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Abstract

The question of how to define particles iu a curved spacetime has seen much recent
interest. Using a particle definition due 1o Capri and Roy [7] we calculate the particle
creation due to the gravitational interaction in a number of model universes. In
chapter 6 the trace anomaly is calculated for a general 1+1 dimensional spacetime.

The regularization methods used iuvolve only normal ordering and defining a fairly

straightforward integral.
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CHAPTER 1

Introduction

The expression Quantum Field Theory in Curved Spacetime describes the
study of the interaction between quantum fields and classical curved backgrounds
which are described using general relativity, The usual goal of work done in this area
is to quantize a ficld and then calculate expectation values for observables associated
with the field. Perhiaps the most important of these observables is the expectation
value of the stress-energy tensor. It would be this expectation value that one would
place on the right haud side of the Einstein field equations if one wanted to calculate
the back reaction. of the field. on the classical background. In most treatments of
this subject the back reaction is not addressed and for the most part this thesis is
no exception. The idea of eventually calculating the back reaction will, however,
influence which models one chooses to investigate and in particular whether such
models include pavticle detectors or not. The approach taken in this thesis is to not
include the analvsis of particle detector response functions. The reason for this is
twofold. First a local object cannot detect particles as we are used to describing
them in quantum field theory, particle states are nonlocal objects. Secondly, if one’s
ultimate goal is to calculate the backreaction of the field, one must have a universe

full of particle detectors for the analvsis to make physical sense.
The study of guantum fields interacting with gravitational potentials goes
as far back as 1932 when Schrodinger published a paper involving the electron in

a gravitational field “Diracsches Elektron im Schwerefeld” [1]. Seven years later a



second paper was published [2] which found that a single particle interpretation was
inconsistent with the mathematical behaviour of solutions to the generalised Klein-

Gordon equation for an expanding universe.

There was little work done after this, in the area of quantum field theory
in curved spacetime, until L. Parker published the resuits of his Ph.D. thesis “The
creation of particles in an expanding Universe” in two papers [3] and [4]. These papers
seem to have interested many people and there was a flurry of activity in the early
70's. This activity then increased even more when in 1974/75 Hawking [5] discovered
that black holes are really not all that black but that a collapsing body will radiate
particles. This was a fairly difficult calculation and for this reason people attempted
to understand the so called He'vking radiation with simpier mathematical models
such as eternal black holes [6]. At this time a mathematical connection was made
between these gravitational effects and what might be observed by an accelerating
observer. This connection was made by calculating the Bogolubov transformation
relating the normal Minkowski modes to modes whose positive frequency is defined
in terms of thie boost parameter 7. the “Rindler time”. These observers were soon
replaced by explicit particle deteeturs which then gave a very intuitive explanation
as to why one only considered the detector to respond to things within its past light
cone. This line of reasoning is required because without it one has no reason to
choose the Rindler coordinates which only cover part of Minkowski space over the
usual Minkowski coordinates. Intuitively this particle creation can be understood as

“Bremsstrahlung™ radiation which impedes the detector’s acceleration.

With this intuitive notion for the “clicking™ of a particle detector it is not
difficult to question whether an accelerating observer who is not carrving a detector
would observe anvthing wunusual. This is exactly what has happened recently with

many authors discovering thiat an accelerated observer who is in Minkowski space s



still in Minkowski space and hence still uses the nusual Minkowski time with which
to define particles, [7].[8] and [15]. Indeed any prescription for defining particles
which depends only on the geometry and the observer’s position and velocity will
not find any particle creation as observed by an accelerating observer in flat space.
The analysis cannot differ from the normal analysis of inertial observers in Minkowski
space.

Unfortunately quantizing a field propagating on a curved background is not a
trivial task. In section 1.1 the usnal procedure for quantizing a free field in flat space
is presented. This procedure relies heavily on the time translational invariance of the
theorv, which is normally scen through the Poincaré group. This invariance allows one
te decompose a field into its positive and negative frequency parts easily. From here a
natural particle interpretation of the theory is clear and the problems associated with
what appears to be an infinite vacuum energy are solved in a straightforward manner
using only a normal ordering procedure. In this section the concept of Bogolubov
transformations which relate different sets of creation and annihilation operators will

also be introduced.

In general relativity there isn’t a natural means of performing a 3+1 split of
a spacetime. Indeed the whole philosophy of general relativity is that of coordinate
invariance. If one is going to perform some sort of frequency decomposition of a field
it must therefore be done in a coordinate independent manner. Before addressing

this issue, the curved space genalization of the Klein Gordon equation is discussed.

As stated earlier. it is really the presence of Poincaré invariance that allows
one to perform a frequency decomposition in flat space. Unfortunately the Poincaré
transformations do not generalise to enrved backgrounds. This does not mean however

that one must forget about the Poincaré group entirely. It was this philosophy that



led Capri and Roy [7] to propose a procedure which uses the Poincaré group whenever
possible. This procedure will be desribed in section 1.2 and is the approach to field
quantization that will be used throughout this thesis. This procedure provides a
direction of time which can be used to decompose the field into positive and negative
frequency parts leading to a natural particle interpretation of the theory as well as
a normal ordering procedure. As implied above this preseription is performed using
a coordinate independent approach and makes use of the Poincaré group whenever
possible. The time which is used to decompose the field is given as the directiou
normal to the spacelike hypersurface consisting of those spacelike geodesies which are
orthogonal to the observer’s 4-velocity. This prescription is therefore a coordinate
independent prescription which depends only on the geometry and the observer's
trajectory. An equivalent procedure was developed independently by Massacand and

Schunid {8].

There have been many attempts to define the vacuum for a free field propa-
gating in a nontrivial spacetime. It is a common feature of all these attempts that the
choice of vacuum is determined by a particular choice of time coordinate. This is true
even for such general quantization procedures as Deutseh and Najmni [17] although
there the dependence is not explicit. Instead they require a foliation of spacetime by
a family of spacelike hvpersurfaces which, in essencel defines “instants of time” and
the normals to these surfaces define the “direction of time”. The choice of time co-
ordinate, in most computations. has usuall . been based on calculational convenience

and not on a local physical principle.

In chapter 2 we show explicitly that there can be particle creation in a static
spacetime. This is done by calculating the Bogolubov transformation relating the
creation and annihilation operators from two different spacelike surfaces. Because this

transformation involves a non-zero J(p. p') coefficient in the Bogolubov transformation



an observer who moves from one of these surfaces to the other will observe particle
creation Unfortunately we are not able to calculate the actual spectrum of created

particles but we are able to show that particles are created.

The particle creation produced in an anisotropic universe is calculated in the
third chapter. The mnodel is that of an anisotropic generalisation of 1+1 deSitter space
where the expansion only occurs in 1 of the 3 spatial dimensions. It is found that the
spectrum of created patticles has a discrete shift. This discrete shift is associated with
the one aatural length scale of the geometry, which is the curvature. This length scale
provides the energy scale by which the spectrum is shifted. The 3(p, q) coefficient for
the Bogolnbov transformation caleulated is proportional to a series of delta functions

whose arginment contains (p -+ ¢) and half multiples of the root of the curvature.

In chapter 4 we calculate the massive particle creation as seen by a stationary
observer in a 1+1 dimensional deSitter space. The Bogolubov transformation relating
the aunihilation and creation operators hbetween two spacelike surfaces is calculated.
The particle creation, as observed by a stationary observer who moves from the first
spacelike surface to the second is then calculated, and shown to be finite, as is expected

for a spacetime with finite spatial volume.

In the previons chapter it was shown that particle creation was finite for a
model which was compact in space. It was therefore thought that a similar model
in 3+1 dimensions may provide a similar result. Almost identical techniques are
used to show that in 341 deSitter space the particle creation as observed by an
observer moving from one spacelike surface to another is also finite. Unfortunately in
both these models the spectrum of created particles is too complicated to compute

explicitly.

In the final chapter the trace anomaly is calculated by comparip:; the different

(4]



particle definitions for two different observers passing through the same point. By
using the fact that the expectation value of the stress tensor should transform un-
der rotations the same way as the tangents to the observer's wordlines one is able
to calculate the trace anomaly. The reason one has to use two different observers
is because one does not know what the normal ordered expectation value for the
pressure T!! should be. By using two different observers one need only know what
the expectation values for the energy and momentum orn: ..e preferred hypersurfaces
for each observer are. If the state chosen for the expectation value is chosen as the
vacuum for one of these observers then the trace anomaly follows much easier than
the usual calculations. This procedure was originally suggested by Massacand and

Schmid [8].

1.1 Free fields in flat space

To see how the quantization process is generalised to curved space it is ben-
oficial to first review the canonical quantization of a massive free scalar field in flat
space. There are basically two stages to the quantization procedure. The first stage
is that of solving the field equations and imposing the equal time (anti)-commutation
relations. The second stage is that of introducing the particle concept by specifying
a representation of the algebra of the fields as operators on a Hilbert space. The field
equation for a free scalar massive ficld propagating in Minkowski space is the Klein
Gordon equation

O+ m?) ¢(z) = 0. (1.1)
(B +m?)

One set of solutions to this differential equation is exponentials of the form

fula) ox e7** (1.2)



where

k-x = kyrg—k-x

1

ko =wp = (k2+77)2)2
k? = kI +kZ+K3. (1.3)

These mod:s are said to be positive frequency modes with respect to t as they are

eigenfunctions of the operator (%
3] .
afk(l‘) = —wy fi(T). (1.4)
The time independent sealar product is defined by:
(e1,02) = =i [ Pagi() 8 ba(a). (1.5)
It is now convenient to limit ourselves to the interior of a box of side L and thus limit
the values of & to &,

27n

k, = T where n=0.4£1,£2.... (1.6)

Now chosing the normalization for the fy(r) as
1
Silr) = —==

Vv 2L'5w‘k

the fi(x) are now orthonormal

ik (1.7)

Ul 0). fiel)) = =i [ @2 (00 fiol@) = (@fila)) frol)
= b (1.8)

To quantize the field we now treat it as an operator and impose the following
equal time connmutation relations,
[o(t,x).0(t,x")] = 0
[n(t.x).w(t,x")] = 0

[o(t.x).7(t.x")] = i63(x —x) (1.9)

-1



where

n(t,x) = G0(t,x). (1.10)

Expanding the field in terms of the complete orthonormal basis given by the

fr(x) we now write the field as,
o(x) = Y [afulz) + el filz)] . (1.11)
k

The equal time commutation (1.9) relations can then be rewritten in terms of the

operators «ay and uf(

[ ape] = 0
[(IL.(II(, ] = 0
[uk,nL, ] = bk (1.12)

We now use these operators to construct a Fock space which leads to a nat-
ural particle interpretation. In the Heisenberg picture the quantuin states are time
independent and are counstructed using the operators ay and af‘ which are called the
annihilation and creation operators respectively. The vacuum state is defined as being

that state which is annihilated by all the annihilation operators
a0y =0 Vk (1.13)

Particle states are now constructed by acting on the vacuum state with the creation

operators. A state consisting of a single particle with 3-momentum k is therefore
k) = af]0). (1.14)

Generalizing this to many particle states one constructs the state
1 1 f
(ay, )" (ay, )"7(akJ )

[k, -ty e ) =
\/711!7)2!711!

[0). (1.15)



The factorial factors are required to accomodate the Bose statistics of identical parti-
cles. The operation on a given state by the annihilation and creation operators given

above leads to

t. —_
uk,l”k;v”kz"'s”k,s“') = fn, + 10k, iy ng 1 )

g, |y iy e M,y ) = /T [T s Ty oo MK, — 1 ) (1.16)
In this way the normalisation of the states remains constant

<1’lk, gy Mk, Ink', s Mkrgeees 7lklj) = 6k1k’, 6kzk’2---6k_|kj- (1.17)

It is now possible to introduce operators whose expectation values give us

information about different states. One can introduce the operators Ny and N

Ne = (lL(lk
N o= Y da (1.18)
k

From the definition of the vacnum we can see that the expectation value of the above

operators in the vacuum state is zero,
(0| N|0) =0 Vk, (1.19)

and for the many particle state the number operator gives the number of particles

with that particnlar momentum,
(Mg <ty eeees 13 [N TR Ty s enees ) = T (1.20)

The expectation value of the operator N gives the total number of particles in a state.
This combination of annihilation and creation operators will form the basis of many
operators such as the Hamiltonian. To calculate the Hamiltonian we first calculate
the Hamiltonian density by taking the appropriate part the the stress-energy tensor
T;w(*")

:r/w('r) =00, — %U;wna}j@.ooﬁ + %771202”;11/ (121)



the Hamiltonian density is then
Too(r) = [(M)z + (0;,0)2 + (0:,0)% + (0r,0)% + 7112¢2] . (1.22)

Substituting into this expression ¢ from (1.11) and integrating over all space we get
the total Hamiltonian H

H= /(I:’.I'Tog = Z (a:(ak + %) w- (1.23)
* k

The first term in this expression clearly gives the energy of the state by sum-
ming all the different particle energies. The second term which is state independent
seems to correspond to the vacuum energy and must somehow be subtracted from the
expectation values of the Hamiltonian to give the energy of a state. Unfortunately
this vacuum energy is infinite. One means of dealing with this vacunm energy problem
is to define a normal ordering presciption which we denote by : :. To put an operator
in normal ordered form one simply writes all the annihilation operators to the right
of the creation operators. Using this procedure we can write the Hamiltonian (1.23)

in normal ordered forn.

CH: = Z %wk(: uLuk D4 ukuf( 1)

k
= Zwka;‘((lk. (1.24)
k
In this way the vacuum energy is no longer a problem.

The possibility of particle creation can be understood by examining (1.11)
expressed in terms of a different set of modes. If one chooses to decompose the field
using a different set of modes this may imply a different particle definition. To see
this we suppose that such a decomposition is performed. For now we will not concern
ourselves with why one would perform a different decomposition but just look at the

consequences. Using a different choice of complete modes one decomposes the scalar

10



ficld and writes ont the equivalent of (1.11) as
olr) = ; (b z) + blgi(z)] - (1.25)
By now using the orthogonality of the original modes in terms of the inner product
(1.8) one can caleulate the Bogolubov transformation relating the two sets of creation
and annihilation operators
ax = (fx(z), o(x)). (1.26)
We now substitute in ¢(2) written in terms of the by operators and are left with the

Bogolubov trausformation

me = AUl i) e+ Unelr). gia () b }

K
= Z {“kk’bk + dkk'blt(} . (127)

kl
At this point it is clear that if the modes fi(x) are the same as the modes gi(x)

then g = Ok and 3 = 0. It is a nonzero .3 coefficient that implies there is
mixing of the positive and negative frequency modes and hence a different definition
of particles. If an observer was to move fron: one point to another and the particle
definition changes so as to imply a non-zero .7 coefficient the observer will observe
particle ereation. To see this particle creation we examine the composition of the
vacumn state which is defined in terms of the by operators with the number operator

which “counts™ the unmber of af particles in this state

t 212

Z <[,0 |(lkflk| ;,O> = Z I'jkk'l . (128)
k kk'

If the su on the right-hand side of (1.28) is finite this implies that the Bogolubov

transformation relating the two Fock spaces is unitarily implementable [9]. This is

equivalent to saving that the new vacuum and the many particle states constructed

on it arc in the same Hilbert space as the old vacuum and its corresponding many

particle states . A Bogolubov transformation which satisfies the above inequality is

said to be Hilbert-Schmidr.

11



1.2 Coordinate independent time definition

It would be unphysical if one were free to choose any set of modes with which
to decompose the field into positive and negative frequency parts and be left with a
valid particle interpretation of the theory. In this section a procedure is presented
which in a coordinate independent manner selects the positive frequency part of the
field. This procedure is due to Capri and Roy [7] and is equivalent to a different
procedure, which also uses spacelike geodesics to define the surface of instantaneity,

which was developed independently by Massacand and Schinid [8].

These procedures define the surface of instantancity as being that surface
which is orthogonal to the tangent to the observer’s worldline and is constructed from
spacclike geodesics. For convenience the coordinates of this surface are chosen to be
Riemann coordinates hased at the observer's position although this is not important
as the frequency decomposition only depends on the choice of the time coordinate.
The preferred time coordinate of a general point which does not lie on this surface
of instantaneiryv is given by the proper distance alons the timelike geodesie which
intersects the swrface of instantaneity orthogonally. The spatial coordinates of this
general point are the Riemann coordinares of the point of intersection, based at the
observer’s position. As a consequence of this procedure the wetric in two dimensions,

when expressed in terms of these preferred coordinates, is of the form
ds® = dt? + g,,dx? (1.29)

where ¢, < 0 and g1 = —1 + 0(#?) near the origin of the coordinates.

The wave equation that must be solved in curved space is just a generalisation

of the flat space wave equation (1.1). To see how this is accomplished we first rewrite

12



equation (1.1) in terms of the Minkowski metric 7,
(D,(110,) + m?)d(z) = 0. (1.30)
The generalisation of this equation is

(%au(\/ﬁg‘“’au) +m® + ER(z))¢(z) = 0 (1.31)

where g = —det|g|. The first two terms are natural covariant generalisations of the flat
space wave cquation where the partial derivatives are replaced by covariant deriva-
tives. The second term involves the scalar curvature R(x) and a coupling constant
£. There are two reasons why one includes the second term in this equation[16]. The
first reason is that for massless fields and a specific choice of the constant €. which
only depends on the number of dimensions, the action and equation of motion are
conformally invariant. The second reason is that for interacting theories in curved
space-time the renormalization of the theory involves a counterterm of the form R¢?
[9]. For € = 0 the field is said to be minimally coupled and for the choice £ = 4(’1—"_21—)

where n is the diniension of the spacetime. the field is said to be conformally coupled.

In these coordinates the minimally coupled massive IKlein Gordon equation is

1 1 o,
EO,(\/H)O,O + —\/—g_(),'(\/ﬁgJ)ajo +m o =0. (1.32)

To define the positive {requency modes one looks at the spatial part of this equation

do+

(—1—0,-( \/ﬁfjif(')j) + m2) At X) = wie(t)? Ax(t. x). (1.33)

Vi
The positive frequency modes are defined as being the modes which satisfy the dif-

ferential equation (1.32) and the initial conditions

oF (0.x) = A44(0.x) O b (t,%X)|1=0 = —iwi(0)Ak(0,x). (1.34)

13



The field can now be written in quantized form as

o) = £ e (00" (1) + o™ (2) (1.35)

where wyi = wi(0).

It can now be seen how the above particle creation analysis can be understood.
Observers who perform the above procedure at different times may find that their
definition of positive frequency changes. This then implies that they would have a
different particle definition and the resultant particle creation could be caleulated as

was shown in (1.25) through (1.28).

14



CHAPTER 2

Particle creation in a static 141 dimensional

universe

2.1 Introduction

In this chapter we calculate the particle creation that would be observed by an
observer who is stationary in a static 1+1 dimensional universe. Although the metric
appears static in the original coordinates. when one writes the metric in terms of the
preferred coordinates the metrie no longer appears static and the observer who moves
from one spacelike surface to another observes particle creation. This particle creation
is calculated but unfortunately the expressions are too complicated to examine exactly
so an approximate form of the Bogolubov tansformations is derived. This approximate

form is expressed as an expansion in a parameter which describes the separation of

the two spacelike surfaces.

Before getting on with the specifics of the model which is investigated in this
chapter we first make a few comments on static spacetimes in general. A metric is
called static if in some coordinate system all the metric coefficients are independent
of the timelike coordinate t and all the gy; are zero. In such spacetimes there can still
be a question as to which time coordinate one should use to decompose a quantum
field if for example there are two such times for which the spacetime appears static.

In fact if one develops a procedure for deciding which of the static times should be



used one may find that in other models the time which makes the spacetime static is
not the one chosen by the procedure. This is what occurs in the model investigated in
this chapter. To illustrate the case where there are two different static times we first
discuss the ramifications of this procedure in Rindler space. In two dimensions this

can be seen quite easily. The Rindler coordinatization puts the metric in the form
ds? = e*&(dn® — de?) (2.1)

or by using the coordinate transformations

€

t = —sinh(ay)
a
¢

ro= cosh(arny)
a

one finds that Rindler space is just a wedge of Minkowski space with the metric now
having the formn

ds? = dt* = da?. (2.2)
Here we actually have two reasons for the choosing the normal Minkowski coordina-
tization. As mentioned in the introduction, the procedure for defining the preferred
coordinates will choose the geodesically complete coordinatization of the manifold if
possible and therefore would choose the Minkowski coordinates which describe the
entire manifold. One can also look at the commutation relations satisfied by the gen-
erators of translation in the two timelike directions and find that one is a generator

of boosts and the other is a genuine generator of time translation.

Of further interest are metrics which have been coined ultrastatic. A static
metric is ultrastatic if in the same set of coordinates which satisfy the static require-

ments the metric coefficient goo() is equal to unity for all z [16].

In a globally hyperbolic spacetime with one timelike and one spacelike dimen-

sion the surface of instantaneity, in this case a line, for a given observer is given by the

16



particular spacelike geodesic which passes through the point at which the observer
is located and is normal to the observer’s timelike worldline. The direction of time
on this surface is then defined to be everywhere normal to this spacelike geodesic. It

has been shown that this definition of time is the unique one to obey the physical
principle mentioned earlier [7].

The coordinates on the spacelike surface are chosen, for convenience, to be
Riemann coordinates based at the observer’s position, although any other coordina-
tization of the spacelike surface will do. To define the direction of time Gaussian
Geodesic Normal coordinates are constructed on this spacelike surface so that the
time coordinate of some point off the surface is just given by the proper distance
from the point to the spacelike surface.

When one expresses the metric in terms of these new coordinates one finds

that the metric in 1 + 1 dimensions has the form
ds? = dt* + g1 da® (2.3)
with g, <O and g, = -1+ O(t*) near the origin of coordinates.

To now decompose the field into positive and negative irequency modes we
impose initial conditions that force the field to have the correct time dependence
(exp(—iwt)) in the neighbourhood of this spacelike surface. To ensure this correct

time dependence we impose the initial conditions
O:(t .l') |I=U = '4”(0‘ -T) and (a{d):(t, :l)) |I=0 = _?"wn(o)‘4n(0‘1‘) (24)

where the A,(0..0) are the eigenmodes of the spatial part of the Laplace-Beltrami

operator on the surface t+ = 0 where the decomposition is to be performed.

In section 2.2 we construct the metric in terms of these physically preferred

coordinates and write out explicitly the boundary conditions which determine the
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positive frequency modes at the surface t = 0. In section 2.3 a complete set of modes
for the Laplace-Beltrami operator for a massive scalar field is obtained and in section
2.4 the orthogonality relation satisfied by these modes is calculated. In section 2.5
we then use these orthogonality relations to impose the physically relevant boundary
conditions which were calculated in section 2.2. In section 2.6 the actual particle

creation due to the presence of the gravitational field is calculated for an observer

who is stationary with respect to the original static coordinates.

2.2 The preferred coordinates

The static spacetime we are interested in is described by the metric (18]

” . dX?
1s* = a(. - 0
ds a(X)dT ol X) (2.5)
where
A(N) =1 —exp(—q(]X] = r)). (2.0)

This spacetime was first investigated by Witten [18] as a 1 + 1 dimensional eter-
nal black hole spacetime. The properties of this spacetime have been studied by
R.B.Mann et al. [19] but quantum particle creation was not investigated. To sim-
plify the technical discussion later on we choose r such that exp(qr) < 2; then

~-l<a(XN)<1.

To construct the preferred coordinates we must solve the geodesic equations
1 :

for this spacetime. The first integrals of the geodesic equations are

dT Cy dX ) .

- o— = s AUME 7

BT s - alCo—eald)) (2.7)

where €, = £1 and € = —1 for spacelike geodesics and € = 1 for timelike geodesics.

The spacelike geodesic which is perpendicunlar to the timelike vector -\/'0—7(1,0),
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(ag = {Xy)) and which can be treated as the tangent vector to the worldline of the
observer at Py(Ty. Xo). is given by setting Cg = 0 and € = —1. We can therefore see on
this surface Sy that Ty = T simply because along the geodesic connecting these points
T doesn't change. Ty is the T coordinate of the point Pi(T},.X;) which is the point
at which the geodesic from the general point P(T, X) intersects this spacelike surface
orthogonally. The preferred time coordinate t is given by the proper distance along
the timelike geodesic connecting P; to the general point P(T, X) which is normal to
the surface Sy at P;. This timelike geodesic is given by (2.7) with CZ = a1 = a(X))

and ¢ =1 so that

. ] X
f=/(mv( = [y = (2.8)
N N S AETTEd

One can also calculate the change in the coordinate T along this geodesic

P e 61/a(X;
T-ﬂ:T-n=/(W= (w' 16y/a(X1) . (2.9)
Py

\/a 1) — a(X)

These two equations allow us to express the metric in terms of the coordinates f and

X1. The preferred coordinate . on Sy is now constructed using a 2-bein of orthogonal
basis vectors at Py, eo(Py) and e(Fp). With eg( Py) given by 71_;0-(1,0) the tangent
to the observer's worldline and p* given by the tangent vector at P to the geodesic

connecting Py to P, the Riemann noriaal coordinates #® of P, are given by
spt=)en(Fo) (2.10)

where s is the distance along the geodesic Py — Py. Using efes, = 1.5 (Minkowski

metric), and the orthogonality of p* to ey(Iy) we have
W= spre(P) = —spte(P). (2.11)

The surface Sy is just the surface 3¥ = 0 and the coordinate z is

X 1
== - ‘e, L(Py) = ‘ d.-\"—-?_—/—). (2.12)
Xo af.
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The preferred coordinates (t,.r) are then given by solving the above integrals

for X > 0 or X' < 0. After choosing €, = —1 one obtains for X’ > 0

=2V -1+ et -+ X0 tan=1(/=1 4 ea-X+017) ¢,

T =
q
2tanll‘1(3£————"’+e”-x”')) €.
vV =14et(-r+Xy) 2
+ To

q

-+

= % {tanh_l(\/a—]) - tanh_l(\/a(;)}

t_QPL(;::_Xu an~H{V/=1 4 e9(=X+X1))
q

and for \' < 0

2V =1+ et ¥ tan=! (/=1 4 e0{¥-T1)) ¢,

q
N AYrTE
2 tanh ™! Sl ) €
V = l4e—talr+ X)) -
: ’ + Ty
q

&= % {—tanlx"l(\/_ + tanh ™! \/_)}

_ =2tan”! (V-1 + et(X-¥1))

PITZENY)
¢ T q

where

€y = +1.

From these coordinate transformations we can see that 2 and ¢ both run from

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

-0 to

+oo and cover the region of the original space corresponding to |.X| > r, the region

ontside the horizon. The region inside the horizon is shrunk to a point. Furchermore,

ttiz region hetween the observer and the horizon (» < [X| < |Xg]) is covered twice.

In terms of the coordinates (¢, .r) the metric is now

|_) 2

ds? = dt* = (1 + tp(a)tan [tp(r)])? da?

20
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where

p(z) = gsech (B(z)] (2.21)
and
B(x) = tanh™! [/ag] + 52‘1 (2.22)

We can see now that in this coordinate system, which does have a physical basis, the

metric no longer appears static.
In these new coordinates the Klein-Gordon equation for a massive scalar field
is
. 1 1 .
o+ 3 (Oh(lg])) do + —==0- (VIgIg“@,) o+ mio=0. (2.23)
Vgl

We now define instantancous eigenfunctions A,(t,z) of the spatial part of the

Laplace-Beltrami operator. such that

[ L n (\/I.:l_l-.(/llar> + 71‘12] At 1) = wB(t)Ar(t, T). (2.24)

Vigl

The positive frequency solutions of (2.23) are then defined as those which

satisfy the iuitial conditions
oF (t.0) |1=0 = Ax(0.0) and (98f (1, 2)) |1=0 = —iw(0)AL(0. 7). (2.25)

These initial conditions ensure that the positive frequency part of the field has the
desired time dependence near the line t = 0. These positive frequency solutions form

a vector space which is made into a Hilbert space using the standard Klein-Gordon

inner product.

From the simple form of the metric at ¢t = 0 we see that

A(0.0) = silx(?%B(.z')) or ('os('ZSB(.T)) and wﬁ(O) = (k% + m?). (2.26)
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With the positive frequency solutions defined in this way we can then write

out the quantized field as

o 1 .
qll=/0 (1km{¢:(t,z)ak+¢§f’ (t.x)a}} (2.27)

where the subscript 1 of the field simply denotes the surface on which the positive
frequency modes have been defined. In this expression we have written wi(0) as wy
and we will continue this practice. Unfortunately (2.20) is too complicated to obtain
the general form of the modes in terms of the coordinates (¢, ). This is, however,
not reallv a problem as the point of this approach is to find out what boundary
conditions should be imposed. It is therefore sufficient to solve the field equations
in whatever coordinate system is convenient and then express these solutions in the

preferred coordinate system to impose the boundary conditions.

2.3 Modes of the field equation

From the form of (2.5) we can see that in terms of the original coordinates
(T, X)) the field equations are separable. For this reason we solve for the modes in these
coordinates and then express the solutions in terms of the preferred coordinates using
the coordinate transformations given above (2.13-2.18). In terms of the coordinates

(T.X) the Klein-Gordon operator has the form

;l—('li_—)();’O - (0,\'(1'(.\'))0.\'0 - u(.\)0§¢> + Hl")d) = 0. (228)

By assuming a T dependence for the field of the form exp(—iw,T) we obtain the

following differential equation.

Iv(a(X)0x o) + (a . —m?)¢=0. (2.29)
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To construct a self-adjoint extension for this operator we are required to con-
struct solutions which vanish at the horizon where o(X) = 0.

By making a change of variable to z = 1 —exp(—¢(|]X| - 7)) = a(X) we obtain

the following differential equation in terms of z,

2
21— 2)20"(=) + (1 = 2)(1 — 22)W(2) + (% — 12)¥(z) =0 (2.30)
where
2 2
2 _ w 2 _ ™m
p-= ;23 and u° = R (2.31)

We are interested in constructing solutions outside tlie horizon so that | X| > r

and : > 0. As mentioned above we also require that the solutions vanish at = =
The two independent solutions to (2.29) are

W,(z) = :"(1 = 2) Fla,bc.2) (2.32)

where F(a,b.c, 2) is a hypergeometric function and

n o= ip
I = iyp?— gt
a = n+l
b = n+l+1
¢ = 142n (2.33)
and
W,,(z) = 2"(1 = 2) F(a,b, ¢, 2) (2.34)
where
n o= =ip
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I = —iy/p? = pu?

a = n+l
b = n+l+1
c = 1+2n. (2.35)

We can now finally write out the desired solution to (2.30)

U(p, X) = [T2p(0)T1,(=) — W1p(0)Pap(2)] €(X). (2.36)

The general solution to (2.28) can then be written,

Y(T.X) = /'Jc dp {{A(p)¥(p. X)exp(—=iw,T) + B(p)¥(p. X)exp(iw,T))} . (2.37)

H

We now impose the initial conditions (2.26) which then give some physical
meaning to the decomposition of this field into positive and negative frequency parts.
To explicitly impose these initial conditions it is first useful to find the orthogonality

relation satisfied by the modes ¥(p. ).

2.4 Orthogonality of the modes

To find the orthogonality relation satisfied by the mode ¥(p, X') we follow the
standard Sturm-Liouville approach and recall that the modes satisfy

2
1= 2P F " (po)+ (1 =21 = 22)F'(p.2) + (pT —1)YF(p.z) = 0. (2.38)

We can also write out a similar equation which is satisfied by the modes F*(k, z). If
one now multiplies the equation for F(p, z) by F*(k, z) and the equation for F*(k, z)

by F(p.:) and looks at the difference of the two equations one can see that after
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integrating over the range = = 0 to = = 1 and integrating the two terms by parts once

we are left with the relation

/d” = 1)F£~’:) = lim M(F’(p,z)F'(k,Z)—F(p,z)F"(k,z))

— ) - -_]( 2 )
(1=-2), ., oy .
- W(F(p’ 2)F*(k,z) ~ F(p,z)F"(k,z)}|:=0

(2.39)

Because of the boundary conditions satisfied by F(p, z) and F*(k, z) (they vanish at
= = 0) the second term in this relation is identically zero. The first term, as we show,
is proportional to a delta function. This shows that these modes are orthogonal. To
see that this expression is indeed proportional to a delta function we first smear it
with a smooth function of p and show that the result is proportional to that function

evaluated at p = k. When one attempts to evaluate the limit in the first term one

finds that all the various terms are proportional to a common factor which produces

the delta function, this factor is

VR =P (] = )i VR =)

lim —— 2.40

1y =) (240

To proceed we introduce a regularization factor (1 — z)* and write,
F(p.:):li_x_l('}F(p.:)(l—:)‘. (2.41)

The integral we must evaluate is
o0 . ) 3 ) 2 - ) 3 a
liud / (Ilj_t_(_;‘- lllll(l _ ) 2¢ {(1 _ :)—l(\/ k-—/l'-v pr=nc) _ (l _ :)1(\/ kz—}l""\/ P’—ll')} .
=0/ " p—k:—
(2.42)
This shows that there is no contribution to the integral from the regions where [p—k| >

R. In these regions the pole at p = k is not realized so one may interchange the order

in which the limits are performed. These contributions then go to zero as the limit



fo-

It is now convenicnt to make a change of variable to the variable x where

> — 1 is performed. We are then left with the integral

)21

e dp———- f() hm(

k
lim lim /
-0 R—0 Jik— R p—Fk:

~)-i( k2—p =[PP =) _ (1-z) l( k2 —p3 — p’—u’)}.

_kIn(l = 2)(p - k)
= TR

(2.43)

(2.44)

We next expand the integrand in powers of (p — &) and find that as R — 0 we are

left with the smooth function f(p) evaluated at the pole multiplied by a function of

k.

Using the above analysis for the orthogonality relations in = one can then write

the orthogonality relations in X,

/ ax
| X|>r

where

O(p, X0~ (k, X)

a(X)
8(p — k) |F(k)|*

V2(k = VET = 5)T(1 - 2ik) ., . P
P(=i(k — k% = 12))
7r\/k.q sinh(27 k2 — 42) 1 g

x sinh(#(h — /K2 — p2)) sinh(z(k + k2 = 1i?))

V2(k + VFZ = 12)T(1 + 2ik) r2(_j(A- + k2 = p?))
nqumh (2m VA2 — p=)

x sinh(7w(k — k% — p?))sinh(w(k + /k? — p2)).
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2.5 Frequency decomposition and the vacuum

We now decompose the field into positive and negative frequency parts by
picking out the positive frequency part of the field as that which satisfies the initial
conditions in the preferred coordinates. This allows us to extract the annihilation
operator for this field and thus define the vacuum state for this field on this particular
spacelike hypersurface (i.e. the appropriate hypersurface which passes through the
point (Tp, Xo)). The physically relevant question is, of course, how this decomposition
depends on the point (T, Xy) which could represent the position of an observer. If
this decomposition depends on the position of the observer, in an essential manner,
then at some different position presumably the observer would observe some sort of
particle density due to the change in composition of the vacuum state. To see this we

must impose the initial conditions relevant to the quantization on this surface. Recall

the initial conditions

of (t.0) =0 = Ap(0, ) and (9@ (1. 7)) li=0 = —7wi(0)Ax(0. ) (2.48)

where
I‘.
A0(0.0) = sin(25B(r)) and wi(0) = (k2 +m?)=. (2.49)
q
We can thus write the general form of the solution which satisfies these initial condi-

tions for this particular mode &

VUT.X) = [ dp {(Ap)¥(p. X) expl =iy T) + Bilp) ¥(p, X) expli,T))} (2.50)

y
where we now regard T.X' and = as functions of (¢,r). This can be easily done
given the coordinate transformations of section II. Because the initial conditions are
imposed at ¢t = 0 we need only be concerned with the form of this field and its

derivative normal tot = 0 for z(t = 0, z) in order to evaluate the expansion coefficients

A(p,n).A%(p.n).B(p.n) and B (p,n).

[SV)
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By using the orthogonality relations calculated in the last section we can write

out the initial condition equations

|F(R)? (Ax(k)exp (—iwTy)  +  Bi(k)exp (iwiTp))
_ / ix e (k, X)sin(2§B(x))
|X[>r

= (X (2.51)
|F(R)? (Bi(k)yexp (—iuwxTy) —  Bi(k)exp (iwTy))
_/ ]Y\Il'(l.*.,_»\')sin(Qf-;B(:r)) (2.52)
- |.\'|>,-(“ (XN =0 o

In taking the time derivative of (2.530) one does not pick up a ‘(’—)‘f— because

at t = 0 this is zero. Again in these expressions it can be seen that we are still
regarding = as :(0..x) and .« is the inverse of this function in the integral. We have

now determined A(p.n).A*(p.n). B(p.n) and B*{p,n) and can therefore decompose

the field explicitly in terms of positive and negative frequency modes on this surface

p

‘I’1=/Ux<"‘ 1 {ofi(t.m)ar (k) + o (t.2)ay (k)1 (2.53)

where the extra subscripts denote the surface on which the frequency decomposition
has been performed and the modes qb‘kf"(t,;r) and ¢f, (¢, ) are the ones constructed
with the expansion cocfficients which satisfy (2.51) and (2.52). One may now define

the vacuum relevant to this field on the surface (t = 0) in the usual way
ay(k)|0y) =0 V & (2.54)

where again the subscript denotes “when” this is the vacuum state for the field. To

see whether particles are created by the gravitational field in this spacetime one must
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look closely at how this state depends on the surface chosen. At this stage all one
needs is the normal derivative, with respect to the spacelike surface, of the field on

the surface. In Section 2.6 the full transformation equations will be required.

2.6 Particle creation

To see whether particles are created by the gravitational field in the spacetime
one must look closely at how the field decomposition depends on the surface chosen
(i.c. the position of the observer). To obtain the spectrum of particles created one
must calculate the Bogolubov transformation between the different annihilation and
creation operators and look at the mixing of positive and negative frequency parts. To
calculate the Bogolubov transformation we can just match the field from two different
quantizations on a comunon surface. The casiest way to do this is to propagate one

ficld to the surface on which the second is quantized. We can therefore write
v (o) = \1/2((). .l'l) and 0,,\Ill(f, .T) = 8,:(\112(1’. .TI)) Il'=0 (255)

where 1 is the proper distance between the two quantization surfaces. This distance
will, in general. depend on where on the surface one calculates the distance. The cal-
culation is made simpler by noticing that Xj = Xy because the observer is stationary

with respect to the original coordinates where the metric is static.

Because of the simple form of the modes at ¢ = 0 one can calculate the

Bogolubov cocfficients and write an expression of the form

atk) = [dp (ap-bam)+ 3@ ka (). (2.56)
The particle density experienced by an observer travelling from surface 1 to surface
2 is then given by

13(p. k). (2.57)
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In 1 + 1 dimensions 3(p. k) in general has the form

= [T awrd20L) Lo o) 2 N
d(p’l")——/_wd.ﬂl 2’70”@{ <t )at’ ( =61k (t. ))éﬁ_zwpd’lk(fs-l)

t'=y

(2.58)
In this equation the factors —7-:— and g,’, are required because we are matching the
field’s normal derivative with respect to the second surface.

To calculate an approximate form of 3, valid for short time intervals, we expand

the integrand about t = 0. To O(t?) we obtain

x sm(%ﬂ_l/) ” L2k, -2
Fp.h)=— / dy——— tanb*(y) sin(—y)p*(2" (T — Ty)* (2.59)
q

Jox g
where p(a’) is given by (2.21) and we have changed variables from 2’ to y = B(a').
In getting from (2.58) to (2.59) the second term of (2.58) doesn't contribute to the
integral because it is odd in y. It should be restated that this is particle creation
observed by an observer stationary with respect to the original static coordinates.

This can now he rewritten as

T, ~ T 2. si1l 2
3y = —HJo= o) “"/ - / (y———-"—))tdnll (y)sm(7q) (2.60)
W)

cosh?

Several comments are in order here. Firstly, 3(p, k) is clearly non-zero so that

particles are produced in this short time interval 6t = T — Ty.

Secondly, our approximation only holds for wy. < ¢ since the expansion breaks
down for wét > 1. This mecans that we can only crudely estimate the nunber
of particles produced in the time 6t since an ultraviolet cutoff of & = /g2 = m? is
required.

Putting all this together we see that the momentum deusity of particles labelled

by A produced in the time interval t is:

o 9
n(k) = A dp|3(p. k)|
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2 XY 2
st o o dp x|+ BB +3)  (p- k(2R +3)
T odr g Jo VPP nmig? sinh-’i’f—"l sinh-"—%;kl

(2.61)

Within the spirit of the approximation, the total number of particles created

in the time 6t with w, < ¢ is:

N, = ny(k)dk. (2.62)

This integral is finite. of course. If the upper limit is allowed to go to co then the
integral diverges linearly. This does not mean that the Bogolubov transformation is
not unitarily implementable. Qur approximations simply break down and our results
are inconclusive. The difficulty arises from the fact that there are two time scales

namely Ty =L and T, = —1; For a fixed wy it is possible to expand in éTi where T is

the smaller of 7. T,,. However, if wy is unbounded no such expansion is possible.

2.7 Conclusions

We have shown that although a spacetime may be static this may not pre-
clude particle creation which is a time dependent phenomenon [20], as the gaussian
coordinatization may not be static. The only metrics which always lead to static
Gaussian coordinates are those which have been dubbed “ultrastatic” by Fulling [18].
We have shown explicitly in this simple 1 + 1 dimensional case how the choice of
which coordinates should he used leads to some interesting results. In particular, the
coordinates which are chosen via a physical principle seem to suggest that although
the spacetime may be manifestly static in one coordinate system these may not be

the coordinates that oue should use to quantize a field propagating in the spacetime.
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Unfortunately the analysis to find out whether the Bogolubov transformation
is unitarily implementable was inconclusive. This is due to the fact that the approx-

imate form of 3 which was analvsed was not valid for large k.



CHAPTER 3

Particle creation in an anisetropic universe

3.1 Introduction

The fact that the universe today is extremely isotropic is a fact that has puz-
zled cosmologists for many vears. One suggestion to explain this observation is that
quantum effects caused any early anisotropy to be almost entirely wiped out and thus
led, through the back reaction due to particle creation, to the essentially isotropic uni-
verse we lave todav. This idea was first proposed by Zel’dovich and Starobinski [21]
in a paper which investigated the particle creation in strong anisotropic gravitational

ficlds.

To understand how most calculations have been done for anisotropic universes
it is beneficial to first review what has been done in some isotropic models. In the
next section 3.2 we review the use of what's called the conformal time. This conformal
time has been used extensively as the time with which to decompose qu: 'm fields.
At the end of seetion 3.2 we also explain how generalizations to this conformal time
have been used in models which are not conformally invariant and in particular how

this relates to some anisotropic model calculations.

In the seetions 3.3 through 3.6 we calculate the particle creation in an anisotropic

universe using thie same definition of time to decompose the field as we have in the
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preceding chapters. This anisotropic uaniverse is basically an anisotropic generaliza-
tion of 1 + 1 deSitter space. The results of this calculation show that the energy
spectrum of the created particies is shifted by a discrete amount proportional to the
one nataral length scale of the geometry, that being the square root of the scalar

curvature.

3.2 Isotropic models and conformal time

To intoduce what’s called the conformal time which is quite popular in the
literature we start with the isotropic model

ds? = dt* — a*(t) (rl:lr'f + (1;1'§ + drj) (3.1)

we then introduce

1 .
3= / dt  and  C(n) = a¥(t) (3.2)
a(t’)
the metric in terms of the conformal time 7 is
ds? = C(n) (drp = da? = da — da}) (3.3)

it is clear why this is called the conformal time as the metric is now conformal to the
Minkowski metric. To see why this is useful we now look at how the field equations and
solutions to these field equations change due to this conformal factor. Conformally
flat spacetimes such as this one can always be described in terms of metric tensors

which are conformal to Minkowski space
f/;w(-T) = C2(ﬂ,x)77;‘u- (34)
The conformally coupled massless field equation in 3 + 1 dimensions is

[m+ %R] o=0 (3.5)

34



where O is short for the first term in 1.31, R is the scalar curvature and the factor é
depends on the number of dimensions which in this case is four. Under the conformal

transformation

Gur = C72(0, %)y (1, X) = 1w (3.6)
the field equation transforms to
D¢ = 78,8.(C(n,x)$) = 0 (3.7)

where ¢ = C(1,x)é is the field which satisfies the wave equation in the new metric
which in this case is Minkowski space. To now decompose the field in terms of positive

and negative frequency parts we use the decomposition for Minkowski space and just

Cd the conformal factor to the field

o(n.x) = C"'(n)z [ukﬁk(n,x) + a{(ﬂ,f((n,x)] (3.8)
k

where everything is just as it was in the introduction to flat space quantum field theory
except for the factor out in front in which we have left only the 7 dependence as that
is the case for this example. The vacuum defined in terms of the operators ay is called
the conformal vacuum. We see from this expression that the spatial dependence of the
ficld is just as it was in flat space and is made up of simple exponentials. However it
is the time dependence of the field which is the important part of the whole procedure
and is what is responsible for the physics resulting from a particular choice of Fock
space representation for the Hilbert space. In this case the time dependence is fairly
complicated and we seem to have abandoned any semblance of quantum field theory

in flat space by the end of the procedure.

For the most part it has been anisotropic generalizations to this procedure
which have been employed to study anisotropic effects in anisotropic models. To

illustrate this we cousider the Bianchi type I model

ds® = dt* — ay(t)2da? — ay(t)dxl — as(t)?da’ (3.9)
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for this model the standard practice would be to introduce
C(t) = a*(t) = (a1a2a3)} and 7= /a"(t’)dt' (3.10)
which reduces to the conformal time in the isotropic limit a) = a; = aj.

Because of the difficulty in finding solutions to the wave equation for most
of these models perturbative approaches have been taken with perturbations about
isotropy. The model studied in this chapter unfortunately does not allow such an
analysis as the anisotropy grows with time. It is however interesting to note that in
our analysis, the surface on which the decomposition is performed the metric does

appear isotropic.

3.3 The model

The model we investigate in this paper is an anisotropic 3 + 1 generalization of
1 + 1 de Sitter space. the simplest generalization being just the addition of a 2-plane.
Specifically we are investigating particle creation due to the gravitational field which

is described by the metrie

ds? = dT? = AT(AX)? = (dX?)? — (dXP)2, (3.11)
More precisely we investigate the particle creation as observed by an observer sta-
tionarv with respect to the coordinates (T, X', X2, X3).

To follow the prescription as outlined in the introduction and also used in the
preceding chiapters we first find the geodesics in this spacetime. The first integrals of

the geodesics are:

dX'! : 1X? dX dT 2
[ _(/\1_ (_—(‘. ——3-2(,'3, —\/6+'§T+(‘%+C:‘; (312)

ds e ds ' ds ds
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where € = £1 depending on whether the geodesic is timelike or spacelike respectively.
The preferred coordinates on the surface are constructed using a 4-bein of
orthogonal basis vectors at Py, the observer’s position. We choose these vectors to

he,

co(Py) = (1.0.0,0) ey(Py) = (0,e7*%,0,0)
(’2([)0) = (0,0,1,0) 63(P0)=(0,0,0,1). (313)

In this way the tangent to the chosen observer’s worldline at Py corresponds to eg( Py).

To construct the spacelike surface orthogonal to the tangent of the observer’s

worldline we therefore require that

2

“

e o

+c+c;=1. (3.14)

IT T
il [, =0 which implies
s

The preferred coordinates on the spacelike hypersurface are chosen to be Riemann
coordinates based on the observer's position Py = (Ty. X} X2 X3). With p# given
by the tangent vector, at Py, to the geodesic connecting Py to P;. The point
P, is the point at which the timelike geodesic “dropped” from an arbitrary point
P = (T.X'. X2 X3) intersects the spacelike surface orthogonally. The Riemann co-

ordinates n® of the point Py are given by
spt = n"eh(Py) (3.15)
where s s the distance along the geodesic Py — Py. Using etes, = 1o (Minkowski
metric), and the orthogonality of p to ey(FPp) we have
W= s (Py) = —sprel(Py). (3.16)
The surface Sy is just the surface ¥ = 0 and the coordinates ' are

(&) . -
_l'l = r" = 59y ,1'3 = 503 (31()
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where s is the geodesic distance between the points Py and Pj.

The direction of time is given by the normal to the spacelike hypersurface and
the preferred time t for the arbitrary point P is given by the proper distance along
the timelike geodesic connecting P to P;. The timelike geodesic is also determined
by (3.12) except with ¢ = —1 and a different choice of the constants which we denote
by b;. The condition that the geodesic connecting P to Py is normal to the spacelike

hypersurface requires that

b} % c? by
(1 + = +b,+12)\l ((JA,’,‘ - ex‘ro) = 'A,‘ + bycy + byey. (3.18)

We can now calculate the dependence of (T. X!, X2, X3) on the preferred coordinates

(t. o', 12, %) and then calculate the metric in its preferred form. To calculate this de-
pendence we must use the above equations for z* (3.17) and also calculate the change
in the coordinates X' along the spacelike and timelike geodesics which nltimately

connect Py to P

)] . -1
-1yl ! 2 ] ! bf 2, 2}
\ = ‘\U + i (]T(:/\_Il (()—1— - ()A7°) +/ (IT’ ,\’1’ ( A7’ + 1)2 +b3)
-2 -2 ' o [ a1 ' 12 K
X? = \l,+/0 T | 57— = 4 l(IT o 1+ e 0340
) ) - -1
o= oxia [ar (oA Ty [ -——+z +02)
- = 3y + ) { ("\Tl ()/\ (,/\l', T, { /\I' ) )’
(3.19)
and t the proper distance along P — P
T b2 }."
r=/r (IT'( +-W+b2+bz> : (3.20)
]

At this point we can see that if we choose by, = by = 0 this just corresponds to

aligning the spacelike hypersurfaces so that X? = X? and X3 = X}. This simplifies
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the analysis considerably and gives the expected result that
N2 =X+ and X3=X3+23 (3.21)

The only non-trivial part of the transformation therefore involves (T, X!) and (¢,z').

By performing the above integral for X! and inverting the t integral one is left with

the coordinate transformations

- At Ar!
e T-To) = sinh(?) + cosh(-/\Q—t)cos(%)
t Aat
%(.\'l - .\'(', )("\% = —('osh(—/;\z—-)sin(——i;—). (3.22)

In terms of the preferred coordinates (f.x') the metric now has the form
2 2 2 A 132 2,2 332
ds® = dt* — cosh (—5—)((1.7: )* = (dz*)* — (dz*) (3.23)

where the range of r) is —o¢ <) < oc.

This result is of course not a surprise to anyone familiar with the different
forms of de Sitter space in 1 + 1 dimensious. Unfortunately the usual analysis does
not deal with the observer dependent nature of the coordinate transformations. We
will see that this is in fact where the interesting physics comes from. Indeed if one
proceeds to quantize the field on t =constant surfaces it is easy to see that all these
surfaces can be made to look like Minkowski space. The point is that they cannot
be made to all look like Minkowski space simultancously. It would therefore seem
obvious that the physics is going to be determined not by the form of the metric
on a particular surface but by the transformations relating one surface’s preferred

coordinates to another surface’s preferred coordinates.
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3.4 Modes and quantization

In the coordinates constructed in the last section the non-minimally coupled
massive KKlein Gordon equation is
1 1
VY VI

This equation is strictly hyperbolic so long as ¢" is negative definite. The solutions

Ro + —0i(/9)0i0 + —0i(/99"7 9;6) + (m* + £ER)o = 0. (3.24)

are therefore uniquely determined by the initial data.

To quantize a scalar field on the ¢+ = 0 surface we now define the positive
frequency modes in the neighbourhood of this surface. The positive frequency modes

are defined as those which satisfv the initial conditions
o (t.%) [1=0 = Ae(0.x) and  d(&f (1, %)) |i=0 = —iwi(0)AL(0,x) (3.25)

where A(t.x) are the instantaneous eigenmodes of the spatial part of the Laplace-

Beltrami operator. and wi.(f)? are the corresponding eigenvalues:

[%0, (\/.(—/.‘/'JOJ) +m?+ ER} At x) = wilt)Ae(t, x). (3.26)

Henceforth we just write o for wi(0). Duc to the simple form of g, at t = 0 the

cigenmodes and values take on the simple form

A(0.%) otkx (3.27)

L200) = K24+ m?4ER.

Near the surface ¢ = 0 the second term of (3.24) vanishes to O(t?), this implies that

the initial conditions for the time dependence of the field are also good to O(t?).

To imposce these initial conditions we must find a complete set of modes for

the entire wave operator. Because the differential equation is separable we look for
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solutions of the form fi(t)e'**. The differential equation satisfied by the fi(t) is then
2 A At 2.2 A 2, 1.2 2
o fi(t) + 3 tanll(—2—)('),fk(t) + | kysech (7) + k3 k3 +m*+ER) fi(t) =0. (3.28)

The positive frequency modes are those whose “time” part satisfies the above differ-

ential equation and the initial conditions
f(0)=1 and fi(0) = —iwy. (3.29)

The positive frequency modes are given in terms of hypergeometric functions

H(a,b,c.r) by

; At 1 At
of (t.x) = (”k'XS('(-ln(fz-)z" {H(n A3. 7 tanh?(—= 5 )
2wy At 1 13 At
- /Ttdnh( 5 VH{a + 2,d+ 2' 9" .tanh?( 2 ))} (3.30)
where
- 1 /l-’ k4 m? + &R a
no= T3 5 + m? T
l\'] 1 ) ) 9 2
[ —T+3—X\/J l-;+”) +£R—'16
2
;I = ], R- —.
3+ A3+ w4+ € G

(3.31)

We can now write out the field which has been quantized on surface 1 as

v, = /z (/1\.__\/%:}7 [t (t.x)ay(k) + 8¢ (. x)al (k) } (3.32)

3.5 Particle creation

To investigate particle ercation in the model universe as observed by an observer

stationary with respect to the original coordinates (T. X!, X2, X3) we calculate the
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Bogolubov transformation relating the annihilation and creation operators from two
different surfaces of quantization that the observer passes through. To calculate
the coefficients of this transformation we equate the same field from two different

quantizations on a common surface
Wy (1.x) = Uo(t'(t,x),x'(t, 7)) (3.33)

Here W, (¢, x) is the field written out explicitly in (3.32) and ¥,(¢', 1') is the same field
which has been quantized on a second surface t' = 0. The “second” field is therefore
quantized for the same observer as the first but at some later time T At this time the
remark made at the end of the third section becomes clearer. All the physics of the
observations made by this observer are determined by the functions t'(t, ), +'(t,r)
and the derivatives of these functions with respect to . In this way the geometry of
the spacetime via the coordinate independent prescription we have nsed, determines

the spectrum of created particles.

For simplicity we calenlate the Bogolubov transformation by “matching” the

ficld and its first derivative with respect to t at t = 0,
/ 1
(27 )3 /2wy
/ 1 3 ik _ , ,

—_ AP o™ =i U (H (0, 0), 0 (0,
(27‘.).; /'ZW'_A. / { wik ).( ( ) ( ))
+ (O (t. ). 2 (1)) li=0 } -

ay(k) =

/d".«z-e""* (=i @ (0.0) + (D, (8. 4)) 1o }

(3.34)
Using this equation. we can write out the Bogolubov transformation in the form

ay(h)y = /(I:’])u(l.'.p)u-_,(p) +/(fﬁ)ﬁ(k.p)(l&(p). (3.35)

The spectrum of created particles is determined by |,"3(lc.p)|2. Writing out 3(k,p)

explicitly we find it has some interesting properties due to its dependence on the
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inverse relations (.0 )0y (t .y ),

1k;r;

Hhp) = G20+ ka)A(ps + i) [
P
(i £ (2(0, 21))eP =100 — 9 { f4(¢'(t,21))e™ =14} |12 (3.36)

where
, -l cosh(ﬁ)sin(*—;-l)
ry(t ) = ~tan” Al Az 7 ST MY i T AL
(-osh(?)cos(—zk)cosh( (Ty — Tp)) — sinh( %) sinh(5(T3 — Tp))
A
t'(t,xy) = %smh (smh(:\;)cosh( (Ty — To))

>

At x A
- (-()sh(-;)(-us(%)siuh(?'f{, - T(,))) )

(3.37)

3.6 Discrete shift of energy spectrum

Unfortunately, due to the complicated nature of the expression for B(k,p)
we cannot write it out in a more transparent form which is still exact. We can
however discover some interesting facts about the spectrum of created particles by
investigating the integrand of the integral for 3(A,p). In fact it is not difficult to
see that the particles observed by our stationary observer possess a discrete energy
spectrum shift. To see this we rewrite (3.36) as

P PUSIRIREY

~1
.f(l-‘.[)) = 2—‘1' / (I.I'] -—\/f__TF(]\',]),.Tl )(S(])_) + ([-_))6(])3 + (]3) (338)
nJ-~ Wk

where
i (OT))=Ty) f 5, pheyl L0y L
Flk.op.ary)y = emintini=n {zwkfp (¢ (O,.T))—lkl_bep (t'(t.x)))

_ ‘(7?_’10,,(;", “(#'(t.11) )}l::u-

(3.39)
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By inspection of the inverse relations (3.37) one sees that F(k, p, ry) is a well behaved
periodic function in r,, with a period of 4¥. The only difficulty arises with the
exponential factor. This factor is also periodic in z; if one is careful to ensure that
in the analysis both r} and & retain their range of —oo to oc. This can be seen by
writing &) in terms of an inverse tan function and then observing that (&} — ;) can

be simplified as it involves the difference of two inverse tan functions.

Because of these properties we can expand F{(p, k,r) as a Fourier series,
> in AL
F(p.k.r)= Z C.(p.k)e™"™ (3.40)
n=-—nc

which implies that.

> A
Ip. k) = Y Culp k)(py + ky + "7)5(1)2 + k2)d(ps + ky). (3.41)

_—

\Y% '1"‘"1"""/\' n=-—nc
Unfortunately we cannot evaluate the C,(p, k) analytically but we can evaluate them
numerically for some specific values of (T — Tp). A, p and k. This numerical analysis
suggests that the particle creation drops off rapidly for large p and k. Nevertheless, it
is expected that the total particle creation, as in all such problems in infinite spaces, is
infinite. The reason for this seems to be that the external eld can pump in an infinite
amonnt of energy in a finite time [23]. Iu this particular model the energy density of
the classical matter field giving rise to the geometry of the model is constant. If one

calculates the total energy of the classical matter field it is therefore infinite.

3.7 Conclusions

We see from the above analysis that the particles created due to the gravi-
tational field as scen by a stationary observer in the model universe, ds® = dT? —

T (dXN1)? — (dX?)? — (dX?3)2, contain a spectrum of particles shifted by a discrete
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amount. It appears that the one length scale of the geometry namely v R nlays a
role similar to the role the length of a box plays for modes in a box. In this sense the

discrete energy spectrum shift may almost be expected.



CHAPTER 4

Particle creation in 141 deSitter space

4.1 Introduction

As was seen in the last chapter if one is dealing with an infinite spacetime
it can be expected that the total number of particles created by the gravitational
field e infinite. This can still be physically reasonable as it does not nmply that
the particle production per unit volume is infinite. In this chapter we investigate
the particle ereation in 1+1 deSitter space. As the preffered coordinatization of the
space is compact one expeets that the particle creation will be finite in agreement

with Fulling’s analysis for isotropic universes of finite spatial volume [16].

In this analvsis we start with the universe defined in terms of the metric
ds® = dT?* — M d X2, (4.1)

This metric is just a standard parametrization of a portion of deSitter space. When
one expresses this spacetime in terins of the preferred coordinates, introduced in
the introduction and used in the preceding chapters, one finds that the geodesically

complete description of the spacetime is just the entire 1 4+ 1 deSitter manifold.

To show that the particle creation as observed by an observer who is stationary
with respect to the original coordinates (4.1) is finite we examine some properties of

the square of the Bogolubov (. n) coefficient. Becanse the integral expression for
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this object has a range whicli is compact we are able to argue that the square of the

Bogolubov 3(mn, 1) cocfficient drops off faster than any inverse power of m or n.

4.2 The model

The model we investigate is that of a compact 1 + 1 dimensional spacetime

described by the metric

ds? = dT? — AT ax2, —o0 <X <o {4.2)

To follow the prescription mentioned above we first must calculate the geodesics. The

first integrals of the geodesie equations are:

dX oy dTr (.?
wEar et (43)

where € = £1 depending on whether the geodesic is timelike or spacelike respectively.

The preferred coordinates ou the hypersurface of instantaneity are constructed
using a 2-hein of orthogonal basis vectors based at Py, the observer’s position We
23 0,
choose these vectors to be.

1

ATy
]

col o) = (1.0)  ei(Fy) = (0, ): (4.4)

e
in this way ey Fy) 1s tangent to the observer’s worldline at Fy.
To coustruct a spacelike geodesic which is orthogonal to the observer's world

line it is required that

IT 2
((_I: |, =0 which implies ;i—h— = 1. (4.5)

The preferred coordinates on the spacelike hypersurface are chosen to be Riemann

cooerdinates based on the observer's j:osition Py = (Ty. Xy). The point P, = (T, X)) is
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the point at which a timelike geodesic “dropped” from an arbitrary point P = (T, X))
intersects the spacelike hypersurface orthogonally. The Riemann coordinates 7® of
the point P, are given by

sp* = neh () (4.6)

where s is the distance along the geodesic Py — P; and p” is the tangent vector, at P,
to the geodesic connecting Py to P;. These equations can be solved for the 9 using
the orthogonality of p” to eg{Py) and the identity efe, = 104 (Minkowski metric) to
give
U=')II‘U(P l_____,);l,l]') 47
'/ 'SI (,l 0) ,I - ‘81 (’/‘( 0) ( ")
The surface of instantancity Sy is just the surface ° = 0 and the preferred spatial

coordinate o' =yl is

14
2 —.sm, (4.8)

where s is the geodesic distance hetween the points Py and Py. The direction of time
is given by the normal to this spacelike hypersurface. The preferred time coordinate ¢
for the poiut P is given by the proper distance along the timelike geodesic connecting
P to P,. This timelike geodesic is also determined by (4.3) with ¢ = —1 and a different
choice of integration coustant. by. The condition that the geodesic connecting P to

P, is normal to the spacelike hvpersurface requires that

b c} ot _ by 49
I+ AT\ oA T AT T A (4.9)

The metric can now be caleulated in terms of the preferred coordinates (¢, ')

by calculating (T'(t..0'). X'(¢..r')). To calculate these dependances we use the above
equation for o' (4.8) and also calculate the change in the coordinate X along the
spacelike and timelike geodesic~  hich connect Py to P

. ~1 P -1
i i T ) I & \ S A b? ¢
N=XNp+ /I (/Tm <(—,:\T - ’(m/ '1-/; dT (—)rl-,- 1+ ;,Tl_’ (4.10)



and

(Y A
t = n dT (1 + F‘) . (4.11)

By performing the above integral for X and inverting the ¢ integral one is left with

the coordinate transformations

o At At Azt
e2T=To) = ginh( ?) + cosh(—z—) cos( %)
; B
g(_x'—.\'(,)o*g = —cosh(%)sin(i\%—). (4.12)

In terms of the preferred coordinates (¢, 1) the metric now has the form

. . o, AT
ds® = dt? — coshz(%—)(dx’)z. (4.13)

The range of ' is 0 < r! < i} To write this in a more convenient form we introduce
. ) . ; .
the angular coordinate a = 2 which covers the range 0 < a < 27. In terms of this

angular coordinate the metric takes the formn

7

” ” o At
ds” = dt- - —4—) ('()511'(-5)(102. (4.14)

4.3 Modes and initial conditions

In the coordinates constructed above the minimally coupled massive Klein

Gordon eqnation is

a2 1 1 , . .
0,’O+ EO,(\/_E)O,C)+—\/—_g:al(\[(]g”)01¢>+7n2¢= 0. (4.10)

To quantize a scalar field on the t = 0 surface we now define the positive frequency

modes. The positive frequency modes are defined as those which satisfy the initial

couditions

Of (1. X) [1=0 = Ar(0.a) and  d(of (1.a)) |1z = —iwr(0)A(0.a). (4.16)
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where Ag(f.a) are the instantaneous eigenmodes of the spatial part of the Laplace-

Beltrami operator, and wy(t)? are the corresponding eigenvalues:

[—\}_531 (Vag''ar) + mz] Ar(t.a) = wi(t)Ax(t, ). (4.17)

Henceforth we just write wy for wi(0). Due to the simple form of g, at t = 0 the

eigenmodes and eigenvalues take on the simple form

Ax(0,0) = &5° (4.18)
WEH0) = KP4

Near the surface t = 0 the second term of (4.15) vanishes to O(t?), this implies that
the initial conditions for the time dependence of the field are also good to O(t?). We
impose periodic boundary conditions on A4(0,a) to choose a self adjoint extension
for the differential operator on the left hand side of (4.17). This requires that -‘ii =s

where s is an integer.

To impose the initial conditions we need a complete set of modes for the entire
wave operator. Because the wave equation is separable we look for solutions of the
form f.(t)e"". The differential equation satisfied by the f,(t) is then

242
)0, f(t) + (iisech'z(%{) + 7712) fJ(t)=0. (4.19)

" A At
07 ft) + < tanh(— 1

2 2
The positive frequency modes are those whose time part satisfies the above differential
equation and the initial conditions

f(0)=1 and f,(0) = —iwy. (4.20)

The positive frequency modes are given in terms of hypergeometric functions

H(a.b.c.g(t)) by

A
)

. M 1 o, Al
of(t.a) = ()""'cosh(E—)‘“{H(a.’}.-é,—sinhz(—Q—
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2w, .
- i—‘-d-;smh(

At 1 13 ., M
)H(a+§,/3+- —, —sinh (3))}

A 2 2’2’
(4.21)
where
s 1 1
- 2.4t 2 _ )2
a 2+4+4/\\/16m A
s 1 1
_ S 7 __ )2
15} 2+4 4/\\/16m A
W, = (£)2+m2
2
(4.22)

We can now write out the field which has been quantized on surface 1 as

1

A=
U, =
l x.—.z—:x V 2“"‘-‘

{oF(t.a)ai(s) + 6F"(t.a)al(s)}. (4.23)

4.4 Particle creation

To investigate particle creation in the model universe as observed by an observer
stationary with respect to the original coordinates (T, X') we calculate the Bogolubov
transformation relating the annihilation and creation operators from two different
surfaces of quantization that the observer passes through. To calculate the coefficients
of this transformation we equate the same field from two different quantizations on a

common surface

Uy (t.a) = Uyt (t,a),a'(t,a)). (4.24)

Here W, (1. a) is the field written out explicitly in (4.23) and ¥y(t', @') is the same field
which has been quantized on a second surface t' = 0. The “second” field is therefore

quantized for the same observer as the first but at some later time Ty with 6y = d5. All
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the physics of the observations made by this observer are determined by the functions
t'(t,a). r'(t.n) and the derivatives of these functions with respect to t. In this way
the geometry of the spacetime via the coordinate independent prescription we have

used determines the spectrum of created particles.

We calculate the Bogolubov transformation by “matching” the field and its

first derivative with respect to t at t = 0:

7
a(s) = ) \/27./ dae™® {iw,¥,(0,a) — (8, ¥ (t,a)) |i=0}

I

= o) \/Z- dae™ {iw Uy(t'(0,a),a'(0.0))

— (DTt (1. a). ' (1 a)) |i=0 } -
(4.25)

Using this equation. we can write out the Bogolubov transformation in the form

(:2(17)=Za(n s)ay(s) + B(n, s)a f( ). (4.26)

&

The spectrum of created particles is determined by |B(n, s)]°.

Writing out 3(n.s) explicitly we find it has some interesting properties due to

its dependence on the inverse relations #'(t, v),2'(t, x),

. _ —i ()_in —is0'(0,a)
J(n.s) = 77 /(l(n T izw,,f t'(0,a))e
= O {fF(r(tape et} o},
(4.27)
where
a'lt.o) = t.an—l( T (‘OSh( ) sin(a) YR )
(c)slx(-;)cos(u)cosl1( 7) — sinh(3) sinh(7)
/ L2 L At At -

t(t.a) = 3 sinh smh(?)(osh( ) — c:osh(-é—)(:os(a)smh(r) (4.28)



and
T = %(Té ot To) (429)

4.5 Total number of particles created

To find out whether the total number of particles created is finite we must find

out if B(n, s) is Hilbert-Schmidt, namely

33 18(n, s)? < oo. (4.30)

If this ineqnality holds it means that the total number of created particles is finite
and the Bogolubov transformation is unitarily implementable. To calculate the total

number of particles created we write J(n, s) in a slightly different form,

Y e - _—i(n+s)a _~is(a’(0,0)-a)
J(n.s) = T — /(Iae e g(n.s, a) (4.31)
where
: .y . 0a' L, ot’ .
gln.s.a0) = {w,,f;‘ (t'(0.a)) — z.sa—(;f: (t'(t,a)) — 5"8" (fj (t(t,a)))}lmo.

(4.32)
We lLave written #(n.s) in this form to allow us to write o’(0,a) in a form which

takes care of the problem of which branch of the tan~!(y) in (4.28) to take.

To investigate the asymptotic form of g(n, s, a) we have to find the asymptotic
hehaviour of the hypergeometric functions involved. The first simplification that can
be made is due to the fact that the first two arguments of the hypergeometric functions
are complex conjugates of each other (3 = a™). By writing a = a + b we see directly
from the series for the hypergeometric functions that for large a one can drop the

imaginary part of o

ald  aBla+1)(B+1):22
Jdoez) = —_—t — -
H(a,3.¢.z2) 1+ - det 1) 5

53



_ (a2 +0%) _ (a?+b)((a + 1) + b?) =2

= 1+——:+ (i) 4. (4.33)
(¢®)  (a®)a+1)*2

c - c(e+1) 2

= H(a,a,c,z).

~ 1+

From (4.21) we sec that we need asymptotic forms for hypergeometric functions of
the form H{a,a, % —r%)and vH(a + %, b+ :1,-, %, —z2). For the first form we can write
the hypergeometric function in terms of a Legendre function using the identity {27]

H(n,a,1/2.—r) = 7‘—TzI"((1+%)F(1—a)(l-}-.l')_“ X

Py, _ = P, _ _____—-:zr% .
(2 T “m’)

(4.34)

To obtain the asymptotic form for tH(a + %,b + ,'3,3/2, —1?) we notice that we can

write it in terms of the derivative of the first hypergeometric function

_ 1 18 , -1 d 11 ) i
rH(a+ 2.a+ 55 )= a = %)2(”1{(0. 2,a 2,1/2, z*). (4.35)
We now use an expression for the Legendre functions valid for large v [28],
'v+1) 2 1 T
eos(6)] ~ - - 08 =) - =) 4.36
P, [cos(8)] F(I/+§) 7rsm(9)(os((u+2) 4) ( )

By using the reflection formula

m

= Ta)smins)’ (4.37)

(1 -ux)

and taking the asymptotic form for the gamma functions which is valid for large

argument.
)a.r+b-!.;

Tlar +b) = V2me " (ar (4.38)
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we find that the ganuua funciions from (4.34) and (4.36) combine in such a way as

to cancel their s dependence leaving

B(n,s) = 47\/1—:)__7_-/dne'“"+”"e""(°'(°'°"°’ (cos[s cos™![p(a)]] + sin[s cos'l[p(a)]])

X (A(a) (cos[%] + sin[%s-]) + B(a) (cos[z-?f] - sin[%s—]))

(4.39)
where
o) = - cos(a)sinh(7) (4.40)
\/1 + cos?(a)sinh?(7)
, — ’\ Isl N2 —{.-1)\8 _
Al0) = R e iR = s = 1)
+ icos[a]sinh[7](1 — (—1)")
+ icosh[7)(1 + (=1)")(2 = f(a) + f(a)|s] = fla)s?)
+ sinfa]sinh{7)(1 = (=1)*)(f(a)s|s] = fla)s)}
(1.41)
B(a) = 17/(\(? {if(a)|n] (1 +(=1)%)) + |s|cosh|}(1 — (-1)°)
+ issinfa]sinh{7]}(1 + (-1)%)}
(4.42)
and
f(a) = 1 + cos?|a]sinh?[7]. (4.43)

The entire point of writing 3(n,s) in this way is to allow us to integrate the above
expression by parts. After expanding the sin[s cos™[p(a)]| and cos[s cos™![p(a)]] in

terms of exponentials. cach term making up #(n, s) can be written in the form,

J(n.s) x /(Icu'"""+“°(.’"’9‘°)I\'n‘,(u). (4.44)



where I\, ,(a) incorporates the last term in (4.39) which contains A(a) and B(a) and
gla) = —(a'(0,a) — a) £ cos™}(p(a)), (4.45)

where the + depends on which of the two terms one is dealing with. The important
point is that the behaviour of i, (a) in terms of n,s does not change when one
differentiates with respect to a because the dependence on n, s is decoupled from a.
One can now integrate by parts indefinitely to observe that the expression must drop
off faster than any inverse power of n, s. For example after integrating by parts twice

oue is left witl

i ‘ ] 1 d K, ,(a)
L d _—i(n+d)a :twg(o)_(_ e 7,4 .
B(n. s) / ac ¢ da \ —i(n+ s) xisg'(a)da \ —1(n + s) £ isg'(a)
(4.46)

The only problem that could arise is if —(n + s) £ s¢'(«) ever vanished. This is not
1 g

a problem however because the function ¢'(a) is always less than one.

4.6 Conclusions

We have shown that 3(n.s) drops off faster than any inverse power of n,s,
for large n.s. This implies that the total number of particles created is finite and
therefore the Bogolubov transformation is unitarily implementable. The fact that the
total number of particles created is finite is in agreement with Fulling’s analysis for

an isotropic universe of finite spatial volume [16].

If in fact ;3(n.s) drops off like an exponential then after performing one of the

. b 2 . . ..
sums in [3(n.s)|” oue will be left with a Planck spectrum. This is to be expected as
for large momenta our analysis should be similar in nature to the analysis of massless

particle creaticn.
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It should be emphasized that this calculation does not involve calculating the
Bogolubov transformation relating in essence to different spacetimes. This calculation
involves comparing an observer’s particle definition at two different times in the same
spacetime. In this way one is not misinterpreting boundary effects by coraparing fields
quantized in overlapping but different spacetimes [15] as is the case in the standard

Rindler analysis and many other calculations.
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CHAPTER 5

Finite particle creation in 341 de Sitter space

5.1 Introduction

In this chapter we calculate the particle creation as seen by a stationary
observer in 341 de Sitter space. This particle creation is calculated by looking at
the Bogolubov transformation relating the observer's different definitions of particle
states on two different spacelike hypersurfaces. The observer dependent nature of
this calculation agrees with Gibbons and Hawking’s [10] idea that what an observer
measures is dependent not only on the spacetime and the quantum state of the system
but also on the observer’s worldline. In this calculation we do not include the analysis
of what a detector carried by an observer would register. As a detector can only be
influenced by events in its past light cone it cannot be expected to illuminate any of

the non-local nature of quantum particle states.

There has been a number of papers published which study quantum field theory
in de Sitter space. As mentioned in the Gibbons and Hawking [10] paper many of these
studies [11] involve particle definitions which are observer-independent and de Sitter
group invariant. This is clearly not a physically reasonable approach to take as it leads
to particle creation rates which are either infinite or zero because if there is particle
creation, the same particle creation rate must occur for all energies due to the de Sitter
group invariance. Many other studies have followed the example of Lapedes [12] and

chosen the static coordinatization of de Sitter space as the preferred set of coordinates
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with which to define particle states for an observer at the origin. These papers then
calculate particle creation by calculating the Bogolubov transformation relating the
static coordinatization to the geodesically complete coordinatization which will be
used in the analysis of this chapter. The reason that the static coordinatization is
chosen is because it has been shown to be the one that agrees with Unruh'’s [6] analysis
of what a particle detector carried by the observer will measure. Although one can
understand the nature of the horizon which is present in the static coordinatization
as being a causal boundary for a detector by using an incomplete coordinatization of
the spacetime one is not allowing for non-local effects from the rest of the spacetime
to influence the construction of particle states. In the usual treatment of quantum
field theory in Minkowski space such non-local effects are allowed for as states are
constructee in terms of operators which are isolated by integrating a field and its time

derivative over an entire spacelike surface.

The definition of particle states used here is that proposed by Capri and Roy
[7] and is equivalent to the definition proposed by Massacand and Schmid (8]. This
definition of particle states uses a coordinate independent and observer dependent.
definition of time which one uses to decompose the field into positive and negative
frequency parts. This time is defined as being normal to the spacelike geodesic hy-
persurface which intersects the observer's worldline orthogonally. In this way the
spacetime is spauned by geodesics. if there is a geodesically complete coordinati-
zation for the spacetime this is the coordinatization that will be picked out by this
procedure. In de Sitter space this implies that the radial coordinate is compact even
though the coordinatization we start with would not suggest this. It is this compact
coordinatization that allows us to eventually integrate by parts the expression for the

total particle production and show that it is finite.

It is hoped that if there is a correct means of defining particles in curved
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backgrounds it will enable objects such as the expectation value of the stress tensor
to be renormalized by using a normal ordering procedure similar to that used in flat
space.

The particle production is shown to be finite as the Bogolubov g(N, N',1) co-
efficient drops off faster than any inverse power of N or N'. If this drop off is actually
an exponential then the particle prodnction would be consistent with a thermal dis-
tribution which is what is expected for the large momenta limit. This finite particle
creation agrees with the analvsis presented in Fulling’s book for expanding isotropic

universes [10].

5.2 The model

We start with the following coordinatization of de Sitter space,
ds? = dT? = N ((dX')? + (dX?)? + (dXP)?) (5.1)

To calenlate the coordinates which provide the foliation mentioned in the introduction
we must first caleulate the peodesic equations. The first integrals of the geodesie

equations are

d\’ " dT =
— =ce™ and —— = e+ e Mc? (5.2)
ds ds

where i = 1 to 3 and ¢ = £1 depending on whether the geodesic is timelike or

spacelike respectively. The preferred coordinates on the hypersurface of instantaneity
are constructed using a 4-hein of orthonormal basis vectors based at Py, the observer’s

position. These vectors are chosen to he

APy = (1,0,0,0) e\(Py) = (0,7 F,0,0)

I

e
(9N
N

(P = (0.0.077,0) €(Py) = (0,0,0,¢72). (
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In this wav ep( %) is tangent to the worldline of an observer which is stationary
with respect to the coordinates ¢f (1). To construct a spacelike geodesic which is

orthogonal to the observer’s worldline it is required that

dT
ds

|p, =0 which implies ¢ = ero, (5.4)
The preferred coordinates on the spacelike hypersurface are chosen to be Riemann
coordinates based on the observer’s position Py = (Ty, X&, (2 ’8). The coordinates
are constructed asing the point P, = (T}, X}, X2, X3) which is the point at which a
timelike geodesic “dropped” from an arbit:ary point P = (T, XU A2 X3) intersects
the spacelike bypersurface orthogonally. The Riemann coordinates 7° of the point P
are given by

st =" (). (5.5)
where s, is the distance along the geodesic Py — Py and p* is the vector tangent to the
geodesic connecting Py to Py, at Py. These equations can be solved for the coordinates
y" using the orthogonality of p* to () and the identity efes, = oy (Minkowski
metrie) to give

W= st (Po) 0 —spte(Po). (5.6)

t
The surface of instantancity is then just the surface 7° = 0 and the preferred spatial
coordinates are given by

= b’_‘(.‘i(’%l. (5.7)
The preferred time coordinate ¢ of an arbitrary point P is given by the proper is-
tance along the timelike geodesic connecting P to Py, This timelike geodesic is also
determined by (2) with a different set of constants b and € = 1. The cendition that

this timelike geodesic is orthogonal to the spacelike hypersurface is

VeMto=T-1/e2e=-AT 41 = ¢ . b(l_AT' . (58)
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There is an arbitrary choice involved in how one solves these two equations for the
constants b and c. This freedom can be understood as the ability to rotate the
hypersurface of instantaneity through a reparametrization of the surface. The choice

which we make for reasons of calculational simplicity is that

b =1 = e~ MTo-Ti)c!, (5.9)

At this point it convenient to to introduce the variable 7,

. c-C
P=x-x= sf:’e”,o =52 (5.10)

We can now caleulate the metrie i terms of the preferred coordinates (f,x) by cal-

culating (T(¢..r"). X(t.x)):

= X; T [
+/ AT —" = + [ a 5.11
0 VeMle=1r 1~ Jn 7 1+ b2emM (5.11)
We also need to calculate t and s,
T dT .
5, = " —-———————,——-———-p’\”b_“ = (5.12)
T T
71 V1 +ble=M
One can now obtain the coordinate tranusformations
S At Ar At
cFT=To) coslhi( =) cos(— 5 P+ sinh(— 5 )
/\ s . A . ! /\f A
Y = X = 'l—_cosl.( > ) sin 2’) (5.14)

We can see here by looking at a particular ¢ =constant surface that the range of » is
now compact and the range 0 < 45 < 7 co. ors the entire manifold which was covered
by the original coordinates (T.X). It is now easy to put the preferred cocrdinates
into polar form.

o= rsin(8)sin(o)

2 = rsin(f)cos(¢)

o= rcos(f). (3.15)
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In terms of these preferred coordinates the metric is

ds® = dt* — ccsh?(ﬁi) dr? + isﬁn"’(ﬁ ) (da2 + sin2(0)d¢2) . (5.16)
2 A2 2

This result is of course no surprise to anyone familiar with different coordinatizations
of de Sitter space, given that the space was being coordinatized in terms of geodesics.
The point lere is not what the final form of the metric is as much as how these

transformations will change as our observer moves to a different point and the entire

construction is repeated.

5.3 Modes and initial conditions

In the coordinates constructed above, the minimally coupled massless Klein

Gordon equation is

1 . 1 i -
-\77/'0,(\/{7)8,C)+—ﬁ3,' (\/Eg’) 81'0):0, (5.1{)

where |g| and the g can be read off from (5.16). To quantize a scalar field on the

oo+

t = 0 surface we now define the positive frequency modes as those which satisfy the

initial conditions

ot = Avpl0.r.0.0)  and 90k, lizo = —iwx(0)Ax1,(0,7.6,8), (5.18)
where Axp, (0.7.0.0) are the instantaneous eigenmodes of the spatial part of the
Laplace-Beltrami operator, and wy (t)? are the corresponding eigenvalues:

L
Nz

Henceforth we write wa for wa(0):

0,‘ (\,/7/(]'J01) ‘4.’V111(t'7‘59\ é) = WN(t)2-4N[7,(f.7', 9. ¢)- (5.19)

/\2
wx = w0y (0) = || T NN +2). (5.20)
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The differential equations (5.17) and (5.19) must now be solved and the appropri-
ate initial conditions imposed. The positive frequency solution to these differential
equations which satisfies the correct initial conditions as just stated is

3, At
)} sech?(— 5

Ar

2 ) %

A
Q";t'l,,(t.'l'.(), O) = FNI)’IH(OV C) Sinl(?r)clld.ll [COS(
(LP

L 2+ N )\Qi%+1\,(0)—2i(2§+~(0)u)~
e 3 3 3
3 (24 8) (=P (0)@F,,0(0)+ P2 (0 QL ,(0)

2

SN he

N [tanh( /\; )] + MQ§+N [tauh(ig-)] ,) (5.21)

where

=]

~—

1

‘ (2+J\/)AP-l+N(0)—22'P§+N(0)w
Moo= ,
A2+ .N) (’"P,f+~ Q;%M,( )+ P l+N(O 2;+N(0)>
23t /TH NT(1+1)yT(L =1+ N)
Fy = . (5.22)
Vi JT(2+1+N)

Cm 2] are Gegenbauer polynomials and P;"[x] and @Q)'[r] are associated Legendre

S

functions. We can now write out the field which has been quantized on the t = 0
surface which corresponds to the geodesic surface passing through the point (Ty, Xg)
x N !

) = Z Z Z {I”\In@z\/,, (t.r,6,9) +l(’/w,,q7w,, (t,r.4, O)} (5.23)
N=0/!=0n=-1

Although these modes are not as simple as the modes resulting from some

different coordinatizations these are the modes which are chosen by the particle defi-

nition we have chosen. Normally one would introduce the conformal time and define

positive frequency modes in terms of natural conditions satisficd by the modes as

the conformal time goes to past and future infinity {14]. According to the procedure

adopted here this means of defining positive frequency would not be appropriate for

the observer presently heing studied.
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5.4 Particle creation

To investigate the particle creation in this universe, as observed by an observer
stationary with respect to the original coordinates (T, X)), we calculate the Bogolubov
transformation relating the annihilation and creation operators from two different
surfaces of quantization that the observer passes through. To calculate the coefficients

of this transformation we equate the same field from two different quantizations on a

common surface

Wt r0.0) =Wt r.6,0).7t1r.0.0).6(t.r.6,0),8tr,60,0)). (5.24)

Here W (1.7, 6. @) is the field written ont in (23) and Wy(t'. 7.6, ¢') is the same field
which has heen quantized on a second surface t' = 0. The “second” field is therefore
quantized for the same observer as the first but at some later time Ty with X, =
X'y. All the physics of the observations made by this observer are determined by
the functions t'(t.r.6.0). '(t.r.0.0).0'(t.7.6,9).0'(t,r,0,¢), and the derivatives of
these functions with respeet to 1. In this way the geometry of the spacetime via
the coordinate independent prescription we have used, determines the spectrum of
created particles. This is the reason for the comment at the end of section 5.2 about
the form of the metric not being as important as the transformations that gave that

form of the metrie. These functions take on a fairly simple form for the stationary

observer
' = %sinln"' [siuh(-)_—“zi)cosh(r) - (:Osll(?t)COS(-QI)Sillll(T)]
v 2 [ cosh( %) sin(4) }
A cosh( % ) cos( % )cosh!~) — sinh( %) sinh(7)
= 6
o = o where 7= %(Té - To) 15.25)

65



We calculate the Bogolubov transformation by “matching” the field and its
first derivative with respect tot at t = 0. This allows us to calculate the 3 coefficient of
the Bogolubov transformation which gives rise to the particle creation. In calculating
the Bogolubov /3 coefficient we are able to perform the # and ¢ integrals of the

spherical harmonics because of the simplicity of the coordinate transformations (5.25)

leaving

NN = “QZIJT/O dy sin®(x)Ryi(x)
(=iwx £l (VR () + 0 (F2l (W Rya(\)) lr=o.
(5.26)

where \ = & and \/ = 2=, For notational convenience we have split up the radial

and time functions as

Ry(\) = Fasin'(\)CE!, (cos(\))

At 3 t
9 N(t.auh(-;)) + A]Q(;:_J“\.(t.aull(%))) . (5.27)

+

v At
A = 50(:117(:_\2—)<LP

W= ke

In the next section we exawine the structure of 3 in detail; this examination is
simplificd by first noting that the exvression for 3 can be written in terms of an
integral running from 0 — 2«

HN. N = 1—'—\ U"d\sxn?(\)l?m(.\)

(micx £ U RN + 8 (F1 ) Run(\))) iso.
(5.28)

It is not difficult to show that this integral is symmetric about y = 7 which is why
we can write the integral in this way. This change will make our final integration by

parts more transparent.
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5.5 Total number of particles created

To show that the total number of particles created is finite we must show that
the Bogolubov transformation is Hilbert-Schmidt, namely,
S IB(N, N, DI? < oo (5.29)
NNl
Since the sum on the left hand side of this inequality gives the number of particles
created, this inequality, if it holds, implies that the total number of particles created
is finite aud that the Bogolubov transformation is unitarily implementable. To show
this one need only be concerned with the large NN’ and [ behaviour. As the sum
over [ is a finite siun and 3NN 1) decreases with | when [ is large then one only
need be concerned with the large N and N’ behaviour of (N, N'.1). By looking at
this asymptotic behaviour one is left with simpler functions that may be integrated
exactly. We now show that indeed when looking at the large N and N’ behaviour
the integrals defining 3 may be bounded by terms implying that |3(N, N’,l)!? drops
off faster than any inverse power of N and N’. This also implies that the finite sum
over 1 does not change this result as it only introduces a simple power of N. Using
the following relations [27] for the functions that the modes are constructed from, we

are able to obtain an approximate form of 3(N, N’ [) valid for large N and N',

gy F(2m+ n)em + é) 1, }i‘"? L-m
Cirlr) = T2n)M(n +1) {4(1 -1) Pm+n—-,:;(l)
/ 1 = 1 _
Plleos(r)] = -Ilrl,—(z——i-—%l—)— (;n sin(.r)) cos ((1/ + 5).1' - g + l—;i) for large v
yen \ lx(’/ + H + 1) T '% ( 1 T /J7!')
RS . : o LA :
Q! [cos{ )] v+ 1) (25111(.1')) cos | (v + 2)1 + 7 +5 for large v

by L
[(ar +b) = V27e ™ (ax jrth=3  for large a and x > 0.

-

(5.30)
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The expression for (2 now involves many terms but is still simpie enough to see what

is required

2r
B(N.N'.1) = /0 dx K {((A(A; x L+ Ay x M)+ B(B; x L + Ba x M)) M,

4+ (A(C)XL+Cyx M)+ B(Dy xL+ Dy x AM)N) (5.31)
where
A = cos (-I-E — cos™!( = cos(y) )
2 \[c:os(\')' + sech(r)?sin(x)?
- N cos™Y = cos\) - ))
\/cos( W)+ sech(r)2 sin(\ )2
B = sin (_I_)z — cos™!( = cosly) = =)
< \/(-T)s(\)' + sech(7)7 sin(y)°
— N cos™!( = cosly) T""'—))
\/('()s(,\ )"+ :s(l.ch(r)2 sin(y )2
M, = cos (N"ir ~ N'ros™ cos(xJsinh(r) )) sin (—1—71 D N,\)
\/l + cos( y)sinh(7)? 2
N, = sin (1—' -\ - '\\) sin (N'w — N'cos™ cos(x)siuh(r) q))
2 \/1 + cos(; %mh(r)'

A = 16(1+1)AN'T(2(1 + I))I‘(% + 1) sin(\ )sinh(7)
Ay = =8(1+41)AN'mcos(\)T(2(1 + 1))r(‘§’ + 1) sin(x )sinh(7)?
B, = —dcosh(t)* F(g + Hr22+1) (—2iu:;~svcl‘1(7')2 + 2Xcos(y ) tanh(7)

+ 1hcos(\)tanh(7) + AN’ cos(\ ) tanh(7) — 2icos{ \ )Qth,anh('r)z)
B, = 27F(3 + OL(2(24 1)) (—2X cosh(T) — AN’ cosh(7) — 2i cos( \ )wnsinh(T)

+  IXcos(y ) cosh(T )s.mh(‘r)2 - 2iC()s(x)3wAvsinh(T):’)
C, = —=16(1+0AN cos(\)T(2(1 + 1))F(; + I)sin(x )sinh(T ))
C, = -8(1+1IN'zl(2(1 +I))F(g— + 1) sin(y)sinh(7)
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D, = 4F(g— +0O)I(2(2+1))(~2Acosh(T) — AN’ cosh(1) — 2i cos(x )wnsinh(7)
+ licos(y)? cosh(7)sinh(7)? = 2icos(\ ):‘w,\rsinlx(T)s)
D, = nr(g- + DT(2(2 4+ 1)) (= 3iwny + i cos(2x )wny — tcosh(27)wy
— icos(2\) cosh(27)wn + 2X cos(y )sinh(27)
+ {Acos(x)sinh(27) + AN’ cos(x)sinh(27))
22-1 /TH NVN'VT+ N'\/ZT(1 + 1)’T(§ +1)

K = '
HUNT(2(1+ D)PP(2 (2 4+ D)(1 + cos(xsinh(r)?)

(5.32)

The exact form of the above expressions are not important to understand the large N
and N’ behaviour of | 3(N. N, 1)|?. What is important is to notice that the expressions
A1, Ay By, By.C,.Cy, Dy, Dy, I\ do not change as far as their N and N’ behaviour is
concerned when differentiated with respect to x. This implies that one can integrate
the expression by parts indefinitely to observe that the expression must droy> off
faster than anyv inverse power of N and N’. A typical term. after writing out the

trigonometric functions in terms of exponentials, reads

/2: Ay eE M EN T N cosTHA PN N ). (5.33)
JO
Here
) = cos(x)
ri\) = _ 2 2 s v)2
\/cos(\) + sech(7)"sin(x)
cos(\ )sinh(r
qi\) Rl

\/1 + cos(y, )2sin11(r)2.
(5.34)

In the above expression the exponentials represent the contributions from the combi-

nations of A. B. M. N, and F(N. N',\) represents the contribution from the functions



A, Ay By, By, Cy,Ca, Dy, Dy . Equation (33) can be rewritten

20 d( (,:tu‘\'ﬂ\eii;\"(cos"(p):{:cos"'(q),\)
/0 +iN FiN(—A=—=2 t LD

\ﬂ_pz dx \/l—q’ dx

Thus an integration by parts produces a term which drops off like,

F(N,N'y). (5.35)

d F(N,N',x)

v . : 1 d d
dy :tzN:FzN’(\/l_pzzf:i:‘/l'_qQ#

Because the behaviour of F'(N, N', x) for large N and N’ is no worse than F(N, N, x)

(5.36)

this procedure can be repeated indefinitely showing that S(N, N’,l) drops off faster
than any inverse power of N and N’ for large N, N'. We can then conclude that
the particle creation is finite and that the Bogolubov transformation is unitarily

implementable.

Conceruing the I dependence in (N, N',1) we only have a finite sum for the
total particle creation. It is casy to show that if one uvees the same approximations
(5.30) for the gamma functions involving the I's which are valid for large {, 3(N, N',1)
drops off for large I as I increases. Thus. the probability of finding particles created
with angular momentu ! decreases as [ increases. This means that when one does
the finite sum over / the result will not grow any quicker than N. Therefore because
the particle density in N and N’ drops off faster than any inverse power of N and N’

the total particle creation remains finite.

5.6 Conclusions

We have calculated explicitly the particle creation observed by an observer
which is stationary in 3 + 1 de Sitter space. We calculate this particle creation by
calculating the Bogolubov transformation relating the annihilation and creation oper-

aue o« rom two different quantizations. These different quantizations are constructed
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using the same procedure on two different spacelike “~rfaces. Physically this particle
creation can be understood as the particle creation seen by an observer moving from
one of thesc surfaces to the next. By looking at the large momenta behaviour for
the Bogolubov transformations we are able to show that the transformation is uni-
tarily implementable and therefore the particle creation is finite. Because B(N, N',1)
drops off faster than any inverse power of N and N’ it may be that it drops as an

exponential suggesting a thermal spectrum.

It should be emphasized what this calculation is not. Many calculations have
been done [11] calculating the Bogolubov transformations relating the creation and
annihilation operators due to two different coordinatizations of similar spacetimes.
One coordinatization usually covering the entire spacetime and the other only covering
a portion of the spacetime. These calculations often use the staric coordinatization to
define particles relevant to an observer who is at the origin of the coordinate system.
As the static coordinate system has a horizon this horizon is understood physically as
being the causal boundary beyond which the detector carried by the observer cannot
be influenced. This unfortunately does not allow for true particle states such as those
which we understand from quantum field theory in Minkowski space to be analysed

in a manner which can appreciate their non-lecal nature.

The procedure advocated in this thesis requires that one use the geodesically
complete coordinatization as the spacetime is spanned by geodesics in the pre’ iy
coordinates. In this particnlar example this means that the preeired coordinats L on
is compact. It is this compactness that allows us to integrate by paris the expression

for the total particle creation and show it is finite.

In spacetimes where there is a real boundary present such as a horizon one may

have to impose boundary conditions at the horizon [29]. Comparing coordinatizations



where one coordinatization inplies a boundary and therefore does not cover the entire
manifold has been investigated in a clear paper by Salaev and Krustalev {15]. In this
paper the authors conclude that either one has a boundary in the spacetime or one
does not, there is no in between. The alternative to this is that the observer somehow
moves from one spacetime to the other, an issue that has been addressed earlier by

Massacand and Schmid [8] and argued to be unreasonable.



CHAPTER 6

The trace anomaly

6.1 Introduction

One of the more interesting results of the study of quantum field theory in
curved spacetime is the fact that the expectation value of the trace of the stress
tensor of a conformally coupled ficld does not vanish. It has an anomaly. This
trace or conformal anomaly. as it is known, was first ncticad by Capper and Duff
[30] vire a dimensional regularization s eme. Since then many other regularization
procedures have been used and when used correctly lead to same result [31],[9],[14].
Unfortunately, as anvone who has ever calculated this trace anomaly knows, the
computations required are rather lengthy and certainly less than illuminating. On
the other hand. if one has a particle interpretation the problem can be handled more
simply. This fact was first exploited by Massacand and Schmid [8]. In this chapter
we adapt their method to a computation in 141 dimensions using only the following
two input.

1) The frame components of the stress tensor at a given point are, for two frames

hased at this point. related by a Lorentz transformation.

2) The vacnum expectation value of the energy momentum density (relative to a
given frame) should vanish. Thus. the vacuum can have pressure, but no energy or

motnentin,



In general there would remain the vexing question, “Which vacuum?” The
answer we propose is to use the coordinate independent definition of Capri and Roy
that has been used throughout this thesis. In seciicn 6.2 we give a brief review of
this construction in a general 1 + 1 dimensicua  .~cetime and apply the result to a
calculation of the vacuum expectation value of the trace of the stress tensor in section

6.3. Our conclusions are set out in section G.4.

6.2 Coordinate indenendent definition of tirne and

vacuum

In a globally hyperbolic spacetime one can choose a foliation based solely on
geodesics. Thus. given a timelike (uuit) vector N, {Fy) at the point I3 one establishes
a frame (zweibein) -« 77y witl conponents:

= N(P)
= pIy), (6.1)

where p#(Py) is a unit vector orthogonal to N#(Py) at Py. The spacelike hypersurface
(line) consiting of the geodesic through Py with tangent vector p/(Fy) defines the
surface + = 0. The “iime™ t corresponding to an arbitrary point P is the distance
along a geodesic P, — P which intersects the line t = C orihogonally at some point
P, . The geodesic distance Py — P; along the line t = 0 vields the space coordinate .
These geodesic normai coordinates prove to be very useful since in these coordinates
the metric hecomes

ds® = dt* — a?(t. x)dr? (6.2)

wlere



dc

dJo ‘)
-37|:=(; = Z;I'ZU = 0 = %;IPO = wh’o- (6.3)
Also,
2 9% .
;—_é-t? =R (6.4)

where R is the curvature scalar. We assurie that the range of x is over the whole real
line.

The field equations in these coordinates, for a massless scalar field read:

1
—=2 (Vi 2,)0 = 0

9o ado o' De 1 0% .
FITIN T Wl v : (6.5)

The positive frequency moc.es o of this fietd are obtained by solving these field equa-

tions with the two iuifial conditions

1) Op(0.7) = exp(—iper) p>0. (6.6)
4rp
tlere we e ¢
¢ = +1 corresponds to left travelling waves,
¢ =2 =1 corresponds to right travelling waves, (6.7)
aud
. 00, ,
L 0; If=U = p0]).(|l=0~ (68)

A useful Ansatz to implemen’ hese initial conditions is:

1 .
t.r)= xp(— .
0. (1.1) =~ exp(~ipf.(£.7) (6.9)
where f, is real. Equation (6.5) th 'u vields ihat
af. _ €09f. ,
= =< £.10)
gt a dr (‘ '

=1
(4]



The initial conditions become

fl0.z) = ex (8.11)
and near t = 0
ft,r)=t+cr. {6.12)
The quantized field is row given by
P(t Zﬂ/ d(ep) ¢p((t Tiape + @, (L, r)up() ()
with the vacuum defined by
epe0 >= 0. (6.14)

These modes hiave heen normaiized such that

(Ope.Oqe) = ie/ dv\/y (C)i')_((f..l') ) @q‘,(t,.r)>

= Pty oo(1réai5—e>q)( wp—q)f(t,x))

471'\/])_ e

vt = Of o
= :1“ \/F,I/ (IIT"\])( (:, - (l)j’(f“,.))

p+yq
= 2md(p —

N (p—4q)
= b(p—q). (6.15)

€.3 The trace anomaly

We begin with two “observers™ with tangents to their world lines given by

N = (1,0) and NA(Py) = (cosh(y), SO (6.16)

The c¢crresponding fran.
e’ = (1,0) el = (o,é) (6.17)
P feosh(). N = iy, S22, (6.18)



Correspouding to this the metric has the two forms

ds= = dt? — o®(t »)d2? = di? — a*(t. 1).d7? (6.19)

We can solve for the positive frequency modes in the barred as well as in
the unbarred coordinates to obtain she corresponding quantized fields ¥(£,z) and

U(t,2). Their respective sets of annihilation and creation operators are (&p.c,a;,,,)

and (a,,,al,) .

P

At P,. the point with coordinates (0,0) in botn coordinate systems, the two

fields ~aincide, as do their first time derivatives. Corresponding to these two fields
we have their respective Fock space vacuums |0 > | |0 > defined by

a, 0>=0 . a0 >=0. (6.20)

Any bilinear expression in the field operacors which, for physical reasons, should have

vanisiing vacunm expectation value is defined iy normal ordering with respect to its

own vacuunt. Thus since we expect the vacuun to be the state of zero energy and

momentum density we require that

<0 : TY% |0 =0 (6.21)
and

<0|:T% |0 >=0, (6.22)
where,

Trs,é — c"’se”f;‘Tw

T4 = et (6.23)

Furth-rmore. since the barred and upharred fames ##¢ | e#¢ are related by a

Lorentz transformation
p cosh(y) sirh(y)

" sinh(y) cosh(y)



we have that at

L T49 lp = A'EA”& T8, | P, (6.25)
sc that in particular
. 700 |, == cosh¥( TOU|, + 2cosh(\)sinh(y): o |po + sinh?{y) : Tii . |p, -
(6.26)

Taking the vacuum expectation value with respect to the barred vacium of this

equation, anc using (6.21) we have

<O : 7% :],,10 >=sink?(\) < 0] : TV [1]0 > (

(=]
N
-1

Since < 0] : 799 : |0 >= 0 we find that the vacuum expectation value of the trace is:

1

sinh?(\) <O:TH:Inf0>

(6.28)

<01,y T3 |0 >= - < 0] : T |0 >= -

To evaluate this expression we have to take the term : roo. |#, Which has heen
normal ordered witli respect to the vacuum |0 > | rewrite it in terins of the operators
(€pes (_IL_() and commute the terms so that the resulting expression is normal ordered
with respect to the vacuum [0 > . To do this we write out the term : T00 . [ 14
explicitly. A simplification due to the use of equetwn (6.10) occurs so that only
time derivatives of the field operators appear. Also since the fields ¥ and P are just
differc i wavs of writing the sane field we may write

¥ OV " oY oV y /d ) aq/aq),,,l + 9% ”
= T e e T & PG o et r~o: fo:
(6.29)

To simpiify the poteiion we drop the {p, . but keep in mind that these equations only
apply at the point Py Also we only evaluate this expression for a fixed e. Thus,

"" x< x 13 aé( o - ae—’( - 8“"‘.71_1
:T,U( = / {I(e‘p)[' dleq)| (-—0—;———(1,1‘, + —-—a; 1‘7” IO -—ét_

JO
a¢‘;’" (lf g 00_"/" —1 ad):/ ¢ =1
ot ot '



The operators (., a;,‘,) are related to the biured operators (a.,, (7.1_‘() by a Bogolubov

transformation
Ui = /d(eqxak.q&q.t + ,B;.‘qfl;'( (631)

where

Orgq = (¢k.c ’ d-)q,t)
ﬁ‘:.q = (¢Z~_¢ ) éq,( ) (632)

in our evaluation of the vacuumn expectation value, the only terin of interest is the

c-number term that results from the co :rsutator

‘—"q.("_-#i-.. i :.—".«I“(aq‘t’ 80 b(k = q). (6.33)
Thus, we get
<O T g > [ deppiten 22 2ee g ) (6.31)
-4y, .|/,3.) (p 61 Of Of py c.C.|. .

These terms are evaluated by replacing 3 by its expression (6.32) and interchanging
the order of integration to first do the momentum integrals. In doing so the only

regularization required is to define an integral of the form
oC
/ dvrexp(irp). (6.35)
0

This is accomplished by replacing p by p+ié . No further regularizations are needed.

We first write out /7 as
B, = u/_wdy(cﬁ;,( )0i;.(§) — 0105 (1), () (6.36)

We now perform the momenta integrals first and use the identity

1 1

(r—y—16p (r—y+ib) (6.37)

"y — ) =
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Now using the relations

Tt i
MO T TR T 2P 3

liiq 92 ( T G y) Voo 2007 3eUM? g 29
y—r ¥ (f(x) —f(y))?) (f7 20 (M Sy
and evaluating everything at I the final result is:
<0 :TO: |10 >= L—’3|P°
] ¢ |f I >= 247 —L"Ip
So we only have to evaluate these terms. Now,
0, _9j,05  0f.
dr ~ 0r dr O O
and as initial conditions at Iy we have
ox or
O—II[) = cosh(\) . 5—[,, = sinh(y ).
Furthermore. we also have that
0 oy af. af _9f.
fl(O..I') = € . 7)—)‘-—“’0 =1 , —é—)—_—lpu = 6“711’0 = €

p, = 1. Also. as we stated carlier.

since &

da da
?f lln = a-llo = 0
J*a _ d°a

— = =
air = gmin )
and
d%a R
aEm =g

By repeatediy using the barred version of equation (6.10) , namely

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.40)

(6.47)



as well as (6.41), (6.42) and (6.44) we find:

f. f., _ 8f
i 1P = 3iaz 1P = Bz lp, =0 (6.48)
as well as
a* f 3]} 620 6}'(
973 3,-3 5l + 81-2 o7 —=|p = (6.49)
Thus we arrive at the result that
(')Sf_( 62 = R
—a_tTll’o - ap IPo = EIPO (650)

This result now allows tis to obtain that

T, Pr O 8081 2,07, af oz 0%f, of ,

T = [0.:-”+m0,1’ 57 o ] rlr+ (5o +eq)5m (57) I
Ry O pi _
= —Ehlll]l( \) + pe 3 € 53 (6.51)

To evaluate the last two terms in this expression we use the fact that (¢, ) as well as
(f,7) satisfy the geodesic equations. but have different initial data on the spacelike

geodesic that passes through Py. These initial data are:

dr dt

olm=1 o n =0 (6.52)
17 It
‘_'_|,, = cosh(\) . %IP(, = sinh(\) (6.53)

The geodesic equations read:

d?*t _ da (lz)

ds?2 @ ot (ds

d*x 20adxdt 10a dr,

A2 = T 0tdsds adr ds (6.54)
d?t _ oa di ,

s “ ot ‘ds’’

f_':. = 2 aag‘}.ﬁ{ _. _1._6_@_ i‘? 2 (6.55)
ds? a0t dsds aor
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By differentiating these equations as well as using (6.42) we find that

9% |
92 2|P0 - 0.172IP° =0 (6.56)
and
&3t 0%a R . ‘ N
02 gl = - S I sinb(x) cosh’(x) = — 3 sinh(1) cosh’(y) (6.57)
25 01‘
ool = aﬁ,|p cosh(x ) sinh?(y) = = rosh(y ) sinh?(y). (6.58)

Combining these results we obtain that
< 0: 7% . |r]0 >= —ifexp(e\)siuh(\) (6.59)
‘ ’ 487 .
Adding the results for both values of € we obtain
<O :TY : |p)0 >= _ A sinh?(1 ) (6.60)
' B 247 ' '

Inserting this into equation (6.27) we finally obtain the vacuum expectation value of

the trace of the stress-energy tensor, namely 53 o

6.4 Conclusion

For the ease of a conformally coupled massless scalar field in 141 dimensions it

is el sispler to evaluate the trace anomaly using a particle picture than to avoid
o7 e only regnisiization required is very simple, but it must be this very simple
ETREETS 1 hai sithees 1 break the conforival symmetry and thus give a non-zero

vesir for the vacuum expoctation valve of the trace.
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CHAPTER 7

Conclusions

In the preceding chapters we have presented a number of calculations, some
with results which were to be expected, others that some people may have trouble
believing. In chapter 2 a static model universe was examined for particle creation as
observed by an observer static with respect to the static coordinates. It was found
that by using the prescription for decomposing a field into its positive and negative
frequency parts. as advocated by this thesis and introduced by Capri and Roy (7],
there is particle creation.  Although mawy calculations have been performed using
the static time with which to define particles, this approach can lead to ambiguities.
‘e example of this ambignity was illustrated for the case of Rindler space where
there exist two static coordinatizations, one based on the Rindler coordinates and
the other based on the usual Minkowski coordinates. In this case the geodesically
complete coordinatization. which is the one chosen by this procedure. chooses the
Minkowski coordinatization. The interesting ramification of using this prescription
in other mwaodels is that the static coordinatization may not be the preferred coordi-
natization chosen by the prescription. This is exactly what happened with the model
investigated in the second chapter and it is shown that the observer in question does
indeed observe particles beisy created. Unfortunately due to the complicated nature
of the Bogolubov cocfficient calculated we were unable to calculate the exact spec-
trin of created particles and the analysis to determine whether the particle creation

was finite or not was mconclusive.
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In hopes of understanding what effects anisotropy has on cosmological parti-
cle creation an anisotropic model was investigated in chapter 3. It is thought that
anisotropic effects may lead to particle creation which has a damping effect on the
level of anisotropy. These effects could then possibly explain the large degree of
isotropy observed in the present universe. The anisotropic model which was inves-
tigated in this chapter was just a model generated by the addition of  2-plane to
141 deSitter space. This model is therefore a universe of constant curvature which
expands in one of the three spatial directions. Particle creation in this model was
also investigated for an observer who was stationary with respect to the original co-
ordinates. The # Bogolubov coefficient which relates the two different set< of modes
chosen on the two different spacelike surfaces was analysed. We found that the square
of this coefficient which describes the number of particles created could be expressed
as an infinite series. Each termn of this series represere « different diserete shift in the
cnergy spectrum of ereated particles. The diserete shift present in cach term is made
up of integer multiples of the one natural length scale of the geometry, that being the
scalar curvature. It was found in this analysis that the addition of the 2-plane played

almost no role in the results calculated.

Having not been able to calculate conclusively the total particle creation in
a particular model universe we then investigaied the 141 deSitter space model in
hopes of showing that the total particle creation is finite. The particle creation as
observed by an observer who w:s again static with respect to the original coordinates
is calculated and argued to be finite. This argument is based on the compact nature of
the variable of integration in the integral expression for the sq++ - f the Bogolubov
3(m,n) coefficient. Due to this < r.nact nature one is able o integrate by parts
indefinitely and one finds tha. <u- < wession for this object drops off faster than any

inverse veser of mor 1. This then implies that the double sur of the square of the
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3 Bogolubov coefficient will be finite and therefore the total particle creation will be
finite. If in fact the drop off of this object is exponential in nature the spectrum of

created particles could be thermal in nature.

Calculating the particle creation for a stationary observer in 3+1 deSitter
space was only slightly more complicated that the calculation in 1+1 deSitter space
after a convenient choice of some integration constants was made. As in the 1+1
dimensional case the compact nature of the radial coordinate, when the metric is
expressed in polar coordinates. allows one to show that the particle creation also
drops off faster than any inverse power of the variables in question. Once again if this

actually drops off as an expouential it could be consistent with a thermal spectrum.

In the last chapter the trace anomaly is calculated by modifying a method
of calculation first snggested by Massacand and Schmid (8] to the particle definition
that has been used throughont the thesis. This calculation finds the usual result for
the trace in a general 1+ 1 dimensional spacetime. This calculation is considerably
more straightforward than the usual calculations and beyond normal crdering only a

simple regularization is required



Bibliography
(1] E. Schrodinger, Sitz. Preuss. Akad. Wiss., 105, (1932).
[2] E. Schrédinger, Plysica 6, 899, (1939).
[3] L. Parker, Phys. Rev. Lett. 21, 562, (1968).
[4] L. Parker. Phys. Rev. 183, 1657, (1969).

[5] S.W. Hawking, Naturc 248, 30, (1974) and
S.W. Hawking, Commun. Math. Phys. 43, 199, (1975)

[6] W. Unrul. Phys. Rev. D 14, 870, (1976).

[7] A.Z. Capri and S.AM. Roy, Modern Physics Letters A, 7, 2317, (1992), also
International Journal of Modern Physics A, 9, 1239, (1994).

[8] C.M. Massacand and C. Sclinid, Annals of Physies (N.Y.), 231, 363, (1994).

[9] S.A. Fulling. Aspects of quantum field theory in curved spacetime, Cambridge

University Press, (1989) pg 145-140.
[10] G.W.Gibbons and S.W Hawking, Phys. Rev. D, 15, 2738, (1977).

[11] O. Nachtmann. Commun. Math. Phys. 6, 1, (1967),
E.A. Tagirov. Ann. Phys. 76, 561, (1973),
. Candelas and D. Raine. Phys. Rev. D 12, 965, (1975),
J.S. Dowker and R. Critchley. Phys. Rev. D 13, 224, (1976).

[12] A.S. Lapedes. J. Math. Phys.. 19, 2289. (1978).

86



[13] D.J. Lamb and A.Z. Capri, Classical and Quantum Gravity. 12, 413, (1995).

[14] N.B.Birrell and P.C.W.Davies, Quantum felds in curved space, Cambridge Uni-

versity Press, (1982), pg.134.

[15] P.K. Salacv and O.A. Krustalev, Translated from Teoreticheskaya i Matematich-

eskaya Fizika. 91, 217. (1992).

[16] S.A. Fulling, Aspects of quantun field theory in curved spacetime, Cambridge

"Tniversity Press. (1989).
yentseh and A. Najmi, Phys. Rev. D28, 1907, (1983).

5. Witten. Phvs. Rev. D44 (1991) 314. The metric studied in this chapter can

(1o

be obtained after some manipulation of the metric in equation (22) of Witten’s
paper.

[19) R.B.Maun, M.S.Morris and S.F.Ross, WATPHYS TH-91/04, unpublished

[20] G. Labonté, Can. J. Phys., 63, 1£33, (1975).

[21] Ya.B.Zel'dovich and A.A. Starobinski, Soviet Physics JETP, 34. 1159. (1972).

[22] B3, Harmis and Y. Leblane UAHEP-939 hep-th /93068030.

(23] S. Massar ULB-TH 09/93. hep-th/9308085

[24] S.Niassar, R.Parentani, R.Brout, ULB-TH-1/93, hep-th/9303147

[25] A. Salem and P.T. Mathews. Phys. Rev. 90. 690, (1953).

[26] D.J. Lamb. A.Z. Capri and M .Kobayashi, Alberta Thy-52-93.

[27) M. Abramowitz and LA. Stegun. Handbook of Mahematical Functions, (Dover

Publications. Ine. . New York, 1972).

[0}
~1



[28] relation 8.10.7 in [27]
[29] D.J. Lamb, A.Z. Capri. and S.M. Roy, Modern Physics Letters A, 9, 2857, (1994).
[30) . Capper and M.J. Duff. Nuovo Cimento, A 23,173, (1974).

[31] L. Parker. in Recent Developments :n Gravitation, M. Levy and S. Deser Eds.

Plenum, New York, (1979).

88



