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ABSTRACT

Aquatic macrophytes in the Nechako River, British Columbia, Canada,
currently cover up to 46% of the river bottom and have biomasses up to 1262 g'm?
dry weight. While no information is available on submerged macrophyte abundance
prior to regulation in 1952, future reductions in summer discharge from current
conditions of 164 m*s™ (June 15 - August 15; 1952 - 1990) in the Upper Nechako
River could increase submerged macrophyte abundance. To quantify the
relationship between environmental factors and macrophyte abundance in the
Nechako River depth, current speed, sediment grain size, and sediment
exchangeable nitrogen (N) and phosphorus (P) concentrations were measured at S-
m intervals along 26 cross-stream transects spanning a river distance of 203 km.
Macrophyte abundance was positively correlated with sediment exchangeable N (r
= 0.51; P < 0.0001) and P (r = 0.61; P < 0.0001) concentrations and negatively
correlated with current speed (r = -0.80; P < 0.0001), depth ( = -0.30; P = 0.01)
and sediment grain size (r = -0.68; P < 0.0001). Empirical models relating bottom
cover (# = 0.80) and cross-sectional biomass (#* = 0.82) to mean summer channel
speed were used to predict macrophyte abundance prior to initial discharge
regulation in 1952 and for future discharge-reduction scenarios. The models
predict that bottom cover and cross-sectional biomass could increase up to 3- and
12-fold, respectively, in certain reaches of the river.

To test the hypothesis that riverine macrophyte abundance and community
structure are functions of river basin morphometry, macrophyte distribution was
related to both small scale (near shore cross-sectional slope) and large scale
(catchment area and longitudinal slope) aspects of basin morphometry for the
Nechako River. Macrophyte bottom cover was found to vary with the longitudinal
slope of the river such that two high (0.5 mkm™) gradient reaches had low (2.4 +
1.3% and 5.6 + 3.4%; mean = 1 S.E.) macrophyte bottom cover, whereas a lower

(0.2 mkm™) gradient reach had significantly (P < 0.0001) greater cover (28.1



3.4%). Tracheophyte diversity (gamma diversity, H') increased along the length
of the river such that H' was 2.1, 1.7 and 0.5 in reaches of high (42500 km?),
moderate (25100 km?) and low (23730 km?) catchment area, respectively. In view
of the river continuum and intermediate disturbance hypotheses, it is possible that
the observed downstream increase in macrophyte diversity is attributable to the
greater temporal variability in discharge in the downstream reaches, where
discharge variability is a function of catchment area. Taxonomic dominance also
varied along the river with Potamogeton pectinatus, mosses and Potamogeton
berchtoldii dominating the downstream reach with high catchment area, and Elodea
canadensis, Potamogeton richardsonii, Myriophylizm exalbescens and Ranunculus
aquatilis dominating reaches of moderate and low catchment area. On a small
scale, peak biomass was inversely correlated (P < 0.001) with near shore cross-
sectional slope, an observation consistent with similar findings for the Bow River,
Alberta, and Lake Memphremagog, Quebec/Vermont.

Analyses of macrophyte species abundance in relation to physical
characteristics of the littoral zone showed that gradients of current speed, sediment
texture and depth determined the relative abundance of macrophyte taxa such that
macrophyte species inhabited different microenvironments within the river's littoral
zone. Some taxa were highly specific to certain environmental conditions. Thus,
Ceratophyllum demersum occurred almost exclusively at sites with current speeds
< 0.2 m's”, moderate depths (1.5 - 2.0 m) and silty substrates (14 - 56 ym). In
comparison, mosses were most prevalent at sites with current speeds > 0.6 m's”,
depths < 1.5 m and substrates of bare rock. Callitriche hermaphroditica and
Potamogeton gramineus, while not as specific as mosses and C. demersum with
respect to current speeds and substrate, were almost always found at depths < 1.5
m. A reciprocal transplant experiment in which E. canadensis were grown within
and outside monospecific stands of E. canadensis on sediments collected from
within or outside the stand showed that the presence of E. canadensis can facilitate

the growth of conspecifics, irrespective of sediment type. Thus, E. canadensis



attained an average biomass of 16.1 + 3.1 g when grown in the presence of
conspecifics, while very little (0.2 + 0.1 g) growth occurred when grown in the
absence of conspecifics.

In summary, this study showed that the distribution of macrophytes in rivers
is controlled by current speed, sediment texture, sediment nitrogen and phosphorus
concentrations, and depth. It was also shown that the structure of riverine
macrophyte communities is a function of both small scale (near shore cross-
sectional slope) and large scale (catchment area and longitudina! slope)
morphometry. The finding that macrophyte taxa are segregated by physical
gradients in rivers is consistent with current evolutionary theory which holds that
selection pressure drives species within a community to partition essential resources
o as to minimize competition. The results of this study are particularly relevant
when considering the effects of river impoundment activities on riverine
macrophyte communities in that decreases in channel speed and temporal discharge
variability resulting from impoundment may result in increased macrophyte

abundance and decreased species diversity, respectively.
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Part 1. Background to study



1. General Introduction

While dams have been built for the purpose of river regulation for over
5000 years, most existing dams were built in the 1900's (Smith 1971). On a
world-wide scale, more than 12000 dams > 15 m in height were constructed by
1971, with over 8000 of these being built between 1945 and 1971 (Beaumont
1978, Petts 1984). Today, Petts (1984) reports that most of the world's major
rivers are impounded to some degree.

With the extent of dam-building activities world-wide, much scientific
information has been gathered in regards to physical changes in rivers resulting
from impoundment. For example Dickson (1975) and Hall er al. (1977) have
reported substantial decreases in annual runoff for the Churchill River, Canada, and
the Zambezi River, Mozambique, since their impoundmen:., respectively. Gordon
et al. (1992) and King and Tyler (1982) also indicate that impouﬁdment can
decrease seasonal discharge variability while Elliot and Engstrom (1959), Dolan
et al. (1974) and Guy (1981) have shown that impoundment can change the
periodicity of annual extremes. In addition, dams have been shown to alter the
chemistry, sediment transport capability, temperature and nutrient cycles of rivers
(Gordon ef al. 1992). For example, the hypolimnetic release waters from some
d. ns may be anoxic and contain reduced compounds which may increase the
oxygen demand of release waters and be toxic to aquatic organisms (Ward 1982).
Gordon et al. (1992) reported that discharge reduction and elimination of peak
flows often results in the accumulation of fine sediments in the streambed gravels
of regulated rivers, reducing the river's suitability for spawning and causing
changes in the structure of benthic invertebrate communities. Because the channel
velocity of a river is positively correlated with discharge (Gordon e al. 1992),

reductions in discharge resulting from impoundment can also affect the velocity



regime of a river.

Given that riverine biota must be adapted to the physical and chemical
regimes cf lotic environments in order to exist, changes in these regimes brought
about by impoundment should be expected to have ecological effects. Thus, Bain
et al. (1988) found differences in fish species composition and abundance in a
comparison of regulated and unregulated rivers. Similarly, Fenner ef al. (1985)
found that the reduction in floodplain area resulting from river impoundment
decreased the frequency with which floodplain vegetation was inundated, resulting
in changes in floodplain plant communities. Gordon ef al. (1992) also reported that
changes in the sediment transport and temperature regimes following itnpoundment
can change benthic invertebrate and aquatic insect community structure,
respectively.

In northern British Columbia, Canada, a major hydroelectric development
is currently under review which, if permitted, would divert much of the remaining
flow of the Nechako River, a major tributary of the Fraser River, to a different
watershed. Analyses of historical discharge data for the Nechako River have
shown that the initial impoundment of the Nechako River in 1952 has severely
reduced both annual discharge in the river and seasonal discharge variability
(French and Chambers 1993). An aerial survey of the Nechako River performed
in September 1991 showed that aquatic plants (macrophytes) were concentrated in
the middle reaches of the river and often occupied more that 30% of the channel
(French and Chambers 1993) (Fig. 1). While no information is available on the
abundance of macrophytes prior to the river's impoundment, anecdotal information
suggests that the large growths of macrophytes currently present in the middle
reaches of the Nechako River developed following impoundment. In support of
this, numerous studies have documented changes in macrophyte communities

following impoundment. For example, Holmes and Whitton (1977) observed
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FIGURE 1. Surface area (%) of the Nechako River, British Columbia, covered by
submerged aquatic macrophytes as determined by an aerial survey conducted in
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substantial increases in Potamogeton crispus, Zannichellia palustris and
Myriophyllum spicatum in the Tees River, England, following impoundment.
Similarly, Rorslett et al. (1989) reported that macrophyte abundance increased
dramatically in the Otra, Suldalslagen and Borsleva rivers, Norway, following
impoundment.

The objective of the research presented herein was to quantify the
environmental factors regulating the biomass, distribution and species composition
of lotic macrophyte communities and to use this basic information as a framework
to predict changes in macrophyte community structure resulting from reduced-flow

conditions. To address this objective, three projects were undertaken.

Project 1 (Chapter 2): Predicting Changes in Macrophyte Abundance under
Altered Discharge Regimes

The purpose of this project was to quantify the relationship between
environmental conditions (i.e., instantaneous current speed, bottom sediment
nutrient availability, bottcm sediment grain size and depth) and submerged
macrophyte abundance in lotic systems and to develop an empirical model based
on mean channel speed to predict changes in macrophyte abundance following the

second stage of impoundment of the Nechako River.

Project 2 (Chapter 3): Relationship between Basin Morphometry and the
Diversity and Abundance of Riverine Macrophytes

The aim of this study was to test the hypothesis that macrophyte abundance
(biomass and bottom cover) and community structure (species composition and
diversity) are functions of both small scale (near shore cross-sectional slope) and
large scale (catchment area and longitudinal slope) characteristics of river basin

morphometry. This study discusses the implications of decreases in discharge



variability in terms of the river continuum concept (e.g., Vannote ef al. 1980) and
the intermediate disturbance hypothesis (e.g., Connell 1978; Ward and Stanford
1983).

Project 3 (Chapter 4): Niche Partitioning of Macrophytes in Lotic Systems
The purpose of this study was to investigate how environmental resources
are partitioned amongst riverine taxa with empirical data and to test the hypothesis
that the presence of macrophytes can facilitate the growth of other macrophytes
using an in situ experimental approach. The resulis of this study are relevant to

species-specific impacts of river diversions.

References Cited

BAIN, M. B, J. T. FINN, AND H. E. BOOK. 1988. Streamflow regulation and fish
community structure. Ecology 69: 382-392.

BEAUMONT, P. 1978. Man's impact on river systems: a world-wide view. Area 10:
38-41.

CONNELL, J. H. 1978. Diversity in tropical rainforests and coral reefs. Science

| 199: 1302-1310.

DICKSON, L. W. 1975. Hydroelectric development of the Nelson River system in
northern Manitoba. J. Fish. Res. Board Can. 32: 10-16.

DOLAN, R., A. HOWARD, AND A. GALLENSON. 1974. Man's impact on the Colorado
River in the Grand Canyon. Am. Sci. 62;: 392-401.

ELLIOT, R. A, AND L. R. ENGSTROM. 1959. Controlling floods on the Tennessee.
Civ. Eng. 29: 60-63.

FENNER, P., W. B. WARD, AND D. R. PATTON. 1985. Effects of regulated water flows



flows on regeneration of Fremont cottonwoc 4. J. Range Manage. 38: 135-
138.

FRENCH, T. D, AND P. A. CHAMBERS. 1993. Aquatic macrophytes in the
Nechako River, British Columbia: Part II. Environmental factors regulating
the growth of aquatic macrophytes. National Hydrology Research Institute,
Environment Canada, Saskatoon, Saskatchewan, NHRI Contribution No.
CS-93993.

GORDON, N. D, T. A. MCMAHON, AND B. L. FINLAYSON. 1992. Stream
hydrology, an introduction for ecologists. John Wiley & Sons, Toronto.
526 pp.

Guy, P. R. 1981. River bank erosioa in the mid-Zambezi Valley, downstream of
Lake Kariba. Biol. Conserv. 20: 199-212.

HALL, A. E, I. VALENTE, AND B. R. DAVIES. 1977. The Zambezi River in
Mozambique: the physico-chemical status of the Middle and Lower Zambezi
prior {0 the closure of the Cabora Bassa Dam. Freshwater Biol. 7;: 187-206.

HOLMES, N. N. H,, AND B. A. WHITTON. 1977. The macrophytic vegetation of
the River Tees in 1975: observed and predicted changes. Freshwater Biol.
7: 43-60.

KING, R. D. AND P. A. TYLER. 1982. Downstream effects of the Gordon River
Power Development, south-west Tasmania. Aust. J. Mar. Freshwater Res.
33: 431-442.

PETTS, G. E. 1984. Impounded rivers, perspectives for ecological management.
John Wiley and Sons, Toronto. 326 pp.

RORSLETT, B., M. MJELDE, AND S. W. JOHANSEN. 1989. Effects of hydropower
development on aquatic macrophytes in Norwegian rivers: present state of
knowledge and some case studies. Regul. Rivers Res. & Manage 3: 19-28.

SMITH, N. 1971. A history of dams. Peter Davies, London. 279 pp.



VANNOTE, R. L., G. W. MINSHALL, K. W. CUMMINS, J. R. SEDELL, AND C. E.
CUSHING. 1980. The river continuum concept. Can. J. Fish. Aquat. Sci.
37: 130-137.

WARD, J. V. 1982. Ecological aspects of stream regulation: responses in
downstream lotic reaches. Wat. Poll. Manage. Rev. 2: 1-26.

WARD, J. V., AND J. A. STANFORD. 1983. The intermediate-disturbance
hypothesis: an explanation for biotic diversity patterns in lotic ecosystems.
Pages 347-356 in T. D. FONTAINE AND S. M. BARTELL [Eds.]. Dynamics

of lotic ecosystems. Ann Arbor Science Publishers, Ann Arbor, Michigai.



Part II. Abiotic factors controlling aquatic macrophyte community
structure in flowing water



2. Aquatic macrophyte community structure in flowing water in relation to
current velocity, sediment properties and depth with emphasis on the
potential effects of river impoundment’

Introduction

In terrestrial systems, the distribution of plants along environmental
gradients such as latitude, altitude, topography, aspect, temperature, nutrients and
proximity to water, have been well studied and quantified (Barbour et al. 1987).
In contrast, very little research has investigated the relationship between the
distribution of submerged aquatic plants (macrophytes), particularly riverine
macrophytes, and environmental conditions (Haslam 1987). This may be due to
the fact that terrestrial plants are more directly linked to societal requirements
(food) and the economy (agriculture and forestry) than are macrophytes. Detailed
work may also be lacking in rivers because of the practical difficulties associated
with working in flowing water and, by comparison to lakes, because rivers tend to
be less diverse with respect to macrophyte species (Bilby 1977). Macrophytes,
however, grow abundantly in many of the world's rivers (Haslam 1978). They are
important components of aquatic ecosystems in that they are primary producers
(Pokorny et al. 1984), provide a living substrate for epiphytic algae (Cattaneo and
Kalff 1980) and provide shelter (Whitehead 1935; Harrod 1964), oviposition sites
(McGaha 1952) and food for aquatic invertebrates (Pip and Stewart 1976; Sheldon
1987, Chambers et al. 1990). However, excessive macrophyte abundance may
have detrimental effects, including impeding boat and float-plane traffic and
recreational activities (Rorslett et al 1989, Chambers er al. 1991), altering

streamflow patterns and increasing the potential for flooding (Gregg and Rose

1A version of this chapter will be submitted for publication in Canadian Journal of Fisheries and Aquatic
Sciences.
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1982; Madsen and Warncke 1983), affecting water chemistry (e.g., Buscemi 1958;
Chittenden ef al. 1976; Mayes et al. 1977, Rawlence and Whitton 1977; Rorslett
et al. 1985) and causing temporal (diurnal and seasonal) fluctuations in dissolved
oxygen concentration, due to the combined effects of respiration and decomposition
which, in turn, can cause fish mortality (e.g., Butcher 1933; Brooker ef al. 1977).
Yet despite the importance of macrophytes in riverine systems, little is known of
the environmental factors regulating their abundance and distribution.

The aim of this study was to evaluate the environmental factors regulating
macrophyte abundance in a lotic system prior to further impoundment. Few
studies have investigated the impact of impoundment on riverine macrophyte
communities however amongst those which have, large-scale river impoundments
have generally been associated with increased development of macrophyte
communities. For example, Petts (1984) reported massive increases in macrophyte
abundance following the impoundment of the Sutlej River, India, the Volta River,
Ghana, the Zambezi River, Rhodesia, and the Tuolumne River, California.
Similarly, Rorslett (1988) reported substantial increases in macrophyte abundance
following the impoundment of the Otra River, Norway. Increases in aquatic
macrophyte abundance following impoundment can, in turn, affected higher trophic
levels. Impairment and, in some cases, total blockage of salmonid migration has
been attributed to increased macrophyte growth in the Tuolumne River following
impoundment (Fraser 1972), while detrimental changes to hippopotamus, crocodile
and wildfowl populations have been reported in the Zambezi River (Attwell 1970).
Yet despite the potential for changes in riverine macrophyte communities following
river impoundment, there have been few, if any, studies which attempt to predict
changes in macrophyte communities prior to dam construction so that macrophyte
management strategies could be implemented before excessive macrophyte growth
occurs. This paper presents the results of an in situ study to: (1) quantify the

relationship between environmental conditions and submerged macrophyte
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abundance in a lotic system, and (2) predict changes in macrophyte abundance
following the second stage of impoundment of the Nechako River (north central
British Columbia, Canada). The results of this study are particularly pertinent
given the importance of macrophytes in lotic ecosystems and the extent of dam-

building activities worid-wide (Petts, 1984).

Methods and Materials

Study site
The Nechako River, located in central British Columbia, is one of the largest

tributaries of the Fraser River, having an average annual discharge of 9180000
dam’ (Envirouiment Canada 1991). Prior to the construction of the Kenney Dam
(circa 1952), the Nechako River arose from Knewstubb Lake and flowed
northward for 8 km via the Nechako Canyon to where it joined the Cheslatta River
(Fig. 1). However, since 1952 essentially all discharge into the Nechako Canyon
has been blocked by the Kenney Dam, with the water being diverted into a 906
km? reservoir located upstream of the Nechako Canyon. Water required for power
generation is removed from the west end of the reservoir, diverted through a tunnel
to the coast and falls 792 m to the Pacific Ccean. Thus, completion of the Kenney
Dam resulted in much of the Nechako's water being diverted into a different
watershed. Water not needed for power generation is released into the Cheslatta
River; thus the outflow of Cheslatta Lake is now the beginning of the Nachako
River.

The present Nechako River flows northeast from the Cheslatta River for 83
km to the village of Fort Fraser (population ~ 500) (Fig. 1) and then northwest for
4.5 km to where it converges with the Nautley River which drains Fraser and

Francois lakes. The Nechako then flows southeast for 196 km to where it joins
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with the Fraser River at the city of Prince George (population ~ 71000). Between
its confluence with the Nautley River and Prince George, the Nechako River flows
through the town of Vanderhoof (population ~ 4000) and is joined by its largest
tributary, the Stuart River. Throughout its length, the Nechako River is well
entrenched and, thus, only overflows its banks during extraordinary high-flow
events.

In 1992, 26 sites were selected over a 203 km distance from 7 km upstream
of the Nautley River to the confluence with the Fraser River. The river was divided
into four reaches based on physical characteristics: (1) Upper Nechako (upstream
of the Nautley River) characterized by slow channel speed and shallow depths; (2)
Mid-I (Nautley River to Vanderhoof) characterized by fast channel speed and
shallow depths; (3) Mid-II (Vanderhoof to Stuart River) characterized by slow
channel speed and shallow depths; and (4) Lower Nechako (downstream of the
Stuart River) characterized by fast channel speed and deep depths. Sites were
selected from each of the four regions from 1:50000 maps (British Columbia
Department of Energy, Mines and Resources 1977) to encompass a wide range in

water depth and current speed.

Hydrology

(a) Discharge
Long-term daily discharge clata were obtained from Environment Canada

(1991) for three water survey stations on the Nechako River: (1) Fort Fraser in the
Upper Nechako (54° 03' 18" N, 124° 33' 39" W); (2) Vanderhoof at the juncture
of Mid-I and Mid-II reaches (54° 01' 34" N, 124° 14' 01" W); and (3) Isle Pierre
in the Lower Nechako (53° 57' 37" N, 123° 14' 01" W). Long-term daily discharge
data were also obtained for the Nechako River's two largest tributaries: (1) Nautley
River (54° 05' 07" N, 124° 35' 58" W) and (2) Stuart River (54° 25' 05" N, 124°
16' 30" W). All stations had data for the period since the completion of the
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Kenney Dam (post-KDC; 1952-1990). Thus, post-KDC discharge data for the
Upper, Mid-I and Mid-II and Lower Nechako are from the Fort Fraser, Vanderhoof
and Isle Pierre stations, respectively. Data prior to the completion of the Kenney
Dam (pre-KDC) were available only for the Vanderhoof (1915 and 1948-1951) and
Stuart River (1929-1952) stations. Thus, pre-KDC discharge of the Upper Nechako
was estimated as the difference between the discharge at Vanderhoof pre-KDC and
the discharge of the Nautley River post-KDC (this assumes that inputs from the
catchment is negligible between Fort Fraser and the Nautley River and that the
average discharge of the Nautley River has not been affected by the Kenney Dam).
Pre-KDC discharge of the Lower Nechako was estimated as the sura of the
discharge at Vanderhoof pre-KDC and the discharge of the Stuart River pre-KDDC
(this assumes that input from the catchment is negligible between Vanderhoof and
the Stuart River). Pre-KDC discharge for both the Mid-I and Mid-II reaches was
assigned the pre-KDC values for Vanderhoof.

Comparisons of pre- and post- KDC data showed that the Kenney Dam has
decreased the seasonal variability in discharge in the Upper, Middle and Lower
Nechako (Fig. 2). The effect of the Kenney Dam is less in the Lower Nechako due
to the buffering effects of tributaries and other catchment inputs to the Nechako
mainstem. Prior to the construction of the Kenney Dam, summer (June 15 - August
15) discharge averaged ~ 408, ~ 468 and ~ 699 m*s™ for the Upper, Middle and
Lower Nechako, respectively. However, since the completion of the Kenney Dam
the average summer discharge for the Upper, Middle and Lower Nechako has
decreased to ~165, ~ 224 and ~ 525 m*s”, respectively. Further impoundment
proposed for the Nechako River may reduce average summer discharge in the

Upper Nechako River at Fort Fraser to ~ 120 or ~ 60 m*s™ (Table 1).

(b) Channel speed
To estimate the mean channel speed (the average velocity of the channel at
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a given cross-section) for each site, data relating river width, discharge and cross-
sectional area were obtained from Environment Canada (Water Resources Branch,
Vancouver, British Columbia) for the three water survey sites on the Nechako
River for each date the survey station was calibrated. Mean channel speed was

calculated for each calibration date by:

v =% (Gordon et al. 1992) (1)

where V is mean channel speed (m's), Q is discharge (m*s?) and A is cross-
sectional area (m?). Using non-linear regression (Norusis 1993), a curve (hereinafter
referred to as the "standard curve") was fit to the channel speed vs. discharge data
for each station (Fig. 3). The curve for the Fort Fraser water survey station was
then applied to sites in the Upper Nechako while the curves for the Vanderhoof
and Isle Pierre water survey stations were applied to sites in the Middle and Lower
Nechako, respectively. Assuming that discharge is approximately constant within
each of the three hydrologic sections (i.e., Upper, Middle and Lower Nechako), the
velocity vs. discharge relationship will vary between sites within a given
hydrologic section due to differences in cross-sectional area. To calibrate the
channel speed vs. discharge curve to each site, the y-intercept of the standard curve
was shifted vertically (up or down) so that the curve passed through a known
coordinate (i.e., a point of known channel speed and discharge) for each of the 26
sites. The known coordinate for each site was determined by measuring the cross-
sectional area for each site on a given date, estimating discharge for that date (as
described in "discharge" section) and calculating channel speed from equation 1.
The mean summer (June 15 - August 15) channel speed was then estimated by
determining the mean summer discharge for each of the study sites and

interpolating the associated current speed from the channel speed vs. discharge
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curve.

Field sampling methods

In August 1992, submerged macrophytes (excluding below-ground
structures) were harvested using SCUBA (Self Contained Underwater Breathing
Apparatus) from within three 0.1 m? quadrats placed at 5-m intervals across the
channel at each site. Collections proceeded towards centre-stream from each bank
to 10 m beyond the maximum depth of colonization. Two sediment cores (4 cm
diameter; ~ 10 cm length) were also collected from within each quadrat. The cores
were extruded on site and the top 5 cm frozen until analysis. Depth was measured
at each sampling interval with a weighted-rope marked at 0.1-m intervals. Current
speed (current speed measured at a particular point in the river is referred to as
"localized current speed" or "instantaneous current speed” in text) was measured
at each sampling interval with a Price AA current meter following the procedure
of Gray (1973). For depths > 1.5 m, current speed was measured at three depths:
(1) surface (0.8 x total depth), (2) mid-depth (0.5 x total depth) and (3) bottom
(0.2 x total depth). For depths < 1.5 m, current speed was measured only at mid-
depth. Average current speed was calculated for sites > 1.5 m as the mean of three
readings taken at the surface, mid-depth and bottom. Current speed was not
measured when plants impeded the meter's bucket wheel. In summer 1993, cross-
sectional area of the riverbed was determined for each site. At each site a rope
marked at 1-m intervals was suspended across the river and depth was measured
at 1- or 5-m intervals for small or large changes in depth, respectively, with a rigid
pole marked at 0.1-m increments or, in deep (> 3 m), fast (> 0.5 m's™) conditions,

with a depth sounder.

Laboratory analyses

Macrophyte samples were cleaned with tap water to remove invertebrates
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and debris, sorted to species with keys in Warrington (1980), dried at 80°C to
constant weight and weighed to 0.01 g with a Mettler College Deltarange balance
(model 2440). Macrophyte biomass was calculated as a mean of the three replicates
from each interval and expressed as plant mass (g-m dry weight). Exchangeable
nitrogen (N) and phosphorus (P) concentrations were determined from frozen
sediment samples after they were thawed to room temperature. Duplicate samples
from within each quadrat were pooled prior to analysis; all a..alyses were
performed in duplicate. Exchangeable P was extracted from 0.25 g of homogenized
wet sediment by shaking (16 h) in 25 ml of 0.1 N NaOH + 0.1 N NaCl (after
Williams et al. 1967) and measured spectrophotometrically (Murphy and Riley
1962). Exchangeable N was extracted from 4 g of homogenized wet sediment by
shaking (1h) in 40 ml of 2 M KClI (Bremner 1965) and measured
spectrophotometrically as ammonium (Solorzano 1969). Particle size distribution
(expressed as phi) was determined in triplicate with a Malvern 2600L iaser particle
size analyzer (LPSA) for 100 samples selected to encompass sites covering the full
range in current speeds. Sediment samples were put into the waterbath of the LPSA
after wet-sieving through a 1.5 mm sieve. Disaggregation of sediment samples was
achizved by both mechanical stirring and ultrasonic dispersion in the waterbath.
Three distributions were measured on each sample and the results averaged.
Particle size was measured on the phi (®) scale (the negative logarithm in base 2

of the particle size in mm) (Gordon ef al. 1992) and converted to micrometers by

the equation:

wm =antilog(-¢ - log,,2) - 1000 (2)

Macrophyte and sediment samples were processed within 1 year of collection.
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Measures of community structure

To investigate the relationship between mean summer channel speed and
macrophyte community structure, species richness (the total number of species
present) and species diversity were calculated for each survey transect (alpha
diversity, Whittaker 1972; Vitt ef al. 1995) and related to mean summer channel

speed. Alpha diversity was calculated as:
S
H =Y pflogp) (3)
=1

where H' is the Shannon-Wiener index of diversity (Krebs 1989), s is the number
of species observed in the transect and p, is the proportion of the total biomass
belonging to the ith species. Because mosses and macroscopic algae (i.e., Chara)
were not identified to species, they were not included in diversity or richness
computations. Taxonomic dominance was also related to instantaneous current

speed.

Statistical analyses

Data were analyzed with the statistical computer program SPSS version 6.0
(Norusis 1993) following the procedures outlined in Norusis (1993). Two types
of models were developed: (1) instantaneous models which related plant biomass
to environmental measurements made at the time of biomass sampling, and (2)
integrated models which related cross-sectional biomass and percent bottom cover
to summer channel speed.

Multiple regression was performed using the technique of backward
elimination to quantify the relationship between submerged macrophyte biomass
and instantaneous measures of depth, current speed, sediment exchangeable N and
P concentrations and sediment grain size. Because high intercorrelation between

independent variables can lead to spurious conclusions regarding the significance
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of independent variables in regression models (Zar 1984), tests for collinearity were
performed by analyzing the tolerance of independent variables, where tolerance is
defined as 1 - R’ and R, is the multiple correlation coefficient when the ith
independent variable is predicted from the other independent variables (Norusis
1993). Models predicting biomass from environmental factors were rejected if
independent variables were collinear. Biomass values were transformed by
log(biomass + 1) prior to regression analysis to stabilize variance and to allow
inclusion of null values (Zar 1984). To validate the instantaneous multiple
regression model, data on above-ground macrophyte biomass, water depth, current
speed, sediment exchangeable N and P concentrations and sediment grain size were
collected in August 1993 for 16 randomly-selected near shore sites in the Upper,
Middle and Lower Nechako following the methods of the 1992 survey. All
sampling and analytical methods were the same for the 1992 survey except for the
analysis of sediment particle size which was performed by hydrometer analysis for
particles < 70 pm and wet-sieving analysis for particles > 70 um. Observed
biomasses for the 1993 survey were then compared to biomasses predicted from
the multifactor model developed with the 1992 survey data.

Integrated models were developed relating cross-sectional biomass and
percent bottom cover to mean summer channel speed. Cross-sectional biomass
(g'm™) is defined as the total mass of macrophytes along a 1-m wide band
extending across the channel, divided by the mean summer width of the channel.
The total mass of macrophytes across the channel was determined by planimetry
from graphs of biomass versus distance across the channel. Mean summer width
at each of the 26 sites was estimated for the various discharge scenarios following
the approach described earlier for estimating channel speed, namely curves relating
river width to chani:el speed were developed for the three discharge gauging
stations on the river (Fig. 3) and these curves were then calibrated for the 26 sites.

Percent bottom cover is defined as the distance across the riverbed occupied by
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macrophytes divided by the river width (x 100). As plants never colonized the
centre of the channel, the maximum distance of macrophyte colonization from each
riverbank was summed for a given site and then divided by the mean summer
width of the site. Models relating cross-sectional biomass or bottom cover to

channel speed were power functions of the form:

Y =4 - Speed™ (4)

where Y is either cross-sectional biomass (g'm'?) or bottom cover (%), A is the
intercept of the fitted curve, speed is mean summer (June 15 - August 15) channel
speed and N is the slope of the fitted curve (Spain 1982). The equation variables
were estimated iteratively (after Norusis 1993) using non-linear regression for each
dependent variable until the lowest possible residual sum of squares was attained.

To predict macrophyte biomass and percent bottom cover in the Nechako
wiver prior to Kenney Dam completion (i.e., prior to 1952) and under future
discharge scenarios following the second stage of impoundment, mean summer
channel speeds for the various discharge scenarios (Table 1) were input into the
integrated model equations. Summer channel speeds fell outside the bounds of the
integrated model equations (i.e., < 0.5 m-s") for six sites under the regime II
scenario and one site under the regime I scenario (Table 1). To avoid over-
predicting bottom cover and cross-sectional biomass for these sites, predicted
bottom cover was capped at 100% and cross-sectional biomass was capped at 500

g'm? (the average biomass across the near-shore zone for the site with the greatest

macrophyte abundance).
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Results

Macrophyte community structure in the Nechako River

Fourteen taxa were observed in the Nechako River: Elodea canadensis
Rich., Limosella aquatica L., Ranunculus aquatilis L., Polygonum amphibium L.,
Myriophyllum exalbescens Fern., Callitriche hermaphroditica L., Ceratophyllum
demersum L., Sagittaria cuneata Sheld., Elatine triandra Schk., Potamogeton
berchtoldii Fieb., Potamogeton gramineus L., Potamogeton pectinatus L.,
Potamogeton richardsonii (Bennett) Rydb., Chara and one or more moss species.
E. canadensis was the dominant species, representing 64% of the total biomass in
the river, followed by P. richardsonii (12%), M. exalbescens (5%), P. berchtoldii
(5%) and C. demersum (3%). The remaining taxa comprised less than 11% of the
total macrophyte biomass.

Alpha diversity was not correlated (P > 0.05) with mean summer channel
speed (Fig. 4). However, species richness was negatively correlated with mean
summer channel speed (r = -0.66, P < 0.0001) such that richness decreased from
11 at 0.5 ms” to 0 at 1.8 m's’ (Fig. 4). Species dominance varied with
instantaneous current speed (Fig. 5). At current speeds < 0.40 m-s’ the
macrophyte community was dominated by E. canadensis, P. richardsonii, M.
exalbescens and P. berchtoldii, whereas at current speeds between 0.40 and 0.60
m-s” the community was dominated by R. aquatilis, followed by E. canadensis and
M. exalbescens. At current speeds > 0.60 m-s™ the macrophyte community was

primarily composed of mosses (Fig. 5).
Environmental conditions and macrophyte community biomass

Total macrophyte biomass in the Nechako River ranged from 0 to 1262

g'm’ (dry weight), and averaged 119420 g'm (meanz1 S.E.) with a median value
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of 8 gm™ (n = 131). Highest bicmasses (560 g-m 95 percentile) occurred at
moderate depths (0.6 - 2.3 m), low current speeds (0.00-0.20 m-s™) and on silty
sediments (14.9 - 31.2 pm) with high exchangeable P (379 - 993 pg-g™) and N (41
- 63 pg'g™) content (Fig. 6). Macrophyte biomass was minimal at depths > 3.0
m, on coarse sediments (> 200 pm) and in fast currents (> 0.50 m-s™) (Fig. 6).
Total biomass was positively correlated with sediment exchangeable N (r
=0.51; P <0.0001) and P (= 0.61; P < 0.0001) content and negatively correlated
with instantaneous current speed (r = -0.80; P < 0.0001), depth (r =-0.30;, P =
0.01) and sediment grain size (r = -0.68; P < 0.0001). While no single
environmental factor was a strong predictor of biomass in the Nechako River,
depth, grain size and current speed together accounted for 71% of the variation in
biomass (Table 2; Fig. 7). The best equation predicting biomass from instantaneous
environmental factors was:
log (Biomass + 1) = 2.98 - 3.70Velocity - 0.002Grain size - 0.13Depth (5)
(¥ = 0.71; P < 0.0001)
where Biomass is g'm? Velocity is m's?, Grain size is um and Depth is m.
Validation of this model with data collected from 16 sites in 1993 showed a good
match between predicted-observed values for the independent data set (Fig. 7).
Sediment exchangeable P and N concentrations decreased with increasing
grain size. Thus, exchangeable P concentrations were 608 pgg' at 14 pym and 117
pg'g” at 470 um while exchangeable N concentrations were 38 pggtand 5 pgg!

for the same range in grain size (Fig. 8).

Effects of river impoundment on macrophyte abundance

Bottom cover in the Nechako River ranged from 0 to 46%, averaging
1243% with a median of 8% (n = 26; Fig. 9). Mean bottom cover was similar P
> 0.05; Tukey-HSD) for the Mid-I (2£1%; n = 9) and Lower (6£3%; n = 8)
Nechako. However, the Mid-II Nechako had higher (28+3%; n = 7) macrophyte
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FIGURE 7. Relationship between predicted and observed macrophyte biomass
(g'm) for the multifactor model predicting total biomass from depth (m), sediment
grain size (um) and current speed (m-s™) for the Nechako River, British Columbia.

Data from the 1993 model validation survey are shown.
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the Nechako River, British Columbia (August 1992).
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cover (P < 0.0001; ANOVA) (Fig. 9). Bottom cover for the two sites in the Upper
Nechako was 26+5%. Cross-sectional biomass ranged from 0 to 168 gm?
averaging 20+7 g'-m. Cross-sectional biomass varied between reaches (P=0.02
ANOVA), averaging 4£2 g'm™ for the Lower Nechako and 47+21 and 443 g'm™
for the Mid-II and I reaches, respectively (Fig. 9). Cross-sectional biomass for the
two sites in the Upper Nechako was 60+44 g:m?2.

Bottom cover decreased with increasing mean summer channel speed such
that bottom cover was 46% at 0.5 m's” and 3.2% at 1.8 m's* (Fig. 10). The
equation predicting bottom cover (%) from mean summer channel speed (m-s™)
was:

Bottom cover = 5.86 - Speed (6)
¥ =080,n=26 F=875 (0.001 < P < 0.0025)

Cross-sectional biomass also decreased with increasing mean summer
channel speed such that cross-sectional biomass was 168.2 g'm? at 0.5 m-s” and
~ 0 g'm?at 1.8 ms! (Fig. 11). The equation predicting cross-sectional biomass
(g'm?) from mean summer channel speed (m-'s™) was:

Cross-sectional biomass = 0.15 - Speed®* )
P =0.82,n=26,F=73.0 (P < 0.0005)

Predictions of bottom cover from Equation 6 indicate that since the
completion of the Kenney Dam in 1952, macrophyte cover in the Upper and Mid-
II reaches of the Nechako River has increased from 1440 to 36+4% and from 10+2
to 29+5%, respectively (Fig. 12). By comparison, bottom cover appears to have
changed little in the Lower and Mid-I reaches since the completion of the Kenney
Dam (from 1.240.1 to 1.840.2% and from 3.8+0.4 to 6.3+0.7%, respectively).
Reductions in summer discharge from the present (~ 165 m*s™) to 120 or 60 m*s"
(at Fort Fraser; Table 1) will likely increase bottom cover, particularly in the Mid-
IT and Upper Nechako where cover could increase by nearly 3-fold compared to

present conditions (Fig. 12).
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FIGURE 12. Predicted bottom cover (%) for the Nechako River, British Columbia,
at various summer discharge regimes: (1) pre-impoundment (407 m*s™; long-term
mean summer discharge prior to impoundment in 1952); (2) post-impoundment
(165 m*s™; long-term mean summer discharge since 1952); (3) Regime I (120
m®s™') and (4) Regime II (60 m*s™).
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Predictions of cross-sectional biomass from Equation 7 indicate that changes
in cross-sectional biomass have been negligible in the Lower and only slight in
Mid-I (0.05+0.02 g'm predicted prior to 1952 versus 0.37+0.14 g'm? predicted
for post-KDC) reaches of the Nechako since impoundment in 1952 (Fig. 13).
However, predictions based on Equation 7 suggest that the impoundment of the
Nechako  -or in 1952 resulted in substantial increases in biomass in the Mid-II
and Upper reaches, with average cross-sectional biomasses increasing from 2.240.9
to 68.0+41.4 g'm™ (a 31-fold increase) and from 3.60.0 to 101.8436.3 g'm™ (a 28-
fold increase) in these two reaches, respectively, following impoundment (Fig. 13).
Further reductions in discharge will likely result in a large expansion in
macrophyte abundance in these reaches, such that at the lowest (60 m*s’, Taole
1) discharge scenario cross-sectional biomass could increase by more than 12 times
the current levels (Fig. 13). In contrast, there will likely be no detectable change
in cross-sectional biomass in the Lower Nechako even under the most severe

discharge reduction scenario (Fig. 13).

Discussion

Total community biomass in the Nechako River was positively correlated
with sediment exchangeable N (# = 0.51) and P (r = 0.61) concentrations and
negatively correlate * with current speed (r = -0.80), depth (r = -0.30) and sediment
grain size (r = -0.68). A multifactor model combining depth, grain size and
current speed (Equation 5) best accounted for variation in community biomass in
the Nechako River (7 = 0.71), with current speed being the most influential
environmental factor (partial » = -0.31), followed by grain size (partial r = -0.20)
and depth (partial r = -0.13; Table 2). The observation that current speed is the

primary environmental factor affecting the biomass of riverine macrophytes is
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consistent with Chambers et al. (1991) who found that aquatic macrophyte biomass
was significantly (P < 0.0005) and inversely correlated (r > -0.68) with current
speed over the range 0.01-1 m's’ in the Bow River, Alberta. Furthermore,
Chambers ef al. (1991), using an experimental approach in situ, showed that the
growth rate of P. pectinatus decreased with increasing current speed over the range
0.2-0.7 ms™, irrespective of changes in sediment properties. While few studies
have investigated the mecharism by which sediment grain size affects the growth
of macrophytes, the increase in biomass with decreasing grain size may relate to
the observation that finer sediments tend to have higher nutrient (e.g., nitrogen and
phosphorus) content than coarser sediments (Fig. 8).

In addition to being an important determinant of total biomass, current speed
is also an important environmental factor controlling the species composition of
macrophyte communities. Thus, E. canadensis was the dominant species in regions
of the Nechako River with current speeds < 0.40 m-s’, whereas R. aquatilis
dominated regions of moderate current speed (0.40 - 0.60 m-s™), while mosses
predominated in regions with current speeds > 0.60 m's™ (Fig. 5). The changes in
species dominance along the current speed gradient may be attributable to the
growth form of the dominant species. The "bushy® morphology of E. canadensis
may be better adapted to slow-flowing environments, whereas the spindly and
cushion-like growth forms of R. aquatilis and mosses, respectively, may be better
suited to fast current speeds. Although species richness was negatively correlated
with mean summer channel speed (r = -0.66, P < 0.0001), species diversity was
not related to channel speed indicating that at low channel speeds where richness
may be high, many species may be present in very low biomass and may not
contribute significantly to the overall complexity of the stand (Fig. 4).

While the multifactor model based on instantaneous measures of current

speed, depth and sediment grain size was a good predictor of macrophyte biomass,
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it would not allow predictions of biomass under future discharge scenarios due to
the difficulty in obtaining realistic input values for instantaneous independent
variables. To allow predictions of macrophyte abundance under future discharge
scenarios, empirical models were developed relating cross-sectional biomass and
bottom cover to mean summer channel speed (equations 6 and 7), where mean
summer channel speed was approximated for discharge regimes from discharge-
channel speed relationskips (Fig. 3). The models predict that, relative to current
conditions, macrophyte biomass and bottom cover in the Mid-II reach of the
Nechako was 31- and 3-fold less, respectively, prior to regulation (i.e., prior to
1952) and will increase up to 3- and 12-fold, respectively, if mean summer
discharge in the Upper Nechako is reduced to 60 m*s” (Figs. 12 and 13). In
contrast, the Lower and Mid-I reaches appear to have had little change in
macrophyte abundance since regulation and will likely experience very little change
in macrophyte abundance (Figs. 12 and 13) even at the lowest discharge scenario
(60 m*s™).

The predictions of increased macrophyte abundance following completion
of the Kenney Dam in 1952 and further increases in the event of a future second
impoundment are consistent with observations from other regulated river systems
(Table 3). For example, Attwell (1970) and Jackson and Davies (1976) reported
that the lack of flushing discharges in the Zambezi River, Rhodesia, resulted in
substantial increases in Salvinia auriculata, Pistia stratictes, Panicum repens and
Phragmites i::auritianus to the point where they are "clogging® the river.
Similarly, Rorslett et al. (1989) reported that regulation of the Suldalslagen River,
Borsleva River and Otra River (all of Norway) has resulted in large increases in
aquatic macrophyte abundance to the point where sections of the Borsleva River
are choked by dense growths of Potamogeton alpinus and the submerged moss
Fontinalis antipyretica (Table 3). While it is clear that river regulation practices

can result in large increases in aquatic macrophyte abundance, the
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mechanisms by which macrophytes proliferate following regulation are not
obvious. Rorslett ef al. (1989), in case studies of the Otra, Suldalslagen and
Borsleva Rivers, suggests two possible mechanisms: (1) enhanced growths
following winter flow increases with coinciding summer flow decreases, and (2)
enhanced growths following an overall flow reduction. Increases in winter flows
in the Otra River from ~ 40 to ~ 70 m*s™ keeps the river ice-free downstream of the
power plant, thereby increasing the growing season of aquatic macrophytes. In
addition, decreased summer flows in the Otra River promoted further expansion of
macrophyte communities (Rorslett ef al. 1989). While regulation of the Otra River
has resulted in increased winter flows and decreased summer flows, regulation of
the Suldalslagen (which currently has average annual flows < 55% pre-regulation
levels) and Borsleva rivers has resulted in overall reduction in average streamflow,
such that sections of the Borsleva River have become chains of stagnant pools
interspersed with wetlands (Rorslett ef al. 1989). Data presented in this study
suggest that flow reductions may promote expansions of macrophyte communities
by slowing channel velocities (which are positively correlated with discharge).
Increases in macrophyte abundance following impoundment has often been
associated with changes in other trophic levels. For example, increases in
Eichkhornia crassipes following the impoundment of the Tuolumne River,
California, impaired and in some cases totally blocked salmonid migration (Fraser,
1992). Similarly, Rorslett ef al. (1989) reported that the increase in macrophyte
abundance following the impoundment of the Suldalslagen River, southwestern
Norway, caused a substantial decrease in salmonid production because the nature
of the riverbed became unfit for spawning. In the River Wye, Wales, the
decomposition of extensive macrophyte beds (36% coverage) combined with high
water temperatures (28 °C) resulted in severe deoxygenation (as low as 0.5 mg'L™)
of the water column and coincided with a major die-off of salmonids in 1976.

Likewise, Attwell (1970) reported that the increase in macrophyte abundance
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associated with the impoundment of the Zambezi River negatively affected
hippopotamus, crocodile and various waterfowl populations. Impoundment of the
Otra River, Norway, has encouraged the growth of macrophytes to the point where
boating and angling have been adversely affected while in certain areas the landing
of small aircraft is no longer possible due to the presence of dense macrophyte
communities (Rorslett ef al. 19§9). Given that the Nechako River is an important
migration corridor for salmonids (Bradford, 1994), is valued for recreational sports
and serves as a water source for towns and irrigators, excessive growths of
macrophytes which may occur with further discharge reduction may have
detrimental effects on the river's salmonid production capability, recreational
potential and water quality.

In conclusion, this study showed that aquatic macrophyte biomass in the
Nechako River is positively correlated with sediment exchangeable N and P
concentrations, and negatively correlated with depth, current speed and sediment
grain size. In addition to being an important determinant of total biomass, current
speed was also shown to be an important environmental factor controlling the
species composition of macrophyte communities. Predictions of macrophyte
biomass and cover based on mean summer channel speed indicate macrophyte
abundance has increased in the Upper and Mid-II Nechako River since initial
impoundment in 1952 and may inc-ease yet again under plans to further reduce
flows in the river. Given the ecological importance of macrophytes in riverine
environments and the extent of dam-building activities world-wide, it is critical that
environmental managers be able to quantify the effect of environmental factors on
macrophyte abundance and thus predict changes in submerged macrophyte

abundance in response to river regulation and other environmental manipulations.

44



References Cited

ATTWELL, R. 1. 'G. 1970. Some effects of Lake Kariba on the ecology of a
floodplain of the Mid- Zambezi Valley of Rhodesia. Biol. Conserv. 2: 189-
196.

BARBOUR, M. G., J. H. BURK, AND W. D. PITTS. 1987. Terrestrial plant ecology,
(2nd edition). The Benjamin/Cummings Publishing Company, Inc., Don
Mills, Ontario 634 pp.

BARKO, J. W., AND R. M. SMART. 1981. Sediment-based nutrition of submersed
macrophytes. Aquat. Bot. 10: 339-352.

BILBY, R. 1977. Effects of spate on the macrophyte vegetation of a stream pool.
Hydrobiologia 56: 109-112.

BoyD, C. E. 1970. Chemical analyses of some vascular aquatic plants. Arch.
Hydrobiol. 67: 78-85.

BRADFORD, M. J. 1994, Trends in the abundance of Chinook Salmon
(Oncorhynchus tshawytscha) of the Nechako River, British-Columbia. Can.
J. Fish. Aquat. Sci. 51: 965-973.

LREMNER, J. M. 1965. Inorganic forms of nitrogen, p. 1179-1237. In C. A. Black
[Ed.], Methods of Soil Analysis. American Society of Agronomy; Inc.,
Madison, WI. 1572 p.

BRITISH COLUMBIA DEPARTMENT OF ENERGY, MINES AND RESOURCES. 1977.
Surveys and Mapping Branch. 1:50000 Maps, British Columbia.

BROOKER, M. P., D. L. MORRIS, AND R. J. HEMSWORTH. 1977. Mass mortalities
of adult salmon (Salmo salar) in the River Wye, 1976. J. Appl. Ecol. 14:
409-417.

BUSCEML P. P. 1958. Littoral oxygen depletion produced by a cover of Elodea
canadensis. Oikos 9: 239-245.

BUTCHER, R. W. 1933. Studies on the ecology of rivers. I. On the distribution

45



of macrophytic vegetation in the rivers of Britain. J. Ecol. 21: 58-91.

CATTANEO, J.,, AND J. KALFF. 1980. The relative contribution of aquatic
macrophytes and their epiphytes to the production of macrophyte beds.
Limnol. Oceanogr. 25: 280-289.

CHAMBERS, P. A,, J. M. HANSON, J. M. BURKE, AND E. E. PREPAS. 1990. The
impact of the crayfish Orconectes virilis on aquatic macrophytes.
Freshwater Biol. 24: 81-91.

CHAMBERS, P. A, E. E. PREPAS, H. R. HAMILTON, AND M. L. BOTHWELL. 1991.
Current vslocity and its effect on aquatic macrophytes in flowing water.
Ecol. Appl. 1: 249-257.

CHITTENDEN, E. T, C. W. CHILDS, AND R. E. SMIDT. 1976. Sediments of Lake
Rotoroa, South Island, New Zealand. N. Z. J. Mar. Freshw. Res. 10: 61-76.

DESCAMPES, H. J., H. CAPBLANCQ, H. CASONOVA, AND T. J. TORENQ. 1976.
Hydrobiology of some regulated rivers in the southwest of France. In J.
W. Ward, and J. A. Stanford [Eds.], The ecology of regulated streams.
Proc. 1st Int. Symp. Reg. Streams. Plenum Press, New York.

ENVIRONMENT CANADA. 1991. Historical streamflow summary, British Columbia,
to 1990. Environment Canada, Inland Waters Directorate, Water Resources
Branch, Water Survey of Canada, Ottawa, Canada.

FRASER, J. C. 1972. Regulated discharge and the stream environment. /n R. T.
Oglesby, C. A. Carlson, and J. A. McCann [Eds.], 1972. River ecology
and man. Proceedings of an International Symposium on River Ecology
and the Impact of Man, University of Massachusetts. Academic Press,
New York.

GLIME, J. M., AND D. H. VITT. 1984. The physiological adaptations of aquatic
Musci. Lindbergia 10: 41-52.

GLIME, J. M, AND D. H. VITT. 1987. A comparison of bryophyte species

diversity and niche structure of montane streams and stream banks. Can.

46



J. Bot. 65: 1824-1837.

GORDON, N. D, T. A. MCMAHON, AND B. L. FINLAYSON. 1992. Stream
hydrology, an introduction for ecologists. John Wiley & Sons, Toronto. 526
PP-

GrAY, D. M. 1973. Handbook on the principles of hydrology: A general text
with special emphasis on Canadian conditions. Secretariat, Canadian
National Committee for the International Hydrological Decade.

GREGG, W. W_, AND F. L. ROSE. 1982. The effects of aquatic macrophytes on the
stream microenvironment. Aquat. Bot. 14: 309-324.

HAAG, R. W, AND P. R. GORHAM. '~77 FEffects of thermal effluent on standing

crop and net production . canadensis and other submerged
macrophytes in Lake Waba:. .ra. J. Appl. Ecol. 14: 835-851.
HARROD, J. J. 1964. The <Cuwsirii:: - of invertebrates on submerged aquatic

plants in a chalk stream. J. Anirr. Ecol. 33: 335-341.

HAsLAM, S. M. 1978. River plants: the macrophytic vegetation of watercourses.
Cambridge University Press, Cambridge, U. K. 396 pp.

HAsLAM, S. M. 1987. River plants of western Europe. Cambridge University
Press. New York. 512 pp.

HILSENHOFF, W. L. 1971. Changes in downstream insect and amphipod fauna
caused by an impoundment with a hypolimnion drain. Entom. Soc. Am.
Ann. 64: 743-746.

HOLMES, N. T. H, AND B. A. WHITTON. 1977. The macrophytic vegetation of
the River Tees in 1975: observed and predicted changes. Freshwater Biol.
7: 43-60.

JACKSON, P. B. N, AND B. R. DAVIES. 1976. Cabora Basin fish in its first year:
some ecological aspects and comparisons. Rhodesia Science News, 10:
128-133. In G. E. Petts, 1984, Impounded rivers, perspectives for

ecological management. John Wiley and Sons, Toronto. 326 pp.

47



KREBS, C. J. 1989. Ecological methodology. Harper Collings Publishers, New
York, NY. 654 pp.

KRENKEL, P. A, G. F. LEE, AND R. A. JONES. 1979. Effects of TVA
impoundments on downstream water quality and biota. In: J. V. Ward, and
J. A. Stanford [Eds.], The ecology of regulated streams. Proc. 1st Int. Symp.
Reg. Streams. Plenum Press, New York.
MADSEN, T. V., AND E. WARNCKE. 1683. Velocities of currents around and
within submerged aquatic vegetation. Arch. Hydrobiol. 97: 389-394.
MAYES, R. A, A. W. MCINTOSH, AND V. L. ANDERSON. 1977. Uptake of
cadmium and lead by a rooted aquatic macrophyte (Elodea canadensis).
Ecology 58: 1176-1180.

MCGAHA, Y. J. 1952. The limnological relations of insects to certain aquatic
flowering plants. Trans. Am. Microsc. Soc. 71: 335-381.

McRoY, C. P, AND R. J. BARSDATE. 1970. Phosphate absorption in eelgrass.
Limnol. Oceanogr. 15: 6-13.

MURPHY, J. A,, AND J. L. RILEY. 1962. A modified single solution method for
the determination of inorganic phosphate in natural waters. Anal. Chim.
Acta. 27: 31-36.

NILSSON, C. 1978. Changes in the aquatic flora along a stretch of the River
Umealven, N. Sweden. Hydrobiologia 61: 229-236.

NORusIS, M. J. 1993. SPSS for Windows, Base systems user's guide, Release 6.0.
SPSS Inc. 828 pp.

PETTS, G. E. 1984. Impounded rivers, perspectives for ecological management.
John Wiley and Sons, Toronto. 326 pp.

PP, E, AND J. M. STEWART. 1976. The dynamics of two aquatic plant-snail
associations. Can. J. Zool. 54: 1192-1205.

POKORNY, J,, J. KVET, J. P. ONDOK, Z. TOUL, AND I. OSTRY. 1984. Production-

ecological analysis of a plant community dominated by Elodea canadensis

48



Michx. Aquat. Bot. 19: 263-292.

RAWLENCE, D. J,, AND J. S. WHITTON. 1977. Elements in aguatic macrophytes,
water, plankton and sediments surveyed in three North Island lakes. N. Z.
J. Marine Freshw. Res. 11: 73-93.

RORSLETT, B. 1988. Aquatic weed problems in a hydroelectric river: the R. Otra,
Norway. Regul. Rivers Res. & Manage. 2: 25-37.

RORSLETT, B., D. BERG, AND S. W. JOHANSEN. 1985. Mass invasion of Elodea
canadensis in a mesotrophic, South Norwegian lake - impact of water
quality. Verh. Int. Ver. Theor. Angew. Limnol. 22: 2920-2926.

RORSLETT, B., M. MJELDE, AND S. W. JOHANSEN. 1989. Effects of hydro:.ower
development on aquatic macrophytes in Norwegian rivers: present state of
knowledge and some case studies. Regul. Rivers Res. & Manage. 3: 19-28.

SHELDON, S. P. 1987. The effects of herbivorous snails on submerged
macrophyte communities in Minnesota lakes. Ecology 68: 1920-1931.

SOLORZANO, L. 1969. Determination of ammonia in natural waters by
phenolhypochlorite method. Limnol. Oceanogr. 14: 799-801.

SPAIN, J. D. 1982. Basic microcomputer models in biology. Addison-Wesley
Publishing Co., Reading Mass. 354 pp.

VITT, D. H, Y. YENHUNG, AND R. J. BELLAND. 1995. Patterns of bryophyte
diversity in peatlands of continental western Canada. The Bryologist 98:
218-227,

WARRINGTON, P. D. 1980. Studies on aquatic macrophytes part XXXIII: Aquatic
plants of British Columbia. Province of British Columbia, Ministry of
Environment, Inventory and Engineering Branch, December, 1980.

WHITEHEAD, H. 1935. An ecological study of the invertebrate fauna of a chalk
stream near Great Driffield, Yorkshire. J. Anim. Ecol. 4: 58-78.

WHITTAKER, R. H. 1972. Evolution and measurement of species diversity.
Taxon 21: 213-251.

49



WILLIAMS, J. D. H, J. K. SYERS, AND T. W. WALKER. 1967. Fractionation of
soil inorganic phosphate by a modification of Chang and Jackson's
procedure. Soil Sci. Am. Proc. 31: 736-739.

ZAR, J. H. 1984. Biostatistical analysis (2nd edition). Prentice-Hall, Inc.,
Englewood Cliffs, N. J. 718 pp.

50



3. The role of morphometry in determining the structure (diversity and
biomass) of riverine macrophyte communities’

Introduction

Many studies have shown that biological pre “uction in lakes is functionally
linked to lake-basin (i.e., lake surface area - A, mean depth - z, maximum depth -
Zneo and littoral slope) and catchment (i.e., catchment area - A, and slope)
morphometry. For example, Fee (1979) and Carpenter (1983) showed tha:
phytoplankton production in lakes is a function of the ratio of z to z_,,.
Rasinussen and Kalff (1987), in a study of more than 100 lakes located in North
America, Europe, Iceland, Japan and New Zealand, found that macrozoobenthos
biomass is correlated with bottom-slope, the z:z_,, ratio and A,. Bottom-slope has
also been shown to be an important determinant of submerged macrophyte
abundance such that Duarte and Kalff (1986) showed that 72% of the variability
in peak macrophyte biomass was accounted for by the slope of the littoral zone in
Lake Memphremagog (Quebec/Vermont). Perhaps the most well known
morphometry-production studies are those that advanced the work ¢;'D. S. Rawson
(1952) who relaied fish productivity to z. These studies eventually led to the
development of the popular morphoedaphic index which predicts fish abundance
(yield) in north temperate lakes from total dissoived solids concentration and z
(e.8., Ryder 1965; Ryder ef al. 1974; Matuszek 1978; Ryder 1982; Youngs and
Heimbuch 1982; Kerr and Ryder 1988).

It 1s arguable that large-scale determinants of productivity, such as
morphometry, are redundant in that biotic production is more directly dependent

upon proximal factors such as nutrient availability (Schindler ef al. 1971; Dilion

14 version of this «hapter will be submitted for publication in Limnology and Oceanography
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and Rigler 1974; Bothwell 1992), light atteruation (Spence 1982; Chambers and
Prepas 1988), tempe.ature (Castenholz 1969; Haag and Gorham 1977) and the
concentration of toxicants (Stockner and Costella 1976; Moore and Love 1977).
However, there is much evidence supporting the premise that catchment and lake-
basin geometry ultimately control these factors. For example, the depth of the
euphotic zone, that is the portion of a lake which extends from the lake surface
down to where light is about 1% of that at the surface (e.g., Wetzel 1983), is
negatively correlated with water color (Spence 1982; Rasmussen ef al. 1989), with
water color being functionally dependent upon the drainage ratio (AgA,), z and
catchment slope (Gorham ef al. 1983; 1586; Engsirom 1987, Rasmussen ef al.
1689 Because water color infiuences th: atter.uation of infrare - light (a major
souice of heat in lakes), morphometry, via its influence on water color, also affects
the vertical thermal profil=; of lakes. Similarly, nutrient loading to lakes and
nuirient retention, ho'h of which are related to a lake's biotic productivity, have
been shown iv hiave depedence upon morphometric variables such as Ay A, and
z (e.g., Patalas and Salki 1973; Dillon and Rigler 1974; Kirchner and Dillon 1975).
Small iakes {i.e., smail A,) are thought to produce more fish per unit area than
iarge lakes (i.e., large A ) because small lakes tend to have a larger proportion of
their substrate within the euphotic zone and, thus, usually have proporticnally
larger littoral zones than large lakes, -with fish production being positively
correlated with littoral area (e.g.. Larkin 1964; Ryder e? al. 1974). Thus, there is
much evidence supporting the concept that catchment and lake-basin morphometry
play a major role in determining the production potential of lakes through their
influences on abiotic regimes (i.e., nutrient availability, light attenuation, etc.).
While numerous studies have quantified biotic production in lakes in terms
of morphometry few, if any, studies have related biologica’ variables in riverine
environments to morphometric properties. Since the rate of water movement

(velocity) in river channels is determined by channel geometry (morphometry)
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(Gray 1970; Hogan and Church 1989; Bras 1990; Gordon ef al. 1992) and the
distribution and abundance of riverine biota are highly dependent upon velocity
regimes (e.g., Chapter 2 of this thesis; Hynes 1970; Nilsson 1987, Chambers et al.
1991), channel morphometry should, via its influence on velocity, have a major
role in shaping the ecology of riverine ecosystems. The aim of this study was to
test the hypothesis that macrophyte abundance (biomass and bottom cover) and
community structure (species composition and diversity) are functions of both
small scale (near shore cross-sectional slope) and large scale (catchment area and
lengitudinal pe) characteristics of river ‘n morphometry. To test the
hypothesis that near shore slope influences macrophyte community structure,
macrophyte community structure in the Nechako River, British Columbia, was
related to near shore cross-sectional slope. This relationship was then compared
with data for the Bow River, Alberta, Canada (Alberta Environment unpubl. data)
and Lake Memphremagog, Quebec/Vermont (Duarte and Kalff 1986). Large scaie
morphometric characteristics of the Nechako River were also related to macrophyte
community structure and compared with predictions from the river continuum
(Vannote et al. 1980; Minshall et /. 1985a) ar:d intermediate disturbance (Connell
1978; Ward and Stanford 1983) hypotheses which attempt to generalize about the
structure of ecosystems in terms of environmental heterogeneity and large scale

properties of drainage basins.

Methods and Materials

Study site, field sampling methods and laboratory analyses
A description of the Nechako River, British Columbia (the river system used
in this study), is given in Chapter 2 ("Study site" sectica) of this thesis and, to

conserve space and minimize repetition, is not repeated in this chapter. Similarly,
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the methods used to collect macrophytes and analyze sediments are identical to
those described in the "Field sampling methods* and "Laboratory analyses"

sections, respectively, of Chapter 2 and are not repeated in this chapter.

Determination of morphometric properties
Near shore cross-sectional slope (CSS) was determined for every interval

along each of the 26 transects as:

Adepth (m)
Adistance (m)

CSS = x 100 (1)

where Adepth is the depth of the interval minus the depth of nearest shore-side
interval and Adistance is the distance of the interval to nearest shore-side interval
(usually 5 m, sometimes 10 m).

To determine longitudinal slope (i.e., slope along the upstream-downstream
direction) the Nechako River was divided into three reaches: (1) Upper Nechako
(Nautley River confluence to the Vanderhoof bridge) characterized by fast current
speeds and shallow depths; (2) Middle Nechako (Vanderhoof Bridge to the Stuart
River confluence) characterized by slow current speeds and shallow depths; and (3)
Lower Nechako (Stuart River confluence to the Fraser River confluence)
characterized by fast current speeds and deep water (Fig. 1). Longitudinal siope
was estimated for each of these reaches by nieasuring the elevation above sea-level
at the water's surface at the beginning and end of each reach with a precision
alumeter (American Paulin System, L.A., California, Model MM-1) and then
dividing the length of the reach (determined with the computer program Sigma-
Scan version 3.9 and 1:50000 topographic mags) into the change in elevation
determined for the reach. Prior to measuring elevations along the :iver, the
altimeter was calibrated to a geodetic landmark of known elevation in the city of

Prince George. All elevation determinations were undertaken on the same day to
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minimize errors due to fluctuations in water level.

The catchment ares for the three reaches was obtained from Environment
Canada (1991). For the Lower Nechako, the catchment gres is ~ 42500 km?
(measured at Isle Pierre; 53° 57' 37" N; 123° 14' 01" W), while the catchment area
for the Middle Nechako is ~ 25100 km? (measured at Vanderhoof, 54° 01' 34" N;
124° 14' 01" W). The catchment area for the Upper Nechako was estimated by
adding the catchment area for the Nechako River at Fort Fraser (~ 17700 km? at
54°03' 18" N, 124° 33' 39" W) to the catchment area of the Nautley River (~ 6030
km? at 54° 05' 07" N, 124° 35' 58" W). Temporal variability (i.e., the difference
between minimum and maximum values) in discharge increased with increasing
distance from the headwaters (Fig. 2), with temporal variability being greatest in
the Lower Nechako. Since discharge influences the rate of bottom sediment
removal (erosion) and suspended sediment settling (deposition), and causes changes
in hydraulic resistance (Manning's n; Vinson ef al. 1992) @und depth, temporal
fluctuations in discharge can be interpreted as environmental heterogeneity or
perturbation (sensu Minshall 1988), such that river reaches with greater fluctuations
in discharge (i.e, reaches furthest from headwaters) shou!ld be more
environmentally heterogenous, at least temporally, than the converse. In this study,
the environmental heterogeneity of a reach was defined as the difference between
the long-term mean summer (June 15 - August 15) and non-su:.mer (August 16 -
June 14) discharge. Thus, environmental heterogeneity in the Nechako River
increases with increasing catchment area and has decreased in each of the reaches

since the construction of the Kenney Dam (Table 1).

Data analysis
Large scale morphometry (catchment area and longitudinal slope)
Macrophyte species diversity was compared for the Upper, Middle and
Lower reaches (i.e., gamma diversity; Whittaker 1972; Vitt ef al. 1995). Gamma
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FIGURE 2. Discharge hydrographs (m*s?) for the Upper, Middle and Lower
Nechako River, British Columbia, pre and post impoundment (Discharge data

supplied by Environment Canada).
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diversity was expressed as the Shannon-Wiener index (H'; Krebs 1989) and

calculated as:

H’ =,2.:1 @)logp) (2)

where s is the number of species in the reach and p, is the proportion of the total
biomass in the reach belonging to the ith species. Because mosses and macroscopic
algae (i.e,, Chara) were not identified to the level of species, they were not
included in calculations of diversity. Percent bottom cover, defined as the distance
across the river channel occupied by macrophytes in relation to river width, was
determined for each survey site and related to the longitudinal slope of the river
and catchment area. As macrophytes were never present at the centre of the
channel, percent bottom cover was determired as the sum of the maximum distance
that macrophytes occurred from each riverbank and then dividing this value by the

mean summer width of the site and multiplying by 100.

Small scale morphometry (near shore cross-sectional slope)

Non-linear regression (Norusis 1993) was used to relate macrophyte biomass
to the CSS of the riverbed. Following the approach of Duarte and Kalff (1986),
peak bion ass (PB), defined as the highest biomass observed at any given slope,
was also related to CSS to determine the maximum potential biomass achievable
over any given range in slope. CSS's were pooled into intervals of 2.5% (i.e.; 0.0-
2.5%, 2.5-5.0%, etc.) and the maximum observed biomass within each grouping
was plotted against the centre point of each CSS group. Peak sediment
exchangeable N (PSN) and P (PSP) concentrations were also correlated with CSS
to see if changes in PB along the CSS gradient tracked changes in sediment

nutrients. Using non-linear regression, PB, PSP and PSN were related to CSS with
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modified power functions, as in Duarte and Kalff (1986), of the form:

y =Ax"+B (3)

where y is the dependent variable (PB, PSP or PSN), A is the y-intercept of the
fitted line, x is the indeperdent variable (CSS), B is an empirical constant and n
is the slope of the fitted line (Spain 1982). The equation variables were estimated
iteratively (after Norusis 1993) using non-linear regression for each dependent
variable until the lowest possible residual sums of squares was attained. To test
for differences in slope between the lines predicting PB, PSP and PSN, an analysis
of covariance was performed on log-transformed dependent variables and testing
for a significant interaction effect betvwreen the dependent variables and near shore
cross-sectional slope (sensu Norusis 1993).

To investigate the relationship between species diversity and CSS, species
diversity (H'; equation 2) was calculated for three CSS categories: (1) low CSS
(slopes < 10.0%); (2) moderate CSS (slopes > 10.0 and < 20.0%);, (3) high CSS
(slopes > 20.0%).

Comparison of Nechako River with the Bow River and Lake Memphremagog
The relationship between CSS and PB in the Nechako River was compared
with similar data collected from the Bow River, Alberta, Canada (Alberta
Environment upubl. data) and from 43 sites in Lake Memphremagog,
Quebec/Vermont, which related PB to the slope of the littoral zone (Duarte and
Kalff 1986), to test the hypothesis that near sh-:e slope influences macrophyte
biomass in a similar fashion in both lakes and rivers. Since the Lake
Memphremagog biomasses were expressed as g'm’? fresh weight, biomasses from
Lake Memphremagog were converted to dry weight using a fresh:dry weight ratio
of 13.9 (determined from measured fresh and dry weights of 25 macrophyte
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samples from the Nechako River). Daia for the Boiv ._.vur were collected by
Alberta Environment (unpubl.) using similar methods as to those used on the
Nechako River and are described in Chambers ef al. (1991). As for the Nechako
River, slopes for Lake Memphremagog and the Bow River were pooled into
intervals of 2.5% (i.e., 0-2.5%, 2.5-5.0% etc.) and related to the peak biomass

within each interval.

Results

Macrophytes in the Nechako River

Fourteen macrophyte taxa were found in the Nechako River: Elodea
canadensis Rich., Limosella aquatica L., Ranunculus aquatilis L., Polygonum
amphibium L., Myriophyllum exalbescens Fern., Callitriche hermaphroditica L.,
Ceratophyllum demersum L., Sagitiaria cuneata Sheld., Elaiine triandra Schk.,
Potamogeton berchtoldii Fiet . Potamogeton gramineus L., Potamogeton pectinatus
L., Potamogeton richardsonii (Bennett) Rydb., Chara and one or more moss
species. E. canadensis was the dominant species, representing 64% of the total
biomass in the river, foliowed by P. richardsonii (12%), M. exalbescens (5%), P.
berchtoldii (5%) and C. demersum (3%). The remaining taxa comprised less than
11% of the total macrophyte biomass. Because L. aquatica, P. amphibium (an
emergent species), S. cuneata and E. triandra were rarely observed, they were
excluded from the analysis of species-specific distribution. However, their

oiomasses were included in analyses of total community biomass and species

diversity.
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Large scale morphometry (longitudinal slope and catchment area)

Longitudinal slopes of the Upper and Lower Nechako were similar,
averaging ~ 0.5 mkm™ (i.e,a 0.5 m change in elevation for every 1 km of river
length) (Fig. 3). The Middle Nechako was considerably less steep with a slope of
only ~ 0.2 mkm™ (Fig. 3). Sites in the Middle Nechako also had relatively slow
channel velocities, averaging 0.6+0.04 m-s™ (mean+1S.E.), while channel velocities
at sites in the Upper and Lower Nechako were faster, averaging 1.0+0.04 and
1.6£0.05 m-s™, respectively (Table 2). Since exchangeable N (r = -0.54, P <
0.0001) and P (r = -0.69, P < 0.0001) were found to be negatively correlated with
current speed (Fig. 4), the differences in channel velocity observed between reaches
suggests that more nutrients may be available to macrophytes in the Middle
Nechako than in the Upper and Lower Nechako. The two steeper-sloping reaches
had similar (P > 0.05; Tukey-HSD) average bottom cover (2.4£1.3% [n = 9] and
5.6+3.4% [n = 8] for the Upper and Lower Nechako, respectively) while the low
gradient Middle Nechako had significantly (P < 0.0001; ANOVA) higher (28+3%;
n = 7) bottom cover (Fig. 3; Table 2). While bottom cover was greatest in the low
gradient reach, species diversity increased with increasing catchment area, from 0.5
in the Upper Nechako (23730 km?) to 1.7 and 2.1 in the Middle (25100 km?) and
Lower (42500 km?) Nechako, respectively (Table 2). As well as differing in species
diversity, the three reaches varied with respect to species dominance (Fig. 5). The
Lower Nechako was dominated, in terms of biomass, by P. pectinatus, mosses and
P. berchtoldii (Fig. S). In contrast, the Middle Nechako was dominated by E.
canadensis, P. richardsonii and M. exalbescens and the Upper Nechako by E.
canadensis, P. richardsonii and R. aquatilis (Fig. 5). The growth-form structure
of the dominant species was similar for the Upper and Middle Nechako, both being
dominated 9y a nighly dissected species (E. canadensis), a broad-leafed species (P.

richardsonii) and a needle-leafed species (i.e., M. exalbescens in the Middle
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Nechak- - d R. quatilis in the Upper Nechako). In contrast, the Lower Nechako
was doniinated by two fine-leaf~d species (i.e., P. pectinatus and P. berchtoldii)

and mosses which have a cushion-like growth-form.

Small scale morphometry (near sk re cross-seciionai slope)

CSS in the Nechako River ranged from 0 to 40%. Macrorhiyte biomass was
more variable in regions of low (< 10%) than high (> 10%) CSS (Fig. 6), rarnging
from 0 to 1262 g'm™ (154432 g'm™® n = 85) for slopes < 10%. as compared to
0 to 582 g'm™ (78+17 g'm % n = 45) for slopes > 10%. There was, however, no
significant difference (P = 0.41; Mann-Whitney U test) in biomass between low
and high slope regions due tc large variations in hiomass within each slope interval
(Fig. 6).

While biomass was not correlated with CSS wher it data were considered,
PB decreased with acreasing CSS such thot PB wa- 762 .4 24 gm'? in the
lowest (0.0-2.5%) and the nighest (37.5-40.0%) CSS regicns, respectively (Fig. 7).
The equation predicting P3 from slope 15

PB = -44577 + 46071C38~%°  (4)
P=07% n=16, = 327(P < 0.001), SE,= 1389849, SE, = 028 SE,= 1390031
where PB is peak biomass (g'm™ dry weight) for a given slope interva! and CSS
1s the cross-sectionz’ slope (%) of the riverbed.

PSP and PSN also decreased with increasing CSS (Fig. 8). PSP was 949
and 424 pg-g”' dry weight at CSS's of 0.0-2.5% and 37.5-4N "%, respectively,
while PSN was 114 and 15 ug'g™ dry weight over the sz CSS intervals (Fig.
8). The e iations predictin 'SP and PSN irom CSS were:

PSP = -156% + 2648CSS*®¢ (5)

r =0.68, n=16, F=63.7 (P <0.001), SE,= 7597, SE,= 0.30, SE,= 7714
PSN = -4.0 + 134CSS*" (%)

7 =0.77,n = 16, F = 43.1 (P < 0.001), SE,= 25, SE,= 0.30,SE;= 30

67



1400

4 o
1200 -
1000 -
wg o®
]
< 800
3
£
o
B 660 - @
E
(e}
=

Cross-sectional slope (%)

FIGURE 6. Relationship between submerged macrophyte biomass (g'm? dry
weight) and near shore cross-sectional slope (%) for the Nechako River, British

Columbia.

68



1400 -

)
1200 - =078
&
g 1000 -
&0 ®
2
£ 800 -
8
£
2 600
& o\ 9 ®
3
(o]
E 400 - °
200 - \‘\
! ° ® \\Q.\b’
0 ‘ T > T - T 1

0 10 20 59 40

Cross-sectional slope (%)

FIGURE 7. Peak submerged macrophyte biomass (g'm? dry weight) in relation to

near shore cross-sectional slope (%) for the Nechako River, British Columbia.

69



. 1200 -

P

(*)) o0 o

(o] o (=]

o o (=
i 1 1

400 A

200

Peak exchangeable P (p.g'g'1

120 -
100 - 2
80

60 -

40 - PR L

20 - ® \1.\\\.’7‘

Peak exchangeable N (ug-g'l)

(e
-
-
-
-

Cross-sectional slope (%)

FIGURE 8. Feak sediment exchangeable phosphorus and nitiogen concentrations
(pg-g’ dry weight) in reiation to near shore cross-sectional slope (%) for the

Nechako River, Britich Columbia.

70



where PSP is peak sediment exchangeable phosphorus concentration (ug-g ') for
a given slope interval, PSN is peak sediment exchangeable nitrogen (pug-g ") for
a given slope interval and CSS 1is the cross-sectional slope (%) of the riverbed.

While PB of the macrophyte community decreased (P < 0.001) with
increasing CSS, species differed in their distribution with respect to CSS. Thus,
PB of E. canadensis decreased sharply with increasing slope over the range 0.0-
27.5% (Fig. 9). Other species attained their greatest biomasses in regions of high
(20.0-22.5%) (e.g., R. aquatilis) or moderate (5.0-10.0%) CSS (e.g., C. demersum,
C. hermaphroditica, P. pectinatus, M. exalbescens and Chara) (Fig. 9). However,
some species {e.g., P. gramineus and P. richardsonii) showed r:o ciear relationship
with CSS, being abundant at a wide range of CSS's (Fig. 9). In terms of {requency
of occuirence (expressed as the ratio of the number of occurrences to the total
number of plots x 100), C. demersum occurred most freguently at slopes of 0.0-
2.5%, whereas P. gramineus, P. pectinatus, Potamogeton berchtsldii, mosses and
R. a¢ » mast frequently observed st slopes greater than 30% (Fig. 10).
C I wasica occurred maost freqrently at moderately high slopes (12.5-
15.0%), aile E. canadensis, M. exalbescens, P. richardsonii and Chara occurred
sporadically over the entire CSS gradient (Fig. 10). Species diversity was lower
at CSS's £ 10.0% (H' = 1.6) than at moderate (10.0 - < 20.0%) and steep (>
20.0%) slopes where H' was 2.0 and 1.9, respectively.

Comparison of Nechako River with the Bow River and Lake Memphremagog
The macrophyte community of Lake Memphremagog consisted of 15 taxa
(Charabers 1987), a comparable number to that found in the Nechako River (i.e,
14). Of these, five taxa were in common to the Nechako River: C. deriersum, E.
canadensis, P. gramineus, P. richardsonii and Chara. By comparison, the

macrophyte community of the Bow River was less diverse, with only four species
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predominating (Potamogeton vaginatus, Potamogeton crispus, P. pectinatus and
Zannichellia palustris;, Charlton et al. 1986), only one of which was common to
the Nechake River (i.e, P. pe-viuztus;. Growth-form com =sition of the
macrophyte <.-imupity was also similar for both the Nechake  ver and Lake
Memphrei:i,-; in that toth had canopy-producing (e.g., C. demersum, M.
exalbescens and M. spicatum), erect (c.g., E. canadensis, P. gramineus and P.
richardsonii) and bottom-dwelling (e.g., Chara and L. triandra) forms. In contrast,
the growth-form structure of the Bow River's macrophyte community was less
complex, with all taxa being erect forms.

As in the Nechako River, PB was negatively correlated with near-shore
slope in Lake Memphremagog (Fig. 11). However, biomasses were lower in Lake
Memphremagog for any given slcpe interval. Thus, PB in Lake Memphremagog
was 195 g m ? at low slope sites (0.0-2.5%) and 3 g'm? at high slope sites (27.5-
30.0%) as compared to 1262 and 582 g'm? for similar slope intervals in the
Nechako River (Fig. 11). In contrast, the curvilinear decrease in PB with increasing
CSS for the Nechako River and Lake Memphreagog was ne: ~bserved in the
Bow River (P > 0.05). However, PB in the Bow R .-er was gie -er in regions of

low (< 16%) than high (> 10%) CSS (P = 0.01; W= ,n ‘Nhitney U).

Discussion

Dottom cover and structure (i.e., species diversity anA deminance) of
riverine macrophyte cominunities were found to be correlated with caichment area
and lengitudinal slope. Thus, macrophytic bottom cover in the Nechako River was
greater in areas of low (~ 0.2 mkm'*) than high (~ 0.5 m'km™') longitudinal
slope, averaging 2.4+1.3% and 5.6+3.4% in high gradient reaches (Upper and

Lower Nechako, respectively) compare.i to 28.1+3.4% in the low gradient reach
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(Middle Nechako). Longitudinal slope likely affects macrophyte abundance
indirectly by affecting channe! velocity, since high gradient reaches had faster
channel velocities than the low gradient reach (Table 2). This hypothesis is
consistent with other studies which have shown that the growth of macrophytes is
facilitated by slow current velocities. For example, Chambers ef al. (1991) found
that macrophyte biomass was significantly (P < 0.0005) and inversely correlated
(r > -0.68) with current velocity over the range 0.01-1 m's” in the Bow River.
Furthermore, Chambers ef al. (1991), using an in situ experimental approach,
showed that the growth rate of P. pectinatus decreased with increasing current
velocity over the range 0.2 - 0.7 m's™, irrespectivq ~hanges in sediment nutrient
content. Since the exchangeable N and P content of the bottom sediments were
negatively correlated with current speed (Fig. 4) and riverine macrophytes obtain
most of their nutrients from the bottom sediments (Chambers et al. 1989), the low
gradient reach would have also had more nutrients available for macrophyte
growth.

The observation that gamma diversity (H') increased along the length of the
" echako River (from 0.5, 1.7, to 2.1 for the Upper, Middle and Lower Nechako,
respectively (Table 2)) is consistent with longitudiral changes in invertebrate and
fish communities reported for other rivers. For example, Minshall ef al. (1985b),
showed that species richnes:' of benthic invertebrate communities increases with
incicasing distance from the headwaters in small to medium sized streams.
Similarly, Minshall (1988) and Statzner and Higler (1985) hypothesized that
species diversity is often greatest in the lower reaches of rivers due to their greater
physical heterogereity. In this paper it is suggested that the observed downstream
increase in macrophyte diversity is attributable to the greater variability in
discharge in the downstream reaches; where discharge variability is a function of
catchment area (Table 1). In agreement with this hypothesis, the "river continuum

concept” (Vannote ef al. 1980) theorizes that total community diversity is greatest
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in river reaches having high degrees of physical variability. The findings of this
study also conform to the intermediate disturbance hypothesis (Connell 1978; Ward
and Stanford 1983) which postulates that biodiversity is greatest in habitats with
intermediate levels of disturbance as compared with habitats with low levels and
extremely high levels of disturbance; thus, in view of the Nechako River, the
Upper and Middle reaches may be low-disturbance reaches, whereas the Lower
reach may experience a more intermediate degree of disturbance in terms of
discharge fluctuations. As do Vannote er al. (1980) and Minshall (1988) we
suggest that discharge fluctuation is a satisfactory measure of environmental
heterogeneity and disturbance since discharge affects several physical attributes of
the riverine environment, including the r~ - ¢ bottom sedinient removal and
suspend=d sediment settling, hydraulic resistance (Vinson ef al. 1992) and depth.
In addition to differences in species diversity, tne three reaches of the
Nechako R:v=i also varied in species domin:nce with the Lower Nechako being
dominated Dy F. pectinatus, mosses and P. berchtoidii, the Middie .y E.
canadensis, P. richardsonii and M. exalbescens and the Upper by E. canadensis,
P. richardsonii an¢ .. aquatilis (Fig. 5). According to Greenslade (1983), P.
pectinatus, mosses a«d P. berchtoldii would be classed as r-strategists since *hey
are adapted to unstable environments, while E. cwnadensis, P. richardsonii, M.
exalbescens and R. aquatilis would be k-strategists since they dominated rcaches
with stable habitats. While the results showed that macrophyte species diversity and
ver are related to large scale changes in river morphometry (i.e,

..... ... 47¢a and longitudiual slope), riverine macrophyte communities were also
found to be affected by small scale morphometry. Thus, submerged macrophy:a
bicmase in the Nechako River was greater in regions of low than high CSS (Fig.
7). These results are consistent with those from lake studies (e.g., Duarte and Kalff
1986; Duarte ef al. 1986) which have shown that the peak biomass of submerged
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and emergent macrophyte communities is negatively correlated with the slope of
the littoral zone (Fig. 11). Rooted aquatic macrophytes obtain most of their
nutrients from the bottom sediments (e.g.,, Weish ani Denny 1579, Barko and
Smart 1980; Carignan and Kalff 1980; Barko and Smart 1981; Chambers ef al.
1989). The observation that peak sediment exchangeable N and P were negatively
corcelated with CSS (Figs. 6 & 7) suggests that CSS influences the distribution of
aquatic macrophytes indirectly by aXecting the nutrient content of bottom
sediments. This mechanism is consistent with Hakanson (1977) who reported that
fine sediments, wkich are usually more n:'trient rich than coarse sediments, are lost
from steep slopes through eroc..nal processes, whereas gradual slopes tend to
accumulate fine sediments through depositicnal processes. In addition to slope
afrecting the nutrient content of r. ~ * =d sediments, the movement of sediments on
steep slopes may disturb the reo 42~ structures o macrophytes, thus hindering their
growth and colonization (Fearsall 1917; Petts 1984; Duarte and Kalff 1986).
While PB and CSS showed a curvilinear relationship for the Nechako River and
Lake Memphremagog, there was no such relationship between PB and CSS for the
Bow River (P > 0.05; Fig 11). However, macrophyte biomass in the Bow River
v'as greater in regions of low (< 10%) CSS than high (> 10%) CSS (P = 0.01).
The observations that macrophyte species differ in their habitat use with respect to
CSS (Figs. 9 & 10) and that macrophyte species composition was sirilar for the
Nechako River and Lake Memphremagog but very different fer the Bow River
suggests that differcnces in macrophyte community species composition may
explain the inverse curvilinear relationship between PB and CSS for the Nechako
River and Lake Memphremagog and thz lack of a similar relationship for the Bow
River. While PR was greater in regions of low near-shore slope than in regions
of high near-shore in the Nechako River, Bow River and Lake Memphremagog,
biomasses in Lake Memphremagog were comparatively low such that biomasses

were often greater than 600 g'm™ in the Nechako and Bow rivers whereas biomass
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peaked at about 200 g'-m? in Lake Memphrema og (Fig. 11). Nutrient chemistry
data available for two sub-basins in Lake Memphremagog (Anderson and Kalff
1986 ab) indicate that sediment exchangeable P ranges from about 26 to 168
pugg? in Lake Memphremagog's littoral zone. In comparison, sediment
exchangeable P was much greater in the Nechako River (114 - 993 pgg’) and
Bow River (163 - 609 pg-g”, samples taken from sites downstream of the City of
Calgary's, AB, sewage treatment plant and analyzed as "biologically availabie P,
Cross ef al. 1986). Thus, the observation that the Nechako and Bow rivers had
greater biomass than Lake Memphremagog over any given slope interval (Fig. 11)
may be attributable to the relatively low nutrient content of Lake Memphremagog's
bottom sediments.

In conclusion, the results of this study showed that macrophyte community
structure in rivers is related to both large and small scale morphometric variables.
On a large scale, abundance and species diversity were related to longitudinal slope
and catchment area (which is positively correlated with environmental
heterogeneity), respectively, while, on a smaller scale, peak biomass was correlated
with near shore cross-sectional slope. While data presented in Chapter II of this
thesis indicates that the distribution and abundance of submerged aquatic
macrophytes is largely a function of current velocity, it is likely that morphometry
exerts ultimate control over riverine macrophyte communities since current velocity
in river channels is largely determined by channel geometry (Hogan and Church
1989; Bras 1990; Gordon ef al. 1992) and discharge (Chapter 2 - Fig. 3 of this
thesis; Gray 1970), where discharge is a function of catchment area. The results
of this study are important when considering the impacts of river impoundment on
biodiversity and that the preservation of biodiversity is one of the key issues in
contemporary ecology (Government of Canada 1990; Hunter 199C; Kaufman and
Franz 1993; Raven et al. 1993). While studies on man's impacts on biodiversity

have largely focused on species diversity in tropical rainforests (Raven ef al. 1993),
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few studies have investigated the potential effects of river impoundment on the
biodiversity of lotic ecosystems. Data presented in this study indicate that
impoundment can reduce the environmental heterogeneity of a river by decreasing
temporal discharge variability (Table 1). Thus, the finding that the diversity of
macrophyte communities in the Nechako River is positively correlated with
environmental heterogeneity suggests that river impoundment may reduce the
diversity of riverine macrophyte communities and favoured species which are k-
strategists (e.g., E. canadensis). Since aquatic macrophytes serve as food and
habitat for other organisms (e.g., invertebrates and fishes), river impouncment
could, in turn, result in a reduction in diversity in other trophic levels (e.g. aquatic
animals). This hvpothesis is reasonable if one views aquatic “"foresis" to be
comparable to terrestrial forests in which structural complexity (derived from plant
species diversity) is positively correlated with animal (e.g., birds) diversity
(MaCarthur 1964; Rickleffs 1977). This hypothesis is further supported by in situ
ecological studies in temperate marine environments which have shown that the
structural complexity of kelp forests, where complexity is derived from diversi.y
in macroalgal growth-form (e.g., floating, stipate, prostrate, turf and pavement
forms; Dayton and Tegner 1984), is associated with diverse invertebrate and fish
communities, whereas marine environments without kelp forests often have
relatively less diverse animal communities (Nybakken 1993). Further research on
the ecological significance of macrophyte species diversity in aquatic ecosystems

is required to better understand the implications of losses in macrophyte diversity.
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4. Niche segregation and conspecific interactions in
riverine macrophyte communities'

Introduction

Studies on riverine macrophytes have largely focused on the relationship
between the growth and abundance of macrophytes in relation to abiotic factors
such as current velocity (Chambers et al. 1991a; Boeger 1992), flow (Bilby 1977)
and nutrients (Peverly 1979). By comparison, few studies have investigated
relationships between macrophytes and other biota. Moreover, amongst those that
have, the focus has largelv been on interactions between macrophytes and aquatic
animals such as epiphytic invertebrates (Lodge 1985; Downing 1986; Sheldon
1987), benthic invertebrates (Chambers ef al. 1990, Chambers et al. 1991b), insects
(Angerilli and Beirne 1980), fishes (Casterlin and Reynolds 1978; Crowder and
Cooper 1982; Nichols and Shaw 1986) and waterfow! (Krull 1970). However,
despite increasing knowledge regarding macrophyte-animal relations, very little is
known about macrophyte-macrophyte interactions.

Submerged macrophytes in large rivers are usually restricted to near-shore
regions (e.g., Haslam 1987) where they may form dense bands which can be seen
from the air using aerial surveying techniques (French and Chambers 1993). The
distance these macrophyte bands extend into the river channel may be limited by
current speed, depth, light and/or other environmental gradients that change along
river cross-sections. Since suitable macrophyte habitat may be limited to near-
shore regions in large rivers, macrophyte species have to coexist in finite space.

This would suggest that interspecific competition for environmental resources (e.g.,

YA version of this chapter will be submitted for publication in Freshwater Biology
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sites of suitable current velocity, light and nutrient concentration) may significantly
effect the growth and success of macrophyte species in rivers. However, Butcher
(1933), Westlake (1973) and Gregg and Rose (1982) suggest that rather than
competing, macrophytes facilitate the further colonization and growth of other
macrophytes by acting as barriers to water flow thereby decreasing current velocity
and increasing the settling rate of suspended sediments which accumulate within
the stand.

The purpose of this study was to: (1) investigate how environmental
resources are partitioned amongst the dominant submerged macrophyte taxa in a
large river in northern British Columbia, Canada, and (2) test the hypothesis that
the presence of macrophytes can facilitate the growth of other macrophytes with

an in situ experimental approach.

Methods and Materials

Study site, field sampling methods and laboratory analyses

A description of the Nechako River, British Columbia (the river system used
in this study), is given in Chapter 2 (*Study site" section) of this thesis and, to
conserve space and minimize repetition, is not repeated in this chapter. Similarly,
the methods used to collect macrophytes and analyze sediments are identical to
those described in thé "Field sampling methods" and "Laboratory analyses"

sections, respectively, of Chapter 2 and are not repeated in this chapter.

Resource partitioning

Resource partitioning was evaluated for the dominant taxa: Elodea

canadensis Rich., Ranunculus aquatilis L., Myriophyllum exalbescens Fern.,
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Callitriche hermaphroditica L., Ceratophyllum demersum L., Potamogeton
berchioldii Fieb., Potamogeton gramineus L., Potamogeton pectinatus L.,
Potamogeton richardsonii (Bennett) Rydb., Chara and aquatic mosses. Three
environmental resources were chosen to evaluate niche overlap: (1) depth, (2)
current velocity, and (3) bottom sediment grain size. Each resource was grouped
with current velocity classified as very slow (0.0-0.2 m's™), slow (0.2-0.4 m's™),
moderate (0.4-0.6 m-s™) and fast (0.6-1.6 m's™); grain size as siits (3.9-62.5 um),
sands (62.5-470 um; sensu Gordon et al. 1992) and bare rock; and depth as
shallow (0.1-1.5 m), moderate (1.5-3.0 m) and deep (3.0-4.5 m). The niche
overlap (% overlap) between each species was then calculated for each resource

with the Schoener overlap index as described in Krebs (1989):

P, =[2:l (minimum p _p,)] - 100 (1)

where P, is the percentage overlap between species j and &, p, and p, are the
proportion of resource i of the total resources used by species j and species &, and
s is the total number of resource states. Due to sample size differences between
each resource state, it was necessary to standardize n prior to calculating biomass
proportions (p, and p,). To standardize, 7 was first summed for all resource states
to give the total number of samples (N). Then n,,, was determined by dividing N
by the number of resource states (s). The standardized total biomass within each
resource state was then determined by multiplying n,,, by the observed biomass

within each resource state and dividing through by n.

In sitv interaction experiment

An ~ 800 m reach of the Nechako River near the Village of Fort Fraser was

selected as the site to test the hypothesis that the presence of macrophytes can

91



facilitate the growth of other macrophytes. This area was selected as it had
monospecific and discrete stands (patches) of E. canadensis (biomass 366+11
g'm? mean+1 S.E.) which extended well out into the river channel (Fig. 1). The
sediments within the patches were muddy and several centimetres deep whereas
between patches, the river bottom was composed of cobbles with no observable
sediment layer, suggesting that the patches of E. canadensis cavsed localized
decreases in current speed, resulting in the deposition and accumulation of fine
sediments.

Plastic trays (45 x 33 x 11 cm deep, inside measures) were divided
widthwise in half with aluminum strapping. Half of each tray wzs filled (to ~ 8 cm
deep) with homogenized sediments collected from within patches of E. canadensis
(hereafter called the sediment treatment), with the other half being filled with
cobbles collected from between the patches (cobble treatment). Ten individual E.
canadensis, between 10 and 15 cm in length, with healthy roots were planted into
each half of each tray. The trays were then placed in a backwater area for 1 week
prior to the start of the experiment to allow the plants to establish their rooting
systems. In mid August 1992, eight patches were located. One tray was placed
near the centre of each patch and another ~ 2 m to the outside of each patch. The
trays were dug into the riverbed to ensure that they would not be swept away by
currents. The trays remained in place for one year and were retrieved in mid
August 1993. Following retrieval, the plants were rinsed with tap water to remove
debris, sorted to species with keys in Warrington (1980), dried to constant weight
at 80°C and weighed to 0.01 g. Sediments were collected from each side of each
tray and frozen until analyzed for exchangeable phosphorus (P) concentrations.
Exchangeable P concentrations were determined from frozen sediment samples
after they were thawed to room temperature. Duplicate samples from within each

side of each tray were pooled prior to analysis; all analyses were performed in
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Patches of E. canadencis

Fine sediments
within patches

Cobble between
patches

~100m

FIGURE 1. Schematic of the site where the in situ interaction experiment was
undertaken (near Fort Fraser- see Fig. 1, Chapter 2) showing patches of E.

canadensis and associated substrate types.

93



duplicate. Exchangeable P was extracted from approximately 025 g of
homogenized wet sediment by shaking (16 h) in 25 ml of 0.1 N NaOH + 0.1 N
NaCl (after Williams ef al. 1967) and measured spectrophotometrically (Murphy

and Riley 1962). Bare cobble was assumed to have no exchange capacity for P.

Results

Resource partitioning

Macrophytes were found to occupy up to 46% of the river's channel, but
were usuaily restricted to near-shore regions such that, on average, 12+3% of the
riverbed across the channel was covered with macrophytes. Within the zone of
macrophyte colonization, there was considerable physical heterogeneity with
respect to sediment properties, depth and current speed with sediment grain size
ranging from fine silts (3.9 pm) to bare rock, depth from nil to 4.5 m and current
speed from 0.0 to 1.6 m's'. Macrophyte taxa appeared to inhabit different
microenvironments within the river's littoral zone with some taxa being highly
specific to certain environmental conditions. For example, C. demersum was found
almost exclusively (> 98% of it's total biomass, TB) at sites with current speeds
< 0.2 m's", moderate depths (1.5-2.0 m) and silty substrates (14-56 pum) whereas
mosses were most prevalent at sites with current speeds > 0.6 m-s? (95% TB),
depths < 1.5 m (98% TB) and substrates of bare rock (76% TB) (Table 1). C.
hermaphroditica and P. gramineus, while not as specific as mosses and C.
demersum for particular current speeds and substrates, were almost always found
at depths < 1.5 m (Table 1).

Comparisons of niche overlap showed that mosses and C. demersum had

completely different niches with their niche overlap (NO) being only 3, 3 and 5%
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for depth, current speed and sediment grain size, respectively (Tables 2-4). In
contrast, other taxa shared some resource states but were segregated by others. For
example, E. canadensis and R. aquatilis, while having an NO of 93% for depth,
occupied sites of different current speed (NO = 39%) and sediment texture (NO =
43%) (Tables 2-4). Thus, TB of R. agquatilis was 71% and 62% on sandy (63-470
pm) substrates and at moderate current speeds (0.4-0.6 m-s™), respectively, whereas
E. canadensis was most prevalent at sites with current speeds < 0.2 m-s” (62% TB)
and on silty sediments (83% TB) (Table 1). Likewise, P. richardsonii and M.
exalbescens were found at similar current speeds (NO = 95%) and on similar
substrates (NO = 98%), but occupied different depths (NO = 53%) such that 64%
of M. exalbescens' TB occurred at depths < 1.5 m as compared to 18% for P.
richardsonii (Tables 1-4). Depth also segregated P. pectinatus from E. canadensis
(NO = 43%) and C. demersum (NO = 17%) such that all three species were most
abundant at current speeds < 0.2 m's” and on silty substrates; but, whereas E.
canadensis and C. demersum were primarily found at depths between 1.5 and 3.0
m, P. pectinatus was typically (84% TB) found at depths < 1.5 m (Tables 1-4).
Some species occupied very similar niches with respect to all measured
environmental variables. For example, the NO for P. berchtoldii and P. gramineus
was 93, 76 and 83% for depth, current speed and sediment grain size, respectively,
with both species being most common at sites with current speeds < 0.4 m-s’,
depths < 1.5 m and silty to sandy substrates (Tables 1-4). Likewise, both P.
pectinatus and M. exalbescens predominated at sites with very slow (0.0-0.2 m-s™)
current speéds, shallow (0.1-1.5 m) depths and silty (14-56 pum) substrates, with
NO's of 97, 79 and 83% for these parameters, respectively (Tables 1-4).
Analysis of the relationship between the biomass of the dominant taxa for
each substrate type and total plant biomass showed that for silt substrates, biomass

of the dominant taxa, E. canadensis, increased as the biomass of the stand (i.e.,
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total community) increased (© = 0.95; P < 0.0001) (Fig. 2). In contrast the species
dominating sites with sandy substrates (i.e., R. aquatilis) and bare rock substrates

(e.g., mosses) were most abundant where the biomass of the stand was low (Fig.

2).

In situ interaction experiment

E. canadensis attained biomasses of 17.7+5.1 g and 14.6+3.8 g for the
ccbble and sediment treatments, respectively, when grown within a macrophyte
patch. In contrast, E. canadensis biomass was only 0.3+0.3 g and 0.0£0.0 g for
the cobble and sediment treatments, respectively, when grown outside a
macrophyte stand (Fig. 3). Analysis of variance showed no significant (P = 0.61)
affect of sediment type on biomass, but a significant (P < 0.0001) effect of position
(within verses outside the patch). The lack of an affect due to sediment type was
due to the sediment conditions at the end of the experiment. While all trays had
sediment and cobble sections at the start, sediments accumulated in the trays
positioned within the macrophytes patches and were scoured from the trays
positioned outside the patches. Thus, at the end of the experiment, exchangeable
P concentrations from trays located within macrophyte stands were 452+74 and
370431 pg-g" for sediment and cobble treatments, respectively (Fig. 4). There was

little, if any, sediment present in either the sediment or cobble treatments

positioned outside patches.
Discussion
In the Nechako River, British Columbia, 11 common taxa and 3 rare taxa

of aquatic macrophytes co-occur in the near-shore zone (i.e., a distance equivalent

on average to 12% of the river's width). However, physical variability within this
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zone created a variety of niches, thus allowing several taxa to coexist with often
very few resource states in common (Tables 1-4). Analyses of species ab' ndance
in relation to physical gradients within the near-shore zone showed that gradients
of current speed, subsirate texture and depth determined the relative distribution
and abundance of macrophytic taxa. The segregation of macrophyte taxa along
environmental gradients has also been observed by other researchers. Glime and
Vitt (1987) reported that fast-flowing montane streams often have few vascular
macrophytes but can have extensive moss communities. Likewise, Bilby (1977)
found that E. canadensis was restricted to slow current speeds in Fall Creek, New
York, whereas Potamogeton crispus was common in faster waters. Haslam (1987)
reported that in rivers of Europe, Ranunculus spp. are common in regions of high
current speed and prefer sandy sediments over silts and clays. However, while
other researchers have reported the taxonomic segregation of riverine macrophyte
species along gradients of current speed and sediment texture, this study showed
that some taxa may also be specific to particular depths. For example, C.
hermaphroditica (99% TB), mosses (98% TB), P. pectinatus (84% TB) and P.
gramineus (83% TB) were largely confined to depths < 1.5 m (Table 1). C.
hermaphroditica was also specific to a particular depth strata, being most abundant
(98% TB) at depths between 1.5 and 3.0 m (Table 1). While few, if any, studies
have reported depth-related segregation amongst macrophyte species in lotic
systems, evidence from lake-studies suggests that depth partitioning may occur. For
example, Chambers and Kalff (1987) using an in situ experimental approach in
Lake Memphremagog, Quebec/Vermont, found differences in the way Potamogeion
praelongus, Vallisneria americana, and Potamogeton robbinsii responded to depth.
Similarly, Sheldon and Boylen (1977), in a study of 28 macrophyte species in Lake
George, New York, observed that P. pectinatus was most abundant at shallow

depths (1 m) where E. canadensis was abundant at depths to 7 m.
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Differences in the way macrophyte taxa are distributed along physical
gradients have been attributed to morphological and physiological adaptations.
Thus, E. canadensis, having delicate leaves, a fragile stem (Dale 1957) and a
relatively weak rooting system (Bilby 1977, Madsen and Adams 1989) is
considered to be poorly adapted to fast-flowing environments. By comparison, the
vertically compressed, cushion-like growth form of aquatic mosses (Butcher 1933)
may allow them to colonize sites with abrasive currents, while their dependence
on water-column nutrients (Glime and Vitt 1984) can permit growth on bare rock.
Using the morphological adaptation premise, it is possible that the spindly growth
form (i.e., thin stem and finely dissected leaves) of R. aquatilis is an adaptation to
fast currents as it may minimize the friction between plant and water, thereby
reducing mechanical damage to plant tissues. However, morphology alone cannot
account for the distribution of all taxa in the Nechako River. For example, while
tall species with "bushy”, unstreamlined growth forms (e.g., E. canadensis, P.
richardsonii, M. exalbescens and C. demersum) were most abundant at sites with
current speeds < 0.2 m's” and cushion-like (e.g., mosses) and spindly (e.g., R.
aquatilis) growth forms predominated at sites with current speeds > 0.4 m-s”,
some streamline species (e.g., P. pectinatus and P. berchtoldii) were found at sites
with very slow currents (< 0.2 m's?; Table 1). This suggests that while bushy
growth forms may confine some species to slow waters, species with a streamlined
growth form are not necessarily specific to fast waters.

While macrophyte species can partition their physical environment so as to
avoid or reduce niche overlap, results of the in situ experiment demonstrated that
the presence of E. canadensis can facilitate the growth of conspecifics. Thus, the
introduction of young E. canadensis shoocis into a mature stand resulted in
significant growth compared to very little growth for similar shoots placed outside

the stand (Fig. 3). The finding, after 1 year, that E. canadensis biomass and
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exchangeable P concentrations were similar for both treatment compartments of
inside-patch trays indicates that E. canadensis facilitates the growth of conspecifics
by increasing the deposition rate of fine nutrient-rich sediments. In contrast,
sediments were scoured from sediment treatments and siltation did not occur in
cobble treatments of outside-patch trays (Fig. 4). These findings are consistent
with those of Madsen and Warncke (1983) who showed that the submersed
angiosperm Callitriche stagnalis can decrease current speed by up to 92%. Thus,
the decrease in current speed associated with the presence of macrophytes can
result in fine-sediment deposition (Butcher 1933; Gregg and Rose 1982).
However, in contrast to our observation that macrophytes can facilitate the growth
of conspecifics, Moen and Cohen (1989) reported that the growth rate of P.
pectinatus and M. exalbescens decreased with increasing density of conspecifics.
This discrepancy may relate to the fact that Moen and Cohen (1989) undertook
their experiments in small, closed-system aquaria where essential resources (i.e.,
nutrients) were not replenished whereas our experiment was performed in situ in
an open, flowing system where nutrients were continually added to the
experimental units through deposition, thus minimizing intraspecific competition
for nutrients and substrate. The observation that the biomass of E. canadensis, a
species which was most prevalent at sites with silty substrates (83% TB) and slow
current speeds (99% TB; Table 1), was greater within high-biomass stands than
within low-biomass stands (r = 0.98; P < 0.0001) further supports the hypothesis
that macrc. hvtes can facilitate the growth of other macrophytes (Fig. 2). However,
this pattern was not evident for taxa which dominated faster waters with sandy or
bare rock substrates. Thus, biomasses of R. aquatilis and mosses were greater in
low-biomass stands (Fig. 2). A similar observation was reported by Westlake
(1973) where Ranunculus calcareus died back in a shallow chalk stream following

increases in stand density. Westlake (1973) attributed the recession of R.
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calcareous to the decrease in current speed resulting from increased stand density
which, in turn, promoted the accumulation of fine sediments and the colonization
of the emergent macrophyte Rorippa nasturtium-aquaticum which is adapted to
slow-moving waters with fine substrates. R. nasturtium-aquaticum eventually
excluded R. calcareus by blocking solar irradiance. This suggests that only
macrophytes adapted to efficiently exploit silt substrates (e.g., E. canadensis)
facilitate the colonization and growth of conspecifics in flowing waters. Species
adapted to exploit coarse substrates (e.g., R. aquatilis) would likely dominate early
successional stages of macrophyte communities in rivers and, by creating suitable
habitat through slowing current speed and increasing the deposition rate of fine
sediments, would allow the encroachment of species which can compete more
effectively in high-nutrient environments. While this species turnover (i.e., from a
community dominated by R. aquatilis to one dominated by E. canadensis) can
occur over one growing season (e.g., Westlake 1973), in regulated rivers with
severely reduced flows, such as the Nechako River, silty bottom sediments may not
be scoured annually as they are in most natural rivers (Ham ef al. 1981) and thus
species such as E. canadensis may dominate over several seasons, or until
sufficient disturbance scours them away. Thus, E. canadensis has dominated the
upper reaches of the Nechako River, where freshet flows are minimal, over the
entire 1991 to 1993 growing seasons.

In conclusion, this study showed that macrophyte species in large rivers can
be segregated by current speed, substrate texture and depth and that species able
to compete well in nutrient rich environments may facilitate the colonization and
growth of conspecifics. The finding that macrophyte species are segregated by
physical and chemical gradients (Tables 1-4) in rivers is consistent with current
evolutionary theory which holds that selection pressure drives species within a

community to partition essential resources so as to minimize competition (Barbour
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et al. 1987). Alternatively, the observed species distribution could be due to
establishment processes. Angiosperm species may vary in their ability to colonize
particular habitats via sexual reproduction. Thus, species with low-mass seeds are
most likely to colonize regions of low current velocity than regions of high current
velocity since high velocities may keep low-mass seeds in suspension. Conversely,
species with high-mass seeds may colonize regions of greater current velocity. In
this view, the observed species distribution may be the result of establishment
processes and may not reflect competitive interactions. However, given that aquatic
angiosperms proliferate predominately through rhizomatous growth in lotic systems

it is more likely that the observed distribution evolved via species interactions and

habitat selectivity.
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5. Major Conclusions

The objective of this project was to quantify the environmental factors
regulating the biomass, distribution and species composition of lotic macrophyte
communities and to use this basic information as a basis to predict changes in
macrophyte community structure resulting from reduced-flow conditions. It was
found that the distribution of macrophytes in rivers is controlled by current speed,
sediment texture, sediment nitrogen and phosphorus concentrations, and depth
(Chapter 2). Both small scale (near shore cross-sectional slope) and large scale
(catchment area and longitudinal slope) morphometry were also shown to be
important determinants of macrophyte community structure in lotic environments
(Chapter 3). Analyses of macrophyte species abundance in relation to physical
characteristics of the littoral zone showed that gradients of current speed, sediment
texture and depth determined the relative abundance of macrophyte taxa such that
macrophyte species inhabited different microenvironments within the river's littoral
zone (Chapter 4). The findings of this research have several implications when
considering the ecological impacts of river impoundment activities on riverine

macrophyte communities, which include the following.

(1) Flow reductions can result in significant increases in macrophyte abundance

In Chapter 2 it was shown that bottom cover (+* = 0.80) and cross-sectional
biomass (#* = 0.82) are inversely correlated with mean summer channel speed.
Thus, reductions in channel speed resulting from decreased flow can result in
increased macrophyte abundance. This prediction is supported by observations
made in the Sutlej River, India, the Volta River, Ghana, the Zambezi River,
Rhodesia, the Tuolumne River, California (Petts 1984) and the Otra River, Norway

(Rorslett 1988) where substantial increases in macrophyte abundance have been
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observed since their impoundment.

(2) Decreases in discharge variability can result in decreased species diversity
In Chapter 3 it was shown that the diversity of macrophyte communities is
positively correlated with temporal discharge variability (which is a function of
catchment area). This finding is supported by the river continuum concept
{Vannote er al. 1980) and the intermediate disturbance hypothesis (Connell 1978,
Ward and Stanford 1983) which indicate that species diversity increases with
increasing environmental heterogeneity or variability. Thus, decreases in temporal
discharge variability caused by river diversion projects may result in losses in

macrophyte species diversity.

(3) Decreases in discharge may have species-specific impacts

The research presented in Chapter 4 showed that macrophyte taxa are
segregated by current speed, sediment texture and depth. Thus, changes in current
speed, bottom sediment texture and depth caused by river impoundment may be

expected to have species-specific impacts.
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APPENDIX A: Macrophyte survey data collected in August 1992 for sites in the
Nechako River, British Columbia.

Legend:

1.

wn

®NAn A

1.
12.
13.
14.
15.
16.
17.
18.

Mercator coordinates = Universal transverse mercator grid
coordinate as read from 1:50000 map (location of site)

Dist. = distance from shore sample collected from (m)
Shore = left (0) or right (1) bank of river when looking
upstream

Quadrat = n of 3 replicates taken at each sampling interval
E. can. = Elodea canadensis

P. rich. = Potamogeton richardsonii

M. exalb. = Myriophyllum exalbescens

C. dem. = Ceratophyllum demersum

R. aquat. = Ranunculus aquatilis

P. pect. = Potamogeton pectinatus

P. gram. = Potamogeton gramineus

S. cun. = Sagittaria cuneatus

C. herm. = Callitriche hermaphroditica

P. berch. = Potamogeton berchtoldii

L. aquat. = Limosella aquatica

Chara = Chara

Mosses = moss

Misc. = miscellaneous macrophytes or parts of macrophytes
that could not be identified
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APPENDIX B: Physical and chemical conditions associated with aquatic

macrophytes for sites in the Nechako River, British Columbia

Legend:

1.

v W

Merc coord = Universal transverse mercator grid coordinate
as read from 1:50000 map (location of site)

Dist. = distance from shore sample collected from (m)
Quad. = n of 3 replicates taken at each sampling interval
Depth = depth of sampling interval on day of collection
Velocity = average current speed of sampling interval on day
of collection

Exch. P. = Exchangeable phosphorus concentration of
sediments at sampling interval (mean of 2)

Exch. N. = Exchangeable nitrogen concentration of sediments
at sampling interval (mean of 2)

Phi = the negative logarithm in base 2 of the particle size in
mm (the number associated with the phi scale is the
proportion, by mass, of the total sediment sample falling within
the phi range)
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