by (6.121).

From (6.121) and (6.122), we can find the upper bound for ⇣2
l
. From (6.123), we can see

the upper bound of ⇣2
l
by (6.121) is smaller. When ⇣

2
l
reaches the upper bound given by

(6.121), the numerator of the fraction part will be 2�2
l
(s2

h
�
2
l
� 4kp (sh � 1)) (⇣2

h
� 4sh�2

l
+ 4q) (⇣2

h
� 4 (sh � 1) �2

l
+ 4q � 4r),

which is negative by (6.121) and (6.124).

Then we can conclude SPh will always increase with ⇣
2
l
, or there is a cuto↵ point; when

⇣
2
l
is greater than this cuto↵ point, SPh increases with ⇣

2
l
.

(iii) SPh vs. ⇣
2
h

@⇡h

@⇣
2
h

=
1

8

✓
2↵ + 2

@Dh

@⇣
2
h

�
⇣
2
h
� ⇣

2
l

�
+ 2Dh � 2

◆
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which is positive. Since Dh increases with ⇣
2
h
, we can conclude SPh increases with ⇣

2
h
.

Proofs about SPl

⇡l =
1

8
⇣
2
l

✓
2↵� 4�2

l

⇣
2
l
+ 4r

� 1

◆
(6.147)

SPl =

Z 1�Dh

1�Dt

⇡ld↵ (6.148)
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(i) SPl vs. q, sh and ⇣
2
h

⇡l and Dt is not a function of q, sh and ⇣h, Dh increases with q and ⇣h, and decreases with

sh. We can conclude SPl decreases with q and ⇣h, and increases with sh.

(ii) SPl vs. r

⇡l increases with r, Dt increases with r, and Dh decreases with r. We can conclude SPl

increases with r.

(ii) SPl vs. �
2
l

⇡l decreases with �
2
l
, and Dl first increases and then decreases with �

2
l
. When �

2
l
= 0, the

FOC of SPl with respect to �
2
l
is positive. We can conclude SPl first increases and then

decreases with �
2
l
.

(iv) SPl vs. ⇣
2
l

⇡l increases with ⇣
2
l
, Dt increases with ⇣

2
l
, and Dh decreases with ⇣

2
l
. We can conclude SPl

increases with ⇣
2
l
.

Proofs about ⇧2

(i) ⇧2 vs. q and ⇣h

@⇧2

@q
=
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l
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The numerator is an increasing function of kp. From (6.124), when kp gets to the lower

bound,
2s2h�

4
l

8(sh�1)�2
l
, the numerator is

s
4
h�

4
l (�⇣

2
h+4((sh�1)�2

l �q+r)+⇣
2
l )2

16(sh�1)2 ,which is positive. We can

conclude @⇧2
@q

> 0.

We can also have the following result with the same logic:

@⇧2
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) 2
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(6.150)

(ii) ⇧2 vs. sh
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The numerator is a decreasing function of kp. From (6.124), when kp gets to the lower

bound,
2s2h�

4
l

8(sh�1)�2
l
, the numerator is � s

3
h�

6
l (�⇣

2
h+4((sh�1)�2

l �q+r)+⇣
2
l )2

4(sh�1)2 , which is negative. We can

conclude @⇧2
@sh

< 0.

(iii) ⇧2 vs. r and ⇣l
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The numerator is a decreasing function of kp. From (6.124), when kp gets to the lower bound,

2s2h�
4
l

8(sh�1)�2
l
, the numerator is

s
2
h�

2
l (�⇣

2
h+4((sh�1)�2

l �q+r)+⇣
2
l )

sh�1 , which is negative. Also from (6.122),

the denominator is negative. Thus, we can conclude @⇧2
@r

> 0.

We can also have the following result with the same logic:
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(iv) ⇧2 vs. �
2
l

⇡2 = Dhce +Dtcl � kpe
2
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Since
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we can conclude Dhce � kpep decreases with �
2
l
. Since Dt decreases with �

2
l
and cl =

1
8 (⇣

2
l
� 4�2

l
+ 4r) also decreases with �

2
l
¿ Thus, we can conclude ⇧2 decreases with �

2
l
.
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6.2. Proof of Chapter 3
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On-line Appendix to “Analyzing Software Anti-piracy Strategies

in a Competitive Environment”

6.2.1 Constraints of Parameter Values

Monopoly Case

To ensure ⇡m > 0, from (3.13), the denominator should be negative:

DENm ⌘ a
2
1 (k1 � ✓1t)

2 + 4 (✓1 � 1) ✓21r1t(k1 � t)2 < 0. (6.2.1)

Define the coe�cient of k2
1 in (6.2.1) as R which will be used frequently later on:

R = a
2
1 + 4 (✓1 � 1) r1t✓

2
1 (6.2.2)

To ensure em > 0 and pm > 0, we have

✓1t > k1. (6.2.3)

To ensure D3 = x2 � x1 > 0, from (3.8) and (3.9), we have

x2 � x1 =
a1em � ✓1pm

(✓1 � 1) ✓1t
> 0. (6.2.4)

That is, a1em < ✓1pm. Then we have,

R0 = a
2
1 (k1 � ✓1t) + 2 (✓1 � 1) ✓21r1t(k1 � t) > 0, (6.2.5)

which means

r1 > rm ⌘ a
2
1 (k1 � ✓1t)

2 (✓1 � 1) ✓21t (t� k1)
. (6.2.6)

It is easy to verify when (6.2.5) is satisfied, (6.2.1) will be satisfied. To summarize, to
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Figure 6.2.1: Feasible region in the (k1,r1) parameter space

ensure that solutions in the monopoly case are meaningful, the values of parameters should

satisfy the constraints (6.2.3) and (6.2.6).

Using the constraints (6.2.3), (6.2.6) and k1 > 0, we can visually display the feasible

region in the (k1, r1) parameter space in Figure 6.2.1. Define the left boundary as BL which

is formed by two thick lines k1 = 0 and r1 = rm in Figure 6.2.1. Line r1 = rm is a decreasing

function of k1 according to Equation (6.2.6).

Duopoly Case

First, the numerator of pd in (3.20) is positive since k < t from (6.2.3). Then to ensure

pd > 0, the denominator of pd shall be positive:

DENd ⌘ (a1 + b1) (a1(✓k + k � 2✓t) + b1(✓ � 1)k) + 8(✓ � 1)✓rt(k � t) > 0. (6.2.7)

which means r > r
0
d
, where

r
0
d
⌘ � (a1 + b1)R1

8(✓ � 1)✓t(k � t)
. (6.2.8)

The expression of R1 is given by

R1 ⌘ DENd|r=0/(a1 + b1) = a1(✓k + k � 2✓t) + b1(✓ � 1)k < 0 (6.2.9)
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to ensure ed in (3.19) to be positive. This implies

k < kmax ⌘ 2a1✓t

a1(✓ + 1) + b1(✓ � 1)
(6.2.10)

We also define R2 which will be used later:

R2 ⌘
@DENd

@k
= (a1 + b1) (a1(✓ + 1) + b1(✓ � 1)) + 8(✓ � 1)✓rt. (6.2.11)

From (3.14) to (3.16), we can find the demand of legitimate product Dd as a function of

ed and pd. By using (3.20) and (3.19), we get Dd as the following:

Dd =
2(✓ � 1)✓r(k + 2q)(k � t)

DENd

(6.2.12)

To ensure both legitimate product demands are less than 1/2, we can have the following

constraint:

R3 ⌘ 4(✓ � 1)✓r(k � t)(k + 2q � 2t)� (a1 + b1)R1 < 0 (6.2.13)

which means

r > rd ⌘
(a1 + b1)R1

4(✓ � 1)✓(k � t)(k + 2q � 2t)
. (6.2.14)

It is easy to verify DENd +R3 > 0. Then if R3 < 0, we must have DENd > 0. That is

r
0
d
< rd. (6.2.15)

Also under the constraints that R1 < 0 and R3 < 0, we can derive the following property

which will be used later:

k + 2q � 2t < 0. (6.2.16)

Finally, when network e↵ect k = 0, we assume that the software quality is su�ciently

large so that the whole Hotelling line is still covered, i.e., a user located at x = 1/2 will still
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pirate. Technically, from (3.3),

t < 2q (6.2.17)

To summarize, to ensure that solutions in the duopoly case are meaningful, the values of

parameters should satisfy the constraints (6.2.10), (6.2.14) and (6.2.17).

Properties of the Feasible Region

Using the constraints (6.2.10), (6.2.14) and k > 0, we can display the feasible region in the

(k, r) parameter space in Figure 6.2.2. Similar to the monopoly case, BL is the left boundary

formed by two thick lines k = 0 and r = rd in Figure 6.2.2. Line r = rd can have at most

one peak between k = 0 and k = kmax according to Equation (6.2.14).

We also define the minimum-k curve Bmin as the joint of line k = 0 and a segment of

line r = rd with r < rdA, i.e.,

k =

(
r
�1
d
(r), r < rdA

0, r > rdA.

(6.2.18)

That is, for a given r, this curve Bmin yields the minimum k for a given r on BL. In other

words, curve BL is Bmin plus a segment of r = rd with r > rdA.

We first prove the following lemma with regard to the roots of a general function f(k, r)
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along the left boundary BL.

Lemma 6.2.1. Function f(k, r) has a unique root along the left boundary BL if the function

f(k, r) satisfies the following properties:

1. The sign of
@f(k, r)

@r
|k=0 is di↵erent from that of f(k, r)|k=kmax,r=rd

,

2. Along the line r = rd, g(k) ⌘ f(k, r)|r=rd
can be written as g(k) = g1(k)g2(k) where the

sign of g1(k) does not change for k 2 (0, kmax), and g2 satisfies either of the following

conditions:

Condition 1: g2(k) is a monotonic function of k, or

Condition 2: g2(k) is a quadratic function of k and the sign of g2(k)|k=kmax is di↵erent

from the sign of
@
2
g2(k)

@k2
.

Proof of Lemma 6.2.1

We can separate the proofs into two cases according to the sign of
@f(k, r)

@r
|k=0:

Case 1:
@f(k, r)

@r
|k=0 > 0

The sign of f(k, r) at the right end point of the line r = rd is

f(k, r)|k=kmax,r=rd
< 0, (6.2.19)

since
@f(k, r)

@r
|k=0 and f(k, r)|k=kmax,r=rd

have opposite signs according to the first property

of the function f . We can show that there is only one root on BL in the following two

sub-cases according to the sign of f(k, r) at the left end point of the line r = rd:

Sub-case 1.1: f(k, r)|k=0,r=rd
> 0

Since the signs of g1(k) does not change according to the second property of the function

f , together with (6.2.19), we can conclude the sign of g2(k)|k=0 and g2(k)|k=kmax are di↵erent.

Then there is a root on the line r = rd, whether g2(k) is a linear or quadratic function of k.

Since
@f(k, r)

@r
|k=0 > 0 and f(k, r)|k=0,r=rd

> 0, we can conclude there is no root on the line

k = 0.
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Sub-case 1.2: f(k, r)|k=0,r=rd
< 0

In this case, the signs of g2(k)|k=0 and g2(k)|k=kmax are the same since the sign of g1(k)

does not change. We can show that the sign of g2(k) does not change along r = rd under

either Condition 1 or Condition 2 identified in Lemma 6.2.1:

(i) If g2(k) satisfies Condition 1, i.e., it is monotonic, we can conclude the sign of g2(k)

does not change along r = rd.

(ii) Under Condition 2, if g2(k) is convex

✓
@
2
g2(k)

@k2
> 0

◆
, then g2(k)|k=kmax < 0. Then

g2(k) < 0 along the line r = rd, i.e., the sign of g2(k) does not change along the line r = rd.

Similarly, if g2(k) is concave, the sign of g2(k) also does not change along the line r = rd.

Therefore, f(k, r) < 0 along the line r = rd. Since
@f(k, r)

@r
|k=0 > 0 and f(k, r)|k=0,r=rd

<

0, we can conclude there exists only one root on the line k = 0.

Case 2:
@f(k, r)

@r
|k=0 < 0

The proof process is similar to that in Case 1 and therefore omitted.

By using Lemma 6.2.1, we next prove the following proposition that will be used exten-

sively in the future proofs.

Proposition 6.2.1. Suppose a function f(k, r) has a unique root on the left boundary BL.

On the minimum-k curve Bmin, there is a threshold value of rdDA (depending on function

f(k, r)).

1. If
@f(k, r)

@r
|k=0 > 0, when r > rdDA, f(k, r) > 0; f(k, r) < 0 otherwise.

2. If
@f(k, r)

@r
|k=0 < 0, when r > rdDA, f(k, r) < 0; f(k, r) > 0 otherwise.

Proof of Proposition 6.2.1

We denote the unique root along the left boundary BL as (rdD, kdD). We first prove the

first part of Proposition 6.2.1 when
@f(k, r)

@r
|k=0 > 0. We will discuss two cases: the root on

the line r = rd and the root on the line k = 0.

Case 1: the root is on the line r = rd
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Then we have two sub-cases according to the sign of rdD � rdA.

Sub-case 1.1: rdD � rdA > 0

It is easy to see that when r > rdA, f(k, r) > 0 on the curve Bmin; when r < rdA,

f(k, r) < 0 on the curve Bmin.

Sub-case 1.2: rdD � rdA < 0

We can see that, when r > rdD, f(k, r) > 0 on the curve Bmin; when r < rdD, f(k, r) < 0

on the curve Bmin.

Case 2: the root is on the line k = 0

Then in this case, when r > rdD, f(k, r) > 0 on the curve Bmin; when r < rdD, f(k, r) < 0

on the curve Bmin.

Combining these two cases, we can conclude there is a threshold value denoted as rdDA

(which is either rdA in Sub-case 1.1 or rdD in Subcase 1.2 and Case 2): when r > rdDA,

f(k, r) > 0 on the curve Bmin; when r < rdDA, f(k, r) < 0 on the curve Bmin.

For the second part of Proposition 6.2.1, the proof process is similar to that of the first

part and therefore omitted here for brevity.

6.2.2 Proof of Lemma 1

Let U1 � U3|x=x1 = 0. Since U1 � U3 is a decreasing function of x, then when x < x1,

U1 � U3 > 0, that is, consumers will buy products; when x > x1, U1 � U3 < 0, that is,

consumers will choose pirated software.

6.2.3 Optimality of em and pm

To show that em and pm are optimal, we need to check the second-order conditions:
@
2
⇡m

@e2
m

<

0, and Hessian⇡m =
@
2
⇡m

@e2
m

@
2
⇡m

@p2
m

� (
@
2
⇡m

@em@pm
)2 > 0.
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By (3.9) and (3.10), ⇡m can be written as a function of em and pm.

⇡m =
pm (� (�a1emk1 + a1em✓1t+ ✓1k1pm � ✓1pmt+ ✓

2
1q1(�t) + ✓1q1t))

(✓1 � 1) ✓1t(t� k1)
� re

2
m

(6.2.20)

we have
@
2
⇡m

@e2
m

= �2r < 0 (6.2.21)

@
2
⇡m

@p2
m

= � 2

t� ✓1t
< 0 (6.2.22)

@
2
⇡m

@em@pm
=

4r

t� ✓1t
� a

2
1 (k1 � ✓1t)

2

(✓1 � 1)2 ✓21t
2(k1 � t)2

(6.2.23)

The determinant of ⇡m’s Hessian matrix is

Hessian⇡m =
@
2
⇡m

@e2
m

@
2
⇡m

@p2
m

� (
@
2
⇡m

@em@pm
)2 = �a

2
1 (k1 � ✓1t)

2 + 4 (✓1 � 1) ✓21rt(k1 � t)2

(✓1 � 1)2 ✓21t
2(k1 � t)2

(6.2.24)

By (6.2.1), Hessian⇡m > 0. We can conclude e
⇤
m

and p
⇤
m

satisfy the second-order condition

and therefore are optimal.

6.2.4 Proof of Theorem 10

From (3.11), we have
@e

⇤
m

@k1
=

a1 (✓1 � 1) ✓1q1tA

DEN2
m

, (6.2.25)

where

A ⌘ a
2
1 (k1 � ✓1t)

2 + 4 (✓1 � 1) ✓21r1t (t� k1) ((2✓1 � 1) t� k1) , (6.2.26)

which is a quadratic function of k1.

To study the sign of
@e

⇤
m

@k1
which is opposite to A, we first separate the entire parameter
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space according to the sign of
@A

@r1
|k1=0. Since

@A

@r1
|k1=0 = 4 (✓1 � 1) ✓21 (2✓1 � 1) t3, (6.2.27)

we have two cases, ✓1 < 1/2 and 1/2 < ✓1 < 1.

Case 1: ✓1 < 1/2

Since
@A

@r1
= 4 (✓1 � 1) ✓21t (t� k1) ((2✓1 � 1) t� k1) > 0, (6.2.28)

together with

A|r1=0 = a
2
1 (k1 � ✓1t)

2
> 0, (6.2.29)

we can conclude A > 0 in the feasible region.

Case 2: 1/2 < ✓1 < 1

We have

A|r1=rm = �a
2
1Amt (k1 � ✓1t) , (6.2.30)

where

Am = k1 + (2� 3✓1) t. (6.2.31)

When k is close to ✓t, we can have A|r1=rm > 0. Together with
@A

@r1
|k1=0 < 0 from (6.2.27), we

can conclude there is a root on the left boundary according to Lemma 6.2.1. Then according

to Proposition (6.2.1) and
@A

@r1
|k1=0 < 0 from (6.2.27), there is a threshold value rm1 on the

left boundary (the left boundary and Bmin are identical in this case): when r1 > rm1, A < 0;

A > 0 otherwise.

On the right boundary k1 = ✓1t,

A|k1=✓1t = �4 (✓1 � 1)3 ✓21r1t
3
> 0. (6.2.32)

From (6.2.26),we can see A is a quadratic function of k. Then when r1 > rm1, it has a
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threshold value k̄1 for any given r1: when 0 < k1 < k̄1, A < 0; when k̄1 < k1 < ✓1t, A > 0 in

the feasible region. When r1 < rm1, we have A > 0 in the feasible region since it is positive

on both boundaries, is a quadratic function of k and reaches the extreme value on the right

boundary

✓
@A

@k1
|k1=✓1t = 0

◆
.

In conclusion,

1. When ✓ < 1/2, A > 0, and then
@e

⇤
m

@k1
< 0.

2. When ✓ > 1/2,

(a) when r1 > rm1, there is a threshold value k̄1. When 0 < k1 < k̄1, A < 0 and then
@e

⇤
m

@k1
> 0; when k̄1 < k1 < ✓1t, A > 0 and then

@e
⇤
m

@k1
< 0 in the feasible region.

(b) when r1 < rm1, A > 0, and then
@e

⇤
m

@k1
< 0 in the feasible region.

6.2.5 Proof of Theorem 11

From (3.12), we have
@p

⇤
m

@k1
= �2 (✓1 � 1)2 ✓21q1r1t

2
C

DEN2
m

, (6.2.33)

where

C ⌘ a
2
1 (k1 + (✓1 � 2) t) (k1 � ✓1t) + 4 (✓1 � 1) ✓21r1t (t� k1)

2
. (6.2.34)

On the boundary r1 = rm,

C|r1=rm = �a
2
1 (k1 � ✓1t)

2
< 0. (6.2.35)

Together with
@C

@r1
= 4 (✓1 � 1) ✓21t (t� k1)

2
< 0, (6.2.36)

we can conclude C < 0 within the feasible region and
@p

⇤
m

@k1
> 0.
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6.2.6 Proof of Table 3.3

e
⇤
m

vs. q1

@e
⇤
m

@q1
=

e
⇤
m

q1
> 0 (6.2.37)

e
⇤
m

vs. ✓1

@e
⇤
m

@✓1
=

a1q1tB

DEN2
m

, (6.2.38)

where B ⌘ 4 (✓1 � 1)2 ✓21k1r1t(k � t)2 � a
2
1 (k1 � ✓1t)

2 (2✓1k1 � k1 + ✓
2
1(�t)).

Since
@B

@r1
= 4 (✓1 � 1)2 ✓21k1t (t� k1)

2
> 0 (6.2.39)

and

B|r1=0 = �a
2
1 (k1 � ✓1t)

2 �(2✓1 � 1) k1 � ✓
2
1t
�
> 0, (6.2.40)

we can conclude B > 0. That is
@e

⇤
m

@✓1
> 0.

e
⇤
m

vs. a1

@e
⇤
m

@a1
=

(✓1 � 1) ✓1q1t (✓1t� k1)
�
4 (✓1 � 1) ✓21r1t(k1 � t)2 � a

2
1 (k1 � ✓1t)

2�

DEN2
m

> 0 (6.2.41)

by (6.2.3).

e
⇤
m

vs. r1

@e
⇤
m

@r1
=

4a1 (✓1 � 1)2 ✓31q1t
2(k1 � t)2 (k1 � ✓1t)

DEN2
m

< 0 (6.2.42)

by (6.2.3).

p
⇤
m

vs. q1

@p
⇤
m

@q1
=

p
⇤
m

q1
> 0 (6.2.43)
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p
⇤
m

vs. ✓1

@p
⇤
m

@✓1
=

4 (✓1 � 1) ✓1q1r1t2(k1 � t)D

DEN2
m

, (6.2.44)

where

D ⌘ a
2
1 (k1 � ✓1t)

�
2✓1k1 � k1 � ✓

2
1t
�
+ 2 (✓1 � 1) ✓31r1t(k1 � t)2. (6.2.45)

Since
@D

@r1
= 2 (✓1 � 1) ✓31t (t� k1)

2
< 0 (6.2.46)

and

D|r1=rm = a
2
1 (✓1 � 1) (k1 � ✓1t)

2
< 0, (6.2.47)

we can conclude D < 0. That is
@p

⇤
m

@✓1
< 0.

p
⇤
m

vs. a1

@p
⇤
m

@a1
=

4a1 (✓1 � 1)2 ✓21q1r1t
2 (t� k1) (k1 � ✓1t)

2

�
a
2
1 (k1 � ✓1t)

2 + 4 (✓1 � 1) ✓21r1t (t� k1)
2�2 > 0 (6.2.48)

according to (6.2.3).

p
⇤
m

vs. r1

@p
⇤
m

@r1
= � 2a21 (✓1 � 1)2 ✓21q1t

2 (t� k1) (k1 � ✓1t)
2

�
a
2
1 (k1 � ✓1t)

2 + 4 (✓1 � 1) ✓21r1t (t� k1)
2�2 < 0 (6.2.49)

according to (6.2.3).

6.2.7 Proof of Theorem 12

To find the expressions of e⇤
i
and p

⇤
i
, we first find p

⇤
i
from the first-order conditions

@⇡i

@pi
= 0,

i = 1, 2 where ⇡i is given by Equation (3.5). Such pi is a function of anti-piracy e↵ort ei,

i = 1, 2. Then substituting p
⇤
i
back into (3.5), we can find the optimal e⇤

i
by solving two

first-order conditions simultaneously:
@⇡i

@ei
= 0, i = 1, 2 (A Mathematica file containing all
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the relevant derivations is available upon request). In this way, when k1 6= k2, we have

e
⇤
1 = � (✓k2 � k1 + 2(✓ � 1)q) (a1 (✓ (k2 � 2t) + k1) + b1 (✓k2 � k1))

2
�
�✓k2

�
(a1 + b1)

2 + 8(✓ � 1)rt
�
+ (a1 + b1) (a1 (2✓t� k1) + b1k1) + 8(✓ � 1)✓rt2

� .

(6.2.50)

and p1 in (6.2.74).

e
⇤
1 vs. k1

Taking the derivative of (6.2.50) with respect to k1 and then letting k1 = k2 = k, we can

get:
@e1

@k1
|k1=k2=k =

eNumk1

4DEN
2
d

. (6.2.51)

where

eNumk1/2 = a1(✓ � 1)
�
b
2
1(�k)(3✓k + k � 4✓t)� 16✓rt(k � t)(k � ✓(q + t) + q)

�

� a
2
1b1(✓k + k � 2✓t)((3✓ � 1)k � 2✓t) + a

3
1

�
�(✓k + k � 2✓t)2

�

+ b1(✓ � 1)2
�
b
2
1

�
�k

2
�
� 16✓rt(k + q)(k � t)

�
.

(6.2.52)

Then we have

@eNumk1

@r
= 32(✓ � 1)✓t(k � t)

✓
(a1(q + t)� b1(k + q)) (✓ � ✓

00)� a1k (a1 � b1) (q + t)

a1(q + t)� b1q

◆

(6.2.53)

where

✓
00 ⌘ q (a1 � b1)

a1(q + t)� b1q
< 1. (6.2.54)

To determine the sign of eNumk1 , we separate the discussion into two cases:

Case 1: ✓  ✓
00

It is easy to see that (6.2.53) is less than 0 when ✓ < ✓
00, i.e., eNumk1 is a decreasing

function of r. Together with

eNumk1 |r=0 = �2 (a1 + b1) (a1(✓k + k � 2✓t) + b1(✓ � 1)k)2 < 0, (6.2.55)
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we can conclude eNumk1 < 0.

Case 2: ✓ > ✓
00

We first discuss the properties of eNumk1 on the r–k boundary shown in Figure 6.2.2.

a. On the boundary of k = 0

We have

eNumk1 |k=0 = �8✓t2
�
a
2
1b1✓ + 4(✓ � 1)r (a1((✓ � 1)q + ✓t)� b1(✓ � 1)q) + a

3
1✓
�

= �8✓t2
�
4(✓ � 1) (a1(q + t)� b1q) (✓ � ✓

00) r + a
2
1✓ (a1 + b1)

� (6.2.56)

which is an increasing function of r when ✓ > ✓
00.

b. On the boundary of r = rd

We have

eNumk1 |r=rd
= �2 (a1 + b1) (k + 2q)R1F4

k + 2q � 2t
, (6.2.57)

where

F4 = a1(✓k + k � 4✓t+ 2t) + b1(✓ � 1)(k + 2t) = R1 � 2(a1 � b1)t(✓ � 1). (6.2.58)

c. On the boundary of k = kmax

We have

eNumk1 |k=kmax =
32(✓ � 1)3✓rt2 (a1 � b1)

2 (a1(✓(q + t) + q) + b1(✓ � 1)q)

(a1(✓ + 1) + b1(✓ � 1))2
< 0, (6.2.59)

and
@eNumk1

@k
|k=kmax =

32(✓ � 1)2✓rt (a1 � b1)F5

a1(✓ + 1) + b1(✓ � 1)
(6.2.60)

where

F5 = (a1(q + t) + b1(q � t)) (✓ � ✓
00) +

a1 (a1 � b1) (2q � t)(q + t)

a1(q + t)� b1q
. (6.2.61)
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which is positive given ✓ > ✓
00 and (6.2.17). Then when ✓ > ✓

00,

@eNumk1

@k
|k=kmax > 0. (6.2.62)

Since ✓ > ✓
00, from (6.2.53),

@eNumk1

@k
|k=0 > 0. Together with (6.2.57), (6.2.58), and

(6.2.59), we can conclude there is a root on the line r = rd according to Lemma 6.2.1. Then

according to Proposition 6.2.1 and (6.2.53), we can conclude there is a threshold value rdDB:

when r > rdDB, eNumk1 > 0 on the curve Bmin; when r < rdDB, eNumk1 < 0 on the curve

Bmin. We then have two sub-cases:

Sub-case 2.1: r < rdDB

In this case, eNumk1 < 0 is negative on the curve Bmin and on the right boundary line

k = kmax. Also we can see that eNumk1 in (6.2.52) is a quadratic function of k. If it is

convex, then it must be negative in the feasible region. If it is concave, together with (6.2.62),

we can also see that eNumk1 < 0. So, eNumk1 < 0 for r < rdDB.

Sub-case 2.2: r > rdDB

In this case eNumk1 is positive on the curve Bmin and negative on the right boundary

line k = kmax. Since it is a quadratic function of k, there is exactly one threshold value k̄dDB:

eNumk1 > 0 if k < k̄dDB and eNumk1 < 0 if k > k̄dDB.

e
⇤
2 vs. k1

We have:
@e2

@k1
|k1=k2=k =

@e1

@k2
|k1=k2=k =

eNumk2

4DEN
2
d

. (6.2.63)

where

eNumk2/(2✓) = a
2
1b1(✓k + k � 2✓t)((3✓ � 1)k � 2✓t) + a

3
1(✓k + k � 2✓t)2

+a1(✓�1)
�
b
2
1k(3✓k + k � 4✓t) + 8rt

�
✓
2
�
k
2 � 2kt+ 2t(q + t)

�
� 2✓(k(q + t) + qt) + k(k + 2q)

��

+ b1(✓ � 1)2
�
b
2
1k

2 + 8rt
�
✓
�
k
2 � 2t(k + q)

�
+ k(k + 2q)

��
(6.2.64)
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From (6.2.55), we have

eNumk2 |r=0 = �✓eNumk1 |r=0 > 0. (6.2.65)

To determine the sign of eNumk2 , we also consider two cases:

Case 1: ✓ < ✓
00

We first study the properties of eNumk2 on the r-k boundary shown in Figure 6.2.2. We

have

eNumk2 |k=0 = �✓eNumk1 |k=0 > 0 (6.2.66)

according to (6.2.56). From (6.2.66) and (6.2.53), we have

@eNumk2

@r
|k=0 > 0. (6.2.67)

We also have

eNumk2 |r=rd
=

2 (a1 + b1) (k + 2q)R1

(k � t)(k + 2q � 2t)
F6 (6.2.68)

where

F6 = a1

�
✓(✓ + 1)k2 + (2� 3✓(✓ + 1))kt+ 2✓(2✓ � 1)t2

�
+ b1(✓ � 1)(✓(k + t)(k � 2t) + 2kt).

(6.2.69)

From (6.2.3), (6.2.9), (6.2.16), and (6.2.66), we have

F6|k=0,r=rd
< 0. (6.2.70)

From

eNumk2 |k=kmax =
32(✓ � 1)3✓2rt2 (a21 � b

2
1) (a1(✓(q + t) + q) + b1(✓ � 1)q)

(a1(✓ + 1) + b1(✓ � 1)) 2
< 0, (6.2.71)

we can conclude

F6|k=kmax > 0. (6.2.72)
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Together with (6.2.70) and F6 is a convex function of k, we can conclude there is a root to

F6 = 0 (and therefore to eNumk2 = 0) on the line r = rd. From (6.2.66), there is no root

to eNumk2 = 0 on the line k = 0. Then we can conclude there is one root on the boundary

BL. Together with (6.2.67) and Proposition 6.2.1, we can conclude there is a threshold value

rdDC on the curve Bmin: when r > rdDC , eNumk2 > 0; otherwise, eNumk2 < 0 . Then we

can discuss the sign of eNumk2 in two regions:

1. In the region where r < rdDC , given that eNumk2 < 0 on Bmin, eNumk2 |r=0 > 0

according to (6.2.65), and eNumk2 is a linear function of r, we have eNumk2 < 0.

2. In the region where r > rdDC , eNumk2 > 0 on the curve Bmin, and eNumk2 |k=kmax < 0

on the right boundary from (6.2.71). Since eNumk2 is a quadratic function of k, we can

conclude there is a threshold value k̄dDC for a given r: when k < k̄dDC , eNumk2 > 0;

eNumk2 < 0 otherwise.

Case 2: ✓ > ✓
00

When ✓ > ✓
00, we have

@eNumk2

@r
|k=0 = 32(✓ � 1)✓2t2 (a1((✓ � 1)q + ✓t)� b1(✓ � 1)q) (✓ � ✓

00) < 0. (6.2.73)

Then when k is small,
@eNumk2

@r
< 0 by continuity. Therefore, when r is large enough,

eNumk1 < 0. When k is large enough (close to kmax), eNumk1 |r=rd
< 0 by continuity

according to (6.2.71). Since eNumk2 is a linear function of r, from (6.2.65), we can conclude

when k is large enough, eNumk2 < 0.

6.2.8 Proof of Theorem 13

We have

p
⇤
1 = � 2(✓ � 1)✓rt (t� k2) (✓k2 � k1 + 2(✓ � 1)q)

�✓k2

�
(a1 + b1)

2 + 8(✓ � 1)rt
�
+ (a1 + b1) (a1 (2✓t� k1) + b1k1) + 8(✓ � 1)✓rt2

.

(6.2.74)
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p
⇤
1 vs. k1

We have
@p1

@k1
|k1=k2=k =

4G5(✓ � 1)✓rt(t� k)

DEN
2
d

, (6.2.75)

where

G5 = � (a1 + b1) (a1(✓(k + q � t)� q)� b1(✓ � 1)q)� 4(✓ � 1)✓rt(k � t). (6.2.76)

Since
4(✓ � 1)✓rt(t� k)

DEN2
d

< 0, the sign of
@p1

@k1
|k1=k2=k is opposite to the sign of G5. To

determine the sign of G5, we first have

G5|r=0 = � (a1 + b1) (a1(✓(k + q � t)� q)� b1(✓ � 1)q) . (6.2.77)

Since G5|r=0 is a linear function of k, together with

G5|r=0,k=0 = � (a1 + b1) (a1((✓ � 1)q � ✓t)� b1(✓ � 1)q) > 0 (6.2.78)

and

G5|r=0,k=kmax = �(✓ � 1) (a21 � b
2
1) (a1(✓(q + t) + q) + b1(✓ � 1)q)

a1(✓ + 1) + b1(✓ � 1)
> 0, (6.2.79)

we can conclude

G5|r=0 > 0. (6.2.80)

We also have

G5|r=rd
= �(a1 + b1) (k + 2q)H1

k + 2q � 2t
, (6.2.81)

where H1 = a1(✓(k + q � 2t) � q + t) � b1(✓ � 1)(q � t). Given that G5 is a decreasing

function of r from (6.2.76), G5|r=0,k=kmax > 0 from (6.2.79), and H1 is a linear function of

k, then according to Lemma 6.2.1, there is exactly one root to G5 = 0 on the left boundary
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BL. Together with Proposition 6.2.1 and the fact that G5 is a decreasing function of r, we

can conclude there is a threshold value rdDD: when r > rdDD, G5 < 0 on the curve Bmin;

otherwise G5 > 0.

From (6.2.80) and
@G5

@r
= �4(✓ � 1)✓t(k � t) < 0, (6.2.82)

we can conclude there is a threshold value rd4 = �(a1 + b1) (a1(✓(q + t) + q) + b1(✓ � 1)q)

4(✓ � 1)✓t2
.

When r > rd4, G5|k=kmax < 0; otherwise, G5|k=kmax > 0.

Since G5 is a linear function of k and

@G5

@k
|r=rd4

=
q (a1 + b1) (a1(✓ + 1) + b1(✓ � 1))

t
> 0, (6.2.83)

we can conclude
@G5

@k
|r=rd4

< 0 on the curve Bmin. Then rd4 > rdDD.

To summarize,.

1. When r < rdDD, G5 is positive on the curve Bmin and the right boundary. Also, it is

a linear function of k. Then G5 > 0 and therefore
@p1

@k1
|k1=k2=k < 0.

2. When rdDD < r < rd4, G5 is negative on the curve Bmin and positive on the right

boundary. Also, it is a linear function of k. Then there is a threshold value k̄6: when

k < k̄6, G < 0 and
@p1

@k1
|k1=k2=k > 0; when k > k̄6, G > 0 and

@p1

@k1
|k1=k2=k < 0.

3. When r > rd4, G5 is negative on the curve Bmin and the right boundary. Since it is a

linear function of k, G5 < 0 and
@p1

@k1
|k1=k2=k > 0.

p
⇤
2 vs. k1

@p2

@k1
|k1=k2=k =

@p1

@k2
|k1=k2=k. We have,

@p2

@k1
|k1=k2=k =

@p1

@k2
|k1=k2=k =

2(1� ✓)✓rtG6

DEN2
d

, (6.2.84)

155



where

G6 = 2a1b1✓
2(k � t)2 + a

2
1

�
✓
2
�
k
2 � 4kt+ 2t(t� q)

�
+ 2✓(k(k + q) + qt)� k(k + 2q)

�

+ (✓ � 1)
�
b
2
1

�
(✓ � 1)k2 � 2kq + 2✓qt

�
+ 8✓2rt(k � t)2

�
. (6.2.85)

which is a linear decreasing function of r since
@G6

@r
= 8(✓� 1)✓2t(k� t)2 < 0. Then we can

conclude that when r is large enough, G6 < 0.

We haveG6|k=kmax,r=0 = �2(✓ � 1)2✓t (a1 � b1) (a1 + b1)
2 (a1(✓(q + t) + q) + b1(✓ � 1)q)

(a1(✓ + 1) + b1(✓ � 1))2
<

0. Then we can conclude that when k is large enough, or equivalently r is small enough,

G6|r=rd
< 0 by continuity. Since G6 is a decreasing function of r, we have G6 < 0 in the

feasible region when r is small enough.

In conclusion, when r is either small enough or large enough, we have G6 < 0.

6.2.9 Proof of Table 3.5

Let xi be the general parameter that represents qi, ai, bi, or ri, i = 1, 2. Similar to the steps

in Appendix 6.2.7, define
@e

⇤
1

@xi

⌘ eNumxi

4DEN
2
d

, i = 1, 2 (6.2.86)

and
@p

⇤
1

@xi

⌘ pNumxi

4DEN
2
d

, i = 1, 2. (6.2.87)

In the Mathematica file, we have derived eNumx, and pNumx in each of the following cases.

e
⇤
1 vs. q1

eNumq1 = 2(✓ � 1)R1M1N1 (6.2.88)

where

M1 = (a1(✓k + k � 2✓t) + b1(✓ � 1)k) (a1(k � 2✓t)� b1k) + 8(✓ � 1)✓2rt(k � t)(k � 2t)

(6.2.89)
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N1 = (a1(✓k + k � 2✓t) + b1(✓ � 1)k)2
��
a
2
1 � b

2
1

�
(k � ✓t) + 8(✓ � 1)✓rt(k � t)

�

+ 64(✓ � 1)2✓3r2t2(k � t)3 (6.2.90)

M1 is a linear decreasing function of r, and

M1|r=rd
=

R1 (a1(k(k + 2q � 2t)� 4✓qt)� b1 (k2 + 2k(q � (✓ + 1)t) + 4✓t2))

k + 2q � 2t
< 0 (6.2.91)

Then we have

M1 < 0 (6.2.92)

At r = r
0
d
defined in (6.2.8),

N1|r=r
0
d
= 0 (6.2.93)

and

@N1

@r
|r=r

0
d
= �8(✓ � 1)✓t(k � t)R1 (a1(✓ � 1)k + b1(✓k + k � 2✓t)) < 0. (6.2.94)

Together with
@
2
N1

@r2
= 128(✓ � 1)2✓3t2(k � t)3 < 0, (6.2.95)

we can conclude when r > r
0
d
, N1 < 0. Then when r > rd > r

0
d
,

N1 < 0 (6.2.96)

From (6.2.9), (6.2.88), (6.2.92), and (6.2.96), we have eNumq1 > 0. Then we have
@e1

@q1
|q1=q2=q > 0.

e
⇤
1 vs. q2

eNumq2 = 2(✓ � 1)R1M2N1 (6.2.97)
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where

M2 = R1 (a1k � b1(k � 2✓t)) + 8(✓ � 1)✓2krt(k � t). (6.2.98)

from which we can conclude there is a threshold value r̂. When r < r̂, eNumq2 > 0;

eNumq2 < 0 otherwise;

p
⇤
1 vs. q1

pNumq1 = �2(✓ � 1)2✓rt(k � t)M1N1 > 0 (6.2.99)

from (6.2.92) and (6.2.96).

p
⇤
1 vs. q2

pNumq2 = �2(✓ � 1)2✓rt(k � t)M2N1 (6.2.100)

From (6.2.98), we can conclude there is a threshold value r̂. When r < r̂, pNumq2 > 0;

pNumq2 < 0 otherwise;

e
⇤
1 vs. a1

eNuma1 = 2(✓ � 1)(k + 2q)M3N9 (6.2.101)

where

M3 = (a1 � b1) (k � ✓t) (a1(✓k + k � 2✓t) + b1(✓ � 1)k) + 8(✓ � 1)✓2rt(k � t)2 (6.2.102)

and

N9 = 64(✓ � 1)2✓3r2t2(k � t)3(✓k + k � 2✓t)

� a1(k � ✓t) (a1(✓k + k � 2✓t) + b1(✓ � 1)k)3
(6.2.103)

Since
@M3

@r
= 8(✓ � 1)✓2t(k � t)2 < 0 (6.2.104)

and

M3|r=r
0
d
= �R1 (a1(✓ � 1)k + b1(✓k + k � 2✓t)) < 0 (6.2.105)
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where r
0
d
is defined in Equation (6.2.8), together with (6.2.15), we can conclude

M3 < 0. (6.2.106)

Similarly, since

N9|r=r
0
d
= R

2
1 (a1(✓k + k � 2✓t) + b1✓(k � t)) (a1(✓ � 1)k + b1(✓k + k � 2✓t)) > 0 (6.2.107)

and
@N9

@r
= 128(✓ � 1)2✓3rt2(k � t)3(✓k + k � 2✓t) > 0 (6.2.108)

where r
0
d
is defined in equation (6.2.8), together with (6.2.15), we can conclude

N9 > 0. (6.2.109)

From (6.2.101), (6.2.106), and (6.2.109), we can conclude eNuma1 > 0.

e
⇤
1 vs. b2

eNumb2 = 2(✓ � 1)(k + 2q)R1M3N10 (6.2.110)

where

N10 = �2a1(✓ � 1)k(✓k + k � 2✓t)
�
b
2
1(✓t� k) + 4(✓ � 1)✓rt(k � t)

�

+ a
2
1b1(k � ✓t)(✓k + k � 2✓t)2 + b1(✓ � 1)

�
b
2
1(✓ � 1)k2(k � ✓t) + 8✓rt(t� k)

��
✓
2 + 1

�
k
2 � 2✓(✓ + 1)kt+ 2✓2t2

��
(6.2.111)

We have

@N10

@r
= 8(✓�1)✓t

�
b1(t� k)

��
✓
2 + 1

�
k
2 � 2✓(✓ + 1)kt+ 2✓2t2

�
� a1(✓ � 1)k(k � t)(✓k + k � 2✓t)

�
,

(6.2.112)
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which is a linear function of b1. Since

@N10

@r
|b1=0 = �8a1(✓ � 1)2✓kt(k � t)(✓k + k � 2✓t) < 0 (6.2.113)

and
@N10

@r
|b1=a1 = �16a1(✓ � 1)✓3t(k � t)3 < 0, (6.2.114)

we can conclude
@N10

@r
< 0. (6.2.115)

Together with

N10|r=0 = (k � ✓t)b1R
2
1 < 0, (6.2.116)

we can conclude

N10 < 0. (6.2.117)

From (6.2.106), (6.2.110), and (6.2.117), we can conclude eNumb2 > 0.

p
⇤
1 vs. a1

pNuma1 = 2(✓ � 1)2✓rt(k + 2q)(k � t)M3N11 (6.2.118)

where

N11 = 4a1(k � t)
�
2(✓ � 1)✓rt(✓k + k � 2✓t)2 � b

2
1✓(k � ✓t)2

�

+ 3a21b1(✓ � 1)k(k � ✓t)(✓k + k � 2✓t) + 2a31(k � ✓t)(✓k + k � 2✓t)2

+ b1(✓ � 1)k(✓k + k � 2✓t)
�
b
2
1(✓t� k) + 8(✓ � 1)✓rt(k � t)

�
(6.2.119)

Since

N11|r=r
0
d
= �R1 (a1(✓k + k � 2✓t) + b1✓(k � t)) (a1(✓ � 1)k + b1(✓k + k � 2✓t)) > 0

(6.2.120)
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where r
0
d
is defined in Equation (6.2.8), and

@N11

@r
= 8R1(✓ � 1)✓t(k � t)(✓k + k � 2✓t) > 0, (6.2.121)

together with (6.2.15), we can conclude

N11 > 0 (6.2.122)

From (6.2.106), (6.2.118), and (6.2.122), we can conclude pNuma1 > 0.

p
⇤
1 vs. b2

pNumb2 = 2(✓ � 1)2✓rt(k + 2q)(k � t)M3N12 (6.2.123)

where

N12 = 2a1(✓ � 1)k(✓k + k � 2✓t)
�
b
2
1(✓t� k) + 4(✓ � 1)✓rt(k � t)

�

+ a
2
1b1(k � ✓t)

�
�(✓k + k � 2✓t)2

�
+ b1(✓ � 1)

�
b
2
1(✓ � 1)k2(✓t� k) + 8✓rt(k � t)

��
✓
2 + 1

�
k
2 � 2✓(✓ + 1)kt+ 2✓2t2

��
(6.2.124)

We have

@N12

@r
= 8(✓�1)✓t(k�t)

�
a1(✓ � 1)k(✓k + k � 2✓t) + b1

��
✓
2 + 1

�
k
2 � 2✓(✓ + 1)kt+ 2✓2t2

��
,

(6.2.125)

which is a linear function of b1. Since

@N12

@r
|b1=0 = 8a1(✓ � 1)2✓kt(k � t)(✓k + k � 2✓t) > 0 (6.2.126)

and
@N12

@r
|b1=a1 = 16a1(✓ � 1)✓3t(k � t)3 > 0, (6.2.127)
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we have
@N12

@r
> 0. (6.2.128)

Together with

N12|r=0 = b1(�(k � ✓t)) (a1(✓k + k � 2✓t) + b1(✓ � 1)k) 2
> 0, (6.2.129)

we have

N12 > 0. (6.2.130)

From (6.2.106), (6.2.123), and (6.2.130), we have pNumb2 > 0.

e
⇤
1 vs. a2

eNuma2 = 2(✓ � 1)(k + 2q)R1N5 (6.2.131)

where

N5 =�
�
(a1 � b1) (k � ✓t) (a1(✓k + k � 2✓t) + b1(✓ � 1)k) + 8(✓ � 1)✓2rt(k � t)2

�

[a1(✓ � 1)k(✓k + k � 2✓t)
�
8(✓ � 1)✓rt(k � t)� 3b21(k � ✓t)

�

� 4a21b1✓(k � t)(k � ✓t)2 + a
3
1(✓ � 1)k(k � ✓t)(✓k + k � 2✓t)

+ 2b1(✓ � 1)2k2
�
b
2
1(✓t� k) + 4(✓ � 1)✓rt(k � t)

�
]

� 2(k � ✓t) (a1(k � ✓t) + b1(✓ � 1)k)

[(a1(✓k + k � 2✓t) + b1(✓ � 1)k)2

��
a
2
1 � b

2
1

�
(k � ✓t) + 8(✓ � 1)✓rt(k � t)

�
+ 64(✓ � 1)2✓3r2t2(k � t)3]

(6.2.132)

We have

@
2
N5

@r2
= 128(✓�1)2✓3t2(k�t)3

�
a1

�
�
��
✓
2 + 1

�
k
2 � 2✓(✓ + 1)kt+ 2✓2t2

��
� b1(✓ � 1)k(✓k + k � 2✓t)

�
,

(6.2.133)
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which is a linear function of b1. Since

@
2
N5

@r2
|b1=0 = 128a1(✓ � 1)2✓3t2(k � t)3

�
�
�
✓
2 + 1

�
k
2 + 2✓(✓ + 1)kt� 2✓2t2

�
> 0 (6.2.134)

and
@
2
N5

@r2
|b1=a1 = �256a1(✓ � 1)2✓5t2(k � t)5 > 0, (6.2.135)

we can conclude
@
2
N5

@r2
> 0. (6.2.136)

At r = r
0
d
defined in Equation (6.2.8), we have

@N5

@r
|r=r

0
d
= 8(✓ � 1)✓t(k � t)R1N51 (a1(✓ � 1)k + b1(✓k + k � 2✓t)) (6.2.137)

where

N51 = a1

�
✓
2
�
2k2 � 4kt+ 3t2

�
+ k

2 � 2✓kt
�
+ b1(✓ � 1)k(2✓k + k � 3✓t). (6.2.138)

Since N51 is a linear function of b1, together with

N51|b1=0 = a1

�
✓
2
�
2k2 � 4kt+ 3t2

�
+ k

2 � 2✓kt
�
> 0 (6.2.139)

and

N51|b1=a1 = a1✓(k � t)((4✓ � 1)k � 3✓t) > 0, (6.2.140)

we have N51 > 0. Then we can conclude

@N5

@r
|r=r

0
d
> 0 (6.2.141)
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Together with (6.2.136) and

N5|r=r
0
d
= � (a1✓(k � t) + b1(✓ � 1)k)R2

1 (a1(✓ � 1)k + b1(✓k + k � 2✓t))2 > 0, (6.2.142)

we can have when r > r
0
d
, N5 > 0. From (6.2.15), we can conclude when r > rd,

N5 > 0. (6.2.143)

From (6.2.131) and (6.2.143), we can conclude eNuma2 > 0.

e
⇤
1 vs. b1

eNumb1 = 2(✓ � 1)(k + 2q)M3N6 (6.2.144)

where

N6 = b1(k � ✓t) (a1(✓k + k � 2✓t) + b1(✓ � 1)k)3 + 64(✓ � 1)3✓3kr2t2(k � t)3 (6.2.145)

Since
@N6

@r
= 128(✓ � 1)3✓3krt2(k � t)3 > 0 (6.2.146)

and

N6|r=0 = (k � ✓t)R3
1 > 0, (6.2.147)

we can conclude

N6 > 0. (6.2.148)

Together with (6.2.106) and (6.2.144), we can conclude eNumb1 > 0.

p
⇤
1 vs. a2

pNuma2 = �2(✓ � 1)2✓rt(k + 2q)(k � t)N5 (6.2.149)

From (6.2.143), we can conclude pNuma2 > 0.
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p
⇤
1 vs. b1

pNumb1 = 2(✓ � 1)2✓rt(k + 2q)(k � t)M3N8 (6.2.150)

where

N8 = a1(✓ � 1)k(✓k + k � 2✓t)
�
8(✓ � 1)✓rt(k � t)� 3b21(k � ✓t)

�
� 4a21b1✓(k � t)(k � ✓t)2

+ a
3
1(✓ � 1)k(k � ✓t)(✓k + k � 2✓t) + 2b1(✓ � 1)2k2

�
b
2
1(✓t� k) + 4(✓ � 1)✓rt(k � t)

�

(6.2.151)

Since

N8|r=r
0
d
= � (a1✓(k � t) + b1(✓ � 1)k)R1 (a1(✓ � 1)k + b1(✓k + k � 2✓t)) > 0 (6.2.152)

and
@N8

@r
= 8(✓ � 1)2✓kt(k � t)R1 > 0, (6.2.153)

we can conclude when r > r
0
d
, N8 > 0. Then from (6.2.15), when r > rd,

N8 > 0. (6.2.154)

From (6.2.106), (6.2.150), and (6.2.154), we have pNumb1 > 0.

e
⇤
1 vs. r1

eNumr1 = �8(✓ � 1)2✓t(k + 2q)(k � t)R1M3N3 (6.2.155)

where

N3 = R
2
1 + 16(✓ � 1)✓2rt(k � t)2. (6.2.156)

Since

N3|r=r
0
d
= �R1 (a1(✓ � 1)k + b1(✓k + k � 2✓t)) < 0 (6.2.157)
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and
@N3

@r
= 16(✓ � 1)✓2t(k � t)2 < 0, (6.2.158)

we can conclude when > r
0
d
, N3 < 0. From (6.2.15), we can conclude when > rd,

N3 < 0. (6.2.159)

Together with (6.2.106), we can conclude eNumr1 < 0.

e
⇤
1 vs. r2

eNumr2 = 8(✓ � 1)2✓t(k + 2q)(k � t)R2
1 (a1(✓ � 1)k + b1(✓k + k � 2✓t))M3. (6.2.160)

From (6.2.106), we can conclude eNumr2 < 0.

p
⇤
1 vs. r1

pNumr1 = �2(✓ � 1)2✓t(k + 2q)(k � t) (a1(✓k + k � 2✓t) + b1(✓ � 1)k)2 M3N4 (6.2.161)

where

N4 =
�
a
2
1 � b

2
1

�
(k � ✓t) + 4(✓ � 1)✓rt(k � t). (6.2.162)

Since

N4|r=r
0
d
= �1

2
(a1 + b1) (a1(✓ � 1)k + b1(✓k + k � 2✓t)) > 0 (6.2.163)

and
@N4

@r
= 4(✓ � 1)✓t(k � t) > 0, (6.2.164)

we can conclude when > r
0
d
, N4 > 0. From (6.2.15), we can conclude when > rd,

N4 > 0. (6.2.165)

Together with (6.2.106), we can conclude pNumr1 < 0.
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p
⇤
1 vs. r2

pNumr2 = �(✓ � 1)3✓2rt2(k + 2q)(k � t)2R1 (a1(✓ � 1)k + b1(✓k + k � 2✓t))M3. (6.2.166)

From (6.2.106), We can conclude pNumr2 < 0.

6.2.10 Optimality of ed and pd

We have
@
2
⇡1

@p
2
1

=
2

(✓ � 1)t
< 0, which implies that p

⇤
d
satisfies the second-order condition.

Plugging the expressions of p1, p2 as a function of e1 and e2 into ⇡1 (Equation 3.5), we have

@
2
⇡1

@e
2
1

= �(a1(✓k + k � 2✓t) + b1(✓ � 1)k)2 + 16(✓ � 1)✓2rt(k � t)2

8(✓ � 1)✓2t(k � t)2
. (6.2.167)

which is a decreasing function of r and

@
2
⇡1

@e
2
1

|r=r
0
d
= �(a1(✓k + k � 2✓t) + b1(✓ � 1)k) (a1(k � ✓k)� b1(✓k + k � 2✓t))

8(✓ � 1)✓2t(k � t)2
< 0.

(6.2.168)

Then,
@
2
⇡1

@e
2
1

< 0 for r > rd > r
0
d
. We can conclude ⇡1 can reach the maximum value at e⇤

d
.

6.2.11 Proof of Theorem 14

From Equation (3.19), we have
@e

⇤
d

@k
=

F

2DEN
2
d

, (6.2.169)

where

F = F0 + F1k + F2k
2 (6.2.170)

F0 = 4(✓ � 1)✓t2
�
a
2
1b1✓ + 4(✓ � 1)r (a1((✓ � 1)q + ✓t)� b1(✓ � 1)q) + a

3
1✓
�
, (6.2.171)

F1 = �4(✓ � 1)✓t (a1(✓ + 1) + b1(✓ � 1)) (a1 (a1 + b1) + 4(✓ � 1)rt) , (6.2.172)

F2 = (✓ � 1) (a1(✓ + 1) + b1(✓ � 1))R2. (6.2.173)
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To determine the sign of F , which is the same as that of
@e

⇤
d

@k
, we first have

F |r=0 = (✓ � 1) (a1 + b1)R
2
1 < 0. (6.2.174)

We also have

@F

@r
= 8(✓�1)2✓t

�
a1

�
(✓ + 1)k2 � 2(✓ + 1)kt+ 2✓t(q + t)� 2qt

�
+ b1(✓ � 1)

�
k
2 � 2t(k + q)

��
,

(6.2.175)

which is a convex function of k. Also,

@F

@r
|k=0 = 16(✓ � 1)2✓t2 (a1(q + t)� b1q) (✓ � ✓

00) (6.2.176)

and

@F

@r
|k=kmax =

16(✓ � 1)3✓t2 (a1 � b1) (a1(✓(q + t) + q) + b1(✓ � 1)q)

a1(✓ + 1) + b1(✓ � 1)
< 0, (6.2.177)

We need to consider two cases according to the sign of (6.2.176) in order to determine

the sign of F :

Case 1: ✓ < ✓
00

According to (6.2.176) (which is negative in this case) and (6.2.177), together with the

fact that
@F

@r
is a convex function of k, we can conclude

@F

@r
< 0, 0 < k < kmax. (6.2.178)

From (6.2.178) and (6.2.174), we can conclude F < 0, that is
@e

⇤
d

@k
< 0.

Case 2: ✓ > ✓
00
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We have

F |k=kmax =
16(✓ � 1)3✓rt2 (a1 � b1) (a1(✓(q + t) + q) + b1(✓ � 1)q)

a1(✓ + 1) + b1(✓ � 1)
< 0 (6.2.179)

and

F |r=rd
=

(✓ � 1) (a1 + b1) (k + 2q)R1

(k � t)(k + 2q � 2t)
K (6.2.180)

where

K = a1

�
(✓ + 1)k2 � k(3✓t+ t) + 2(2✓ � 1)t2

�
+ b1(✓ � 1)(k + t)(k � 2t), (6.2.181)

which is a convex function of k. From (6.2.179) and (6.2.180), we have K|k=kmax < 0. Given

(6.2.176) which is positive in this case, (6.2.179), K|k=kmax < 0, and the fact that K is a a

convex function of k, from Lemma 6.2.1, we can conclude there is a root on the left boundary

BL. Given (6.2.176) which is positive in this case, from Proposition 6.2.1, we can conclude

there is a threshold value rdDF : when r > rdDF , F > 0 on the curve Bmin; F < 0 otherwise.

On the line r = rd, we have

@F

@k
|r=rd

=
2(✓ � 1) (a1 + b1) (k + 2q) (a1(✓ + 1) + b1(✓ � 1))R1

k + 2q � 2t
< 0. (6.2.182)

In particular,
@F

@k
|r=rd,k=0 < 0. Given that

@
2
F

@k@r
= 6(✓ � 1)2✓t(k � t) (a1(✓ + 1) + b1(✓ � 1)) < 0, (6.2.183)

we can see that
@F

@k
< 0 along the line k = 0 on BL. Together with (6.2.182), we can

conclude on the curve Bmin,
@F

@k
< 0. On the right boundary k = kmax,

@F

@k
|k=kmax = 16(✓ � 1)3✓rt2 (a1 � b1) < 0. (6.2.184)
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Then
@F

@k
< 0 in the feasible region since it is a quadratic function according to (6.2.170).

By using (6.2.179), we can conclude: (i) when r > rdDF , there is a threshold value k̄dDF for

any given r within the feasible region: when k < k̄dDF , F > 0; F < 0 otherwise. (ii) when

r < rdDF , F < 0.

6.2.12 Proof of Theorem 15

From (3.20), the FOC of pd with respect to k is:

@p
⇤
d

@k
=

�2(✓ � 1)2✓rtG

DEN
2
d

, (6.2.185)

where

G = 2a1b1✓(k�t)2+a
2
1

�
(✓ + 1)k2 � 4✓kt+ 2t(�✓q + q + ✓t)

�
+(✓�1)

�
b
2
1

�
k
2 + 2qt

�
+ 8✓rt(k � t)2

�
.

(6.2.186)

which is a quadratic function of k. The sign of
@p1

@k
is opposite to the sign of G.

To determine the sign of G, we study the properties of G on the boundary. On the line

r = rd,

G|r=rd
=

(k + 2q)G7

k + 2q � 2t
(6.2.187)

where

G7 =
�
2a1b1✓(k � t)2 + a

2
1

�
(✓ + 1)k2 � 4✓kt+ 2t(�✓q + q + 2✓t� t)

�
+ b

2
1(✓ � 1)

�
k
2 + 2t(q � t)

��
.

(6.2.188)

Since G7 is a quadratic function of k, together with

@G7

@k
|k=0 = �4t✓a1 (a1 + b1) < 0 (6.2.189)
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and
@G7

@k
|k=kmax = 0, (6.2.190)

we can see that G7 is a convex function and reaches minimum at k = kmax. Given that G7

decreases with k within the feasible region,

G|k=kmax,r=rd
= �2(✓ � 1)t (a21 � b

2
1) (a1(✓(q + t) + q) + b1(✓ � 1)q)

a1(✓ + 1) + b1(✓ � 1)
> 0, (6.2.191)

and
@G

@r
= 8(✓ � 1)✓t(k � t)2 < 0, (6.2.192)

we can conclude there is exactly one root for G = 0 on the left boundary BL from Lemma

6.2.1. Together with (6.2.192) and Proposition 6.2.1, there is a threshold value rdDG: when

r > rdDG, G < 0 on the curve Bmin; G > 0 otherwise.

From (6.2.191) and (6.2.192), we can conclude there is a threshold value rdF on the right

boundary k = kmax: when r < rdF , G|k=kmax > 0; G|k=kmax < 0 otherwise.

Next we show that rdF > rdDG. From

@G

@k
|r=rd

=
2 (a1 + b1) (k + 2q)R1

k + 2q � 2t
> 0, (6.2.193)

we have
@G

@k
|k=0,r=rd

> 0. Together with

@
2
G

@k@r
= 16(✓ � 1)✓t(k � t) > 0, (6.2.194)

we have
@G

@k
> 0 along the boundary line k = 0. Together with (6.2.193), we can conclude

@G

@k
> 0 on the curve Bmin. Together with

@G

@k
|k=kmax =

16(✓ � 1)2✓rt2 (a1 � b1)

a1(✓ + 1) + b1(✓ � 1)
> 0, (6.2.195)
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and the fact that G is a quadratic function of k, we can conclude
@G

@k
> 0 within the feasible

region. Then G|r=rdF
< 0 on the curve Bmin. Therefore rdF > rdDG.

1. When r < rdDG, G is positive on the curve Bmin and the right boundary. Since
@G

@k
> 0,

then G > 0. That is,
@p

⇤
d

@k
< 0.

2. When rdDG < r < rdF , G is negative on the curve Bmin and positive on the right

boundary. Given that
@G

@k
> 0, there is a threshold value k̄dDG: when k < k̄dDG, G < 0

and
@p

⇤
d

@k
> 0; G > 0 and

@p
⇤
d

@k
< 0 otherwise.

3. When r > rdF , G is negative on the curve Bmin and the right boundary. Since
@G

@k
> 0,

we have G < 0 and
@p

⇤
d

@k
> 0.

6.2.13 Proof of Table 3.8

Since
@e

⇤
d

@a1
=

@e
⇤
1

@a1
+
@e

⇤
2

@a1
|a1=b2 ,

@e
⇤
d

@b1
=

@e
⇤
1

@b1
+
@e

⇤
2

@b1
|a2=b1 , and

@e
⇤
d

@r
=

@e
⇤
1

@r1
+
@e

⇤
2

@r1
|r1=r2=r, from Table

3.5, we can prove
@e

⇤
d

@a1
> 0,

@e
⇤
d

@b1
> 0, and

@e
⇤
d

@r
< 0. From Equation (3.19),

@e
⇤
d

@q
=

2e⇤
d

k + 2q
> 0.

Similarly, we can prove
@p

⇤
d

@a1
> 0,

@p
⇤
d

@r
< 0,

@p
⇤
d

@b1
> 0, and

@p
⇤
d

@q
> 0.

6.2.14 Proof of Lemma 2

@e
⇤
a

@k
=

e
⇤
a

k + 2q
> 0 (6.2.196)

@p
⇤
a

@k
=

p
⇤
a

k + 2q
> 0 (6.2.197)

6.2.15 Proof of Lemma 3

@e
⇤
g

@k
=

e
⇤
g

k + 2q
> 0 (6.2.198)

@p
⇤
g

@k
=

p
⇤
g

k + 2q
> 0 (6.2.199)
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6.2.16 Proof of Theorem 16

Since

e
⇤
a
� e

⇤
g
=

2P1

a
2
0 + 4(✓ � 1)2rt

e
⇤
a

(6.2.200)

and

p
⇤
a
� p

⇤
g
= � a

2
0P1

(✓ � 1)rt (a20 + 4(1� ✓)2rt)
p
⇤
a
, (6.2.201)

where P1 = a
2
0 + (✓� 1)(2✓� 1)rt. To determine the sign of e⇤

a
� e

⇤
g
and p

⇤
a
� p

⇤
g
, we need to

determine the sign of P1.

Case 1: ✓1 < 1/2

In this case, P1 > 0. Then, e⇤
a
> e

⇤
g
and p

⇤
a
> p

⇤
g
.

Case 2: 1/2 < ✓1 < 1

In order for anti-piracy e↵ort in (3.26) to be positive, we shall have r > r1 ⌘ a
2
0

2(1� ✓)
.

Let P1 = 0, we have r = rp ⌘
a
2
0

(1� ✓)(2✓ � 1)
> r1. When r > rp, P1 < 0; P1 > 0 otherwise.

6.3. Proof of Chapter 4

6.3.1 Constraints of Parameter Values

Monopoly Case with Only Basic Service

To ensure the demand for basic service is positive, from (4.6), we can conclude

t1 � k1 > 0. (6.3.1)

To ensure the HIE’s price is positive, from (6.3.11), we have

q1 �Mh > 0 (6.3.2)
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Monopoly Case with Additional Value-Added Service

From (4.17) and (6.3.1), to ensure x
mv⇤

> 0, we can conclude

k
2
2 � 4 (k1 � t1) (k3 � t2) < 0. (6.3.3)

Together with (4.16), to ensure x
mb⇤

> x
mv⇤, we have

8cv (k3 � t2) (Mh + q1) + k2 (4cv (Mh + q1)� 1)� 2k1 + 2t1 < 0 (6.3.4)

to ensure

Duopoly Case With Only Basic Service

To ensure the price is greater than 0, we can conclude we have

t1 �Mh � k1 > 0 (6.3.5)

Duopoly Case With Additional Value-Added Service

From (4.47) to (4.49), we can solve D
dv

1 ,

D
dv

1 =
2k2cv + 1

8cv (t2 � k3)
. (6.3.6)

To ensure D
dv

1 > 0, we have

t2 � k3 > 0. (6.3.7)

TO ensure D
dv

1 < 1/2, we have

2k2cv + 1 < 4cv (t2 � k3) (6.3.8)
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6.3.2 Proof of Lemma 4

From (4.10),we can find that

U
mb|x<xmv < (Umb + U

mv)|x<xmv (6.3.9)

and

U
mb|x>xmv > (Umb + U

mv)|x>xmv . (6.3.10)

Then we can prove the result of Lemma 4.

6.3.3 Proof of Table 4.2

Basic service monopoly case

p
mb⇤ =

1

2
(q1 �Mh) (6.3.11)

p
mb⇤ vs. Mh

@p
mb⇤

@Mh

= �1/2 < 0 (6.3.12)

p
mb⇤ vs. q1

@p
mb⇤

@q1
= 1/2 > 0 (6.3.13)

p
mb⇤ vs. k1

@p
mb⇤

@k1
= 0 (6.3.14)

monopoly B&VS sub-case

p
mb⇤ =

1

4

✓
k2 (2k2cv (Mh + q1)� k1 + t1)

cv (k2
2 � 4 (k1 � t1) (k3 � t2))

+ 2 (q1 �Mh)

◆
(6.3.15)
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p
mb⇤ vs. Mh

@p
mb⇤

@Mh

=
1

2

✓
k
2
2

k
2
2 � 4 (k1 � t1) (k3 � t2)

� 1

◆
< 0 (6.3.16)

p
mb⇤ vs. q1

@p
mb⇤

@q1
=

1

2

✓
k
2
2

k
2
2 � 4 (k1 � t1) (k3 � t2)

+ 1

◆
(6.3.17)

When k
2
2 < 2 (k1 � t1) (k3 � t2),

@p
mb⇤

@q1
> 0. else when 2 (k1 � t1) (k3 � t2) < k

2
2 < 4 (k1 � t1) (k3 � t2),

@p
mb⇤

@q1
< 0.

p
mb⇤ vs. k1

@p
mb⇤

@k1
= �k

2
2 (8cv (t2 � k3) (Mh + q1) + k2)

4cv (k2
2 � 4 (k1 � t1) (k3 � t2)) 2

< 0 (6.3.18)

p
mb⇤ vs. k2

@p
mb⇤

@k2
=

(k1 � t1) (�16k2cv (k3 � t2) (Mh + q1) + 4 (k1 � t1) (k3 � t2) + k
2
2)

4cv (k2
2 � 4 (k1 � t1) (k3 � t2)) 2

< 0 (6.3.19)

p
mb⇤ vs. k3

@p
mb⇤

@k3
=

k2 (k1 � t1) (2k2cv (Mh + q1)� k1 + t1)

cv (k2
2 � 4 (k1 � t1) (k3 � t2)) 2

< 0 (6.3.20)

p
mv⇤ =

4k2cv (k3 � t2) (Mh + q1)� 6 (k1 � t1) (k3 � t2) + k
2
2

4cv (k2
2 � 4 (k1 � t1) (k3 � t2))

(6.3.21)

p
mv⇤ vs. Mh

@p
mv⇤

@Mh

=
k2 (k3 � t2)

k
2
2 � 4 (k1 � t1) (k3 � t2)

> 0 (6.3.22)

p
mv⇤ vs. q1
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@p
mv⇤

@q1
=

k2 (k3 � t2)

k
2
2 � 4 (k1 � t1) (k3 � t2)

> 0 (6.3.23)

p
mv⇤ vs. k1

@p
mv⇤

@k1
= �k2 (k3 � t2) (8cv (t2 � k3) (Mh + q1) + k2)

2cv (k2
2 � 4 (k1 � t1) (k3 � t2)) 2

> 0 (6.3.24)

p
mv⇤ vs. k2

@p
mv⇤

@k3
=

(k3 � t2) (k2 (k1 � t1)� cv (4 (k1 � t1) (k3 � t2) + k
2
2) (Mh + q1))

cv (k2
2 � 4 (k1 � t1) (k3 � t2)) 2

> 0 (6.3.25)

p
mv⇤ vs. k3

@p
mv⇤

@k3
=

k
2
2 (2k2cv (Mh + q1)� k1 + t1)

2cv (k2
2 � 4 (k1 � t1) (k3 � t2)) 2

> 0 (6.3.26)

Basic service duopoly case Define

N ⌘ {q2 = q1, k11 = k12 = k1, k21 = k22 = k2, k31 = k32 = k3, cv1 = cv2 = cv} (6.3.27)

p
db⇤
1 =

1

3
(�k11 � 3Mh � 2k12 + q1 � q2) + t1 (6.3.28)

p
db⇤
1 vs. Mh

@p
db⇤
1

@Mh

|N = �1 < 0 (6.3.29)

p
db⇤
1 vs. q1

@p
db⇤
1

@q1
|N = 1/3 > 0 (6.3.30)

p
db⇤
1 vs. q2

@p
db⇤
1

@q2
|N = �1/3 < 0 (6.3.31)
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p
db⇤
1 vs. k11

@p
db⇤
1

@k11
|N = �1/3 < 0 (6.3.32)

p
db⇤
1 vs. k12

@p
db⇤
1

@k12
|N = �2/3 < 0 (6.3.33)

Basic and value-added service duopoly case

p
db⇤
1 vs. Mh

@p
db⇤
1

@Mh

|N = �1 < 0 (6.3.34)

p
db⇤
1 vs. q1

@p
db⇤
1

@q1
|N =

1

6

✓
k
2
2

k
2
2 � 6 (k1 � t1) (k3 � t2)

+ 2

◆
> 0 (6.3.35)

p
db⇤
1 vs. q2

@p
db⇤
1

@q2
|N = � k

2
2

6 (k2
2 � 6 (k1 � t1) (k3 � t2))

� 1

3
< 0 (6.3.36)

p
db⇤
1 vs. k11

@p
db⇤
1

@k11
|N =

1

12

✓
k
2
2

k
2
2 � 6 (k1 � t1) (k3 � t2)

� 4

◆
< 0 (6.3.37)

p
db⇤
1 vs. k12

@p
db⇤
1

@k12
|N = � k

2
2

12 (k2
2 � 6 (k1 � t1) (k3 � t2))

� 2

3
< 0 (6.3.38)

p
db⇤
1 vs. k21
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@p
db⇤
1

@k21
|N =

(k2
2 � 8 (k1 � t1) (k3 � t2)) (4k2cv + 1)

16cv (k2
2 � 6 (k1 � t1) (k3 � t2)) (k3 � t2)

< 0 (6.3.39)

p
db⇤
1 vs. k22

@p
db⇤
1

@k22
|N =

(k2
2 � 4 (k1 � t1) (k3 � t2)) (4k2cv + 1)

16cv (k2
2 � 6 (k1 � t1) (k3 � t2)) (k3 � t2)

< 0 (6.3.40)

p
db⇤
1 vs. k31

@p
db⇤
1

@k31
|N = � k2 (k2

2 � 8 (k1 � t1) (k3 � t2)) (2k2cv + 1)

16cv (k2
2 � 6 (k1 � t1) (k3 � t2)) (k3 � t2) 2

< 0 (6.3.41)

p
db⇤
1 vs. k32

@p
db⇤
1

@k32
|N = � k2 (k2

2 � 4 (k1 � t1) (k3 � t2)) (2k2cv + 1)

16cv (k2
2 � 6 (k1 � t1) (k3 � t2)) (k3 � t2) 2

< 0 (6.3.42)

p
dv⇤
1 vs. Mh

@p
dv⇤
1

@Mh

|N = 0 (6.3.43)

p
dv⇤
1 vs. q1

@p
dv⇤
1

@q1
|N =

k2 (k3 � t2)

2 (k2
2 � 6 (k1 � t1) (k3 � t2))

> 0 (6.3.44)

p
dv⇤
1 vs. q2

@p
dv⇤
1

@q2
|N =

k2 (t2 � k3)

2 (k2
2 � 6 (k1 � t1) (k3 � t2))

< 0 (6.3.45)

p
dv⇤
1 vs. k11

@p
dv⇤
1

@k11
|N =

k2 (k3 � t2)

4 (k2
2 � 6 (k1 � t1) (k3 � t2))

> 0 (6.3.46)

p
dv⇤
1 vs. k12
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@p
dv⇤
1

@k12
|N =

k2 (t2 � k3)

4 (k2
2 � 6 (k1 � t1) (k3 � t2))

< 0 (6.3.47)

p
dv⇤
1 vs. k21

@p
dv⇤
1

@k21
|N = � 24cv (k1 � t1) (k3 � t2) + k2

16cv (k2
2 � 6 (k1 � t1) (k3 � t2))

> 0 (6.3.48)

p
dv⇤
1 vs. k22

@p
dv⇤
1

@k22
|N =

k2 (4k2cv + 1)

16cv (k2
2 � 6 (k1 � t1) (k3 � t2))

< 0 (6.3.49)

p
dv⇤
1 vs. k31

@p
dv⇤
1

@k31
|N =

k
2
2 (2k2cv + 1)

16cv (k2
2 � 6 (k1 � t1) (k3 � t2)) (k3 � t2)

> 0 (6.3.50)

p
dv⇤
1 vs. k32

@p
dv⇤
1

@k32
|N = � k

2
2 (2k2cv + 1)

16cv (k2
2 � 6 (k1 � t1) (k3 � t2)) (k3 � t2)

< 0 (6.3.51)

180


