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Abstract

Electromagnetic transient (EMT) simulation is widely utilized in power system planning

and design. Respecting the detail and complexity of the components models, the electro-

magnetic transient program (EMTP) demands significant computational power. Increas-

ing with the scale of the system, this requirement has become so prominent that parallel

programming techniques are urgently needed in large-scale power system EMT simula-

tion. Improving upon the multithreading parallelism, massive-threading computing is

one of the key developments that can increase the EMT computational capabilities sub-

stantially when the processing unit has enough hardware cores. Compared to the tradi-

tional central processing unit (CPU), the graphic processing unit (GPU) has many more

cores with distributed memory which can offer higher data throughput.

This thesis describes the conception of the massive-threading parallel EMTP based on

GPU for large-scale power systems using compute unified device architecture (CUDA). It

defines a new fundamental program framework, relevant basic data structures and effi-

cient data interfaces of the massive-threading parallel EMT simulator. The thesis proposes

a series of massive-threading parallel modules for component models including unified

linear passive elements module (ULPEM), universal line module (ULM) and universal

machine module (UMM); and numerical methods, including Newton-Raphson iteration

module (NRIM) and forward-backward substitution with LU factorization module (FB-

SLUM), used in the EMTP. Without the need for a trade-off between the system scale and

the complexity of the component models, all parallel modules proposed above are de-

tailed, universal and unified. In order to fully release the computing power of modern

computer system, both data and instructions are based on 64-bit architecture, which guar-

antee the precision as well as extensibility of the program.

The developed MT-EMTP program has been tested on various large-scale power sys-

tems of up to 2458 three-phase buses with detailed component modeling. The simulation

results and execution times are compared with a mainstream commercial software, EMTP-

RVr, to show the improvement in performance with equivalent accuracy.
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1
Introduction

Electromagnetic transients (EMT) are the temporary electromagnetic phenomena, such as
changes of voltage, current and flux, in a short time slice caused by the excitation due
to switching operation, fault, lightning strike, and other disturbances in power system [1].
Although they are short and fast, transients impact the stability and reliability of the power
system significantly. For example, transients can damage component insulation, activate
control or protective systems, and cause system interruption; thus studying and analyzing
EMT play important roles in the planning, design, and operation of modern power sys-
tems. An EMT simulator numerically simulates them by using computer analytical mod-
els to illustrate these phenomena in detail. Nowadays, the use of EMT simulation tools is
no longer restricted to specialized studies focused on analyzing the propagation of elec-
tromagnetic transients. Due to their versatility and breadth of modeling capability, EMT
tools such as ATP [2], PSCAD/EMTDCr [3], EMTP-RVr [4] and etc., are routinely used in
the planning, design and operation of power systems, to study dynamic phenomena over a
wide frequency range— from steady-state studies such as load flow and harmonic analysis
to high-frequency studies such as restrike overvoltages in gas insulated substations [5].

Along with modeling and application diversity, the size of the power system simulated
by EMT tools has grown concomitantly [6]. It is not uncommon to be able to simulate in
detail systems containing hundreds of buses using such tools. Nevertheless, the common
characteristic of all existing EMT simulation tools is that they are single-thread sequen-
tial programs designed to run efficiently on single-core CPUs based on the x86 processor
architecture. Throughout the 1990s and 2000s, the CPU clock speed steadily increased
and memory costs decreased fueling a sustained increase in the speed of these programs.
But now with the clock speed saturated around 3GHz due to chip power dissipation and
fabrication constraints, the computer industry has transitioned to multi-core hardware ar-
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chitectures in a CPU to improve overall processing performance, so that the performance
of a processor is no longer only decided by the frequency.

1.1 Single-thread and Multi-thread Programming

In a traditional single-tasking operation system (OS), the CPU can only execute the in-
structions for one task at any point in time. The execution of code and access of data
are serial and sequential since the program is single-threading. The conception of multi-
threading comes up with a multi-tasking OS, which was considered much earlier than a
multi-core hardware. Since the executing speed of a CPU core is much faster than pe-
ripherals, such as DRAM, hard drive and IO ports, multi-threading reduces time wasted
waiting for low speed peripherals. Although still running on the single-core CPU, threads
in a multi-threading program are concurrent by sharing CPU time and switching context,
scheduled by the multi-tasking OS. The multi-threading program really achieved paral-
lel execution only after the advent of multi-core CPU; on the other hand, a program can
expoit the computing power of multi-core CPU only if it supports multi-threading. There-
fore, executing a single-threading EMT program on a multi-core architecture is inefficient
because the code is executed on a single core, one instruction after another in a homoge-
neous fashion, unable to exploit the full resource of the underlying hardware. The over-
all performance of the code can be severely degraded especially when simulating large-
scale systems with high data throughput requirements. A multi-threading parallel code
can provide substantial gain in speed and throughput over a single-threading code on a
multi-core CPU. Even on single-core processor systems, multi-threading can add palpable
performance improvement in most applications. The implementation of multi-threading,
however, is not that natural because a problem is natively coupled and sequential in com-
mon. A serial data structure and algorithm are required to be redesigned to accommodate
the multi-threading pattern.

1.2 Massive-Thread Programming

The idea of massive-threading is based on one of the most advantageous modern proces-
sor techniques— the many-core processor. The original motivation of many-core processor
was to accelerate the 3D graphics for digital graphic processing. Under the high demand
of powerful 3D graphics, the graphic processing unit (GPU), which is a specialized elec-
tronic circuit originally designed to manipulate the display and 2D/3D video processing in
high-speed [7], was conceived in the 1990s as a hardware-accelerated 3D graphic processor.
It normally contains many cores organized as multiple Streaming Multiprocessors (SMs)
with a massive parallel pipeline, than a conventional CPU with just multiple cores. With
the development of fast semiconductor material and the manufacturing technology in in-
tegrated circuit industry, more and more (up to thousands nowadays) cores are being inte-
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grated into one chip. Trying to use the processing power of a GPU to relieve the increasing
pressure of CPU in high compute-demanding tasks besides the normal graphic processing,
general purpose computing on GPU (GPGPU) was proposed to turn the graphic process-
ing power into general-purpose computing power [8, 9]. Researchers have already begun
to exploit GPUs for various applications in multiple industries [10, 11], such as molecu-
lar dynamics, bio-informatics, computational fluid dynamics, finance, weather and atmo-
sphere modeling, etc. In power systems the applications include data visualization, load
flow computations and transient stability simulations [12–19].

However, unlike the cores in common multi-core CPU, the GPU cores are lightweight
processors without complicated thread control, thus single instruction multiple data (SIMD)
technique invented in the 1970s’ vector supercomputers is applied widely in GPU for both
graphic and general purpose computing, which can accelerate the procedure and data in-
dependent computations effectively. Since the GPU was designed for graphic applications
natively, the GPU functions are difficult to be used in general purpose computing, which
requires a computer engineer to have enough graphic processing knowledge and transfer
a normal mathematic problem to a graphics problem, Several developing platforms are
provided to help the GPGPU development, which will be given briefly as follows:

• CUDATM (compute unified device architecture) offers a C-like language to develop
GPGPU application on the GPU provided by NVIDIAr.

• OpenCLTM is an open framework for developing GPGPU programs, which can be
executed across various platforms, supporting the GPUs of AMDr, INTELr and
NVIDIAr. Initiated by Appler with the collaboration of a group of GPU providers,
OpenCL is developed by a nonprofit organization Khronos GroupTM.

• DirectCompute, a part of DirectXr 11, is a set of application programming inter-
faces (APIs) that supports GPGPU with DirectX 11 supported GPUs on Windowsr

provided by Microsoftr.

All the above development platforms cover the detail hardware structures of GPUs and
provide a relatively unique program interface, making it easier for software developers to
massive-threading for their parallel programs.

1.3 Parallel Performance of a Program

With multi-threading based on a multi-core processor, a program can be accelerated by
parallel computing. Then, how does one predict the overall performance of a multi-
threading program and how do we measure the speedup of the parallel program relative
to the serial counter part? Amdahl’s law [20] answers the above questions of our EMT
simulation problem, in which the workload is scaled. In following discussion, we assume
all threads are running on enough real cores. The multi-threading based on a single-core
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Figure 1.1: The Amdahl’s Law

or fewer-core processor is not included. Under this assumption, the number of threads
presents the number of work-flows executing in parallel. The speedup S with N threads
is given as

S(N) =
1

(1− P ) + P/N
, (1.1)

where P is the proportion of the program which can be parallelized. As shown in Fig.
1.1, the limit of the speedup is decided by the proportion which cannot be parallelized
instead of the number of threads in a scaled task. For example, if the parallel proportion
is less than 50%, the overall speedup can never exceed 2. Thus, the processing method
and the data structure which can increase the degree of parallelism are the linchpin in
the eventual acceleration for a massive-threading program since there are supposed to
be enough threads for the job. Moreover, Amdahl’s Law shows that the speedup climbs
fast with the increase in the number of threads at the beginning, but slows down and
eventually saturate. Therefore, the granularity, which is defined as the amount of work
of a single task in a parallel program [21], should be properly measured to achieved the
balance between the computing resource and the computing performance [22].
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1.4 Motivation for this work

In the mainstream EMT simulation software nowadays, there is no acceptable practical so-
lution to simulate a realistic large-scale power system with detailed models without using
reduced equivalent. It normally takes hours to simulate a power system with tens of thou-
sands of buses completely on a single-core CPU [6]. Without multi-threading and massive-
threading techniques, these software cannot derive any benefit from the extra cores even
if they run on a multi-core CPU. A practical way to solve this problem without parallel
computing is to reduce the system complexity. The simulation software will use detailed
models for the focused parts of the large system, and the remainder parts of system are
equivalent to reduced models which are obviously less accurate than using detailed mod-
els. However, it still takes several minutes even for the reduced equivalents to simulate a
few milliseconds of transient behavior [6].

In order to meet the requirement of the endless growing complexity and size of modern
power systems, Massive-threading is proposed in this thesis to evolve the EMT simulator
as a leading-edge parallel technique. However, it is a significant challenge to implement
massive-threading for EMT simulation due to the many-core processor’s different hard-
ware architecture and its cooperation with the CPU. As per the analysis of the parallel per-
formance in Section 1.3, simply adding more threads cannot provide more improvement in
speed— considering the cost of cooperation, the overall performance may even be jeopar-
dized. Therefore, increasing the rate of parallelism of EMT program, such as scattering the
data structures for the network solution and decoupling the process routing for the com-
plicated detailed models, and decreasing the cost of the cooperation, such as reducing the
data transfer between different processors and controlling the response delay of recurrent
operations, are the most important approaches to the overall improvement in speed, since
the modern commercial EMT software has already gained very high performance with the
mature algorithms and full adaption on the CPU. The mind-set has to be changed from
either the traditional single-threading or common multi-threading programming based on
the CPU to massive-threading on a many-core processor.

This thesis focuses on this challenge to design a massive-threading EMT program (MT-
EMTP) for large-scale power system using detailed component models based on GPU [23],
which has native parallel many-core processing units and high-performance floating-point
number processors, and leads the EMT simulation to a new direction of parallel comput-
ing. In the view of the author, it is the first time that the MT-EMTP is implemented using
the most detailed models of power system components. The program is developed using
CUDA 4 [24], a relatively mature and stable platform, with C++, which can be ported to
other platforms conveniently.
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1.5 Research Objectives

The objectives to be accomplished in developing the massive-threading parallel program
for EMT simulation (MT-EMTP) are listed as follows:

• The unified passive elements module (ULPEM) for common linear power system
components, such as resisters, capacitors, inductors and switches.

• The compensation method interface module (CMIM) for common non-linear power
system components, such as surge protector, lightning arrestor and nonlinear RLC.

• The universal line module (ULM) for detailed modeling of transmission lines and
cables.

• The universal machine module (UMM) for detailed modeling of synchronous ma-
chines.

• The forward-backward substitution with LU factorization module (LU-FBSM) for
the solution of linear equations using the block node adjustment (BNA) to obtain a
block diagonal pattern for the system admittance matrix, which is ideally suited for
the GPU-based massive-threading parallel computing.

• The Newton-Raphson iteration module (NRIM) for the solution of nonlinear equa-
tions.

• The performance of the MT-EMTP is evaluated for accuracy, computational effi-
ciency and scalability, using several large-scale test power systems, and compared
with the EMTP-RVr.

1.6 Thesis Outline

This thesis consists of four chapters. Other chapters are outlined as follows:
Chapter 2 gives a general introduction to GPU architecture and CUDA abstraction, and
also discusses some important design issues.
Chapter 3 describes the framework of the simulator; the compensation method interface;
and the details of the massive-threading parallel modules, including ULPEM, ULM, UMM,
NRIM and LU-FBSM.
Chapter 4 presents the experimental results for various large-scale test systems and com-
parison with EMTP-RVr.
Chapter 5 gives the conclusions and future work.



2
GPU Architecture and CUDATM Abstraction

As the crux of a massive-threading parallel EMT simulation system, the GPU plays an
undeniably important role in it. After experiencing many generations, the architecture of
GPU has matured along with its performance. The FermiTM architecture GPU was used
for the development of the parallel EMT simulation system in this thesis. Along with the
hardware architecture, the software architecture for the parallel programming of NVIDIA’s
GPU, the compute unified device architecture (CUDATM), has also progressed rapidly up
to Version 4, which became the foundation of the software framework for the parallel EMT
simulation system.

Table 2.1: GPU Specification

Chip GF100
Die size 529 mm2

Fabrication 40 nm
Transistors 3.2 billion
Number of SMs 16
Number of cores 512
L1 Cache 64 KB
L2 Cache 768 KB
Bus width 384 bit
Memory ECC Supported
System interface PCIe 2.0 × 16
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Figure 2.1: Die, chip and card for NVIDIAr FermiTM.

Figure 2.2: Die of Intelr CoreTM I7.

2.1 GPU Architecture

As the 11th generation of NVIDIA’s GeForce GPU and the 3rd generation CUDA sup-
ported product, FermiTM (GF100) [25] has a lot more compute capability than its predeces-
sors. According to the specification listed in Tab. 2.1, the GF100 has 3.2 billion transistors in
the 40nm process on the 529 mm2 die. There are 16 Streaming Multiprocessors (SMs) with
32 cores each; thus, there are 512 cores in total, in the GF100. It connects to the main system
by PCIe 2.0 × 16 interface with a 384-bit wide bus. Fig. 2.1 shows the GPU card (C2050)
made of the GF100 consisting of the many-core die. With 3rd generation SM, GF100 offers
8× faster double precision floating-point performance over its predecessor. Moreover, it
has the true cache hierarchy, and each SM has 64 KB RAM with a configurable partitioning
of shared memory and L1 cache to improve bandwidth and reduce latency. Additionally,
benefitting from the NVIDIA GigaThreadTM Engine, it can deal with the application con-
text switching with 10× faster speed, and execute an application in concurrent kernels and
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Figure 2.3: Computing performance comparison (CPU VS. GPU).

out of order threads. Last but not least, Fermi is the first GPU architecture supporting
error-correcting code (ECC) to increase the data reliability during the computation.

Different from the most modern multi-core CPU, Intelr CoreTM i7 whose die is shown
in Fig. 2.2, which only has several serial cores, the GPU which has much more cores is
optimized for throughput with explicit management of on-chip memory. Although one
core of CPU has much more power than that of a GPU for a serial and random task, the
GPU will release its marvelous power to show extreme speedup when the task can be
parallelized into many threads and executed in a single instruction multiple data (SIMD)
format.

Since the capability to process floating-point operations is an important aspect in mod-
ern computing as well as the EMTP simulation, floating-point operations per second (FLOPS)
has been a key index to measure the performance of a compute system. Fig. 2.3 shows the
comparison between CPU and GPU during recent years in double precision Giga-FLOPS
computation [26]. Although both CPU and GPU increase their computing performance
steadily, the increase of GPU’s performance is much sharper than that of the CPU. The
GPU used in this project (Fermi) has about 5 times GFLOPS than the mainstream CPU
(SandyBridge), while clocking at half the speed of the CPU. Meanwhile, Fig. 2.3 shows a
bright prospect of GPU computing performance as well.

The diagram in Fig. 2.4 shows the GPGPU computing system architecture. It consists
of 14 SMs, and each SM is populated with 32 compute cores which share the registers,
caches and dedicated memory inside the SM. There is a total of 64KB memory in each SM,
which can be configured into 48KB shared memory and 16KM L1 cache, or reconfigured
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Figure 2.4: Computing system architecture: (1) data transmission between host and device,
(2) data dispatched to/from many cores, (3) Control instruction dispatch.

into 16KB shared memory and 48KB L1 cache. 768KB unified L2 cache, which can be read
and written by all clients, increases the throughput of off-chip memory (video memory)
efficiently. Since the GPU is designed to work as a coprocessor, all data and instructions
come from the CPU via the PCIe interface. Before computation, the raw data must be
transferred into the 384-bit width GDDR5 video memory by path 1 in Fig. 2.4, which can
offer maximum 16GB/s bi-direction bandwidth. And then, the data are distributed to ev-
ery computing core via path 2 in Fig. 2.4, which can offer maximum 144GB/s bandwidth.
Controlled by the instructions from path 3 in Fig. 2.4, the calculations are executed in par-
allel. Although the video card connects to the main system by PCIe 2.0 × 16 bus and the
video memory running in 3GHz has 384-bit width interface, they can still not fulfill the
515.2GFLOPs double-precision peak floating point computing power of the GF100.

In order to make every core in the GPU work efficiently, enough data must be fed to
catch up to the instruction cycles; without data input, the cores can only remain idle, thus
reducing compute speed. Since the GPU has far more (hundreds) cores than the CPU, the
data bandwidth requirement is increased tremendously. However, both the system main
memory and the video memory cannot offer that ideal bandwidth; therefore, specific mem-
ory access routes have to be followed to reach the optimal speed. The data transmission
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paths between the memories, i.e. path 1 and path 2 in Fig. 2.4, are the main bottlenecks of
the architecture. As explained later, the proposed massive-threading parallel EMT mod-
ules are designed to minimize the use of these paths in order to maximize computational
efficiency.

2.2 CUDA Abstraction

Compute Unified Device Architecture (CUDA) proposed by NVIDIA is the programming
language used to implement a parallel program without dealing with the GPU assem-
bly language. The NVIDIA GPU hardware are abstracted by CUDA architecture, so that
the software developed by CUDA can execute in various CUDA GPUs (CUDA-supported
GPUs) in spite of their different hardware specifications, such as the number of SMs per
chip and cores per SMs. With C-like syntax called CUDA C and C-format API, CUDA sup-
ports major C/C++ features, such as pointer and class, to integrate with C/C++ program
easily. Since CUDA has a relatively longer history that other GPGPU developing libraries,
there are a group of special application libraries available, such as CUBLAS for linear al-
gebra, CUFFT for Fast Fourier Transform and CURAND for random number generation.
As well as the general abstraction, all hardware details of GPUs can still be configured and
set by CUDA without missing the flexibility. The integrated development environment,
multiple operation system platform support and extensive debugging tools also benefit
the programmers and developers.
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As shown in Fig. 2.5, the computing system is separated into two parts: CPU side as
the host, on which the serial parts of the program run, and the GPU side as the device, on
which the parallel parts of the program run, in the CUDA architecture. Since the GPU is
a co-processor of the computing system, the basic idea of heterogeneous programming is
to run the serial part and parallel part of a program on the CPU and GPU. In the CUDA
architecture, the serial part is programmed by normal C/C++ code; the parallel part is
programmed into a kernel by CUDA C. When the whole program is executed, it starts
from the CPU, then the serial codes run on the host side, and the parallel kernels run the
device side. The two sides execute their programs alternately until the end of execution, as
shown in Fig. 2.6. Considering the Amdahls Law mentioned in chapter 1, extending the
parallel part as much as possible is the critical path to gaining the maximum acceleration
from GPU.

2.2.1 Thread hierarchy

Since there are millions of threads applied in the CUDA architecture, a CUDA thread hi-
erarchy is designed to manage them. This is a 3-level hierarchy. As shown in Fig. 2.5,
Grid, Block and Thread map to GPU, SM and Core respectively. However, the user need
not be concerned with the actual number of GPUs, SMs and Cores, since the number of
abstracted threads are automatically assigned to the physical cores in parallel or serial
fashion. Therefore, even if the GPU used has fewer cores than what the CUDA program
requires, the programmer can still claim the number of threads needed. The grid is the top
level in the CUDA hierarchy, normally one GPU means one grid. Therefore, for a single
GPU computing system, the index of grid, xG, is always 1. On the other hand, a comput-
ing system can have multiple GPUs so that the device side of CUDA can maintain multiple
grids as well. In one grid, there are many blocks which are divided in 3 groups (x,y,z). The
index of block per grid, (xB , yB , zB), is a 3-dimensional vector, with the maximum size of
each dimension being 65525. Therefore, one grid can contain a maximum 281462092005375
(65535×65535×65535) blocks. Similar to blocks in grid, there are thousands of threads in
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one block. The index of thread per block, (xT , yT , zT ), is also a 3-dimensional vector. Dif-
ferent from the maximum size of the block dimensions, at the thread-level the maximum
sizes of x and y dimensions are 1024, and the maximum size of z dimension is 64. There-
fore, the maximum index dimension of threads is 67108864 (1024×1024×64). However,
the maximum number of thread in a block is limited to 1024. Under this restriction, if one
dimension uses up all 1024 threads, the other dimensions have to be set to 0.

All threads in a block share the resources of the block , such as register, shared memory
and cache. In order to avoid the conflict of using shared resources, all threads in each block
can be synchronized by setting the synchronization point specifically, which acts a barrier
where all threads in the block must wait before any is allowed to proceed. All threads
inside a grid execute the same instruction simultaneously with multiple data input, which
requires complete data independence and unified processing flow in the kernel. This is
known as the single instruction multiple data (SIMD) format. On the other hand, the
single instruction multiple thread (SIMT) enables the program with thread-level parallel
code for independent, scalar threads [24], thereby allowing the GPU to handle multiple
branches and operations in a single instruction. The developed parallel EMT component
modules and the sparse linear solver utilize both the SIMD and SIMT concepts.

2.2.2 Memory hierarchy

Similar to the division of execution into host and device sides, the memory structure is
also divided into these two sides. The host memory is on the host side; and the memories
on the device side include global, shared and local memory. The host memory maps the
system main memory of the computer system, which can only be accessed by the CPU.
Since the GPU cannot access the system main memory, the threads on the device side
cannot access the host memory. While, on the device side, each thread has its own register
and local memory; each block has its dedicated shared memory, which has much lower
access latency and wider bandwidth than others, used by all threads inside the block; all
threads in the grid can access the global memory, which maps to the video memory on
the video card, as shown in Fig. 2.5. Therefore, all data being processed by the GPU has
to be first copied into the global memory on the device side. Then the associated data
are transferred to the relevant memory and register belonging to the respective block and
thread. The computations in each thread will not start until all data are ready.

Since the global memory is not on chip though it is on board, accessing it is relatively
inefficient. The shared memory (much like an L1 cache), which is much faster than global
memory, is offered for each block, which can be accessed by all threads in the block. Thus
using this limited resource (48KB per block) wisely can effectively optimize the perfor-
mance of the program. The advanced Fermi architecture (compute capability 2.0 and
above) offers data cache (16KB per block) which requires a well organized data input to
maximize access speed. In the global and shared memories, a memory address normally
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can only be accessed once at the same time in an instruction cycle, especially for write op-
eration. Therefore, simultaneous multiple and random memory access should be avoided
in the CUDA kernel because not all threads can guarantee that their memory access is
safe. Because there are numerous memory transactions before each parallel operation,
the performance of memory throughput influences the overall performance significantly,
sometime it even overwhelms the speed and number of cores of the GPU. It is obvious that
all threads (cores) just keep idle before all data are prepared. Since all memory interfaces
do not have ideal bandwidth and are predefined, the alternative way to optimize perfor-
mance is to maintain the wide scale memory transactions as few as possible, which defines
the keynote of the data structure design for the parallel EMT simulation.

2.2.3 Syntax extension

The function implementing the parallel code is named kernel in CUDA. CUDA C extends
the syntax of standard C by defining the kernel. The notations,

global and device ,

are introduced to declare the types the variable and function. The global function can be
called on the host side; and the device function can be called on the device side.

Before the global function is called, the configuration of threads is specified using a
new execution configuration syntax,

<<< · · · >>>.

Inside the bracket, the dimension of blocks per grid, the dimension of threads per block
and the amount of shared memory per block are declared explicitly. Based on this decla-
ration, each thread executing the kernel has a unique thread ID within the kernel given by
the built-in variables,

threadIdx, blockDim and blockIdx.

The thread ID of a block can be expressed as

threadIdx.z∗blockDim.y∗blockDim.x + threadIdx.y∗blockDim.x + threadIdx.x.

The following sample code shows a kernel for adding two vectors A and B of size N, and
for storing the result in the vector C:
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//Kernel definition
global void VecAdd(int N, float* A, float* B, float* C)
{

int i = blockIdx.x∗blockDim.x + threadIdx.x;
if (i < N) C[i] = A[i] + B[i];

}

int main()
{

· · ·
//Kernel invocation
int nthread = 256;
int nblock = (N + nthread - 1)/nthread;
VecAdd<<<nblock, nthread>>>(N, A, B, C);
· · ·

}

In above example, the number of thread per block is set to 256, and N threads are dis-
patched into [N/256]+1 blocks. In the last block, not all 256 threads are used. Therefore,
the boundary check is necessary before a thread is applied.

The format of the device function is similar to a normal C function without the exe-
cution configuration declaration. Considering the execution efficiency in the kernel, the
device function can be declared as an inline function to improve the performance by the
declaration

inline .

Actually, the device function can also be called on the host side [24].

2.3 Summary

In this chapter, the architecture of the GPU and the abstraction of the CUDA are described.
The 11th generation architecture of NVIDIA’s GPU, Fermi, has 3.2 billion transistors to
offer 512 cores grouped into 16 SMs making the code execution and data transfer paral-
lelized. The many-core structure, high-throughput memory interface, and all new features
including the 8× faster double precision floating point operation, the true cache hierarchy,
the NVIDIA GigaThreadTM Engine and ECC support, establish a substantial and consoli-
dated foundation for the development of the massive-threading EMT simulation system,
in which the data structure and parallel modules are designed based on these characteris-
tics of GPU and CUDA.



3
Massive-threading Parallel EMT Simulator

The parallel EMT simulator 1 is designed by using the GPU based massive-threading par-
allel computing system introduced in chapters 1 and 2. The system framework, data in-
terface and massive-threading parallel component and numerical method modules are the
key components to realize the parallel EMT simulation system. Therefore, they are delib-
erately developed according to the features defined by the GPU architecture and CUDA
abstraction to approach the maximum performance of the many-core parallel computing
system.

3.1 Parallel Simulation System Framework

The system framework for the massive-threading parallel EMT simulation, including hard-
ware and software, are based on the parallel features of GPU and CUDA. They are de-
scribed in the section.

3.1.1 Hardware architecture of parallel simulation system

The hardware of the massive-threading parallel EMT simulation system is based on the
heterogeneous cooperation between the CPU and the GPU. As shown in Fig. 3.1, the CPU
is assembled on the center of mother board, beside which there are RAMs in the DDR3
slots, and the compute card C2050 with GPU and video memories inside is inserted in the
PCIe slot.

The Table 3.1 lists the hardware specification of the parallel computing system. The

1 This material has been submitted: Z. Zhou, and V. Dinavahi, “Parallel massive-thread electromagnetic
transient simulation on GPU”, IEEE Trans. on Power Dilivery, pp. 1-9, March 2012.
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Figure 3.1: Physical layout of compute system depicting the CPU and GPU.

CPU has 4 cores running at 3.2GHz with 6MB L3 caches, which can drive the GPU effi-
ciently. 16GB system RAM offers enough space for the data structure of large-scale power
systems with thousands of buses, which will be compressed before transfer into the video
memory of GPU since the data are sparse. The PCIe 2.0 interface offers 4GB/s bandwidth
to link the CPU and GPU.

Table 3.1: Hardware Specification

CPU AMD PhenomTM II 955BE
Cores 4
Frequency 3.2 GHz
Cache 6 MB
System RAM 16 GB
GPU C2050 (Fermi)
Device interface PCIe 2.0
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The specification of the parallel computing device is listed in Table 3.2. Two SMs of
original GF100 chip are disabled for stable and thermal reasons; thus the C2050 has 14 SMs,
448 cores in total, running at 1.15GHz. There is a 3GB GDDR5 ECC supported memory
running at 3GHz in the C2050 card.

3.1.2 Software architecture of parallel simulation system

The basic idea of EMT solution is to solve the linear equation created by applying nodal
analysis to the power system circuit,

Y vY vY v = iii, (3.1)

where YYY is the admittance matrix, vvv is the vector of the nodal voltages and iii is the vector
of the currents injected into the relevant nodes [27]. Not all components in the power sys-
tem are linear, some of them such as machines, surge arresters and power semiconductor
devices are nonlinear. One solution is that all components are treated as nonlinear objects
including the linear ones; however, the methods to solve the nonlinear problem, such as
Newton-Raphson iteration method, are much more complicated and assume large com-
puting load than linear solution. Another solution is to separate the computation into two
parts, linear and nonlinear, and limit the iteration method only to the nonlinear compo-
nents. Up to this time, the problem seems to be solved, however, a new problem is how to
integrate linear and nonlinear solutions. Therefore, a interface, the compensation method
interface, is utilized to connect the two parts, which will be expounded in the next section.
Thus, the massive-threading parallel EMT simulator has two classes of modules for com-
ponents. One is the linear modules, including the unique linear passive elements module
(ULPEM), the universal line module (ULM), and the LU & forward-backward substitu-
tion module (LU-FBSM); the other is nonlinear modules, including the universal machine
module (UMM) and the Newton-Raphson iteration module (NRIM).

In the CUDA architecture, the GPU works as the co-processor of the CPU. The CPU
always starts the program, controls the process and collects the results. However, in order

Table 3.2: Parallel Computing Device Specification

Model C2050
Number of SMs 14
Number of cores 448
Core clock 575 MHz
Shader clock 1.15 GHz
Memory 3 GB
Memory clock 3 GHz
TDP 225 W
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Figure 3.2: Flow chart of massive-threading parallel EMT simulation system.

to maximize the performance, as many tasks as possible tasks are assigned to the GPU. As
shown in Fig. 3.2, the initial data and netlist are input to the host side when the simulation
begins. All data are parsed and analyzed on the host side to create the component models,
which are transferred to the device side. On the device side, the parallel modules are cre-
ated according the the hardware CUDA parameter, from which the node mapping struc-
ture (NMS) of the linear system is created by the block node adjustment (BNA) method.
The LU decomposition and the inverse of the admittance matrix, YYY −1, are precalculated.
Then the Thevenin equivalent resistance is extracted from YYY −1. For the result stability of
the power system simulation, the critical damping adjustment (CDA) [28] is applied when
the system configuration is changed. After the branch currents, iii on the right hand side of
(3.1), are updated, the nodal voltages vvv, on the left hand side of (3.1), are solved. Since the
nonlinear components are interfaced to the power system with the compensation method
module, their nodal voltages are calculated based on a superposition of the linear network
solution with computed solution for the nonlinear component using Newton-Raphson it-
eration with the linear values input. With the final nodal voltages, the history currents
for all components are updated. Thus, the calculation for one time-step is completed. If
all time steps are finished, the whole simulation is done; otherwise, proceeds to the next
time step. Before the simulation starts, the status of switches are checked. If any topology
and configuration of the power system are changed, the NMS of the power system has to
be rebuilt and continued with all following tasks; otherwise, the process goes to branch
currents update directly. All procedures are repeated until all time steps of simulation are
finished.

The CUDA specification of the parallel computing device used in this project, C2050, is
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Table 3.3: CUDA system specification

CUDA runtime version 4.2
Compute capability 2.0
Multiprocessor 14
Maximum threads per multiprocessor 1536
Global memory 3 GB
Constant memory 64 KB
Shared memory per block 48 KB
Registers per block 32768
Maximum threads per block 1024
Maximum dimension of a block 1024 × 1024 × 64
Maximum dimension of a grid 65535 × 65535 × 65535

listed in Tab. 3.3, The compute capability of C2050 is 2.0. With compute capability 2.0 sup-
ported device in the 4.2 CUDA runtime library, the CUDA system has 3 GB global memory
and 64 KB constant memory; and there are 48 KB shared memory and 32768 registers per
block. The maximum thread dimensions in 3 directions are 1024, 1024 and 64 for one block,
in which there are a maximum of 1024 threads. The maximum block dimensions in 3 di-
rections are 65535, 65535 and 65535 for one grid, in which there is a maximum of 1536 ×
14 threads, since there are a maximum of 1536 threads per multiprocessor and there are 14
multiprocessors.

3.2 Compensation Method Interface

The compensation method [29] is applied in EMT simulation to partition the linear and
nonlinear calculation into relatively independent sections instead of solving the entire
nonlinear network simultaneously. In practice, it can effectively increase the speed and
reliability of EMT simulation because of the smaller partitioned nonlinear system scale.
Although the compensation method is not perfect, limitations of compensation method,
such as only one nonlinear component is applicable connecting to one node, can be solved
by several ways, such as to add artificial delays between the components, in which the er-
ror and deviation are controlled within a reasonable margin. Therefore, the compensation
method is widely used in EMT simulation to reduce the amount of computation due to its
compromise between implementation and accuracy.

As shown in Fig. 3.3 (a), the nonlinear component, connecting to node mmm and kkk, is
isolated from the n-node power system. On the linear network side, the compensation
equations are given as

vkmvkmvkm = vkmovkmovkmo −RRReqikmikmikm, (3.2)
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Figure 3.3: Compensation method interface. (a) Power system with nonlinear component,
and (b) Nonlinear solution.

where vkmvkmvkm is a p× 1 vector of voltages across p-phase nonlinear component, ikmikmikm is a p× 1

vector of currents through p-phase nonlinear component, vkmovkmovkmo is a p × 1 vector of open-
circuit voltages (without the nonlinear branches) between nodes mmm and kkk, and RRReq is a
p × p Thevenin equivalent resistance matrix of the linear network. As shown in Fig. 3.4,
rrrkkkth and rrrmmmth are n×p matrices, where n is the size of the inverse admittance matrix YYY −1 and
p is the number of phases, defining the Thevenin resistance of kkk and mmm nodes to ground,
which are the kkk andmmm columns of YYY −1, where kkk andmmm have p phases. Then, the Thevenin
resistances from kkk to mmm, rrrkmkmkmth , an n × p matrix, are given by the difference of rrrkkkth and rrrmmmth.
Thus, the equivalent resistance matrixRRReq in 3.2 is calculated by

RRReq[i][j] = rrrkmkmkmth [kkk[i]][j]− rrrkmkmkmth [mmm[i]][j] (i, j = {1, 2, · · · , p}). (3.3)

On the nonlinear component side, the current and voltage characteristics are expressed as

fff(ikmikmikm, vkmvkmvkm) = 000, (3.4)

where fff is the nonlinear functions. When the linear equations 3.2 and nonlinear equations
3.4 are solved shown in Fig. 3.3 (b), the solutions of the currents ikmikmikm can be obtained. With
the superimposition ikmikmikm on the linear network solution as current sources, the solution of
the entire network is calculated as

vvv = vovovo − rrrkmkmkmth ikmikmikm, (3.5)
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Figure 3.4: RRReq calculation for the compensation methods interface (CMI).

where vvv is a n × 1 vector of entire network solutions and vovovo is n × 1 vector of open circuit
linear network solutions (without nonlinear components).

In the parallel computing system, all nonlinear components with compensation method
interface can be calculated simultaneously instead of solving them one by one since all
nonlinear components are decoupled. Moreover, because the compensation method con-
strain the computing dimension of nonlinear solution, which uses iteration method nor-
mally, it reduces the amount of computation effectively.

3.3 Massive-Threading Parallel Component and Method Modules

The three main classes of components considered in this EMT simulation are the linear pas-
sive elements, transmission line and synchronous machines, and two major solver meth-
ods for nonlinear and linear system that are the Newton-Raphson iteration and forward-
backward substitution with LU factorization methods implemented in parallel. In order to
build up a flexible and extendable EMT simulation system, all these models and methods
are modularized into independent modules. As shown in Fig. 3.5, after creating the par-
allel data structure by netlist and initial data, all component modules, including unique
linear passive element module (ULPEM), universal line module (ULM) and universal ma-
chine module (UMM), accomplish the computations using the solver modules, includ-
ing Newton-Raphson iteration module (NRIM) and LU & forward-backward substitution
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Figure 3.5: Parallel EMT simulation system diagram.

module (LU-FBSM). Via this modularized system architecture, the EMT simulator can be
easily extended, upgraded and maintained with new component models and numerical
methods in the future.

3.3.1 Linear passive elements (LPE)

3.3.1.1 Model formulation

Linear passive elements (LPEs), such as resistance, inductance, capacitance, switches and
their combinations, are represented by a discrete-time lumped model [30]. As mentioned
in Section II, since all threads in a kernel run the same instruction concurrently, a unified
model is required for all LPEs in the system. Using the Trapezoidal rule of integration, any
LPE combination can be modeled as a discrete Norton equivalent circuit comprising of an
equivalent conductance and a history current source. In the unified model, every LPE has
a R, L or C character. An arbitrary LPE Z shown in Fig. 3.6 (a) is a combination of L, R
and C shown in Fig. 3.6 (b). The voltage relations are given as

v(t) = vL(t) + vR(t) + vC(t), (3.6)

where v(t) is the voltage of the unified LPE Z, vL(t), vR(t) and vC(t) are the voltages of the
inductor, resistor and capacitor respectively. The current and voltage relations of them are
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Figure 3.6: Unified linear passive element lumped module.

expressed as

vL(t) = L
di(t)

dt
, (3.7)

vR(t) = Ri(t), (3.8)

vC(t) =
1

C

∫
i(t)dt, (3.9)

where iL(t), iR(t) and iC(t) are the currents of the inductor, resistor and capacitor respec-
tively. Applying the Trapezoidal rule for L and C gives the discretized equations as

RLeqi(t) = vL(t) + V L
h (t−∆t), (3.10)

RCeqi(t) = vC(t) + V C
h (t−∆t), (3.11)

where the equivalent resistors RLeq and RCeq for inductor and capacitor are defined as

RLeq =
2L

∆t
, (3.12)

RCeq =
∆t

2C
. (3.13)

The history voltages V L
h (t − ∆t) and V C

h (t − ∆t) for inductor and capacitor in (3.10) and
(3.11) are calculated with following recurrence equations

V L
h (t−∆t) = −V L

h (t− 2∆t) + 2RLeqi(t−∆t), (3.14)

V C
h (t−∆t) = V C

h (t− 2∆t)− 2RCeqi(t−∆t). (3.15)
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Figure 3.7: Massive-threading parallel ULPEM.

Fig. 3.6 (c) shows the Thevenin equivalent circuit after discretization, which includes 3
equivalent resistors and 2 history voltage sources. They can be regrouped by (3.6) as shown
in Fig. 3.6(d), where the integrated equivalent resistor and history voltage source of the
LPE Z is expressed as

Req = RReq +RCeq +RLeq, (3.16)

Vh(t−∆t) = V L
h (t−∆t) + V C

h (t−∆t). (3.17)

Source transformation results in the Norton equivalent circuit shown in Fig. 3.6(e), whose
parameters are given as

Geq = 1/Req, (3.18)

Ih(t−∆t) = GeqVh(t−∆t), (3.19)

where Geq is the equivalent conductance and Ih is the history current source of the unified
model. The LPE current i(t) is updated as

i(t) = Geqv(t) + Ih(t−∆t). (3.20)

With the unified LPE model (ULPEM), all linear elements can be processed in the same
kernel.

3.3.1.2 Massive-thread parallel implementation

As shown in Fig. 3.7, the designed parallel module for unified LPE only has one kernel for
the computation. For each LPE, a CUDA thread is assigned to execute the computation
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Figure 3.8: Kernel operation flow in the ULPEM.

based on the SIMT format. When the number n of LPEs exceeds the limitations of thread
per block k, they will be divided into m groups assigned to multiple CUDA blocks:

m =

[
n− 1

k

]
+ 1, (3.21)

where n, k and m are integers.
The operation flow of the LPE kernel is shown in Fig. 3.8. Inside the kernel, the LPE

current i(t) is computed from (3.20) firstly, then the inductive and capacitive history volt-
ages, V L

h (t − ∆t) and V C
h (t − ∆t), are updated from (3.14) and (3.15) using the values of

last step, and finally the history current Ih(t −∆t) is updated using (3.17) and (3.19). The
equivalent resistance Req and equivalent admittance Geq are reused for all time steps un-
less the network configuration is changed by switches. The only global memory accesses
are reading the input variables and writing the output variables, and all computations of
LPE take place inside the threads. During the EMT simulation, all variables are stored
and reused on the device side; thus the host-device and device-host data transmission is
minimized in each time step.

3.3.2 Transmission lines

3.3.2.1 Model formulation

The universal line model (ULM) is a phase-domain wide-band fully frequency-dependent
line model [31] capable of representing both symmetrical and asymmetrical overhead trans-
mission lines and underground cables. Traditional frequency dependent transmission line
models [32] were constituted in the modal-domain based on constant transformative ma-
trices with frequency-dependent model for the traveling waves; therefore, the applicabil-
ity of these models was restricted to symmetrical (transposed) lines and cables. The ULM
avoid the transformation matrices and is constituted directly in the phase domain; how-
ever it involves computationally expensive convolutions.

3.3.2.1.1 Frequency-domain formulation The solution of the traveling wave equations
at the sending-end ‘k’ and the receiving-end ‘m’ of a p-phase, l-length transmission line,
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Figure 3.9: Universal line model.

shown in Fig. 3.9 (a), are expressed as.

Ik = Y V k − 2Iik, (3.22a)

Im = Y V m − 2Iim, (3.22b)

where ii are the incident currents expressed at the two ends as

Iik = HIrm, (3.23a)

Iim = HIrk. (3.23b)

YYY andHHH in (3.22) and (3.23) are the characteristic admittance and the propagation matrices,
expressed as

Y =

√
y

z
, (3.24a)

H = e−
√
yzl, (3.24b)

where yyy and zzz are shunt admittance and series impedance matrices per unit length. For
the time-domain implementation, they are approximated by finite-order rational functions
using the vector fitting (VF) method [33]. The admittance matrix Y in (3.24a) can be fitted
directly in the phase domain. An element of Y is expressed as

Y (i,j)(s) =

Np∑
m=1

rrrY (i,j)(m)

s− pppY (m)
+ ddd(i, j), (3.25)

where rrrY , pppY , ddd and Np are the residues, poles, proportional terms, and the number of
poles of YYY respectively. Thus, all elements of YYY have identical poles pppY . The fitting of H
in (3.24b) is slightly different, because it has various modes. Before it is fitted in the phase
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domain,H has to be fitted in each mode with poles and time delays. The general element
ofH is expressed as

H(i,j)(s) =

Ng∑
k=1

NNNp(k)∑
n=1

rrrH
(k)
(i,j)(n)

s− pppH (k)(n)

 e−sτττ(k), (3.26)

whereNg is the number of modes;NNNp(k) and τττ(k) are numbers of poles and time delays for
fitting the kth mode; and rrrH (k) and pppH (k) are residues and poles for the kth mode. Again,
the poles are identical for all elements in each mode.

3.3.2.1.2 Time-domain implementation Modeled as two decoupled Norton equivalent
circuits, shown in Fig. 3.9 (b), the current and voltage relation at both ends are given as

ik(t) = GY vk(t)− Ihk, (3.27a)

im(t) = GY vm(t)− Ihm, (3.27b)

where the history currents Ih at the two ends of the line are expressed as

Ihk = Y ∗ vk(t)− 2H ∗ irm(t− τ), (3.28a)

Ihm = Y ∗ vm(t)− 2H ∗ irk(t− τ), (3.28b)

where the “∗” denotes numerical complex matrix-vector convolution since the poles pY
and pH can be complex numbers. The equivalent conductance matrixGY in (3.27) is given
as

GY = d+ rY λY , (3.29)

where the coefficients λY are defined as

λY = (
∆t

2
)/(1− pY

∆t

2
), (3.30)

with ∆t being the simulation time step. The numerical convolution Y ∗ v(t) in (3.28) is
defined as

Y ∗ v(t) = cY xY (t), (3.31)

where the coefficients cY are given as

cY = rY (αY + 1)λY , (3.32)

and the state variables xY are defined as

xY (t) = αY xY (t−∆t) + v(t−∆t) (3.33)
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with the coefficients αY expressed as

αY = (1 + pY
∆t

2
)/(1− pY

∆t

2
). (3.34)

Similarly, the numerical convolutionH ∗ ir(t− τ) in (3.28) is defined as

H ∗ ir(t− τ) = cHxH(t) +GHir(t− τ), (3.35)

where the coefficients cH are given as

cH = rH(αH + 1)λH ; (3.36)

and the state variables xH(t) are defined as

xH(t) = αHxH(t−∆t) + ir(t− τ −∆t), (3.37)

with the coefficients αH expressed as

αH = (1 + pH
∆t

2
)/(1− pH

∆t

2
). (3.38)

The propagation matrixGGGH in (3.35) is given as

GGGH =

Ng∑
1

rY λY . (3.39)

The reflected current iiir above are defined at the two ends as

irk(t) = ik(t)− iik(t), (3.40a)

irm(t) = im(t)− iim(t), (3.40b)

where the ULM currents i(t) are given by (3.27) and the incident currents ii(t) are defined
at the two ends as

iik(t) = H ∗ irk(t− τ), (3.41a)

iim(t) = H ∗ irm(t− τ), (3.41b)

where the convolution is given by (3.35), and ir(t−τ) are the reflected currents before time
delay τ .

3.3.2.1.3 Interpolation Since the wave traveling time τ is not an integral multiple of the
time step ∆t normally, linear interpolation is used to approximate the reflected current
ir(t− τ) in (3.35) and ir(t− τ −∆t) in (3.37). The time delay τ can be expressed as

τ = (N + δ)∆t, (0 6 δ < 1) (3.42)

where N is an integer and δ is a real number. As shown in Fig. 3.10, since the time-step ∆t

is small enough, the curves between known points ir(t− (N +2)∆t), ir(t− (N +1)∆t) and
ir(t−N∆t) are replaced by lines. Thus, the unknown current ir(t− τ −∆t) and ir(t− τ)

are approximated by the linear interpolation as

ir(t− τ −∆t) = (1− δ)ir(t− (N + 1)∆t) + δir(t− (N + 2)∆t), (3.43a)

ir(t− τ) = (1− δ)ir(t−N∆t) + δir(t− (N + 1)∆t). (3.43b)
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Figure 3.10: Linear interpolation.

3.3.2.2 Massive-thread parallel implementation

As shown in Fig. 3.11, the designed parallel module for ULM includes 8 kernels grouped
into 4 stages. Stage 1 updates the reflected currents iiir and calculates the interpolation for
the reflected currents before delay τ ; Stage 2 updates the state variable xxx(t); Stage 3 com-
putes the convolutions; and Stage 4 updates the incident current iiii the history current IIIh.
All the kernels inside the same stage are executed concurrently in the Fermi architecture
space.The computation for each ULM unit is done by a CUDA block running in SIMT,
inside which multiple threads are assigned to handle vector and matrix operations based
on SIMD. Therefore, every kernel has n blocks (the number of ULM units) in every stage,
and the number of threads in a block depends on the dimension of computed vectors and
matrices, which is typically based on the number of poles and residues from vector fitting.
The data are transferred deliberately from the global memory into the shared memory first
to improve the memory access performance due to the critical bandwidth requirement of
vector and matrix operations. In order to calculate the reflected currents ir(t − τ), a FIFO
deep in N + 2 is designed to store the history values of ir(t). For instance, a 15-value FIFO
is needed when τ = 13.35∆t since N is 13 in this case.

The kernel operation flow of the ULM module is shown in Fig. 3.12. Since the thread
dimension and shared memory size have to be reconfigured in different tasks, such as in
updating variables, interpolation and convolutions, they are separated into different ker-
nels, and their results are output to global memory and shared with other kernels. iiir(t)
are updated from (3.40) in Kernel0Kernel0Kernel0 and iiir(t− τ) are calculated from (3.43) by interpolation
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Figure 3.11: Massive-threading parallel ULM.

with previous values in Kernel1Kernel1Kernel1. The state variables xY (t) with the coefficients αH and
αY , which are precalculated and stored in the global memory, in Kernel2Kernel2Kernel2 and Kernel3Kernel3Kernel3 re-
spectively. All convolutions cY xY (t), cHxH(t) and GHir(t− τ) are computed from (3.31)
and (3.35) in Kernel4Kernel4Kernel4, Kernel5Kernel5Kernel5 and Kernel6Kernel6Kernel6 concurrently. In Kernel7Kernel7Kernel7, iiii are updated first
from (3.41), and then the history current IIIh are updated from (3.28) finally. Since the par-
allel computation is based on each ULM unit instead of its sending and receiving ends, all
the variables of ‘k’ and ‘m’ are computed within one kernel, avoiding the data exchange
between ‘k’ and ‘m’ ends. Similar to the LPE module, all the module variables are limited
to the device side, i.e. to the global and shared memories of the GPU; thus there is no data
exchange between host and device during ULM execution.

3.3.3 Electrical Machines

3.3.3.1 Model formulation

There are several types of rotating machine models that can be used for EMT studies. The
advantage of the unified machine model (UMM) [34] [35] is that it provides a unified math-
ematical framework to model up to 12 types of rotating machines including asynchronous,
synchronous and DC machines. The electrical part of the UMM includes the armature and
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Figure 3.12: Kernel operation flow in the ULM.

field windings. The UMM is allowed to have up to 3 armature windings (converted to
3 dq0 windings), and an unlimited number of windings on the field structure. The me-
chanical part of the UMM is modeled as an equivalent lumped electric network, where the
electromagnetic torque appears as current source. An alternate representation of the me-
chanical part as a multi-mass model (up to a maximum of 6 masses representing various
turbine stages) is also possible.

3.3.3.1.1 Electrical Part In the UMM used in this project, without loss of generality,
there are 3-phase stator armature windings {a, b, c}, one field winding f , up to 2 damper
windings {D1, D2} on the rotor direct d-axis, and up to 3 damper windings {Q1, Q2, Q3}
on the rotor quadrature q-axis, as shown in Fig. 3.13. Thus there are a maximum of 9
coupled windings whose discretized winding equations are described as

vdq0(t) = −RiRiRidq0(t)−
2

∆t
λλλdq0(t) + uuu(t) + VVV h, (3.44)

whereRRR is the winding resistance matrix, and the flux linkage λdq0 is given as

λdq0(t) = Lidq0(t), (3.45)
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Figure 3.13: Windings in UMM.

where L is the winding leakage inductance matrix given as

LLL =



Ld 0 0 Mdf MdD1 MdD2 0 0 0

0 Lq 0 0 0 0 MqQ1 MqQ2 MqQ3

0 0 L0 0 0 0 0 0 0

Mdf 0 0 Lf MfD1 MfD2 0 0 0

MdD1 0 0 MfD1 LD1 MD1D2 0 0 0

MdD2 0 0 MfD2 MD1D2 LD2 0 0 0

0 MqQ1 0 0 0 0 LQ1 MQ1Q2 MQ1Q3

0 MqQ2 0 0 0 0 MQ1Q2 LQ2 MQ2Q3

0 MqQ3 0 0 0 0 MQ1Q3 MQ2Q3 LQ3


(3.46)

with L and M standing for the self and mutual inductances respectively. In (3.44), the
vectors of voltages vvvdq0, currents iiidq0 and speed voltages uuu of the windings are expressed
as

vvvdq0

iiidq0

uuu

= [

= [

= [
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,

0
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0

],

],

];

the winding resistance matrixRRR is a diagonal matrix, given as

RRR = diag[Rd, Rq, R0, Rf , RD1 , RD2 , RQ1 , RQ2 , RQ3 ];
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Figure 3.14: Electrical model of the mechanical part of UMM.
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Figure 3.15: Interfacing UMM with the linear network via CMI.

and the history term VVV h using Trapezoidal discretization can be expressed as

V h(t−∆t) = −vdq0(t−∆t)−Ridq0(t−∆t) +
2

∆t
λdq0(t−∆t) + u(t−∆t). (3.47)

The Park’s transformation links the abc phase domain with the dq0 rotating reference do-
main for any vector given as

xxxdq0 = PPPxxxabc, (3.48)

where PPP is an orthogonal matrix defined as

P =

√
2

3

 cos(ϕ) cos(ϕ− 2π
3 ) cos(ϕ+ 2π

3 )

sin(ϕ) sin(ϕ− 2π
3 ) sin(ϕ+ 2π

3 )
√
2
2

√
2
2

√
2
2

 , (3.49)

where ϕ denotes the rotor angle.

3.3.3.1.2 Mechanical Part The dynamics of the rotor can be described with the differen-
tial equation

Tm = J
dω

dt
+Dω + Te, (3.50)
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where Tm, Te, J , D and ω denote the mechanical torque, electromagnetic torque, inertia,
damping and rotor speed respectively, as shown in Fig. 3.14(a). Using the machine current
iiidq0, the electromagnetic torque Te is calculated as

Te = λdiq − λqid. (3.51)

Instead of the mass-shaft system, the mechanical part described in (3.50) is represented as
a linear electrical equivalent circuit in the UMM as shown in Fig. 3.14(b). The equivalent
differential equation of (3.50) is replaced by

iTm = CJ
dvω
dt

+GDvω + iTe . (3.52)

Discretizing the lumped equivalent capacitance CJ , the mechanical side model is shown
in Fig. 3.14(c), where the equivalent conductance GCJ

and history current IhCJ
are given

by

GCJ
= 2CJ/∆t, (3.53)

IhCJ
(t−∆t) = −IhCJ

(t− 2∆t)− 2GCJ
vω(t−∆t), (3.54)

with the equivalent voltage vω is expressed as

vω(t) =
iTm(t)− iTe(t)− IhCJ

(t−∆t)

GD +GCJ

. (3.55)

Since the UMM is a nonlinear model which connects to the linear network, the compensa-
tion method [29] is used to circuit interface it with the EMT network solution. As shown
in Fig. 3.15, the open-circuit node voltage of the nonlinear component vvvl, which is also the
Thévenin equivalent voltage of the linear network, is first solved. Considering vvvl as the
input to the nonlinear component, the reaction current iiin from the nonlinear system can
be calculated by the relational function f between vvvl and iiin. Injecting iiin into the linear
network, the node voltage vvv of nonlinear component after compensation is given as

v = vvvl + rrrthiiin, (3.56)

where rrrth is the Thevenin equivalent resistance of the linear network looking into the open
port from the nonlinear side. The mathematical nonlinearity involving the product of
fluxes and currents in (3.51) is handled by an iteration method as shown in Fig. 3.16. Once
the speed ω has converged, the currents iiin dq0 are transferred back to the phase-domain as
the incident currents iiin from the nonlinear network to the linear network.

3.3.3.2 Massive-thread parallel implementation

As shown in Fig. 3.17, the designed parallel module for the UMM includes 3 kernels within
3 stages. Stage 1 predicts the rotor speed ωp and transfers the phase-domain inputs into
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Figure 3.16: Iteration flow for UMM.
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Figure 3.17: Massive-threading parallel UMM.

dq0 reference domain. Stage 2 is responsible for the computations of electrical part and
mechanical part, and gets the electromagnetic torque Te, the nonlinear current iiin dq0 in dq0
and the equivalent speed voltage vω. Before proceeding to Stage 3, the convergence of
the rotor speed ω for all UM units is determined by the CPU to avoid the synchronous,
efficient and random memory access issues arising from the parallel determination, and
Stage 1 to 2 are repeated until all UMM units are converged or the maximum number of
iterations are reached. Finally, Stage 3 updates the history variables and completes the
calculation of the integrated UMM voltage vvv. Similar to the ULM module, each UMM unit
occupies a CUDA block running in SIMT, in which multiple threads are assigned to handle
the vector and matrix operations based on SIMD, according to their dimensions. Shared
memory inside the CUDA block is used for critical memory access during the vector and
matrix operations.



Chapter 3. Massive-threading Parallel EMT Simulator 37

Linear
Network

Nonlinear Network

vl

Rth

v

GD

vω

Tm Te

ω

(b)(a)

Mechanical Side

J, D

CJ

Electrical Equivalent

GD

vω

(c)

Mechanical Side Model

iTe

iTm iTm
IhCJ

iTe

abc

dq0

+
-

vl_dq0

Electrical
Part

Mechanical
Part

iTe

in_dq0in=f(vl)

vl

Start
Predict ω
by linear 

extrapolation

Solve
idq0 from 

(3.44)

Calculate
λdq0 from 

(3.45)

Get ω
from 
(3.55)

If ω converged?Stop
Yes

No

GCJ

Kernel7
ULM0

ULMn-1

ULM1

+

-

+

-

G
lo

ba
l m

em
or

y

Predict ω
by linear 
extra-

polation

H
os

t m
em

or
y

Kernel0

If the speed ω
converged?

Get the 
trans-

formation 
matrix P

from (3.49)

Compute the frame 
domain linear network 

voltage vl_dq0 and 
Thevenin equivalent 

resistance rth_dq0 (3.48)

Solve the 
frame 

domain 
current in_dq0

from (3.44)G
lo

ba
l m

em
or

y

Update 
the flux 
linkage 
λdq0 from 

(3.45)

Kernel1

Calculate 
the speed 
voltage 

from 
(3.55)

G
lo

ba
l m

em
or

y

Update 
history 
current

from 
(3.54)

Yes

No

IhCJ

Update 
history 
voltage 
Vh from 
(3.47) G

lo
ba

l m
em

or
y

Transfer the 
frame domain 
current in_dq0

back to phase 
domain in

Compute 
UMM 

voltage v
from 
(3.56)G

lo
ba

l m
em

or
y

Kernel2

ω

in_dq0

λdq0

Rth_dq0

vl

Stage 1 Stage 2 Stage 3
Rth

vl_dq0

ωp

ωp

v_dq0

Rth_dq0

Te

Vh

iTm

IhCJ

vω

vω ωp

Host
Memory

in_dq0

IhCJ

ω is diverged ω is converged

vRth

Vh

vl

CPU

UMM0

UMMn-1

UMM1

Kernel0

Global Memory

Speed ω

Rth in dq0

Linear voltage in dq0

Predicted speed ωp

History voltage Vh

History current

Nonlinear current

Flux linkage in dq0EM torque

λdq0

Torque current

IhCJ

Shared 
Memory

Thevenin equivalent resistance Rth

UMM 
voltage v

Linear network voltage vl

UMM0

UMMn-1

UMM1

Kernel2
UMM0

UMMn-1

UMM1

Kernel1

Calculate
Te from 
(3.51)

Update 
P from 
(3.49)

Figure 3.18: Kernel operation flow in the UMM.

Fig. 3.18 shows the operation flow in the kernels of the UMM module. In order to
reduce the extra cost for kernels switch of CUDA program, as many as possible tasks are
contained in a kernel unless the configuration (threads and memory) of the kernel has to be
changed. Inside the KernelKernelKernel0, the rotor speed ωp is predicted by extrapolation first, then the
Park’s transformation matrix PPP is updated from (3.49) to transfer the linear network volt-
ages vvvl and Thévenin equivalent resistance RRRth into the variables vvvl dq0 and RRRth dq0 using
(3.48). The KernelKernelKernel1 first solves the linear system using LU decomposition and forward-
backward substitution from (3.44) to get the frame domain currents iiin dq0. Then the flux
linkages λλλdq0 from (3.45) are updated, and finally the equivalent speed voltage vω is cal-
culated using (3.55). In KernelKernelKernel2, the reference domain currents iiin dq0 are transferred back
to the phase-domain current iiin with the Park’s transformation matrix PPP−1 based on the
converged rotor speed ω; then the UMM voltages vvv is computed from (3.56) with the lin-
ear network voltages vvvl, Thévenin equivalent resistance RRRth and the incident currents iiin;
finally, the history current IhCJ

and the history voltages VVV h are updated from (3.54) and
(3.47) respectively for the next time-step.

3.3.4 Newton-Raphson Iteration

3.3.4.1 Method formulation

As a numerical algorithm with quadratic convergence, the Newton-Raphson iteration method
is used pervasively to solve the nonlinear problems in many areas as well as in EMTP. For
the nonlinear equation

f(x) = 0, (3.57)
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the derivative of f(x) at xn can be approximated by the difference given as

f ′(xn) =
f(xn)− f(xn+1)

xn − xn+1
. (3.58)

When the iteration is converged, the approximate value is

f(xn+1) ≈ f(x) = 0. (3.59)

Substituting (3.59) into (3.58), the recurrence formula is gotten as

f ′(xn)(xn − xn+1) = f(xn). (3.60)

For the nonlinear system functions FFF (xxx), the solution can be found by solving following
linear system iteratively as

JJJFFFxxx (xxxn − xxxn+1) = FFF (xxxn), (3.61)

where the Jacobian matrix JJJFFF are the partial derivatives of FFF (xxx) defined as

JJJFFFxxx =


∂F1

∂x1
· · · ∂F1

∂xn
...

. . .
...

∂Fn
∂x1

. . .
∂Fn
∂xn

 . (3.62)

Since the CMI is used to link the linear network and nonlinear components, the compen-
sation equations are expressed in (3.2). Assuming the current and voltage relations of
nonlinear components is

vvvkm = fff(iiikm), (3.63)

the nonlinear system functions are gotten as

FFF (iiikm) = fff(iiikm)− vvvkmo +RRReqiiikm. (3.64)

Therefore, the Jacobian matrix is

JJJFFFiiikm = JJJf
ff
iiikm

+RRReq, (3.65)

where JJJfffiiikm , denoting the Jacobian matrix of fff(iiikm), is updated in every iteration using
(3.62). The norms of ∆iiikm and FFF (iiikm) are used as the convergence criteria given as

‖iiin+1
km − iii

n
km‖ < ε1 (3.66a)

‖FFF (iiin+1
km )‖ < ε2 (3.66b)

where ε1 and ε2 are sufficiently small values.
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Figure 3.19: Massive-threading parallel NRIM.

3.3.4.2 Massive-thread parallel implementation

As shown in Fig. 3.19, the designed parallel module for NRI has 6 kernels divided into
5 stages. Stage 1 includes 2 kernels which update iiikm and calculate the norm of ∆i∆i∆ikm

respectively. Stage 2 calculates the right hand side of (3.61). Stage 3 calculates the norm of
FFF (iiikm). With the norms calculated in Stage 1 and Stage 3, the convergence is tested by the
criteria given in (3.66). If it is True, the iteration is terminated with the current results of
iiikm; if it is False, Stage 4 will be processed. Stage 4 updates the Jacobian matrix of FFF (iiikm).
Stage 5 gets the new ∆i∆i∆ikm by solving the linear system. Then the whole procedure will
be repeated until the results are converged or the maximum loop limitation is reached.
Each nonlinear element (NLE) is assigned to a CUDA block running in SIMT , in which
multiple threads are assigned to handle the vector and matrix operations based on SIMD,
according to their dimensions. In 3-phase circuit, the dimension of nonlinear equations is
3 typically, so that the number of CUDA threads per block will be 9, which is far less than
the limitation of the threads per block. Shared memory is also involved in most vector and
matrix operations to reduce the access delay.

The operation flow of NRIM is shown in Fig. 3.20. With the ∆i∆i∆ikm, the next step iiikm is
updated in KernelKernelKernel0 and the its norm are calculated in KernelKernelKernel1 from (3.66a). The KernelKernelKernel2
updates the voltages between k-end and m-end from (3.63), and then updates the right
hand side vector FFF (iiikm) of the linear system in (3.61). The KernelKernelKernel3 calculates the norm of
FFF (iiikm). When the two norms of the convergence criteria are obtained, the process direction
is determined by them. If the results are not converged, the Jacobian matrix of fff(iiikm) is
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Figure 3.20: Kernel operation flow in the NRIM.
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Figure 3.21: LU decomposition.

updated from (3.62), and then the Jacobian matrix of FFF (iiikm) is updated from (3.65) in the
KernelKernelKernel4. The KernelKernelKernel5 solves the linear system (3.61) to obtain the new ∆i∆i∆ikm, which are the
new input to KernelKernelKernel0 and KernelKernelKernel1. The iteration keeps going until the convergence criteria
is satisfied or the maximum loop limitation is reached.

3.3.5 Forward-Backward Substitution with LU Factorization

3.3.5.1 Method formulation

In order to solve the n-order system of linear equations

AAAxxx = bbb (3.67)

in the EMT simulation, a massive-threading parallel direct, non-iterative, linear solver was
developed. Although iterative methods such as the conjugate gradient algorithm [36] have
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been implemented on the GPU, the parallelism is only available within a single iteration.
Since the next iteration depends on the previous one, iterations cannot be processed in
parallel although the same algorithm is used within the iterations. Moreover, since the
number of iterations determined by the convergence of each matrix is dissimilar even for
matrices of the same dimension, extra considerations are necessary to synchronize with
other parallel tasks. Compared with iterative methods, direct methods can give con-
formable solutions with multielement parallelism and stable solution time regardless of
the elements in the matrix, although at the cost of higher algorithmic complexity. In the lit-
erature GPU accelerated direct solvers have been proposed for symmetric sparse matrices
using Cholesky decomposition [37], and multifrontal computations [38], showing a signif-
icant speedup. However, since the matrices in EMT simulation are not all symmetrical, a
parallel direct method is applied for an efficient solution.

As shown in Fig. 3.21, partial pivoting LU factorization decomposes the matrix A into
the product of lower and upper triangular matrices L and U given as

PAPAPA = LULULU, (3.68)

where PPP is a permutation matrix for solution stability formed by exchanging the rows of
AAA. The element of LLL in (3.68) is calculated by

LLL[i][k] = AAA[i][k]/AAA[i][i] (0 < i < n, i < k < n). (3.69)

The element of UUU in (3.68) can be calculated by updating the rest part ofAAA expressed as

UUU [j][k] = AAA[j][k]−AAA[j][i] ∗LLL[i][k] (0 < i < n, i < j < n, i < k < n). (3.70)

Substituting (3.68) to (3.67), the linear system become

LULULUxxx = PbPbPb. (3.71)

Defining

UUUxxx = yyy, (3.72)

we get

LLLyyy = PbPbPb. (3.73)

Denoting bPbPbP = PbPbPb, the interim vector yyy can be solved from (3.73) firstly; then the final
solution xxx can be solved from (3.72). Since LLL is lower triangular, forward substitution is
used to solve yyy easily, given as{

yyy[i] = bPbPbP [i]/LLL[i][i]

yyy[j] = bPbPbP [j]−LLL[j][i] ∗ yyy[i]
(0 6 i < n, i < j < n); (3.74)
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Figure 3.22: Massive-threading parallel LU-FBSM.

similarly, the solution xxx are solved by backward substitution directly, given as{
xxx[i] = yyy[i]/UUU [i][i]

xxx[j] = yyy[j]−UUU [j][i] ∗ xxx[i]
(n > i > 0, n > j > i). (3.75)

Different from Gaussian elimination, LLL and UUU do not need to be recomputed unless the
systemAAA are changed.

3.3.5.2 Massive-thread parallel implementation

The massive-threading parallel LU & forward-backward substitution module (LU-FBSM),
shown in Fig. 3.22, consists of 2 CUDA kernels within 2 stages. Stage 1 decomposes the
matrix A into lower and upper triangular matrices, L and U , by LU factorization. And
then Stage 2 solves the linear system by forward and backward substitutions with L and
U . Both stages include internal iterations to traverse all columns and rows of the matrices.
If the dimension of the matrix n exceeds the number of threads per block, the elements per
column or row will be grouped into multiple CUDA blocks to be computed in parallel. Due
to the internal loop, the number of which depends on the dimension of the matrix, shared
memory can significantly improve the performance of LU decomposition and substitution
by avoiding the data exchange between CUDA cores and global memory in every iteration.

The operation flow of LU-FBSM is shown in Fig. 3.23. In KernelKernelKernel0, the column of LLL is
updated first from (3.69), then the elements of row of UUU and all remainder element of the
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Figure 3.23: Kernel operation flow in LU-FBSM.
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Figure 3.24: LU decomposition CUDA mapping.

rest part of AAA are updated. The loop will not stop until all columns are updated to obtain
LLL and UUU , which are stored in an combined n× n matrix since there is no overlap between
them, given as

AAA = LLL+UUU + III, (3.76)

where III is the identity matrix. In KernelKernelKernel1, the interim vector yyy is solved first by forward
substitution from (3.74) using LLL and bbb with an n-step iteration; and then, backward sub-
stitution is applied to solve the final solution xxx from (3.75) using UUU and yyy with another
n-step iteration scanning all rows of UUU . All intermediate variables, vectors and matrices
are stored in the shared memory during the iteration, and only the results of the kernels
are transferred to global memory since the shared memory will be refreshed when the ker-
nels are switches. The pseudo, shown in Fig. 3.24, gives the code mapping from normal
serial C to parallel CUDA algorithm. Before partial pivoting, the maximum element of the
column i ofAAA is found asAAA[i][rmax], where rmax denotes the row index of the maximum el-
ement of the column i ofAAA. The binary scan operation [39] is applied to parallelize partial
pivoting, which reduces the step complexity fromO(N) toO(log2N). The LU factorization
of a singular square matrix whose rank is less than its order can also be supported by this
algorithm.
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3.4 Summary

In this chapter, the parallel EMT simulator framework, including the hardware and soft-
ware architectures; compensation method data interface; massive-threading parallel com-
ponent modules, including ULEPM, ULM and UMM, and numerical solver modules, in-
cluding NRIM and LU-FBSM, are elaborated from theoretical formulas to parallel imple-
mentation. In the design of the parallel EMT simulation system, the features and charac-
teristics of GPU are sufficiently considered and applied to accelerate the computation of
EMT simulation. The fully modularized design makes the whole EMT simulation system
flexible and extensible, in which each module is developed, tested and updated indepen-
dently.



4
Massive-thread Case Study and Data Analysis

4.1 Large-Scale EMT Simulation Case Study

Base on the parallel modules developed for various power system components, and nu-
merical solvers in Chapter 3, the parallel massive-threading EMT program (MT-EMTP) is
tested for simulating large-scale power systems in this chapter. Using the UMM, ULM and
LPE to model a network, the nodal equation is given in (3.1). In general, YYY is very sparse.
For example, for the test system, the IEEE 39-bus power system, shown in Fig. 4.1, the
original YYY is shown in Fig. 4.2(a). It is 97.39% sparse with 357 nonzero elements. With
increasing network size, the admittance matrix becomes even more sparse. It is consider-
ably inefficient to handle a sparse matrix with traditional parallel dense algorithms, and
the traditional parallel sparse algorithm is unsuitable for the GPU architecture; therefore,
a specific sparse structure, the node mapping structure (NMS), which takes advantage of
the component models, is proposed using a graph optimizing method, known as the block
node adjustment (BNA), which does not affect the condition number of the matrix, to re-

Table 4.1: Hardware Specification
GPU CPU

TeslaTM C2050 (Fermi) AMD PhenomTM II 955BE

Cores 448 Cores 4
Frequency 1.15GHz Frequency 3.2GHz
Global memory 3GB System memory 16GB
CUDA Version 4.0 L2 Cache 2MB
CUDA Capability 2.0 L3 Cache 6MB
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Figure 4.1: Single-line diagram of the IEEE 39-bus power system.
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Figure 4.2: The pattern of Y matrix of IEEE 39-bus system. (a) Before block node adjust-
ment (BNA); (b) After BNA.

shape the originalYYY matrix. In the BNA method, the minimal perfect hash [40] and integer
sorting are applied to avoid string operations so that the complexity is reduced fromO(n2)

to O(n).
The resulting matrix after BNA has a perfect block diagonal pattern as shown in Fig.
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Figure 4.3: Comparison of simulation results (3-phase voltages) between MT-EMTP and
EMTP-RV at Bus 5 during a 3-phase fault at Bus 4.
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Figure 4.4: Comparison of simulation results (3-phase fault currents) between MT-EMTP
and EMTP-RV at Bus 4.

4.2(b) where the number of blocks depends on the number of decoupled systems. There-
fore, only the decoupled blocks in the admittance are stored in the host/device memory,
which significantly reduces the pressure of data transfer for large-scale admittance matri-
ces. Since all sub-systems can be computed independently, all blocks in the admittance
matrix YYY can be parallelized in the GPU. A decoupled sparse linear solver using LU-FBSM
proposed in chapter 3 to compute the unknown node voltages.

The specifications of the hardware used are listed in the Table 4.1. The MT-EMTP (64-
bit code) program was executed on the Fermi GPU, while EMTP-RV (32-bit code) was
running on the AMD CPU, both using 64-bit double precision floating point data. The
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Figure 4.5: Zoomed-in view of Fig. 4.3 from (t = 0.05s) to (t = 0.057s).
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Figure 4.6: Zoomed-in view of Fig. 4.4 from (t = 0.049s) to (t = 0.056s).

simulation time is 100ms and the time-step is 20µs, and the total simulation steps are 5000.
The CDA algorithm [28], in which the backward Euler rule replaces the Trapezoidal rule
to discretize the differential and integral equations, are used to suppress the potential nu-
merical oscillation.

4.1.1 Test case for a fault on the transmission line

As a regular fault in the test power system (Fig. 4.1), a 3-phase fault event occurs at Bus
4. The time-domain voltage waveforms at Bus 5 of the test power system are shown in
Fig. 4.3. The fault currents at Bus 4 are shown in Fig. 4.4. The results from EMTP-RV
and MT-EMTP are superimposed in figures 4.3 through 4.6, which show close agreement.
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Figure 4.7: Comparison of simulation results (3-phase voltages) between MT-EMTP and
EMTP-RV at Bus 33 during a 3-phase fault at Bus 33.
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Figure 4.8: Comparison of simulation results (3-phase voltages) between MT-EMTP and
EMTP-RV at Bus 19 during a 3-phase fault at Bus 33.

The zoomed-in figures, Fig. 4.5 and Fig. 4.6, show that there is a slight time-shift in the
transients. The possible reasons for these differences could be different initial system pa-
rameters, modeling differences, and solution algorithm differences, for example, the use
of compensation and CDA algorithms, in the MT-EMTP. It is known that even the main-
stream commercial EMT simulation software will not give exactly identical results in many
cases; and even for the same algorithm implemented by different computer languages,
there may be some slight differences in the result. According to the zoomed in figures,
the phase difference is about several time steps, which is 20µs, the total difference is about
0.1ms. It should be acceptable relating to the 60Hz frequency. The phase difference is not
increasing over time because the two waveforms are synchronous in the next period in Fig.
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Figure 4.9: Comparison of simulation results (3-phase voltages) between MT-EMTP and
EMTP-RV at Bus 20 during a 3-phase fault at Bus 33.
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Figure 4.10: Comparison of simulation results (3-phase voltages) between MT-EMTP and
EMTP-RV at Bus 34 during a 3-phase fault at Bus 33.

4.3 and Fig. 4.4.

4.1.2 Test case for a fault on the machine

In order to stress the source in the test power system, the 3-phase fault is set on Bus 33
which connects the synchronous machine G5 directly. The 3-phase voltages of Bus 33, Bus
19, Bus 20 and Bus 34 are compared with the outputs of the same test system in EMTP-RV,
as shown in Fig. 4.7, Fig. 4.8, Fig. 4.9 and Fig. 4.10. From near to far, these four figures
show the different degree of influence from the fault, and the comparisons give the closely
matching results between two simulations. The difference only occurs in the transient
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Table 4.2: Comparison of execution time for various system sizes between EMTP-RVr and
GPU-based MT-EMTP for simulation duration 100ms with time-step 20µs

System structure (3-phase) Execution time (s)
Speedup

Scale Buses
Devices

EMTP-RV MT-EMTP
LPEs ULMs UMMs

1 40 31 35 10 0.967 0.875 1.11
2 79 61 72 20 2.012 1.542 1.30
4 157 121 148 40 4.118 2.529 1.63
8 313 241 300 80 9.625 4.583 2.10

16 625 481 608 160 25.988 8.031 3.24
32 1249 961 1224 320 65.567 14.900 4.40
48 1873 1441 1840 480 115.724 22.204 5.21
63 2458 1891 2425 630 168.502 29.056 5.75

duration of about 0.1ms. As to the 60Hz signal, the differences are about 0.6% (less than
1%), which means the results coming from MT-EMTP are reasonable and acceptable and
can reproduce the transients of the test system correctly.

4.1.3 Test case for the execution time on various scales of power systems

To evaluate computational efficiency, execution times of test systems of increasing size
were recorded. Eight large-scale test cases were created by expanding the original IEEE
39-bus system with detailed modeling of all components. Sub-systems (39-bus) were inter-
connected with the systems around them by 2 additional transmission lines. The execution
times are shown in the Table 4.2, which also includes the number of buses and devices in
the systems. All the lines in these test cases were modeled using ULM and the machines
using UMM. As can been seen, when the system size is relatively small, the speedup is
not notable, however, when the system scale is increased to 63 times of the original IEEE
39-bus system, the achieved speedup is up to 5.75.

Fig. 4.11 shows the execution time and speedup with increasing system size. It is obvi-
ous that the computation time of EMTP-RV follows a high-order complexity O(na) (a > 2)

respecting to the system scale, since most vector and matrix operations have the high-order
complexity,O(n2) andO(n3), in serial CPU algorithms. The execution time of the proposed
MT-EMTP program, however, only increases linearly with first order complexity O(n), de-
rived from SIMD-based parallel programming. Thanks to the complexity order reduction,
a GPU-based EMT simulator is always faster than the conventional CPU-based simulator
when the scale of the test case is large enough. Therefore, the speedup can be expected to
increase without saturation for increasing system sizes. Larger systems (greater than Scale
63) could also be tested on MT-EMTP, but the EMTP-RV licence only allowed a maximum



Chapter 4. Massive-thread Case Study and Data Analysis 52

0 10 20 30 40 50 60 70
0

2

4

6

8

10

S
pe

ed
up

0 10 20 30 40 50 60 70
0

50

100

150

200

System scale

E
xe

cu
tio

n 
tim

e 
(s

)

 

 

EMTP−RV
MT−EMTP
Speedup

Figure 4.11: Execution time and speedup with respect to the scale of test systems in EMTP-
RV and the GPU-based MT-EMTP program.

of 5000 devices. Note that in a commercial and industrial program like EMTP-RV there
are many input and output activities, and a large collection of models/codes that require
extra processing time. Nevertheless, this experiment clearly demonstrates the advantage
of parallel massive-threading computation in accelerating EMT simulation.

4.2 Summary

In this chapter, the accuracy of the parallel massive-threading EMT program (MT-EMTP)
was shown by the test cases for a fault on the transmission line and a fault on the machine;
and the significant computational performance improvement is shown by the comparison
test case between CPU and GPU EMT simulators. Although this parallel EMT simulator
is still a laboratorial product, its performance in large-scale power system simulation and
potential to reduce the computational complexity order are significant in comparison with
the traditional commercial EMT simulator operating in series.



5
Conclusions and Future Work

Accuracy and speed are the eternal demands for the electromagnetic transient simulation
of power systems in the modern electrical energy industry. Increasing the power system
scale, the compromise has to be made between accuracy and speed since the limitation
of the computational capability to traditional CPU-based EMT simulation system. The
advent of GPU showing its extraordinary computational performance with the many-core
structure and massive-threading architecture relieves this contradiction effectively. The
power and potential of GPU-based massive-threading parallel EMT simulation shown in
this thesis presents a new possibility to accelerate EMTP.

This thesis describes the development of a parallel massive-threading EMT program
(MT-EMTP). Massive-threading parallel implementation of component models and nu-
merical solvers used in power system for large-scale electromagnetic transient simulation
is described. The proposed methods, algorithm and data structure can also be applied to
a multi-threading computing system, which is also pervasive nowadays as a mainstream
CPU architecture. The summary of the completed thesis work and directions for future
work are presented in this chapter.

5.1 Contributions

• The models and methods developed in this simulation system cover the major appli-
cation of EMT simulation. Using the developed modules, including ULPEM, ULM,
UMM, NRIM and LU-FBSM, a complete power system, i.e., the IEEE 39-bus power
system, can be simulated with linear passive elements, transmission lines, electrical
machines and nonlinear elements.

• The transmission lines and electrical machines used in large-scale EMT simulation of
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a power systems of up to 2458 buses, are modeled using detailed models, universal
line model and universal machine model, which leads accuracy and generalization
to the component models.

• Novel massive-threading parallel modules are developed for all components, includ-
ing linear passive element, transmission line and machines, used in this parallel EMT
simulator based on the GPU and CUDA.

• Novel massive-threading parallel modules are developed for numerical solvers, in-
cluding Newton-Raphson iteration method and forward-backward substitution with
LU factorization, for solving nonlinear and linear system used in this parallel EMT
simulator based on the GPU and CUDA.

• As shown by the evaluations and comparisons with the commercial EMTP software
using various large-scale test cases, the EMT simulation for large-scale power system
is significantly accelerated by GPU-based massive-threading computation, which re-
duce the computational complexity order from high order (O(na) (a > 2)) to linear
(O(n)). Therefore, a stable increase of speedup is obtained without saturation grow-
ing with the power system scale.

5.2 Directions of Future Work

• Thanks to the modularized architecture of this parallel EMT simulation system, more
new modules for new component models and numerical methods can be plugged in
to extend the capability of MT-EMTP, such as transformer model, power electronics
element model and conjugate gradient method.

• Since most of components in this EMT simulation system are uncontrolled, control
system will be implemented in the next version of MT-EMTP. By modeling the cyber
systems, it even can be used to simulate the transient phenomenon in a smart grid.

• To handle larger scale power system, the parallel EMT simulation system should be
expanded from single GPU to multiple GPU computing system.
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A
System Data of Case Study in Chapter 4

The parameters for the power system in Fig. 4.1 are given below:

1. ULM transmission line (Line1 - Line35) parameters: three conductors, resistance:
0.0583 /km, diameter: 3.105 cm, line length: 50km (line 5, 6, 7, 8, 15, 16, 18, 19, 23,
27, 29, 30, 31, 35), 150km (line 2, 3, 4, 9, 10, 11, 13, 14, 20, 21, 22, 24, 25, 26, 32, 33)
and 500 km (line 1, 12, 17, 28, 34). Y and H are 3 × 3 matrices, whose elements are
approximated with ninth-order rational functions (3.25) and (3.26). The geometry is
shown in Fig. A.1.

2. UMM synchronous machine (G1 - G10) parameters: 1000 MVA, 22 kV, Y-connected,
field current: 2494 A, 2 poles, 60 Hz, moment of inertia: 5.628e4 kg·m2/rad and
damping: 6.780e3 kg·m/s/rad. The winding resistances and leakage reactance (Ω)
are listed in Table A.1.

3. Loads and transformer parameters: load parameter: R = 500Ω, L = 0.05H , C = 1µF
and transformer leakage impedance: R = 0.5Ω, L = 0.03H .
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Figure A.1: Tower geometry of transmission lines in the case study

Table A.1: UMM machine parameters
Rd 9.680e-4 Rq 9.680e-4 R0 9.680e-4
Rf 1.111 RD1 3.499 RD2 5.571
RQ1 7.627e-1 RQ2 1.227 RQ3 2.096e2

Xd 6.747e-1 Xq 6.549e-1 X0 9.099e-2
Xf 2.392e2 XD1 2.067e2 XD2 5.571
Xdf 8.821 XdD1 8.821 XdD2 8.821
XD1D2 2.066e2 XfD1 2.066e2 XfD2 2.099e2
XQ1 4.453e2 XQ2 2.218e2 XQ3 2.096e2
XqQ1 8.521 XqQ2 8.521 XqQ3 8.521
XQ2Q3 1.577e2 XQ1Q2 1.577e2 XQ1Q3 1.577e2
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Figure A.2: The snapshot of the Scale 63 large-scale power system in the EMTP-RVr soft-
ware.
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