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ABSTRACT r

The kinematic aspects of Dirac spinors are
studied. All the properties of a totally arbitrary
system of gamma matrices are derived wighout ‘sorting
to the theory of finite group representations or the
theory of Clifford algebras. An algebrajc method is
then devised to find explicitely the similarity trans-
formation arising in the fundamental theorem of gaéma
matrices. Next the Lie group of spinor transforlﬁ%ionl
under the action of the orthochronous Loxentz group is
studied in detail. The work ends with a thorough ,

I

analysis of all the algebraic relations among the

Dirac bilinears.



PREFACE

As described by the title the object of this

simple work 18 the kinematics of Dirac spinofa. Ne;dlesa.
to say itiwas meant as a review. However it ;s ho;;d %Pat
the final product is not completely devoid of oriqinnliky. ;

VA Chapter I recalls how one is iod to the Dirac )
equation and its associated gamma wmatrices. The relativis- :
tic vaariance of the equatiop, discussed iin the second "
section, provides the ghynical motivation—for the fund;iow-‘

4

tal theorem of gamma matrices. )
,’() ©
The first section of chapter II is a sRandard

presentation of the proportio; of products of ?ag-a iltricz!.
The second section discusses the degree and rﬁdqcibility of
tho.rnptolontation' of the fundamental relations )
{Yu,Yv} = Zg“vx. The eventual o;iqinality of tﬁo diocunlionj
¢elies in a complete avoidance of the thdary of finite group
representations or the theory of Clifford alq;Prnl, The'
resulting treatment is self-contained and QldIOACCIYp‘Fhil
might be of some pedagogical iné.tllg- .. ' ;

| Chapter IxI do;i9 vitﬁ the fundciontui theoren of
gamma uatxicco.. The ulunl_proot“il -;difiqd. lioding to a
thortof-and perlaps mors cldquut one. ‘80;0 o;;ionf;ry Eonlc-°
quincc- of the fundaméntal choognn are then éilcunoodg for
instance. it {s shown Eh;t'thcr"oslotl no system of rinl

.
A

gamma matrices.

-— v A v .



while the main result of chapter III asserts the
existence of a certain nog-singular matrix S connecting

two systems of gamma matrices, it says nothing about the

v

I
§

explicit form of §S. It is the aim of chapter IV to try to}
fill this gap. |

Chapter V discusses in detail the tranlfo;mation
of spinors under orthochronous Lorentz transformations. The
Lie group sf whose' elements are those transformations is
carefully studied. Several different ways of describing its
elemeﬁts are obtained. It is fiAully concluded that the sub-
group S: corresponding to proper Lorentz transformations is
isomorphic to SL(2,C). g

Chapt?r VI deals with the tensors obtaihed by
quadratic combinations of spinors. These inclpdo a scalar
ani a pseudo-scalar, a vector and a pseudo-vector and a
twice contravariant antisymmetric tensor. These objects
are not independent of each othof. Covarilpt identities
other than those given in (Pauli [1936)) are derived and
used to provide a complete solution to the question of the
aiqebtaic depondenc; of the tensor components. This analysis
is restricted to the case whorq V is an ordinary spinor and

not a field-operator. S

. vi 4 ) ’ Com
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3" CHAPTER I

- ‘ .\‘-
THE ORIGIN OF DIRAC Y MATRICES

(1) The Dirac equation

L
The Dirac Y matrices arise naturally when one seeks
a relativistic equation for the wave function of an electron.
We suppose that this wave function y is a function from
spacetime into CN for gsome N and wé are looking for a
differential equation describing its behavior. To have a
close analogy with the Schroedinger equation we want it tc
be first order in time. 1In order to be invariant under
Loreﬁtz transformations it will have to be of kirnt order

-

in the space derivatives as well. The most general form of
such a linehr homogeneous equation with constant coefficients,
expressing the time derivative of § in terms of the space

derivatives of Y and of y itself is clearly:

2+ oF ak+1;‘-°-e)w-o (1.1)
ax° dx t *

where ak and B are NXN complex matrices and k runs from 1 to
3. The xk'l arz‘thc space coordinitcl and xo = ¢ct. The

constant in front of B takes care of the dimensions appro-

priately if m is a mass. To be consistent with the tolltlvii-'

tic energy-momentum Qelntion !2 -'p,c2 + uzc‘ ve requize

that § satifies the Klein-Gordon oquntioh as vg}l; 31-;10

/
multiplications give:



-
> L -
4
( 80 _ ak Bk _ imc 8) ( R ak . , imc 8)
Jx dx + dx 3 x )
2 ) 2 2
. s - Lia*a® & afa ) Bk k) _ imc (akB . Bak) Bk m ; B2
o Ix. axT % 3 x t
7% -
Upon requiring ,that -
o
{riar} '_'29krI, {ak;B} = 0, 82 = I (1.2)

where {A,B} = AB + BA;(g"") = didg (1,-1,-1,-1), this

differential operator reduces to the Klein-Gordon operator

12 , p2.2
= - V. -gg—). Wwhence, wheh conditions (1.2) are

-~ O .
Jggosed, any solution of (1.1) is a solution of the Klein-

(

Gordon equation.

For the pYpose of studying its relativibtic

invariance, eq. (l.1) is more conveniently written as:
(iy"s - 2y = 0 (1.3a)
S
where Yk z Bak and Yo =8 (1.3Db)

The relations (1.2) are then equivalent to

?

Y.¢V) « 2¢"V1, u,v = 0,1,2,3 - (1.3¢)

) ,
A system of 4 complex qquaie matrices {Yu}\lltiofyiqq this

last equation will be called a system of Y Jltticcl. Since

. [}



L d

thelr square is +1, Y matrices are non-singular. Another

.

1mmediate con§e§uence of (1.3c) is that the order N of

Y matrices has to be even: det Ylyz = (-1)N det'\(zY1 = (-1)N

2
det YlY , from which (-1)N = 1. More will be said about
, <
this later.
3
(2) TNe relativistic invariance of the Dirac equation
From now on we will take units in which c-ﬂ-l.
4
Eq. (l.3a) then reads:
(-iY"3 + my = 0 (1.4)
> u .

The "interaction" with an external electromagnetic
field of 4-potential Au is acHieved through the so-called

minimal electromagpetic coupling in which P, s iau is

replaced by pU - eA . = iDu,kthat ég D = 3u + ieAu,je(<o)

i U
being the charge of the electron.. Wh.ncc'in the presence of

an external electromagnetic fheld, ‘eq. (1.4) becomes:

a
T4

efo emy=o T e

D' 23 + ieA
"R I

bd 1
Ed

We want to find a transformation law for ¥ such that eg.
({1.4') remains invariant under orthochronous Lorents
transformations. If R is sych a Lorent:z ctaﬁuf&r-atgqn it

is assumed that the corresponding tran-tor-atiou.*ior'O is

A
L[]

f:linear: \

l")_.



A S N T A b det & # 0O (1.5)

l
rewriting (l1.4') i1n terms of y and

[
x
o
o

Futtimg y

" yields:

-1 . uo-1
(-1 (s vPe Ty +(sﬂpyv ST )en s mlyt =0

M gyf
Thi1s will bte 1dentical in form with (1.4') if and only if
~ - —l ’
97 2 0P yY = 5T s (1.6)

-

But it turns oyt that the 90'5 are also Y matrices:

A0 a (o]
{?O,Y(} - ° §l {Yu;Y ” -2Qp Qo unI = 290 I
U \Y P U \%

Therefore the inv;riance of the theory will be guaranteed

1f we can show that any two sets of Y matrices are related(,
by a similarity transformation as in eq. (1.6). In the
coming sections the existence of such a similarity trdnsfor-
mation will be proved in a way which, to our knowledge, is

original to a certain extent. R

/
be i t und -
The th$0fy ought to be invariant up/rr“!pace time

<

translations as wéll. This is achieved by lektinq simply
v'(x') = Y(x) under the translation x{ = x + a.
Besides equation (1.4) wve will) sometimes refer to

the so-called adjoint equation. The adjbint ¥ of ¥ is Vefined

by

y

[ ’



"0 v \Y (1.7)

Frovided that the y''s are unitary equations (1.4)

and (1.4') are easily seen to be equivalent to the following

egquatiocns for w:

+ m) = 0 (1.8)
iy’ ) = 0, D = 3 ieA (1.8%)
Vv = 0, z - ie .8
vity byem U b v

N

,/’ From this equivalence it is clear that the
invariance of equations (1.4), (1.4') implies that of

equations (1.8), (l1.8').



CHAPTER 11

GENERAL PROPERTIES OF Yy MATRICES .
. » I .

The aim of this chapter is to investigate the
prorerties of a geﬁ€¥a1 system of Y matrices. The firgt

part studies essentially the properties of their Products,
A

This 1s completely standard.' The second part studies the =~

degrees and reducibility of all possible representatfona of
4

. \Y)
the relatibns {y",y } = 2¢"V1. uUnlike the first part it

might be original. This is because we have found a way of

treating these questions without using the theéory of

representations of finite groups or the theory of Clifford

algebras. Thus our treatment is self-contained and

elementary.

(1) Products of Yu's

Let {YU} be a system of arbitrary NXN Y matrices.
Out of them we construct¢§ﬂe following sixteen matrices

which will play a great role in our considerations.

Table 1 List of the matrices YA

. I '
° 1 Y? 3
YlYo Y2 o Y3Y6 2*3 Y’Yl YIY?
e RN AR A e S A% A 5
70711273575




We will denote this set of 1¢ matrices by [ and refer to its

. A
memters by the symbol YA, A=1,...,16, The 1nverse of Y
will Le denoted by YA' Indices on the YU's will be raised
and lowered with respect to(quv)= diag (1,-1,-1,-1). Notice

+
that the Y"'s are unitary if and only if v Yu- We also

adojpt the following notations:

u v .
Sl YT v if upy
0 otherwise
: YAYUYY if A,u,v are all different
Y[xuvl ‘ Y
: ) 0 othervise
S evXel o s ' R
Y z CUVXD-Y A
vherg €hvdp is zero if u,v,A,p are not
, all different and is otherwise equal to
- 01 2 §l %
. the sign of the pergutation (u N p).
, 0123
Whence 60123 l=-g¢ \
o¥V = Y[uv] .

All these quantities are cbmpletely antisymmetric with
respect to their indices.
Our set I has remarkable properties which we now

N

proceed to derive,



Proposition (2.1): The square of any member of [ is I or -1I.

Proof: This is an obvious consequence of the fact that the
square of each YU is +I and they all anticommute.
In our table we have arranged the YA's in such a way that
all those with square +I are on the left, the others on the
’ .

right.

Proposition (2.2): The product of two mefbers of I' is, up

]
to a sign, again a member of [:

A B C(A,B)

YYo= ey

AB €apg = + 1 (2.1)

AB

Proof: This isyag2in an obvious consequence of the anti-
commutation of the Yu's and the fact that their
square is +I.

and C(A,B) ippearing

Proposition §2.2 ): The functions CAB
in eq. (2.1) are the same for all systems of y matrices.
Proof: This is trivally true by construction.

Equation (2.1) together with the apparently innocent
proposition (2.2') will be the key to our proof of the.

fundamental theorem of Yy matricot.k

Proposition (2.3): All menbero&gf I other than Ivhave -

4 . Al -

vanishing trace.

Proof: We first prove it for the Yu'l. Lot V be given and

choose u¥v. From yuyu + YNYH = +21 vo'didncol'

HirVyH) + vy Jy¥ = +2 yY s



A

Y \Y \Y u
and whence +2Try = -Tr(YU(Y Yu)) + Tr {(y YU)Y ] =0
because in general Tr(AB) = Tr(BA). This at the same

. 5 W _5
time shows that Try = 0 because {(y".y’} = 0.
Y

R ) b, v v b v "V
Next if u¢v then Tr(Y y ) = O because Tr(Y Y ) = Tr(-y Y ) =

(Auv) 5 P

-ty yY) = -tr(v"yY) . since y is of the form + Y Y ,

. V
the same argument shows that Tr y[xu ] = 0.

prOPosifion (2.4): If one fixes A in equation (2.1) and then

o

lets B go from 1 to 16, C(A,B) goes over all Fhe values in
{1,...,16}.

ffgroof: Since €, = 1, eq. (2;1) may be rewritten as

C(A,B)’ A B
’ Y €Eap Y Y

A _B ' A B’

whence C(A,B) = C(A,B') implies € Y ¥ = CAB' Y Y

AB
B B'

i = . t clear his is
from which €ap Y €t Y Bu ly ¢t

possible only if B = B'; therefore iflpyn', then
} ' (\

- C(A,B) ¥ C(A,B') and the conclusion follows. .

A :
Proposition (2.5): The 16 Y 'g are linearly independent.
' 16

Proof: Suppose we have a relation AEI'GA Y = 0. Let us

pick B in {1,...,16} and multiply.by Y'l P

16 s A 16
0 = \I, a, vy = I, o€

C(I,A)_

(’
_rroﬁ proposition (2.4), as A qpqs from 1 to 16 Lal

this suu,Yc(BfA)

goes over the whole set [, ' Por
C(B,A ' o
Y } +A)

1 and for all the othoi-vnluop. ACéo:-:

[ . ¢

A=B,

*



. L i C :
ding to proposition (2.3}, Y (B, A) i8 & traceless
matrix. Whence taking the trace of our equation
yields 4a ¢ = 0, or a_ = O. Since B was arbitrary,

B BB B

. A \
it follows that the Y 's are independent.
One easily obtains the following product rules, some of

which will be useful in the sequel.

ofV 5 ' g \

yHy (POl e Yor + LN . (2.2)
0
YUY[DOG: . _ghpolls qqu(oel _ gqu(oehgu y P91 (5 3y
u s 1 v (aBS)
Y'Y g aps Y |

, . v -

JlaBl iy aBuv s ) ula Bre v 2q o B (v "5 4
tpor, _ 1 .00 (aB) _ s (p0)

Y Yo T2 ¢ a8 " =Y ‘ 23
0 o, :
Yy Py 1ROl L MPOBy o g¥Py v - MOy v (2.6)

From the relation (1.3c) it is possible to derive the.
commutators and anticommutators of all pairs of olcninti 7z

of I'. We list here the results.

¢

10



. A
Commutators and anticommutators of the Y 's

Table 2
(yMoyYy o= 2 Luv) V) = 2 ¢"Vr
5
[YL,YSI = 2vYy {y" 75) = 0
\ s
Ly YT o g qu_qu 4 {YA‘Y[uvl} - 2 y AWVl
[Yu,yloorl] 2 v (HPOT] {y ‘Y(DOT]} - oYlorl
Y(po] oryluol)
5 {uv] 5 _(uv] (HVpo
' 0 , - -
Y,y 771 =0 y"oy } Y (00]
A
lys'Y[Apon - 26 poeYe {YS'YLADO]} . 0
y APl vl oy gruy vl {Y(Apl'yluvl} - 2y [APHV]
A A :
v Y[uol . gonl u1.+ 2(qupgvl _ guxqvo)I
qu[vAl)
tuv) _[Apo] 5 _Apou {Y(uvl lepol} - -2cA°°
[Y 2 'Y ] - 2Y (C ) ! e
Yv - EADOVYU) CGUVBYB or oqﬁivalontly.
. .{Y(uvl SY } cu\’)pyp
Y(Xéo]’Y(aBG}) RYLL (y[Apo] (0B8]} -2cx9°9
aBéy '
¢ Yiew) °F equivalently OGBGI or cquivalcntly
5 :
yoyM,y2yY) - 2y DOV v ".Y v’} = 20"”!

11

- -\

Q“w
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. . M \Y) LV
(2) The representations of the relations {y ,y }=2g I

We now come to the part of this chapter dealing

with the order N of Y matrices and the irreducibility of

v

such systems.

Theorem (2.6): The order N of y matrices cannot be smaller
than 4.
Proof: The dimension of the complex vector space of NXN

. . 2
complex matrices is N . since by proposition(2.5)T is a
set of 16 independent matrices, we see that Nz has

to be 3 16.

Theorem (2.7): The matrices Fu defined by
(o] g
- (® g0 rta®h ien2,3 @2
° o i 3
lo ol o -1 l o ,
where Ooc(o 1) 01-(1 o) 02--(i o{ 03-(0 _1) (2.8)

form a system of unitary Y matrices.

: {or .0
Proof From the relations cioj - ieijk k i3 7o

we obtain

{ci'oj} o
i 43 ' ' ij '
{r-,r’} = - ¢ ) = 2¢9°°1
o {Uiaaj}
o o]
S S B S L IE N )
i i
ry? o g
The fact that each '™ s unitary foljows from | .y
o+’ o t+ i
Y F - l'

rt e -r " (2.9)



This system (r*) js referred to as the Dirac representation.
Our next the;rem, in group theory language, would be

sai1d tg reflect the irreducibility of any set of 4x4 Y

matrices. ‘

Theorem (2.8): Let {y")} be a system of 4x4 Y matrices.

Any matrix commuting with the four of them Pas to be a

multiple of the identity. -

Proof: Suppose M is such a matrix. It follows that it
commutes with every YA in . But proposition (2.5)
says that, in the case under consideration, [ is a
basis. Therefore M commutes with evorythig . But
it is easy to prove that any linear operatgg on a
vector space commuting with all the dshera has to be
a multiple of the identity. The conclusion applies
to M. v

Theorem (2.8) will be used repeatedly in the loquol Toge ther

with the fundamental theor.n of Y matrices, which is. the

subject of the next chapter, it lies aé the basis of most

of the construétiénl whioch ve~v}11 make.

| soj far all we know about the pon.iblc ptdor of Y

matrices is’ that N is even and 3 4 (sco tho 'cnistbn '

Viﬁllowing eq. (1.3c) and theorenm (2.6)). If 1l*uif¥act

known that N has to b‘ a multiple eof 4. Thil Q’p‘bo ptovod

by using the theory of roprtuontltiono ot fln*t‘ Qroupo (tho

ﬁ’

13

starting point of such an approach 1. to ob.orvc that tho n't3£ 

- {+Y iy eT'} is a group) (Janlon and Doon [1!67]). lto

proof we give hare is (to our knovlodqo) ortqinll hld ovit ;-.



absolutely nothing to group theory. We start with a little
lemma which will also be used in the proof of another result.
Lemma: Let {y"} be an arbitrary system of Y matrices. Then

YO and inYZ can always be diagonalised simultaneously.

Proof: Let A be a matrix sul; that A2 = I, Then A may be
{
written as A = I - 2P where P is a projector, namely
1 2
P o=z (1-A), (P"=P). But a projector can always be
diagonalised; whence so can A. Our two matrices
commute and have square I. So the conclusion follows.
Theorem (2.9): The order N of Y matrices has to be a
» -

~

multiple of 4.

-

proof: Let {y"} §e a system of Y matrices. By the previdus
lemma we may assume, by performing a siﬁilarity
transformation on {Yu} if necessary, that Yo and_
inyz are diagonal. Since thelir lqunr§ is I, their
‘diagonal ektrie- have to be +1. Moreover since by
. proposition (2.3) they are both traceless, the number

of +1's has to be equal to the number of -1's.. Again

by performing a similarity transformation if nqéb..ary

we may assume that Yo_- o . N is even so there
0o - .
is an integer n sych that Ne=2d. Let us write '
L 2 L , . .
iy’'y =  diag (al,...,an,bl....,bn). The matrix

yoiylyz is also traceless and its tcace is ‘1 T S

-—

+ an - (b1

n +1's and n -1's among IR ln;bly...,bn.

b + bn). Nov ws have to distribute

14

N

v’



Suppose that we put r - l's (0€rén) in al,...,an.

There are n-r left over to be distributed among

bl""bn and therefore we have: !
\
a. +...ta = -r + (n-r) = n-2r
1 n
b +...4b = - (n-r) + r = «n + 2r
1 n
o, 1 2
Whence Try iY Y = n-2r-(-n+2r) = 2n - 4r. In order

that this vanishes we must have r = %. Since r is an
integer it follows that n is even; whence N = 2n is
a multiple of 4.

Corollary: Y matrices of arbitrary order have determinant 1.

Prbof: y° is similar to E£+:;] and N is a multiple of 4.

Whence det y° = (-I)N/2 = 1. A similar afquncnt

applies to the Yk's.

The final result of this section, which “we are about to

present, is not the least in importance since it establishes

N .
in some sense the uniqueness of the relativistic equation for

the electron wave function. As one might guess ve .are going

&

to be concerned with the irreducibility of the representations

of eq. (l.3c). It is well known that the only irreducible

-

representations are provided by~-att1cqs of o?dcr'G. This
v
result makes one think of group theory and of course, like

theorem (2".9)', it can bé derived via the theory of £cptolon'-
» . _ :
tations of fbnﬁte groups (Jansen and Boon [1967])). But as we
g ~ Lo,
, _
»

s



did for theorem (2.9) we have found a simple way of proving
1t keeping away from group theory. Our proof is likely té
have been thought of before but we have not met it anywhere.
Theorem (2.10): Any (unitary or not) representation of egq.
(1.3c) can te reduced to oﬁgnbi.deqree 4. Whence the

irreducible ones areAfhosé‘of degree 4.

Proof: Let {Yu} be such a represensation. By the.’revious

lemma we know that it is equiva t to one in which
o \. 1 2

Y and iy Y are both diagonal. So we may assume
without loss of generality that they are diagonal.

\
In order that a subspace/pk invariant under {Yu} it

v
is clear by propositign (2.2) that it is necpssary
and sufficient that /it be invariant under the set T
of table 1. Now pick a non.vanishing vector u

and define u, = YAu.' Again by proposition (2.2) it

v~‘\\\\\_’ . is clear that the subspace V spanned by the u, 's'is

[-invariant. The special trick of the proof lies in

an appropriate choice of u. PFrom the proof of

theorem (2.9) one easily checks that one can pick a
. o < 1.2

non vanishing u such that v u = iy'y u = u, We

claim that the subupac;_v spanned by Ehe correspon-

ding uA'l is 4-dimensional. Indeed it is generated by

u,u; 2 Ylu, uy z Y3u and Uiy = y3ylu. This is seen

by let%}nq [ act on ut Iu = u, You = u, Ylu = “L'

9.” y

[
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1 1 2 . 3 1 2 , '
Yy u = -y Y Y u = 1u,, Y u= U, Y Y u= -1u,

1 3
Y Y u = u W2Y3u = 3 lYl 2, = -iu YOY u = -u
31" vy yyu 31’ 1

, o 3 o 1 2 1 2 .
Y Y u = -lul, Y Y u = -u3, Y Y'Y u=YYu= -1,

‘oy3 1 . o Zy3 - i 1 2.3 - 3 ly2 .- -iu
Y Y u u31' Y Y u u31, Y Y Y u Yy u 3!
5

Y u = iu3
By theorem (2.6) the vectors u, u1, u3, u31 are
necessarily linearly independent. This completes
the proof.

From now on, when we talk about Y matrices, unless
otherwise stated, it will always be understood that thege are
474 matrices. In physical applications the Yu's are always
unitary. All the YA:x are then unitary as well. But as
Pauli did in his paper (Pauli [1936]) we will invoke this

assumption only when needed: as has already been seen many

results‘follow without {it.
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HAPTER 111

THE FUNDAMENTAI THFOREM OF Y MATRICFEFS AND CONSEQUENCES

(1) The fundamental theorem

The so-called fundamental theorem of Y matrices
1s the rasis upon which lies the relativistic invariance of
the Dirac theory of electrons and positrons. This section
1s devoted to i1ts proof and to the exposition of some of its
consequences. The proof that we give is, to our knowledge,
original and is, as will be seen, quite simple. It is based
on a seldom used result of linear algebra. To preserve the
continuity of exposition the proof of this result will be
deferred to the end of this chapter. Ms*will be seen later,
we state it here in a"Testricted contexg which will be

f'\.)
sufficient for our purpose.

Let us denote by An(C) the algebra of nXn complex
matrices. By an automorphism of An(C) we mean a bijective
linear map h:An(C) + An(C) which also prenorv‘s nult}plica—
tion, that is for any u,v in C and M,N in An(C) wve havc{'

h (UM + VN) - Uh (M). + Vh(N), h(MN) = h(M)h(N), h(ﬂ)-0;>n-0.
| It is clear that, given on-singular S in An(C),
the map M * SMS-l is an autonorphi;h of An(C). The result of

linear algebra we were feferrinq to is the converse of this,

-

18



Thecrem (3.,1): If h 1s an automorphism of A (C), then
L — n
there ex1sts arnon-singular matrix S 1n An(C) such that

_1 .

H{(M) = SMS for all M, )
Having stated thilis we may now give our proof of the
fundamental theorem. As was mentioned in chapter II (section
1) the key of this proof is eqg. (2.1) together with the
trivial proposition (2.2').

Theorem (3.2):(The fundamental theorem of Y matrices): Let .o

by Sy

Iy" 4, ¥y be two systems of 4x4 Yy matrices. Then there

S-l U

ex1sts a non-singular matrix S such that fu = Y S.

~

Proof: Let [ and [ be the two sets constructed from {Y“}
and {?u} according to table 1. t From proposition
(2.5) we, know that both ' and T are basis of A (€

Therefore we may define a linear map h: A, (C) * A, (C)
- ’ 4 A
A ~A ’ b
by h(Yy ) = ¥° and this map is bijective. Moréover it

9

A
preserves products. Indeed let M = i a, Y,

N =L B_ Y . Then we have:

A B C(A,B)
h(MN) = h(I o, B_ Y Y ) = L, uA BB h(cAB Y

AB AB

) =

I a B_ e $C(AB) L oa, B * 9% = ()R (M)

A "B AB - AB

where we have used propositions (2.2) and (2.2').
Hence h fullfills all the conditiofs of theorem (3.1)
and it follows that there exits a non-singular 8§ such

that 9% = hiy?) = s7Ps (q.e.d.).



o
Proposition (3.1): The matrix S of the fundamental theorem

1S unique up to a multiplicative factor.

Proof: Suppose that S and T satisfy .
I -1 _n -1
? =S Y18=T YUT f
It follows that the commutator IYU, ST— ] vanishes.
-
From theorem (2.8) we maitherefore conclude that
-1 1
ST = cl or T = p S (q.e.d.).
(2) Consequences of the fuddamental theorem

The matrix S of the fundamental theorem is of course

closely related to the systems of y matrices from which it

arises. This is illustrated in the following little result

[

which we present here as a curiosity, since we lhll€ not

use it later.

proposition (3.2): Let {¥Y")} and {§") be two systems of

Y matrices, with associated sets [ and F.'4 Jnvertible

matrix S such that 9“ = s'l Yu S has the same coordina;ol
in both basis [ and T. )

A
Proof: Let S = [ aA Y =

z
A A

] ?A. From S?A - Yas

we get

8

B B A ~B
Ys=Lla, Yy Y =58y = A

L
) S A

Taking the trace on each side of I a, Y® vyt e L8, ¥
) » A ’ . )

and using propositions (2.3) and (2.4) gives

B B (q.e.d.). , o L

°
it
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. b . .
Another connection between {y ' and S which will not be

a mere curiosity for us is the following.

9
‘Proposition (3.3): Let My, {QU} be two systems of

Yy matrices such that all the y¥'s and $"'s are unitary.

Then the matrix S connecting the two systems can be chosen

to be unitary. Such a choice is unique up to a phase factor.
Proof: We have from the unitarity of Yu, ?u and ?u - S_l y“s:
+ + + +
-l ~ A + - + -1
sT1 v s w§° 2 9° wsty0 st .ty s
+ + + +
-1 + - + -
S y” S = ?1 = —?i = -S yi S 1. S yl S 1
-1 + w1t
- that is § Y § =8 Yy S . From this we infer
[Yu, ss*] = 0, and by, theorem (2.4) conclpde that

ss* = cI. nNow ss’ is obviously self-adjoint and

positive. Whence c is real and > 0. Taking
S' = r S yields the required unitary matrix. Thgi; ;
fact tgat the choice of a unitary S is uniduc‘up t:
a phase gactor is obvious in view of ptoposiiion (3.1)
and the unitarity condition,
The fundamental theorem allows us to draw othor'&nto:o;tinq
geneial conclusions about Yy matrices. Por cxhnpio. it says
that Y© has to be similar to the matrix re ot eq. (2.7). .
Whence the charactcristié and nininhl'polyn;niqll of Yo have’
to be (t+1)2(t-1)2 and (t+l) (t-1) relpoctivoly,‘lnd'itt
determin§ht is 1. To make similar r.llrkl‘Qbéht17%.VC'o§;.f'Uf;
1

that the set {?P} defined by §° - iy", 9}--'1Y°:>?3 —'Y?v ?,“'_i?;”
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1s also a system of Yy matrices. Whence in 1s similar to
e 1 . . pO .
77, or Y 1s similar to -il ., This shows that the charac-
, 1 i

teristic and minimal polynomials of Y (orvany Yl) are

2 .2 . ,
(t+1) (t-1) and (t+i)(t-i) respectively and its deter-
minant is 1. These observations lead themselves immediate-
ly to the following algebraic characterization of matrices
which can be Yy matrices.

Proposition (3.4): Let M be a complex 4%4 matrix. In order

that M be the YO of a {y")} system it is necessary and
sufficient that its characteriltig and mininalupolynomials
be (t+1)2(t—1)2 and (t+1)(t41) respectively. 1In order that
M be the Yl (or Y2 or Y3)of some.{Yu} system it is necessary
and sufficient that the characteristic and minimal poly-
nomials of M bea(t+i)2(t—l)2 aqd (t+1)(§;§)ﬂ£¢lpect1voly.

’

Before we close this chapter with the proof of /

»
-

theorem (3.1) we give a last application of the fundamental
theorem. This theorem enabled us, in a rather curiqui vay,
to answer a question which arises nat;tnlly vhen doallgq

‘
with Y matrices. When we look closely at the set {(r¥} . of
eq. (2.7) we notice th;t all these matrices, except r?. !ti‘
real. Whence it seems natural to ask whgtheé ane c&ulQ'tind
a sy-t:m of Y matrices where all the matrices vonld_bgiroa1g 
The answer is n;qativo. As v;\will show h.lov..th. 0i1i-Z
tence of such a system would ;lply the cx#lt‘géd o!~§;d§if ' 
plex number c whose squared magnitude cte anid-ﬁi «ivAth£0  A

. is of course absurd. ‘ -




Proposition (3.5): There exists no system of Y matrices

such that each yu is real,.

Proof:

Consider again the particular system{ru}exhibited
in eq. (2.7). 1If {yu} is any system of Y matrices
the fundamental theorem says that there exists a
. -1 _u U
non-singular § such that S Yy s =1T". (3.1)
. 03 * 2 * v
Let M = i Y[ 1]. Using re* = -r and (r)" =T

for v ¥ 2, one easily checks that the following

equation holds true:

-1% V]
s M yY My s¢ = TV, veo0,1,2,3

(Here * means complex conjugate.)

From this equati¢n and equation (3.1) we obtain

- * -
sy N st =85t yYs

v - :
If we novw suppose that all the Y 's are real, this

last equation may be rewritten as:

o - .
Wy e uses Tty ssehou
from wﬁich we dOduCQ that [ij us* 5-1] = 0. Thil
implies that there oxlutu a nu-bor c luch that
(o
MS* S -l cI. This gives thc oquation Y -ﬂ b'

and its co-plox conjuqlt. 8' - %* (-I)s.lubtettutinv

23

the second in tho ttrct yields: cc' - -1. a coattl!tcﬂ SR

tion. rhcrctoro the four vv'u oanaot 111 bc toal. .

[ ]
Ty
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Though there 1s no system of real Yy matrices, there are
systems in which the Yu's are purely imagigary. Their
special interest is that they make the ffee,Dirac equation
(1.4) real.; hence ¥ is a solution if and only i1f its real
and imaginary parts are separate solutions of the equation.
It is easy to give a fairly explicit description of
all these systems. Let {y"} be an arbitrary system of Y .
matrices. By the fundamental theorem there exists an
invertible matrix T such that YU - T-lFuT, where {r“} is
the particular system of equation (2.7). Due to the fact

1 and F3 are real, the

.
1l FZT'

that % is purely imaginary while re, r

Yu's will be purely imaginary if and only if T

T-lrzT and T-I.er = -T-lrvx, for v = 0, 1, 3. This " is

LI 2
equivalent to saying that T T 1 commutes with [“ and anti-

M ) | 2 '
commutes with Fo,Fl and FS. This implies T = al” or

' = anT. Clearly the number o has to be a phase factor.
. : ’ . 2
Upon writing T = r j, the general solution of " = al‘T
' C

is easily seen to be

.

A B :
T = . R » A and B arbitrary, |o| = ]
a'og . A" a 0,8 4 '

v . ) ’ ) - N
T = ‘u and v arbitrary, lﬂi -1




where u and v are row vectors. As long as the

of A and B leads to an invertible matrix T, the

T-ITUT~wi11 form a system,of purely imaginary Y

Conversely all the purely imaginary systems can

"

that way. ¢

The particular choice A = Oo + 02, B =
and a = -1 gives the system

-io
lo} o 1 3
Y = (72 -0 Y, Y o= | -ig ),
2 . 3
N O
0 ’
N 2
It is referred to as the Majorana

25
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choice
matrices
matrices.

be obtained

io

representation.
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(3) The proof of theorem (3.1)

We now come to the proof of theorem (3.1). As

mentioned at the beginning of this chapter we stated it in

a restricted context. It turns out that it is also true for
An(K), the algebra of nxn matrices over an arbitrary fielad i,
»

for example the field of real numbers. We stated it for

K=C because this was all we needed. Quite amusingly it

wasn't our knowledge of this result which inspired our proof

of the fundamental theorem but rather the study of the usual

proofs of the fundamental theorem lead us to guess that such

a result might be true, We were able to trace it in only

one book (Herstein [1964)) where it is stated as a ﬁroblem

(problem i7, page 279). Therefore the proof we give here

is ours. It is possible that a shorter proofbcould be given.

Theorem (4.1'): 1If h is an automorphism of An(x), that is

a bijective linear map preserving products of An(x) onto

itself, then there exists a non-singular lat;ix ] 1nlx uuch

that h(M) = sMS_ ' for all M.

Proof: Thrduqhout this proof we don't”uac’tho summation
convention, We will denote by |1>..,..|n5 the

canonical basis of Kn, that is:

rl 'ro
’1>- 01, |2>‘.. ; : .tc-'..
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and by <1|,...,<n| the dual basis: <i|j> = éij'

We denote by Mij the matrix having null entries

v ) . th
except at the 1ntersection of the i row and the

th ‘

) i H < M. . L> = 6 . .

j column where it has a 1 k| ij' Ki 6j1
These matrices muitiply according to Mij“kl - éjkuilh
and they form a basisg of An(x). Now since h is an

-

automorphism the matrices H = h(Mij) also form a

ij
;3 .
K (3.2)

Ly

basis and multiply according to

Higfke = SyuHyy
As often is the case it makes the argument simpler
to think of Hij as a linear operator instead of a
matrix. Whence we consider Hij as the linear opotaiér
on k" whose matrix with respect té the canonical
basis is Hijf From eq. (3.2) it follows that ?11'f°°'

Hnn are n projectors such thqt,ﬂiiﬂjj = 0 if iﬁjf

Moreover neither of them is 0 because.h is an

auytomorphism. It f611§vo immediately from this that

there exists a basis |1>',...,]n>“o§ " such that

o' 3> = 8y 1> o (3.3)

From eq. (3.2) we also deduce that Hyy = “11"13"51’ |

This together with (3.3) implies that
1)

k>' = h

Hijl cjk li>" ’ .hijel »l( hij’ 0 (3.4)



1. Moreover eqgs.

Since H,., 1is a projector, h_.
i1 11

. . i hoo= h._.
(3.2) and (3.4) clearly imply that h,, h, . ij

. . n
Now let us define a new basis of K by

|i>" = 1 |i>'. Then we have: A
h, .
li
h |, hl.h..
H.A!j>" = 12 ’i)' - 1 1) li>u - i>"
i) h, . h,.
15 15
H,. |k>" = 0 if k¥

i3
Therefore the matrix of Hia with respect to the

basis [1>",...,[n>" is Mij°SO if s is the transition

matrix from the basis (|i>) to the basis (|i>")

. -1 '
>'l = '> - 3
(|1 § Sy4 13>) one has Hiy = S My, S, that is,

-1 ’
- . M
h(Mij) s Hijs Since h is linear and i is al

1

basis it follows that h(M) = SMS ~ for an arbitrary

M. (qa.-d-)- .



CHAPTER 1V

AN ALGEBRAIC METHOD FOR FINDING THE MATRIX S OF THF

FUNDAMENTAL THEOREM

(1) Finding S

i
The fundamental theorem of Y matrices asserts the

exlstence of an invertible mawrix S connecting two given
sets of 4x4 Y matrices. But it does not tell us what S is.
In later chapters we shall give the solutioh of this problem
when the two sets {Yu}, {?u} are related th:oﬁgh a Lorentz
, aH U \Y .
transformation Y = Q VY by using Lie group techniques.
This is what is usually dohe in the physical literatgre. In
‘the present chapter we adopt a purely algebraic point of
u

view and lecok at the general case: the Y 's are not Q’luﬁod

ary and the two sets {?u} and {Yu} are not - |

telgted through a Lorentz t;an.forn;tion.“
people whptinvestigate vhatvhappona ig, inatead
thL fielad o; real numbers to construct the
ki space, one starts with a field haying only a

: -
(enormous) number of elements. The aim of this is

roduce a fundamental length in bhysics. 1In such a

work it is clear that one -couldn't use infinitesimal

sformations to obt}in § in quyv - s'-1 Yu 8. The

algebraic method which we set up in this section and the

follpwing one would provide a substitute.

29
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The equations 9“5 = § YL, where S 1is the unknown,
give rise to a system of 64 linear equations with 16 unknowns.
It is certainly not convenient to attack this directly. We

have found a roundabout way which simplifies the task

v

considerably. Consider again the particular set {Tu} of

eq. (2.7). By the fundamental theorem there exist S and T

AU ‘l

such that ¥~ = T ™ o7 and r¥ « S.-1 H

Y S. Clearly

A~ M -1 M . .,

Y = (ST) Y (ST). The point is now that, thanks to the
simplicity of {Fu}, finding S and T is very simple as

shown by the following result.

Proposition (4.1): Let {Yu} be a system of 4x4 Yy matrices.
Then the systems

2
(Yl + in)u = 0 i w (Yl - iy ) = 0
(a) : (b) (4.1)
(1 + yO)u = 0 w (1 +v%) =0

i -

where u and w are a column and a row vector respectively,
&

haVelnon vanishing solutions which are determined up to
o

multiplicative factors. The matrices S and T defined by

§ = (73u Ylu u Y3ylu) (4.2a)
o 3 4
—v Y
1 - M .
T = } )
w -
1l 3 .
wvyy




T TN e T T —

' -1 b | -1 '
sati1sfy Y s s YF S y¥ =7 roro 4.3)
‘ @ \
Proof: The fundamental theorem guarantees the existence of
the matrices S and T. So all we have to do is to

show that they necessarily have the .form stated
above. We begin with S. 'We first decompose all

a
our matrices into blocks of order 2: \_

The unknowns are now the four 2%X2 matrices X,Y,Z2,U.

-
-

The equations which they must satisfy are’ derived

from (4.3) and are as follows:

—

i i o

A'X + Bz = -yo, A°x + Bz = X
. .

A'Y + B'U = X0, 2%y + BV = -v

(4.4)

i i

ctx + plz = -uo, c®°x + D%z = 2
i i .

r ¢ty 4+ ply = z0 c®y + p%v = -u

The second and fourth equations on'the left-hand

- .
. side give
)
i i .
X = (A"Y + B U)oi (no sum) (4.5)
i i
Z = (CY + D U)oi {no sum) _ (4.6)

[}

W



¢ .\,
'Y

This system of six equations can be rewritten as

follows
, 1 1.
X = (AY + B U)OC (4.7a)
1 ’
1 1
= (C°Y + D U)o1 (4.7b)
2 o 1 1 1 1.
A'Y «+ B'U = (AY + B U)0102 = (AY + B U)LO3 (4.7c)
3 3 .
A'Y + B U = (Aly + 810)0103 = -(Aly + 910)102 (4.74)
2 2
cTY ¢ DU o= (ClY + 010)0102 = (Clv + Dlu)io3 (4.7e)
3 3 1 1.2 1 1.
CY ¢+ DU = (C°Y +D U;;Qlo3 = -(C°Y + D U)xoz (4.7¢F)
u
The first two give X and Z in terms of Y and U and
the last four guarantee that the right-hand sides
in (4.5) and (4.6) are independent of i. The prob-
lem is now reduced to finding Y and U.
From the identity .
\
a"aV + BYcY a¥s¥ + 8¥D"
v , -
vHyY - : (4.8)
c’aV + p¥cV c¥sV + p¥pY

| o
we see that multiplying (4.7c) by Azf &4.7-) by 32

and adding, we obtain: .

v = rafat +'B2chy + %t 4 a?phulie,

»

similarly multiplying (4.7¢c) by Cz, (4.7¢) by D2

and adding, we obtain:

Sy
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2 1 2
-0 = [(C A + D C )Y + (CzB + D Dl)(']iO3

These last two equations may be

simpler equatilion:

Moreover one can check that the

followed bagkward so that (4.9)
lent to (4.7c) and (4.7e).

In exactly the same way Wwe

equivalent to (4.7d) and (4.7f):

Yo
2

Now let's come back to the

cast

into one

process can be

(4.9)

is really equiva-

obtain an equation

six left-out

equations in (4.4). Substituting in ‘them the

-

éxgressions of X and Z given in (4.5) and (4.6)

we obtain:

i? ii i i i

(A + BC % I)Y + (A"B + B Di)U =

(Ao + I)Y + BOU a 0

c® + (0° + U = 0

(4.10)

0' (no sum)

(1] fno sum)

Bi)U =0

>

plyv = 0

-

33
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From (4.8) we see that the factors multiplying Y and
U in the first two equations are O. Thus they are
[

trivially satisfied and contain no information. The

next two can be rewritten as

oyl -y (N =0 (4.11")

e + 11 (H =0 - (4.11)

But these equations are one and the same as (4.11")
is —Yi times (4.11}.

Let us summarize the results obtained so far.
We found that Yeand U are determined by (4.9), (4.10)
and (4.11) and then X ;:d 7z follow from (4.5) and
4.6). |

If we write (3) ; (a v), where u and v are
column vectors, the equations (4.9), (4.10) and (4.11)
translate to: |

£ y'y2 (uv) = du =) /

e’
¢

i Y3Y1 (u v) » (iv -iw)

(y© + I)(u v) = (0 0) L .

This system is equivalent to
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1 _
(vy + 1 Yz)u = 0

o+ v% =0
3 1
v .= Y Y u

Similarly if we set (Z) = (s t), where s, t are
column vectors, we find that (4.5) and (4.6) can

be written as:
1
(s t} = vy~ (v u)

Whence we may write finally:

Y
S = (z U) = (8 t u v)

3 1 3.1
= (Y u, Yu, u, Y'Y )
where u is determined by

(Y1 + 1 Yz)u = 0

(I + Yo)u = 0

As one might expect, once we krow how to ‘find 8, it

becomes a simple matter to find T (which has to be a

multiple of S-l).

TE’fequatioha satisfied by T are

,ru TecT Yu
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* o]
Taking the adjoint and remembering that r’ =r
. i+ i
while T = -7, we obtain:
0+ + + o]
Yy . T = T r
+
i +
R A A
+ +
O 1 X . -
But {y , -y } is also a system of Y matrices.
Hence the last two equations are just like the
equationps for S. Therefore usin§ the solution just
obtained for S we conclude:
’
+ + i + +
+ 3 + 1 + + 3 1 +
T = (-Y w , -Y w o, w , Y Y w))
LY
+
where w 1is determined by:
+ 4
+
(-v! -1yt =0
+ 0, '
(I+Y°)v -9
More conveniently we may now write:
- -
3
) vy
1 L4
-w Y
T =
w ,
1.3
wYY.
« e -
where w is a row vector determinad by ' ' ' i
. _ o
v(yl~-iy)-o . e ‘ A

w(l + y°) = 0
. -




we also asserted at the beginning that the equations
1 ) 2 o .
(Y  + i Y")u = 0 and (I + Y )u = O determine u up to a
multiplicative factor. To see that this is true one first
-t -
checks that the statement is correct when Yy is simply Fu.
This is trivial and we don't do it here. Now an arbitrary
system {y") is related to {(r¥y by a similarity transforma- ' .
. . . 1 . 2 (o]
tion. Whence the equations (y  + i Y Ju = (I + Y )u=20
. . 1 - 2 o -
can be viewed as the equations (F" + i IJu= (I + T)u = £
‘ /
>4
formulated in another basis. Accordingly if the solutions
of the second system form a one~dimensional subspace, 80
[ 4

will the *‘solutions of the first system. A similar comment

applies to w. This completes the proof.

(2) Application to the equation vi$v - S.1 Yu S

The customary way of solving the equation
Q“vyv - s ! ¥ s.for S uses infinitesimal tranttorintioni.
One puts suitabie constraints on s'and shows that the
correapondihg solutions form a gréup,.l 'douhlc-vaiuod
representa£ioﬁ: of the orthoehronoua Lorentz group. Thok o E
matrices S are then obtaincd by '.xponontiatinq“thc Lio'
algebra of this group. Ne shall diccun- thil methdad 1!’ :
detail lator on and iq particular use 1e to lhov thnt ;ho

‘qroup of the s -ntriccl is. 1-o-o:phic to a ctttata vo:!

concrete group. ror the -o-cnt ve vcnt to .bov hov eho

results of tho last ooction can be uncd to !1»4 8 caplloitoly.fiz
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This method definitely lacks the elegance of the one using
infinitesimal trangsformations but it has the advantage of
being purely algebraic.

OQur aim is to find S(R) such that
Hza¥ v asTh Y s ~

The set {Yu} is fixed. By the fundamental theorem there

<

exist M and V() such that:

-1

v° - 'l rPou ngfp v hrhy

From these equations we.deduce:

' Q“py”:-ﬂ“pn’lrpn R e e T i e s .

Thus the problem of finding S(R) for an arbitrary I is - .

reduced to that of finding V()

Al

S(fl) = n'l vV(R) M o : L(‘lz)‘

In the preceding section we have established that V(O)fl.'

given by:

rir3
- : . .

- where w is a nplﬁtion of ’ B e
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w(irl =i 1% =o / (4.13)

w(r + %) =0 : Xu)

So all we have to do is to find w. To this end we Heconpole

14

1t in the following way:

wom o (u,v) o= u, Uy, Vi, VL) (4.15)

Equation (4.13) then reads:

c o° lc o
) k
(u,v) =
-c,0, |-c o°
k k o
where ez al - iq? . (4.16)
H ] ¥] ﬁ
Written explicitely this gives: ' : ..
/ cu=-ve ¢ =0
° k k

'uckak - cov - 0

There are two cases to be considered: co ﬁ_o and'coA-‘O.

When co ¥ 0, the general solution 10

(u,v) = (u, %— uc* Uk) - u thittlt’ | ' ' (4;17) y
) o . e
When c_ = 0, tho_ﬁon.rgl solution is w = (u,v) vh@:c[??f~‘

uc, 0K -‘vck Ok" Q
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In either case the solutions form a two

dimeasional space. Next we come to equation (4.14). It
reads:
(1+402° yo° Q° o
o k k - 0
(u,v) o °
- -Q
kok (1 O)G
o] o
Q - 0 =
or . u(l+ o) v kok 0
o o
v Q kOk + v(1-0Q o) = 0

For the sake of simplicity we assume that ! lies in the

o -
orthochronous group:{l o 2 1 >0. The general solution is
then:

1

- v) , v arbitrary (4.19)
140 °

o
(u,v) = ( v kok'

Now w must be a common solution to (4.13) and((4.14). Pror

the case L ¥ 0, egqs. (4.17) and (4.19) give:

VQO'O.V)

~

(w oo - (=
Le]

¥ 1+0° ~
o

‘ o .0 o o 5 :
vhere we have set (f I'Q Q 3)‘--g and (c1'°2'°3) = c.

2’
This gives: | ..
i.\ u 1 .
v » E— (C - a) ‘ u e --—-—6———-— u(c
o (1+Q .o)c.o

The gsecond equation may be rewritten d.y

ule x Q%) ¢0 » -4 c u
-~ ﬁ -~ . . o .
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’

. o ) .
Upon setting (c x )i = ai, this equation for u reads

(u3 + 1co)u1 + (a1 + 1a2)u2 = 0

(al - 1a2)u1 + (1co - a3)u2 = 0

.

I1f a, + ia_ and a_ + ico don't both vanish, the solution is

1 2 3
u = (al + 132, -(a3 + ico)). If they both vanish, the
solution is u = (ico f a3. ia2 - gl). )

In the case where Cy - 0, eqs. (4.18) and (4.19)

tell us that the solution (u,v) common to both systems must

satisfy . . ‘ .

=V Q°-o, v) v c*0 = 0
1+8 o D T T

(u,v) = (
The second equation, when written explicitely, reads:

c.v, + (c, + icz)v = 0

371 1 2
ey 'qcz"’l mcy vy =0 : :
1f c, and ¢, - ic, don't both vanish, the solution is
v = (c3, €, - icz)‘ If they both vanish, the solution is
v = (1,0).

We now summarisze the results. We have defined:

SN LS A vierdva, 2% > o

= o) 2 = : ' 0 0 0 A0 ‘L
B e o oo : ) :
.o ¥ L
' a E e X n° RO
-~ -~ L 2 . ‘




and found that

- n
-w F3
-w rl
V(L) =
w
| w o)

where w is to be chosen according to the following table.

Table 3 Vectors for'constructing spinor transformations

CO#O co-O
w:(u,g— c*°0) ws ( 1 S u 90'0, u)
o ™ " 140 -
o
la1+ia2[+|a3+ic°| |a1+ia2|+|a3+ic°| |c3|+|c1-1c2| |e3|+|c1-ic
‘& A
¥0 - =0 ¥0 =0
u= u= us us=
(a1+ia2,-(a3+1co)) (ico-as,iaz-ai) Gcs.cl-icz) . (1,0)




As an 1llustration we obtain Vv (§2)

he x ax1is.

the unprimed by x'

table 3

L

-
Y+1

0

0

-Y8

)
0
Y+1

-v8
“

0

Y Y8
-Yg Y ?
A= r
0 I
L. J
. case we have: Co = "YBs, ¢ =

0
-Y8

T v+l
0

(Y.-i,0), 0° =

‘YB
0
0

Y+l

If the frame K' moves with spee@

-

when 7/ is a

ect to the frame K,. the primed coordinates

= {ix where:

(-YBpopo) .

-~

we obtain w = (0,2iyg,-2i(Y+1),0) from

Sin§EJV(Q) is determined up to a multiplicative factor wve

may drop the -2i,. The resultinqgéattix is then:

It is customary to write y = chp .YB'-w'ho' I1f we 4divide

‘

4

.

V(Q) = (y+1)I - yg I'°T

.

¥

our V(fl) by 2chp/2 we’obtain the matrix chp/21 - gﬁp/lrofl.,“

. This'ekgression agrees with the one obtained 51 the method

of infinitesimal transformations as will be seen later.
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CHAPTER V

THE GROUP OF SPINOR TRANSFORMATIONS

(1) Construction of the group

In this section we look at the set of all spinor

transformations cerresponding to all orthochronous Lorentz
transformations. We study this set as a group. We give up
the purely algebraic method devised in chapter IV and
switch to the standard method using infinitesimal trans-
formations, or.the Lie algebras. The orthochronous Lorentz
group will be denoted by L*, It consists of all Lorentz
transformations {I with Q°° > 0. The proper subgroup of
orthochronous transfornationl with determinant 1 will be
denoted by Li. We work thrquhout w}th a fixed ly.é.l {Yu}
which will be assumed to be unitary. We are interested in
the solution A(f]) to the equation

quYv - AN, aert (5.1)

. \ ’
We already know that the solution A is determined up to a

multiplicative factox.. Ne. wantQSo remove as much as po.liblo

this atbitrqriness. The first rcntrict‘on that can be
v

t
imposed .is the following.

piopo-ition (5.1): The solution of ;q. (551) nay be. chosen

80 as to satisfy At -'AO‘A-IYO .

[4

44




5 i v .
troof: lLet us write Y = quY and let ' be a solution of
eqg. (9.1). Then we have:
L ]
+ + N 1 U
g VN o o Opp O 0,- o}
R R A R A AR D R R A D A A

-1
from which 9% = yOA*'Y" AT1 4% o (v OrYOYM (OO T -

ATy Ha

and [AY A'Y , Y )] = 0. Therefore AYOA+Y° = ¢l or

il

L = chA— Y . This igplies

k

o o
+ 0 kY )

AtA = cvoA'lYoA = cy’9° = cY°(99°Y

o o o k
-CQ°I+CQkYY

Taking the trace on both sides and using proposition
(2.3) yields TrA+A - 4cR®_ . since A*A is hermitian
it follows that c is redl. Since A*A is positive,
it follows that c is positive (Qoo > 0). Now if we
take . A, we obtain:
c ) 13

O V| o, -1 o (A) "o 0o, Yo
A o= A e ey . oy Y°. e« y CA) Y .
/c- /o 8 ' /<

The motivatidh'fcr'fhi. rest¥iction is to make the

transformation of the adjoint ¥ = W‘YO sipple:
. - M

+ i
T R I

-
°
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' The usefulness of this will be appreciated in
chapter VI, Before we go further we need to introduce a
special matrix, called the B matrix, associated to any

Q
system of y matrices, Lot {YU} be such an arbitrary system.

L :
The set *yl }, where * means complex conjugate, is also a
systém of Y matrices. By the fundamental theorem there )
: u* -1l u .
exists a matrix B such that Yy = B Y B. We~req3xre that
'det BI = 1. This determines B up to a p factor. If
J?“‘ is another arbitrary system with corr onding B and
V] -1
QY = s "v's, then B 1s related to.B by:
1 - *®
§ = % Lpgs" , ¢ real (5.2)
»

Indeed we have:

TR 1% yw * -1* - N
o VL MR AP R VLY

g - (s"las®)"lg¥s”

- * . .
Moreover |det S 'BS | = 1. Since § is determined up ta a

phase, the conclusion follows.
The properties of the B matrix of ude to us are

contained in the tolloviné ptopo.iﬁiﬁa;

* . ‘ . ’ . R .
Proposition (5.2): The B® matrix of & nu130:1~{y") sysctem (s
' . ‘/‘ o " .v
unitary and antisymmetric. o T ‘ -
’ . N [ ]
Proof: Since y" Is nni:ary. so is Y"'. ptc,.litiou (! Jln“'

.
there cxintp a unitltr llttl¢ coauceﬂ’lg Yu l“ Y”

ki A

SN
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-

(learly this can be taken as B and any phase multi-

ple will also be unitary. We now have to show that

it is antisymmetric. For the set (Tu} of eq. (2.7)
. op.3.1
one easily checks that one can take B' = [ [°T",

T
Notice that B' = -B', By proposition (3.3) there
: : u +.u .
exists a unitary U such that Yy = U I'"u, and by

eq. (5.2) one has

i + * i * *
B=e®tpiu’ = el®w’) ey

From this the antisymmetry of B' clearly implies

that of B.

We are now prepared to put all the restrictions
on A,

Theorem (5.1): The equations

A AT yMa (5. 3a)
£ -y ©(5.3)

. +J. ) .
A = » AB .- : (5. 30)

where A is the unknown and Q;L’ have oalétly two solutions.

. ¥

One is -1 times the other.
Proof: By proposition (5.1) we know that egs. (Sglg){ (5@3&);2

have a common solution A& ¥e have:

VEEAY)
Q vY

A

- ﬁ?r‘yuqh. vhich may be l.v:ttﬁjﬁ,@q:a‘qf‘v,

PR
.

B
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-1* + *
JuvB+YvB = A B Y“BA , from which we deduce
- Y -1* + * 4+
A ly“A = ¥ Yy = BA B y“BA B or
¥ * 41

(y’, BAB A "] =0

By theorem (2.8) it follows as usual that

‘e - Ay * 4
BA B#A 1. cl, which implies 1235——1— = c .
i det A .
Whence Iﬁ* =1, or c = e . From

* - * i ' .
BA B’A 1. cI, we get A = elAB*AB. So 1if we

' 1 0
define A = e "A, we obtain: \

e e ar M W

and the choice a=1/2 yields the solution to our
three equations. Cleafly if A is a solution, so

is -A. Now suppose that A is another solution to

L2

(5.3a,b,c). We know that A « aA for some complex
number a. Equation (5.3c) shows that a is real.

Eq. (5.3b) then shows thgt 1to‘cqul:o is 1. Wheace
N . ' )

A = +A. This conpletoi‘thi proof.
"For some purposes, iupocidlly vhen dealing with the

the three sqea-
hs

Lie algebras, it is convenient to r..:yt‘.l
tions of theorem (5.2) in only two. ra&oﬁto.ach£9'q¢‘59'§§o h

following result:
. 4

Proposition (5.3): Equations (5.3a,,a) are equivalest s . .

the two equations:
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v -1

vay - A Y“A ' ' (5.4a)

AT (8% yOyn = B*y° (5.4b)
-
Proof: We first show that (5.3) implies (5.4}. Of course

(5.3) implies (5.4a). Next we have, using (5.3b,c),

o * * - o -
AT - Yo A 1*Yo - Yo B+A IBYo* - B+YoBB+A IBBtYOB

- BYy°A"1y%

from which (5.4b) follows,

Now we have to show that (5.4) implies (5.3), -
that is, if K is a solution of (5.4a,b) then-it
satisfies (5.3b,c). Let A be a solution of (5.3).
From what we've just -ecn,'A is also a solution of

(5.4). TRerefore we may write:

e Y °BA"B , from which

vayv = A ly“A =y lATn Y yuA

| . Similarly we have for K

¥ vV - T MK « yaXTatyoyMT
From the fundamental theores ve know that X = ok

and Ath'c ialt tm} aguations for Q,““_Yv“ “Ni |

l Y y A

v°aaTaty °v¥A = ¢ °lA’ 4.0y
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2 5 —_
or ¢ = 1. Whence A = 1A and K is a solution of

(5.3).

Equations (5.4a) and (5.4b) show that A can be interpreted as
the transition maérix of a change of basis under which the
matrices of the.operators Yu become quYv and the matrix of
the bilinear form defined by B*YO remains invariant. HhenA
we have gained some more information about oﬁr A matrices
we will give a third completely dittoreht.way of formulating
(5.3a,b,c). .

We now introduce some handy notatipn, The set of
all A's solutions of (5.3a,b,c) when i goes over L’ v111 bc s
denoted by sf. Given Aesf, there is only onc'ﬂ'tn L’;uohthat '
Ais a'solugionvof (5.3a): ;hic follows from the linear 1n-»

u

dependence of the Y 's. The one Q corresponding to A will

be denoted by QA an% the map A » RA will bo dcuotbd by .
Our first statement about the A'- is thc ‘91&.’13’1.

Theorem (5.2): s' is a -1:-41-O|-1osnx Lto ':oup 1001111

isomorphic to oo PUERARE - ﬁ. a h’.‘;’t’l&lﬂ_lﬁ‘j

a local ilonotphil-.

Proofg) We first prov. ‘that st is a Qﬂw. m l.t o
solutions of (s. QQ) and (! 059 it'. ) A

q, m. Then we hnvnc

4 1

00 - W
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Moreover W‘ clearly satisfies (5.4b). Thus S’ is
closed under multiplication. To show that I\“1 belongs

+ . .
to S if A does we first observe that

) Whence, if A satisfies (5.4a),

Vv p ‘ov’
we have:
1.0 vV . HPn O v
Q) vY g Qp gdvy

o JHPq O -V 6,-1
970, 95,0 GAY A

TS BV S Vo v
Whence l\-l is a solution of (5.4a) corresponding to
Q-lgsf. To show tha:'(A'l)TB*YoA-l q.B*Yo on; simply
mﬁltiplic- eq. (5.4b) on the logt hy'(‘ll.l)'r and on ¢
the right by A-l. These conoidora;iodl'yhov at the
same time that Il is an alqdbzlié hono-o:phian Ve
now know that s' ii an algebraic qanrpup'o;‘eho Lti.

group GL{4,C) of 4%4 invertible complex i.:’ld‘i.

i

To show that it is also a Lie oniqtoup'yo_utipiy 
invoke the well-known c.ttu-'thootc-'vhtéh says that

an llgobraic subgroup of a Lio 'tOIy vutch £’ lL.o g ]

-y

topologicully closed -uboce is . bto lﬂbgrbi'

ts eusy to shov that s’ ts cxuu 1 n.«.c:. m ;

'

(A ) bo a a.qutnco of clclintl 0! l
Lch(A,C). li na-t to !lou ttit L tl tt l .

:t q-

_ clear by ooauuur that L utuﬂuj Tm Qi.




U

" the ttanstor-.tion lav' ot tbc "1lbtl Oadnt Cll lllfs

-

Thereforelall we have to do is to show that there

4 ,
exists 7 in L such that (S.4a) holds with A = L.

. w1 -1 _u . +
We have ("An) v.* 7 Tr(An Y Aan)' Since L is .

closed in GL(4,R), the group of 4x4 real invertible

Aatricea, " = 1im (R, )Y defines an orthochronous
v A v

n 00 .

Lorentz transformation and by continuity one clearly

- - + 4
has quyv - L 1YUL. Whence L belongs to S and S
is a Lie ‘group. We now want to show that Me A = QA
is a local isomorphism. We already know that it is
a homomotbhism. The fact that it is smooth follows
clearly from 1 Lo l-T (A-lyuAy.) S0 all that BN

Awv 4 r v’ ,
remains to be shown is that it is loéllly-;njtctivo.'
Let Q € L’ and A € s* such that QA - ﬂ."rh.rc is
only one other solution L to, Q = Q and 1t 1- = ~A.
So all we have to do is to ttho a llall n.iqhb 04
- - '

Up of A such that ukpz {-A; Acuhl uhd v‘ coa t
intersect: [ restricted to "A tl elccrly oae to oae.

v'_’,

(2) - Explicit form of tho;g;oqg_zégggggg‘ ,; i ,ﬁ.;F

EY s . '-.

We novw proceed to cbtu&u o:plxclt ou.tclplc&l lo’ :; jj}

the A'a via infinitesimal t:u-tomumc. Mm u bt

chronous qroup L’. va tirot 1:'01;!0‘&0 t&iﬁfi

E S
propoz Loront: traa-!or.|tionn &t !tni”
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* 4 ‘ ' +
S+. It is clear that s+ is both open and closed in S .
tw
+ . ~
Hence S 1is disconnected. We will show later that it has
two components just as Lf. We use the following standard

’
basis of the Lie algebra of L*:

[ 6“

) aB) v (5.5)

_ H
ang 4.6 89va

One has IaB = -IBa and a basis is obtainead by'takinq

1 The first three generate boosts;

a1’ Y02 Y03 t127 130 1230

the last three'generate rotations. The commutators are

given by

(Lo Tead = =09 T00 * apfey * Ialue * TevTay! (576)

To obtain the Lie algebra of s: ve simply use our ;ocil

isomorphism A ~» QA’ If Q(t) is a curve in L: passing
: B [ ! . '4. . »
through I at T = 0, there is a unigue curve A(T) ia l:

passing through I at T = 0 such that:
et oy - Aoy

ATt YO 0ty

Taking the derivative of these equatisns at t = 0 gives:

(3.1"1 -7gﬁ“9y”.ﬂ

A?'fYo . .fyﬂl _“d o ,“‘: | . ;t _ ; &
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A
where we have set A= A(o), ﬁuv = ﬁuv(O)- Now if the curve
. .. .
{{(T)is chosen so that { = IaB and we denote the corresponding
A by AaB' the equations for A read:
y " ‘E’ v " "
= - - - - .7
[AQB'Y ) (6 a9vB 8 Bf’va)Y 6 8Ya § a'g (5.7
s T + 0 + 0 .
A gB Y + BY kaa =0 (5.8)
[y ’ u ) u )
From table 2 we know that (YIGBI'Y ) 1'(6 BY 8 YB). )
. . 1 =
Using this and eq. (5.7) we get (AGB Y[CBI'Y ) o,
e 1 . v
from which»AQBv- 7 Y[GB] +.cI. Inserting thig fn (5.8)
yields:
+ 0 1 T _ 4.0 .+_0 . o
0 = 2¢B Y, + 5‘(Y[u8)" Y + B j Y(aﬁl)f But
¢eT _+_0 T T 4 gr gv a o .
(uB] BY = YB YG-B Y - Y Y l Y -3 Y Y 4 fhd
T +. 0 + 0 + ) ) -
YiaB) BY *+ B Y. Yiqg =B &Y YqY_ r Y Y[oﬂl) | 0
R T (  ' . ' .—'”
Therefore ¢ = 0. Whence we mpy write:
. . . ;
"a = 7 Y(aB) (5.9
: af _ P o o :
c , ‘ - af_ - :
N(exp R Y(GBI) - o:a(c 'IcB’ o (SQ;Q)

our first use of formula (S. 10) is to get cn.puott tous@

We first consider the trnno!ot.ntibn of cplloxu jggggﬁ‘ .,25 A. 411?

"rotation. vhon one zotgeoa ' 3 !:a.o th:otgh caval.ii 0

around & unit voctbt a. th. i.orggaggp. :' "‘*"t;?L:i

frame are related to the old ‘99"‘..'Q9.§J§!5;ﬂ‘

L
oo
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x' = [exp - o(g'f)]x where N
[0 0 0 0] [0 0 0 0]
0 000 0 001
Pl 3% o 0 0o + R F I " lo oo ¢
[0 01 0] [0 -1 0 o
(5.1%
[0 0 0 0]
0 o0-1
Ay 4" o 0
0 00 o

It is convenient at this stage to introduce the matrices

Xi, defined by

(5.12)

)

where, as we recall, ouv s iY[uv!'

they satis‘y the same relations as the Pauli matrices: | o

One easily checks that

\

1 o (s.13)

LIy - “:i'ikz_k + 8y,
from which one deduces: .
(kL) (b°L) = (3°B)T ¢ {(axd)-L T oAy

We now apply Cq. (5.10) vith OGG “‘; -‘ a'l .»;:;ﬂfd
;44:9 |
This is cacily cvnlultod nciaq 5.14)" -i Oii thdﬁ ﬁl’li

i and‘(g'E) ‘= nl lor P QVta npd oqp :0".‘;&1‘1’.- ;?7_";f‘Vb.“
X . :

coxrospondinq A om ehc lo!t-hald t&‘. Ll 4
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A}
L) \ .
\
®© (i 4 n'f)p
exp 1 ¢ nefl = [ 2 -~ -
2 ~ - p=0 p! ¢
2k 2k 2k+1
= ()% e ()2
=1 2k?! + I (2k+1$' n-i
k=0 ( k=0 - P
= cos % I + i sin % B'E
whence if we dehote by An(¢) the transformation correspen-
ding to a rotation of angle ¢ AroundLghe un17 vector n
we obtain:
/ .
A (6) = cos 1+ 4 ain & nex (5.15)
n 2 . 2 ~ ~
~ ) -~
One peculiar feature of this equation is that An(ﬂﬂf = -I.
This is characteristic of spin 1 wavq'tunctioni. The spin .

2
operator along diiection n is the infinitesimal generator of

the unitary group of transformations of the ipternal variables
under rotations around n. We have seen above that this group.

of transformations is givdﬁ by &Rp (1 ¢ %gn’g); Uhoic..tho '

spin operator along diroctionlg is %-Etg, Uling cho .q: ,

(5.13) we £ind indeed that the spin vector operator

(5,18)

L Ld

8§ =51

~

¢

satisfies the characteristic cd*nitlttoa_tilitt‘l’iél'ﬁh.f N

angular momentum:

.....

‘[si’sj)‘. 1‘1’&8k ’ ;   ‘§%¥?)Ti{\
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oA

. . L 2
We have S_ = % Y, Y, = % vy“. By the fundamental theorem
2

12

is similar to ~ I'T* (cf. eq. (2.7)). But
o 0

- <

whence the eigenvalues of s3 are + 3

§ is a spin % operator. Of course this corresponds to the
experig;ntal spin of the electron. As far as physics is
concerned the bizarre result An(2ﬂ)--1 is of no consequence. f
All physical quantities arise ;htough quadratic expressions

which are insensitive to the interchange of § and -y. From

a mathematical point of view the result shows that we

cannot remove the sign arbitrariness of the elements of §

without giving up their property of forming a Lie groupt

,
+ -1 is obtained by exponentiating an element of the Lie

L]

algebra. ‘ LI o

Having discussed rotations and spin we nowv turn
to the transformation of spinors ﬁndor boosts. Supyéuol
that the frame K', coinéidinq with the frame K’Qf t= 0,
moves at speed Bg with respect to it. (Rexre m is a dait
;\ve;tor'and‘ﬁ = v/c = 0-vith]oﬁ: eboico o!'inttq.)- L.wAéb\7 _,:
p = th-l(ﬁ). Then .the primed coordialtil Qrﬁ t‘!.tod'td ‘
the “ﬁpril.d.bv x' = Q"(p)x vhoro ﬂu(o) ';"’.”2’20 .- §qrh_

-

we have iots

) (c!

111

1o ‘xoif;oz‘fea

so that g;ta .-




Let Y = (Yl,Yz,Y3). One easily checks the following praduct

rule:

(a*y)(bey) = -la*b I + i axb (5.20)

We now apply eq. (5.10) with caslae - on' /;1 corrcnpon-
ding A on the left-hand side of (5.10) is exp ( %

“ Yloi)

Using eq. (5.20) we obtain:

2 2
(" Yipg)) = -(nsy) =1
Whence we have: ' L\
1 .p
® (= p)
1 1 . 2 1 P
exp(‘z'o n Y[oi)) L -—p-T—— (n ,1(011)
p=0
o ()2 . (2)2k+1
= I ——T ' (n Y )
k=0 (2k)! k=0 !5‘ 177 let)”
= ch 1 + on2 nl y
2 2 (-39

Or, using the standard notation o!‘oq. (1.3b):
. T
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A n(P) = cn«g 1 - .»g- nea | (5.:1)_‘

One may check that this agroo- with the expression obth;gq‘;,._

in chapter 1v, loction (2) with I-‘ (i.@ o).
An arbitrary proper. Loronts ernnlgol-nttaa 8.
decomposes nniquoly into the .noQQct of n bovot and a ;

: K ¢ &
totationx , . 2“ ’ , T : :



~

w = exp-(¢n°-A) exp(Ou‘Io) , uU: unit vector.

Therefore the transformation of spinors under the proper

*
Lorentez group L* is completely described by the formula:

;
R

¢ Oy R -
H[(cosE-I + ;sin2 n E)’(ch2 1 sh2 n g)]

= exp - ¢ n*A exp p u'Io (5.22)

To give the tr;nsfo}nation law of the spinorgs
under an arbitrary element of the fﬁll orthochronous
group Lf it is now sufficient to say how they tt;nltor-
under the space reflection Q' - [: ? . because any 9 in ‘L’

. =X
N
which is not in L’ can be vggtton as 1 = Q Q , where Q

‘v

is in L:. So let us find the A ¢corresponding to Q

, k -1_k
Equation (5.4a) gives Y - A' Y A.. -y = A. Y A.,

. ©
from which it immediately follows that A_ = cy°. To

determine c we use eq. (5.4b) which says: ¢ Y I*YOYO - 5*Y°

+ -
or cZB Yo = B+y°. Whence ¢ = + 1. Therefore:

K

Y The group s* that ve have been conoid.t1u§ iéqtﬂ
through the transformations of the spinorq usder ortho-

} ‘.
chronous Lorents tranntornnttcﬂl. The tnlloa ve dtdl'

consider the full Lorents group is that'oq, (5 ) eaalot ht
-1 0 ,

satisfied for time reversal Qt - . Pgt thi- 0
0 I

. ) 4 . ,

A= s y® o (5.23)
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\

eq. (5.4a) says that the corresponding A must anticommute

with Yo and commute with Y. The solution to this is

~

cyoys and one easily checks that this cannot satisfy (5.4b).

(3) Charge conjugation and time reversal

Besides those induced by orthocﬁtnnous Lorentz
transformations, there are two other important types of
spinor transformations: charge conjugation'and time reversal.

Suppose that a given representation (y"} has been’
chosen. Let B be the matrix of proposition (5.2):

. -1 :
yL = B YUB. Then the charge-conjugate spinor Wc aof the

“”‘“//‘ is defined by

spinor ¥
i‘c 5 . »
V- o= YBY

*
where y 1s the complex conjugate of y. Let us denote by
K the antiunitary operator of conplci conjugation in that
particular representation. Then Wc - YSBKQ S ch. The

~

operator BK commutes with Yu. Indeed we have:
vexy = y¥su" - By"'y" - mxyMe
Suppose Y satisfies the birac equation
(YM(13 - A ) - mly = 0O
U H

Multiplying this on the lnft by.yslx and remembering that

BK is an antilinear operator commuting with yu ve get

L3

€
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|V} c
id - = 0
vy ( y + eAu) n}y

The only difference between the esquations
satisfied by Y and ¥e is the sign of the charge multiplying

the vector potential. Whence wc can be considered as the
B |

wave function of a particle of the same mass m but opposite
charge -e in the same electromagnetic fielad AuJ This inter~

pretation is consistent with the easily verified equation
" '

x?a S . |

The other type of transformation is time reversal. .
' {

This operation will be first defined for the elesotronagnetic:

field. Consider a classical electromagmetic field 5. 3.

7

It satisfies Maxwell's eguations:

-

Veg = 4np Ve » 0 ' .

B )
= A l - - >
L EE- A AR £

Let us define new vector fields E(t,x) = 8(-t.!)‘lnd ‘

(t,x) = B(-t,x). It E and B are really time dgpoadoét then

B

~ _ " .

E and B will not satisfy Maxvell's equations because

T 1 B 1 9B _ o )
ng il v # -E T However if we define tnqtgoﬂ

B(t,x) = E(-t,x) and B(t,x) = -B(-t,x), then £ and §

satist} Maxwell's equations with p.iil f‘tg’l?ﬁj§ .'>;

B(t,x) = p(-t,x) and ITE;X) T ~J(-t,¥) respectively.
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~
4

In practice the new densities s and g_could be obtained by
reversing the motion of the charges gqting as sources. It
is physically clear that the ticldp ;;;ulging from this
operation are g and §. On the other hind,.wo cannot think
of any physical operatién resulting in ;he fields g,? and
this is consistent with Maxweil'l equatio which say th;t
these fields do not exist. j;

One is thus led to define the operation of time

reversal on an oloctio-aqnctic field as the ropiucolohtcx

E(tvg) -+ g(tof) !("to!)

"

B(t,x) * 8(t,x) = -B(-t,x)

As an operation on the vector potential this amounts to:
Au(tlf) * ‘u(tog) = (,Ao(-t'f')' "E('tof)’

Let Vit 2 YVt = OBVt o By \]
definition W'(t.x) is the spinor ob;ainod from ¥ by time

reversal. It is easy to see that\w' satisfies the .quaiion
» u ) ) - K . .
(Y™ (43 ‘xu? mly =0

It thus describes the same pnrticloiao ¢ but evolwving {n

the electromagnetic field ‘D ahé;lnddlftol Ag by time

L R
: -

reversal. _ - L

In the next section we come back :te ski‘lioi',§,< ;fj5
and take some time to obtain a '1o§l1.cendtotc’p&otlto‘Of:gfgfidg;i¥

. L
T
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: +
(4) A concrete picture of the group S

The first proposition describes the connected

*
pieces of S , \

. , +
Proposition (5.4): The group S: is connected. S has two

+ ot _ o + , 3
components: S_ and Y S = {y A ACS‘}. .

3

Proof: From eq. (5.15) we know that there is a continuous

curve in s: joining I to -I. Now let §1 € L:. There

Al

;re two solutions, A and -A, to M(A) = Q. Prom
eg. (5.22) we know that At least one of them, say

A, can be reached by a continuous curve lying in
4 . - '
S, and starting at I. But since there is a curve

connecting I to -1 in s:. it is clear that there is
a curve lying in sf connecting A to -A (one liuply

takes the one connecting I to -I and multiplies it

by A). wWhence any element in S: can be conneacted to

, P §
¥
I by a continuous' curve lying ¢én 8* oyﬁ 8* is

4 ' +
connected. We noticed after theorem (5.2) that 8

+ +
¢ +
and Y°si are connected. Since theay doa't 1n§‘rcht t}

is disconnected. we have Sfﬁ‘(l:)‘u (1‘! 3 lnd'botﬁ 8

is clear that they are the two compomedts ol'i’.

y

o’

Proposition (5.5): Any A in 5 has determinmant 1{?. o '_-'¢+%§

Proof: ABq. (S.4Db) IAOVI that detA = :i. Qinoo yyf"  ‘ o
proposition (5.4). 8: is comnected nad.ditij'; ‘t‘,i
follows that any A in l: has d.g.t“ilit i..ii! § 
is in s’,and not in s:. ih.n A s f.l;"ii;jijl‘;f:l:;

L]
P




whence detA = detYo dotA+ = 1x] = 1, by the
corollary of theorem (2.9).
”
After proposition (5.3) we said that we would give a third

formulation of egs. (5.3a,b,c}.. It is contained in the

following proposition. / | .

L/ A
Proposition (5.6): The equatibnl ($.3a,b,c) defining Sf are

equivalent to

A A" vy, aedt

detA = )1 .

[ ]
TrA = TrA

- e
Préof: 1f A is a solution Jf}(s.ia.b,c) 1¢ toiloﬂﬁ that it
"satisfies tho !itnt two coﬁditiohi bjipiovﬁiiiioQ
(5.5). The third ¢ondit£on that er bo zeal !ollﬁvc
from (5.3¢)1 TrA o et AD o !llll ‘- ,“@ IOV l"
us see that the three condit&on. tl.ly QQI .!5?300
b,c). The first condition datotl&uin A ., to an .

unnu u 'K u

arbitrary complex -nltt.llnlt1 
.na,b.n) za.. Ae dl
Now the second condittou nbcvo lﬂ't»tilt C 1' ‘l‘.ﬁt

one of the two solutions to :

#1 or +i, and the thlt‘ coulitl'l Ol(!&l‘%ii ill.zﬁ ;ﬁ

possibility. Whence A - +I !lxo coaplcth th

I
proof of the cqufvalltic. ‘
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We nowv come to the main result of this sactioh
which provides an identification of SI wvith a surprisingly
(/\
simple group.

Proposition (5.7): The group S: is isomorphic to the group

SL(2,C) of complex 2%X2 matrices with determinant 1.

' Before we prove this, it is necessary to make a

few comments about SL(2,C) and {ts tolntionlto L*. sL(2,C)

shareslwith s’ the property that there exists a hononorphill
P from it onto L’ such that P(H) = P(N) if and only it |

M.= +N. This P is constructed as foéllows. gno gatabliahic
a one to one linear correspondence betveen the 4-dimensiopal

Minkowski space M and the real vector space H of 2x2 colpip?;"

hermitian matrices by xu - xuou; wvhere ih‘ Cﬁ'l ar.»tﬁ‘

Pauli matrices of eq. (2.8). Upon-.ottt’p ;;5 :udh
2 : A
easily checks that detx = x° - xrx. An element a of SL(2,0)

, OB

induces a linear map &: H*Hih + aha'. I?'}ff i(x) ‘f;' .

x' 0, one has . : I , T g

(x' )" - x'ex' = dct(f') = det(axa | = detx = x° - 3%

‘e

C % " o - St
so thié a determines a Lordnts tuauoznuoa'ﬂ . - One tlu Sy
shows that P: a *ﬂ is a ho-o-crphton o! sn(z.c) tnto L‘»

that it is surjoctivo and thce r(a) - )(b) it Qud only lt

a = +b. . The details- ot tht- can bo found ia (luhl lt’?’ﬁi-;  '

noiqhborhoo& v of I in s' ' To eseh A la ' th‘t! !1}1

. \‘



correspond a unique LT\ in SL(2,C) close to the identity such

that II(A) = P(a If we take A' close to A there vill be a

A) -
unique a,, close to a, with R(A') - P(.A')' "y ’ovinq by

little steps in_s: we can extend the map A =+ QA.to the whole

of s: and this map will be an isomorphism. All we have to

do now is to make this igtuitivo irqunont rigorous. This

is the only place in this work vhor; we invoki lcth;gattcal

ﬁgtiohs which'aro not completely elementary. It is 1npétt;nt.

to notice that since SL(I.C) is ailply cohnoceod, tho'abovn
discussion shows that it 10 Qllo tho univotoll oovcring

group of L:. Our thooraa (S 2) :ogtth.t vith the uov

established connoctivity of s’ (propo.itiou (5.4)) shows'

ﬁhat s* is & covering grbup for. L’ . zf ve kaow that f E : .
‘was simply connected v' could eonalude Q’ Olct that 1t is |
isomorphic to 8L(2 c) bY 1nvoktng th. Ihi(l‘lnll (lp o
Llomor#hiln) of the universal covdrluq gt.l'. !lt vn dn.‘tM 
vant to show directly that s’ is u muma._ xnuuﬂ‘” L
we will use a result about topol.ytcal qtptp! lbl.dl ﬁtll

‘enable us to ptovo the 1.0lor9hili vtthont ll! elluulatkon.;_'

By the same tokcn ve vill hdvo thovu thas l:,il ltl.l! f;gl_f"5ﬁl

connccted.

G.be a topoqutcul group vith lﬂi""‘l }Qi&ﬂ;‘
(&,p) (pt G*G eovoriaq holﬂlnt’h$.‘1~ ;“

is another ccvortng q:.up fot 0.‘ij§ﬁ&33”



)

element other than I-that u could’ nn m Q!@Jo«

6y

continuous homomorphism h:C*C' such that’g'oh = p,
Moreover (G,h) is a covering group for C'. This theorem
can be found in (Pichon [1973)). 1In our case we take

G = L:, (&,p) = (sL(2,c),p) and (3'}9') - (s:.n). The
quoted theorem then says that there exists a unique

continuous homomorphism h:SL(Z.C)*S: such that floh = p

ys illustrated by the diaqranx
~ . R : A , o
) ’ - .\"“ '
e |

SL(2,C)

+

Le

. /\

Clearly, qivon any ag8L(2,C) h qiv.o one of the tvo A'a 1n
s: such th.t n(A) = P(a), and thio 1. aocolpltchnd tn a' | |
continuous t.-hiaa. Our-elain is that th&o ie la»llct-nnv _  f;.'
ioo-orphill;' The thoorcn nlyp thlt (J:(! C).l) tl 8 -
covering group for s:. vhcuct h is Iurjqbtth,; lo '0 Q!lr

need to lhov that it 1o 1nj¢nggy.' ?h. 0.&} ‘.‘ .ﬂ f

that h could map to -1 sre 4l au« h 1 minun m \
h(I) = I we must have h(- n -'-!. lu ~t-48 ﬁm,mv s

ve have uut hia) = xonpuu se1 m .tt; '

», "J:‘. i
Whence h is an t-onorphic-. “ﬁ' W

a conploto doncrtpttnn of tho '301'0 ot jru"tlJ%:“Ew
and s’ . We now turn to th. touttthtttﬁ ef i‘n"ﬁi‘ﬁﬂﬂq

lpinotl. ) _ . T 'vq . "a fi'
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CHAPTER VI

TENSORS CONSTRUCTED FROM SPINORS

(1) Introduction

The aim of this chapter is to construct tensors
from quadratic conblnntion; of spinors and to study their.
reiationships. These tensors are vcli known so w; are not
going to define anything new. However the iocﬁion devpt‘d
to tﬁ: study of their relationships might have some A.
originality. In (Pauli ([1936]) Paull hll‘lhovn how to
derive some identities relating thono tnn'orn by uotnq
the Fierz identity However the set of id.neitt.l vhteh
he displayed-‘is inconploto 1n the ncnlo thlt it éocin t
fully exprosa_thg»:cstrictlon- on thc Coqr.cuvut !aﬁa‘ou .
in the tensor components. Attcr hnvinq Ctllullod gh- - e
construction of the eonoors ve vill ptovtdn‘f eoiplqgn -
salution to the queltion of ehotr nlqobtaic dcpon‘.ndo.
In particular we shall qlvc a8 set ot lllﬂd‘ Ltll’QnCth
covariant 1dontitics which tells ox.ctly how. tht V‘ttcﬁl
tensors aro-rclltod to each otherx. llt the oehtt tdonttttdi -
are derivable from thin pqrticular Bet. . “”ﬁ

We must onphnnitp tuat ou: caa:yitn 1. 1;-1300

$o the case where ¥ is an or‘inary lpiuot .nd not a !tcll

opetator.‘ We have uot lcriouoly iavocttqnt.l hbv niﬂh 0!

the analysis carries throngh in this more. i‘notll Qltﬁlﬂiﬂl.t;'

Y 1 : ._,"
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(2) Construction of the tensors

In order to obtain real quantities one has to

take appropriate linear combinations of the products

JL wv . The maximum number of linearly independent such
combinations is clearly 16. It is in fact possible to

construct 16 linearly independent quadratic forms which
are all components of tensors or pseudotensors. We list
them first and then proceeh to s"? that they have the

appropriate transformation laws.

B

s = Yy : scalar
P = WOy ) : pseudo-scalar
v EAWYHW : future pointing tiuoliko or null
vector :
b u S, K ’z_ | . " .
P" = iPyY .t spacelike or null psevdo-vector .
[ B . .
Cos®Y o= B WVly T L antisymmetric temsor
» o A _ ‘
One easily checks that all thooo qoantitiou lrc rcal.. !h;tr
linear indepondonco !ollovn fzou that ot th. Y“'O. !to- thn
t
condition (5.3b), ¥ 2 v'y° t:caotarno under eho actloa ot 5
according to W - WA-I' Ptqn tht proof of propoditioa (5 1)-.;*
the condition (5.3b) can only be lttilfiad lh'l C!llil' 'ith }A{:ﬁ
orthochronouo Lorent: t:anc!ernutlons.» &“lg‘ll’l’ od: ,;:f_**ﬁﬁ

quantities behave as ¢1itl.d o;lr llth Glll t!" 0’

transformations.




70

. 1
It is trivial to check that S and V‘ are a scalar
.
[S AV -
and a vector. Now let us see that S .is an antisymmetric

tensor. The antisymmetry follows at once from that of

Y{uv]. We have S'uv = iW.Y[uvlw. = igA lY(uv]Aw

Clearly if u¥v S W 0. Suppose now that u¥v. Then:

-1 v

Y 1pA Ey M Yy AV '

3 = iyA TYTAR

.~ H vV == p. 0
= 9]
iQ 5 OWY Y ¥

i Quonvc;y[po]w + i I nuonvowaYow
p¥o p=0 ’

v
i

M -V _p0O - U VRSV
SR S L 1 C i MR i AR T

The second term vanishes because we Qnou-dd y¥w-and R is

a Lorentz transformation. To treat the other two cases

we need to use permutations. If ?u ‘qufv; then

(-1 \ ‘
‘. ) y ot . - o

° .

‘ ' | .
P - 9oql9%? L hr ()% o9 g 2 Y
E 1)

oes

where s‘ is the set of permutations of (Qiiﬁ)-
| p_ P, P, P
y °Y_;Y 2Y 3

o] g,
s e’ al
' Oes‘ o -

ﬁ°z ﬂaa
Py Py Py

Clearly the only terms contributing to this phu'

are those for which all the o 's a:o'llttoroht.A-lo ve aq’/ _~“ ;21.

R e e el

write

oes . Tes, c.l.  ?”f j;jf?j  S
- q.;ln?Q{YQ. W

.

« i1 (-1)?(-1)“ a.t«a“viv’
€ ' - '



From thi1s we obtain:

'Y oa TATHYANTN Py - Q”wa“§5w - det()n” p"
Similarly P = det ({{)P.

The physical iﬂterpretation of the vector v¥ is
the probability current of the electron and it is denoted
by 5“. jo = w+w is indeed positive and can thus represent
a pronbility density. The conlcrvatipn of total probability
is guaranteed, .under appropriate boundary conditions at
infinity, because j latisfie- the continui;y oquation.
Indeed uponkmultiplying (iy 3 - l)* = 0 on the left by ;
and the adjoint equatfon W(iYus + @A) = O on the right by
V and adding one obtainl.auju = 0. This also works when
an external electromagnetic field is present.

: The tenlor -zsuy is inictérqtn@ as & spin d.niity

(Messiah [1964]). The other tensors ar‘ used te couple the

Digac field with other fields. .

e
(3) Covariant identities

Je
Let us novw come to the Ldoutitidl'cuaaoctlni the S

tensors. We fix the lplCC-tll. point x and lobk Qt uov tho

components of the tcnloro are t.lltod to. Olch 0&‘0! ‘t tll’

pom' They are 16 real-valued tuactlou ot O(a). £'0

emphasize again that in this study ¢ is an onwr -'
and not a field operator.) ltug. ‘(,) c“'.“. ‘ 1'|!ﬂ|
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Jdent real parameters, the components of the tensors can be
considered as 16 real functions of 8 real variables. It is
therefore clear that at most 8 of them can be independent.

It turns out that only seven are independent and the nine
others are determined by the first seven. The basic taol

for studying these functions in a way which is independent

of a particular choice of unitar; Yu.. is the Fierz identity.
It is a very remarkable identity satisfied by any iot 6!

4¥4 Yy matrices. Let {y")} be such a set. By propo‘ition
(2.5) We know that the 16 YA'- span the entire vector space
of complex 4%x4 matrices. If M is an arbitrqry’G?‘ matrix
there exift coefficients QA such that M = i_ahYA;

Multiplying this by YB H (YB)-I.and taking the trace yields

l .
QB by Tr(MYB)' Whence wc‘huvo:

A

H - Y aB(YA)vu"uv

aB

F

z
A
v

But, since M is .rbitrary:thio implies

1 A . ‘ ‘ I
Y i Y‘QB(YA)VM - Gauésv . i (6.1)
This is the FPierz identity. It 1- 1n tnce a tcu:or p:oduce .
identity and is seen most clearly ‘when v:ttton un‘ lu&h. -
The tensor product of two linear q.artcé:--K.csd !.-l!l, Ln‘

ye

defined by Mou(ntv) - Huclv for nrbttztry vactotl u.v.»

. Given HON v define (NeW)™ by (now) " (qov) = uvqn-. -o th:t

14




™ hd . . N
(M@h) = (M@N) (I@l) . It 1s then a trivial matter to
check that the TFierz 1dentity may be rewritten as:

- A
oy .YA = (I.I)“ (6.2)

1
4 a

The advantage of this notation is that many
equations become clearer because of the elimination of
the indices. There is another algebraic tool which we
T
shall need. 1If {y"} is a system of Yy matrices, 80 is {Yu },
“y
the set of transposes. By the fundamental theorem, there
ut u-1
ex1sts an invertible matrix T such that Y = TY T ~, This
matrix T is the other tool which we will use. It is anti-.

symmetric. Indeed by taking the transpose of the equation

defining T one obtains:

T T
Yu - T 1 j@QTT - T lyu v .

from which S:HT,TTT-I] = 0, by theorem (2.8) 1t‘!b§1°vl
that;TTT-l = ¢l or TT = cTy From this vo.obtain )

T = CTT =.c2T, whence ¢ = iul. Thui_r is oiﬁhor symmetric
or antisymmetric. Suppose th* 1;‘ vas ;y-iotr‘tc. Then one

(Wl o TY‘*““"

can easily check that the tun'-atrtcoi TY
would be aﬁti-ynnotiic. But, since there are at BOSt ji;
linearly independent 4%4 antisymmetric matrices, thie is a’

contradictiqn; thiritorc. T is nntitfnlctrié.' This telegant

arqument is taken from (Pauli (1936)).

73

.
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We are now prepared to study the identities

satisfi1ed by the tensors. The first step is tq write the

11

18

'Eq.

®
erz i1dentity in five different ways:

- -]
obtained by multiplying (6.3) on the left by Y LAFS

Y

(6.5) 1is obtu}d by multiplying (6..3) on. the left by

'yéoj. Eq. (6.6) i- obtained by«rovoroihfldll tensor

produdts in (6.5); this can be achievsd by multiplying on

L U _1 [uv] ) 5 5%
4(101) leI+Y @Y -5 OY[uv]*Y YOOy Y +YOY, (6.3)
L)
5 o _ M _1 {uv]) _ M5 S .5
40y @y, ) lel-y oY -3Y Y (uvy Y Y CTHY Y oY (6.4)
5 _om 5 5 U 5 5 b lg{uv] *(6.5)
4 1 = 1+1 - =
(Y 'o1) Y oI+Iey 4y oy Y oY Y oY 4% " ey |,
5 T 5 5 u 5 S HW 1.{uv) (6.6)
4(1 - I1+1 - + +
(T@Y ) Y OI+IOY =Y @Y YT HY YTOY +3Y T TeY ) )
3\
ST W bl (uv) T _ M5 5T S, T :
4(T "OTY = 1@I+Y .Yp +3Y .Y[uv] Yy .(YuY ) +Y OYS (6.7)
‘ __ . N 1 _[aB)
The matrix Y[le is defined by Y[qu ECuquY . This
eorzesponds to the definition.of the dual of an antisymme-.
. 1 ag
tric tensor Tuv as Tuv 3€uVGBT . Prom eq. (2.5) Vt
~ ‘ 5. -1 ) ‘
. = . 1 : - .
have: Y[uv) YSY[uv]‘.Vhere we tecnll.that YS (vy ) "=-y
Eq. (6.2) is just’ (6.2} written out expiicitoly. Eq. (6a4)

right and left by,(xox)". rinblly;.q.'(6.1$,ip oytngnqq}by

multiplying (6:3) on the left by'ibT ahd on :ﬁC'xgght by

IeT

-1 - % N
. . . R

»
’
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For a while 1t will be convenient to replace Pu

’ ‘ NS TR - 5
and ot by the pure imaginary quantities VA -ip¥ - WYDY [
’

i\ . \Y) - AN
b _isHV . WY[L Jw

and T

By multiplying (6.3) on the left by ;‘E and on the

right by Y@y we obtain:

2 2 u 1 _uv u
s = s + vy - = 7ty + V0 - p
4 U 2 HV V!

-

By doing the same thing with (6.4) we get:

1 uv_ " u 2
-4P° = s° - vy - = oFVe - 970 - p
2 UV U e

By adding and substracting these two equations

we derive the equivalent system:

" 2 2 g
T Tuv 2(P"-s7) (6.8)

v“vu + v“vu - 2(P3452) . (6.9)

.~

Perforn{nq the same operations on (6.5) yields:

Ve | - ars Loy (6.10)
°

Next if we multiply (6.7) on the left by Fo&

on the right by VOV ‘we obtain: ' S N

< =izt T 2 M LUV, * ' ale _ 2
auT TV )(w ™) _q; A SRS A I ? LA

where we have u.oqfﬁho tacq ehqgrln onp:ouoxon llxo * Yu

beinq a’number,’ is oqual ta it. ttanIPOlo ;Y Qv. lqv ltn‘”

At Y
Y
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) T
T 1s antisymmetric we have wTTw = (WTTW)T = -y Ty = 0.

Whence our last equation reduces to

2 V] 1_uv H
< s + vy o+ 2707 -9 - p“ =00
u 2 uv M

When combined with (6.8) and (6.9), this gives
1

. vy = M) . pz+s2 (6.11)
U u :

-,

Upon substracting (6.5) from (6.6) and then multiplying on

the left by IeT and on the right by 1e7 ) ve get

. |
5 S =1 . 5. T 5 \
27 Yoty - y T leT)" - Yo YT e vy or"

@
Then by treating this as (0 treated eq. (6.7) we obtain:
’

v“vu -0 | (6.12)

Eqs. (6.8), (6.10), (6.11) and (6.12) are the identities

which Pauli, displayed. We now proceed to dot1VQ othorl.

\
By taking the difference between (6.3) N!&t(G 4

@

[Y

we obtaihn

, N ‘ s
20101 - Ylov 1" w vy, ¢ 4PYRev Yt e

L

N

| o Multiplying this.on :eh. qut %y uy“ ’1.,;.4§: B . .
A , ’ : s ’i, T§g§f
ZIICY + Y OY Y l .»Y ‘V Yp +. Y Y OY va .
- ‘“ﬂr . .
. P &
L Yu twv owlu’}¢v Y Av ~v

:’,
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By applying Ve to the left and VeV to the right

we get:
218V + PY | = sv_ + PV &+ T vP -t @°f (6.14)
u v M H up Hp A
Next by taking the sum of (6.3) and (6.4) Qe get:
s k. T .5 5§ 1 [(uv)
lel - = J@I -~ -
2(1le Y oY ) ] Y oYy Y 'Y[uv]
»

Multiplying this on the left by IQYu yiéld.x

5 5. W 5 5 1 _(aB)
211 - [ ) - - -
{ .YU Y YUY ] I.Yu Y .YuY EV oy Y[“Bl

Now, by using gthe product rule (2.2), this may be rewritten as

‘ 5 5. 5 5 & v, 5 (aB)
2(Ter, - Y oY, Y 1" = 1eY, YOO, - YooY Y e’ O

which, when taken between VQW and Vvoy,.gives

. '- _ V U b
2[§vu Pvu] svu pvu ?uvv "Tvﬂv

If we combine this with eg. (6.14) we obtain the equivalent

system: A i

P o ol - |  ";' .
Tupv pvu (. (t 15)

. P - ; ‘ ’ *,
1‘w)v ’Vu |

£
-

the riqht by Y QY thil yi'l&lt
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Mo 5 M LA N‘v 5 5
20y @Y - Y Y oY Y 1l = YUY v, ¢+ 7 Y P eV, Y, Y

5 .5 [vit] (wu] 5 5
= &M
o[IOI+Y oy ] + Y .Y[vo] + Y 'Y(vp)
(b, p) 5__Iu 5 M1 _5_.5
1
+’ oy YD] + Y[pY oL + Y @Y Yp]Y + Y(DY Y oY
, ¥
Operating on this with EOW and Yoy, in the now familiar
way, we obtaing
T“VTvo + T“vap = g"P(s%4p?) - 2(v¥VP + WP (6.17)
*
As long as Tuv is antisymmetric, the following tdentities
hold tpue: ‘ .
' o . .
HV uv 1. .aB v s
T T, ? ivp - F(r TGB)G o (6.10).
MV IR .1 AT A ' ; '
T Tvp ‘(T 108)6 b . (6.19)
‘ ' [
' o B ' o
Combining (6.18) with (6.8) and (6.17) yi‘}‘l
»
SV e o VP Puef) 4¢Pt o . (e3e
: T”“Tvp - - (VPP . oMef) +.g"ﬁg§.“‘ o (6.31) -

..

Fortunately we havc now noa:ly oxhnu.tg‘ ehy .‘g of 111 |
PO'libli 1nvar!ant qundtatic 1dont1$tocl atujg g‘.‘i, g.i'*-J#

éwq. Multiplying (6. 20) by Vo nd ﬂlil' “-ll)g (i.l!)

. ) . ‘* Jz.

. (6. 15) we obtaina o | IR -_ﬂ;_ﬁ;zf

A

pr““?v.- - (l +pa)v e s’vﬁ - - lz'“



Since this is true irrespective of y we may dfvide by P to

get

BV H . .
TV, = - PV ’ PO (6.22)

Next we use this together with (6.19) a;:\?B\}O) to;qotx

i‘“"vv - - % ?“"Tvovp - - (--:- QQ'TGB)V“ - s¥¥,

L1

that is: Tuvvv - Svu . (6.23)

We now reexpress all the iddnti;ioi obtained in terms of our

original real-valued functiongs Pu ;ﬁd SUY. }
. i 1
v“pu = 0 ' ' (6.24)
. v“vu - P2+S2 . I (6.29)
N ‘ ) ’ . M ’ ) * .
&' = - (p2es?) _ ‘ y - (6.26)
u . N “l . B
RTLY ‘ 2 2 - b * 'iﬁ} ‘
s"Vs e 2(s-2%H) . . ¢ . . (6.27)
uv : .
8778, | 4Ps ‘ | o L ct..:o) :
o 8P e viP - tef) - " . (e.29)
s, - (VPP - VP - g¥Pp? T (s.30)
A " o -§ Lt A
Woy . : N R L Y o 1
s" spo} P8 8 RS ﬁy* P um s
vPW - pp : :
sup u ) -_'. ,‘ s ".” L
) p s :’ " L . R : .
v ? : »
AL -
s, P = PV
3 T T
- 9. " 'x‘
¥ D’f T '
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(4) The information contained in the identities

Clearly the laft handAlides of the last set of
equations comprise all possible quadratic inveriant com-
binations. But these equatiomg are so numerous that their
content is {ar from clear. They form a highly redundant
system: for instance, (6.24) is an 6bviou| consequence of
any one of the last four equations. 1In fact only nine
equations are in@ependent. This leaves seven 1ndopcndcht
functions: one pos;ibln choico.ii P.Vk,rk. We shall now
show how one can pick u,ly;tom_ot §1l0l£.1na.p.nd.nt
identlt;eu implying all the others And then procsed to
.demonstrate that P,vk,Pk @to indopondont. »?L;it ve fix

the notation. We define:

Py T,
1 "ﬂ

1< .
]
< <
~
e
s
o
L]
..
w
)
>~

p? |
|

so that
(suv)"
l' -




S is twice the spin density vector.

that

2 2 1 _aB .
K-S = - 35 Sq

. 1 _af

kK*S=35§ suB

A
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One easily establishes

(6.39)

(6.40)

These are the analogues of the familiar invariants

of the electromagnetic field.

Our claim is that the following set of identities

is complete: ‘

s V' = PP

Suo M .
p-

g0V = 8Py

v e s?ep? . -‘r"pu

First (6.41) clearly implies (6.24). Mow in cur‘nov',~

notation, eqs. eel:‘n and (6.42) read

(6.42)

(6.43)
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Inserting this into the first part of (6.44) we obtain

2 .
o
vV K - PP V -~ VZK 4+ SVyxXp = - VOPP

-~ -~

that is: K = (p(P°v - vop) - svxp]

Y
From this we get: //r“B

VXK = l-Pv°vxp.4 S(V*P)V + svzrl
-~ -~ vuvu ~ ~ ~ -~ ~ . : ‘~

Inserting this into the second part of (6.44) yields

? . vhy
-] s 2 M
§ = {-PVXP -_—;(Vo?)v + -—-v ! + '_37'8P)
~ v‘ Vu -~ -~ v -~ -~ -~ v ~ '. v ) -~

Equgtion (6.24), which may be written

vPp® e vep - _ . (6.45)
-~ '. L] .

is a consequence of (6.4)). This can b.'ul.@.t§ elnc91.thp .
. ) Ps . -.‘ " . ,v )

v° in the denominator of the second ters on the right hand )

side of the next tqslglt equation. Thus ve obttin'thol ”:f;F ;; g

-y

following exproction;ﬁi°! K Ih‘ 8'

K e -1 (P(P% - vOp) ~BVRR] ' (6.46) -
~ vv -~ L ] . PR ] ~~. s ; .

H ‘ L . .. . o ,'~‘.':'<

s = —— (8058 - 2% - Pyar)
v in S “

- el
i

We haven't y.t uacd thc l’ - l-v paxt ot oq, (‘ 643
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is the extent to which.the identities (¢.41,42,43) are not
completely 1ndependent.

Next we obtain
sp p¥ = & vPp¥ from (6.42)
u uo .
- Lz My yP from (6.41)
P T up A
- 1 (3 s‘“e)v vp from .(6.19)
4P aB p
- - X (8 S(’B)P.l’u from (6.43)
4P Taf M T
GB : . < .
Whence Saes = - 4pS ; this is (6.28).
The ¥xplicit calculations will not be given b#t'
one can deduce, using bnly 16.45,46,47).'tho xolqt1on
U 1S SR Y Y |
S adlapons vy - -‘6‘ 8 T 4
sz - vuv v ( o ) 4 Pp) ‘ P . o
¥ ', : S »

When coupled with X6 43) thio cquntion qivon (6. 29’. xt is al-o

seen to imply (6.27) by lcttinq psy nnd nniﬁg r“r\/- - Vuvu'.

Combining (6.29), (6.27) and the identity. ’6.1!),'A’rhich is

, " " A
valid for arbitrary untiuy-uottic ton'orl, ono 18" g‘. tP’ S
T -m o

(6. 30) Equntion (6. 3}.) follovs gron thc g.nu‘ll t‘ulitf ‘-

(6.19) and oquation (6.28). !inllly oquntton (6 ‘3‘) nd ‘_;{‘3.?."--,;‘

(6.35) sre a cons ug\f p “Q). (6.42) toq.en: vm- thc
‘general, 1dont1t& 1 : . SR L
» Ka

(c.zn. :
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Now suppose that V,P and P afe given. The

equations VUV“ = - PHPU and VuPu = 0 read:

By themselves these equations are sufficient to determine V

LY
. +
and Po up to sign. But we know a priori that V° -y V0.

1f v° is O then V=0 and everything vanishes. It,Voib then’
v® > 0 and the two above equations take care of the signs
as well as of the magnitudes of v° and P°, mov that v" is -

deterfined, the cquationvvuvu « 524p? gives 8 up to sign, P

being supposedly givén. Then, un)less both § and P _are sero,
equations (6.46) and (6.47) determine 5.y uniquely. If both

* ana. pY are two ‘orthogonal nulf vectors;

t

} ind‘P vanish, V
this implie- that they are 11noot1y dependent. In thias co’,
‘the system becomes deqonoroto -inco it fotls to dotolnino
suv uniquely. Indeed one may chook by lookieq at (6 44)
‘that it only domando that X and 8 be two vectors of equal
norm orthogonal to oach other and otthoqonal to V. Ihoncc
there is one ‘degree ot freedom lottu thci: poottton ia tho
plane orthoqonal to v. bue to the !oee th&t v" on‘ t Crn
1£nooxly dependent, one can oclilq ehock tbltftho vwolo i.t

of squations (6.24] to (6. 38) says nothll' oloo oboﬂt .

than what is. uzuay implied by (6. m ..é u.q;.
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Thus we have shown that, except in the degenerate
case where v¥ is a null vector, the system (6.41,32,43)
determines the other functions once Y, g and P are given.
Moreover this system is complete in the sense that it
implies all the other equations in (6.24) to (6.35). To

show that the system is really algebraically complete we

I4

have to demohsttate that there are no non trivial relations
between V, P and P, that is these are independent functions.

Ope way to do this would be to use a particuler set of.

.

Y matrices, for instance that of eq. (2.7), to iéito down

explicitely these functions. But we have found an alterna-
tive method which. is less cumbersome and doesn't rely on a
séecia‘choico of the system {y¥}. It amounts to showing

that their differentials can be made linearly independent

ri>with an appropriate choice of V. ‘v
. 4
The seven functions P, V, P are of the form,.

k k_$

y + Eu‘wlfhere ‘the MA'- are ys, Y and iy'Y respectively.

Let us denote them by fA. To o-phaliso‘thoir Adependence

upon eight real variables vc'ytit‘ ¥ as 00#0 where both .

¢ and ¢ are real. Then we have: o f '

’

20,00 = F-1Hut (o410

.

4

- Tnte o Tute o 1iWnte - Tntey. e
C . .{?‘-.ff" g - : :; A . ‘Wiqu%;:ﬁffl“
Now the ‘differential of £ 'at the point (9,4] Lo deffned by

o




8o

R

A A A
f (¢+h,¢+k) - £ (¢,¢) = _4df (th,x) + 8(h,k),
/ (¢,%)

o

f b i B(h,k - .
d eing linear and (h,k) satisfying lim 1RFTTTT 0

\ (h,k)+0
N

One can easily check that.
A - - - - _
df (h, k) = (F-i®)MPhe (F+iF) M k+hM® (0410) +xM” (8-10)
(%,9) . ‘

Suppose that these differentials were linearly dependent.
That means that there would be real numbers AA' not all

vanishing, such that

A ’ . ) .
A df (h,k) = 0 independently of h and k.
(¢,¢) T
This would iﬁply the two equations . v\
. “ ) ' ' N
($-13)Mh + RM(0+14) = 0 for all h - (6.48)
, ’ ‘ 4 :
($+iP)Mk + kM(¢-16) = 0’ for all x (6.49) ,
' - ]
where we have set AAHA 2 M. Upon roqﬂlcing the second term
in (6,48) by its trannpblo. to which it is equal, we obiain '
< T T T o W TR
(P-1i9)Mh + (#'+i¢ MY h = O ot ,
‘ ~ L W
This being supposedly true for aybitrary h vo_ggduco‘{ '3
. B : ) - o . . d i.
- e 1, T (T 0T S e
C(F-1tIM ¢ (9Tt Ny? =m0 b

Doing the same thinq.r}th (6.49) and -uxetpxyiaq'gg;lfﬂ

‘ ,rocultlng\oqﬁation b*b°1.71oidlg;; ' : fggf N

/’ L . RS W
. - . - é Jrwe .
B . wr e



T
F-1M - (8T+16TIM"Y° = 0 (6.51)

® .
T
T

Substracting (6.51) from (6.50) gives (¢T+1¢T)MTVO‘ ' 0;

this is equivalent to YOMW = 0 or My = 0. Whente the
problem is reduced to finding a ¥ such that the seven vectors
MAw are linearly indepeni:nt over the reals. Suppose that

we have a relation

v 9

. .
L 4

5 k k_5
Y + Ay + Uy Y 1Y =0 (6.52)

where all A's and yu's are real. Let y be an eigenvector-of
. L ]

YO: Yo” = py. p is not O since Y° is invertible. We also

know that such an eigenvector exists since Yo can: be ‘

K

diagonalized.

y Multiplying (6.52) by Y° and then dividing by o
: : P

°*
we obtain:

5 k k S S
=X v - 3kv + A YY)y =0 T
S
Together with (6.52) this implies:
k .
uky tr- 0 e 8
; My + ALY 1Y -30.
Multiplying the last ‘quition by Q*Ys_v.’ggg!
.}vt'

a ." g *5‘
. - -AOW v+ Ak* Y'y "

- 4
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ABSTRACT r

The kinematic aspects of Dirac spinors are
studied. All the properties of a totally arbitrary
system of gamma matrices are derived wighout ‘sorting
to the theory of finite group representations or the
theory of Clifford algebras. An algebrajc method is
then devised to find explicitely the similarity trans-
formation arising in the fundamental theorem of gaéma
matrices. Next the Lie group of spinor transforlﬁ%ionl
under the action of the orthochronous Loxentz group is
studied in detail. The work ends with a thorough ,

I

analysis of all the algebraic relations among the

Dirac bilinears.



PREFACE

As described by the title the object of this

simple work 18 the kinematics of Dirac spinors. Needless
\ - ’
to say it was meant as a review. However it is hoped ghat
. @

the final product is not completely devoid of oriqinlli§Y-
VA Chapter I recalls how one is iod to the Dirac
equation and its associated gamma wmatrices. The relativis-
tic vaariance of the equatiop, discussed iin the second
section, provides the ghynical motivation—for the fund;iow-‘
tal theorem of gamma matrices. i
Th:intlt section of chapter II is_ a standard
presentation of the proportio; of products of ?ag-a iltricz!.
The second section discusses the degree and rﬁdqcibility of
tho.rnptolontation' of the fundamental relations )
{Yu,Yv} = Zg“vx. The eventual o;iqinality of tﬁo diocunlionj
¢elies in a complete avoidance of the thdary of finite group
representations or the theory of Clifford alq;Prnl, The'
resulting treatment is self-contained and QldIOACCIYp‘Fhil
might be of some pedagogical iné.tllg- .. ' ;
| Chapter IxI do;i9 vitﬁ the fundciontui theoren of
gamma uatxicco.. The ulunl_proot“il -;difiqd. lioding to a
thortof-and perlaps mors cldquut one. ‘80;0 o;;ionf;ry Eonlc-°
quincc- of the fundaméntal choognn are then éilcunoodg for
instance. it {s shown Eh;t'thcr"oslotl no system of rinl

A

gamma matrices.

P Y



2

while the main result of chapter III asserts the
existence of a certain nog-singular matrix S connecting

two systems of gamma matrices, it says nothing about the

v

I
§

explicit form of §S. It is the aim of chapter IV to try to}
fill this gap. |

Chapter V discusses in detail the tranlfo;mation
of spinors under orthochronous Lorentz transformations. The
Lie group sf whose' elements are those transformations is
carefully studied. Several different ways of describing its
elemeﬁts are obtained. It is fiAully concluded that the sub-
group S: corresponding to proper Lorentz transformations is
isomorphic to SL(2,C). g

Chapt?r VI deals with the tensors obtaihed by
quadratic combinations of spinors. These inclpdo a scalar
ani a pseudo-scalar, a vector and a pseudo-vector and a
twice contravariant antisymmetric tensor. These objects
are not independent of each othof. Covarilpt identities
other than those given in (Pauli [1936)) are derived and
used to provide a complete solution to the question of the
aiqebtaic depondenc; of the tensor components. This analysis
is restricted to the case whorq V is an ordinary spinor and

not a field-operator. S

vi 4 ) ' Com
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3" CHAPTER I

- ‘ .\‘-
THE ORIGIN OF DIKAC Y MATRICES

(1) The Dirac equation

L
The Dirac Y matrices arise naturally when one seeks
a relativistic equation for the wave function of an electron.
We suppose that this wave function y is a function from
spacetime into CN for gsome N and wé are looking for a
differential equation describing its behavior. To have a
close analogy with the Schroedinger equation we want it tc
be first order in time. 1In order to be invariant under
Loreﬁtz transformations it will have to be of kirnt order

-

in the space derivatives as well. The most general form of
such a linehr homogeneous equation with constant coefficients,
expressing the time derivative of § in terms of the space

derivatives of Y and of y itself is clearly:

(—3— + ak 3 + imc B) ¢ = 0 (1.1)
3x° 3xk t *
where ak and B are NXN complex matrices and k runs from 1 to
3. The xk'l arz‘thc space coordinitcl And’xo - cg. The
’constant in front of B takes care of the dimensions appro-
priately if m is a mass. To be consistent with the tolltlvii-'
tic energy-momentum <$1ét1°? 32 = p,cz + .ﬂc‘ v? toqugg’

that § satifies the Klein-Gordon oquntioh as vg}l; 31-;10

/
multiplications give:



-
> L -
4
( d _ ak Bk _ imc 8) ( R ak ak , imc 8)
Jx dx + dx 3 x )
2 2 2
= 5 - -;-(akar + aa) ak ’ 10¢ (o¥g + ga¥) ak = ; B
. o Ix. axT 3 x t
9 x -
Upon requiring ,that -
o
{riar} '_'29krI, {ak;B} = 0, 82 = I (1.2)

where {A,B} = AB + BA;(g"") = didg (1,-1,-1,-1), this

differential operator reduces to the Klein-Gordon operator

82 2 mz 2
= - V. -gg—). Wwhence, wheh conditions (1.2) are

-~ O .
Jggosed, any solution of (1.1) is a solution of the Klein-

(

Gordon equation.

For the pYpose of studying its relativibtic

invariance, eq. (l.1) is more conveniently written as:
(u”au -2y .0 (1.3a)
where Yk z Bak and Yo =8 (1.3Db)

The relations (1.2) are then equivalent to

?

Y.¢V) « 2¢"V1, u,v = 0,1,2,3 - (1.3¢)
) ' ' ,

A system of 4 complex qquaie matrices {Yu}\lltiofyiqq this

last equation will be called a system of Y Jltticcl. Since

. [}



L d

thelr square is +1, Y matrices are non-singular. Another

1mmediate con§e§uence of (1.3c) is that the order N of

Y matrices has to be even: det Ylyz = (-1)N det'\(zY1 = (-1)N

2
det YlY , from which (-1)N = 1. More will be said about
, <
this later.
3
(2) TNe relativistic invariance of the Dirac equation
From now on we will take units in which c-ﬂ-l.
4
Eq. (l.3a) then reads:
(-iY"3 + my = 0 (1.4)
> u .

The "interaction" with an external electromagnetic
field of 4-potential Au is acHieved through the so-called

minimal electromagpetic coupling in which P, s iau is

replaced by P, - eAu = iDu,kthat is pu - 3u + ieAu.>e(<°)

being the charge of the electron.. Wh.ncc'in the presence of

an external electromagnetic fheld, ‘eq. (1.4) becomes:

a
T4

efo emy=o T e

D' 23 + ieA
"R I

bd 1
Ed

We want to find a transformation law for ¥ such that eg.
({1.4') remains invariant under orthochronous Lorents
transformations. If R is sych a Lorent:z ctaﬁuf&r-atgqn it

is assumed that the corresponding tran-tor-atiou.*ior'O is

A
L[]

f:linear: \

l")_.



XY = S e Ex) det S # 0O (1.5)
Futtimg y = 7 x' and rewriting (l.4') 1n terms of yU and
¢ Yields:
-1 . uoo-1
(-1 (s v )= s (saf v's T)ea + mJYy' =0
M S Li o]
Jy
Thi1s will bte 1dentical in form with (1.4') if and only if
~ - —l ’
A nouy“ = s 'vPs (1.6)

-

But it turns oyt that the 90'5 are also Y matrices:

- C o} Wr c
{?O,Y( = ° §l {Yu,y -ZQD Qo unI = Zgo I
U \Y P U \%

Therefore the inv;riance of the theory will be guaranteed

1f we can show that any two sets of Y matrices are related(,
by a similarity transformation as in eq. (1.6). In the
coming sections the existence of such a similarity trdnsfor-
mation will be proved in a way which, to our knowledge, is
original to a certain extent. )

/
be i t und -
The th$0fy ought to be invariant un/rf"!pace time

<

translations as wéll. This is achieved by lektinq simply
v'(x') = Y(x) under the translation x{ = x + a.
Besides equation (1.4) wve will) sometimes refer to

the so-called adjoint equation. The adjbint ¥ of ¥ is Vefined

by

y

( 4



"0 v \Y (1.7)

1

Frovided that the y''s are unitary equations (1.4)

and (1.4') are easily seen to be equivalent to the following

egquatiocns for w:

+ m) = 0 (1.8)
iy’ ) = 0, D = 3 ieA (1.8%)
Vv = 0, z - ie .8
vity byem U b v

N

,/’ From this equivalence it is clear that the
invariance of equations (1.4), (1.4') implies that of

equations (1.8), (l1.8').



CHAPTER 11

GENERAL PROPERTIES OF Yy MATRICES
. » I .

The aim of this chapter is to investigate the
prorerties of a geﬁ€¥a1 system of Y matrices. The firgt

part studies essentially the properties of their Products,
A

This 1s completely standard.' The second part studies the =~

degrees and reducibility of all possible representatfona of
4

Hv

\Y}
} 2g°'1. Unlike the first part it

the relatibns {Yb.Y
might be original. This is because we have found a way of
treating these questions without using the theéory of

representations of finite groups or the theory of Clifford

algebras. Thus our treatment is self-contained and

elementary.

(1) Products of Yu's

Let {YU} be a system of arbitrary NXN Y matrices.
Out of them we construct¢§ﬂe following sixteen matrices

which will play a great role in our considerations.

Table 1 List of the matrices YA

. I '
° Y1 Y? 3
yiyo Y2 o Y3Y6 2*3 Y’Yl YIY?
e RN AR A e S A% A 5
70711273575



We will denote this set of 1¢ matrices by [ and refer to its

. A
memters by the symbol YA, A=1,...,16, The 1nverse of Y
will Le denoted by YA' Indices on the YU's will be raised
and lowered with respect to(quv)= diag (1,-1,-1,-1). Notice
*

that the Y"'s are unitary if and only if v Yu- We also

adojpt the following notations:

UV
Y[“v] ) YO ¥ if upy
0 otherwise
: YAYUYY if A,u,v are all different
Y[xuvl ’ a
: . 0 othervise
(uvXp] LS ‘ . l
Y z Cuvkp-Y
vherg €hvdp is zero if u,v,A,p are not
, all different and is otherwise equal to
¥ 01289,
. the sign of the pergutation (u N p).
, 0123
Whence 60123 lm-¢ '
o¥V = Y[uv] .

All these quantities are cbmpletely antisymmetric with
respect to their indices.
Our set I has remarkable properties which we now

N

proceed to derive,



Proposition (2.1): The square of any member of [ is I or -1I.

Proof: This is an obvious consequence of the fact that the
square of each YU is +I and they all anticommute.
In our table we have arranged the YA's in such a way that
all those with square +I are on the left, the others on the
’ .

right.

Proposition (2.2): The product of two mefbers of I' is, up

]
to a sign, again a member of [:

A B C(A,B)

YYo= ey

AB =+ 1 (2.1)

AB

Proof: This isyag2in an obvious consequence of the anti-
commutation of the Yu's and the fact that their
square is +I.

AB and C(A,B) appearing

Proposition %2.2'): The functions €
in eq. (2.1)'are the same for all systems of Y matrices.
Proof: This is trivally true by c;nltrucfion.

Equation (2.1) togethgr’with the apparently innocent
proposition (2.2') will be the kiy to our proof of the.
fundamental theorem of Y-matriCOl.‘

Proposition (2.3): All menbero&gf I other than Ivhave -

4 . Al -

vanishing trace.
Proof: We first prove it for the Yu'l. Lot V be given and
choose u¥v. From yuyu + YNYH = +21 vo'didncol'

HirVyH) + vy Jy¥ = +2 yY s

g*‘ﬁ



A

Y \Y \Y u
and whence +2Try = -Tr(YU(Y Yu)) + Tr {(y YU)Y ] =0
because in general Tr(AB) = Tr(BA). This at the same

. 5 v 5
time shows that Try = 0 because {(yv".vy'} = 0.
Y

R ) b, v v b v "V
Next if u¢v then Tr(Y y ) = O because Tr(Y Y ) = Tr(-y Y ) =

5 o
-Tr(YvYU) = -Tr(Yqu). Since Y(Xuv] is of the form + Y Y?,
the same argument shows that Tr Y[Xuv] = 0.
Proposition (2.4): 1If one fixes A in equation (2.1) and then

o

lets B go from 1 to 16, C(A,B) goes over all Fhe values in
{1,...,16}.

ffgroof: Since €, = 1, eq. (2;1) may be rewritten as

L4

C(A,B)’ A _B
) Y CAB Y Y
o A B ' A B’
Wwhence C(A,B) = C(A,B') implies CAB Y ¥ = CAB' Yy Y
B B' ‘
i = . 1 his 1is
from which €ap Y €t Y But clearly t

possible only if B = B'; therefore iflpyn', then
} ' (\

- C(A,B) ¥ C(A,B') and the conclusion follows. .

A .
Proposition (2.5): The 16 Y 'g are linearly independent.
' 16 |
Proof: Suppose we have a relation AEI'GA Y = 0. Let us

pick B in {1,...,16} and multiply.by Y'l P

16 s A 16
aky GaY Y = k) 9,65,

A
0 = C(B,A)

(’
_rroﬁ proposition (2.4), as A qpqs from 1 to 16 La.

this suu,Yc(BfA)

goes over the whole set [, ' Por
C(B,A ' L
Y } +A)

1 and for all the othoi-vnluop. ACéo:-:

i 4

A=B,

*



. L i C :
ding to proposition (2.3}, Y (B, A) i8 & traceless
matrix. Whence taking the trace of our equation
yields 4a ¢ = 0, or a_ = O. Since B was arbitrary,

B BB B

. A \
it follows that the Y 's are independent.
One easily obtains the following product rules, some of

which will be useful in the sequel.

lof) 5 a ' ag \
Uy[OO] EUO up H P (2.2)
e 5 3] [0} 01 + Lo (o)
Yuy[ooe'] ELJ()O up (o } 9] [D ] q [O ](2.3)
u s 1 v 086
Y'Y = < € ( ]

ags ¥ (

A

JleB tuvr o aBuv s gu(oYBI“YV - 2QV[°Y?’ Y (2.0

Y + 2
tpor, _ 1 .00 (aB) _ s (p0)
Y Yo T2 ¢ a8 " =Y ‘ 23
0 o :
Yy Py 1ROl L MPOBy o g¥Py v - MOy v (2.6)

From the relation (1.3c) it is possible to derive the.
commutators and anticommutators of all pairs of olcninti 7z

of I'. We list here the results.

¢

10



. A
Commutators and anticommutators of the Y 's

Table 2
(yMoyYy o= 2 y V] V) = 2 ¢"Vr
5
v = 2vPy Y.y = o
\ A '
vy Y 2 UYv-q”v“) {YA.Y[uv]} =2 Y[X“v]
[Yu,yloorl]'_ 2 ylHPOT] {YN.Y(?OT]} - 2(qqulorl
unY(po] . qoryluol)
5 [uv] 5 (uv) Moo
’ =0 ’ - - ’
Y,y 771 =0 y"oy } € " Yp0)
\ _
lys'Y[Apon - 26 poeYe {YS'YLADO]} . 0
y APl vl oy gruy vl {Y(Apl'yluvl} - 2y [APHV]
A A :
gV Y[uol . gonl u1.+ 2(qupgvl _ guxqvo)I
A
gqu[v I
‘ (uv] _[Xpo] ., Apo
[Ylgv]'YIXOOII . 2Y5(€quu {y Y } = 2677
Yv - EADOVYU) CGUVBYB or oqﬁivalontly.
¥ {Y("v’.ysyx} - ze“”)pvp
[Y(X601’Y(u863) - 2c1P08 (y[Apo] (0B8]} -2cx9°9
aBéu ' , o
€ Yoy °F equivalently COGQGI or equivalently
5 ‘ ~ . ,
CAMEMI I VAL A Sy) = 29"

11

- -\
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L]

. . M \Y) LV
(2) The representations of the relations {y ,y }=2g I

We now come to the part of this chapter dealing

with the order N of Y matrices and the irreducibility of

v

such systems.

Theorem (2.6): The order N of y matrices cannot be smaller
than 4.
Proof: The dimension of the complex vector space of NXN

12

. . 2
complex matrices is N . since by proposition(2.5)T is a

set of 16 independent matrices, we see that Nz has

to be 3 16.

Theorem (2.7): The matrices Fu defined by
o] o
° - ¢° 92, rt . ° Ly  ie1,2,3. 2.m
o -q -0 o
o i 3
lo ol o -1 l o ,
where 0°=(° 1) 01-(1 o) 02'(i o{ 03-50 _1) (2.8)
form a system of unitary Y matrices.
Proof: From the relations cioj - ieijkok f Gijoo
we obtain '
g, ,0 :
i3y . " ey ° 13
{F,F}--( )'29..1 !
o {Uiaaj}
(] g
ey e Jh - (6 o1 =0 .
i i
ry? o g
The fact that each Fu i's unitary foljows from - ' oy

’ ,- r°  . r° | r = -T - {2.9)



This system (r*) js referred to as the Dirac representation.
Our next the;rem, in group theory language, would be

sai1d tg reflect the irreducibility of any set of 4x4 Y

matrices. \

Theorem (2.8): Let {y")} be a system of 4x4 Y matrices.

Any matrix commuting with the four of them Pas to be a

multiple of the identity. -

Proof: Suppose M is such a matrix. It follows that it
commutes with every YA in . But proposition (2.5)
says that, in the case under consideration, [ is a
basis. Therefore M commutes with evorythig . But
it is easy to prove that any linear operatgg on a
vector space commuting with all the dshera has to be
a multiple of the identity. The conclusion applies
to M. v

Theorem (2.8) will be used repeatedly in the loquol Toge ther

with the fundamental theor.n of Y matrices, which is. the

subject of the next chapter, it lies aé the basis of most

of the construétiéns whioch ve~v111 make.

| soj far all we know about the pon.iblc ptdor of Y
matrices is’ that N is even and 3 4 (see thJ“!ucnd%tbn '
b~€‘?‘fﬁpl‘1owxng eq. (1.3c) and theorem (2.6)). It 1-*1"}“:

| known that N has to b‘ a multiple eof 4. Thil Q’p h. ptovod

by using the theory of roprtuontltiono ot fln*t‘ Qroupo (tho

ﬁ’

13

starting point of such an approach 1. to ob.orvc that tho n't3£ 

= {+Y iyRerl is a group) (Janlon and Doon [1!67]). lto

proof we give hare is (to our knovlodqo) ortqinll hld ovit ;-.



absolutely nothing to group theory. We start with a little

lemma which will also be used in the proof of another result.

Lemma:

Proof:

Theorem

multiple of 4.

Proof:

tet {y"} be an arbitrary system of Y matrices. Then

YO and inYZ can always be diagonalised simultaneously.

Let A be a matrix sul; that A2 = I, Then A may be
N
written as A = I - 2P where P is a projector, namely
1 2
P o=z (1-A), (P"=P). But a projector can always be
diagonalised; whence so can A. Our two matrices

commute and have square I. So the conclusion follows.

(2.9): The order N of Y matrices has to be a

-

~

-

Let {y") be a system of Y matrices. By the previous
lemma we may assume, by performing a similarity
transformation on {Yu} if necessary, that Yo and

inyz are diagonal. Since their square is I, their
\

‘diagonal eﬁtrie- have to be +1. Moreover since by

. proposition (2.3) they are both traceless, the number

of +1's has to be equal to the number of -1's.. Again

by performing a similarity transformation if nqéb..ary

we may assume that Yo_- o . N is even so there
0o - i
is an integer n sych that N=ag, ‘Let us write
1 2 L , . .
iy’'y =  diag (al,...,an,bl....,bn). The matrix

yoiylyz is also traceless and its tcace is ‘1 T S

-—

+ an - (b1

n +1's and n -1's among IR ln;bly...,bn.

b + bn). Nov ws have to distribute

14

N

v’



Suppose that we put r - l's (0€rén) in al,...,an.

There are n-r left over to be distributed among

bl""bn and therefore we have: !
\
a +...+a = -r + (n-r) = n-2r
1 n
b.+...+4b = - (n-r) + r = « n + 2r
1 n
o. 1 2
Whence Try iY Y = n-2r-(-n+2r) = 2n - 4r. In order

that this vanishes we must have r = %. Since r is an
integer it follows that n is even; whence N = 2n is
a multiple of 4.

Corollary: Y matrices of arbitrary order have determinant 1.

Prbof: y° is similar to E£+:;] and N is a multiple of 4.

Whence det y° = (-I)N/2 = 1. A similar afquncnt

applies to the Yk's.

The final result of this section, which “we are about to

present, is not the least in importance since it establishes

W, .
in some sense the uniqueness of the relativistic equation for

the electron wave function. As one might guess ve .are going

&

to be concerned with the irreducibility of the representations

of eq. (l.3c). It is well known that the only irreducible

-

representations are provided by~-att1cqs of o?dcr'G. This
v
result makes one think of group theory and of course, like

theorem (2".9)', it can bé derived via the theory of £cptolon'-
» . _ :
tations of fbnﬁte groups (Jansen and Boon [1967])). But as we
~ . ! C.
, _
»

s



did for theorem (2.9) we have found a simple way of proving
1t keeping away from group theory. Our proof is likely té
have been thought of before but we have not met it anywhere.
Theorem (2.10): Any (unitary or not) representation of egq.
(1.3c) can te reduced to oﬁgnbi.deqree 4. Whence the
irreducible ones argAfﬁésé:of degree 4.

Proof: Let {y")} be such a represen

tion. By the.’revious
lemma we know that it is equiva t to one in which
o \. 1 2

Y and iy Y are both diagonal. So we may assume
without loss of generality that they are diagonal.

\
In order that a subspace/pk invariant under {Yu} it

e
is clear by propositign (2.2) that it is necpssary

and sufficient that Jit be invariant under the set T

of table 1. Now pick a non. vanishing vector u
and define u, = YAu.' Again by proposition (2.2) it
\s\\\" . is clear that the subspace V spanned by the uA'i'il

[-invariant. The special trick of the proof lies in

an appropriate choice of u. PFrom the proof of

theorem (2.9) one easily checks that one can pick a
. o < 1.2

non vanishing u such that v u = iy'y u = u, We

claim that the subupac;_v spanned by Ehe correspon-

ding uA'l is 4-dimensional. Indeed it is generated by

u,u; 2 Ylu, uy z Y3u and Uiy = y3ylu. This is seen

by let%}nq [ act on ut Iu = u, You = u, Ylu = “L'

9.” y

[



1 1 2 . 3 1 2 ) '
Yy u = -y Yy Y u= 1lu,, Y us= U3: Y Y u = ~-1lu,
Y Y u = vyl ey’ v - i
= u31, Yy Y u 31

o 1u - -u
! Y Y l ’

, o 3 o 1 2 1 2 .
Y Y u = -lul, Y Y u = -u3, Y Y'Y u=YYu= -1,
o 2.3 1 2 3

17

o_ 3.1 . 3.1 2 ,
Y Y'Y u =1 Y Y'Y u= -1u , YY Y u=Y Y Y u= —1u3,

31, 31
5

Y u = iu3
By theorem (2.6) the vectors u, u1, u3, u31 are
necessarily linearly independent. This completes
the proof.

From now on, when we talk about Y matrices, unless
otherwise stated, it will always be understood that thege are
474 matrices. In physical applications the Yu's are always
unitary. All the YA:x are then unitary as well. But as
Pauli did in his paper (Pauli [1936]) we will invoke this

assumption only when needed: as has already been seen many

results‘follow without {it.



HAPTER 111

THE FUNDAMENTAI THFOREM OF Y MATRICFEFS AND CONSEQUENCES

(1) The fundamental theorem

The so-called fundamental theorem of Y matrices
1s the rasis upon which lies the relativistic invariance of
the Dirac theory of electrons and positrons. This section
1s devoted to i1ts proof and to the exposition of some of its
consequences. The proof that we give is, to our knowledge,
original and is, as will be seen, quite simple. It is based
on a seldom used result of linear algebra. To preserve the
continuity of exposition the proof of this result will be
deferred to the end of this chapter. Ms*will be seen later,
we state it here in a"Testricted contexg which will be

f'\.)
sufficient for our purpose.

Let us denote by An(C) the algebra of nXn complex
matrices. By an automorphism of An(C) we mean a bijective
linear map h:An(C) + An(C) which also prenorv‘s nult}plica—
tion, that is for any u,v in C and M,N in An(C) wve havc{'

h (UM + VN) - Uh (M). + Vh(N), h(MN) = h(M)h(N), h(ﬂ)-0;>n-0.
| It is clear that, given on-singular S in An(C),
the map M * SMS-l is an autonorphi;h of An(C). The result of

[l

linear algebra we were feferrinq to is the converse of this,

-

18



Thecrem (3.1): If h 1s an automorphism of An(C), then

there ex1sts arnon-singular matrix S 1n An(C) such that
_1 .
H{(M) = SMS for all M, )
Having stated thilis we may now give our proof of the
fundamental theorem. As was mentioned in chapter II (section

1) the key of this proof is eqg. (2.1) together with the

trivial proposition (2.2').

Theorem (3.2): (The fundamental theorem of Y matrices): Let .o

iy, {?U} be two systems of 4x4 Yy matrices. Then there

S-l U

ex1sts a non-singular matrix S such that fu = Y S.

~

Proof: Let [ and [ be the two sets constructed from {Y“}

and {?u} according to table 1. t From proposition

(2.5) we, know that both ' and T are basis of A (€

Therefore we may define a linear map h: A4(C) * A4(C)
]

A % . . .
by h(y ) = Y and this map is bijective. Moréover it

9

A
preserves products. Indeed let M = i a, Y,

N =L B YB. Then we have:
B
B
h(MN) = h(lL gA BB YA YB) - Ei GA BB h(CAB YC(A:B))
AB AB

I a B_ e $C(AB) L oa, B * 9% = ()R (M)

AB . < AB

where we have used propositions (2.2) and (2.2').
Hence h fullfills all the conditiofs of theorem (3.1)
and it follows that there exits a non-singular 8§ such

that 9 = hiy?) = s7lys (q.e.4.).



o
Proposition (3.1): The matrix S of the fundamental theorem

1S unique up to a multiplicative factor.

Proof: Suppose that S and T satisfy .

9 = s y's =1 " y" om I,

It follows that the commutator IYU, ST— ] vanishes.
—
From theorem (2.8) we maitherefore conclude that

-1

ST = cl or T = S (q.e.d.).

c
(2) Consequences of the fuddamental theorem

The matrix S of the fundamental theorem is of course

closely related to the systems of y matrices from which it

This is illustrated in the following little result

[

arises.

which we present here as a curiosity, since we lhll€ not

use it later.

proposition (3.2): Let {¥Y")} and {§") be two systems of

Y matrices, with associated sets [ and F.'4 Jnvertible

matrix S such that 9“ = s'l Yu S has the same coordina;ol

in both basis ' and T.

Proof: Let s =L a. y' = £ 8. ™. rrom si* = y's
A A
A A
we get
A o ~B
¥¥s = za, v?y* e si® a8, P
A A A

<

Taking the trace on each side of I @ #’ YA-- :'B ?
) . A A A A‘

and using propositions.(2.3) and (2.4) qlvgt 3

B B (q.e.d.). , o L

°
it
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¥

Another connection between {y ' and S which will not be

a mere curiosity for us is the following.

u Y -
‘Proposition (3.3): ©Let {y }, {§7} be two systems of

Yy matrices such that all the y¥'s and $"'s are unitary.

Then the matrix S connecting the two systems can be chosen

to be unitary. Such a choice is unique up to a phase factor.
Proof: We have from the unitarity of Yu, ?u and ?u = S_l y“s:
+ + + +
-l ~ A + - + -1
sT1 v s w§° 2 9° wsty0 st .ty s
+ + + +
-1 + - + -
S y” S = ?1 = —?i = -S yi S 1. S yl S 1
-1 _p + w1t
- that is § Y § =8 Yy S . From this we infer
[Yu, ss*] = 0, and by, theorem (2.4) conclpde that

ss* = cI. nNow ss’ is obviously self-adjoint and

positive. Whence c is real and > 0. Taking

S' = r S yields the required unitary matrix. Thgi; ;

fact tgat the choice of a unitary S is uniduc‘up t:

a phase gactor is obvious in view of ptoposiiion (3.1)

and the unitarity condition,
The fundamental theorem allows us to draw othor'&nto:o;tinq
geneial conclusions about Yy matrices. Por cxhnpio. it says
that Y© has to be similar to the matrix re ot eq. (2.7). .
Whence the charactcristié and nininhl'polyn;niqll of Yo have’
to be (t+1)2(t-1)2 and (t+l) (t-1) relpoctivoly,‘lnd'itt
determin§ht is 1. To make similar r.llrkl‘Qbéht17%.VC'o§;.f'Uf;

1

that the set {?P} defined by ¥° - iy", 9}--'1Y°:>?3 !-Y?. ?3“-_i?;”
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1s also a system of Yy matrices. Whence in 1s similar to
e 1 . . pO .
77, or Y 1s similar to -il ., This shows that the charac-
, 1 i

teristic and minimal polynomials of Y (orvany Yl) are

2 .2 . ,
(t+1) (t-1) and (t+i)(t-i) respectively and its deter-
minant is 1. These observations lead themselves immediate-
ly to the following algebraic characterization of matrices
which can be Yy matrices.

Proposition (3.4): Let M be a complex 4%4 matrix. In order

that M be the Y° of a {y") system it is necessary and
sufficient that its characteristic and minimal polynomials
R

be (t+1)2(t—1)2 and (t+1l) (t-1) respectively. 1In order that

1 2 3 (M .
M be the Y (or Y* or Y ) of some {Y } system it is necessary
and sufficient that the characteristic and minimal poly-
nomials of M be,(t+i)2(t—l)2 and (t+1)(23;) respectively.

’

Before we close this chapter with the proof of /

»
-

theorem (3.1) we give a last application of the fundamental
theorem. This theorem enabled us, in a rather curiqui vay,
to answer a question which arises nat;tnlly vhen doallgq

‘
with Y matrices. When we look closely at the set {(r¥} . of
eq. (2.7) we notice th;t all these matrices, except r?. !ti‘
real. Whence it seems natural to ask whgtheé ane c&ulQ'tind
a sy-t:m of Y matrices where all the matrices vonld_bgiroa1g 
The answer is n;qativo. As v;\will show h.lov..th. 0i1i-Z
tence of such a system would ;lply the cx#lt‘géd o!~§;d§if ' 
plex number c whose squared magnitude cte anid-ﬁi «ivAth£0  ‘ ,ffg

. is of course absurd. ‘ -
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Proposition (3.5): There exists no system of Y matrices .

such that each yu is real,.

Proof:

Consider again the particular system{ru}exhibited
in eq. (2.7). 1If {yu} is any system of Y matrices
the fundamental theorem says that there exists a

. -1 _u U
non-singular S such that S Yy s = I, (3.1)

YIO}I]. Using ré* - - Fz and (Tv). I

Let M
for v ¥ 2, one easily checks that the following

equation holds true:

-1% V]
s M yY My s¢ = TV, veo0,1,2,3

(Here * means complex conjugate.)

From this equati¢n and equation (3.1) we obtain

- * -
sy N st =85t yYs

v - :
If we novw suppose that all the Y 's are real, this

last equation may be rewritten as:

v ey e st sy s sl m
from wﬁich we deduce that [ij us* S-ll = 0._ Th;s
implies that there ixluti~a nusber ¢ lﬁcy.éhat
Ms* s"1 L'ci; This qivqi-tﬁc qéﬁition $ -viﬁfbf.
and_ito éo-plox égnjuqcti 8'_f %7 (-u)shsnbtettuéinql
the second in thq'ttrif yields cc* - -1, a c&itf@!@é;?n.:'

tion. 'Thcritori'th. gour Y''s cannot all boxtigia'.
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Though there 1s no system of real Yy matrices, there are
systems in which the Yu's are purely imagigary. Their
special interest is that they make the ffee,Dirac equation
(1.4) real.; hence ¥ is a solution if and only i1f its real
and imaginary parts are separate solutions of the equation.
It is easy to give a fairly explicit description of
all these systems. Let {y"} be an arbitrary system of Y .
matrices. By the fundamental theorem there exists an
invertible matrix T such that YU - T-lFuT, where {r“} is
the particular system of equation (2.7). Due to the fact

1 and F3 are real, the

.
1*p2,*

that % is purely imaginary while re, r

Yu's will be purely imaginary if and only if T

Vet o 227lrVr, for v = 0, 1, 3. This'is

r-Ir%r and T

LI 2
equivalent to saying that T T 1 commutes with [“ and anti-

M ) | 2 '
commutes with Fo,Fl and FS. This implies T = al” or

' = anT. Clearly the number o has to be a phase factor.
. : ’ . 2
Upon writing T = r j, the general solution of " = al‘T
' C

is easily seen to be

.

A B :
T = . R » A and B arbitrary, |o| = ]
a'og . A" a 0,8 4 '

v . ' - \
T = ‘u and v arbitrary, lﬂi -1




/

where u and v are row vectors. As long as the choice
of A and B leads to an invertible matrix T, the matrices
-1 ‘

T YT will form a system,of purely imaginary Yy matrices.

Conversely all the purely imaginary systems can be obtained

that way. ¢
The particular choice A =0 + 0., B =0 -0
o 2 o) 2
and a = -1 gives the system
~-io
o 0] 1 3
Y = 2 S Y= A TR
2 . 3
N N )
= ’ =
) 9, 10,

It is referred to as the Majorana representation.

25



(3) The proof of theorem (3.1)

We now come to the proof of theorem (3.1). As
mentioned at the beginning of this chapter we stated it in
a restricted context. It turns out that it is also true for

An(K), the algebra of nxn matrices over an arbitrary fielad i,
»

for example the field of real numbers. We stated it for

K=C because this was all we needed. Quite amusingly it

wasn't our knowledge of this result which inspired our proof

of the fundamental theorem but rather the study of the usual

proofs of the fundamental theorem lead us to guess that such

a result might be true, We were able to trace it in only

one book (Herstein [1964)) where it is stated as a ﬁroblem

(problem i7, page 279). Therefore the proof we give here

is ours. It is possible that a shorter proofbcould be given.

Theorem (4.1'): 1If h is an automorphism of An(x), that is

a bijective linear map preserving products of An(x) onto

itself, then there exists a non-singular lat;ix ] 1nlx uuch

that h(M) = sMS_ ' for all M.

Proof: Thrduqhout this proof we don't”uac’tho summation
convention, We will denote by |1>..,..|n5 the

canonical basis of Kn, that is:

rl 'ro
’1>- 01, |2>‘.. ; : .tc-'..

26
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and by <1|,...,<n| the dual basis: <i|j> = éij'

We denote by Mij the matrix having null entries

v ) . th
except at the 1ntersection of the i row and the

th .
. i : <k |M, . |2> = & .
j column where it has a 1 kl ij' i Gjl

. . . , M '
These matrices muitiply according to iijl - éjkullh

and they form a basisg of An(x). Now since h is an

-

automorphism the matrices H = h(Mij) also form a

ij
;3 .
K (3.2)

Ly

basis and multiply according to

Higfke = SyuHyy
As often is the case it makes the argument simpler
to think of Hij as a linear operator instead of a
matrix. Whence we consider Hij as the linear operator
on k" whose matrix with respect to the canonical

basis is H From eq. (3.2) it follows that "11""'

iy’ _

Hnn are n projectors such thqt,ﬂiiﬂjj = 0 if iﬁjf

-

Moreover neither of them is 0 because.h is an

auytomorphism. It f611§vo immediately from this that

there exists a basis |1>',...,]n>“o§ " such that

o' 3> = 8y 1> o (3.3)
From eq. (3.2) we also deduce that Hyy = “11"13"51’ |
This together with (3.3) implies that o

Hyglk>r = ny g 8y, |1>" ¢ Mgy o By 0 (3.4)



Since Hi, is a projector, hii 1. Moreover egs.
i

) h = h ..
(3.2) and (3.4) clearly imply that h, h, ij

. . n
Now let us define a new basis of K by

1

|i>" = —— |i>'. Then we have: A
h. .
li
By PiPiy
Higloom = =2 Jior = === >r = s
15 15

>" o : :
Hy | x 0 if k¥

Therefore the matrix of Hia with respect to the

basis [1>",...,[n>" is Mij'SO if s is the transition

matrix from the basis (|i>) to the basis (|i>")

s™1, that is,

(|i>" = § Sy4 13>) one has Higy = S My,
-1 ’
h(Mij) = S Hijs . Since h is linear and»Mij is al

basis it follows that h(M) = SMS ! for an arbitrary

M.  (q.e.d.).



CHAPTER 1V

AN ALGEBRAIC METHOD FOR FINDING THE MATRIX S OF THF

FUNDAMENTAL THEOREM

(1) Finding S

i
The fundamental theorem of Y matrices asserts the

exlstence of an invertible mawrix S connecting two given
sets of 4x4 Y matrices. But it does not tell us what S is.
In later chapters we shall give the solutioh of this problem
when the two sets {Yu}, {?u} are related th:oﬁgh a Lorentz
, aH U \Y .
transformation Y = Q VY by using Lie group techniques.
This is what is usually dohe in the physical literatgre. In
‘the present chapter we adopt a purely algebraic point of
u

view and lecok at the general case: the Y 's are not Q’luﬁod

ary and the two sets {?u} and {Yu} are not - |

telgted through a Lorentz t;an.forn;tion.“
people whptinvestigate vhatvhappona ig, inatead
.thL fielad o; real numbers to construct the
ki space, one starts with a field haying only a

: -
(enormous) number of elements. The aim of this is
roduce a fundamental length in bhysiél. In such a
work it is clear that one -¢couldn't use infinitoliuai
sformations to obt’in § in quyv -vs'l Yu 8. The

algebraic method which we set up in this section and the

follpwing one would provide a substitute.

29



The equations 9“5 = S YL, where S 1is the unknown,
give rise to a system of 64 linear equations with 16 unknowns,
It is certainly not convenient to attack this directly. We
have found a roundabout way which simplifies the task
considerably. Consider again the particular set {Tu} of
eq. (2.7). By the fundamental theorem there exist S and T
such that ¢V = 7t oo and ¥ = g7} YU S. Clearly
?u = (ST)“l Yu (sT). The point'is now that, thanks to the

simplicity of {Fu}, finding S and T is very simple as

shown by the following result.

Proposition (4.1): Let {Yu} be a system of 4x4 Yy matrices.

Then the systems

2
(Yl + in)u = 0 i w (Yl - iy ) = 0
(a) ’ (b) (4.1)

(1 + YC)u =0 w (I +Y°%) =0

i -

where u and w are a column and a row vector respectively,
&

haVelnon vanishing solutions which are determined up to
o

multiplicative factors. The matrices S and T defined by

§ = (73u Ylu u Y3ylu) (4.2a)
o 3 4
—v Y
1 - M .
T = | :
w -
1l 3 .
wvyy ]




T TN e T T —

‘ '
satisfy X = S Y. S

“4.3)

Proof: The fundamental theorem guarantees the existence of

the matrices S and T.

show that they necessarily have the .form stated

So all we have to do is to

above. We begin with S. 'We first decompose all

a
our matrices into blocks of order 2: \_

The unknowns are now the four

-

-

2X2 matrices X,Y,2Z,U.

The equations which they must satisfy are’ derived

from (4.3) and are as follows:

C'X + D2 = -UOi

' CY + DU = ZOi

—

A°x + Bz = X

AOY + BOU = -Y

c®x + p°z

Coy + p°u

[}
N

-y

(4.4)

The second and fourth equations on'the left-hand

o
. side give

2 = (civ + Diu)o

W

i

i

[}

>

(no sum)

(no sum)

(4.5)

(4.6)



¢
IS

This system of six egquations can be rewritten a

tfollows
, 1 1.
X = (A Y + B U)OC
1 [ ]
1 s
= ("’ al
(C°Y + D U)Ll
A‘Y + BTU = (AlY + Blu)o o, = (AlY + alu)io
172 3
3 3 .
A'Y + B U = (AlY + BlU)0103 - -(Aly + 310)102
2 2
cY 4+ DU o= (ClY + 010)0102 = (Clv + Dlu)io3
3 3 < 1.
'Y + DU = (ClY + DIUQQIO3 - —(ClY + D U)LO2
uw

S

(4.7a)

(4.7b)

(4.7c)

(4.74)

(4.7e)

(4.7¢F)

The first two give X and Z in terms of Y and U and

the last four guarantee that the right-hand sides

in (4.5) and (4.6) are independent of i.

lem is now reduced to finding Y and U.

From the identity

| o
we see that multiplying (4.7c) by Azf &4.7-) by B

and adding, we obtain:

vy = (afal +'B%chy + (a’s! + 82

»

similarly multiplying (4.7¢c) by Cz,

and adding, we obtain:

1 .
D )01103

(4.7e) by D

The prob-

(4.8)

2

2

O
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1 2
-0 = [(C A + D C )Y + (C2B + D Dl)(']iO3

These last two equations may be

simpler equatilion:

Moreover one can check that the

followed bagkward so that (4.9)
lent to (4.7c) and (4.7e).

In exactly the same way Wwe

equivalent to (4.7d) and (4.7f):

Yo
2

Now let's come back to the

cast

into one

process can be

(4.9)

is really equiva-

obtain an equation

six left-out

equations in (4.4). Substituting in ‘them the

-

éxgressions of X and Z given in (4.5) and (4.6)

we obtain:

>
+
m
0
*
" pap
<
+
o
w
+
w
[w)
(o
A
c
(]

o i o i

«c®at 4 0% - clyy 4 (%t 4D

(Ao + I)Y + BOU a 0

c®r + (0° + )u = 0

(4.10)

0' (no sum)

(1] Xno sum)

Bi)U =0

>

plyv = 0

-

33



From (4.8) we see that the factors multiplying Y and
U in the first two equations are O. Thus they are
[

trivially satisfied and contain no information. The

next two can be rewritten as

oyl -y (N =0 (4.11")

e + 11 (H =0 - (4.11)

But these equations are one and the same as (4.11")
is —Yi times (4.11}.

Let us summarize the results obtained so far.
We found that Yeand U are determined by (4.9), (4.10)
and (4.11) and then X ;:d 7z follow from (4.5) and

(4.6). T

If we write (3) = (u v), where u and v are

34

column vectors, the equations (4.9), (4.10) and (4.11)

translate to:

e’
¢

i N2 (wv) = du -v)
i Y3Y1 (u v) » (iv -iw)

(y© + I)(u v) = (0 0) L .

This system is equivalent to
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1 _
(vy + 1 Yz)u = 0
v % =0
31
v .= Y Y u

Similarly if we set (Z) = (s t), where s, t are
column vectors, we find that (4.5) and (4.6) can

be written as:
1
(s t} = vy~ (v u)

Whence we may write finally:

X Y
S = (z U) = (8 t u v)

3 1 3.1
= (Y u, Yu, u, Y'Y )
where u is determined by

(Y1 + 1 Yz)u = 0

(I + yo)u =

As one might expect, once we krow how to ‘find 8, it

becomes a simple matter to find T (which has to be a

multiple of S-l).

TE’fequatioha satisfied by T are

,ru TecT Yu



36
* o]
Taking the adjoint and remembering that r’ =r
. i+ i
while T = -7, we obtain:
0++ + .0
Yy . T = T T
+
i +
"Yl r*-'rl‘i
+ +
o i ) ) -
But {y , -y } is also a system of Y matrices.
Hence the last two equations are just like the
equationps for S. Therefore usin§ the solution just
obtained for S we conclude:
’
+ + i + +
+ 3 + 1 + + 3 1 +
T = (-Y w , -Y w , v , Y Y w )
LY
+
where w 1is determined by:
+ 4
+
A R LA
+ 0, '
(I+Y°)v -9
More conveniently we may now write:
- -
3
) vy
1 L4
-w Y
T =
w ,
1.3
wYY.
N L “
where w is a row vector determinad by
v(yl~- iy )=20 . e ‘ ST ey,

w(l + Yo) - 0
‘ .




we also asserted at the beginning that the equations
1 ) 2 o .
(Y  + i Y")u = 0 and (I + Y )u = O determine u up to a
multiplicative factor. To see that this is true one first
-t -
checks that the statement is correct when Yy is simply Fu.
This is trivial and we don't do it here. Now an arbitrary
system {y") is related to {(r¥y by a similarity transforma-
. . . 1 . 2 (o]
tion. Whence the equations (y  + i Y Ju = (I + Y )u=20
. 2 P
can be viewed as the equations (Fl + i T u= (1 + % = f
' -
formulated in another basis. Accordingly if the solutions
of the second system form a one~dimensional subspace, 80
[ 4

will the *‘solutions of the first system. A similar comment

applies to w. This completes the proof.

(2) Application to the equation vi$v - S.1 Yu S

The customary way of solving the equation
Q“vyv - s ! ¥ s.for S uses infinitesimal tranttorintioni.
One puts suitabie constraints on s'and shows that the
correapondihg solutions form a qréup,.a 'déuhlc-vaiuod
representa£ioﬁ: of the orthoehronoua Lorentz group. The
matrices S are then obtaincd by '.xponontiatinq“thc Lio'
algebra of this group. Ne shall diccun- thil methdad 1!’ :
detail lator on and iq particular use 1e to lhov hnt ;ho
‘qroup of the s -ntriccl is. 1-o-o:phic to a ctttata vo:!

concrete group. ror the -o-cnt ve vcnt to .bov hov eho

results of tho last ooction can be uncd to !1»4 8 caplloitoly.fiz ‘
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This method definitely lacks the elegance of the one using

infinitesimal trangsformations but it has the advantage of

being purely algebraic.

OQur aim is to find S(R) such that

Moz ahyY e sy :

The set {Yu} is fixed. By the fundamental theorem there

<

exist M and V() such that:

-1

v° - 'l rPou ngfp v hrhy

From these equations we.deduce:

' Q“py”:-ﬂ“pn’lrpn R e e T i e s .

Thus the problem of finding S(R) for an arbitrary I is - .

reduced to that of finding V()

Al

S(fl) = n'l vV(R) M o : L(‘lz)‘

In the preceding section we have established that V(O)fl.'

given by:

1
-3
V]

rir3

L d . o ‘ L T

Ty

- where w is a nplﬁtion of ’ B e




w(r! - i 1% =o / (4.13)

w(t + I°) = o : \}}.14)

So all we have to do is to find w. To this end we Heconpole

1t in the following way:

wom o (u,v) o= u, Uy, Vi, VL) . (4.15)
Equation (4.13) then reads:
c o° lc o
. k
(u,v) = 0
-c.o |-c o°
k k o
where e T al _ g . (4.16)
U u u ﬁ
Written explicitely this gives: ' : ..

cou - Vv ck 0k = 0

'uckak - cov - 0

There are two cases to be considered: co ﬁ_o and'coA-‘O.

When co ¥ 0, the general solution 10

Oo k

When c_ = 0, the general solution 8 w = (u,v) where ~=

uck °K --‘*v'c.k aky.;p

o) o b amterary  @an

39
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In either case the solutions form a two

dimeasional space. Next we come to equation (4.14). It
reads:
(1+402° yo° Q° o
o k k - 0
(u,v) o ° o
-0 -
WO (1-9 o)c
o] o
Q - 0 =
or . u(l+ o) v kok 0
o o
v Q kOk + v(1-0Q o) = 0

For the sake of simplicity we assume that ! lies in the

o]
orthochronous group:{l o 2 1 >0. The general solution is

then:

1

)
1480 °

v 2% o ., V) , v arbitrary (4.19)

(u,v) = x X

Now w must be a common solution to (4.13) and((4.14). Pror

the case L ¥ 0, egqs. (4.17) and (4.19) give:

(u, %‘ c 0y = 1 v +0, v
{e} - ¥ 1+ﬂ° - -
i o .
: o ] o o .
vhere we have set (f I'Q 2'9 3)‘--g and (cl'GZ'cj) = c.
This gives: ..
v.} u (c * 0) ue ———l———— ulec » q,(ﬂo s @g)
[ o ~ ~ s -] ~ ~
o (1+0 .o)c.o

The gsecond equation may be rewritten d.y

ule x Q%) ¢0 » -4 c u
-~ ﬁ -~ . . o .
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’

. o ) .
Upon setting (c x )i =a., this equation for u reads .

(u3 + 1co)u1 + (a1 + 1a2)u2 = 0

(al - 1a2)u1 + (1co - a3)u2 = 0

.

I1f a, + ia_ and a_ + ico don't both vanish, the solution is

1 2 3
u = (al + 132, -(a3 + ico)). If they both vanish, the
solution is u = (ico - a3. ia2 - gl). )

In the case where Cy - 0, eqs. (4.18) and (4.19)

tell us that the solution (u,v) common to both systems must

satisfy . . ‘ .

=V Q°-o, v) v c*0 = 0
140 o D T T

(u,v) = (
The second equation, when written explicitely, reads:

c.v, + (¢

3V1 1 + icz)v2 = 0

ey "!cz’vl mcy vy =0 : :

1f c, and ¢, - ic, don't both vanish, the solution is

¢, - ic,). If they both vanish, the solution is

*

v = (c

3' 71
v = (1,0).
We now summarize the results. We have defined:
tHz ¥ rV e v-l(ﬂ)ruV(ﬂ), 0°' >0 . o S
v o 7 .
e z ol - i0% ¢z (eyie,.c 0 F @°,,0%,.0%)
M u o~ " T2ttty o 17 27Ty
- ‘ o
s zexf® v
-~ -~ - . ‘ ‘- K

g



and found that

V(L) =

where w is to be chosen according

to the following table.

Table 3 Vectors for'constructing spinor transformations

c #0
o

%

w:(u,g— c*°0) ws ( 1 S u 90'0, u)
o ™ " 140 -
o
la1+ia2[+|a3+ic°| |a1+ia2|+|a3+ic°| |c3|+|c1-1c2| |e3|+|c1-ic2]
7
¥0 - =0 ¥0 =0
u= u= us us=
(a1+ia2,-(a3+1co)) (ico-as,iaz-ai) Gcs.cl-icz) . (1,0)
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As an illustration we obtain V(§l) when ! is a

he x axis. If the frame K' moves with spee@
ect to the frame K,. the primed coordinates

the unprimed by x' = {ilx where:

Y YB
ve v ? L
i = Y =
¢ fi-8°
0 T |,
L J

~case we have: €y = -YB, ¢ = (y,-i,0), Qo = (-yg,0,0).

-~

table 3 we Oﬁtain w = (0,2iyg,~-21(y+1),0) from

L

r -

Y+1 0 0 -YB
0 Y+1 -YB 0
0 -yB Y+1 0

-YB 0 0 Y+l

Sin§EJV(Q) is determined up to a multiplicative factor wve

may drop the -2i,. The resultinqgéattix ig then:

'

V(Q) = (Y+1)I - Y8 ropl ’

It is customary to write Y = chp ,YB'-wuho. I1f we 4divide
our V(fl) by 2chp/2 we’obtain the matrix chp/21 - gﬁp/lrofl.,“
. Thig'ekgression agrees with the one obtained 51 the method

of infinitesimal transformations as will be seen later.
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CHAPTER V
THE GROUP OF SPINOR TRANSFORMATIONS

(1) Construction of the group

In this section we look at the set of all spinor

transformations cerresponding to all orthochronous Lorentz
transformations. We study this set as a group. We give up
the purely algebraic method devised in chapter IV and
switch to the standard method using infinitesimal trans-
formations, or.the Lie algebras. The orthochronous Lorentz
group will be denoted by L*, It consists of all Lorentz
transformations {I with Q°° > 0. The proper subgroup of
orthochronous transfornationl with determinant 1 will be
denoted by LI. We work thrquhout w}th a fixed ly.é‘l {Y“}

which will be assumed to be unitary. We are interested in

the solution A(f]) to the equation
quYv - AN, aert (5.1)

. \ ’
We already know that the solution A is determined up to a

multiplicative factox.. Ne. wantQSo remove as much as po.liblo

this atbitrqriness. The first rcntrict‘on that can be
v

t
imposed .is the following.

piopo-ition (5.1): The solution of ;q. (551) nay be. chosen

80 as to satisfy At -'Ao‘h-lfo .

44



, \
i ] \ N

troof: lLet us write Y = .. VY and let be a solution of
eqg. (9.1). Then we have:
L ]
+ + N 1 U
. b \ o . O [6PN O O, - (@]
R R T O R A T A A TR AR A
o,+ u+ 1* + o, U o,+ O 1
J - o
from which % = vyoATYY A75 v% = ("2 YOy T (yOA YTy =

and [AYOA+YO, Yu] = 0. Therefore AYOA+Y° = ¢l or

il

L = chA—lYo. This igplies

AA = cvoA'lYoA = cy°%° - cY°(Q9oY° + onvk)

l

o o o k
-CQ°I+CQkYY

Taking the trace on both sides and using proposition
(2.3) yields TrA+A - 4cR®_ . since A*A is hermitian
it follows that c is redl. Since A*A is positive,
it follows that c is positive (Qoo > 0). Now if we
A ‘
take A = 1 A, we obtain: -
/e - ‘
‘o -1

P SRS S TP St VL R A vo e yon’y v°.
/c- /o 8 : /<

The motivatidh'fcr'fhi. rest¥iction is to make the

transformation of the adjoint ¥ = W‘YO sipple:
. - M

+ | i
T oav 0 = A0 - OO - W'lt

-
°
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' The usefulness of this will be appreciated in
chapter VI, Before we go further we need to introduce a
special matrix, called the B matrix, associated to any

Q
system of y matrices, Lot {YU} be such an arbitrary system.

L :
The set *yl }, where * means complex conjugate, is also a
systém of Y matrices. By the fundamental theorem there )
, u* -1l u .

exists a matrix B such that Yy = B Y B. We~req3xre that
'det BI = 1. This determines B up to a p factor. If
J?“‘ is another arbitrary system with corr onding B and

V] -1

9" = ¢ "y's, then B 1s related to.B by:

1 - L ]
§ = % Lpgs" , ¢ real (5.2)

Indeed we have:

| ]

) 1% yr -1* -
o VL MR AP R VLY

g = (s”ips") 1g¥s ips"

- * . .
Moreover |det S 'BS | = 1. Since § is determined up ta a

phase, the conclusion follows.

The properties of the B matrix of ude to us are
contained in the tolloviné ptopo.iﬁiﬁa; o
N | B ‘ . ’ . . . .

Proposition (5.2): The B® matrix of & uui}olt~{y")vlyl§...il

& .

-
-

unitary and antisymmetric.

. i © P L . 7 B v . _‘.'_
Proof: Since y" Is unitary, so is Y"f. By propeaitien (2.3) .

* . . M R N ' ) . . : B ‘.“
thers exists a unitary -aeitn_coauccﬁlng_yu and Y?'i

A

SN
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-

(learly this can be taken as B and any phase multi-

ple will also be unitary. We now have to show that

it is antisymmetric. For the set (Tu} of eq. (2.7)
. op.3.1
one easily checks that one can take B' = [ [°T",

T
Notice that B' = -B', By proposition (3.3) there
: : u +.u .
exists a unitary U such that Yy = U I'"u, and by

eq. (5.2) one has

i + * i * *
B=e®tpiu’ = el®w’) ey

From this the antisymmetry of B' clearly implies

that of B.

We are now prepared to put all the restrictions
on A,

Theorem (5.1): The equations

¥ yY - ATy M (S.3a)
£ -y ©(5.3)

. +J. ) .
A =B A .- : (5. 30)

where A is the unknown and Q;L’ have oalétly two solutions.

. ¥

One is -1 times the other.
Proof: By proposition (5.1) we know that egs. (Sglg){ (5@3&);2

have a common solution A& ¥e have:

v - .. s '1 A '; L
¥ vV - A/nY"* vhich may be wewrittea as * '

PR
C e . Lo

= L
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-1* + *
JuvB+YvB = A B Y“BA , from which we deduce

- ; - » *
A lyuA = ¥ YV = BA 1 B+YUBA B+ or
* - .
[YU, BA BTA 11 = 0

By theorem (2.8) it follows as usual that

4o Ay * 4
BA B#A 1. cl, which implies 1235——1— = c .
i det A .
Whence Iﬁ* =1, or c = e . From
1 1A _+

* - * ' .
BA B’A = cI], we get A\ = e B AB. So if we

' 1 0
define A = e "A, we obtain: \

P S Y

and the choice a=1/2 yields the solution to our
three equations. Cleafly if A is a solution, so

is -A. Now suppose that A is another solution to

L2

(5.3a,b,c). We know that A « aA for some complex
number a. Equation (5.3c) shows that a is real.

Eq. (5.3b) then shows thgt 1to‘cqul:o is 1. Wheace

-~

]

A = +A. This conpletoi‘thi proof.

"For some purposes, iupocidlly vhen dealing with the

Lie algebras, it is convenient to resexpress thc,§hf00-iqiir'

S : o .o
tions of theorem (5:2) in only two. tﬁ&lfil.lchiﬁtQ“b!'t..
following result: : : l L"’b '.. | .

P

Proposition (5.3): ‘1‘0€1°n!”(5,}l1’;0)'lto.@.ﬁlﬁi;,f £§if  >f“_*V

the two equations:



Proof:

419

Q“vyv - A-lyuA ' ' (5.4a)

AT(B*vO) A = B%y° (5.4b)
™

We first show that (5.3) implies (5.4). Of course

(5.3) implies (5.4a). Next we have, using (5.3b,c),

o * * - o -
AT - Yo A 1*Yo - Yo B+A IBYo* - B+YoBB+A IBBtYOB

- BYy°A"1y%

from which (5.4b) follows,

Now we have to show that (5.4) implies (5.3), -
that is, if K is a solution of (5.4a,b) then-it
satisfies (5.3b,c). Let A be a solution of (5.3).
From what we've just -ecn,'A is also a solution of

(5.4). TRerefore we may write:

e Y °BA"B , from which

vayv = A-ly“A - yoATp* Y yuA 2

Similarly we have for K

¥ vV - T MK « yaXTatyoyMT

¢ - . : - -

From the tuudnldntal'thQOto- ve knoiught§ x - ok .

and Ath'c ialt tm} aguations for Q,““_Yv“ “Ni |

vorATa*yOyPA . ¢ v°lA’l’y‘# A
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2 5 —_
or ¢ = 1. Whence A = 1A and K is a solution of

(5.3).

Equations (5.4a) and (5.4b) show that A can be interpreted as
the transition maérix of a change of basis under which the
matrices of the.operators Yu become quYv and the matrix of
the bilinear form defined by B*YO remains invariant. HhenA
we have gained some more information about oﬁr A matrices
we will give a third completely dittoreht.way of formulating
(5.3a,b,c). .

We now introduce some handy notatipn, The set of
all A's solutions of (5.3a,b,c) when i goes over L’ v111 bc s
denoted by sf. Given Aesf, there is only onc'ﬂ'tn L’;uohthat '
Ais a'solugionvof (5.3a): ;hic follows from the linear 1n-»
dependence of the Yu's. The one {1 corresponding to A niil'
be denotea by QA an% the map A » RA will] bo dcuotbd Dr n.
Our first statement about the A'- is thc ‘91&.’13’1.

-

Theorem (5.2): s' is a -1:-41-O|-1osnx Lto ':oup 1001111

isomorphic to oo PUERARE - ﬁ. a h’.‘;’t’l&lﬂ_lﬁ‘j

a local isomorphism. R '_".]’ : ﬁ“l;F "1":”ﬁjf

Proofg) We first prov. that l* il a QIOII. &.Q l.‘lﬁi

solutions o: (s. u) and t! ON ﬂﬁ

q, m. Then we hnvnc

4 1
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Moreover W‘ clearly satisfies (5.4b). Thus st is

closed under multiplication. To show that I\“1 belongs

+ . .
to S if A does we first observe that

-lu _ up, O : L
(Q 7 v g QO 9y Whence, if A satisfies (5.4a),
we have:
-1 4 _V . HPn O v
Q@ "y g Qp Iy
. %P © QY AYBA-l
J p on 6
- - w
TS BV S Vo

Whence l\-l is a solution of (5.4a) corresponding to
Q-lgsf. To show tha:'(A’l)TB*YOA-l !.B*Yo on; simply ‘;
mﬁltiplic- eq. (5.4b) on the logt )‘.:y'(‘ll'l)'r and on . |
the right by A-l. These conoidora;iodl'yhov at the
same time that Il is an alqdbzlié hono-o:phian Ve
now know that s' ii an algebraic qanrpup'o;‘eho Lti,
group GL{4,C) of 4%4 invertible colﬁiqx i.:’ld‘i.

To show that it is also a Lie lniqfoup';o_ltipiy 

invoke the well-known c.ttu-'thootc-'vhtéh says that

an llgobraic subgroup of a Lio 'tOIy vutch £’ lL.o l:

-y

topologicully closed -uboce is . bto lﬂbgrbi'

te 1: clﬁocl Ln l&gg,gni ‘iﬁ&‘f”u*‘f
' : : S ek

is o.ty to zhow thlt '8

ey et ’t‘.‘-, 2y
g

(A, ) bo a a.qutnco of clclintl 0! l _ il
| Lccz(q,ca. We vaat to ‘e ctit » tu ts l . _xt qp~
_ clear by ooat&llle! that L nctl.gino{“t gbi.n 2



" the ttanstor-.tion lav' ot tb! "1lbtl Oadbt Cll !llf‘}».

-

Thereforelall we have to do is to show that there

4 ,
exists 7 in L such that (S.4a) holds with A = L.

. w1 -1 _u . +
We have ("A ) v.* 7 Tr(An Y Aan)' Since L is .

n
closed in GL(4,R), the group of 4x4 real invertible

lim (R, y M
n -+« n
Lorentz transformation and by continuity one clearly

(A2}

{ .
matrices, hu defines an orthochronous

. - % s
has quyv = L 1YUL. Whence L belongs to S and S

is a Lie ‘group. We now want to show that Me A = QA
is a local isomorphism. We already know that it is

.

a homomotbhism. The fact that it is smooth follows
R R " , \

clearly from QA v A Tr(A Y Ayv). So all that 1

remains to be shown is that it is loéllly-;njtctivo.'

Let Q € L’ and A € s* such that QA - ﬂ."rh.rc is

only one other solution L to, Q = and 1t 1- = =4,

So all we have to do is to ttho a llall n.iqhb 004

Up of A such that -ukpz {-A. Acuhl uhd v‘ coa't

intersect: N1 restricted to "A tl elccrly oae to oae.

o, s -
(2) Explicit form of tho#g;ong_gégggggg‘ _; o ,?.;5

EY s . '-.

We novw proceed to cbtu&u o:plxclt ou.tclplc&l lo’ :; 'fff

the A'a via infinitesimal t:u-tomumc. Mm u _';ff.'"

chronous group A ve tirot 1:'0'$1¢a$0 tﬂi ;fvff:'

I
propor Lorcnt: traau!orﬂutio.l

&t




* 4 ‘ ' +
S+. It is clear that s+ is both open and closed in S .
tw
+ . ~
Hence S 1is disconnected. We will show later that it has
two components just as Lf. We use the following standard

’
basis of the Lie algebra of L*:

Mo - M _ M
,(IaB) v § advs 4.6 89va

One has T ™ -IBa and a basis is obtained by taking
Torrtoz2rToartiarTiartase
the last three'generate rotations. The commutators are

given by

(o Tead = <09 Ion * Dpley * Fuatuc ¥ IevTay!
To obtain the Lie algebra of s: ve simply use our ;ocil

isomorphism A ~» QA’ If Q(t) is a curve in L: passing

through I at T = 0, there is a unique cuxve A(t)iln l:

passing through I at T = 0 such that:
| ¥ (tyyY - A“(t)Y"A(t)

AT ntyoAcny = 2%y

Taking the derivative of th."*“ﬁ‘fﬁilu-iifj

(3.1"1 -7gﬁ“9y”.ﬂ

A%%° + 3%l e 0

(5.5)

The first three generate boosts;

(5.6)

~

= 0 givesr

53
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A
where we have set A = A(O), ﬁuv = ﬁuv(o). Now if the curve
. e .
{{(T)is chosen so that { = IaB and we denote the corresponding
A by AaB' the equations for A read:
i y " ‘E’ v " "
= - - - - 5.7
( QB'Y )| (6 agve § BSVG)Y é BYQ S GYS ( ) ;
s T + 0 + 0 .
- .8
A aBB Y + BY kaB 0 (5.8)
From table 2 we knov that [y ',y“) 1!(6" Yy -8¥ vy
' [aB) 8 a'B .

Using this and eq.‘(5-7) we get (Aaé 1 Y[CBI'Y )] = 0,

from which A 4+ cI. 1Inserting this in (5.8)

1
ag = 2 Y(aB]
yields: '

NI

+_0  T_+,0 , .+ 0 <
0 = 2¢cB Y, + °‘(Y[u8)" Y + B j YKGBI)f But

eT T T 4 - gr gv 4] o .
(GB] B Y - YB YG'B Y Y Y . Y -3 Y Y 4 fnd

T +. 0 +.0 e 5t vBVA O 0 -
Viagy BY° *+ 3% (qgy = BTV f Y Viag)! = O

-, ( A1 i ' ".“

Therefore ¢ = 0. Whence we mapy write:
. A . )
"a © 2 7[08] ‘sf?’
' af . P o . :
e ., 96, s
(exp =R Yiag)' o:p(c 'IcB’ o ,‘SQ;Q)

our first use of formula (S. 10) is to get cnpltott “"‘éi:?

We first connidox the. trnn.!ot.ltibn of llil'tl jéga;g!_.‘na___ fo

"rotation. vhon one zotgeoa ' 3 !:a.o th:otgh caval.iili
axound & unit voctot 2, tho ioorﬁtntsnn :' tg‘ilﬁ_rxl

frame are related to the old ‘99"‘..'Q9.§J§!5;ﬂ‘

e
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x' = [exp - ¢(n*A)lx where

N
[0 0 0 0] [0 0 0 0]
0 000 0 001
Pl 3% o 0 0o + R F I " lo oo ¢
[0 01 0] [0 -1 0 o
(5.1%
[0 0 0 0]
0 0-10
Ay 50y, - 0
0 00 o

It is convenient at this stage to introduce the matrices

Xi, defined by

, El - 023 . 22 .'031 ¢ 23 - 012 (5012’
)
where, as we recall, Oy = 1Y[uv1' One easily chfcko that
they satis’y the same relations as the Pauli matrices:
titj - Lefjkzx + 6111 I ‘{'l’?.f

from which one deduces: .

(3vz)(§-§)*- (g-g)x ¢ Leaxp)eI T qs.dr
We nov apply oq. (5 10) vith c “‘- -0 a'l . e e fi

corresponding A on the 1-!:—;..4 side L5 .;LLij"
This is -.-11y cvnlultod n.sag 5. 14) -u aii ttat ﬁl»‘;'§ v“fig£;
Qnd'_ (E.E) - u.t l°r P "“ ." o« :‘ "l" v,,. _,.,‘I .
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\
® (1 % n'f)p
exp i — n*fl = [ ——
~ - p=0 p! ¢
2k 2k
o (i)zk(%) 1 o (i)2k+l(%) +1
= I + I nel
k=0 (2k) ! k=0 (2k+1) ! R
= cos % I + 1 sin % B'E

whence if we dehote by A_(¢) the transformation correspen-

~
+

ding to a rotation of angle ¢ Aroundhghe un17 vector n

we obtain:

/ .
I +«+ { sin £'n°2 (5.158)

¢
AE(¢) = cos 2 2

-~

One peculiar feature of this equation is that An(ﬂﬂf = -1,

-~

This is characteristic of spin % wavq'tunctioni. Tho'.pin
operator along diiection n is thi infinitesimal generator of
the unitary group of transformations of the tntarnql v‘riabloi
under rotations around n. We have seen above that £hit ironp.
of transformations is givdg bf Mp (4 ¢ %‘3’§)5 Uhcﬁc;.tho :
spin operator along QLroctionle is %-Etg, Us;ng eh. Oq: ,

(5.13) we £ind indeed that the spin vector operator

L Ld

s=3I (5,18)

¢

satisfies the characteristic cd*nutlttoa_t.litt‘l’iil'ﬁh.f
anqﬁlat momentum: | “ ' A
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&

. . L 2
We have S_ = % Y, Y, = % vy“. By the fundamental theorem
2

12

is similar to ~ I'T* (cf. eq. (2.7)). But
o 0

- <

1
whence the eigenvalues of s3 are + 3

§ is a spin % operator. Of course this corresponds to the
experig;ntal spin of the electron. As far as physics is
concerned the bizarre result An(2ﬂ)--1 is of no consequence.
All physical quantities arise ;htough quadratic expressions
which are insensitive to the interchange of § and -y. From
a mathematical point of view the result shows that we

cannot remove the sign arbitrariness of the elements of §

without giving up their property of forming a Lie groupt

,
+ -1 is obtained by exponentiating an element of the Lie

\

L]

algebra. ‘ LI o

Having discussed rotations and spin we nowv turn
to the transformation of spinors under boosts. Suppose
that the frame K', coincidinq with the frame Xk at t = 0,

moves at speed Bn with respect to it. (Nere m is a umit

veétor'and‘B z v/c = 0-v1th[oﬁ: ebotco ot'inttq.)- L.WAéb\7

p = th-l(ﬁ). Then .the primed coordialtil Qrﬁ t‘!.tod'td

the “ﬁpril.d.by x' = Qu(o)x where ﬂu(o) ﬁloxb.ﬂgffé . - Heze

we have iots

111

Ip F (Bgyrigaeley) (ef. (8.8 o A

so that g;ta .-




‘e
- 1 2 3 . v .
Let Y = (Y ,Y ,Y ). One easily checks the following praduct
rule:
[ Y
(a*y)(bey) = -[a*b I + i axb °I] (5.20)

We now apply eq. (5.10) with caBIAB = pn°*Il . 351 corionPOn-
ding A on the left-hand side of (5.10) is cxp(% p n1 Yl°1))'

Using eq. (5.20) we obtain:

i 2 2
(n Y[oi]) - -(g*z) = I
Whence we have: ' L\
1 P
® (= p)
1 i Y 2 4 P

exp(‘2'0 n Y[oi)) L -—p-T—— (n ,1(011)

p=0
o (22K . (2)2k+1
= I ——T ' (n Y )
k=0 (2k)! k=0 !5‘ 177 let)”
= ch 1 + on2 nl y
2 2 (-39

Or, using the standard notation o!‘oq. (1.3b):
. v
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A n(P) = cn«g 1 - .»g- nea | (5.:1)_‘

One may check that this agrco- wvith the expression obthggng‘

in chapter 1v, loction (2) with u'- (i,o 0). B
An arbitrary proper. Loronts trnnl§ol-li£‘a 8.

decomposes uniquoly Lnto the .loQQGt of n booot ll‘ . ;

: R ' &
totationx , . 2“ ’ , T : :



w = exp-(¢n°-A) exp(Ou‘Io) , uU: unit vector.

~

Therefore the transformation of spinors under the proper

*
Lorentez group L* is completely described by the formula:

L d

Q 3 9. . .p_ - —p- .
H[(cosE-I + ;sinz n E)’(ch2 1 sh2 n g)]
= exp - ¢ n*h exp p u'Io (5.22)

To give the transfo}nation law of the spinorgs
under an arbitrary element of the full orthochronous
R .
group L it is now sufficient to say how they transform
9 +
under the space refl.ctvion Q' - r ]. because any 1 in L
i T 1 can bé wiitten as fl =.0.8., vhere 8
which is not in L* can be v;Attcn as = Q0. Wwhere i

is in L:. So let us find the A. ¢corresponding to Q..

Equation (5.4a) gives Yo = A -1Y°A ' -Yk = A -lykﬂ '
s s’ s s

from which it immediately follows that A_ = cy°. To

' .
determine c we use eq. (5.4b) which says: czYo lfYoYo - 5*Y°

+ -
or cZB Yo = B+y°. Whence ¢ = + 1. Therefore:

o ' | y -
N

Y The group s* that ve have been conoid.t1u§ iéqtﬂ

through the transformations of the spinorq usder ortho-
R ¥ s
chronous Lorents transformatioas. The feason ve didn‘'t

consider the full Lorents group is that eq. (5.4b) é‘ii‘i be.
-1 0 , R
satisfied for time reversal Q = . Pror thi-,ﬂtp}h
0 I ‘ v

. . 4 . ,
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\
eq. (5.4a) says that the corresponding A must anticommute
with Yo and commute with Y. The solution to this is

~

cyoys and one easily checks that this cannot satisfy (5.4b).

(3) Charge conjugation and time reversal

Besides those induced by orthocﬁtnnous Lorentz
transformations, there are two other important types of
spinor transformations: charge conjugation'and time reversal.

Suppose that a given representation (y"} has been’
chosen. Let B be the matrix of proposition (5.2):

. -1 :
yL = B YUB. Then the charge-conjugate spinor Wc aof the

“"“//‘ is defined by

spinor ¥
i‘c 5 . »
V- o= YBY

*
where y 1s the complex conjugate of y. Let us denote by
K the antiunitary operator of conplci conjugation in that
particular representation. Then Wc - YSBKQ S ch. The

~

operator BK commutes with Yu. Indeed we have:
vexy = y¥su" - By"'y" - mxyMe
Suppose Y satisfies the birac equation
(YM(13 - A ) - mly = 0O
U H

Multiplying this on the lnft by.yslx and remembering that

BK is an antilinear operator commuting with yu ve get

L3

€
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[Yu(iau + eAu) - myS = 0

The only difference between the esquations
satisfied,by v and ¥° is the sign of the charge multiplying |
the vector potential. Whence wc can be considered as the
wave function of a particle of the lll:‘llll m but opposite
charge -e in the same electromagnetic fielad AuJ This inter~
pretation is consistent with the easily verified equation

Y '
xcz- . N |

The other type of transformation ;o éll. r‘vcrnnl.h
This operation will be first defined for the ollﬂt:OIltnCtic‘
field. Consider a clac;tcal slectromagaetic tiolﬁ !. !. B
It satisfies Maxwell's oqnutianx ’ .

V'E = 47p v-! -0 ' .

SRR T
Let us define new vector tiolds g(t.g) S !?ft.!)‘lid ' .
§(t,5) : B(-t,x). If E and B are really tiio dppoado;t then !

= = v

E and B will not satisfy Maxvell's equations Sécaicc ‘
- 19 2 - L " ’
ng - =3 # - J¢ © However if we define tnqtpaﬁ ' .
Bee,x) = g(-t.f) and !(t.f) - -3(-:.5); then ! un‘_!‘ A B

satist} Maxwell's equations with p.iil f‘tg’l?ﬁj§ .'>;

B(t,x) = p(-t,x) and ITE;X) T ~J(-t,¥) respectively.

el
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~
4

In practice the new densities s and g_could be obtained by
reversing the motion of the charges gqting as sources. It
is physically clear that the ticldp ;;;ulging from this
operation are g and §. On the other hind,.wo cannot think
of any physical operatién resulting in ;he fields g,? and
this is consistent with Maxweil'l equatio which say th;t
these fields do not exist. j;

One is thus led to define the operation of time

reversal on an oloctio-aqnctic field as the ropiucolohtcx

E(tvg) -+ g(tof) !("to!)

"

B(t,x) * 8(t,x) = -B(-t,x)

As an operation on the vector potential this amounts to:

Au(tlf) hd ‘u(tog) = (,Ao(-t'f')' "E('tof)’

[13]

Let Vit 2 YVt = OBVt o By \]

definition W'(t.x) is the spinor ob;ainod from ¥ by time

reversal. It is easy to see that\w' satisfies the .quaiion
» u ) ) - K N .
(Y7 (13, - k) - mip =0

It thus describes the same pnrticloiao ¢ but evolwving {n

the electromagnetic field ‘D ahé;lnddlftol Ag by time

L R
: -

reversal. _ - L

In the next section we come back te ski‘lioi',§,< ;ff?"

and take some time to obtain a '1o§h1.cendtctc’p&oith‘cf:$§§72@; f

Loes
Wy
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: +
(4) A concrete picture of the group S

The first proposition describes the connected

, t
pieces of S , \

. ; + +
Proposition (5.4): The group S+ is connected. S has two

3 [}

components: S: and Yoéi = {Yiﬁx ACSi}. ' A
Proof: From eq. (5.15) we know that there is a continuous

curve in s: joining i ﬁov-i. Now let 0 € L:. There

;re t;; solutions, A and -A, to M(A) = Q. Prom

eq. (5.22) we know that ht least one of thes, say

A, can be reached by a continuous curve lying in

s: and starting at I. But linCC‘ihOt.-il a cuxv;
connecting I to -I in s:. it is clear that tho?o is
a curve lying in sf connecting A to -A (one liuply

takes the one connecting I to -I and multiplies it

by A). wWhence any element in S: can be conneacted to
I by a continuous' curve lying ¢n s: and 8: is

4 ' +
connected. We noticed after theorem (5.2) that 8

t
+

+
+

and Y°si are connected. stnoo-thoyydoift 1n§‘rcht t}

is disconnected. we have Sfﬁ‘(l:)‘u (1‘! 3 lnd'botﬁ 8

is clear that they are the two compomedts ol'i’.

y

Proposition (5.5): Any A in S’ heas determinant 1;i-, :'.' "-,543

o’

Proof: Eq. (5.4b) shows that detA = 41, Since byf" 

proposition (5.4). 8: is comnected nad.ditxtb'; ic .

i

follows that any A in l: has d.t.t‘tillt i..ii!*§ 
is in S’oand not in s:. ih.n Aw Y.A;~i"?':ﬂ;ff:':¢

L]
P




whence detA = detYo dotA+ = 1x] = 1, by the
corollary of theorem (2.9).
”
After proposition (5.3) we said that we would give a third

formulation of egs. (5.3a,b,c}.. It is contained in the

following proposition. / | .

L/ A
Proposition (5.6): The equations (5.3a,b,c) defining Bf are

equivalent to

A T A
, > .
detA = )1 .
[ ]
TrA = TrA .
o~ ."...

Préof: 1f A is a solution o! (5.3a,b,¢) 1¢ tolloﬂt that it
“satisfies tho !itlt two condttion- by pxopotxtton
(5.5). The third ¢ondit£on that er bo zeal !ollﬁvc
from (5.3¢)1 TrA I !llll » ,“@ IOV l"
us see that the thrae condit&onc 1-.3; cq- ‘!5?3a.
b,c). The first condition datotl&uin A ., to an .
unnu u 'K u

arbitrary complex -nltt.llnlt1 
.na,b.n) za.. Ae dl

one of the two solutions to‘:

Now the second condittou nbcvo lﬂ't»tilt C 1' ‘l‘.ﬁt

#1 or +i, and the thlt‘ coulitl'l Ol(!&l‘ii‘ ‘il zﬁ e

possibility. Whence A - +I !lxo coaplcth th

I
proof of the cqufvalltic. ‘
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We now come to the main result of this spctioh
which provides an identification of SI wvith a surprisingly
(/\
simple group.

Proposition (5.7): The group S: is isomorphic to the group

SL(2,C) of complex 2%X2 matrices with dotcrgin;nt 1.

' Before we prove this, it is necessary to.-ako a
few comments about SL(2 C) and {ts tolntionlto L* sL(2,C)
shareslwith s’ the property that there exists a hononorphill
P from it onto L’ such that P(H) = P(N) if and only it |
M.= +N. This P is constructed as foéllows. gno gatabliahic
a one to one linear correspondence betveen the 4-dimensiopal
Minkowski space M and the real vector space H of 2x2 con§i§?;’
hermitian matrices by x” - xuou; where ﬁhc cﬁ'o‘itiitiq‘
Pauli matrices of eq. (2.8). ﬁpon-l.tttfﬂ ;;5 8u°ap éﬁij
easily checks that detx = goz‘- 2*x.  An Qlll.lf.l of 8£¢§;c);.

induces a linear map i: H*Hih <+ aha'. n@.;fg i qf;- p. ‘
u : : R S |

x' 0, one has » _ I T

(x' )" - x'ex' = dct(f') = det(axa } = detx = x - 3%
".f ' ° . ' - .'\ .o
80 thaé a determines a Lordnts euauoznuoa'ﬂ + - ORe tlu oy

shows that P: a *ﬂ is a ho-o-crphton o! sn(z.c) tnto L‘»

that it is surjoctivo and thce r(a) - )(b) it Qud only lt
a = 4b.  The details: ot tht- can bo found ia (luhl ll’?’it.5 '

‘Suppoco that vc—tﬁcut owr atzcltlﬁt ll - ll‘ll ‘l!.'l
noiqhborhoo& VofIin s' ' To eseh A la ' th‘t! !1}1

' o \‘



correspond a unique LT\ in SL(2,C) close to the identity such

that II(A) = P(a If we take A' close to A there vill be a

A

unique a,, close to a, with R(A') - P(.A')' "y ’ovinq by

little steps in_s: we can extend the map A =+ QA.to the whole

of s: and this map will be an isomorphism. All we have to

do now is to make this igtuitivo irqunont rigorous. This

is the only place in this work vhor; we invoki lcth;gattcal

ﬁgtiohs which'aro not completely elementary. It is 1npétt;nt.

to notice that since SL(I.C) is ailply cohnoceod, tho'abovn

discussion shows that it 10 Qllo tho univotoll oovcring

group of L:. Our thooraa (S 2) :ogtth.t vith the uov

established connoctivity of s’ (propo.itiou (5.4)) shows'

ﬁhat s* is a covering grbup for L’ . zf ve kaow that ’

‘was simply connected v' could eonalude Q’ Olct that 1t is

isomorphic to 8L(2 c) bY 1nvoktng th. Ihi(l‘lnll (lp o

Llomor#hiln) of the universal covdrluq gt.l'. !lt vn dn.‘tM 

vant to show directly that s’ is u muma._ xnuuﬂ‘” .

we will use a result about topol.ytcal qtptp! lbl.dl ﬁtll

‘enable us to prove the uo-o:pun vtmnt ny uluutun.

By the same tokcn ve vill hdvo shown. thlt l:,il ltl.l! -

connected. . | ; ;., ‘f“ V,‘ ;.7; u\'“i 
The thooroa ve use says th4\4011‘!$l! f“‘t ; ‘{; ;

G.be a topolagical group vtth uatto:"l };’ff“ e T

(&,p) (pt G*c eovcriaq hanﬂlbtthinﬂgy N f?“”

is another covering srop tot a. m




6y

continuous homomorphism h:C*C' such that’g'oh = p,
Moreover (G,h) is a covering group for C'. This theorem
can be found in (Pichon [1973)). 1In our case we take

G = L:, (&,p) = (sL(2,c),p) and (3'}9') - (s:.n). The
quoted theorem then says that there exists a unique

continuous homomorphism h:SL(Z.C)*S: such that Noh = p

ys illustrated by the diaqranx
: . R

SL(2,C)

Clearly, qivon any ag8L(2,C) h qiv.o one of the tvo A'a 1n

s: such th.t n(A) = P(a), and thio 1. acconplschnl tn a'

continuous fashiom. Our claim 1.,that th&. ie la»!lct-lnv R
) S - . o ) ST
ioo-orphill.' The thoorc: nlyp thlt (.Ll! ,C) oh) tl [

covering group for s:. vhcuct h §s lurjqbtth,j lo '0 Q!lr

need to lhov that it 1o 1nj¢nggy.' 'h. ‘.;, "‘ .ﬁ y

that h could sap tc -1 azcl+t,‘ IllcQ h LQ iﬂ3300§!’. ll‘
h(I) = I we must have h(- t) - '!°, llt -1 it}lhijﬁll!
‘element other uun I that u ‘could’ nn m qg‘x.~..

we have um hia) = T Oumm se1 m .tt '
. d i ~""'."3_-.“. "» ¥ v 4 :

Whence h is an 1.0Iorphill.

lpino:l.
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CHAPTER VI

TENSORS CONSTRUCTED FROM SPINORS

(1) Introduction

The aim of this chapter is to construct tensors
from quadratic conblnntion; of spinors and to study their.
reiationships. These tensors are vcli known so w; are not
going to define anything new. However the iocﬁion devpt‘d
to tﬁ: study of their relationships might have some A.
originality. In (Pauli ([1936]) Paull hll‘lhovn how to
derive some identities relating thono tnn'orn by uotnq
the Fierz identity However the set of id.neitt.l vhteh
he displayed-‘is inconploto 1n the ncnlo thlt it éocin t
fully exprosa_thg»:cstrictlon- on thc Coqr.cuvut !aﬁa‘ou .
in the tensor components. Attcr hnvinq Ctllullod gh- - e
construction of the eonoors ve vill ptovtdn‘f eoiplqgn -
salution to the queltion of ehotr nlqobtaic dcpon‘.ndo.
In particular we shall qlvc a8 set ot lllﬂd‘ Ltll’QnCth
covariant 1dontitics which tells ox.ctly how. tht V‘ttcﬁl
tensors aro-rclltod to each otherx. llt the oehtt tdonttttdi -
are derivable from thin pqrticular Bet. . “”é

We must onphnnitp tuat ou: caa:yitn 1. 1;-1300

$o the case where ¥ is an or‘inary lpiuot .nd not a !tcll

opetator.‘ We have uot lcriouoly iavocttqnt.l hbv niﬂh 0!

the analysis carries throngh in this more. i‘notll Qitﬁlﬂiﬂl.i;

Y 1 : ._,"
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(2) Construction of the tensors

In order to obtain real quantities one has to

take appropriate linear combinations of the products

JL wv . The maximum number of linearly independent such
combinations is clearly 16. It is in fact possible to

construct 16 linearly independent quadratic forms which
are all components of tensors or pseudotensors. We list
them first and then proceeh to s"? that they have the

appropriate transformation laws.

B

s = Yy : scalar
P = WOy ) : pseudo-scalar
vH 5A~Yuw : future pointing tiuoliko or null
vector ,
T u S, K ’z_ v . " .
P" = iVYY -t spacelike or null pseudo-vector .
[ B . .
C sV o= gy WV : antisymmetric tensor
One easily checks that all tg;lo qoahtiti.ifi;ifrqpl.. !hitr
1inear‘1ndepondohcq follows fxou that ot~¢h0‘¥"a."!ro--£hou
t:
condition (5.3b), vz ety ttca.tatno uudc: eho actloa ot &
according to W - WA'1~ rrom the proof of propouuoa (5 1). Lo
the condition (5.3b) can only be satisfied. uhu duuu vuh o
orthochronouo Lorents: t:anc!ernutlons.‘ &“lg‘ll’l’ od: ,;if_**qﬂ

quantities behave as ¢1itl.d o;lr llth Glll t!" 0’

transformations.

. - - N . . - L . - wooe Eogas g UL ¢ RO
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. 1
It is trivial to check that S and V‘ are a scalar

L]

\Y .
and a vector. Now let us see that S‘J .is an antisymmetric

tensor. The antisymmetry follows at once from that of

Y{uv]. We have S'uv - iW.Y[uvlw. = igA lY(uv]Aw

‘uv

Clearly if u¥v S = 0. Suppose now that u¥v. Then:
s MY . iEA-lyuAA'lyvAw '
. AH LV = p. @
= 2
iQ o$ VY YV
- i Quoﬂvowﬁ[polw +4 0z Q¥ QvowaYow
o¥o peg P »
M .V 00 - M AV TR
Q oﬁ oT + 19 (-0 iQ t Q oﬂ o!*

The second term vanishes because we Qnou-dd y¥w-and R is

a Lorentz transformation. To treat the other two cases

we need to use permutations. If ?u ‘qufv; then

(-1 ‘ ‘
" ’ .. 4. -

o . b4

' ' ) ,
R L UL N R R
E 1)

oes

where s‘ is the set of permutations of (Qiiﬁ)-
' o g,
s e’ al

- oes‘ o

9, G, PPy P, P
0 2 q 3 y °Y_;Y 2Y 3

Pr P2 P,

Clearly the only terms contributing to this phu'

are those for which all the p

v" a:o i1:£oroht.Allo ve a§’/ .“°

R e e el

write

s Tcs p.l Ty

YL

c H I %D dee@” )v? o asein”)y?
e ' o AN . -

.




From thi1s we obtain:

p Y o« EA‘IYUAA-IYSAw = QNVWYV§SW = det(Q)quPV
Similarly P = det(§)P.

The physical iﬂterpretation of the vector v¥ is
the probability current of the electron and it is denoted
by 5“. jo = w+w is indeed positive and can thus represent
a pronbility density. The conservation of total probability
is guaranteed, .under appropriate boundary conditions at
infinity, because j latisfie- the continui;y oquation.
Indeed uponkmultiplying (iy 3 - l)* = 0 on the left by ;
and the adjoint equatfon (1y“5 + @A) = O on the right by
V and adding one obtainl.auju = 0. This also works when
an external electromagnetic field is present.

The tenlor -2s*Y is inictérqtn@ as & spin don;iﬁy
(Messitah [1964]). The other tensors ar‘ used te couple the

Digac field with other fields. .

e
(3) Covariant identities

Jge
Let us now come to the Ldoutitidl'cuqaoctlni the

tensors. We fix the -paét-ttio point x and 166& t uov tho |

components of the tcnloro are t.lltod to. Olch 0&‘0! ‘t tll’

pom' They are 16 real-valued tuactlou ot O(a)., £'0 .

emphasize aqnin that in this -twdy v 10 ll 0&‘&“*’ Q';fif
and not a field operator.) stuco i(l) c‘i‘.‘ﬂl . 1&‘1".
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Jdent real parameters, the components of the tensors can be
considered as 16 real functions of 8 real variables. It is
therefore clear that at most 8 of them can be independent.

It turns out that only seven are independent and the nine
others are determined by the first seven. The basic taol

for studying these functions in a way which is independent

of a particular choice of unitar; Yu.. is the Fierz identity.
It is a very remarkable identity satisfied by any iot 6!

4¥4 Yy matrices. Let {y")} be such a set. By propo‘ition
(2.5) We know that the 16 YA'- span the entire vector space
of complex 4%x4 matrices. If M is an arbitrqry’G?‘ matrix
there exift coefficients QA such that M = i_ahYA;

Multiplying this by YB H (YB)-I.and taking the trace yields

a = L T_(MYg). Whence ve have:

B 4

1 A

Mag T i Y a8 YalvpMuv
' .

'S LY .
But, since M is arbitrary, this implies
1 A A ‘ S .
Y i Y‘GB(YA)VM - Gauésv C (6.1)

This is the Fierz identity. It 1- 1n tnce a tcu:or p:oduce .
identity and is seen most clearly ‘when v:ttton un‘ lu&h. .
The tensor product of two linear a"rttétl'l.ttd !.-&ll, il‘

defined by Mou(nOV) - Huclv for nrba.tztry ucton u.v.»

. Given HON v define (NeW)™ by (now) " (qov) = uvqn-. -o th:t

14




73

™

™
(M@l) = (M@gN) (I@l) . It 1s then a trivial matter to

check that the TFierz 1dentity may be rewritten as:

1 -~ A
S0 v ey, = (11T (6.2)
a A

The advantage of this notation is that many
equations become clearer because of the elimination of

the indices. There is another algebraic tool which we
uT
},

shall need. If {y"} is a system of Y matrices, so is {Yy
S ]

the set of transposes. By the fundamental theorem, there
T
ex1sts an invertible matrix T such that Yu = TYuT 1. This

matrix T is the other tool which we will use. It is anti-.

-

symmetric. Indeed by taking the transpose of the equation

defining T one obtains:

M -IT&' T 1T y

Y21y e Yy

T ‘ _
from which B:u ,TTT-I] = 0, By theorem (2.8) 1t‘!b§1°vl

\

that;TTT-l a ¢l or TT = ¢cTy From this we obtain

T = CTT -.czT, whence ¢ = i 1. Thus T is either symmetric
or antisymmetric. Suppose th* 1;’ vas qylﬁotr‘ic. Then one

(Wl o TY‘*““"

can easily check that the tun'-atrtcoi TY
would be aﬁti-ynnotiic. But, since there are at BOSt ji;
linearly independent 4%4 antisymmetric matrices, thie is a’

contradictiqn; thiritorc. T is nntitfnlctrié.' This telegant

arqument is taken from (Pauli (1936)).
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We are now prepared to study the identities

satisfi1ed by the tensors. The first step is tq write the
®

Fierz i1dentity in five different ways:

ic1en) = 1.1+Y“0Yu-%w[“Vlcv[uv]+Y“YSQYuY5+Yi0Y5 (6.3)
sy on)" - y5.1+1.y5+y”.YuY5_qu5.Yu+%§luvI.Y[uv]“ (6.5)
sey)” YSOI*IOYS'YuOYuYS*YuYSOYu+%i(MY?OY[uvl ! (6.6)

3

© el wooel (uvy T _ M5 5T, . 5., T .
4(T "OTY = 1@I+Y .Yp +3Y .Y[uv] Yy .(YuY ) +Y OYS (6.7)
The matrix Y is defined by Y - lc Y(GB]. This
(uv] (uvl) 2 uvag

eorzesponds to the definition.of the dual of an antisymme-.

1 af
3€uvaBT . Prom eq. (2.5) we

| s 1 s ‘
wvhere we recall that ysui (vy") “®=y .-

tric tensor Tuv as Tuv =
have: Yiuvy ™ YsY¥(uvy’.
Eq. (6.2) is just’ (6.2) written out explicitely. EBq. (6<4)

: S
is obtained by multiplying (6.3) on the left by Y OYS-

Y

Eq. (6.5) 1is obtai: d by multiplying (6:3) on.thd lcti by

'ysoj. Eq. (6.6) ig‘obtained by«rovoroihglgll gonldt
produasts in (6.5) this can ;o achiovp; by”nulglplyﬁng on
right and left by (I8I)". rinblly:oq.ﬂ(6.7’,ip ogingnqngy’

" multiplying (6.:3) on the left by IeT aad on :ﬁ.'tégbt by

~8

-1 A M A
IeT . : Sl ;
»
’
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For a while 1t will be convenient to replace Pu

’ ‘ NS TR - 5
and o by the pure imaginary quantities VA -ip¥ - WYDY [
’

VR R VRV

and T -15 = wY[U\"W

By multiplying (6.3) on the left by ;‘E and on the

right by Y@y we obtain:

1l _uv u
= s + viv - = 1"V + V0 - p
4s w2 v Y

-

By doing the same thing with (6.4) we get:

1 uv_ " u 2
-4P° = s° - vy - = oFVe - 90 -
2 UV U e

By adding and substracting these two equations

we derive the equivalent system:

" 2 2 g
T Tuv 2(P°-s%) (6.8)

Y]

vy . v“vu - 2(P3452) . (6.9)

.~

Perforn{nq the same operations on (6.5) yields:

Ve, = ars Loy (6.10)
¢

Next if we multiply (6.7) on the left by Fo&

on the right by WOW ‘we obtaina ' u

4(ET'IWT)(wTrw)‘-_q? + v“vu + %Q"Y;vvi- v“v - »?

where we have u.oqfﬁho tacq ehqgrln onp:ouoxon llxo * Yy

being a- number,’is oqual to itn tranapose ;Y .v- qu ltnA i

¢

‘¥ . -

T
Y




76

) T
T 1s antisymmetric we have wTTw = (WTTW)T = -y Ty = 0.

Whence our last equation reduces to

2 V] 1_uv H
s+ vy o+t - B9 - p° =m0
u 2 uv M

When combined with (6.8) and (6.9), this gives
1

. vy = M) . pz+s2 (6.11)
U u :

-,

Upon substracting (6.5) from (6.6) and then multiplying on
the left by IeT and on the right by 1e7 ) ve get

T

5 5 = . 5. T 5
201 tery® - Y1 lem)" A v ot )T e vy o

@
Then by treating this as (0 treated eq. (6.7) we obtain:
’

v“vu -0 | (6.12)

Eqs. (6.8), (6.10), (6.11) and (6.12) are the identities

which Pauli, displayed. We now proceed to dot1VQ othorl.

\
By taking the difference between (6.3) N!&t(G 4

@

) L
. . ’;"' N . \( . Ty ‘
we obtaihn ' : - - w ’ ‘ R

| "o 5 >
2101 - oov 1" w vPoy, o ¥fYPev Yt e

®* : . R

N

. Multiplying this.on :em left “fbt XQY“ 1_4.04.“: o

14

21107 B | ov uY ! -.v’cv Yp +. v Ysov vpv’

| »zq
4 . Yu twv’ov[up}¢vuv'ov «v’
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By applying Ve to the left and VeV to the right
we get:
218V + PY | = sv_ + PV &+ T vP -t @°f (6.14)
U y M H up Hp A
Next by taking the sum of (6.3) and (6.4) Qe get:
s F.m 5 % 1 [(uv)
I I - = 1ol ~ -
2(1le Y oY ) ] Y ey Y 'Y[uv]
N

Multiplying this on the left by IQYu yiéld.x

5 5. W 5 5 1_[(aB]
I - - - -
2 OYU Y OYuY ] IOYu Y .YuY sﬁ .YDY[Gﬁl

Now, by using gthe product rule (2.2), this may be rewritten as

IRIRE A UEE LRI A SRRl IR AL
which, when.takon be;vfen VQW and 000..q1v0a‘

2(sV. - PV ] = SV L - TR MEE MR & ’

T M Y o Tuv W8l
I1f we combine this with eg. (6.14) we o§tl1ﬁ‘thn .quivilcntt
system: : | .h ; | . "
Tupvp - ?vu- 4 .,\1 o »gp;}Sé‘ |
; . L - 8 v N Ry

We consider \_(qd:in~_oq_. (s.i;‘) ~and l““‘!}"l:'é.‘f#;” o

LB P

the right'by Yuoyp; chii yiil&i:'

i
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Y S M n vV M v'p S 5
2 - - :
Y 0" = Y Y oY ¥ 1l = YUY v, ¢ 7 Y P eV, Y, Y

" 5 .5 (vi] (uu] 5 5
) L1 T8T+Y 0YT) + ¥ Y o) * Y oY oY
(b, p) 5 1w 5 M1 _5_.5
1
+’ L 2 YD] + Y[pY oI + Y @Y Yp]Y + Y(DY Y @Y
, v
Operating on this with EOW and Yoy, in the now familiar
way, we obtaing
™ st P . g"P(s%+p?) - 2(v¥vP + ¥HRP) (6.17)
*
As long as Tuv is antisymmetric, the following tdentities
hold tpue: ‘ .
' o . .
HV uv 1. .aB v s
T T, ? ivp - F(r TGB)G o (6.10).
Y 1,08y <M ' |
" - - : 'o’
LA N (T 108)6 b : (6.19)
’ : A
' o B ' o
Combining (6.18) with (6.8) and (6.17) yi‘}‘l
»
SV e o VP L o L | 7% [ 1
: T”“Tvp - - (VPP . oMef) +.g"ﬁg§.“‘ . (6.31) -

..

Fortunately we havc now noa:ly oxhnu.tg‘ th! .‘ﬁ of Ill

ponciblc 1nvar!ant quldtatic 1dont1$t.0l !ﬁb?‘ t‘llil 0li1~ 5'

éwq. Multiplying (6. 20) by vp and ulil‘ t..ll), (i.lz)

. ) . ‘* Jz.

. (6.15) we obtainl o IR -_.;,;;;r;

A

I'M

pr"“?v.- - (l ova)v e s’vﬁ .-2




Since this is true irrespective of y we may dfvide by P to

get

Next we use this

e
\V

that is:

V. = -

uv = - u. - s *
T Vv - PV ’ ¥

together with (6.19) and\(\IO)

_ ) & !' '
1 Suv P . _1 o
5 by Tvov - (-3 ¥

L1

af

T“Vvv - st¥

)vu - Sv_v '

(6.22)

to, get:

(6.23)

We now reexpress all the iddnti;ioi obtained in terms of our

original real-valued functions P

V'h =

O“Pu =

sHVs
uv

3"Vs

pv

. - .s"s

ghVs

(e

vo

vp

Y ana s*V.
0
pz+s2. ) ‘
-(P:.+Sz)‘ ¢ ._ ’ ; '
e 2(52-P3) ) ¢ fiﬁ.
- - aps

- (vuvp '.PuPp) .- 'uo" t’
-2‘

. .. r

: oY
‘f.PS Oto

A
NIV S
..";\i .

N ’.j“ui-. L) ‘

[ N

(6.24)

(6.29)

(6.26)

(6.27)

6.20)

(6.30)
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(4) The information contained in the identities

—

Clearly the laft handAlides of the last set of
equations comprise all possible quadratic inveriant com-
binations. But these equatiomg are so numerous that their
content is {ar from clear. They form a highly redundant
system: for instance, (6.24) is an 6bviou| consequence of
any one of the last four equations. 1In fact only nine
equations are in@ependent. This leaves seven 1ndopcndcht
functions: one pos;ibln choico.ii P.Vk,rk. We shall now
show how one can pick u,ly;tom_ot §1l0l£.1na.p.nd.nt
identlt;eu implying all the others And then procsed to
.demonstrate that P,vk,Pk @to indopondont. »?L;it ve fix

the notation. We define:

1< .
]
< <
~
e
s
v
o
L]
..
w
)
>~

so that

80




81

S is twice the spin density vector. One easily establishes

that
2 2 1 _aB
- - - = . 6.39
K S 3 [ SaB ( )
1 _aB
. - 1 6.40
K S =318 sae ( )

A

These are the analogues of the familiar invariants

of the electromagnetic field.
Our claim is that the following set of identities

is complete: ‘

’ G o (6.41)
svpv PPu . B ¢ )
» N . :
P us ‘ . (6.42)
!upv 8P, | | (
vPv = siep? a "’u’u (6.43)

First (6.41) clearly implies (6.24). Mow in our‘nov'

notation, eqs. eel:‘n and (6.42) read

p° “X°V p° sev
< - . - :
b = 8 - ,
o R vCaavx
-p V K+VXS§ -P -V 84V E‘
-~ -~ -~ - -~ - - - -

The second equation qivog

. .
= . ' A
) .

R
N :
S -
i -~

- tYxK + 8P)

from which ' - VX8 =

‘0'P ‘ ‘O lH

(VB - Vike gvem. o on
e
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Inserting this into the first part of (6.44) we obtain

2 L]
(o]
vO k - pP°v - v2k + svxp = - vopp

that is: K =

-~

o .
(P(P°V - v°p) - SVXP]
\ARY/ - - T

From this we get: //r“B

VXK = l-Pv°vxp.4 S(V*P)V + svzrl
-~ -~ vuvu ~ ~ ~ -~ ~ . : ‘~

Inserting this into the second part of (6.44) yields

’ . vy
8 8 2 M
S = [-PVXP -‘—;(vop)v + ——-V ! + __af,gp)
~ v‘ Vu -~ ~ v -~ -~ -~ v ad . v ; -~

Equgtion (6.24), which may be written

voP® = vep , . _ . (6.45)

-~ -~ . '. °

is a consequence of (6.41). This can be used te cancel the .

' . ” _ ; .
v° in the denominator of the second ters on the right hand

side of the next tqslglt equation. Thus ve obtain the l:*i, ;; .

following exproction;ﬁi°! K Ih‘ 8'

K = :. (p (% - v°p) ;fqiﬁli'V (8.4
~ v v ‘- L] R - . . . v ' “ ' 7. - .
H oo _ YL

$ = -%——-(l(v P - r‘V) - pvxr)

v vU, Q§;~-”

- el
i

We hnvon'tlyot uacd thc l’ - l-v paxt ot oq, (‘ 643
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is the extent to which.the identities (¢.41,42,43) are not
completely 1ndependent.

Next we obtain
sp pH ' 3 yPp¥ from (6.42)
v Lo .
- Lz My yP from (6.41)
P T up A
- 1 (3 s‘“e)v vp from .(6.19)
4P aB p
SN (8 S(’B)P.l’u from (6.43)
4P Taf M T
GB : . < .
Whence Saes = - 4pS ; this is (6.28).
The ¥xplicit calculations will not be given b#t'
one can deduce, using bnly 16.45,46,47).'tho xolqt1on
? g2,p2 TR Y |
s¥Vs e 5P Wy - p¥p ) - &F 8 '
ve My P PP oo
¥ ', : S 1 4

When coupled witg—}f 43) thio cquntion qivon (6. 29’: xt is al-o
seen to imply (6.27) by lcttinq p=y lnd nli‘lq ’U’/_ - v“vu'.

Combining (6.29), (6.27) nnd the identity. ’c.ll.).u;\vhich is /
valid for arbitrary untily-lot:ic tonlorl,,on! 1! gl. ;p_g ‘:w: ,
A(6.30). Equntion (6. 3}.) follovs gron thc g.nu‘ll t‘ulitf {‘

(6.19) and Oquation (6.20). rin.uy oqunttou' (€. 34) nd ‘__’,ﬁ‘-‘l;‘.’:--;

(6.35) axe ‘a consgguens ( 5 Q). 6.42) toq.en: vish thc
‘general, 1dont1t& 1 . NN S
» Ir

(c.zn. L e
. imply all tho others. ‘in Iﬁ-!‘) to (6 8’:!. -

T '.‘.A !F ngi_ﬁ?f“
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Now suppose that V,P and P afe given. The

equations v¥v = - p¥p and VuPu = 0 read:

u U

By themselves these equations are sufficient to determine v°

LY
. +
and Po up to sign. But we know a priori that V° -y V0.

1f v° is O then V=0 and everything vanishes. It,Voib then’
v® > 0 and the two above equations take care of the signs
as well as of the magnitudes of v° and P°, mov that v" is -

deterfined, the cquationvvuvu « 524p? gives 8 up to sign, P

being supposedly givén. Then, un)less both § and P _are sero,

- uniquoly.' If both

S and P vanish, V¥ and. P” are two orthoqonnl null vectors;

equations (6.46) and (6.47) Cototniﬁo 8

this implie- that they are 11noor1y dependent. In thlo co1'
‘the system becomes deqonoroto -inco it fotls to dotolnino
suv uniquely. Indeed one may chook by lookieq at (6 44)
‘that it only domando that X and 8 be two vectors of equal
norm orthogonal to oach other and otthoqonal to V. Ihoncc
there is one degree ot freedom lottu thci: poottton ia tho
plane orthoqonal to v. bue to the !oee th&t v" on‘ t Crn
1£nooxly dependent, one can oclilq ehock tbltftho vwolo i.t

of oquctionn (6.24) - to (6 35) says nothll' ollo obﬁﬂt . nwf;j;

than vhat is alzoady implied by . (0 l‘) aaé ‘01@').‘;?i”;{:“

A nkeml L
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Thus we have shown that, except in the degenerate
case where v¥ is a null vector, the system (6.41,32,43)
determines the other functions once Y, g and P are given.

¥ Moreover this system is complete in the sense that it
implies all the other equations in (6.24) to (6.35). To

show that the system is really algebraically complete we

I4

have to demohsttate that there are no non trivial relations
between V, P and P, that is these are independent functions.

Ope way to do this would be to use a particuler set of.

.

; Y matrices, for instance that of eq. (2.7), to (41:. down

"t explicitely these functions. But we have found an alterna-
tive method which. is less cumbersome and doesn't rely on a
séecia‘choico of the system {y¥}. It amounts to showing

that their differentials can be made linearly independent

ri>with an appropriate choice of V. ‘v
. 4
The seven functions P, V, P are of the form,.

k

y + Eu‘wlfhere ‘the MA'- are ys, Y and 17*75 respectively.

Let us denote them by fA. To o-phaliso‘thoir Adependence

upon eight real variables vc'ytit‘ ¥ as 00#0 where both .

¢ and ¢ are real. Then we have: o f '

’

20,00 = F-1Hut (o410

.

4

5
..

R R N L

B )

4.

. :{f e . . Lot . ™ ., :
Now the ‘differential of t’ at the point (9,4 is de

o



8o

R

A A A
£7(0+h,¢+k) = £ (9,0) = df (h,k) + 6(h,k),
4 (¢,9)

af® being linear and A(h,k) satisfyin lim Stk
: ying T i
' (h,k)=+0
N

One can easily check that.
A = = A = A —.A “_
af (h,k) = ($-i@)M h+ ($+iT)M k+hM (S+i¢)+kM (¢-1¢)
(%, 9) : ‘

Suppose that these differentials were linearly dependent.
That means that there would be real numbers AA' not all

vanishing, such that

A . ) ’, .
P-4 (h,k) = 0 independently of h and k.
(¢,¢) e
This would iﬁply the two equations . v\
> ‘. ’ ! ' -
($-13)Mh + RM(0+14) = 0 for all h - (6.48)
, ' ‘ 4 :
($+iP)Mk + kM(¢-16) = 0’ for all x (6.49) ,

where we have set AAHA 2 M. Upon roqﬂlcing the second term

in (6,48) by its trannpblo. to which it is equal, we obiain

T

(F-1)Mh + (74161 IMY° h = 0 L.
- ~ SR RS 2
This being supposedly trus for aybitrary h ".ﬂqauco‘/k | ';
i t _ tp ‘T °r. ' e .
C(F-1tIM ¢ (9Tt Ny? =m0 b
Doing the same thinq.r}th (6.49) and -uxetpxyiaq'gg;lfﬂ
‘ ,tolultlng\oqﬁation b§>-1.vloid|g;  ' ,'dﬁf’ ﬁ.
e L



T
F-1M - (8T+16TIM"Y° = 0 (6.51)

® .
T
T

Substracting (6.51) from (6.50) gives (¢T+1¢T)MTVO‘ ' 0;

this is equivalent to YOMW = 0 or My = 0. Whente the
problem is reduced to finding a ¥ such that the seven vectors
MAw are linearly indepeni:nt over the reals. Suppose that

we have a relation

v 9

. .
L 4

S k k_5S
Y + Ay + Uy Y 1Y =0 (6.52)
where all A's and p's are real. Let ¥ be an oiqonvqctor'of

. L ]

YO: Yow = py. p is not O since Y° is invertible. We also

know that such an eigenvector exists since Yo can: be ‘

F

\diagonalized.

y Multiplying (6.52) by Y° and then dividing by o
. C e E

we obtain:

5 k k S S
=X v - 3kv + A YY)y =0 T
S
Together with (6.52) this implies:
k .
uky tr- 0 e 8
; My + ALY 1Y -30.
Multiplying the last ‘quition by Q*Ys_v.’ggg!
.}vt'

a ." g *5‘
. - -AOW v+ Ak* Y'y "

- 4
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1
Tret o terr Gnoreal whiltile tihe seccondots a3 pure
O A O ard we are lett with
A‘ ]
4 v + v \'
;
+ -
same withooo, we ot gin o = - and 1t then
at = yle . e sare argument could (learly
K , A
. te et ton e = Whence the "M ['s are

'

perdert ~ver tie gepals 1f we choose | to be an

[T Tho s shoows that the ﬁgnwf}mns b, Vv , P
ot oan tne nepghbtorhood of this point L. whence
Y

1l to ext1ess some of thef 110 terms of the

us surmarlize wWhat we did. We have first

tie possible 1nvariant quadratic ldentities

scrs defined at the Leginning. Next we have

i the 1nformat:on ®ontained 1n this set of

already present 1n the fbllowing subset:
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ot yooter Doolte ot ot e Soas t el lows e the Alue o ot
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T Rt b itent ot o taons b, Vo, are Tgrvern, ot
*~
4! oW e ot erpute the values ot tne nyrne
~

e toe T (o). Thcugh the \\\
.

tine ten o ejuatlions, one ~f trem, the ti1me

AT et e e o ! part an (e .44), car le deduced fron

—

¢ appropriately remair rine 1ndependernt
.

duce te o severn the numter of independernt

b
-
!

—

1 +

[ AU Yoot e total Do sixteen,

fpAart tryor o trose which were derived in (Faula
Do the Stentities (e 04) to (v .3%) don't seem to be
Veny e o W Wrlle o trying to see 1f they were new or
ety vy piace where we could trace them was 1n a
ATt oAy (Lerney [19¢4]) . They are stated there without

»
Toard anoa o sliabitly Jdifferent notation; no analysis of

b
e lr o exdact algelrailc content 18 provided.

Lue to 1ts restriction to the cade of ordinary
Spolnoors, ?e interest «f the atove analysis is quite

Lorited, kesults ¢f areater rhysical value would be
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