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Abstract 
3D thinning algorithms are generally faster than any other connectivity-preservation skeletonization methods. 
However, most 3D thinning algorithms cannot guarantee to generate unit-width skeleton. This document 
describes an algorithm to generate unit-width skeleton based on 3D thinning and shortest path finding. 

1. Introduction 
Skeletonization is a useful technique that has potential applications in a wide variety of problems. Skeletonization 
is also known as skeletonizing or topological skeleton generation. It creates a compact representation (skeleton) 
of the models that may be used for further processing. The skeletons can be defined via the medial axis 
transformation (MAT) [1]. The MAT can be computed by “prairie fire” propagation. Consider an object as a 
prairie of uniform and dry grass. Suppose that a fire is lit along its border. All fire fronts advance into the object 
at the same speed. The MAT of the region is the set of points reached by more than one fire front at the same 
time.  
 
In 3D space, a medial axis consists of the loci of the centers of all inscribed maximal spheres of the 3D model, 
where these spheres share at least two points with the boundary of the model. A skeleton in 3D consists of a set 
of 2D surfaces and/or 1D line segments. In many applications, a skeleton with only 1D line segments is more 
desirable. We call it 3D curve skeleton. In this document, we are interested in extraction of 3D curve skeleton.  
 
Figure 1 (b) shows a 3D box and its skeleton with 2D surfaces and 1D line segments. Figure 1 (c) shows the 
same 3D box and its curve skeleton with 1D line segments only. 
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Figure 1: (a) A rectangle and its skeleton in 2D (consisting of 5 line segments), shown with representative 
maximal circles and contact points; (b) 3D box and its skeleton with 2D surfaces and 1D line segments. (c) 3D 

box and its curve skeleton with 1D line segments only. Images courtesy of Cornea [2]. 

2. 3D thinning 
There are four kinds of skeletonization techniques in the literature: thinning based algorithms [3-5], general field 
based algorithms [6-8], Voronoi diagram based algorithm [9-11], and shock graph based algorithm [12-14]. 
Connectivity-preservation is an important requirement for skeletonization algorithms. In general, thinning based 
algorithms and Voronoi diagram based algorithms can preserve connectivity of the 3D model. Efficiency is 
another important requirement for skeletonization algorithms. In general, thinning based algorithms and general 
field based algorithms are faster than other algorithms. In this document, we are only interested in thinning based 
algorithm. 
 
A 3D thinning algorithm applies in a local neighborhood of an object point and iteratively removes object points 
that satisfy some pre-defined masks to generate skeletons in a 3D binary image.  A 3D binary image is a 
mapping that assigns the value of 0 or 1 to each point in the 3D space. Points having the value of 1 are called 
black (object) points, while 0’s are called white (background) ones. Black points form objects of the binary 
image. The thinning operation iteratively deletes or removes some object points (that is, changes some black 



points to white) until only some restrictions prevent further operation. Figure 2 shows the basic idea of a 3D 
thinning algorithm [15] that generates curve skeletons. In Figure 1 (b), a “• ” is used to denote an object point 
while a “o ” is used to denote a background point. An unmarked point is a “don’t care” point, which can represent 
either an object point or a background point. 
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Figure 2: (a) A 3D binary volumetric model; (b) a deleting mask; (c) the curve skeleton, highlighted with red. 

3. Unit-width curve skeleton 
Comparing to other skeletonization techniques, 3D thinning algorithms have two advantages: connectivity 
guarantee and efficiency. However, most 3D thinning algorithms [3-5] cannot guarantee to generate unit-width 
curve skeletons. For instance, in Figure 1 (c), there are some regions  on the skeleton swarmed with many points. 
This is an undesired property for many applications that require curve skeleton as an input. The following 
definitions are used to formally define unit-width curve skeleton. 
 
Definition 1: The degree of a point is defined as the number of points in its 26-neighborhood. 
Definition 2: An end point is point that has a degree of 1. 
Definition 3: A middle point is point that has a degree of 2. 
Definition 4: A joint point is point that has a degree of n (n > 2) and all the n neighbors are either end points or 
middle points. 
Definition 5: A crowded joint point is point that has a degree of n (n > 2) and at least one of its neighbors are 
neither end points nor middle points. 
Definition 6: 26-connected crowded joint points form a crowded region.  
Definition 7: A skeleton is a unit-width curve skeleton if and only if it has no crowded region.  

 
To create unit-width curve skeleton, all the crowded joint points have to be removed. In [16], an iterative 
algorithm was used to merge crowded joint point s to create unit-width curve skeleton. The basic idea of this 
algorithm is to merge two crowded joint points with minimal cost. However, this algorithm cannot be applied to 
create unit-width curve skeletons generated by most 3D thinning algorithms because it works in non-equilateral 
3D grid while most 3D thinning algorithms work in equilateral 3D grid (3D image). Moreover, this algorithm is 
not efficient. It calculates the costs of different merging options and merges the two crowded adjacent joint 
points with minimal cost in each iteration. If there are E crowded joint points and V edges between them, the 
complexity of this algorithm is O(E*V3). One example of this algorithm is shown in Figure 3.  
 

 
Figure 3: The left graph contains crowded joint points between the curve skeleton as edges. In the right graph, 

some crowded joint points are merged in order to create unit-width curve skeleton [16]. 
 



Sundar et al [19] use a clustering method to reduce the number of points on a curve skeleton. The basic idea is to 
use one point to replace a cluster of points that are within distance Dthreshold  of the point. This algorithm has two 
drawbacks. First, different clusters have different Dthreshold . How to determine different Dthreshold  for different 
clusters remains unsolved. Second, in most cases, a cluster is not fully connected. Therefore, this algorithm may 
disconnect the skeleton by choosing a point that is not connected with other points on the skeleton. 
 
To design an algorithm that works in 3D binary volumetric model and preserves connectivity, we use the Dijkstra 
shortest path finding algorithm [17-18] to create unit-width curve skeletons. This algorithm has three advantages: 

1. It works in 3D binary volumetric models 
2. It preserves connectivity 
3. It does not need any free parameters such as Dthreshold 

 
The pseudo code of our algorithm is as follows:  
Input: non-unit-width curve skeleton I in a 3D binary volumetric model 
Output: unit-width curve skeleton O in the 3D binary volumetric model 
Algorithm unit_width_curve_skeleton (I) 
1. Initialize: Initialize output O and copy I to O. 
2. Compute degrees: For each point on the skeleton O, calculate the degree of each point. 
3. Classify points: According to the degree of each point, mark end points, middle points, joint points, and 

crowded joint points. If there is no crowded joint points, output O and exit. 
4. Locate crowded regions: Organize crowded joint points into crowded regions. Each crowded region consists 

of 26-adjacent crowded joint points.  
5. Detect exits: In each crowded region, find all the end points and middle points that are 26-adjacent to this 

crowded region, and mark each as “exit”. 
6. Determine the centroid: In each crowded region, determine the centroid. If there are N points ( 111 ,, zyx ), 

( 222 ,, zyx ),  …, ( NNN zyx ,, ) in a crowded region, the centroid a point in this region and is closest to 
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7. Find shortest path: In each crowded region, apply Dijkstra shortest path finding algorithm to find shortest 
path between the centroid and each “exit”. Remove the crowded joint points that are not on any of the 
shortest paths from O. 

8. Output: Output the unit-width curve skeleton O. 
End algorithm 
 
If there are E crowded joint points and V edges between them, the complexity our new algorithm is O(E+V2) by 
taking advantage of the Dijkstra shortest path finding algorithm. Since shortest path found by Dijkstra shortest 
path finding algorithm is unique, connected and has no circles, the skeleton generated by this approach is unit 
width. Figure 4 shows the basic idea of this algorithm. More examples of unit-width curve skeleton generated by 
this algorithm are shown in Figure 5. 
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Figure 4: (a) Non-unit-width curve skeleton (b) a crowded region (c) two exits of this crowded region (d) the 
shortest path. 

 



 

  

 

   

  
Figure 5: Some examples of unit-width skeletons generate with our algorithm. 
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